WO2007083479A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2007083479A1
WO2007083479A1 PCT/JP2006/325530 JP2006325530W WO2007083479A1 WO 2007083479 A1 WO2007083479 A1 WO 2007083479A1 JP 2006325530 W JP2006325530 W JP 2006325530W WO 2007083479 A1 WO2007083479 A1 WO 2007083479A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antennas
reception
transmission
array
Prior art date
Application number
PCT/JP2006/325530
Other languages
English (en)
French (fr)
Inventor
Tomohiro Nagai
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112006003644T priority Critical patent/DE112006003644B4/de
Priority to JP2007554835A priority patent/JP4844566B2/ja
Publication of WO2007083479A1 publication Critical patent/WO2007083479A1/ja
Priority to US12/171,573 priority patent/US7525479B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers

Definitions

  • the present invention relates to an FM-CW radar device used for preventing collision of an automobile, and more particularly to a holographic radar device using an array antenna.
  • the radar apparatus of Patent Document 1 includes one transmission antenna and a plurality of reception antennas arranged at equal intervals, and sequentially receives the reflected wave by switching the reception antenna during the modulation period of the transmission wave. Then, the phase difference of the reflected wave received by each receiving antenna is calculated to detect the direction of the object.
  • FIG. 9 (A) is a block diagram of the radar apparatus of Conventional Example 1 corresponding to Patent Document 1 in the case of realizing 9 reception channels
  • Fig. 9 (B) shows the reception channel state in this configuration.
  • the radar apparatus of Conventional Example 1 includes receiving antennas 101 to 109, transmitting antenna 110, switch circuits 201 to 204, VCO 301, branch circuit 302, LNA 303, mixer 304, and IF amplifier 305.
  • the receiving antennas 101 to 109 are arranged at equal intervals d.
  • the reflected waves from the transmission wave from the transmission antenna 110 are received by the receiving antennas 101 to 109 arranged at equal intervals d, and as shown in FIG. 9B, the phase difference (2 ⁇ dsin ⁇ ) Assigns each reflected wave corresponding to each channel CH1 to CH9 that also has a spacing force of / ⁇ .
  • the radar apparatus of Patent Document 2 includes a plurality of transmission antennas arranged at equal intervals at a first interval, and a plurality of reception antennas arranged at equal intervals at a second interval, Sequential transmission Transmits a transmission wave while switching antennas, and receives a reflected wave by sequentially switching the reception antenna for each transmission antenna.
  • FIG. 10 (A) is a block diagram of the radar device of Conventional Example 2 corresponding to Patent Document 2 in the case of realizing 9 reception channels
  • FIG. 10 (B) is a diagram showing the reception channel state in this configuration. It is.
  • the radar apparatus of Conventional Example 2 includes receiving antennas 101 to 103, transmitting antennas 111 to 113, switch circuits 205 and 206, VCO 301, branch circuit 302, LNA 303, mixer 3 04, equipped with IF amplifier 305.
  • the receiving antennas 101 to 103 are arranged at equal intervals d
  • the transmitting antennas 111 to 113 are arranged at equal intervals 3d.
  • the reflected waves from the transmission waves from the transmission antennas 111, 112, and 113 that are sequentially switched are sequentially received by the respective reception antennas 101 to 103, and as shown in FIG. 10 (B), the phase difference (2 ⁇ dsin ⁇ ) Assigns each reflected wave corresponding to each channel CHI to CH9 consisting of an interval of / ⁇ .
  • the radar apparatus of Patent Document 3 includes a plurality of transmission / reception antennas, and the interval between the transmission / reception antennas is set to a specific value. Then, a transmission antenna is selected in synchronization with the modulation period of the transmission wave, and a reception antenna is selected at an interval shorter than the modulation period corresponding to the selected transmission antenna.
  • FIG. 11 is a block diagram of a radar device of Conventional Example 3 corresponding to Patent Document 3 in the case of realizing 11 reception channels.
  • the radar apparatus of Conventional Example 3 includes transmission / reception shared antennas 401 to 404, switch circuits 501, 502, VCO 301, coupler 302, LNA 303, mixer 304, and IF amplifier 305.
  • the transmission / reception antennas 401 to 404 are sequentially arranged at intervals of d, 2d, and 2d. Then, by selecting one of the transmission / reception antennas as the transmission antenna and transmitting the transmission wave, selecting the transmission / reception antenna as the reception antenna and sequentially receiving the reflected wave, as shown in FIG. In addition, each reflected wave is assigned to each reception channel. Note that FIG.
  • Patent Document 3 shows a diagram in which the number of channels is assigned to 11 channels.
  • the channel assignment is set by a time difference. In other words, since the channels are allocated according to the time difference, the signal received by the transmitting antenna is used as a reference, and 11 channels are formed according to the time difference. If this is set by a spatial position difference, the antenna 401 arranged at the end becomes the reference of the transmission / reception signal, and the number of channels and the channel interval as shown in FIG. 12 of the present invention are obtained.
  • Patent Document 1 Japanese Patent No. 3622565
  • Patent Document 2 Japanese Patent No. 3368874
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-3393
  • Conventional Example 3 can achieve downsizing compared to Conventional Examples 1 and 2 in terms of realizing nine channels.
  • the channels are not set at equal intervals.
  • channels CH8 and CH10 in 11 channels are missing
  • channels CH7 and CH9 have a phase difference of 4 ⁇ d (si ⁇ ⁇ ) / ⁇
  • channels CH9 and CHI 1 have a phase difference of 4 ⁇ d (sin 0) ⁇ ⁇ .
  • the phase difference is 2 ⁇ d (sin ⁇ ) / ⁇ , so 9 channels that are not substantially equidistant must be used. For this reason, the object detection direction is partially lost, and the direction detection performance of the object detection is low.
  • an object of the present invention is to realize a radar apparatus that has high azimuth detection performance without occurrence of missing object detection azimuths even when downsized.
  • the present invention includes an antenna array in which a plurality of transmission / reception shared antennas are arranged, and a selection unit that selects a transmission antenna and a reception antenna from the plurality of transmission / reception shared antennas, and is selected by the selection unit Transmits a frequency-modulated transmission wave from the transmission antenna, receives the reflected wave of the transmission wave at each selected reception antenna while switching sequentially by the selection means, and uses the phase difference of the reflected wave received at each reception antenna.
  • N1 shared antennas are arranged at each end of the array with a spacing d, and the distance between the shared antennas at the center of the array at both ends of the array is Nl X d It is characterized by the fact that a shared antenna is arranged at an interval of Nl X d between both ends of the array.
  • the arrangement interval of the transmission / reception antennas constituting both ends is equal to the interval between both ends, or between the transmission / reception antennas in the central portion sandwiched between both ends. It becomes narrower than the arrangement interval. That is, the antenna arrangement is denser at both ends of the antenna array than at the center.
  • the transmission antenna is switched and shifted, so that the channel arrangement pattern is also shifted, and the phase difference between the channels corresponding to the central portion of the antenna array in a single transmission antenna is relatively Wide partial force
  • the phase difference between the channels corresponding to both ends of the antenna array in other transmit antennas is interpolated in a relatively narrow part.
  • the radar apparatus is characterized in that the selection means switches and selects the transmission antenna at intervals shorter than the modulation period of the transmission wave.
  • the total number of transmission / reception shared antennas constituting the antenna array is an integer N equal to or greater than 2, and the number N1 of transmission / reception shared antennas arranged at both ends of the array is: N + 3) It is the closest to Z4 and is characterized by an integer setting.
  • the number of shared antennas at both ends of the array is set to an integer closest to (N + 3) Z4.
  • N the number of channels that can be set
  • N1 ( ⁇ + 3) ⁇ 4
  • An optimal antenna array is constructed according to the total number of antennas.
  • the radar apparatus of the present invention is characterized in that the plurality of shared antennas of the antenna array are arranged on a straight line so that the transmission / reception surfaces of the shared antennas face the same direction.
  • each of the transmission / reception shared antennas constituting the antenna array transmits a transmission wave to substantially the same detection area, receives a reflected wave from the detection area, and the transmission / reception antenna is one-dimensional. Arranging along the direction simplifies the positional relationship between the channels and simplifies the phase difference calculation process.
  • the radar apparatus of the present invention is characterized in that a wide-angle detection antenna whose transmitting / receiving surface faces in a direction different from a plurality of transmission / reception shared antennas arranged in a straight line is arranged at both ends of the array antenna.
  • the detection area in a direction different from the detection area by the shared transmission / reception antenna arranged on a straight line is detected by the wide-angle detection antenna.
  • the radar apparatus is characterized in that the selection means performs transmission switching selection of the wide-angle detection antenna in synchronization with the modulation cycle.
  • the radar apparatus of the present invention performs transmission switching selection of the wide-angle detection antenna at intervals shorter than the modulation period by the selection means, and does not select the wide-angle detection antenna as the reception antenna, but the antenna array. Close to the corresponding wide-angle detection antenna in! Splinter It is characterized in that a shared antenna at the end is selected as a receiving antenna.
  • the reflected wave based on the transmission wave transmitted from the wide-angle detection antenna is received while switching between the transmission / reception shared antenna (reception antenna) at one end close to the corresponding wide-angle detection antenna in the antenna array.
  • the transmission / reception shared antenna reception antenna
  • a plurality of channels can be obtained for one wide-angle detection antenna even in a region corresponding to the wide-angle detection antenna.
  • the radar apparatus includes a temperature sensor in the detection means for detecting an object based on the reflected wave, and detects the object after correcting the reflected wave based on the temperature detected by the temperature sensor. It is characterized by performing.
  • the transmission antenna is switched at intervals shorter than the transmission period of the transmission wave, and the reception antenna is switched with respect to each transmission antenna.
  • the received signal can be obtained, and the direction detection performance of the detected object can be further improved.
  • An optimum antenna array can be configured according to the total number N of antennas. As a result, it is possible to configure a radar apparatus having the highest azimuth detection performance for a preset number of shared antennas.
  • the phase difference calculation process can be simplified, the direction detection can be speeded up, and ! It can speed up the object detection process.
  • the detection processing of the regions existing on both ends of the detection region is simplified, and the azimuth detection accuracy in the detection region corresponding to the array antenna that is the main detection region is reduced. It is possible to suppress a decrease in the object detection speed in the entire wide-angle region without being performed.
  • an object can be detected with a predetermined azimuth detection accuracy even in regions existing at both ends other than the detection region by the antenna array.
  • the present invention it is possible to perform accurate object detection without lowering azimuth detection accuracy even if the array antenna is formed of a material, which is relatively inexpensive and has poor temperature characteristics. .
