WO2007080950A1 - 角度変調装置 - Google Patents

角度変調装置 Download PDF

Info

Publication number
WO2007080950A1
WO2007080950A1 PCT/JP2007/050293 JP2007050293W WO2007080950A1 WO 2007080950 A1 WO2007080950 A1 WO 2007080950A1 JP 2007050293 W JP2007050293 W JP 2007050293W WO 2007080950 A1 WO2007080950 A1 WO 2007080950A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
light
modulation
angle modulation
Prior art date
Application number
PCT/JP2007/050293
Other languages
English (en)
French (fr)
Inventor
Tomoaki Ohira
Kouichi Masuda
Masaru Fuse
Tsutomu Niiho
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/160,290 priority Critical patent/US20090009259A1/en
Publication of WO2007080950A1 publication Critical patent/WO2007080950A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators

Definitions

  • the present invention relates to an angle modulation device, and more particularly to an angle modulation device for transmitting a multi-channel analog video signal or digital video signal in an optical fiber transmission device.
  • an angle modulation device using the configuration shown in FIG. 13 has been applied as an angle modulation device that converts a multi-channel analog video signal or digital video signal into a wide-band angle modulation signal.
  • Such angle modulators are described in, for example, the literature (K. Kikushima, et al., "Optical Super Wide- Band FM Modulation Scheme and Its Application to Multi-Channel AM Video Transmission Systems", IOOC '95 Technical Digest, Vol. 5 PD2—7, pp. 33-34) explains the operation in detail.
  • FIG. 13 is a diagram showing a configuration of a conventional angle modulation device 90.
  • an angle modulation device 90 includes an optical frequency control unit 901, an optical modulation unit 902, a local light source 903, an optical multiplexing unit 904, and an optical detection unit 905.
  • the first signal source 906 outputs an electric signal to the angle modulation device 90.
  • the optical modulation unit 902 receives an electrical signal output from the first signal source 906.
  • the electrical signal is, for example, a signal obtained by frequency multiplexing signals of frequencies fl to fn.
  • the optical modulation unit 9002 converts the electric signal output from the first signal source 906 into an optical frequency modulation signal by changing the frequency of the light output in accordance with the input electric signal.
  • the light modulation unit 902 is configured by, for example, a semiconductor laser.
  • a semiconductor laser oscillates light having a predetermined frequency fFM when a constant current is injected. Furthermore, when an amplitude-modulated current is injected, the semiconductor laser changes the frequency of the output light according to the injected current, and outputs an optical frequency modulation signal centered on the optical frequency fFM. Therefore, the optical modulation unit 902 converts the electrical signal output from the first signal source 906 into an optical frequency modulation signal. And the optical frequency modulation signal is output.
  • the local light source 903 outputs unmodulated light having a predetermined frequency fLocal.
  • the optical multiplexing unit 904 combines the optical signal output from the optical modulation unit 902 and the light output from the local light source 903, and outputs the combined optical signal.
  • the optical detection unit 905 is configured by, for example, a photodiode having a square detection characteristic.
  • the optical detection unit 905 detects an optical signal output from the first signal source 906 as an original signal by performing an optical heterodyne detection on the input combined optical signal, thereby generating an angle modulation signal (frequency modulation signal) of the carrier frequency fc. Signal).
  • the optical frequency control unit 901 performs optical modulation so that the center frequency fFM of the optical signal output from the optical modulation unit 902 and the optical frequency fLocal of the light output from the local light source 903 have a certain frequency difference from each other.
  • the unit 902 and the local light source 903 are controlled to stabilize the center frequency fc of the angle modulation signal output from the optical detection unit 905.
  • the angle modulator 90 uses a high modulation efficiency by optical signal processing (modulation efficiency more than 10 times that of a general electric circuit system), so that it is difficult to generate with a general electric circuit.
  • An angular modulation signal having a very high frequency and a wide band (a large amount of frequency deviation or phase deviation) can be easily generated.
  • the phase noise of the angle modulation signal output from the angle modulation device 90 increases.
  • the optical signals output from the optical modulation unit 902 and the local light source 903 included in the angle modulator 90 do not have phase level correlation. Therefore, the phase noise of the angle modulation signal output from the angle modulation device 90 is equal to the sum of the phase noises of the optical signals output from the optical modulation unit 902 and the local light source 903.
  • An electric signal obtained by demodulating an angle modulation signal including phase noise includes large white noise. Therefore, the conventional angle modulator 90 has a problem that the quality of the demodulated signal is significantly deteriorated by this noise.
  • the angle modulation device 90 is used to stabilize the frequency of the angle modulation signal.
  • a control circuit optical frequency control unit 901 for controlling the frequency of the optical signal output from the adjusting unit 902 and the local light source 903 is required. Therefore, there is a problem that the configuration of the angle modulation device 90 becomes complicated.
  • FIG. 14 is a diagram showing a configuration of a conventional angle modulation device 91 described in Patent Document 1.
  • the angle modulation device 91 includes a light source 911, an optical branching unit 912, an optical angle modulation unit 913, an optical intensity modulation unit 914, an optical multiplexing unit 915, and an optical detection unit 916.
  • the first light source 911 outputs unmodulated light having a predetermined frequency fO.
  • the optical branching unit 912 branches the unmodulated light output from the first light source 911, and outputs the branched unmodulated light as first and second lights.
  • the optical angle modulation unit 913 receives a frequency-multiplexed first electric signal including frequency components of predetermined frequencies fl to fn from the first signal source 906.
  • the optical angle modulation unit 913 performs optical angle modulation on the first light output from the optical branching unit 912 according to the input first electric signal, and outputs the first optical signal.
  • the first optical signal has the same phase noise as the light source 911.
  • FIG. 16A is a schematic diagram illustrating an example of an optical spectrum of the first optical signal output from the optical angle modulation unit 913.
  • a second electric signal having a predetermined frequency fc is input from the second signal source 917 to the light intensity modulation unit 914.
  • the light intensity modulation unit 914 performs light intensity modulation (light amplitude modulation) on the second light output from the light branching unit 912 in accordance with the input second electric signal, and serves as a second optical signal. Output.
  • the light intensity modulation unit 914 for example, at least three Mach-Zehnder interferometers (hereinafter referred to as “MZ interferometers”) are arranged on a crystal substrate such as a lithium niobate substrate.
  • MZ interferometers Mach-Zehnder interferometers
  • a waveband light intensity modulator hereinafter referred to as “optical SSB—SC modulator”.
  • FIG. 15 is a diagram showing a configuration of the optical SSB-SC modulation unit 920.
  • the optical SSB—SC modulator 920 includes a first MZ interferometer 921, a second MZ interferometer 922, and a third MZ interferometer 92. 3, a branching unit 924, a first phase inversion unit 925, and a second phase inversion unit 926.
  • the optical SSB-SC modulation unit 920 branches the second light input from the optical branching unit 912 into first and second optical carriers.
  • the first optical carrier wave is input to the first MZ interferometer 921, and the second optical carrier wave is input to the second MZ interferometer 922.
  • the optical SSB—SC modulation unit 920 receives the first electric signal fcl input from the first signal source 906, the electric signal fcla having the same phase as the first electric signal fcl in the branching unit 924, Branches into two electrical signals fclb whose phase is 90 ° different from the first electrical signal.
  • the first phase inversion unit 925 branches the electric signal fcla into an electric signal fclaa whose phase is the same as the electric signal fcla and an electric signal fclab whose phase is 180 ° different from the electric signal fcla. Are output to the electrodes of the first MZ interferometer 921, respectively.
  • the second phase inverter 926 branches the electric signal fclb into an electric signal fclba whose phase is 90 ° different from the electric signal fclb and an electric signal fclbb whose phase is 270 ° different from the electric signal fclb.
  • Each of the split electrical signals is output to each of the electrodes of the second MZ interferometer 922.
  • the first MZ interferometer 921 modulates the first optical carrier using the electric signal fclaa and the electric signal fclab as original signals, and converts the phase of the modulated first optical carrier to the first bias voltage V Adjust with 1, and output as the first light intensity modulation signal.
  • the second MZ interferometer 922 modulates the second optical carrier using the electrical signal fclba and electrical signal fclbb as the original signal, and adjusts the phase of the modulated second optical carrier with the second bias voltage V2. Then, it outputs as a second light intensity modulation signal.
  • the third MZ interferometer 923 adjusts the phase of the first and second optical intensity modulation signals with the third bias voltage V3, and combines the two optical intensity modulation signals with adjusted phases. Output. Accordingly, the optical SSB-SC modulation unit 920 can perform optical SSB-SC modulation on the input light and output it as a light intensity modulation signal.
  • FIG. 16B is a schematic diagram showing an example of an optical spectrum of an optical signal output from such an optical intensity modulation unit (optical SSB-SC modulation unit) 914.
  • the second optical signal output from the optical intensity modulator 914 has only a single sideband component with the optical carrier component suppressed and shifted from the optical carrier component by the frequency fc. ing.
  • the second optical signal has the same phase noise as light source 911.
  • the optical multiplexing unit 915 multiplexes the first optical signal output from the optical angle modulation unit 913 and the second optical signal output from the optical intensity modulation unit 1004, and outputs the combined optical signal. To do.
  • the optical detection unit 916 is configured by a photodiode having square detection characteristics, for example.
  • the optical detection unit 916 performs optical homodyne detection on the combined optical signal output from the optical combining unit 915 based on the square detection characteristic, and a difference beat signal between the first and second optical signals input to the optical combining unit 915. Is generated and output.
  • FIG. 16C is a schematic diagram showing an example of an optical spectrum of the differential beat signal output from the optical detection unit 916.
  • the difference beat signal is an angle modulation signal obtained by down-converting the first optical signal output from the optical angle modulation unit 913, and its center frequency is fc.
  • the first and second optical signals have the same phase noise as the light source 911. Therefore, even if the frequency of the first optical signal fluctuates, the frequency of the second optical signal also fluctuates in the same way. Therefore, the frequency difference between these signals is always constant regardless of the fluctuation of the frequency. And the phase noise of the second optical signal is canceled out, and the phase noise of the difference beat signal becomes constant. Therefore, according to the angle modulation device shown in FIG. 14, it is theoretically possible to obtain an angle modulation signal with good noise characteristics.
  • Patent Document 1 JP 2001-133824 (Page 25, Fig. 1)
  • Patent Document 2 JP-A-11 340926 (Page 18, Figure 5)
  • the optical SSB-SC modulator described above is actually an output due to errors caused in the fabrication of the optical branching ratio and the wavelength dependence of the waveguide in each MZ interferometer.
  • the one-sideband component of the optical signal cannot be sufficiently suppressed.
  • FIG. 16D is a schematic diagram illustrating an example of an optical spectrum of an optical signal in which the optical carrier wave component and the optical sideband component are not sufficiently suppressed.
  • the distortion characteristic after demodulating the angle modulation signal output from the optical detection unit 916 is a significant component. .
  • FIG. 16E shows a signal spectrum output by the optical detection unit 916 when the optical signal having the optical spectrum shown in FIG. 16D is output from the optical intensity modulation unit (optical SSB — SC modulation unit) 914. It is a schematic diagram which shows a ram.
  • the desired angle modulation signal E1 is generated as a difference beat component between the first optical signal output from the optical angle modulation unit 913 shown in FIG. 16A and the desired optical sideband component G1 in FIG. 16D. Is done.
  • the unnecessary angle modulation signal E2 is generated from the first optical signal shown in FIG. 16A and the residual light sideband component G3 in FIG. 16D.
  • the unnecessary angle modulation signal E3 is generated from the first optical signal shown in FIG. 16A and the residual optical carrier component G2 shown in FIG. 16D.
  • an unnecessary angle modulation signal E2 has the same center frequency as that of the desired angle modulation signal E1 and has overlapping signal bands, so that the distortion characteristics are deteriorated. Therefore, the residual optical sideband component D3 in Fig. 16D is considered to be a factor that causes distortion characteristics degradation. Further, in FIG. 16E, when the level of the unnecessary angle modulation signal E3 increases, a signal band overlapping with the desired angle modulation signal E1 is generated, and the distortion characteristics are deteriorated. Therefore, the residual optical carrier component G2 in FIG. 16D is also considered to be a factor causing distortion characteristic deterioration.
  • FIG. 17A and FIG. 17B are diagrams showing experimental results related to the above events.
  • the horizontal axis indicates the suppression ratio of the residual optical sideband component G3 to the desired optical sideband component G1.
  • the vertical axis represents the amount of distortion detected after demodulating the angle modulation signal.
  • the horizontal axis represents the suppression ratio of the residual optical carrier component G2 to the desired optical sideband component G1.
  • the vertical axis represents the amount of distortion detected after demodulating the angle modulation signal.
  • 17A and 17B show that the amount of distortion decreases as the suppression ratio of residual optical carrier component G2 and residual optical sideband component G3 increases, regardless of the frequency of the demodulated signal. Show. Therefore, it is considered that the residual optical carrier component G2 and the residual optical sideband component G3 affect the deterioration of distortion characteristics.
  • Patent Document 2 describes using an optical bandpass filter or the like as an optical filter.
  • the frequency interval between the desired optical sideband component G1 and the residual optical sideband component G3, that is, the carrier frequency of the desired angle modulation signal to be generated is, for example, about 10 GHz.
  • the frequency interval is very narrow, whereas currently available optical filters have a bandwidth of about 50 GHz, and only the desired optical sideband component D1 is an optical signal. There is a problem of being unable to filter in this state.
  • the present invention uses a light intensity modulation unit and a light angle modulation unit to change the center frequency of the residual optical carrier component and the residual optical sideband component after transition.
  • An object of the present invention is to provide an angle modulation device that can improve the distortion characteristics of a transmission signal without using an optical filter.
  • the present invention has the following characteristics.
  • a first aspect of the present invention is an angle modulation device for converting an input signal into an angle modulation signal, and a light source and light that propagates the light output from the light source power through the first path. And a light branching part that branches into light propagating through the second path, and a first light intensity that is arranged on the first path and modulates the intensity of the input light with a second electrical signal of frequency fc2 A modulation unit; a first light that is arranged on the second path and angle-modulates input light with an input signal; an angle modulation unit; light that propagates through the first path; and the second light An optical multiplexing unit that combines the light propagating through the path at the respective end points of the first path and the second path, and the first light intensity modulation unit or the first light angle modulation unit.
  • the intensity of light that is input as a first electrical signal having a frequency fcl different from the frequency fc2 And, a second optical-intensity modulator for outputting the intensity modulated light, having a square-law detection characteristic, and a light detection unit that converts the optical signal output from the optical multiplexing section at an angle modulated signal.