  • FIG. 1 is a block diagram showing a configuration of a main part of a radar apparatus according to a first embodiment, and a conceptual diagram showing a relationship between a transmission antenna and a reception channel.
  • FIG. 2 is a block diagram illustrating a configuration of a main part of a radar apparatus according to a second embodiment, and a conceptual diagram illustrating a relationship between a transmission antenna and a reception channel.
  • FIG. 3 is a conceptual diagram illustrating a relationship between a transmission antenna and a reception channel according to a third embodiment.
  • FIG. 4 is a block diagram showing a concept of an antenna arrangement pattern of the radar apparatus of the present invention.
  • FIG. 5 is a conceptual diagram showing the arrangement when the number of antennas is “5” and the relationship between the transmitting antenna and the receiving channel in this case.
  • FIG. 6 is a conceptual diagram showing the arrangement when the number of antennas is “6” and the relationship between the transmitting antenna and the receiving channel in this case.
  • FIG. 7 is a conceptual diagram showing the arrangement when the number of antennas is “8” and the relationship between the transmitting antenna and the receiving channel in this case.
  • FIG. 8 is a block diagram showing a configuration of a radar apparatus using another transmission / reception method of the present invention.
  • FIG. 2 is a block diagram of a device, and a diagram showing a reception channel state in this configuration.
  • FIG. 10 is a block diagram of a radar device of Conventional Example 2 corresponding to Patent Document 2 when 9 reception channels are realized, and a diagram showing a reception channel state in this configuration.
  • FIG. 11 is a block diagram of a radar apparatus of Conventional Example 1 corresponding to Patent Document 1 when 11 reception channels are realized.
  • FIG. 12 is a diagram showing a reception channel state in the radar apparatus shown in FIG. Explanation of symbols
  • Fig. 1 (A) is a block diagram showing the configuration of the main part of the radar apparatus of this embodiment.
  • the radar apparatus of this embodiment includes an array antenna 10, switch circuits 21, 22, a voltage controlled oscillator (VCO) 31, a branch circuit 32, an LNA 33, a mixer 34, an IF amplifier 35, and a signal processing circuit.
  • VCO voltage controlled oscillator
  • the array antenna 10 includes an antenna array in which antennas 11 to 14 that are commonly used for transmission and reception are arranged in a straight line, and all the antennas 11 to 14 are arranged so that the front directions of the antennas coincide with each other. At this time, the distance between the antenna 11 arranged at one end of the antenna array and the antenna 12 arranged adjacent to the antenna 11 is d, and the antenna 14 arranged at the other end is adjacent to the antenna 14. The distance from the placed antenna 13 is also d. Then, both end portions are constituted by one end portion composed of the antennas 11 and 12 and one end portion composed of the antennas 13 and 14.
  • the number of antennas "N1" arranged at both ends can be derived by the following method. If the total number of antennas installed in the array antenna 10 is “N” and the number of antennas placed at both ends is “N1”, the number of reception channels of an equivalent reception channel array that can be realized with this antenna array Is 2 ( ⁇ — ⁇ 1 + 3) ⁇ ⁇ 1—3 channels become. This is a quadratic equation in N1, and the maximum number of channels that can be set corresponds to the maximum value of this quadratic equation. Therefore, to obtain the maximum number of channels that can be set
  • the distance between the antenna 12 and the antenna 13, that is, the distance between both ends is a value obtained by multiplying the number of antennas (N1) “2” and the antenna distance “d” that constitute both ends, respectively.
  • the antennas 11 to 14 are selected by the switch circuit 21 and are selected at the time of transmission.
  • an antenna in such a state is referred to as a “transmitting antenna” radiates (transmits) a transmission signal to an external detection region.
  • the antenna selected at the time of reception (hereinafter, the antenna in such a state is referred to as a “reception antenna”) receives a reflected wave obtained by reflecting the transmission signal to an object in the detection area, and A received signal based on this reflected wave is output to the switch circuit 21.
  • the array antenna 10 having such a configuration is, for example, a microstrip array antenna formed by connecting patch antennas formed on one surface of a dielectric substrate in a straight line with the above-mentioned spacing in parallel by an electrode pattern, or a rectangular conductor.
  • This is realized by a waveguide slot antenna or the like in which slot openings are formed on one surface of the wave tube at the aforementioned intervals.
  • the VC031 generates, for example, a 76 GHz band transmission signal according to the modulation voltage supplied from the signal processing circuit 40. At this time, VC031 has a variable voltage value that fluctuates in a predetermined cycle. A regulated voltage, for example, a modulation voltage that fluctuates in a triangular waveform with a predetermined period is applied. The VC031 generates a transmission signal that is frequency-modulated within a predetermined frequency range, for example, a transmission signal that is frequency-modulated in the form of a triangular wave, in the predetermined period, in accordance with the modulation voltage.
  • the branch circuit 32 provides the transmission signal output from the VC031 to the switch circuit 22, and also provides a part of the transmission signal to the mixer 34 as a local signal.
  • the switch circuit 22 connects the VC031 and the switch circuit 21 in accordance with the transmission selection signal from the signal processing circuit 40, and gives the transmission signal output from the VC031 to the switch circuit 21. Further, the switch circuit 22 connects the switch circuit 21 and the LNA 33 in accordance with the reception selection signal from the signal processing circuit 40, and gives the reception signal from the switch circuit 21 to the LNA 33.
  • the switch circuit 21 connects the selected transmission antenna or reception antenna to the switch circuit 22 in accordance with the antenna selection signal from the signal processing circuit 40, and is input via the switch circuit 22 at the time of transmission.
  • the received transmission signal is output to the selected transmission antenna, and at the time of reception, the reception signal output as the selected reception antenna force is output to the switch circuit 22.
  • the switch circuits 21 and 22 may be mechanical switches, electronic components that can be used as switches, or soft switches! /.
  • the LNA 33 amplifies the input received signal and outputs the amplified signal to the mixer 34.
  • the mixer 34 mixes the received signal from the LNA 33 and the local signal from the branch circuit 32 to generate an IF beat signal. Generate.
  • the IF amplifier 35 amplifies the IF beat signal and outputs it to the signal processing circuit 40.
  • the signal processing circuit 40 applies a modulation voltage to the VC031, provides an antenna selection signal to the switch circuit 21, and provides a transmission selection signal or a reception selection signal to the switch circuit 22. At this time, the signal processing circuit 40 sets the transmission antenna switching interval by the transmission selection signal to be shorter than the modulation period by the modulation voltage. For example, in the case of a transmission signal whose frequency is modulated in a triangular wave shape, the signal processing circuit 40 is set so that all channels receive within the frequency modulation period, that is, one triangular wave period.
  • the signal processing circuit 40 calculates the speed, distance, and the like of the detected object by using a known FM-CW method calculation using the input IF beat signal.
  • the signal processing circuit 40 Detects the azimuth of the sensing object from the received signals of channels CH1 to CH9 formed by antennas 11 to 14, which will be described later, using the principle of holographic radar.
  • the detection operation by the radar apparatus of this embodiment will be specifically described.
  • the explanation will be given for the case where the transmitting antenna and the receiving antenna are switched in the order of antenna 11, antenna 12, antenna 13, and antenna 14.
  • the switching order of antennas is not limited to this, and is set as appropriate. be able to.
  • the signal processing circuit 40 gives a modulation voltage to the VC031.
  • the signal processing circuit 40 continuously applies a modulation voltage to the VC031, and the VC031 generates a transmission signal that is continuously frequency-modulated.
  • the signal processing circuit 40 provides a transmission selection signal to the switch circuit 22 and an antenna selection signal for selecting the antenna 11 to the switch circuit 21.
  • the transmission antenna 11 transmits the transmission signal generated by the VC031 to the detection area.
  • the signal processing circuit 40 gives a reception selection signal to the switch circuit 22 and gives an antenna selection signal to the switch circuit 21.
  • the antenna selection signal at the time of reception is a signal for selecting a reception antenna at predetermined intervals in the order of antenna 11, antenna 12, antenna 13, and antenna 14.
  • the antennas 11 to 14 sequentially function as reception antennas and receive reflected waves based on the transmission signals from the transmission antenna 11.
  • the receiving antennas 11 to 14 sequentially output the received signals to the LNA 33 via the switch circuit 21 and the switch circuit 22.
  • the antennas 11 to 14 force are arranged at the above-described intervals, so that the reception signals of the antennas 11 to 14 have a phase difference of 2 ⁇ d (sin as shown in Fig. 1 (B). It is set to one of the reception signals of reception channels CH1 to CH9 set at intervals of ⁇ ) / ⁇ .
  • is the wavelength of the received signal
  • is the incident angle of the received signal, that is, the angle formed with respect to the front direction of the antenna.
  • the received signal strength of antenna 12 has a phase difference of 2 ⁇ d with respect to reception channel CH1.
  • the received signal of antenna 13 is positioned relative to reception channel CH2.
  • the reception signal of the antenna 14 is set to the reception signal of the reception channel CH5 that is separated from the reception channel CH4 by a phase difference of 2 ⁇ (1 (sin ⁇ ) / ⁇ ).
  • the signal processing circuit 40 gives a transmission selection signal to the switch circuit 22 and gives an antenna selection signal for selecting the antenna 12 to the switch circuit 21.
  • the transmission antenna 12 transmits the transmission signal generated by the VC031 to the detection area.
  • the signal processing circuit 40 provides a reception selection signal to the switch circuit 22 and an antenna selection signal to the switch circuit 21.
  • the antenna selection signal at the time of reception is the same as the antenna selection signal shown in (2).
  • the antennas 11 to 14 sequentially function as reception antennas, and receive reflected waves based on the transmission signals from the transmission antenna 12. Receive. Then, the receiving antennas 11 to 14 sequentially output the received signals to the LNA 33 via the switch circuit 21 and the switch circuit 22. At this time, since the transmission antenna is continuously switched and the signal is continuously radiated, even if the transmission antenna is switched from the antenna 11 to the antenna 12, the reference reception channel CH1 does not change.
  • the reception channel given to each of the reception antennas 11 to 14 with respect to the transmission antenna 12 is transmitted by the phase difference 2 ⁇ d (sin ⁇ ) / ⁇ corresponding to the distance d between the transmission antenna 11 and the transmission antenna 12.
  • Received channel power corresponding to antenna 11 A shifted receive channel is set.
  • the reception signal of the antenna 11 is set to the reception signal of the reception channel CH2 that is separated from the reception signal of the reception channel CH1 by a phase difference of 2 ⁇ d (sin ⁇ ) / ⁇ .
  • Received signal strength of antenna 12 It is set to the received signal of receiving channel CH3 that is separated by a phase difference of 2 ⁇ d (sin ⁇ ) / ⁇ with respect to receiving channel CH2.
  • the reception signal of the antenna 13 is set to the reception signal of the reception channel CH5 that is separated from the reception channel CH3 by a phase difference of 4 ⁇ d (sin ⁇ ) / ⁇ .
  • the reception signal of the antenna 14 is set to the reception signal of the reception channel CH6 that is separated from the reception channel CH5 by a phase difference of 2 ⁇ d (sin ⁇ ) / ⁇ .