  • an unwanted angle modulation signal generated by detecting light including a residual optical carrier component and a residual optical single sideband component has an adverse effect on a desired angular modulation signal. It is possible to provide a wide-band angle-modulated signal that is excellent in noise characteristics and distortion characteristics of the transmitted input signal by being suppressed.
  • the second light intensity modulation unit is disposed before the first light intensity modulation unit and optically SSB modulates input light.
  • the first light intensity modulator is The optical SSB-modulated light may be optical SSB-SC modulated.
  • the residual light half wave The band component can be shifted to a desired frequency band.
  • the second light intensity modulation unit is arranged in a preceding stage of the first light intensity modulation unit, and receives input light as an optical SSB-SC.
  • the first light intensity modulation unit may modulate the optical SSB-SC modulated light by optical SSB modulation.
  • the residual light single side wave The band component can be shifted to a desired frequency band.
  • the second light intensity modulation unit may be arranged upstream of the first light angle modulation unit.
  • the first light intensity modulation unit performs optical SSB-SC modulation on the input light
  • the second light intensity modulation unit receives the input.
  • the first optical angle modulation unit modulates the optical SSB-SC modulated light with the input signal. Good.
  • the influence of an unnecessary angle modulation signal component generated at the same frequency as the angle modulation signal having a desired carrier frequency on the angle modulation signal having the desired carrier frequency is obtained.
  • the residual optical single sideband component and the residual optical carrier component can be shifted to a desired frequency band.
  • An eighth aspect of the present invention is that, in the seventh aspect, an optical propagation delay amount that is disposed after the first light intensity modulation unit and propagates through the first path and propagates through the second path.
  • An optical delay adjustment unit that delays the propagation of the light propagating through the first path may be further provided so that the propagation delay amount of the transmitted light becomes equal.
  • the influence of an unnecessary angle modulation signal component generated at the same frequency as the angle modulation signal having a desired carrier frequency on the angle modulation signal having the desired carrier frequency is obtained. It can be further suppressed.
  • the second light intensity modulation unit converts the light propagating through the branched second path, the first electrical signal, and the phase.
  • the first optical DSB modulator that performs optical DSB modulation with the shifted first electrical signal, and the first electrical signal that is 90 ° out of phase with the light propagating through the branched second path
  • a second optical DSB modulator that performs optical DSB modulation with each of the first electrical signal whose phase is shifted by 90 ° and then shifted in phase by 180 °.
  • the unit may optically modulate each of the light output from the first optical DSB modulation unit and the light output from the second optical DSB modulation unit with an input signal, and then multiplex them.
  • the two components of the second light intensity modulation unit and the first light angle modulation unit can be made into one component, and the simple configuration An angle modulation device can be provided.
  • the input signal is branched into an in-phase signal having the same phase as the input signal and an anti-phase signal obtained by inverting the phase of the input signal.
  • a phase reversal unit, and a second light angle modulation unit that is arranged at the subsequent stage of the first light intensity modulation unit and modulates the light angle of the input light with the input signal.
  • the modulation unit may angle-modulate input light with an in-phase signal.
  • the amount of phase deviation of the angle modulation signal can be increased by optical angle modulation with the input signal and the input signal with the phase inverted.
  • An eleventh aspect of the present invention is characterized in that, in the tenth aspect, the first light intensity modulation unit performs optical SSB-SC modulation on the input light, and the second light intensity modulation unit The input light may be optically SSB-SC modulated! /.
  • the influence of an unnecessary angle modulation signal component generated at the same frequency as the angle modulation signal having a desired carrier frequency on the angle modulation signal having the desired carrier frequency is obtained. Simultaneously with the suppression, the amount of phase deviation of the angle modulation signal can be increased.
  • the second light intensity modulation unit transmits the light propagating through the branched second path, the first electric signal, and the phase.
  • the first optical DSB modulator that performs optical DSB modulation with the first electrical signal shifted by 180 ° and the first electrical signal that is 90 ° out of phase with the light propagating through the branched second path
  • a second optical DSB modulator that performs optical DSB modulation with the first electrical signal whose phase is shifted by 90 ° and then shifted in phase by 180 °
  • the first light intensity modulator is The light propagating in the branched first path is branched by the third optical DSB modulation unit that optically DSB modulates the second electric signal and the second electric signal whose phase is shifted by 180 °.
  • the first optical angle modulation unit is a common-mode signal, the light output from the first optical DSB modulation unit, and the second optical DSB modulation unit.
  • the second optical angle modulation unit is a reverse phase signal, and is combined with the light output from the third optical DSB modulation unit.
  • the light output from the fourth optical DSB modulator may be optically angle-modulated and then combined.
  • each of the second light intensity modulator, the first light angle modulator, the first light intensity modulator, and the second light angle modulator is provided as one It is possible to provide an angle modulation device that can be a component and can increase the amount of phase deviation of the angle modulation signal with a simple configuration.
  • any one of the seventh aspect and the ninth aspect light is emitted.
  • is B1
  • the bandwidth of the angle modulation signal having the center frequency fcl is B2
  • + ⁇ 1 / 2 ⁇ fcl—B2Z2 may be satisfied.
  • one of the seventh aspect and the ninth aspect is! /, Which is one of the deviations !, and the center frequency I of the angle-modulated signal output from the optical detection unit.
  • fcl fc2 If the bandwidth of the angle modulation signal with I is B1 and the bandwidth of the angle modulation signal with the center frequency fc2 is B3, then when fcl> fc2, I fcl—fc2 I ⁇ 1 / 2, and
  • FIG. 1 is a block diagram showing a configuration of an angle modulation device according to a first embodiment of the present invention.
  • FIG. 2A is a schematic diagram showing an example of a spectrum of an optical signal output from the optical SSB modulation section shown in FIG.
  • FIG. 2B is a schematic diagram showing an example of a spectrum of an optical signal output from the optical SSB-SC modulation unit shown in FIG.
  • FIG. 2C is a schematic diagram showing an example of a spectrum of an angle modulation signal output from the optical angle modulation unit shown in FIG.
  • FIG. 2D is a schematic diagram showing an example of a spectrum of an angle modulation signal output from the optical detection unit shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of an angle modulation device according to a second embodiment of the present invention.
  • FIG. 4A is a schematic diagram showing an example of a spectrum of an optical signal output from the optical SSB-SC modulation section shown in FIG.
  • FIG. 4B is a schematic diagram showing an example of a spectrum of an optical signal output from the optical SSB modulation section shown in FIG.
  • FIG. 4C is a schematic diagram showing an example of a spectrum of an angle modulation signal output by the optical detection unit shown in FIG.
  • FIG. 5 is a block diagram showing a configuration of an angle modulation device according to a third embodiment of the present invention.
  • FIG. 6A is a schematic diagram showing an example of a spectrum of unmodulated light output from the light source shown in FIG.
  • FIG. 6B is a schematic diagram showing an example of a spectrum of an optical signal output from the first optical SSB-SC modulation unit 303 shown in FIG.
  • FIG. 6C is a schematic diagram showing an example of a spectrum of an optical signal output from the second optical SSB-SC modulator 304 shown in FIG.
  • FIG. 6D is a schematic diagram showing an example of a spectrum of an optical signal output from the optical angle modulation unit shown in FIG.
  • FIG. 6E is a schematic diagram showing an example of a spectrum of an angle modulation signal output from the optical detection unit shown in FIG.
  • FIG. 7 is a block diagram showing a configuration of an angle modulation device according to a modification of the third embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of an angle modulation device according to a modification of the third embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a configuration of the optical modulator shown in FIG.
  • FIG. 10A is a schematic diagram showing an example of the spectrum of an optical signal output from the first MZ interferometer shown in FIG. 9 that has been angle-modulated.
  • FIG. 10B is a schematic diagram showing an example of a spectrum of an optical signal output from the second MZ interferometer shown in FIG. 9 that has been angle-modulated.
  • FIG. 11 is a block diagram showing a configuration of an angle modulation device according to a fourth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of an angle modulation device according to a modification of the fourth embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration of a conventional angle modulation device.
  • FIG. 14 is a block diagram showing a configuration of a conventional angle modulation device.
  • FIG. 15 is a block diagram showing a configuration of the light intensity modulation unit shown in FIG.
  • FIG. 16A is a schematic diagram showing an example of a spectrum of an optical signal output from the optical angle modulation unit shown in FIG.
  • FIG. 16B is a schematic diagram showing an example of a spectrum of an optical signal output from the light intensity modulation unit shown in FIG.
  • FIG. 16C is a schematic diagram showing an example of a spectrum of a difference beat signal output from the optical detection unit shown in FIG.
  • FIG. 16D is a diagram showing an example of a spectrum of an optical signal in which the optical carrier component and the optical single sideband component cannot be sufficiently suppressed.
  • FIG. 16E is a schematic diagram showing an example of a spectrum of a differential beat signal output when the optical detection unit shown in FIG. 14 detects the optical signal having the optical spectrum shown in FIG. 16D. is there.
  • FIG. 17A is a diagram showing a correlation between an unnecessary residual sideband component suppression ratio in an angle modulation signal output from a conventional angle modulation device and a distortion characteristic after demodulation.
  • FIG. 17B is a diagram showing a correlation between an unnecessary residual carrier component suppression ratio and a post-demodulation distortion characteristic in an angle modulation signal output from a conventional angle modulation device.
  • FIG. 1 is a block diagram showing a configuration of an angle modulation device 10 according to the embodiment of the present invention.
  • the angle modulator 10 includes a light source 101, an optical branching unit 102, a single sideband light intensity modulating unit (hereinafter referred to as “optical SSB modulating unit”) 103a, and a carrier-suppressed single side.
  • a waveband light intensity modulation unit hereinafter referred to as “optical SSB—SC modulation unit”
  • optical angle modulation unit 105 an optical angle modulation unit
  • optical multiplexing unit 106 optical multiplexing unit
  • optical detection unit 107 are provided.
  • the optical SSB-SC modulator 104a functions as the first light intensity modulator described in the claims
  • the optical SSB modulator 103a is the second light described in the claims. Functions as an intensity modulation unit.
  • the light source 101 outputs unmodulated light L0 having a predetermined frequency f0.
  • the light branching unit 102 branches the unmodulated light L0 output from the light source 101, and outputs the first light Omla and the second light Om2a.
  • the first optical signal Omla and the first electric signal E1 having the predetermined frequency fcl output from the first signal source 109 are input to the optical SSB modulator 103a.
  • the optical SSB modulation unit 103a performs optical SSB modulation on the first optical Omla according to the amplitude of the first electric signal E1, and outputs the modulated signal as the first optical signal Omlb.
  • FIG. 2A is a diagram illustrating an example of an optical spectrum of the first optical signal Omlb output from the optical SSB modulation unit 103a.
  • the first optical signal Omlb is an optical modulation signal including an optical carrier component and an optical single sideband component.
  • the optical SSB-SC modulator 104a receives the first optical signal Omlb and the second electric signal E2 having a predetermined frequency fc2 output from the second signal source 110.
  • the optical SSB—SC modulation unit 104a performs optical SSB SC modulation on the first optical signal Omlb in accordance with the amplitude of the second electric signal E2, and converts the first optical signal Omlb that has been optical SSB—SC modulated into the second. Output as an optical signal Omlc.
  • FIG. 2B is a diagram illustrating an example of a spectrum of the second optical signal Omlc output from the optical SSB-SC modulation unit 104a.
  • the second optical signal Omlc has a carrier-suppressed single sideband including the frequency component Fe3 corresponding to the frequency component Fel in FIG. 2A and the frequency component Fe4 corresponding to the frequency component Fe2 in FIG. 2A. It is a light modulation signal.
  • the second optical signal Omlc includes a residual single sideband component Fsl corresponding to the frequency component Fel and a residual single sideband component Fs2 corresponding to the frequency component Fe2.
  • the optical angle modulation unit 105 includes the second light Om2a and the third light output from the third signal source 111.
  • the electrical signal E3 is input.
  • the third electrical signal E3 is a signal in which signals of frequencies fl to fn are multiplexed.
  • the optical angle modulation unit 105 performs optical angle modulation (optical phase modulation or optical frequency modulation) on the second light Om2a according to the amplitude of the third electric signal E3, and converts the second light Om2a that has been optically angle-modulated. Output as the third optical signal Om2b.
  • FIG. 2C is a schematic diagram illustrating an example of a spectrum of the third optical signal Om2b output from the optical angle modulation unit 105.
  • the optical multiplexing unit 106 combines the second optical signal Omlc output from the optical SSB-SC modulation unit 104a and the third optical signal Om2b output from the optical angle modulation unit 105, and combines them. Output wave signal Oc.
  • the optical detection unit 107 is configured by a photodiode having, for example, a square detection characteristic.
  • the optical detection unit 107 performs optical homodyne detection on the combined optical signal Oc output from the optical combining unit 106 based on the square detection characteristic, generates a difference beat signal Db between these signals, and outputs the difference beat signal Db.
  • the difference beat signal Db is a signal obtained by down-converting the third optical signal Om2b.
  • FIG. 2D is a diagram illustrating an example of a spectrum of the difference beat signal Db output from the optical detection unit 107.
  • the difference beat signal Db includes an angle modulation signal component Fal whose center frequency is Ifcl-fc2 I, an angle modulation signal Fa2 including an unwanted wave component whose center frequency is fc2, and a center frequency of ( fcl + fc2) and an unwanted wave component Fa3.
  • the angle modulation signal component Fal is a difference beat signal component obtained by down-converting the frequency component Fe3 shown in FIG. 2B to the center frequency Ifcl-fc2I.
  • the angle-modulated signal Fa2 including the unwanted wave component is a difference beat signal component superimposed by down-converting the frequency component Fe4 and the residual single sideband component Fs2 to the frequency fc2.
  • the unwanted wave component Fa3 is a difference beat signal component obtained by down-converting the residual single sideband component Fsl to the center frequency (fcl + fc2). Therefore, the residual single sideband component is not superimposed on the angle modulation signal component Fal. Further, by selecting the frequencies fcl and fc2 so that I fcl fc2 I becomes a desired carrier frequency, an angle-modulated signal having a desired carrier frequency that is not affected by the residual single sideband component can be obtained.
  • the angle modulation device 10 uses the angle included in the difference beat signal Db shown in FIG. 2D.