  • the signal processing circuit 40 gives a transmission selection signal to the switch circuit 22 and gives an antenna selection signal for selecting the antenna 13 to the switch circuit 21.
  • the transmission antenna 13 transmits the transmission signal generated by the VC031 to the detection area.
  • the signal processing circuit 40 provides a reception selection signal to the switch circuit 22 and an antenna selection signal to the switch circuit 21.
  • the antenna selection signal at the time of reception is the same as the antenna selection signal shown in (2) and (4), and antennas 11 to 14 sequentially function as reception antennas and transmit signals from the transmission antenna 13 to the transmission signals. Receive a reflected wave based. Then, the receiving antennas 11 to 14 sequentially output the received signals to the LNA 33 via the switch circuit 21 and the switch circuit 22.
  • the reception channel given to each of the reception antennas 11 to 14 with respect to the transmission antenna 13 is transmitted by a phase difference of 6 ⁇ d (sin ⁇ ) / ⁇ corresponding to the interval 3d between the transmission antenna 11 and the transmission antenna 13.
  • Received channel corresponding to antenna 11 Shifted receive channel is set. Specifically, the received signal power of the antenna 11 is set to the received signal of the receiving channel CH4 that is separated from the received signal of the receiving channel CH1 by a phase difference of 6 ⁇ d (sin ⁇ ) / ⁇ .
  • Received signal strength of antenna 12 Set to the received signal of receiving channel CH5 that is separated by a phase difference of 2 ⁇ d (sin ⁇ ) / ⁇ with respect to receiving channel CH4.
  • the reception signal of the antenna 13 is set to the reception signal of the reception channel CH7 that is separated from the reception channel CH5 by a phase difference of 4 ⁇ d (sin ⁇ ) / ⁇ . Further, the reception signal of the antenna 14 is set to the reception signal of the reception channel CH8 that is separated from the reception channel CH7 by a phase difference 2 ⁇ (1 (sin ⁇ ) / ⁇ ).
  • the signal processing circuit 40 gives a transmission selection signal to the switch circuit 22 and gives an antenna selection signal for selecting the antenna 14 to the switch circuit 21.
  • the transmission antenna 14 transmits the transmission signal generated by the VC031 to the detection area.
  • the signal processing circuit 40 gives a reception selection signal to the switch circuit 22 and gives an antenna selection signal to the switch circuit 21.
  • the antenna selection signal at the time of reception is the same as the antenna selection signals shown in (2), (4), and (6), and antennas 11 to 14 sequentially function as reception antennas, and transmit antenna 14 A reflected wave based on the transmitted signal is received. Then, the receiving antennas 11 to 14 sequentially output the received signals to the LNA 33 via the switch circuit 21 and the switch circuit 22.
  • the reception channel given to each of the reception antennas 11 to 14 with respect to the transmission antenna 14 has a phase difference of 8 ⁇ d (sin 0) ⁇ ⁇ corresponding to the distance 4d between the transmission antenna 11 and the transmission antenna 14.
  • the received signal strength of the antenna 11 is set to the received signal of the receiving channel CH5 separated by a phase difference of 8 ⁇ d (sin ⁇ ) / ⁇ with respect to the received signal of the receiving channel CH1.
  • the reception signal of the antenna 12 is set to the reception signal of the reception channel CH6 that is separated from the reception channel CH5 by a phase difference of 2 ⁇ d (sin ⁇ ) / ⁇ .
  • the reception signal of antenna 13 is set to the reception signal of reception channel CH8 that is separated by a phase difference of 4 ⁇ (1 (sin 0)) with respect to reception channel CH6. It is set to the received signal of the receiving channel CH9 that is separated from the receiving channel CH8 by a phase difference of 2 ⁇ d (sin ⁇ ) / ⁇ .
  • the intervals of the four transmission / reception antennas are arranged as d, 2d, and d, respectively, and the transmission antennas are switched to generate reception signals at all reception antennas for each transmission antenna.
  • the transmission antennas are switched to generate reception signals at all reception antennas for each transmission antenna.
  • the distance between the four antennas is d, 2d, and d, and the array length of the antenna array is 4d. Therefore, the radar device described in Patent Document 3 (array of antenna arrays) Compared to 5d), the orientation detection performance is excellent and the size can be further reduced.
  • FIG. 2A is a block diagram showing the configuration of the main part of the radar apparatus of this embodiment
  • FIG. 2B is a conceptual diagram showing the relationship between the transmission antenna and the reception channel.
  • the radar apparatus according to the present embodiment further includes antennas 15 and 16 in addition to the radar apparatus (FIG. 1A) shown in the first embodiment, and the switch circuit 21 is replaced with a switch circuit. 23, and other configurations are the same.
  • the switch circuit 23 may be any switch as in the case of the switch circuits 21 and 22.
  • the antennas 15 and 16 are transmission / reception shared antennas, and are arranged so that a direction different from that of the array antenna 10 provided with the antennas 11 to 14 is a detection region.
  • the antenna 15 is arranged with the front direction rotated by + 45 ° with respect to the front direction of the antennas 11 to 14, and the antenna 16 has a front direction of — Arranged at 45 ° rotation.
  • the switch circuit 23 selects any one of the antennas 11 to 16 according to the antenna selection signal from the signal processing circuit 40 and connects it to the switch circuit 22.
  • the signal processing circuit 40 performs transmission / reception switching processing and antenna selection processing similar to those of the first embodiment for the antennas 11 to 14, but transmits to the antennas 15 and 16 every modulation period. Perform antenna switching processing.
  • the processing using the reception channels CH1 to CH9 when the processing using the reception channels CH1 to CH9 is performed using the antennas 11 to 14, it synchronizes with the start of a new modulation period.
  • Select antenna 15 as the transmitting antenna and transmit the transmission signal to the corresponding detection area.
  • the antenna 15 is selected as a receiving antenna, a reflected wave corresponding to the transmission signal from the antenna 15 is received, a reception signal is generated, and output to the LNA 33 via the switch circuits 23 and 22.
  • This transmission / reception switching process is continuously performed for at least one modulation period.
  • the independent reception channel CH31 (circled in FIG. 2) corresponding to the antenna 15 in a 1: 1 ratio is set.
  • the antenna 16 is selected as a transmitting antenna in synchronization with the start of a new modulation period, and a transmission signal is transmitted to the corresponding detection area. Then, the antenna 16 is selected as a receiving antenna, receives a reflected wave corresponding to the transmission signal from itself, generates a reception signal, and outputs it to the LNA 33 via the switch circuits 23 and 22. This transmission / reception switching process is also continuously performed for at least one modulation period. As a result, the independent reception channel CH32 (circled in FIG. 2) corresponding to the antenna 16 at 1: 1 is set.
  • FIG. 3 is a conceptual diagram showing the relationship between the transmission antenna and the reception channel of this embodiment.
  • the radar apparatus of this embodiment has the same configuration as that of the radar apparatus of the second embodiment, and only the reception process when the antennas 15 and 16 are set as transmission antennas is different.
  • the radar apparatus also switches the transmission of antennas 15 and 16 at intervals shorter than the modulation period, similarly to antennas 11 to 14. That is, the antennas 11 to 16 are switched at intervals shorter than the modulation period.
  • antenna 15 is a transmitting antenna
  • antennas 11 and 12 arranged at the end of array antenna 10 on the antenna 15 side are set as receiving antennas, and the reflected wave of the transmission signal transmitted from antenna 15 is reflected. Receive.
  • new reception channels CH33 and CH34 different from the reception channels CH1 to CH9 are obtained.
  • antenna 16 is used as the transmitting antenna
  • antennas 13 and 14 arranged at the end of antenna 16 on array antenna 10 are set as receiving antennas, and the reflected wave of the transmission signal transmitted from antenna 16 is received. To do.
  • new reception channels CH35 and CH36 different from the reception channels CH1 to CH9, CH33, and CH34 are obtained.
  • the front direction of the peripheral portion detection antenna has a force or other angle shown as an example in which the front direction is set to ⁇ 45 ° with respect to the front direction of the array antenna.
  • the case where the number of antennas (total number) constituting the array antenna is four is shown. However, when the number of antennas is different, the equations (1) and (2) are used. The number of antennas at both ends and the antenna interval can be set.
  • FIG. 4 is a block diagram showing the concept of the antenna arrangement pattern of the radar apparatus of the present invention. is there.
  • the array antenna 50 includes a plurality of antennas 51A arranged at one end with a spacing "d” and "N1", a plurality of antennas 51B arranged at the other end with a spacing "d” and a plurality of antennas 51B.
  • the antenna 51 C includes antennas 51 C arranged between the antenna group 51 A and the antenna 51 group B with an interval “N1 ⁇ d”.
  • the antennas 51A, 51B, 51C are arranged in a straight line, and the front directions of all the antennas 51A, 51B, 51C are the same.
  • the antenna 51C is “0” or a positive integer value.
  • the switch circuit 20 selects one antenna from the antennas 51A, 51B, and 51C in accordance with the antenna selection signal from the signal processing circuit 40 and connects it to the switch circuit 22.
  • the switch circuit 20 may be a switch as well as the switch circuits 21, 22 and 23! /.
  • Fig. 5 (A) shows the arrangement when the number of antennas is "5"
  • Fig. 5 (B) is a concept showing the relationship between the transmitting antenna and the receiving channel in Fig. 5 (A).
  • FIG. 6 (A) shows the arrangement when the number of antennas is “6”
  • FIG. 6 (B) is a conceptual diagram showing the relationship between the transmission antenna and the reception channel in the case of FIG. 6 (A). It is.
  • Fig. 7 (A) shows the arrangement when the number of antennas is "8"
  • Fig. 7 (B) is a conceptual diagram showing the relationship between the transmitting antenna and the receiving channel in the case of Fig. 7 (A). It is.
  • CH1 to CH21 can be obtained.
  • the optimum number of reception channels can be set according to this number, and the respective reception channels can be arranged at equal intervals.
  • is the array antenna number and ⁇ ⁇ ⁇ ⁇ is the temperature.
  • An (T) represents an amplitude correction coefficient with respect to temperature, and ⁇ ⁇ ( ⁇ ) represents a phase correction coefficient with respect to temperature.
  • the signal processing circuit 40 stores such correction information in a memory or the like in advance, and includes a temperature sensor, and detects the temperature each time an IF beat signal is input to perform the above correction. As a result, changes in characteristics due to temperature can be suppressed, and the azimuth, speed, distance, etc. of an object can be accurately detected even when an antenna with poor temperature characteristics is used.
  • the transmission / reception may be switched with the structure shown in FIG.
  • FIG. 8 is a block diagram showing a configuration of a radar apparatus using another transmission / reception method of the present invention.
  • the radar apparatus shown in FIG. 8 has a configuration in which the switch circuit 22 is replaced with a switch amplifier 25 and a circulator 26 with respect to the radar apparatus of the first embodiment, and the other configurations are the same.
  • the switch amplifier 25 is turned on based on the transmission selection signal from the signal processing circuit 40, amplifies the transmission signal generated by the VC031, and supplies the amplified signal to the circulator 26. Further, the switch amplifier 25 is turned off based on the reception selection signal from the signal processing circuit 40 and does not operate.
  • the circulator 26 outputs the transmission signal from the switch amplifier 25 to the switch circuit 21, and outputs the reception signal input from the switch circuit 21 to the LNA 33. Even with such a configuration, the effects of the present invention can be achieved. Further, by reducing the number of switch circuits inserted into the receiving circuit system, it is possible to reduce the loss due to the received signal and more reliably detect the object.