  • the degree-modulated signal component Fal By filtering only the degree-modulated signal component Fal, an angle-modulated signal that does not contain unnecessary frequency components is output. Therefore, it is necessary to prevent other frequency components from overlapping the angle modulation signal component Fal. Therefore, if the bandwidth of the signal of the third optical signal Om2b is B, the bandwidth B, the frequency fcl, and the frequency fc2 are
  • the angle modulation device 10 performs the optical SSB-SC modulation by optically SSB-modulating the non-modulated light LO having the frequency fO and optically SSB-SC-modulating the optically modulated optical signal. It is possible to shift the residual sideband component generated at the center to a center frequency different from the desired center frequency. Therefore, according to the angle modulation device 10 according to the present embodiment, an unnecessary angle modulation signal component generated by detecting light including the residual light carrier wave component and the residual light single sideband component is a desired angle modulation signal. It is possible to prevent the distortion characteristics of the signal obtained by decoding the angle modulation signal from being superimposed on the component from being deteriorated.
  • angle modulation device 10 may further include a filter 108 as shown in FIG.
  • the filter 108 passes only the angle modulation signal component having a desired center frequency from the difference beat signal Db output from the optical detection unit 107.
  • the filter 108 is, for example, a bandpass filter that extracts only the angle-modulated signal component having the center frequency Ifcl-fc2I, as indicated by a broken line in FIG. 2D.
  • the angle modulation device 10 further includes a filter 108, thereby removing an unnecessary one-sideband component of the angle modulation signal with respect to the angle modulation signal having a desired carrier frequency, and providing a wideband with excellent noise characteristics and distortion characteristics. An angle modulated signal can be provided.
  • FIG. 3 is a block diagram showing the configuration of the angle modulation device 20 according to the present invention.
  • an angle modulation device 20 includes a light source 101, an optical branching unit 102, an optical SSB-SC modulation unit 103b, an optical SSB modulation unit 104b, an optical angle modulation unit 105, an optical multiplexing unit 106, And an optical detection unit 107.
  • the optical SSB modulator 104b functions as the first light intensity modulator described in the claims
  • the optical SSB-SC modulator 103b is the second light intensity modulator described in the claims. Function as.
  • the angle modulation device 20 according to the present embodiment is obtained by changing the order of the two light intensity modulation units in the angle modulation device 10 according to the first embodiment. That is, the difference from the angle modulation device 10 according to the first embodiment is that the configuration of the angle modulation device 10 performs optical SSB modulation on the unmodulated light LO having the frequency fO output from the light source 101, and performs optical SSB modulation. In contrast to the configuration in which the modulated optical modulation signal is optically SSB-SC modulated, the configuration of the angle modulator 20 is the optical SSB-SC modulated optically modulated light L0 of the frequency fO output from the light source 101.
  • SSB This is a point having a configuration for optically SSB modulating an SC modulated optical modulation signal.
  • the same or corresponding parts as those of the angle modulation device 10 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the optical SSB-SC modulator 103b receives the first optical Omld and the first electric signal E1 having a predetermined frequency fcl output from the first signal source 109.
  • the optical SSB-SC modulation unit 103b performs optical SSB-SC modulation on the first light Omld in accordance with the amplitude of the first electric signal E1, and outputs it as the first optical signal Omle.
  • FIG. 4A is a diagram illustrating an example of an optical spectrum of the first optical signal Omle output from the optical SSB-SC modulation unit 103b.
  • the first optical signal Omle is an optical modulation signal including a frequency component Fe5 of frequency (fO ⁇ fcl) and a residual single sideband component Fs3 of frequency (fO + fcl).
  • the optical SSB modulation unit 104b receives the first optical signal Omle and the second electric signal E2 having a predetermined frequency fc2 output from the second signal source 110.
  • the optical SSB modulation unit 104 b performs optical SSB modulation on the first optical signal Omle according to the amplitude of the second electric signal E2, and outputs the second optical signal Omlf.
  • FIG. 4B is a diagram illustrating an example of a spectrum of the second optical signal Omlf output from the optical SSB modulation unit 104b.
  • the second optical signal Omlf is an optical modulation signal including a frequency component Fe5 and a frequency component Fe6 having a center frequency (fO ⁇ fcl + fc2).
  • the second optical signal Omlf is composed of the residual single sideband component Fs3 and the residual single side of the center frequency (f0 + fl + f2). Includes waveband component Fs4.
  • FIG. 4C is a diagram illustrating an example of a spectrum of the difference beat signal Db output from the optical detection unit 107.
  • the difference beat signal Db includes an angle modulation signal component Fa4 having a center frequency of I fcl-fc2 I, an angle modulation signal Fa5 including an unnecessary wave component having a center frequency of fcl, and a center frequency of ( fcl + fc2) and an unwanted wave component Fa6.
  • the angular modulation signal component Fa4 has the frequency component Fe6 as the center frequency
  • the angle modulation signal Fa5 including unnecessary wave components is a difference beat signal component superimposed by down-converting the frequency component Fe5 and the residual single sideband component Fs3 to the center frequency fcl.
  • the unwanted wave component Fa6 is a differential beat signal component obtained by down-converting the residual single sideband component Fs4 to the center frequency (fcl + fc2). Therefore, the residual single sideband component is not superimposed on the angle modulation signal component Fa4. Furthermore, by selecting the frequencies fcl and fc2 so that I fcl fc2 I becomes the desired carrier frequency, the angle modulation signal of the desired carrier frequency can be obtained without being affected by the residual single sideband component. can get.
  • the angle modulation device 20 outputs only the angle modulation signal component Fa4 included in the difference beat signal Db shown in FIG. 4C, thereby outputting an angle modulation signal including no unnecessary frequency component. Therefore, the frequency component Fa4 must not be overlapped with other frequency components. Therefore, if the bandwidth of the signal of the third optical signal Om2d is B, the bandwidth B, the frequency fcl, and the predetermined frequency fc2 are equal to I fcl fc2 I> B / 2 (2 X fc2-fcl) ⁇ It is necessary to satisfy the condition of B.
  • the angle modulation device 20 is configured to perform the optical SSB-SC modulation on the non-modulated light LO having the frequency fO and the optical SSB-SC modulated optical modulation signal.
  • the residual sideband component generated in the modulator can be shifted to a center frequency different from the desired center frequency. Therefore, according to the angle modulation device 20 according to the present embodiment, an unnecessary angle modulation signal generated by detecting the light including the residual optical carrier component and the residual optical single sideband component is superimposed on the desired angle modulation signal.
  • the angle modulation device 20 may further include a filter 108 as shown in FIG.
  • the filter 108 passes only the angle modulation signal component having a desired center frequency from the difference beat signal Db output from the optical detection unit 107.
  • the filter 108 is, for example, a bandpass filter that extracts only the angle-modulated signal component having the center frequency Ifcl-fc2I, as indicated by a broken line in FIG. 2D.
  • the angle modulation device 20 further includes a filter 108, thereby removing one sideband component of an unnecessary angle modulation signal with respect to an angle modulation signal having a desired carrier frequency, and providing a wideband with excellent noise characteristics and distortion characteristics. An angle modulated signal can be provided.
  • the optical SSB modulation method and the optical SSB are used as the optical modulation method.
  • the light modulation method in the present invention is not limited to the light modulation method.
  • an optical DSB modulation system and an optical DSB-SC modulation system may be used.
  • FIG. 5 is a block diagram showing a configuration of the angle modulation device 30 according to the third embodiment of the present invention.
  • the angle modulation device 30 includes a light source 301, an optical branching unit 302, a first optical SSB—SC modulation unit 303, a second optical SSB—SC modulation unit 304, and an optical angle modulation unit. 305, an optical multiplexing unit 306, and an optical detection unit 307.
  • the first optical SSB-SC modulation unit 303 functions as the first optical intensity modulation unit described in the claims
  • the light source 301 outputs unmodulated light LO having a predetermined frequency fO.
  • FIG. 6A is a schematic diagram illustrating an example of an optical spectrum of unmodulated light L0 output from the light source 301.
  • FIG. 6A is a schematic diagram illustrating an example of an optical spectrum of unmodulated light L0 output from the light source 301.
  • the light branching unit 302 branches the unmodulated light L0 output from the light source 301 and outputs the first light Omlg and the second light Om2e.
  • the first optical SSB-SC modulator 303 receives the first optical Omlg and the second electric signal E2 having a predetermined frequency fc2 output from the second signal source 309.
  • the 1st light SS The B—SC modulation unit 303 performs optical SSB—SC modulation on the first light Omlg according to the amplitude of the second electric signal E2, and outputs the modulated signal as the first optical signal Omlh.
  • FIG. 6B is a schematic diagram showing an example of an optical spectrum of the first optical signal Omlh.
  • the first optical signal Omlh is an optical modulation signal including a desired optical sideband component Fe8, a residual optical carrier component Fs5, and a residual optical sideband component Fs6.
  • the second optical SSB—SC modulator 304 receives the second optical Om2e and the first electric signal E1 having a predetermined frequency fcl output from the first signal source 310.
  • the second optical SS B—SC modulation unit 304 performs optical SSB SC modulation on the second optical Om2e according to the amplitude of the first electrical signal E1, and outputs the modulated signal as the second optical signal Om2f. .
  • FIG. 6C is a schematic diagram illustrating an example of a spectrum of the second optical signal Om2f output from the second optical SSB-SC modulator 304.
  • the second optical signal Om2f is an optical modulation signal including a desired optical sideband component Fe9, a residual optical carrier component Fs7, and a residual optical sideband component Fs8.
  • the optical angle modulation unit 305 includes a second optical signal Om2f output from the second optical SSB-SC modulation unit 304, and a third electrical signal E3 output from the third signal source 311. Is entered.
  • the third electric signal E3 is, for example, a signal obtained by frequency multiplexing signals of frequencies fl to fn.
  • the optical angle modulation unit 305 optically modulates the second optical signal Om2f according to the amplitude of the input third electrical signal E3, and outputs it as the third optical signal Om2g.
  • FIG. 6D is a schematic diagram showing an example of a spectrum of the third optical signal Om2g output from the optical angle modulation unit 305.
  • the third optical signal Om2g includes the optical angle modulation signal Fa8 obtained by optically modulating the desired optical sideband component Fe9 and the residual optical angle modulation obtained by optically modulating the residual optical carrier component Fs7.
  • the optical modulation signal includes a signal Fa9 and a residual optical angle modulation signal FalO obtained by optically modulating the residual optical sideband component Fs8.
  • the optical multiplexer 306 combines the third optical signal Om2g output from the optical angle modulator 305 and the first optical signal Omlh output from the first optical SSB—SC modulator 303. Output the combined optical signal.
  • the optical detection unit 307 is configured by, for example, a photodiode having a square detection characteristic.
  • the optical detection unit 307 outputs the combined optical signal output from the optical combining unit 306 based on the square detection characteristic. Homodyne detection is performed and an angle modulation signal is output as a difference beat signal between the first optical signal Omlh and the third optical signal Om2g.
  • FIG. 6E is a schematic diagram showing an example of the spectrum of the angle modulation signal Db output from the optical detection unit 307.
  • the desired angle modulation signal Fsl l is generated at the center frequency (
  • the unnecessary angle modulation signal Fsl2 is a signal generated at the center frequency (I fcl fc2 I) by detecting the residual light angle modulation signal FalO and the residual light sideband component Fs6.
  • the unnecessary angle modulation signal Fsl3 is a signal generated at the center frequency (0) by detecting the residual light angle modulation signal Fa9 and the residual optical carrier component Fs5.
  • the unnecessary angle modulation signal Fsl4 includes the desired optical angle modulation signal Fa9 and the desired optical sideband component Fe8, the residual optical angle modulation signal Fa9 and the residual optical sideband component Fs6, and the desired optical sideband. This signal is generated at the center frequency (fcl) by detecting the component Fe8, the residual optical carrier component Fs5, the residual optical carrier component Fs5, and the residual optical sideband component Fs6.
  • the unnecessary angle modulation signal Fsl5 includes the desired optical angle modulation signal Fa8 and the residual optical carrier component Fs5, the desired optical angle modulation signal Fa8 and the residual optical angle modulation signal Fa9, and the residual optical angle modulation signal Fa9 and the residual optical angle.
  • This signal is generated at the center frequency (fc2) by detecting the modulation signal FalO.
  • the unnecessary angle modulation signal Fsl6 is detected by detecting the desired optical angle modulation signal Fa8, the residual optical sideband component Fs6, the residual optical angle modulation signal FalO, and the desired optical sideband component Fe8. This signal is generated at the center frequency (fcl + fc2).
  • the angle modulation signal generated from the residual light angle modulation signal Fa9 and the residual light sideband component Fs6, which has been a cause of distortion characteristic deterioration in the conventional angle modulation device 91 is the center frequency (fc2). Since it is generated at a frequency different from that of the desired angle modulation signal, it is considered that it does not cause distortion characteristic deterioration. Also, an unnecessary angle modulation signal Fsl2 having the same center frequency as the desired angle modulation signal Fsl l and an unnecessary angle modulation signal Fsl3 generated at the center frequency (0) are generated as beat components of the residual components, respectively. Therefore, the level can be kept very small with respect to the desired angle modulation signal Fsl l. Therefore, it is not affected by the distortion characteristics after demodulating the angle modulation signal. An angle modulated signal with a carrier frequency is obtained.
  • the angle modulation device 30 performs the optical SSB-SC modulation by modulating the optical SSB-SC modulation of the non-modulated light LO having the frequency fO, and optically modulating the optical modulation signal modulated by the optical SSB- SC.
  • the center frequency of each of the residual carrier component and residual sideband component generated at the part can be shifted. Therefore, according to the angle modulation device 30 according to the present embodiment, the center frequency of the unnecessary angle modulation signal generated due to the residual optical carrier component and the residual optical sideband component is set to the center of the desired angle modulation signal.
  • the center frequency can be different from the frequency.
  • the unnecessary angle modulation signal having the same center frequency as the center frequency of the desired angle modulation signal is a difference beat signal between the residual sideband components, so that the level of the signal can be made very small. it can. Therefore, according to the angle modulation device 30 according to the present embodiment, the level of an unnecessary angle modulation signal with respect to an angle modulation signal having a desired carrier frequency is significantly reduced, and a wideband having excellent noise characteristics and distortion characteristics. An angle modulation signal can be provided.
  • FIG. 7 is a block diagram showing a configuration of the angle modulation device 31 in which the optical delay adjustment unit 312 is inserted after the first optical SSB-SC modulation unit 303.
  • the optical delay adjusting unit 312 adjusts the propagation delay amounts of the optical signal Omlk and the third optical signal Om2j, which are multiplexed in the optical multiplexing unit 306, so as to match each other accurately. As a result, the phase noise of the angle modulated signal output from the optical detection unit 307 can be canceled out in a more ideal state.