Abstract

アレイアンテナ(10)は、間隔dで配置されたアンテナ(11)(12)からなる片端部と、間隔dで配置されたアンテナ(13)(14)からなる片端部とを備え、両端部の最も中央側のアンテナ(12)(13)との間隔が、両端部をそれぞれ構成するアンテナ数2と両端部におけるアンテナ間隔dとの積値である2dに設定される。そして、アンテナ(11)~(14)を、連続的に送信アンテナとして切り替えて選択し、連続的に送信信号を放射する。そして、各送信アンテナにおいて、各アンテナ(11)~(14)を順次受信アンテナとして切り替えて選択する。このようにアンテナ(11)~(14)の送受信を切り替えることにより、等間隔で9個の受信チャンネルCH1~CH9が得られる。

Description

明 細 書
レーダ装置
技術分野
[0001] 本発明は、自動車の衝突防止用等に用いられる FM— CW方式のレーダ装置、特 にアレイアンテナを用いたホログラフィックレーダ装置に関するものである。
背景技術
[0002] 従来、 FM— CW方式等を用いた自動車搭載型のレーダ装置が各種考案されてい る。例えば、特許文献 1のレーダ装置は、 1つの送信アンテナと、等間隔で配置され た複数の受信アンテナとを備え、送信波の変調周期中に順次受信アンテナを切り替 えて反射波を受信する。そして、各受信アンテナで受信した反射波の位相差を算出 して物体の方位を検知する。
[0003] 図 9 (A)は受信 9チャンネルを実現する場合の特許文献 1に対応する従来例 1のレ ーダ装置のブロック図であり、図 9 (B)はこの構成における受信チャンネル状態を示 す図である。従来例 1のレーダ装置は、受信アンテナ 101〜109、送信アンテナ 110 、スィッチ回路 201〜204、 VCO301,分岐回路 302、 LNA303,ミキサ 304、 IFァ ンプ 305を備える。この際、受信アンテナ 101〜109は等間隔 dで配列される。そして 、送信アンテナ 110からの送信波による反射波を等間隔 dで配置された各受信アン テナ 101〜109で受信して、図 9 (B)に示すように、位相差(2 π dsin θ ) / λの間隔 力もなる各チャンネル CH1〜CH9に該当する各反射波を割り当てる。
[0004] また、特許文献 2のレーダ装置は、第 1の間隔で等間隔に配置された複数の送信ァ ンテナと、第 2の間隔で等間隔に配置された複数の受信アンテナとを備え、順次送信 アンテナを切り替えながら送信波を送信し、各送信アンテナに対して順次受信アンテ ナを切り替えて反射波を受信する。
[0005] 図 10 (A)は受信 9チャンネルを実現する場合の特許文献 2に対応する従来例 2の レーダ装置のブロック図であり、図 10 (B)はこの構成における受信チャンネル状態を 示す図である。従来例 2のレーダ装置は、受信アンテナ 101〜103、送信アンテナ 1 11〜113、スィッチ回路 205、 206、 VCO301、分岐回路 302、 LNA303、ミキサ 3 04、 IFアンプ 305を備える。この際、受信アンテナ 101〜103は等間隔 dで配列され 、送信アンテナ 111〜113は等間隔 3dで配列される。そして、順次切り替えられる送 信アンテナ 111、 112、 113からの送信波による反射波を各受信アンテナ 101〜103 で順次受信して、図 10 (B)に示すように、位相差(2 π dsin θ ) / λの間隔からなる 各チャンネル CHI〜CH9に該当する各反射波を割り当てる。
[0006] また、特許文献 3のレーダ装置は複数の送受共用アンテナを備え、各送受共用ァ ンテナ間の間隔がそれぞれ特定値に設定されている。そして、送信波の変調周期に 同期して送信アンテナを選択し、選択された送信アンテナに対応して変調周期よりも 短い間隔で受信アンテナを選択する。
[0007] 図 11は受信 11チャンネルを実現する場合の特許文献 3に対応する従来例 3のレ ーダ装置のブロック図である。従来例 3のレーダ装置は、送受共用アンテナ 401〜4 04、スィッチ回路 501、 502、 VCO301、カプラ 302、 LNA303、ミキサ 304、 IFアン プ 305を備える。この際、送受共用アンテナ 401〜404は、順に d, 2d, 2dの間隔で 配列される。そして、いずれか 1つの送受共用アンテナを送信アンテナに選択して送 信波を送信し、送受共用アンテナを順次受信アンテナに選択して、順次反射波を受 信することで、図 12に示すように、各受信チャンネルに対して各反射波が割り当てら れる。なお、特許文献 3の図 4にはチャンネル数が 11チャンネル割り当てられた図が 記載さているが、これらは、特許文献 3ではチャンネルの割り当てを時間的な差により 設定しているからである。すなわち、時間的な差によってチャンネルを割り当てている ので、送信アンテナで受信した信号が基準となり、時間的な差による 11チャンネルが 形成される。これを空間的な位置差により設定すれば、端に配置されたアンテナ 401 が送受信信号の基準となり、本発明の図 12に示すようなチャンネル数およびチャン ネル間隔となる。
特許文献 1:特許第 3622565号公報
特許文献 2:特許第 3368874号公報
特許文献 3:特開 2005— 3393公報
発明の開示
発明が解決しょうとする課題 [0008] し力しながら、従来例 1では、 9個の受信チャンネルを形成する場合に 9個の受信ァ ンテナを必要とする。また、これらとは別に送信アンテナ 110を必要とし、さらには各 受信アンテナ 101〜109から 1つの受信アンテナを選択する複数段のスィッチ回路 2 01〜204を必要とする。このため、レーダ装置が大規模なものとなり、且つ受信信号 の損失が大きくなつてしまう。
[0009] また、従来例 2では、従来例 1と比較してアンテナ数は減るものの、送信アンテナ 11 1〜113の間隔を広く設定しなければならず、依然としてレーダ装置が大規模なもの となる。
[0010] また、従来例 3は、 9チャンネルを実現するという点では、従来例 1, 2と比較して小 型化を実現することができる。し力しながら、送受共用アンテナが、 1 : 2 : 2で配置され た従来例 3では、チャンネルが等間隔に設定されない。図 12の例では、 11チャンネ ル中のチャンネル CH8, CH10が欠落し、チャンネル CH7, CH9が位相差 4 π d (si η θ ) / λの間隔となり、チャンネル CH9, CHI 1が位相差 4 π d (sin 0 ) Ζ λの間隔 となる。その他のチャンネル間は、位相差 2 π d (sin θ ) / λの間隔であるので、実質 的に等間隔ではない 9チャンネルを利用しなければならない。このため、物体検知方 位が部分的に欠落し、物体検知の方位検知性能が低いものとなってしまう。
[0011] したがって、本発明の目的は、小型化しても、物体検知方位の欠落を発生せず、高 い方位検知性能を有するレーダ装置を実現することである。
課題を解決するための手段
[0012] この発明は、複数の送受共用アンテナを配列したアンテナアレイと、該複数の送受 共用アンテナカゝら送信アンテナおよび受信アンテナを選択する選択手段と、を備え、 該選択手段により選択された送信アンテナから周波数変調した送信波を送信し、選 択手段により順次切り替えながら選択された各受信アンテナで送信波の反射波を受 信し、各受信アンテナで受信した反射波の位相差を用いて物体の検知を行うレーダ 装置において、アレイの両端部のそれぞれに間隔 dで N1個の送受共用アンテナを 配置するとともに、アレイの両端部における最もアレイ中央側の送受共用アンテナ間 の間隔を Nl X dとする力、アレイの両端部間に Nl X dの間隔で送受共用アンテナを 配置することを特徴として 、る。 [0013] この構成では、アンテナアレイを構成する送受共用アンテナにおいて、両端部を構 成する送受共用アンテナの配置間隔が、両端部間の間隔、または両端部に挟まれる 中央部の送受共用アンテナの配置間隔よりも狭くなる。すなわち、アンテナアレイの 両端部は、中央部よりもアンテナの配置が密になる。この場合、各送信アンテナに対 して、前記受信アンテナの配置間隔に応じてチャンネルが割り当てられるため、各送 信アンテナ単位では、アンテナアレイの中央部に対応する部分では、両端部に対応 する部分よりもチャネル間の位相差が広くなる。ここで、送信アンテナの切り替えが連 続的に行われ、連続的に信号が放射されていることにより、送信アンテナが切り替え られても、基準となる送信アンテナは最初に送信アンテナとして選択された送受共用 アンテナとなる。このため、切り替えられた送信アンテナに対応する受信アンテナによ り設定されるチャンネルは、最初の送信アンテナと切り替えられた送信アンテナとの 位置関係に応じてシフトされるので、全てのチャンネルが最初に選択された送信アン テナに対応する位置に設定される。
[0014] これにより、送信アンテナが切り替えられてシフトしていくことで、チャンネルの配置 パターンもシフトし、単独の送信アンテナにおけるアンテナアレイの中央部に対応す るチャンネル間の位相差が相対的に広い部分力 他の送信アンテナにおけるアンテ ナアレイの両端部に対応するチャンネル間の位相差が相対的に狭い部分で補間さ れる。この際、前述のように、両端部間または中央部のアンテナ間隔を、両端部を構 成するアンテナ数と両端部でのアンテナ間隔との乗算値で設定することで、擬似的 に等間隔受信アンテナが配置された状態が形成されて、図 1に示すように、全体とし てチャンネル間の位相差が同じになる。
[0015] また、この発明のレーダ装置は、選択手段により、送信波の変調周期よりも短い間 隔で送信アンテナの切り替え選択を行うことを特徴としている。
[0016] この構成では、送受信アンテナの切り替え速度が速くなることで、各受信アンテナ による受信信号 (反射波)の時間差が殆どなくなり、検知物体が移動していないものと して検知処理が行われる。
[0017] また、この発明のレーダ装置は、アンテナアレイを構成する送受共用アンテナの総 数が 2以上の整数 Nであり、アレイ両端部に配列される送受共用アンテナ数 N1を、 ( N + 3) Z4に最も近 、整数で設定することを特徴として 、る。
[0018] この構成では、アレイ両端部の送受共用アンテナ数を (N + 3) Z4に最も近い整数 で設定する。アンテナ総数が N個である場合、前述の送受共用アンテナの配置条件 から、設定できるチャンネル数は、 2 (N— 2N1 + 3) ·Ν1— 3となる。したがって、 N1 = (Ν + 3) Ζ4の時にチャンネル数が最大になる。し力しながら、送受共用アンテナ 数は当然ながら整数であるので、 N1 (Ν + 3) Ζ4を満たす最も近い整数 N1を両 端部の送受共用アンテナ数に設定することで、設定された送受共用アンテナ総数に 応じた最適なアンテナアレイが構成される。
[0019] また、この発明のレーダ装置は、アンテナアレイの複数の送受共用アンテナを、各 送受共用アンテナの送受信面が同一方向を向くようにして一直線上に配置すること を特徴としている。
[0020] この構成では、アンテナアレイを構成する各送受共用アンテナが略同一の検知領 域に対して送信波を送信し、この検知領域からの反射波を受信し、送受共用アンテ ナが一次元方向に沿って配置されることで、各チャンネルの位置関係が単純になり、 位相差演算処理が簡略化される。
[0021] また、この発明のレーダ装置は、アレイアンテナの両端に、一直線上に配置された 複数の送受共用アンテナと異なる方向に送受信面が向く広角検知用アンテナを配 置したことを特徴として 、る。
[0022] この構成では、一直線上に配置された送受共用アンテナによる検知領域とは異な る方向の検知領域が広角検知用アンテナで検知される。
[0023] また、この発明のレーダ装置は、選択手段で、変調周期に同期して広角検知用ァ ンテナの送信切り替え選択を行うことを特徴として 、る。
[0024] この構成では、広角検知用アンテナの送信切り替えが変調周期の同期するため、 方位検知性能を高くすることはできないが物体の検知は確実に実行され、広角検知 用アンテナに対応する領域での検知処理が簡素化される。
[0025] また、この発明のレーダ装置は、選択手段により変調周期よりも短い間隔で広角検 知用アンテナの送信切り替え選択を行うとともに、広角検知用アンテナを受信アンテ ナとして選択せず、アンテナアレイにおける該当する広角検知用アンテナに近!ヽ片 端部の送受共用アンテナを受信アンテナとして選択することを特徴としている。
[0026] この構成では、広角検知用アンテナから送信される送信波に基づく反射波を、アン テナアレイにおける該当する広角検知用アンテナに近い片端部の送受共用アンテナ (受信アンテナ)を切り替えながら受信する。これにより、広角検知用アンテナに対応 する領域に対しても、 1つの広角検知用アンテナに対して複数のチャンネルが得られ る。
[0027] また、この発明のレーダ装置は、反射波に基づき物体の検知を行う検知手段に温 度センサを備え、該温度センサで検知した温度に基づき反射波を補正した後に、物 体の検知を行うことを特徴として 、る。
[0028] この構成では、温度補正を行うことで、温度特性が良好でな ヽ素材により形成され るアレイアンテナを用いても、正確な送信波振幅および送信波位相、受信波振幅お よび受信波位相が得られる。
発明の効果
[0029] この発明によれば、設置アンテナ数が少なくても、アンテナ数と比較して多くの受信 チャンネルを等間隔で形成できるので、方位検知性能が非常に高!、レーダ装置を小 型且つ簡素な構造で実現することができる。
[0030] また、この発明によれば、送信波の送信周期よりも短い間隔で送信アンテナを切り 替え、さらに各送信アンテナに対して受信アンテナを切り替えることで、物体が略停 止した状態で複数の受信信号を取得することができ、検知物体の方位検知性能をさ らに向上することができる。
[0031] また、この発明によれば、アレイアンテナの両端部を構成する送受共用アンテナ数 N1を、 Nl = (N + 3) Z4を満たす最も近い整数で設定することで、設定された送受 共用アンテナ総数 Nに応じて最適なアンテナアレイを構成することができる。これによ り、予め設定された送受共用アンテナ数に対して、最も高い方位検知性能を備えるレ ーダ装置を構成することができる。
[0032] また、この発明によれば、送受共用アンテナを一直線上に配置し、同じ検知領域に 対応させることで、位相差演算処理を簡略ィ匕することができ、方位検出を高速化し、 ひ!、ては物体検知処理を高速化することができる。 [0033] また、この発明によれば、アンテナアレイによる検知領域の両端に存在する領域を 含み広角な検知領域に対して物体の検知を行うことができる。