  • FIG. 8 shows the configuration of the angle modulation device 32 including the light modulation unit 321 in which the second optical SSB-SC modulation unit 304 and the light angle modulation unit 305 are integrated in the angle modulation device 30 according to the third embodiment.
  • the angle modulation device 32 includes a light source 301, an optical branching unit 302, an optical modulation unit 321, a first optical SSB-SC modulation unit 303, an optical multiplexing unit 306, and an optical detection unit 307.
  • FIG. 9 is a schematic diagram showing an example of the internal configuration of the light modulation unit 321.
  • the optical modulator 321 includes first to third MZ interferometers 3211 to 3213, a first branching unit 3214, First and second phase inversion units 3215 and 3216 and a second branch unit 3217 are provided.
  • the optical modulation unit 321 is further provided with a second branching unit 3217 in that the optical SSB-SC modulation unit 920 whose example of the internal configuration is shown in FIG. is there.
  • the first MZ interferometer 3211 performs double-sideband optical intensity modulation (hereinafter referred to as optical DSB modulation) on the input optical Om3, and outputs it as the first optical intensity modulation signal Om2ra.
  • the second MZ interferometer 3212 optical DSB modulates the input light Om4 and outputs it as a second light intensity modulation signal Om2rb.
  • the first MZ interferometer 3211 and the second MZ interferometer 3212 constitute a light intensity modulator 3218 and function as the second light intensity modulator described in the claims.
  • the second branch unit 3217 receives the third electrical signal E3 obtained by frequency-multiplexing the signals of the frequencies fl to fn output from the third signal source 311 and has the same phase relationship with each other. In this way, the third electrical signal E3 is branched into two, and each of the branched electrical signals is output. Each of the two electrical signals output from the second branch unit 3217 is output to each of the electrodes of the third MZ interferometer 3213. Each of the first light intensity modulation signal Om2ra and the second light intensity modulation signal Om2rb input to the third MZ interferometer 3213 is subjected to light angle modulation by the third electric signal E3, The phase is adjusted by the third bias voltage V3.
  • the second branch unit 3217 and the third MZ type interferometer 3213 constitute an optical angle modulation unit 3219 and function as the first optical angle modulation unit described in the claims.
  • FIG. 10A shows a state in which the first light intensity modulation signal Om2r a output from the first MZ interferometer 3211 is subjected to optical angle modulation by one electrode Erl of the third MZ interferometer 3213. It is a schematic diagram which shows an example of an optical spectrum.
  • FIG. 10B shows that the second optical intensity modulation signal Om2rb output from the second MZ interferometer 3212 has been subjected to optical angle modulation by the other electrode Er2 of the third MZ interferometer 3213. It is a schematic diagram which shows an example of a later optical spectrum
  • the amount of propagation delay until one third electrical signal E3 output from the second branch section 3217 reaches one electrode of the third MZ interferometer 3213, and the second Fork 3217 The propagation delay amount until the other third electric signal E3 output from the force reaches the other electrode of the third MZ interferometer 3213 is made to coincide with each other. Further, the third electric signal E3 output from the second branch unit 3217 passes through one electrode of the third MZ interferometer 3213 and the first electric signal E3 output from the first MZ interferometer 3211.
  • the optical intensity modulation signal Om2ra of 1 is subjected to optical angle modulation, the amount of propagation delay until reaching the output terminal of the third MZ interferometer 3213 as an optical signal, and the other output from the second branching unit 3217
  • the third electrical signal E3 optically modulates the second light intensity modulation signal Om2rb output from the second MZ interferometer 3212 via the other electrode of the third MZ interferometer 3213, and The propagation delay amount until reaching the output terminal of the third MZ interferometer 3213 as an optical signal is made to coincide with each other.
  • the optical angle modulation signal Spml having the frequency (fO + fcl) in FIG.
  • the optical angle modulation signal Spm4 having the frequency (fO + fcl) in FIG. 10B are in phase with each other. For this reason, when the respective optical modulation signals are combined, they are strengthened and output.
  • the optical angle modulation signal Spm3 having the frequency (fO ⁇ fcl) in FIG. 10A and the optical angle modulation signal Spm6 having the frequency (fO ⁇ fcl) in FIG. 10B are out of phase with each other. When the respective optical modulation signals are combined, they cancel each other.
  • the spectrum of the optical modulation signal Om21 output from the third optical SSB-SC modulation unit 321 is substantially the same as the spectrum of the third optical signal Om2g output from the optical angle modulation unit 305 shown in FIG. 6C. It becomes. According to such a configuration, it is possible to perform modulation with higher efficiency without providing the optical angle modulation unit 305 in the optical modulation unit 321 and to provide a wide-band angle modulation signal having excellent noise characteristics and distortion characteristics. Can do.
  • One third electrical signal E3 output from the second branching section 3217 passes through one electrode of the third MZ interferometer 3213 and the first light output from the first MZ interferometer 3211.
  • the modulated signal Om2ra is optically angle-modulated, and the propagation delay amount until it reaches the output end of the third MZ interferometer 3213 as an optical signal, and the other third output from the second branching unit 3217.
  • the second electrical modulation signal Om2rb output from the second MZ-type interferometer 3212 is optically angle-modulated via the other electrode of the third MZ-type interferometer 3213.
  • a delay adjustment unit that adjusts the propagation delay amount may be provided between the two electrodes. By doing so, the two propagation delay amounts can be adjusted more easily, and a more efficient optical angle modulation signal can be provided.
  • the propagation delay amount of light passing through the path from the optical branching unit 302 to the optical combining unit 306 via the optical modulating unit 321 and the optical branching unit 302 The first optical SSB- SC modulation unit 303 passes through the path leading to the optical multiplexing unit 306 so that the propagation delay amount of the light coincides with each other! Both may further include an optical delay adjusting unit. As a result, the phase noise of the angle modulation signal output from the optical detection unit 307 can be canceled out in a more nearly ideal state.
  • each of the bandwidth B1, the frequency fcl, and the frequency fc2 satisfies the condition of I fcl—fc2 I ⁇ B1 Z2. It is necessary to satisfy.
  • the desired carrier frequency that is not affected by the distortion characteristics after demodulating the angle modulation signal output from the optical detection unit 307, where the signal of the desired angle modulation signal Fsl l does not fall below the frequency (0). Can be obtained.
  • the angle modulation signal output from the light detection unit 307 includes a signal having a frequency different from that of the desired angle modulation signal Fsl l.
  • a low-pass filter that can extract only the desired angle modulation signal Fsl l and the unnecessary angle modulation signal Fsl2 and the unnecessary angle modulation signal Fsl3, or only the desired angle modulation signal Fsl l and the unnecessary angle modulation signal Fsl2 Since a signal having the same frequency as the desired angle modulation signal Fsl l is output, a distortion characteristic after demodulating the angle modulation signal is further improved. A signal is obtained.
  • FIG. 11 is a block diagram showing a configuration of an angle modulation device 40 according to the fourth embodiment of the present invention.
  • the angle modulation device 40 includes a light source 301, an optical branching unit 302, a first optical SSB—SC modulation unit 303, a second optical SSB—SC modulation unit 304, a first optical angle modulation unit 305, A phase inversion unit 401, a second optical angle modulation unit 402, an optical multiplexing unit 306, and an optical detection unit 307 are provided.
  • the first optical SSB—SC modulator 303 functions as the first optical intensity modulator described in the claims
  • the second optical SSB—SC modulator 304 is claimed. It functions as the second light intensity modulator described in the range.
  • the angle modulation device 40 according to the fourth embodiment includes the phase inversion unit 401 and the second optical angle modulation unit 402.
  • the phase inverting unit 401 has the same phase as that of the third electrical signal E3 output from the third signal source 311 and the same electrical signal E4a as the third electrical signal E3.
  • the third electrical signal E3 and the inverted signal E4b that is 180 ° different from each other are generated, and the generated electrical signal E4a And the inverted signal E4b are input to the first light angle modulation unit 305 and the second light angle modulation unit 402, respectively.
  • the first optical angle modulator 305 receives the second optical signal Om2n output from the second optical SSB-SC modulator 304 and the electrical signal E4a output from the phase inverter 401 Is done.
  • the first optical angle modulation unit 305 optically modulates the second optical signal Om2n according to the amplitude of the input electric signal E4a, and outputs it as a third optical signal Om2o.
  • the second optical angle modulator 402 receives the first optical signal Omlu output from the first optical SSB-SC modulator 303 and the inverted signal E4b output from the phase inverter 401.
  • the second optical angle modulation unit 402 modulates the optical angle of the first optical signal Omlu according to the amplitude of the input inverted signal E4b, and outputs it as the fourth optical signal Omlo.
  • the propagation delay amount until the electrical signal E4a output from the phase inverter 401 reaches the first optical angle modulator 305 and the inverted signal E4b output from the phase inverter 401 are The amount of propagation delay until reaching the second optical angle modulation unit 402 is set to coincide with each other. Furthermore, the amount of propagation delay until the electrical signal E4a output from the phase inverting unit 401 reaches the optical multiplexing unit 306 as the third optical signal Om2o via the first optical angle modulation unit 305, and the phase The amount of propagation delay until the inverted signal E4b output from the inverting unit 401 reaches the optical multiplexing unit 306 as the fourth optical signal Omlo via the second optical angle modulation unit 402 is consistent with each other. Keep it like that.
  • the reason for providing the second light angle modulation unit 402 will be described.
  • many of the optical angle modulators have an optical waveguide disposed on a crystal substrate such as a lithium niobate substrate.
  • Such an optical modulator requires a large voltage amplitude as a modulation signal because the rate of change of the optical phase (optical frequency) with respect to the input voltage is low.
  • the output of the electric amplifier for amplifying the modulation signal is saturated at a certain level. And it is difficult to improve the performance of electrical amplifiers. Therefore, as in the present embodiment, the third electric signal E3 is branched by the phase inversion unit 401, and each of the branched signals is subjected to signal processing such as electric amplification, and then the respective light is output.
  • the configuration of the angle modulation device 40 can perform push-pull modulation, and the phase shift amount of the angle modulation signal output from the optical detection unit 307 Can be increased more efficiently.
  • the angle modulation device 40 according to the fourth embodiment in addition to the effects obtained by the angle modulation device 30 according to the third embodiment by providing two optical angle modulation units.
  • the amount of phase shift of the angle modulation signal can be increased more efficiently.
  • the electrical signal E4a output from the phase inverting unit 401 is transmitted until reaching the first optical angle modulation unit 305.
  • the propagation delay amount and the inversion signal E4b output from the phase inverting unit 401 are equal to the propagation delay amount until reaching the second optical angle modulation unit 402, or from the optical branching unit 302.
  • Second optical SSB Propagation delay amount of light passing through the SC modulator 304 and the first optical angle modulator 305 to the optical multiplexing unit 306, and the first optical SSB—
  • the path of the above-mentioned path is set so that the propagation delay amount of the light passing through the path passing through the SC modulation section 303 and the second optical angle modulation section 402 and reaching the optical multiplexing section 306 is mutually matched.
  • An optical phase adjusting unit may be further provided on one or both of the sides. As a result, the phase noise of the angle modulation signal that is also output by the optical detection unit 307 can be canceled out in a more ideal state.
  • the angle modulation device 40 includes the phase inversion unit 401, the first light angle modulation unit 305, and the second light angle modulation unit 402.
  • an amplifier for amplifying each of the electric signal E4a and the inverted signal E4b output from the phase inverting unit 401 may be provided.
  • the optical SSB-SC modulation unit and the optical angle modulation unit may be integrated. More specifically, the first optical SSB—SC modulation unit 303 and the second optical angle modulation unit 402 are integrated, and the second optical SSB—SC modulation unit 304 and the first optical angle modulation are combined.
  • the part 305 may be integrated.
  • FIG. 12 shows the first optical SSB—SC modulation unit 303 and the second optical angle modulation unit 402 integrated together to form the first optical modulation unit 411, and the second optical SSB—SC modulation.
  • FIG. The configuration of the first light modulation unit 411 and the second light modulation unit 412 is the same as the configuration of the light modulation unit 321 shown in FIG. With such a configuration, the angle modulation device 41 can perform more efficient light angle modulation without providing the first light angle modulation unit 305 and the second light angle modulation unit 402.
  • the second optical modulation unit 412 can provide a wide-band angle modulation signal having excellent noise characteristics and distortion characteristics.
  • the light intensity modulator 3227 included in the first light modulator 411 functions as the first light intensity modulator described in the claims
  • the second light modulator 412 The included light intensity modulator 3218 functions as the second light intensity modulator described in the claims.
  • the light angle modulation unit 3219 included in the second light modulation unit functions as the first light angle modulation unit recited in the claims.
  • the light passing through the path from the optical branching unit 102 to the optical multiplexing unit 306 via the first optical modulation unit 411 is transmitted.
  • the propagation delay amount and the propagation delay amount of the light passing through the path from the optical branching unit 302 to the optical multiplexing unit 306 through the second optical modulation unit 412 coincide with each other.
  • One or both of the shifts may further include an optical phase adjuster. As a result, the phase noise of the angle modulated signal output from the optical detection unit 307 can be canceled out in a more ideal state.
  • the angle modulation device 41 is similar to the angle modulation device 40 in that the phase inversion unit 401, the first light modulation unit 411, and the second light modulation unit 412 are Needless to say, an amplifier for amplifying each of the electric signal E4a and the inverted signal E4b output from the phase inversion unit 401 may be provided.
  • the signal bandwidth of the angle modulation signal Fsl4 is B2
  • the frequency fcl and the frequency fc When the relationship with 2 is fcl ⁇ fc2, satisfying the condition of
  • An angle-modulated signal having a desired carrier frequency that is not affected by distortion characteristics after demodulating the overlapping angle-modulated signal can be obtained.
  • the bandwidth of the signal of the angle modulation signal Fsl5 is B3 and the relationship between the frequency fcl and the frequency fc2 is fcl> fc2, I fcl -fc2
  • the angle modulation signal output from the optical detection unit 307 is the desired angle modulation, as in the first embodiment described above.
  • a signal having a frequency different from that of the signal Fsl l is included, but only the desired angle modulation signal Fsl l, the unnecessary angle modulation signal Fsl2, and the unnecessary angle modulation signal Fsl3 can be extracted after the optical detection unit 307. If a low-pass filter or a band-pass filter that can extract only the desired angle modulation signal Fsl l and the unnecessary angle modulation signal Fsl2 is provided, only signals having the same frequency as the desired angle modulation signal Fsl l are output. Therefore, an angle modulated signal with further improved distortion characteristics after demodulating the angle modulated signal can be obtained.
  • the angle modulation device according to the present invention has excellent distortion characteristics in addition to excellent noise characteristics, and thus is useful, for example, in a video signal distribution system.
  • the angle modulation device according to the present invention can also be applied to uses such as millimeter wave and microwave generation devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 光変調信号が有する不要波成分に依存することなく、雑音特性および歪み特性に優れた角度変調装置を提供する。角度変調装置(10)は、光SSB変調部(103a)と、光SSB-SC変調部(104a)と、光角度変調部(105)とを備えている。光SSB変調部(103a)の出力信号を、光SSB-SC変調部(104a)にて強度変調することで、光検波部(107)から出力される角度変調信号に、不要な角度変調信号が重なることを防ぐことが可能となる。さらに、フィルタ(108)が光検波部(107)から出力される角度変調信号成分の内、不要波成分を含まない角度変調信号成分のみを濾波することにより、角度復調後の歪み特性の劣化を防ぐことが可能となる。したがって、本発明における角度変調装置は雑音特性および歪み特性に優れた角度変調信号を出力することが可能となる。

Description

明 細 書
角度変調装置
技術分野
[0001] 本発明は、角度変調装置に関し、より特定的には、光ファイバ伝送装置において、 多チャンネルのアナログ映像信号やデジタル映像信号を伝送するための角度変調 装置に関する。
背景技術
[0002] 従来、多チャンネルのアナログ映像信号やデジタル映像信号を広帯域な角度変調 信号に変換する角度変調装置として、図 13に示す構成を用いた角度変調装置が適 用されてきた。このような角度変調装置は、例えば文献 (K. Kikushima, et al. , " Optical Super Wide― Band FM Modulation Scheme and Its Applica tion to Multi― Channel AM Video Transmission Systems", IOOC' 95 Technical Digest, Vol. 5 PD2— 7, pp. 33— 34)にその動作などが詳し く説明されている。
[0003] 図 13は、従来の角度変調装置 90の構成を示す図である。図 13において、角度変 調装置 90は、光周波数制御部 901と、光変調部 902と、局発光源 903と、光合波部 904と、光検波部 905とを備える。また、第 1の信号源 906は、角度変調装置 90へ電 気信号を出力する。
[0004] 光変調部 902には、第 1の信号源 906から出力される電気信号が入力される。電気 信号は、例えば、周波数 fl〜fnの信号が周波数多重された信号である。光変調部 9 02は、入力された電気信号に応じて出力する光の周波数を変化させることによって、 第 1の信号源 906から出力される電気信号を光周波数変調信号に変換する。
[0005] 光変調部 902は、例えば半導体レーザで構成される。一般に半導体レーザは、一 定の電流が注入されると、所定周波数 fFMの光を発振する。さらに、半導体レーザ は、振幅変調した電流を注入すると、注入された電流に応じて出力する光の周波数 を変化させ、光周波数 fFMを中心とした光周波数変調信号を出力する。したがって、 光変調部 902は、第 1の信号源 906から出力された電気信号を光周波数変調信号 に変換し、当該光周波数変調信号を出力する。
[0006] 局発光源 903は、所定周波数 fLocalの無変調光を出力する。
[0007] 光合波部 904は、光変調部 902から出力される光信号および局発光源 903から出 力される光を合波して、合波光信号として出力する。
[0008] 光検波部 905は、例えば自乗検波特性を有するフォトダイオードで構成される。光 検波部 905は、光合波部 904から出力された合波光信号を光へテロダイン検波する 。詳細には、光検波部 905は、所定周波数 fFMと fLocalとの光周波数差に相当する 周波数 fc ( = I fFM— fLocal | )を中心周波数とした差ビート信号を出力する。光 検波部 905は、入力される合波光信号を光へテロダイン検波することにより、第 1の 信号源 906から出力される電気信号を元信号とした、搬送波周波数 fcの角度変調信 号 (周波数変調信号)を出力する。
[0009] 光周波数制御部 901は、光変調部 902から出力される光信号の中心周波数 fFM および局発光源 903から出力される光の光周波数 fLocalが互いに一定の周波数差 を有するように光変調部 902および局発光源 903を制御し、光検波部 905から出力 される角度変調信号の中心周波数 fcを安定ィ匕する。
[0010] 角度変調装置 90では、光信号処理による高い変調効率 (一般の電気回路方式の 場合と比較して 10倍以上の変調効率)を利用することにより、一般の電気回路では 生成が困難な周波数が非常に高ぐかつ広帯域な (周波数偏移量または位相偏移 量の大き 、)角度変調信号を容易に生成することができる。
[0011] しかし、光変調部 902に半導体レーザを用いた場合、角度変調装置 90の出力する 角度変調信号の位相雑音が大きくなる。角度変調装置 90が備える光変調部 902お よび局発光源 903の出力する光信号は位相レベルの相関性を有していない。したが つて、角度変調装置 90が出力する角度変調信号の位相雑音は、光変調部 902およ び局発光源 903の出力する光信号の位相雑音の和に等しくなる。位相雑音を含ん だ角度変調信号を復調した電気信号は、大きな白色雑音を含む。したがって、従来 の角度変調装置 90は、この雑音によって復調信号の品質が著しく劣化するという問 題点を有している。
[0012] さらに、角度変調装置 90は、角度変調信号の周波数を安定化させるために、光変 調部 902および局発光源 903が出力する光信号の周波数を制御する制御回路 (光 周波数制御部 901)を必要とする。したがって、角度変調装置 90の構成が複雑にな るという問題点を有している。
[0013] このような問題に対して、光信号処理によって、非常に周波数が高ぐかつ広帯域 である角度変調を実現しながら、簡易な構成によって位相雑音を抑圧し、雑音特性 を改善することができる角度変調装置が提案されている。
[0014] 図 14は、特許文献 1に記載されている従来の角度変調装置 91の構成を示す図で ある。図 14において角度変調装置 91は、光源 911と、光分岐部 912と、光角度変調 部 913と、光強度変調部 914と、光合波部 915と、光検波部 916とを備える。
[0015] 第 1の光源 911は、所定周波数 fOの無変調光を出力する。
[0016] 光分岐部 912は、第 1の光源 911から出力された無変調光を分岐し、分岐した無変 調光を第 1および第 2の光として出力する。
[0017] 光角度変調部 913は、第 1の信号源 906から所定周波数 fl〜fnの周波数成分を 含む周波数多重された第 1の電気信号が入力される。光角度変調部 913は、入力さ れた第 1の電気信号に応じて、光分岐部 912から出力される第 1の光を光角度変調 し、第 1の光信号として出力する。第 1の光信号は、光源 911と同じ位相雑音を有す る。図 16Aは、光角度変調部 913から出力される第 1の光信号の光スペクトルの一例 を示す模式図である。
[0018] 光強度変調部 914には、第 2の信号源 917から所定周波数 fcを有する第 2の電気 信号が入力される。光強度変調部 914は、入力された第 2の電気信号に応じて、光 分岐部 912から出力される第 2の光を光強度変調 (光振幅変調)し、第 2の光信号と して出力する。
[0019] 光強度変調部 914として、例えば少なくとも三つのマッハツエンダ型干渉計 (以下、 「MZ型干渉計」という)がニオブ酸リチウム基板等の結晶基板上に配置される、搬送 波抑圧単一側波帯光強度変調部 (以下、「光 SSB— SC変調部」という)が提案され ている。
[0020] 図 15は、光 SSB— SC変調部 920の構成を示す図である。光 SSB— SC変調部 92 0は、第 1の MZ型干渉計 921と、第 2の MZ型干渉計 922と、第 3の MZ型干渉計 92 3と、分岐部 924と、第 1の位相反転部 925と、第 2の位相反転部 926とを備える。
[0021] 光 SSB— SC変調部 920は、光分岐部 912から入力された第 2の光を第 1および第 2の光搬送波に分岐する。第 1の光搬送波は、第 1の MZ型干渉計 921に入力され、 第 2の光搬送波は、第 2の MZ型干渉計 922に入力される。
[0022] 光 SSB— SC変調部 920は、第 1の信号源 906から入力される第 1の電気信号 fcl を、分岐部 924において、位相が第 1の電気信号 fclと同じ電気信号 fclaと、位相が 第 1の電気信号と 90° 異なる電気信号 fclbの 2つの電気信号に分岐する。第 1の位 相反転部 925は、電気信号 fclaを、位相が電気信号 fclaと同じ電気信号 fclaaと、 位相が電気信号 fclaと 180° 異なる電気信号 fclabとに分岐して、分岐した電気信 号のそれぞれを第 1の MZ型干渉計 921の電極のそれぞれへ出力する。一方、第 2 の位相反転部 926は、電気信号 fclbを、位相が電気信号 fclbと 90° 異なる電気信 号 fclbaと、位相が電気信号 fclbと 270° 異なる電気信号 fclbbとに分岐して、分 岐した電気信号のそれぞれを第 2の MZ型干渉計 922の電極のそれぞれへ出力す る。
[0023] 第 1の MZ型干渉計 921は、電気信号 fclaaおよび電気信号 fclabを元信号として 第 1の光搬送波を変調し、変調された第 1の光搬送波の位相を第 1のバイアス電圧 V 1で調整して、第 1の光強度変調信号として出力する。第 2の MZ型干渉計 922は、 電気信号 fclbaおよび電気信号 fclbbを元信号として第 2の光搬送波を変調し、変 調された第 2の光搬送波の位相を第 2のバイアス電圧 V2で調整して、第 2の光強度 変調信号として出力する。第 3の MZ型干渉計 923は、第 1および第 2の光強度変調 信号の位相を第 3のバイアス電圧 V3で調整して、位相が調整された 2つの光強度変 調信号を合波して出力する。これにより、光 SSB— SC変調部 920は、入力される光 を光 SSB— SC変調して、光強度変調信号として出力することができる。
[0024] 図 16Bは、このような光強度変調部(光 SSB— SC変調部) 914から出力される光信 号の光スペクトラムの一例を示す模式図である。図 16Bに示す通り、光強度変調部 9 14が出力する第 2の光信号は、光搬送波成分が抑圧され、光搬送波成分から周波 数 fcだけシフトされた単一側波帯成分のみを有している。第 2の光信号は光源 911と 同じ位相雑音を有する。 [0025] 光合波部 915は、光角度変調部 913から出力される第 1の光信号と、光強度変調 部 1004から出力される第 2の光信号とを合波し、合波光信号として出力する。
[0026] 光検波部 916は、例えば自乗検波特性を有するフォトダイオードで構成される。光 検波部 916は、自乗検波特性によって、光合波部 915から出力される合波光信号を 光ホモダイン検波し、光合波部 915に入力される第 1および第 2の光信号間の差ビー ト信号を生成して、出力する。図 16Cは、光検波部 916から出力される差ビート信号 の光スペクトルの一例を示す模式図である。図に示す通り、当該差ビート信号は、光 角度変調部 913から出力される第 1の光信号がダウンコンバートされた角度変調信 号であり、その中心周波数は fcである。
[0027] ここで、第 1および第 2の光信号は、光源 911と同じ位相雑音を有する。したがって 、第 1の光信号の周波数が変動しても、第 2の光信号の周波数も全く同様に変動する ので、これらの信号の周波数差は、周波数の変動にかかわらず常に一定となり、第 1 および第 2の光信号が有する位相雑音は相殺され、当該差ビート信号の位相雑音は 一定となる。したがって、図 14に示す角度変調装置によれば、理論的には、雑音特 性の良好な角度変調信号を得ることができる。
特許文献 1:特開 2001— 133824号公報 (第 25頁、図 1)
特許文献 2:特開平 11 340926号公報 (第 18頁、図 5)
発明の開示
発明が解決しょうとする課題
[0028] し力しながら、前述の光 SSB— SC変調器は、各 MZ型干渉計での光の分岐比や 導波路の波長依存性の作製上生じる誤差のために、実際には、出力する光信号の 光片側波帯成分を十分に抑圧できな 、と 、う課題を有して 、る。
[0029] 図 16Dは、光搬送波成分および光側波帯成分を十分に抑圧できていない光信号 の光スペクトラムの一例を示す模式図である。この残留光搬送波成分 G2および残留 光側波帯成分 G3の抑圧比に依存して、光検波部 916から出力される角度変調信号 を復調した後の歪み特性が大きく変化することが分力 ている。
[0030] 図 16Eは、図 16Dに示す光スペクトラムを有する光信号が光強度変調部(光 SSB — SC変調部) 914から出力された場合の、光検波部 916が出力する信号のスぺタト ラムを示す模式図である。図 16Eにおいて、所望の角度変調信号 E1は、図 16Aに 示す光角度変調部 913から出力される第 1の光信号と、図 16Dにおける所望の光側 波帯成分 G1との差ビート成分として生成される。同様に、不要な角度変調信号 E2は 、図 16Aに示す第 1の光信号と、図 16Dにおける残留光側波帯成分 G3とから生成さ れる。同様に、不要な角度変調信号 E3は、図 16Aに示す第 1の光信号と、図 16Dに おける残留光搬送波成分 G2とから生成される。
[0031] 図 16Eにおいて、不要な角度変調信号 E2は、所望の角度変調信号 E1と同じ中心 周波数を有し、信号帯域が重なっているため、歪み特性を劣化させる。したがって、 図 16Dにおける残留光側波帯成分 D3が、歪み特性劣化を発生させる要因であると 考えられる。さらに、図 16Eにおいて、不要な角度変調信号 E3も、そのレベルが大き くなると、所望の角度変調信号 E1と重なる信号帯域が発生し、歪み特性を劣化させ る。したがって、図 16Dにおける残留光搬送波成分 G2も、歪み特性劣化を発生させ る要因であると考えられる。