[0034] また、この発明によれば、検知領域の両端側に存在する領域の検知処理が簡素化 され、主とする検知領域であるアレイアンテナに対応する検知領域での方位検知精 度を低下させることなぐ広角な領域全体での物体検知速度の低下を抑制することが できる。
[0035] また、この発明によれば、アンテナアレイによる検知領域以外の両端に存在する領 域に対しても所定の方位検知精度で物体の検知を行うことができる。
[0036] また、この発明によれば、比較的に安価で、温度特性が悪 、素材でアレイアンテナ を形成しても、方位検知精度を低下させることなぐ正確な物体検知を行うことができ る。
図面の簡単な説明
[0037] [図 1]第 1の実施形態のレーダ装置の主要部の構成を示すブロック図、および、送信 アンテナと受信チャンネルとの関係を示す概念図である。
[図 2]第 2の実施形態のレーダ装置の主要部の構成を示すブロック図、および、送信 アンテナと受信チャンネルとの関係を示す概念図である。
[図 3]第 3の実施形態の送信アンテナと受信チャンネルとの関係を示す概念図である
[図 4]本発明のレーダ装置のアンテナ配置パターンの概念を示したブロック図である
[図 5]アンテナ数が「5」の場合の配置、および、この場合の送信アンテナと受信チヤ ンネルとの関係を示す概念図である。
[図 6]アンテナ数が「6」の場合の配置、および、この場合の送信アンテナと受信チヤ ンネルとの関係を示す概念図である。
[図 7]アンテナ数が「8」の場合の配置、および、この場合の送信アンテナと受信チヤ ンネルとの関係を示す概念図である。
[図 8]本発明の他の送受信方法を用いたレーダ装置の構成を示すブロック図である。
[図 9]受信 9チャンネルを実現する場合の特許文献 1に対応する従来例 1のレーダ装 置のブロック図、および、この構成における受信チャンネル状態を示す図である。
[図 10]受信 9チャンネルを実現する場合の特許文献 2に対応する従来例 2のレーダ 装置のブロック図、および、この構成における受信チャンネル状態を示す図である。
[図 11]受信 11チャンネルを実現する場合の特許文献 1に対応する従来例 1のレーダ 装置のブロック図である。
[図 12]図 11に示したレーダ装置における受信チャンネル状態を示す図である。 符号の説明
[0038] 10, 50—アレイアンテナ、 11〜16, 51A, 51B, 51C—アンテナ、 20〜23—スィ ツチ回路、 25—スィッチアンプ、 26—サーキユレータ、 31— VCO、 32—分岐回路、 33— LNA、 34—ミキサ、 35— IFアンプ、 40—信号処理回路
発明を実施するための最良の形態
[0039] 本発明の第 1の実施形態に係るレーダ装置について、図を参照して説明する。
図 1 (A)は、本実施形態のレーダ装置の主要部の構成を示すブロック図であり、 (B
)は送信アンテナと受信チャンネルとの関係を示す概念図である。
[0040] 本実施形態のレーダ装置は、アレイアンテナ 10、スィッチ回路 21, 22、電圧制御 発振器 (VCO) 31、分岐回路 32、 LNA33、ミキサ 34、 IFアンプ 35、信号処理回路
40を備える。
[0041] アレイアンテナ 10は、送受共用のアンテナ 11〜14を一直線上に配列したアンテナ アレイを備え、全てのアンテナ 11〜14は、アンテナの正面方向を一致させて配置さ れている。この際、アンテナアレイの一方端に配置されたアンテナ 11と、これに隣り合 う位置に配置されたアンテナ 12との間隔は dとし、他方端に配置されたアンテナ 14と これに隣り合う位置に配置されたアンテナ 13との間隔も dとする。そして、これらアン テナ 11, 12からなる片端部と、アンテナ 13, 14からなる片端部とにより両端部が構 成される。
[0042] ここで、両端部に配置されるアンテナ数「N1」は、次の方法により導き出すことがで きる。アレイアンテナ 10に設置するアンテナの総数を「N」とし、両端部のそれぞれに 配置するアンテナ数を「N1」とすると、このアンテナアレイで実現することができる等 価な受信チャンネルアレイの受信チャンネル数は、 2 (Ν—Ν1 + 3) ·Ν1— 3チャンネ ルとなる。これは、 N1における 2次式であり、設定可能な最大チャンネル数は、この 2 次式の極大値に相当する。このため、設定可能な最大値のチャンネル数を得るには
Ν1 = (Ν + 3) /4 一(1)
の関係式に最も近 、整数 N 1を用いればよ!/、。
[0043] 例えば、本実施形態のように、総本数「N」が「4」の場合には、(N + 3) Z4= 1. 75 となり、アンテナ数「N1」は「2」となる。この場合の受信チャンネル数は「9」となる。そ して、アンテナ総本数が「4」であり、両端部のアンテナ数がそれぞれ「2」であることか ら、本実施形態では、これら両端部間に配置するアンテナは必要としない。
[0044] そして、アンテナ 12とアンテナ 13との間隔、すなわち両端部間の間隔は、両端部を それぞれ構成するアンテナ数 (N1)「2」とアンテナ間隔「d」とを乗算した値
Nl -d 一(2)
で設定され、本実施形態の場合には 2dとなる。なお、本実施形態では、両端部間に アンテナを配置しな 、例を示して 、るが、両端部間に挟まれる中央部にアンテナを 配置する場合は、式(2)で表される「N1 ·(!」を中央部でのアンテナの配置間隔とす ればよい。
[0045] アンテナ 11〜14は、スィッチ回路 21により選択され、送信時に選択されたアンテナ
(以下、このような状態のアンテナを「送信アンテナ」と称する。)は、送信信号を外部 の検知領域に放射 (送信)する。また、受信時に選択されたアンテナ(以下、このよう な状態のアンテナを「受信アンテナ」と称する。)は、前記送信信号が検知領域内の 物体に反射して得られる反射波を受信して、この反射波に基づく受信信号をスィッチ 回路 21に出力する。
[0046] このような構成のアレイアンテナ 10は、例えば、誘電体基板の一面に前記間隔で 一直線上に形成されたパッチアンテナを電極パターンにより並列接続してなるマイク ロストリップアレイアンテナや、方形導波管の一面に前記間隔でスロット開口部を形成 した導波管スロットアンテナ等により実現する。
[0047] VC031は、信号処理回路 40から与えられる変調電圧に応じて、例えば、 76GHz 帯の送信信号を発生する。この際、 VC031には、所定周期で電圧値が変動する変 調電圧、例えば、所定周期で三角波状に変動する変調電圧が与えられる。 VC031 は、この変調電圧に応じて、前記所定周期にて、所定周波数範囲内で周波数変調 する送信信号、例えば、三角波状に周波数変調する送信信号を発生する。
[0048] 分岐回路 32は、 VC031から出力された送信信号を、スィッチ回路 22に与えるとと もに、その一部をローカル信号として、ミキサ 34に与える。
[0049] スィッチ回路 22は、信号処理回路 40からの送信選択信号に応じて VC031とスィ ツチ回路 21とを接続し、 VC031から出力された送信信号をスィッチ回路 21に与える 。また、スィッチ回路 22は、信号処理回路 40からの受信選択信号に応じてスィッチ 回路 21と LNA33とを接続し、スィッチ回路 21からの受信信号を LNA33に与える。
[0050] スィッチ回路 21は、信号処理回路 40からのアンテナ選択信号に応じて、選択され た送信アンテナまたは受信アンテナとスィッチ回路 22とを接続し、送信時には、スィ ツチ回路 22を介して入力された送信信号を選択された送信アンテナに出力し、受信 時には、選択された受信アンテナ力 出力される受信信号をスィッチ回路 22に出力 する。なお、スィッチ回路 21, 22は、機械的スィッチであってもスィッチとして利用可 會な電子部品であっても、ソフトスィッチであってもよ!/、。
[0051] LNA33は、入力された受信信号を増幅してミキサ 34に出力し、ミキサ 34は、 LNA 33からの受信信号と分岐回路 32からのローカル信号とをミキシングして、 IFビート信 号を生成する。 IFアンプ 35は、 IFビート信号を増幅して信号処理回路 40に出力する
[0052] 信号処理回路 40は、前述のように VC031に変調電圧を与え、スィッチ回路 21に アンテナ選択信号を与え、スィッチ回路 22に送信選択信号または受信選択信号を 与える。この際、信号処理回路 40は、送信選択信号による送信アンテナ切り替えの 間隔を、前記変調電圧による変調周期よりも短い間隔に設定する。例えば、信号処 理回路 40は、前記周波数が三角波状に変調される送信信号の場合、周波数変調の 周期、すなわち、 1つの三角波期間内で全てのチャンネルが受信するように設定する
[0053] また、信号処理回路 40は、入力した IFビート信号を用いて、既知の FM— CW方式 の演算を用いて、検知した物体の速度、距離等を算出する。また、信号処理回路 40 は、後述する各アンテナ 11〜14により形成されるチャンネル CH1〜CH9の受信信 号から、ホログラフィックレーダの原理を用いて検知物体の方位を検出する。
[0054] 次に、本実施形態のレーダ装置による検知動作について、具体的に説明する。な お、以下の説明では、アンテナ 11、アンテナ 12、アンテナ 13、アンテナ 14の順で送 信アンテナ、および受信アンテナを切り替える場合について説明する力 アンテナの 切り替え順はこれに限るものではなぐ適宜設定することができる。
[0055] ( 1)検知動作が開始されると、信号処理回路 40は、 VC031に変調電圧を与える。
この後の検知動作中においては、信号処理回路 40は、連続して VC031に変調電 圧を与え、 VC031は、連続的に周波数変調された送信信号を生成する。
また、信号処理回路 40は、スィッチ回路 22に送信選択信号を与えるとともに、スィ ツチ回路 21にアンテナ 11を選択するアンテナ選択信号を与える。送信アンテナ 11 は、 VC031で生成される送信信号を検知領域に送信する。
[0056] (2)信号処理回路 40は、スィッチ回路 22に受信選択信号を与えるとともに、スイツ チ回路 21にアンテナ選択信号を与える。この受信時のアンテナ選択信号は、アンテ ナ 11、アンテナ 12、アンテナ 13、アンテナ 14の順に所定間隔で受信アンテナを選 択する信号である。これにより、アンテナ 1 1〜14は、順次、受信アンテナとして機能 し、送信アンテナ 11からの送信信号に基づく反射波を受信する。そして、受信アンテ ナ 11〜14は、受信信号を順次スィッチ回路 21、スィッチ回路 22を介して、 LNA33 に出力する。
[0057] ここで、アンテナ 11〜14力 前述の間隔で配置されていることにより、各アンテナ 1 1〜14の受信信号は、図 1 (B)に示すような、位相差 2 π d (sin θ ) / λの間隔で設 定される受信チャンネル CH1〜CH9のいずれかの受信信号に設定される。なお、 λは受信信号の波長であり、 Θは受信信号の入射角、すなわち、アンテナの正面方 向に対して成す角である。
[0058] 具体的には、アンテナ 11の送信信号に対するアンテナ 11の受信信号を基準となる 受信チャンネル CH1の受信信号とすると、アンテナ 12の受信信号力 受信チャンネ ル CH1に対して位相差 2 π d (sin θ ) / λで離間する受信チャンネル CH2の受信信 号に設定される。また、アンテナ 13の受信信号は、受信チャンネル CH2に対して位 相差 4 π d (sin θ ) / λで離間する受信チャンネル CH4の受信信号に設定される。さ らに、アンテナ 14の受信信号は、受信チャンネル CH4に対して位相差 2 π (1 (sin θ ) / λで離間する受信チャンネル CH5の受信信号に設定される。
[0059] (3)信号処理回路 40は、スィッチ回路 22に送信選択信号を与えるとともに、スイツ チ回路 21にアンテナ 12を選択するアンテナ選択信号を与える。送信アンテナ 12は 、 VC031で生成される送信信号を検知領域に送信する。
[0060] (4)信号処理回路 40は、スィッチ回路 22に受信選択信号を与えるとともに、スイツ チ回路 21にアンテナ選択信号を与える。この受信時のアンテナ選択信号は、(2)に 示したアンテナ選択信号と同じであり、アンテナ 11〜14は、順次、受信アンテナとし て機能し、送信アンテナ 12からの送信信号に基づく反射波を受信する。そして、受 信アンテナ 11〜14は、受信信号を順次スィッチ回路 21、スィッチ回路 22を介して、 LNA33に出力する。この際、送信アンテナの切り替えが連続的に行われ、連続的に 信号が放射されていることにより、送信アンテナがアンテナ 11からアンテナ 12に切り 替わっても、基準となる受信チャンネル CH1は変わらない。このため、送信アンテナ 12に対する各受信アンテナ 11〜 14に与えられる受信チャンネルは、送信アンテナ 1 1と送信アンテナ 12との間隔 dに対応する位相差 2 π d(sin θ ) / λ分だけ、送信ァ ンテナ 11に対応する受信チャンネル力 シフトした受信チャンネルが設定される。具 体的には、アンテナ 11の受信信号が、受信チャンネル CH1の受信信号に対して位 相差 2 π d (sin θ ) / λで離間する受信チャンネル CH2の受信信号に設定される。 アンテナ 12の受信信号力 受信チャンネル CH2に対して位相差 2 π d(sin θ ) / λ で離間する受信チャンネル CH3の受信信号に設定される。また、アンテナ 13の受信 信号は、受信チャンネル CH3に対して位相差 4 π d(sin θ ) / λで離間する受信チ ヤンネル CH5の受信信号に設定される。さらに、アンテナ 14の受信信号は、受信チ ヤンネル CH5に対して位相差 2 π d(sin θ ) / λで離間する受信チャンネル CH6の 受信信号に設定される。
[0061] (5)信号処理回路 40は、スィッチ回路 22に送信選択信号を与えるとともに、スイツ チ回路 21にアンテナ 13を選択するアンテナ選択信号を与える。送信アンテナ 13は 、 VC031で生成される送信信号を検知領域に送信する。 [0062] (6)信号処理回路 40は、スィッチ回路 22に受信選択信号を与えるとともに、スイツ チ回路 21にアンテナ選択信号を与える。この受信時のアンテナ選択信号は、(2)、 ( 4)に示したアンテナ選択信号と同じであり、アンテナ 11〜14は、順次、受信アンテ ナとして機能し、送信アンテナ 13からの送信信号に基づく反射波を受信する。そして 、受信アンテナ 11〜14は、受信信号を順次スィッチ回路 21、スィッチ回路 22を介し て、 LNA33に出力する。この際、送信アンテナ 13に対する各受信アンテナ 11〜 14 に与えられる受信チャンネルは、送信アンテナ 11と送信アンテナ 13との間隔 3dに対 応する位相差 6 π d (sin θ ) / λ分だけ、送信アンテナ 11に対応する受信チャンネ ルカ シフトした受信チャンネルが設定される。具体的には、アンテナ 11の受信信号 力 受信チャンネル CH1の受信信号に対して位相差 6 π d (sin θ ) / λで離間する 受信チャンネル CH4の受信信号に設定される。アンテナ 12の受信信号力 受信チ ヤンネル CH4に対して位相差 2 π d(sin θ ) / λで離間する受信チャンネル CH5の 受信信号に設定される。また、アンテナ 13の受信信号は、受信チャンネル CH5に対 して位相差 4 π d (sin θ ) / λで離間する受信チャンネル CH7の受信信号に設定さ れる。さらに、アンテナ 14の受信信号は、受信チャンネル CH7に対して位相差 2 π (1 (sin θ ) / λで離間する受信チャンネル CH8の受信信号に設定される。
[0063] (7)信号処理回路 40は、スィッチ回路 22に送信選択信号を与えるとともに、スイツ チ回路 21にアンテナ 14を選択するアンテナ選択信号を与える。送信アンテナ 14は 、 VC031で生成される送信信号を検知領域に送信する。
[0064] (8)信号処理回路 40は、スィッチ回路 22に受信選択信号を与えるとともに、スイツ チ回路 21にアンテナ選択信号を与える。この受信時のアンテナ選択信号は、(2)、 ( 4)、 (6)に示したアンテナ選択信号と同じであり、アンテナ 11〜14は、順次、受信ァ ンテナとして機能し、送信アンテナ 14からの送信信号に基づく反射波を受信する。そ して、受信アンテナ 11〜14は、受信信号を順次スィッチ回路 21、スィッチ回路 22を 介して、 LNA33に出力する。
[0065] この際、送信アンテナ 14に対する各受信アンテナ 11〜 14に与えられる受信チャン ネルは、送信アンテナ 11と送信アンテナ 14との間隔 4dに対応する位相差 8 π d (sin 0 )Ζ λ分だけ、送信アンテナ 11に対応する受信チャンネルからシフトした受信チヤ ンネルが設定される。具体的には、アンテナ 11の受信信号力 受信チャンネル CH1 の受信信号に対して位相差 8 π d (sin θ ) / λで離間する受信チャンネル CH5の受 信信号に設定される。アンテナ 12の受信信号が、受信チャンネル CH5に対して位相 差 2 π d (sin θ ) / λで離間する受信チャンネル CH6の受信信号に設定される。また 、アンテナ 13の受信信号は、受信チャンネル CH6に対して位相差 4 π (1 (sin 0 )Ζ えで離間する受信チャンネル CH8の受信信号に設定される。さらに、アンテナ 14の 受信信号は、受信チャンネル CH8に対して位相差 2 π d(sin θ ) / λで離間する受 信チャンネル CH9の受信信号に設定される。
[0066] このように、 4本の送受共用アンテナの間隔を、それぞれ d, 2d, dと配列し、送信ァ ンテナを切り替えて、各送信アンテナに対して全ての受信アンテナで受信信号を生 成することで、 4本の送受共用アンテナを用いて等間隔に配置された 9チャンネルの 受信チャンネルを形成できる。これにより、中飛びのない方位 (角度)検出性能に優 れる小型のレーダ装置を構成することができる。また、前述の構成では、 4本のアンテ ナ間隔がそれぞれ、 d、 2d、 dであり、アンテナアレイの配列長さが 4dとなるので、特 許文献 3に示したレーダ装置 (アンテナアレイの配列長さは 5d)に対して、方位検知 性能が優れるとともにより小型化することができる。
[0067] 次に、第 2の実施形態に係るレーダ装置について図を参照して説明する。
図 2 (A)は、本実施形態のレーダ装置の主要部の構成を示すブロック図であり、 (B )は送信アンテナと受信チャンネルとの関係を示す概念図である。
[0068] 本実施形態のレーダ装置は、第 1の実施形態に示したレーダ装置(図 1 (A) )に対 して、アンテナ 15、 16を追加で備え、スィッチ回路 21に替えてスィッチ回路 23を備 えたものであり、その他の構成は同じである。なお、スィッチ回路 23についても、スィ ツチ回路 21, 22と同様にいかなるスィッチであってもよい。
[0069] アンテナ 15、 16は、送受共用アンテナであり、アンテナ 11〜14が備えられたアレイ アンテナ 10とは異なる方向を検知領域とするように配置されている。例えば、アンテ ナ 15は、アンテナ 11〜14の正面方向に対して正面方向が +45° 回転した状態で 配置されており、アンテナ 16は、アンテナ 11〜14の正面方向に対して正面方向が —45° 回転した状態で配置されている。 [0070] スィッチ回路 23は、信号処理回路 40からのアンテナ選択信号に応じて、アンテナ 1 1〜16のいずれかを選択してスィッチ回路 22に接続する。
[0071] 信号処理回路 40は、アンテナ 11〜14に対しては第 1の実施形態と同様の送受信 切り替え処理およびアンテナ選択処理を行うが、アンテナ 15、 16に対しては、変調 周期毎に送信アンテナの切り替え処理を行う。
[0072] このようなレーダ装置では、第 1の実施形態に示したように、アンテナ 11〜14を用 いて受信チャンネル CH1〜CH9を用いた処理を行うと、新たな変調周期の開始に 同期してアンテナ 15を送信アンテナに選択して、対応する検知領域に送信信号を送 信する。そして、アンテナ 15を受信アンテナに選択して、自身からの送信信号に対 応する反射波を受信して受信信号を生成し、スィッチ回路 23, 22を介して LNA33 に出力する。この送受信切り替え処理は、少なくとも 1変調周期に亘り継続して行わ れる。これにより、アンテナ 15に 1 : 1で対応する独立受信チャンネル CH31 (図 2にお ける〇印)が設定される。次に、新たな変調周期の開始に同期してアンテナ 16を送 信アンテナに選択して、対応する検知領域に送信信号を送信する。そして、アンテナ 16を受信アンテナに選択して、自身からの送信信号に対応する反射波を受信して受 信信号を生成し、スィッチ回路 23, 22を介して LNA33に出力する。この送受信切り 替え処理も、少なくとも 1変調周期に亘り継続して行われる。これにより、アンテナ 16 に 1: 1で対応する独立受信チャンネル CH32 (図 2における〇印)が設定される。
[0073] このような検知処理を行うことで、アレイアンテナ 10のアンテナ 11〜14を用いた、 位相差による受信チャンネルの両端に、それぞれ単独のアンテナ 15, 16の送受信 で得られる独立チャンネルによる検知領域が追加される。これにより、アンテナ 11〜1 4により検知される領域よりもさらに広範囲の検知領域について、物体検知を行うこと ができる。この際、アンテナ 15, 16で検知する領域に対しては、アンテナ 11〜14で の検知で用いるホログラフィック方式を用いな 、ので、検知処理を高速化することが できる。また、アンテナ 15, 16に対して、高速なスィッチ回路 23の切り替えを必要とし ないので、
この場合、正面方向とは異なるアンテナ 15, 16に対応する周辺部での方位検知精 度を高くすることはできないが、メインとなる正面方向での検知精度を高く維持し、且 つサブとなる周辺部での物体検知を略同時に行い続けるような前方 ·周囲共用レー ダ装置等の場合に有効となる。
[0074] 次に、第 3の実施形態に係るレーダ装置について図を参照して説明する。
図 3は本実施形態の送信アンテナと受信チャンネルとの関係を示す概念図である。 本実施形態のレーダ装置は、第 2の実施形態のレーダ装置と構成が同じであり、ァ ンテナ 15, 16を送信アンテナに設定した時の受信処理のみが異なるものである。
[0075] 本実施形態のレーダ装置は、アンテナ 15, 16についても、アンテナ 11〜14と同様 に、変調周期よりも短い間隔で送信を切り替える。すなわち、アンテナ 11〜16を変調 周期よりも短い間隔で切り替える。そして、アンテナ 15を送信アンテナとした場合は、 アレイアンテナ 10のアンテナ 15側の端部に配置されたアンテナ 11, 12を受信アン テナに設定し、アンテナ 15から送信された送信信号の反射波を受信する。これにより 、受信チャンネル CH1〜CH9とは別の新たな受信チャンネル CH33, CH34を得る 。また、アンテナ 16を送信アンテナとした場合は、アレイアンテナ 10のアンテナ 16側 の端部に配置されたアンテナ 13, 14を受信アンテナに設定し、アンテナ 16から送信 された送信信号の反射波を受信する。これにより、受信チャンネル CH1〜CH9, C H33, CH34とは別の新たな受信チャンネル CH35, CH36を得る。
[0076] このような構成とすることで、アンテナ 15, 16に対応する周辺部に対してもホロダラ フィック方式を適用することができ、アレイアンテナ 10のアンテナ 11〜14による検知 領域と、アンテナ 15 +アンテナ 11, 12による検知領域と、アンテナ 16 +アンテナ 13 , 14による検知領域とからなる広範囲に亘り、所定の方位検知精度で物体を検出す ることがでさる。
[0077] なお、第 2、第 3の実施形態では、周辺部検知用アンテナの正面方向を、アレイァ ンテナの正面方向に対して ±45° に設置する例を示した力 他の角度で有っても良 ぐさら〖こは、それぞれに複数のアンテナを設置してもよい。
[0078] 前述の各実施形態は、アレイアンテナを構成するアンテナ数 (総本数)が 4つの場 合について示したが、アンテナ本数が異なる場合にも式(1)、式(2)を用いて、両端 部のアンテナ本数およびアンテナ間隔を設定することができる。
[0079] 図 4は、本発明のレーダ装置のアンテナ配置パターンの概念を示したブロック図で ある。
アレイアンテナ 50は、一方端に間隔「d」で「N1」個配列された複数個のアンテナ 5 1Aと、他方端に間隔「d」で「N1」個配列された複数個のアンテナ 51Bと、アンテナ 5 1 A群とアンテナ 51B群との間に間隔「N1 · d」で「N2」個配列されたアンテナ 51Cと を備える。ここで、アンテナ 51A, 51B, 51Cは一直線上に配列され、且つ全てのァ ンテナ 51A, 51B, 51Cの正面方向は同じ方向である。また、アンテナ 51Cは「0」ま たは正の整数値である。スィッチ回路 20は、信号処理回路 40からのアンテナ選択信 号に応じて、これらアンテナ 51A, 51B, 51Cから 1つのアンテナを選択して、スイツ チ回路 22に接続する。なお、スィッチ回路 20についても、スィッチ回路 21, 22, 23 と同様に 、かなるスィッチであってもよ!/、。
[0080] 例えば、図 5 (A)はアンテナ数が「5」の場合の配置を示し、図 5 (B)は図 5 (A)の場 合の送信アンテナと受信チャンネルとの関係を示す概念図である。
[0081] 図 5 (A)に示すように、アンテナ数が「5」の場合には、両端部のアンテナ数が各 2本 となり、中央部のアンテナ数が 1本となる。そして、両端部のアンテナの間隔を「d」を 設定した場合に、両端部の最も中央部側のアンテナと中央部のアンテナとの間隔を「 2d」と設定する。これにより、図 5 (B)に示すように、等間隔に配置された 13個の受信 チャンネル CHI〜CH 13を得ることができる。
[0082] また、図 6 (A)はアンテナ数が「6」の場合の配置を示し、図 6 (B)は図 6 (A)の場合 の送信アンテナと受信チャンネルとの関係を示す概念図である。
[0083] 図 6 (A)に示すように、アンテナ数が「6」の場合には、両端部のアンテナ数が各 3本 となり、中央部のアンテナ数力^本 (無し)となる。そして、両端部のアンテナの間隔を 「d」を設定した場合に、両端部の最も中央部側のアンテナ同士の間隔を「3d」と設定 する。これにより、図 6 (B)に示すように、等間隔に配置された 15個の受信チャンネル CHI〜CH 15を得ることができる。
[0084] また、図 7 (A)はアンテナ数が「8」の場合の配置を示し、図 7 (B)は図 7 (A)の場合 の送信アンテナと受信チャンネルとの関係を示す概念図である。
[0085] 07 (A)に示すように、アンテナ数が「8」の場合には、両端部のアンテナ数が各 4本 となり、中央部のアンテナ数力^本 (無し)となる。そして、両端部のアンテナの間隔を 「d」を設定した場合に、両端部の最も中央部側のアンテナ同士の間隔を「4d」と設定 する。これにより、図 7 (B)に示すように、等間隔に配置された 21個の受信チャンネル
CH1〜CH21を得ることができる。
[0086] このようにアンテナ本数が与えられれば、この本数に応じて最適な受信チャンネル 数を設定でき、各受信チャンネルを等間隔に配置することができる。
[0087] なお、前述の処理は、温度補正を行わな 、場合にっ 、て示したが、パッチアンテナ を榭脂基板上に配置してなるマイクロストリップアンテナでは、温度により受信特性が 大幅に変化するので、次式に示す補正を行う。
[0088] a (T) -EXP{j δ (Τ) }
ここで、 ηはアレイアンテナの番号であり、 Τは温度である。そして、 an (T)は温度に 対する振幅補正係数を表し、 δ η (Τ)は温度に対する位相補正係数を表す。
[0089] 信号処理回路 40は、このような補正情報を予めメモリ等に記憶しておくとともに、温 度センサを備え、 IFビート信号を入力する毎に温度を検知して上記補正を行う。これ により、温度による特性の変化を抑圧することができ、温度特性の悪いアンテナを用 いても、物体の方位、速度、距離等を正確に検出することができる。
[0090] また、前述の説明では、送受信の切り替えにスィッチ回路 22を用いた例を示したが
、図 8に示すような構造で送受信を切り替えても良い。
[0091] 図 8は本発明の他の送受信方法を用 、たレーダ装置の構成を示すブロック図であ る。
図 8に示すレーダ装置は、第 1の実施形態のレーダ装置に対して、スィッチ回路 22 をスィッチアンプ 25とサーキユレータ 26とに置き換えたものであり、他の構成は同じ である。
[0092] スィッチアンプ 25は、信号処理回路 40からの送信選択信号に基づいてオン動作し 、 VC031で生成された送信信号を増幅して、サーキユレータ 26に与える。また、スィ ツチアンプ 25は、信号処理回路 40からの受信選択信号に基づいてオフ状態になり、 動作しない。
[0093] サーキユレータ 26は、スィッチアンプ 25からの送信信号をスィッチ回路 21に出力し 、スィッチ回路 21から入力される受信信号を LNA33に出力する。 このような構成でも、本発明の効果を奏することができる。そして、受信回路系に挿 入されるスィッチ回路を削減することにより、受信信号による損失を低減し、より確実 に物体の検知を行うことができる。