[0032] 図 17A及び図 17Bは上記事象に関する実験結果を示す図である。図 17Aにおい て、横軸は所望の光側波帯成分 G1に対する残留光側波帯成分 G3の抑圧比を示す 。縦軸は角度変調信号を復調した後に検出される歪み量を示す。さらに、図 17B〖こ おいて、横軸は所望の光側波帯成分 G1に対する残留光搬送波成分 G2の抑圧比を 示す。縦軸は角度変調信号を復調した後に検出される歪み量を示す。図 17Aおよ び図 17Bは、復調信号がどの周波数であっても、残留光搬送波成分 G2および残留 光側波帯成分 G3の抑圧比の増加に応じて、歪み量が減少していることを示している 。したがって、残留光搬送波成分 G2および残留光側波帯成分 G3が歪み特性の劣 化に影響を与えていることが考えられる。
[0033] このような課題に対し、光強度変調部(光 SSB— SC変調部) 914から出力される光 変調信号を光フィルタなどにより濾波することで、所望の光周波数成分のみを抽出す るという手法が考えられる (例えば、特許文献 2参照)。特許文献 2には、光フィルタと して光バンドパスフィルタなどを用いることが記載されて 、る。
[0034] しかしながら、所望の光側波帯成分 G1と残留光側波帯成分 G3との周波数間隔、 すなわち発生させる所望の角度変調信号の搬送波周波数が、例えば 10GHz程度 のマイクロ波帯である場合、当該周波数間隔は非常に狭いのに対し、現在一般に入 手できる光フィルタは 50GHz程度の帯域幅を有しており、所望の光側波帯成分 D1 のみを光信号の状態で濾波することができな 、と 、う課題を有して 、る。
[0035] 本発明は、上記の課題を解決するために、光強度変調部と光角度変調部を用いて 、残留光搬送波成分と残留光側波帯成分との中心周波数を遷移させた後に合波す ることで、光フィルタを用いることなく伝送信号の歪み特性を改善することができる角 度変調装置を提供することを目的とする。
課題を解決するための手段および発明の効果
[0036] 上記のような目的を達成するために、本発明は、以下に示すような特徴を有してい る。
[0037] 本発明の第 1の局面は、入力信号を角度変調信号に変換するための角度変調装 置であって、光源と、前記光源力 出力される光を第 1の経路を伝搬する光と第 2の 経路を伝搬する光とに分岐する光分岐部と、前記第 1の経路上に配置され、入力さ れる光を周波数 fc2の第 2の電気信号で強度変調する第 1の光強度変調部と、前記 第 2の経路上に配置され、入力される光を入力される信号で角度変調する第 1の光 角度変調部と、前記第 1の経路を伝搬する光と前記第 2の経路を伝搬する光とを、当 該第 1の経路および当該第 2の経路のそれぞれの終点において合波する光合波部 と、前記第 1の光強度変調部又は前記第 1の光角度変調部のいずれか一方の前段 に配置され、前記周波数 fc2と異なる周波数 fclの第 1の電気信号で入力される光を 強度変調し、強度変調された光を出力する第 2の光強度変調部と、自乗検波特性を 有し、前記光合波部から出力される光信号を角度変調信号に変換する光検波部とを 備える。
[0038] 本発明の第 1の局面によれば、残留光搬送波成分および残留光片側波帯成分を 含む光を検波することによって生じる不要な角度変調信号が、所望の角度変調信号 に与える悪影響を抑圧して、伝送される入力信号の雑音特性および歪み特性に優 れた広帯域な角度変調信号を提供することができる。
[0039] 本発明の第 2の局面は、第 1の局面において、第 2の光強度変調部は、第 1の光強 度変調部の前段に配置され、入力される光を光 SSB変調し、第 1の光強度変調部は 、光 SSB変調された光を光 SSB-SC変調してもよい。
[0040] 本発明の第 2の局面によれば、角度変調信号の内、不要な角度変調信号が、所望 の搬送波周波数を有する角度変調信号に与える影響を抑圧するために、残留光片 側波帯成分を所望の周波数帯域に遷移させることができる。
[0041] 本発明の第 3の局面は、第 2の局面において、光角度変調部から出力される光信 号の帯域幅を Bとすると、 | fcl—fc2 | >B/2、かつ 2 X fc2— fcl >Bを満たして ちょい。
[0042] 本発明の第 3の局面によれば、角度変調信号の内、不要な角度変調信号が、所望 の搬送波周波数を有する角度変調信号に重畳するのを防ぐことができる。
[0043] 本発明の第 4の局面は、第 1の局面において、第 2の光強度変調部は、第 1の光強 度変調部の前段に配置され、入力される光を光 SSB-SC変調し、第 1の光強度変調 部は、光 SSB-SC変調された光を光 SSB変調してもよい。
[0044] 本発明の第 4の局面によれば、角度変調信号の内、不要な角度変調信号が、所望 の搬送波周波数を有する角度変調信号に与える影響を抑圧するために、残留光片 側波帯成分を所望の周波数帯域に遷移させることができる。
[0045] 本発明の第 5の局面は、第 4の局面において、光角度変調部から出力される光信 号の帯域幅を Bとすると、 | fcl—fc2 | >B/2、かつ 2 X fc2— fcl >Bを満たして ちょい。
[0046] 本発明の第 5の局面によれば、角度変調信号の内、不要な角度変調信号が、所望 の搬送波周波数を有する角度変調信号に重畳するのを防ぐことができる。
[0047] 本発明の第 6の局面は、第 1の局面において、第 2の光強度変調部は、第 1の光角 度変調部の前段に配置されてもよい。
[0048] 本発明の第 6の局面によれば、所望の搬送波周波数を有する角度変調信号と同じ 周波数に生じる残留搬送波成分が、所望の搬送波周波数を有する角度変調信号に 与える影響を抑圧することができる。
[0049] 本発明の第 7の局面は、第 6の局面において、第 1の光強度変調部は、入力される 光を光 SSB— SC変調し、第 2の光強度変調部は、入力される光を光 SSB-SC変調 し、第 1の光角度変調部は、光 SSB-SC変調された光を入力信号で角度変調しても よい。
[0050] 本発明の第 7の局面によれば、所望の搬送波周波数を有する角度変調信号と同じ 周波数に生じる不要な角度変調信号成分が、所望の搬送波周波数を有する角度変 調信号に与える影響を抑圧するために、残留光片側波帯成分および残留光搬送波 成分を所望の周波数帯域に遷移させることができる。
[0051] 本発明の第 8の局面は、第 7の局面において、第 1の光強度変調部の後段に配置 され、第 1の経路を伝搬する光の伝搬遅延量と第 2の経路を伝搬する光の伝搬遅延 量とが等しくなるように、第 1の経路を伝搬する光を伝搬遅延させる光遅延調整部を 更に備えてもよい。
[0052] 本発明の第 8の局面によれば、所望の搬送波周波数を有する角度変調信号と同じ 周波数に生じる不要な角度変調信号成分が、所望の搬送波周波数を有する角度変 調信号に与える影響を更に抑圧することができる。
[0053] 本発明の第 9の局面は、第 6の局面において、第 2の光強度変調部は、分岐された 第 2の経路を伝搬する光を、第 1の電気信号と、位相を 180° ずらされた当該第 1の 電気信号とで光 DSB変調する第 1の光 DSB変調部と、分岐された第 2の経路を伝搬 する光を、位相を 90° ずらされた第 1の電気信号と、位相を 90° ずらされた後、更に 位相を 180° ずらされた第 1の電気信号とのそれぞれで光 DSB変調する第 2の光 D SB変調部とを含み、第 1の光角度変調部は、入力信号で、第 1の光 DSB変調部から 出力される光と、第 2の光 DSB変調部力 出力される光とのそれぞれを光角度変調 した後、合波してもよい。
[0054] 本発明の第 9の局面によれば、第 2の光強度変調部と第 1の光角度変調部との 2つ の構成要素を 1つの構成要素とすることができ、簡易な構成の角度変調装置を提供 することができる。
[0055] 本発明の第 10の局面は、第 6の局面において、入力信号を、位相が当該入力信号 と同じ同相信号と、当該入力信号の位相を反転させた逆相信号とに分岐する位相反 転部と、第 1の光強度変調部の後段に配置され、入力される光を入力される信号で 光角度変調する第 2の光角度変調部とを更に備え、第 1の光角度変調部は、入力さ れる光を同相信号で角度変調してもよい。 [0056] 本発明の第 10の局面によれば、入力信号と、位相を反転した入力信号とで光角度 変調することにより、角度変調信号の位相偏位量を増大させることができる。
[0057] 本発明の第 11の局面は、第 10の局面において、第 1の光強度変調部は、入力さ れる光を光 SSB— SC変調することを特徴とし、第 2の光強度変調部は、入力される 光を光 SSB-SC変調してもよ!/、。
[0058] 本発明の第 11の局面によれば、所望の搬送波周波数を有する角度変調信号と同 じ周波数に生じる不要な角度変調信号成分が、所望の搬送波周波数を有する角度 変調信号に与える影響を抑圧すると同時に角度変調信号の位相偏位量を増大させ ることがでさる。
[0059] 本発明の第 12の局面は、第 10の局面において、第 2の光強度変調部は、分岐さ れた第 2の経路を伝搬する光を、第 1の電気信号と、位相を 180° ずらされた第 1の 電気信号とで光 DSB変調する第 1の光 DSB変調部と、分岐された第 2の経路を伝搬 する光を、位相を 90° ずらされた第 1の電気信号と、位相を 90° ずらされた後、更に 位相を 180° ずらされた第 1の電気信号とで光 DSB変調する第 2の光 DSB変調部と を含み、第 1の光強度変調部は、分岐された第 1の経路を伝搬する光を、第 2の電気 信号と、位相を 180° ずらされた第 2の電気信号とで光 DSB変調する第 3の光 DSB 変調部と、分岐された第 1の経路を伝搬する光を、位相を 90° ずらされた第 2の電気 信号と、位相を 90° ずらされた後、更に位相を 180° ずらされた第 2の電気信号とで 光 DSB変調して出力する第 4の光 DSB変調部とを含み、第 1の光角度変調部は、同 相信号で、第 1の光 DSB変調部から出力される光と、第 2の光 DSB変調部から出力 される光とのそれぞれを光角度変調した後、合波することを特徴とし、第 2の光角度 変調部は、逆相信号で、第 3の光 DSB変調部から出力される光と、第 4の光 DSB変 調部から出力される光とのそれぞれを光角度変調した後、合波してもよい。
[0060] 本発明の第 12の局面によれば、第 2の光強度変調部と第 1の光角度変調部および 第 1の光強度変調部と第 2の光角度変調部をそれぞれを 1つの構成要素とすることが でき、簡易な構成で、角度変調信号の位相偏位量を増大させることができる角度変 調装置を提供することができる。
[0061] 本発明の第 13の局面は、第 7の局面又は第 9の局面のいずれか一方において、光 検波部から出力される角度変調信号の内、中心周波数 | fcl fc2 |を有する角度 変調信号の帯域幅を B1とし、中心周波数 fclを有する角度変調信号の帯域幅を B2 とすると、 fcl <fc2のとき、 | fcl—fc2 | ≥Β1/2、かつ | fcl—fc2 | +Β1/2< fcl— B2Z2を満たしてもよい。
[0062] 本発明の第 13の局面によれば、 fcl <fc2のときに、角度変調信号の内、不要な角 度変調信号成分が、所望の搬送波周波数を有する角度変調信号に重畳するのを防 ぐことができる。
[0063] 本発明の第 14の局面は、第 7の局面又は第 9の局面の!/、ずれか一方にお!、て、光 検波部から出力される角度変調信号の内、中心周波数 I fcl fc2 Iを有する角度 変調信号の帯域幅を B1とし、中心周波数 fc2を有する角度変調信号の帯域幅を B3 とすると、 fcl >fc2のとき、 I fcl—fc2 I ≥Β1/2、かつ | fcl—fc2 | +Bl/2< f c2— B3/2を満たしてもよ!/ヽ。
[0064] 本発明によれば、 fcl >fc2のときに、角度変調信号の内、不要な角度変調信号成 分が、所望の搬送波周波数を有する角度変調信号に重畳するのを防ぐことができる 図面の簡単な説明
[0065] [図 1]図 1は、本発明の第 1の実施形態に係る角度変調装置の構成を示すブロック図 である。
[図 2A]図 2Aは、図 1に示される光 SSB変調部が出力する光信号のスペクトラムの一 例を示す模式図である。
[図 2B]図 2Bは、図 1に示される光 SSB— SC変調部が出力する光信号のスペクトラム の一例を示す模式図である。
[図 2C]図 2Cは、図 1に示される光角度変調部が出力する角度変調信号のスぺクトラ ムの一例を示す模式図である。
[図 2D]図 2Dは、図 1に示される光検波部が出力する角度変調信号のスペクトラムの 一例を示す模式図である。
[図 3]図 3は、本発明の第 2の実施形態に係る角度変調装置の構成を示すブロック図 である。 [図 4A]図 4Aは、図 3に示される光 SSB— SC変調部が出力する光信号のスぺクトラ ムの一例を示す模式図である。
[図 4B]図 4Bは、図 3に示される光 SSB変調部が出力する光信号のスペクトラムの一 例を示す模式図である。
[図 4C]図 4Cは、図 3に示される光検波部が出力する角度変調信号のスペクトラムの 一例を示す模式図である。
[図 5]図 5は、本発明の第 3の実施形態に係る角度変調装置の構成を示すブロック図 である。
[図 6A]図 6Aは、図 5に示される光源が出力する無変調光のスペクトラムの一例を示 す模式図である。
[図 6B]図 6Bは、図 5に示される第 1の光 SSB— SC変調部 303が出力する光信号の スペクトラムの一例を示す模式図である。
[図 6C]図 6Cは、図 5に示される第 2の光 SSB— SC変調部 304が出力する光信号の スペクトラムの一例を示す模式図である。
[図 6D]図 6Dは、図 5に示される光角度変調部が出力する光信号のスペクトラムの一 例を示す模式図である。
[図 6E]図 6Eは、図 5に示される光検波部が出力する角度変調信号のスペクトラムの 一例を示す模式図である。
[図 7]図 7は、本発明の第 3の実施形態の変形例に係る角度変調装置の構成を示す ブロック図である。
[図 8]図 8は、本発明の第 3の実施形態の変形例に係る角度変調装置の構成を示す ブロック図である。
[図 9]図 9は、図 8に示される光変調器の構成を示す模式図である。
[図 10A]図 10Aは、角度変調された図 9に示される第 1の MZ型干渉計から出力され る光信号のスペクトルの一例を示す模式図である。
[図 10B]図 10Bは、角度変調された図 9に示される第 2の MZ型干渉計から出力され る光信号のスペクトルの一例を示す模式図である。
[図 11]図 11は、本発明の第 4の実施形態に係る角度変調装置の構成を示すブロック 図である。
[図 12]図 12は、本発明の第 4の実施形態の変形例に係る角度変調装置の構成を示 すブロック図である。