Claims

請求の範囲
[1] 複数の送受共用アンテナを配列したアンテナアレイと、
該複数の送受共用アンテナから送信アンテナおよび受信アンテナを選択する選択 手段と、を備え、
該選択手段により選択された送信アンテナから周波数変調した送信波を送信し、 前記選択手段により順次切り替えながら選択された各受信アンテナで前記送信波の 反射波を受信し、各受信アンテナで受信した反射波の位相差を用いて物体の方位 検知を行うレーダ装置において、
前記アンテナアレイは、アレイの両端部のそれぞれに間隔 dで N1個の送受共用ァ ンテナが配置されるとともに、前記アレイの両端部における最もアレイ中央側の送受 共用アンテナ間の間隔が Nl X dであるか、前記アレイの両端部間に Nl X dの間隔 で送受共用アンテナが配置されることを特徴とするレーダ装置。
[2] 前記選択手段は、前記送信波の変調周期よりも短い間隔で送信アンテナの切り替 え選択を行う、請求項 1に記載のレーダ装置。
[3] 前記アンテナアレイを構成する送受共用アンテナの総数が 2以上の整数 Nであり、 前記アレイ両端部に配列される送受共用アンテナ数 N1は、(N+ 3) Z4に最も近 い整数である請求項 1または請求項 2に記載のレーダ装置。
[4] 前記アンテナアレイの複数の送受共用アンテナは、各送受共用アンテナの送受信 面が同一方向を向くようにして一直線上に配置されて 、る請求項 1〜請求項 3の 、ず れかに記載のレーダ装置。
[5] 前記アレイアンテナの両端に、前記一直線上に配置された複数の送受共用アンテ ナと異なる方向に送受信面が向く広角検知用アンテナを配置した請求項 4に記載の レーダ装置。
[6] 前記選択手段は、前記変調周期に同期して前記広角検知用アンテナの送信切り 替え選択を行う請求項 5に記載のレーダ装置。
[7] 前記選択手段は、前記変調周期よりも短い間隔で前記広角検知用アンテナの送信 切り替え選択を行うとともに、前記広角検知用アンテナを受信アンテナとして選択せ ず、前記アンテナアレイにおける該当する広角検知用アンテナに近い片端部の送受 共用アンテナを受信アンテナとして選択する請求項 5に記載のレーダ装置。
前記反射波に基づき物体の検知を行う検知手段は、温度センサを備え、該温度セ ンサで検知した温度に基づき前記反射波を補正した後に、物体の検知を行う請求項 1〜7のいずれかに記載のレーダ装置。
PCT/JP2006/325530 2006-01-23 2006-12-21 レーダ装置 WO2007083479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112006003644T DE112006003644B4 (de) 2006-01-23 2006-12-21 Radarvorrichtung
JP2007554835A JP4844566B2 (ja) 2006-01-23 2006-12-21 レーダ装置
US12/171,573 US7525479B2 (en) 2006-01-23 2008-07-11 Radar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006013654 2006-01-23
JP2006-013654 2006-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/171,573 Continuation US7525479B2 (en) 2006-01-23 2008-07-11 Radar apparatus

Publications (1)

Publication Number Publication Date
WO2007083479A1 true WO2007083479A1 (ja) 2007-07-26

Family

ID=38287435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325530 WO2007083479A1 (ja) 2006-01-23 2006-12-21 レーダ装置

Country Status (4)