[図 13]図 13は、従来の角度変調装置の構成を示すブロック図である。
[図 14]図 14は、従来の角度変調装置の構成を示すブロック図である。
[図 15]図 15は、図 14に示される光強度変調部の構成を示すブロック図である。
[図 16A]図 16Aは、図 14に示される光角度変調部から出力される光信号のスぺクトラ ムの一例を示す模式図である。
[図 16B]図 16Bは、図 14に示される光強度変調部から出力される光信号のスぺクトラ ムの一例を示す模式図である。
[図 16C]図 16Cは、図 14に示す光検波部から出力される差ビート信号のスペクトラム の一例を示す模式図である。
[図 16D]図 16Dは、光搬送波成分及び光片側波帯成分を十分に抑圧できていない 光信号のスペクトラムの一例を示す図である。
[図 16E]図 16Eは、図 16Dに示される光スペクトラムを有する光信号を図 14に示され る光検波部が検波したときに出力される差ビート信号のスペクトラムの一例を示す模 式図である。
[図 17A]図 17Aは、従来の角度変調装置の出力する角度変調信号における不要な 残留側波帯成分抑圧比と復調後の歪み特性との相関関係を示す図である。
[図 17B]図 17Bは、従来の角度変調装置の出力する角度変調信号における不要な 残留搬送波成分抑圧比と復調後の歪み特性との相関関係を示す図である。
符号の説明
10, 20, 30, 31, 32, 40, 41 角度変調装置
101, 301 光源
102, 302 光分岐部
103a, 104b 光 SSB変調部(単一側波帯光強度変調部)
104a, 103b 光 SSB— SC変調部 (搬送波抑圧単一側波帯光強度変調部)
303 第 1の光 SSB— SC変調部 (搬送波抑圧単一側波帯光強度変調部) 304 第 2の光 SSB— SC変調部 (搬送波抑圧単一側波帯光強度変調部)
105, 305 光角度変調部
106, 306 光合波部
107, 307 光検波部
108, 308 フィルタ
109, 310 第 1の信号源
110, 309 第 2の信号源
111, 311 第 3の信号源
3211 第 1の MZ型干渉計
3212 第 2の MZ型干渉計
3213 第 3の MZ型干渉計
3214 第 1の分岐部
3215 第 1の位相反転部
3216 第 2の位相反転部
3217 第 2の分岐部
3218, 3227 光強度変調部
3219, 3228 光角度変調部
E1 第 1の電気信号
E2 第 2の電気信号
E3 第 3の電気信号
E4a 電気信号
E4b 反転信号
Oc 合波光信号
Db 差ビート信号
発明を実施するための最良の形態
(第 1の実施形態)
以下、本発明の第 1の実施形態について図面を参照しながら説明する。図 1は、本 発明の実施の形態における角度変調装置 10の構成を示すブロック図である。図 1に おいて、角度変調装置 10は、光源 101と、光分岐部 102と、単一側波帯光強度変調 部 (以下、「光 SSB変調部」と 1、う) 103aと、搬送波抑圧単一側波帯光強度変調部( 以下、「光 SSB— SC変調部」という) 104aと、光角度変調部 105と、光合波部 106と 、光検波部 107とを備える。第 1の実施形態では、光 SSB— SC変調部 104aが特許 請求の範囲に記載の第 1の光強度変調部として機能し、光 SSB変調部 103aが特許 請求の範囲に記載の第 2の光強度変調部として機能する。
[0068] 光源 101は、所定の周波数 f0の無変調光 L0を出力する。
[0069] 光分岐部 102は、光源 101から出力される無変調光 L0を分岐し、第 1の光 Omla および第 2の光 Om2aを出力する。
[0070] 光 SSB変調部 103aには、第 1の光 Omlaと、第 1の信号源 109から出力される所 定の周波数 fclを有する第 1の電気信号 E1とが入力される。光 SSB変調部 103aは 第 1の電気信号 E1の振幅に応じて、第 1の光 Omlaを光 SSB変調し、変調された信 号を第 1の光信号 Omlbとして出力する。
[0071] 図 2Aは、光 SSB変調部 103aから出力される第 1の光信号 Omlbの光スペクトラム の一例を示す図である。図 2Aにおいて、第 1の光信号 Omlbは光搬送波成分と光 片側波帯成分とを含む光変調信号である。
[0072] 光 SSB— SC変調部 104aには、第 1の光信号 Omlbと、第 2の信号源 110から出 力される所定の周波数 fc2を有する第 2の電気信号 E2とが入力される。光 SSB— SC 変調部 104aは、第 2の電気信号 E2の振幅に応じて、第 1の光信号 Omlbを光 SSB SC変調し、光 SSB— SC変調された第 1の光信号 Omlbを第 2の光信号 Omlcと して出力する。
[0073] 図 2Bは、光 SSB— SC変調部 104aが出力する第 2の光信号 Omlcのスペクトラム の一例を示す図である。図 2Bにおいて、第 2の光信号 Omlcは、図 2Aにおける周 波数成分 Felに対応する周波数成分 Fe3と、図 2Aにおける周波数成分 Fe2に対応 する周波数成分 Fe4とを含む搬送波抑圧単一側波帯の光変調信号である。また、図 2Bにおいて、第 2の光信号 Omlcは、周波数成分 Felに対応する残留片側波帯成 分 Fslと、周波数成分 Fe2に対応する残留片側波帯成分 Fs2とを含む。
[0074] 光角度変調部 105には、第 2の光 Om2aと、第 3の信号源 111から出力される第 3 の電気信号 E3とが入力される。例えば、第 3の電気信号 E3は、周波数 fl〜fnの信 号が多重化された信号である。光角度変調部 105は、第 3の電気信号 E3の振幅に 応じて、第 2の光 Om2aを光角度変調 (光位相変調または光周波数変調)し、光角度 変調された第 2の光 Om2aを第 3の光信号 Om2bとして出力する。図 2Cは、光角度 変調部 105が出力する第 3の光信号 Om2bのスペクトラムの一例を示す模式図であ る。
[0075] 光合波部 106は、光 SSB— SC変調部 104aから出力される第 2の光信号 Omlcと 、光角度変調部 105から出力される第 3の光信号 Om2bとを合波し、合波光信号 Oc を出力する。
[0076] 光検波部 107は、例えば自乗検波特性を有するフォトダイオードで構成される。光 検波部 107は自乗検波特性によって、光合波部 106から出力される合波光信号 Oc を光ホモダイン検波し、これらの信号間の差ビート信号 Dbを生成して、差ビート信号 Dbを出力する。当該差ビート信号 Dbは、第 3の光信号 Om2bをダウンコンバートした 信号である。
[0077] 図 2Dは、光検波部 107から出力される差ビート信号 Dbのスペクトラムの一例を示 す図である。図 2Dにおいて、差ビート信号 Dbは、中心周波数が I fcl—fc2 Iであ る角度変調信号成分 Falと、中心周波数が fc2である不要波成分を含む角度変調信 号 Fa2と、中心周波数が (fcl +fc2)である不要波成分 Fa3とを含む。
[0078] 図 2Dにおいて、角度変調信号成分 Falは、図 2Bに示される周波数成分 Fe3が中 心周波数 I fcl—fc2 Iにダウンコンバートされた差ビート信号成分である。不要波 成分を含む角度変調信号 Fa2は、周波数成分 Fe4と残留片側波帯成分 Fs2とが周 波数 fc2にダウンコンバートされることによって重畳された差ビート信号成分である。ま た、不要波成分 Fa3は、残留片側波帯成分 Fslが中心周波数 (fcl +fc2)にダウン コンバートされた差ビート信号成分である。したがって、角度変調信号成分 Falには 残留片側波帯成分が重畳しない。さらに、 I fcl一 fc2 Iが所望の搬送波周波数とな るように、周波数 fclおよび fc2を選択することで、残留片側波帯成分の影響を受け ない所望の搬送波周波数の角度変調信号が得られる。
[0079] ここで、角度変調装置 10は、図 2Dにおいて示される差ビート信号 Dbに含まれる角 度変調信号成分 Falのみを濾波することで、不要な周波数成分を含まない角度変調 信号を出力する。したがって、角度変調信号成分 Falには、他の周波数成分が重な らないようにしなければならない。そのために、第 3の光信号 Om2bが有する信号の 帯域幅を Bとすると、帯域幅 B、周波数 fclおよび周波数 fc2が、 | fcl一 fc2 | >B Z2かつ(2 X fc2— fcl) < Bの条件を満たすことが必要である。
[0080] このように、周波数 fOの無変調光 LOを光 SSB変調し、光 SSB変調された光変調信 号を光 SSB— SC変調することで、角度変調装置 10は、光 SSB— SC変調部にて発 生する残留側波帯成分を、所望の中心周波数とは異なる中心周波数に遷移させるこ とができる。したがって、本実施形態に係る角度変調装置 10によれば、残留光搬送 波成分および残留光片側波帯成分を含む光を検波することによって生じる不要な角 度変調信号成分が、所望の角度変調信号成分に重畳して、当該角度変調信号を復 調した信号の歪み特性が悪ィ匕することを防ぐことができる。
[0081] 尚、角度変調装置 10は、図 1に示すように、フィルタ 108を更に備えていてもよい。
フィルタ 108は、光検波部 107から出力される差ビート信号 Dbから所望の中心周波 数を有する角度変調信号成分のみを通過させる。フィルタ 108は、例えば、図 2Dに おいて破線で示されるように、中心周波数 I fcl— fc2 Iを有する角度変調信号成 分のみを抽出するバンドパスフィルタである。角度変調装置 10が、フィルタ 108を更 に備えることにより、所望の搬送波周波数を有する角度変調信号に対する不要な角 度変調信号の片側波帯成分を除去し、雑音特性および歪み特性に優れた広帯域な 角度変調信号を提供することができる。
[0082] また、フィルタ 108として、例えば、中心周波数 I fcl— fc2 |を有する角度変調信 号成分のみを抽出可能なローパスフィルタを利用しても、本実施形態と同一の効果 が得られる。
[0083] (第 2の実施形態)
本発明の第 2の実施形態について、図面を参照しながら説明する。図 3は本発明に おける角度変調装置 20の構成を示すブロック図である。図 3において、角度変調装 置 20は、光源 101と、光分岐部 102と、光 SSB— SC変調部 103bと、光 SSB変調部 104bと、光角度変調部 105と、光合波部 106と、光検波部 107とを備える。第 2の実 施形態では、光 SSB変調部 104bが特許請求の範囲に記載の第 1の光強度変調部 として機能し、光 SSB— SC変調部 103bが特許請求の範囲に記載の第 2の光強度 変調部として機能する。
[0084] 本実施形態に係る角度変調装置 20は、第 1の実施形態に係る角度変調装置 10〖こ おける 2つの光強度変調部の順序が入れ替えられたものである。すなわち、第 1の実 施形態に係る角度変調装置 10との異なる点は、角度変調装置 10の構成が光源 10 1から出力される周波数 fOの無変調光 LOを光 SSB変調し、光 SSB変調された光変 調信号を光 SSB— SC変調する構成であるのに対して、角度変調装置 20の構成が 光源 101から出力される周波数 fOの無変調光 L0を光 SSB— SC変調し、光 SSB— SC変調された光変調信号を光 SSB変調する構成を有する点である。本実施形態に おいて、第 1の実施形態に係る角度変調装置 10と同一または相当部分については 同一の参照符号を付し説明を省略する。
[0085] 光 SSB— SC変調部 103bには、第 1の光 Omldと、第 1の信号源 109から出力され る所定の周波数 fclを有する第 1の電気信号 E1とが入力される。光 SSB— SC変調 部 103bは第 1の電気信号 E1の振幅に応じて、第 1の光 Omldを光 SSB—SC変調 し、第 1の光信号 Omleとして出力する。
[0086] 図 4Aは、光 SSB— SC変調部 103bから出力される第 1の光信号 Omleの光スぺク トラムの一例を示す図である。図 4Aにおいて、第 1の光信号 Omleは周波数 (fO— f cl)の周波数成分 Fe5と、周波数 (fO + fcl)の残留片側波帯成分 Fs3を含む光変調 信号である。
[0087] 光 SSB変調部 104bには、第 1の光信号 Omleと、第 2の信号源 110から出力され る所定の周波数 fc2を有する第 2の電気信号 E2とが入力される。光 SSB変調部 104 bは、第 2の電気信号 E2の振幅に応じて、第 1の光信号 Omleを光 SSB変調し、第 2 の光信号 Omlfとして出力する。
[0088] 図 4Bは、光 SSB変調部 104bが出力する第 2の光信号 Omlfのスペクトラムの一例 を示す図である。図 4Bにおいて、第 2の光信号 Omlfは、周波数成分 Fe5と、中心 周波数 (fO— fcl +fc2)の周波数成分 Fe6とを含む光変調信号である。また、第 2の 光信号 Omlfは、残留片側波帯成分 Fs3と、中心周波数 (f0+fl +f2)の残留片側 波帯成分 Fs4とを含む。
[0089] 図 4Cは、光検波部 107から出力される差ビート信号 Dbのスペクトラムの一例を示 す図である。図 4Cにおいて、差ビート信号 Dbは、中心周波数が I fcl— fc2 Iであ る角度変調信号成分 Fa4と、中心周波数が fclである不要波成分を含む角度変調信 号 Fa5と、中心周波数が (fcl +fc2)である不要波成分 Fa6とを含む。
[0090] 図 4Cにおいて、角度変調信号成分 Fa4は、周波数成分 Fe6が中心周波数 | fcl
-fc2 Iにダウンコンバートされた差ビート信号成分である。不要波成分を含む角度 変調信号 Fa5は、周波数成分 Fe5と残留片側波帯成分 Fs3が中心周波数 fclにダウ ンコンバートされることによって重畳された差ビート信号成分である。また、不要波成 分 Fa6は、残留片側波帯成分 Fs4が中心周波数 (fcl +fc2)にダウンコンバートされ た差ビート信号成分である。したがって、角度変調信号成分 Fa4には残留片側波帯 成分が重畳しない。さらに、 I fcl一 fc2 Iが所望の搬送波周波数となるように、周波 数 fclおよび fc2を選択することで、残留片側波帯成分の影響を受けな 、所望の搬 送波周波数の角度変調信号が得られる。
[0091] ここで、角度変調装置 20は図 4Cにおいて示される差ビート信号 Dbに含まれる角 度変調信号成分 Fa4のみを濾波することで、不要な周波数成分を含まない角度変調 信号を出力する。したがって周波数成分 Fa4には、他の周波数成分が重ならないよう にしなければならない。そのために、第 3の光信号 Om2dが有する信号の帯域幅を B とすると、帯域幅 B、周波数 fclおよび所定周波数 fc2が、 I fcl一 fc2 I >B/2か つ(2 X fc2— fcl) < Bの条件を満たすことが必要である。