Country Link
US (1) US7525479B2 (ja)
JP (1) JP4844566B2 (ja)
DE (1) DE112006003644B4 (ja)
WO (1) WO2007083479A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300101A (ja) * 2008-06-10 2009-12-24 Denso Corp 方位検出装置、レーダ装置
JP2009300102A (ja) * 2008-06-10 2009-12-24 Denso Corp 方位検出装置、レーダ装置
JP2014153142A (ja) * 2013-02-07 2014-08-25 Japan Radio Co Ltd Mimoレーダシステム、及び信号処理装置
CN104459690A (zh) * 2014-12-03 2015-03-25 中国电子科技集团公司第四十一研究所 一种多探头阵列微波成像系统及开关控制方法
CN105339806A (zh) * 2013-06-25 2016-02-17 罗伯特·博世有限公司 角度分辨的fmcw雷达传感器
KR20190113159A (ko) * 2018-03-27 2019-10-08 (주)스마트레이더시스템 레이더 장치
JP2020153872A (ja) * 2019-03-20 2020-09-24 パナソニックIpマネジメント株式会社 レーダ装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755533B2 (en) * 2006-11-01 2010-07-13 Imsar Llc Interferometric switched beam radar apparatus and method
JP2010008273A (ja) * 2008-06-27 2010-01-14 Maspro Denkoh Corp ミリ波撮像装置
GB0902314D0 (en) * 2009-02-12 2009-04-01 Trw Ltd Antennas
JP2010204003A (ja) * 2009-03-05 2010-09-16 Hitachi Kokusai Electric Inc 複合機能レーダ装置
DE102009027003A1 (de) 2009-06-17 2010-12-23 Endress + Hauser Gmbh + Co. Kg Optimierung der Schaltreihenfolge bei geschalteten Antennenarrays
CN101640949B (zh) * 2009-06-29 2012-07-25 惠州Tcl移动通信有限公司 多天线无线收发装置
KR101137088B1 (ko) * 2010-01-06 2012-04-19 주식회사 만도 통합 레이더 장치 및 통합 안테나 장치
JP5093298B2 (ja) * 2010-06-04 2012-12-12 株式会社デンソー 方位検出装置
EP2492709A1 (en) * 2011-02-25 2012-08-29 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO FMCW radar system
DE102011084610A1 (de) * 2011-10-17 2013-04-18 Robert Bosch Gmbh Winkelauflösender Radarsensor
US8994581B1 (en) * 2012-09-25 2015-03-31 Adam Brown Direction of arrival (DOA) estimation using multiple offset receive channels
US8937570B2 (en) * 2012-09-28 2015-01-20 Battelle Memorial Institute Apparatus for synthetic imaging of an object
US10439684B2 (en) * 2012-12-31 2019-10-08 Futurewei Technologies, Inc. Smart antenna platform for indoor wireless local area networks
WO2015060997A1 (en) 2013-10-25 2015-04-30 Texas Instruments Incorporated Angle resolution in radar
US9759807B2 (en) * 2013-10-25 2017-09-12 Texas Instruments Incorporated Techniques for angle resolution in radar
DE102014220513A1 (de) * 2014-09-30 2016-04-14 Siemens Aktiengesellschaft Mehrkanal-Radarverfahren und Mehrkanal-Radarsystem
JP6365494B2 (ja) * 2015-10-07 2018-08-01 株式会社デンソー アンテナ装置及び物標検出装置
US11047956B2 (en) * 2018-06-14 2021-06-29 Semiconductor Components Industries, Llc Reconfigurable MIMO radar
CN111725629B (zh) * 2019-03-20 2022-03-15 Oppo广东移动通信有限公司 毫米波天线装置、毫米波信号控制方法和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245602A (ja) * 2003-02-10 2004-09-02 Denso Corp アンテナの配列方法、及びレーダ装置
JP2005003393A (ja) * 2003-06-09 2005-01-06 Fujitsu Ten Ltd レーダ装置
JP2005257384A (ja) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp レーダ装置およびアンテナ装置
JP2006003303A (ja) * 2004-06-21 2006-01-05 Fujitsu Ten Ltd レーダ装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685051A (en) * 1969-03-06 1972-08-15 Tetra Tech Holographic imaging system using crossed linear arrays of energy sources and sensors
US3717843A (en) * 1970-03-06 1973-02-20 Bendix Corp Holographic system for forming images of both stationary and moving objects
US3774203A (en) * 1971-11-24 1973-11-20 Kuhlenschmidt Dooley Corp Holographic depth correction
US3757332A (en) * 1971-12-28 1973-09-04 Gen Dynamics Corp Holographic system forming images in real time by use of non-coherent visible light reconstruction
JPS6242180A (ja) * 1985-08-20 1987-02-24 Hamamatsu Photonics Kk マイクロ波ホログラフイ装置
JPS63179272A (ja) * 1987-01-20 1988-07-23 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JPS63179271A (ja) * 1987-01-20 1988-07-23 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JPS63179273A (ja) * 1987-01-20 1988-07-23 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JPS63187180A (ja) * 1987-01-29 1988-08-02 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JPS63187181A (ja) * 1987-01-29 1988-08-02 Mitsubishi Electric Corp ホログラフイツクレ−ダ
JPH0668542B2 (ja) * 1987-04-14 1994-08-31 三菱電機株式会社 ホログラフイツクレ−ダ
US4924235A (en) * 1987-02-13 1990-05-08 Mitsubishi Denki Kabushiki Kaisha Holographic radar
JPH01316679A (ja) * 1988-03-10 1989-12-21 Mitsubishi Electric Corp ホログラフイツクレーダ
US4947176A (en) * 1988-06-10 1990-08-07 Mitsubishi Denki Kabushiki Kaisha Multiple-beam antenna system
JPH0552944A (ja) * 1990-10-01 1993-03-02 Mitsubishi Electric Corp ホログラフイツクレーダ
US5859609A (en) * 1991-08-30 1999-01-12 Battelle Memorial Institute Real-time wideband cylindrical holographic surveillance system
US5455590A (en) * 1991-08-30 1995-10-03 Battelle Memorial Institute Real-time holographic surveillance system
WO1993005408A1 (en) * 1991-08-30 1993-03-18 Battelle Memorial Institute High resolution holographic surveillance system
US5557283A (en) * 1991-08-30 1996-09-17 Sheen; David M. Real-time wideband holographic surveillance system
US5327139A (en) * 1992-09-11 1994-07-05 The Boeing Company ID microwave holographic sensor
JP3183480B2 (ja) * 1993-01-11 2001-07-09 株式会社アドバンテスト ホログラフィックレーダ
US5734347A (en) * 1996-06-10 1998-03-31 Mceligot; E. Lee Digital holographic radar
JP3368874B2 (ja) 1998-09-14 2003-01-20 株式会社豊田中央研究所 ホログラフィックレーダ
US6191724B1 (en) * 1999-01-28 2001-02-20 Mcewan Thomas E. Short pulse microwave transceiver
JP3622565B2 (ja) 1999-03-31 2005-02-23 株式会社デンソー レーダ装置
US6414627B1 (en) * 1999-10-12 2002-07-02 Mcewan Technologies, Llc Homodyne swept-range radar
GB0022503D0 (en) * 2000-09-13 2000-11-01 Univ Northumbria Newcastle Microwve holographic measuring method and apparatus
JP3575694B2 (ja) * 2002-04-24 2004-10-13 株式会社ホンダエレシス 走査型fmcwレーダ
US7295146B2 (en) * 2005-03-24 2007-11-13 Battelle Memorial Institute Holographic arrays for multi-path imaging artifact reduction
US7034746B1 (en) * 2005-03-24 2006-04-25 Bettelle Memorial Institute Holographic arrays for threat detection and human feature removal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245602A (ja) * 2003-02-10 2004-09-02 Denso Corp アンテナの配列方法、及びレーダ装置
JP2005003393A (ja) * 2003-06-09 2005-01-06 Fujitsu Ten Ltd レーダ装置
JP2005257384A (ja) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp レーダ装置およびアンテナ装置
JP2006003303A (ja) * 2004-06-21 2006-01-05 Fujitsu Ten Ltd レーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMANE K. ET AL.: "Sharyo Radar-yo Hotographic Hoi Gezoho no Kento (A Holographic Imaging Method for Automotive Radar)", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS B-II, vol. J81-B-II, no. 8, 1998, pages 805 - 813, XP003016026 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300101A (ja) * 2008-06-10 2009-12-24 Denso Corp 方位検出装置、レーダ装置
JP2009300102A (ja) * 2008-06-10 2009-12-24 Denso Corp 方位検出装置、レーダ装置
US7924214B2 (en) 2008-06-10 2011-04-12 Denso Corporation Azimuth detecting apparatus and radar apparatus
US7932854B2 (en) 2008-06-10 2011-04-26 Denso Corporation Azimuth detecting apparatus and radar apparatus
JP2014153142A (ja) * 2013-02-07 2014-08-25 Japan Radio Co Ltd Mimoレーダシステム、及び信号処理装置
CN105339806A (zh) * 2013-06-25 2016-02-17 罗伯特·博世有限公司 角度分辨的fmcw雷达传感器
JP2016525209A (ja) * 2013-06-25 2016-08-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 角度分解型fmcwレーダセンサ
US10914818B2 (en) 2013-06-25 2021-02-09 Robert Bosch Gmbh Angle-resolving FMCW radar sensor
CN104459690A (zh) * 2014-12-03 2015-03-25 中国电子科技集团公司第四十一研究所 一种多探头阵列微波成像系统及开关控制方法
KR20190113159A (ko) * 2018-03-27 2019-10-08 (주)스마트레이더시스템 레이더 장치
KR102157583B1 (ko) * 2018-03-27 2020-09-18 (주)스마트레이더시스템 레이더 장치
JP2020153872A (ja) * 2019-03-20 2020-09-24 パナソニックIpマネジメント株式会社 レーダ装置
JP7361263B2 (ja) 2019-03-20 2023-10-16 パナソニックIpマネジメント株式会社 レーダ装置

Also Published As

Publication number Publication date
DE112006003644T5 (de) 2008-12-24
US20080291088A1 (en) 2008-11-27
JP4844566B2 (ja) 2011-12-28
US7525479B2 (en) 2009-04-28
JPWO2007083479A1 (ja) 2009-06-11
DE112006003644B4 (de) 2011-05-19

Similar Documents

Publication Publication Date Title
WO2007083479A1 (ja) レーダ装置
US6067048A (en) Radar apparatus
JP7066015B2 (ja) アンテナ装置及びレーダ装置
US7173561B2 (en) Radar device capable of scanning received reflection waves
JP3622565B2 (ja) レーダ装置
JP5130079B2 (ja) 電子走査式レーダ装置及び受信用アレーアンテナ
EP1788408B1 (en) Mono pulse radar device and antenna selector switch
CN1712985B (zh) 雷达装置
JP4833534B2 (ja) レーダ装置
US7289058B2 (en) Radar apparatus
US7898460B2 (en) Radar target detecting method, and apparatus using the target detecting method
US9097796B2 (en) Radar apparatus
US6859168B2 (en) Radar apparatus
US20110298653A1 (en) Method and device for detecting azimuth
JP2000258524A (ja) レーダ装置
JPH11160423A (ja) レーダ装置
JP2007333656A (ja) レーダ装置
US20210149038A1 (en) Radar device
JP2001166029A (ja) Dbfレーダ装置
JP4967384B2 (ja) レーダ装置
JP2009031185A (ja) レーダ装置及びターゲット検出方法
US20220107408A1 (en) Radar device
JP5619061B2 (ja) レ−ダ装置
WO2022038759A1 (ja) レーダ装置
JP2009162521A (ja) レ−ダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554835

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120060036440

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006003644

Country of ref document: DE

Date of ref document: 20081224

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06835091

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607