[0092] このように、周波数 fOの無変調光 LOを光 SSB— SC変調し、光 SSB— SC変調され た光変調信号を光 SSB変調することで、角度変調装置 20は、光 SSB— SC変調部 にて発生する残留側波帯成分を、所望の中心周波数とは異なる中心周波数に遷移 させることができる。したがって、本実施形態に係る角度変調装置 20によれば、残留 光搬送波成分および残留光片側波帯成分を含む光を検波することによって生じる不 要な角度変調信号が、所望の角度変調信号に重畳して、当該角度変調信号を復調 した信号の歪み特性が悪ィ匕することを防ぐことができる。
[0093] 尚、角度変調装置 20は、図 3に示すように、フィルタ 108を更に備えていてもよい。 フィルタ 108は、光検波部 107から出力される差ビート信号 Dbから所望の中心周波 数を有する角度変調信号成分のみを通過させる。フィルタ 108は、例えば、図 2Dに おいて破線で示されるように、中心周波数 I fcl— fc2 Iを有する角度変調信号成 分のみを抽出するバンドパスフィルタである。角度変調装置 20が、フィルタ 108を更 に備えることで、所望の搬送波周波数を有する角度変調信号に対する不要な角度変 調信号の片側波帯成分を除去し、雑音特性および歪み特性に優れた広帯域な角度 変調信号を提供することができる。
[0094] また、フィルタ 108として、例えば、中心周波数 I fcl— fc2 |を有する角度変調信 号成分のみを抽出可能なローパスフィルタをフィルタ 108として利用しても、本実施 形態と同一の効果が得られる。
[0095] なお、第 1及び第 2の実施形態において光変調方式に光 SSB変調方式と光 SSB
SC変調方式とを用いることとしたが、本発明における光変調方式は当該光変調方 式に限られるものではない。例えば、光 DSB変調方式および光 DSB— SC変調方式 などであってもよい。
[0096] (第 3の実施形態)
本発明の第 3の実施形態について図面を参照しながら説明する。図 5は、本発明の 第 3の実施形態における角度変調装置 30の構成を示すブロック図である。図 5にお いて、角度変調装置 30は、光源 301と、光分岐部 302と、第 1の光 SSB— SC変調部 303と、第 2の光 SSB— SC変調部 304と、光角度変調部 305と、光合波部 306と、 光検波部 307とを備える。第 3の実施形態では、第 1の光 SSB— SC変調部 303が特 許請求の範囲に記載の第 1の光強度変調部として機能し、第 2の光 SSB— SC変調 部 304が特許請求の範囲に記載の第 2の光強度変調部として機能する。
[0097] 光源 301は、所定の周波数 fOの無変調光 LOを出力する。図 6Aは、光源 301から 出力される無変調光 L0の光スペクトラムの一例を示す模式図である。
[0098] 光分岐部 302は、光源 301から出力される無変調光 L0を分岐し、第 1の光 Omlg および第 2の光 Om2eを出力する。
[0099] 第 1の光 SSB— SC変調部 303には、第 1の光 Omlgと、第 2の信号源 309から出 力される所定の周波数 fc2を有する第 2の電気信号 E2とが入力される。第 1の光 SS B— SC変調部 303は第 2の電気信号 E2の振幅に応じて、第 1の光 Omlgを光 SSB —SC変調し、変調された信号を第 1の光信号 Omlhとして出力する。
[0100] 図 6Bは、第 1の光信号 Omlhの光スペクトラムの一例を示す模式図である。図 6B において、第 1の光信号 Omlhは所望の光側波帯成分 Fe8と、残留光搬送波成分 F s5と、残留光側波帯成分 Fs6とを含む光変調信号である。
[0101] 第 2の光 SSB— SC変調部 304には、第 2の光 Om2eと、第 1の信号源 310から出 力される所定の周波数 fclを有する第 1の電気信号 E1とが入力される。第 2の光 SS B— SC変調部 304は第 1の電気信号 E1の振幅に応じて、第 2の光 Om2eを光 SSB SC変調し、変調された信号を第 2の光信号 Om2fとして出力する。
[0102] 図 6Cは、第 2の光 SSB— SC変調部 304が出力する第 2の光信号 Om2fのスぺタト ラムの一例を示す模式図である。図 6Cにおいて、第 2の光信号 Om2fは所望の光側 波帯成分 Fe9と、残留光搬送波成分 Fs7と、残留光側波帯成分 Fs8とを含む光変調 信号である。
[0103] 光角度変調部 305には、第 2の光 SSB— SC変調部 304から出力された第 2の光 信号 Om2fと、第 3の信号源 311から出力される第 3の電気信号 E3とが入力される。 第 3の電気信号 E3は、例えば、周波数 fl〜fnの信号が周波数多重された信号であ る。光角度変調部 305は、入力された第 3の電気信号 E3の振幅に応じて、第 2の光 信号 Om2fを光角度変調し、第 3の光信号 Om2gとして出力する。
[0104] 図 6Dは、光角度変調部 305が出力する第 3の光信号 Om2gのスペクトラムの一例 を示す模式図である。図 6Dにおいて、第 3の光信号 Om2gは、所望の光側波帯成 分 Fe9が光角度変調された光角度変調信号 Fa8と、残留光搬送波成分 Fs7が光角 度変調された残留光角度変調信号 Fa9と、残留光側波帯成分 Fs8が光角度変調さ れた残留光角度変調信号 FalOとを含む光変調信号である。
[0105] 光合波部 306は、光角度変調部 305から出力される第 3の光信号 Om2gと、第 1の 光 SSB— SC変調部 303から出力される第 1の光信号 Omlhとを合波し、合波光信 号を出力する。
[0106] 光検波部 307は、例えば自乗検波特性を有するフォトダイオードで構成される。光 検波部 307は自乗検波特性によって、光合波部 306から出力される合波光信号を光 ホモダイン検波し、第 1の光信号 Omlhと第 3の光信号 Om2gとの信号間の差ビート 信号として、角度変調信号を出力する。
[0107] 図 6Eは、光検波部 307から出力される角度変調信号 Dbのスペクトラムの一例を示 す模式図である。図 6Eにおいて、所望の角度変調信号 Fsl lは、所望の光角度変 調信号 Fa8と所望の光側波帯成分 Fe8とが検波されることにより、中心周波数( | fc l -fc2 I )に生成された差ビート信号である。同様に、不要な角度変調信号 Fsl2は 、残留光角度変調信号 FalOと残留光側波帯成分 Fs6とが検波されることにより、中 心周波数( I fcl fc2 I )に生成された信号である。同様に、不要な角度変調信号 Fsl3は、残留光角度変調信号 Fa9と残留光搬送波成分 Fs5とが検波されることによ り、中心周波数 (0)に生成された信号である。同様に、不要な角度変調信号 Fsl4は 、所望の光角度変調信号 Fa9と所望の光側波帯成分 Fe8、残留光角度変調信号 Fa 9と残留光側波帯成分 Fs6、所望の光側波帯成分 Fe8と残留光搬送波成分 Fs5及 び残留光搬送波成分 Fs5と残留光側波帯成分 Fs6が検波されることにより、中心周 波数 (fcl)に生成された信号である。同様に、不要な角度変調信号 Fsl5は、所望の 光角度変調信号 Fa8と残留光搬送波成分 Fs5、所望の光角度変調信号 Fa8と残留 光角度変調信号 Fa9及び残留光角度変調信号 Fa9と残留光角度変調信号 FalOが 検波されることにより、中心周波数 (fc2)に生成された信号である。同様に、不要な角 度変調信号 Fsl6は、所望の光角度変調信号 Fa8と残留光側波帯成分 Fs6及び残 留光角度変調信号 FalOと所望の光側波帯成分 Fe8が検波されることにより、中心周 波数 (fcl +fc2)に生成された信号である。
[0108] つまり、従来の角度変調装置 91において歪み特性劣化の要因となっていた残留光 角度変調信号 Fa9と、残留光側波帯成分 Fs6とから発生する角度変調信号は中心 周波数 (fc2)と、所望の角度変調信号とは異なる周波数において生成されるため、 歪み特性劣化の要因にはならないと考えられる。また、所望の角度変調信号 Fsl lと 同じ中心周波数を有する不要な角度変調信号 Fsl2と、中心周波数 (0)に発生する 不要な角度変調信号 Fsl3とは、それぞれ残留成分同士のビート成分として発生す るため、所望の角度変調信号 Fsl lに対して、レベルは非常に小さく抑えられる。した がって、当該角度変調信号を復調した後の歪み特性への影響を受けない、所望の 搬送波周波数の角度変調信号が得られる。
[0109] 以上より、周波数 fOの無変調光 LOを光 SSB— SC変調し、光 SSB— SC変調され た光変調信号を光角度変調することで、角度変調装置 30は、光 SSB— SC変調部 にて発生する残留搬送波成分と残留側波帯成分のそれぞれの中心周波数を遷移さ せることができる。したがって、本実施形態に係る角度変調装置 30によれば、残留光 搬送波成分と残留光側波帯成分に起因して生じていた不要な角度変調信号の中心 周波数を、所望の角度変調信号の中心周波数とは異なる中心周波数にすることがで きる。さらに、所望の角度変調信号の中心周波数と同じ中心周波数を有する不要な 角度変調信号は、残留側波帯成分同士の差ビート信号であるため、その信号のレべ ルを非常に小さくすることができる。したがって、本実施形態に係る角度変調装置 30 によれば、所望の搬送波周波数を有する角度変調信号に対して不要な角度変調信 号のレベルを大幅に低減し、雑音特性および歪み特性に優れた広帯域な角度変調 信号を提供することができる。
[0110] なお、前記経路のいずれか一方または双方に光遅延調整部をさらに備えても良い 。図 7は、第 1の光 SSB—SC変調部 303の後段に光遅延調整部 312を挿入した、角 度変調装置 31の構成を示すブロック図である。この光遅延調整部 312によって、光 合波部 306において合波される、光信号 Omlkおよび第 3の光信号 Om2jの伝搬遅 延量を互いに正確に一致させるように調整する。そのことによって、光検波部 307か ら出力される角度変調信号の位相雑音を、より理想に近い状態で相殺することができ る。
[0111] なお、本実施の形態では、第 2の光 SSB— SC変調部 304と光角度変調部 305とを 異なる構成要素として設けている力 これらを一体ィ匕しても良い。図 8は、第 3の実施 形態に係る角度変調装置 30における第 2の光 SSB—SC変調部 304と光角度変調 部 305とを一体化した、光変調部 321を備える角度変調装置 32の構成を示すブロッ ク図である。角度変調装置 32は、光源 301と、光分岐部 302と、光変調部 321と、第 1の光 SSB-SC変調部 303と、光合波部 306と、光検波部 307とを備える。
[0112] 図 9は、光変調部 321の内部構成の一例を示した模式図である。図 9において、光 変調部 321は、第 1〜第 3の MZ型干渉計 3211〜3213と、第 1の分岐部 3214と、 第 1および第 2の位相反転部 3215および 3216と、第 2の分岐部 3217とを備える。 そして、図 9から明らかなように、光変調部 321は、第 2の分岐部 3217を更に備える ことが、図 15にその内部構成の一例を示した光 SSB— SC変調部 920と異なる点で ある。
[0113] 第 1の MZ型干渉計 3211は、入力される光 Om3を両側波帯光強度変調(以下、光 DSB変調という)して、第 1の光強度変調信号 Om2raとして出力する。また、第 2の MZ型干渉計 3212は、入力される光 Om4を光 DSB変調して、第 2の光強度変調信 号 Om2rbとして出力する。尚、第 1の MZ型干渉計 3211および第 2の MZ型干渉計 3212とが光強度変調部 3218を構成して特許請求の範囲に記載の第 2の光強度変 調部として機能する。
[0114] 第 2の分岐部 3217は、第 3の信号源 311から出力された周波数 fl〜fnの信号が 周波数多重された第 3の電気信号 E3が入力され、互いの位相関係が同相となるよう に第 3の電気信号 E3を 2つに分岐し、分岐した電気信号のそれぞれを出力する。第 2の分岐部 3217から出力された 2つの電気信号のそれぞれは、第 3の MZ型干渉計 3213の各電極のそれぞれへ出力される。第 3の MZ型干渉計 3213へ入力される第 1の光強度変調信号 Om2raおよび第 2の光強度変調信号 Om2rbのそれぞれは、第 3の電気信号 E3により、光角度変調が施されると共に、第 3のバイアス電圧 V3によつ て位相が調整される。尚、第 2の分岐部 3217と第 3の MZ型干渉計 3213とが光角度 変調部 3219を構成して特許請求の範囲に記載の第 1の光角度変調部として機能す る。
[0115] 図 10Aは、第 1の MZ型干渉計 3211から出力された第 1の光強度変調信号 Om2r aが第 3の MZ型干渉計 3213の一方の電極 Erlによって光角度変調された後の光ス ぺクトラムの一例を示す模式図である。また、図 10Bは、第 2の MZ型干渉計 3212か ら出力された第 2の光強度変調信号 Om2rbが第 3の MZ型干渉計 3213の他方の電 極 Er2によって光角度変調を施された後の光スペクトラムの一例を示す模式図である
[0116] ここで、第 2の分岐部 3217から出力された一方の第 3の電気信号 E3が、第 3の MZ 型干渉計 3213の一方の電極に到達するまでの伝搬遅延量と、第 2の分岐部 3217 力 出力された他方の第 3の電気信号 E3が第 3の MZ型干渉計 3213の他方の電極 に到達するまでの伝搬遅延量とが、互いに一致するようにしておく。さらに、第 2の分 岐部 3217から出力された一方の第 3の電気信号 E3が第 3の MZ型干渉計 3213の 一方の電極を介して、第 1の MZ型干渉計 3211から出力された第 1の光強度変調信 号 Om2raを光角度変調し、光信号として第 3の MZ型干渉計 3213の出力端に到達 するまでの伝搬遅延量と、第 2の分岐部 3217から出力された他方の第 3の電気信号 E3が、第 3の MZ型干渉計 3213の他方の電極を介して、第 2の MZ型干渉計 3212 から出力された第 2の光強度変調信号 Om2rbを光角度変調し、光信号として第 3の MZ型干渉計 3213の出力端に到達するまでの伝搬遅延量とが、互いに一致するよう にしておく。そうすることで、図 10Aにおける周波数 (fO+fcl)を有する光角度変調 信号 Spmlと、図 10Bにおける周波数 (fO+fcl)を有する光角度変調信号 Spm4と は、互いの位相関係が同相となるため、それぞれの光変調信号が合波されたときに 強め合って出力される。一方、図 10Aにおける周波数 (fO— fcl)を有する光角度変 調信号 Spm3と、図 10Bにおける周波数 (fO—fcl)を有する光角度変調信号 Spm6 とは、互いの位相関係が逆相となるため、それぞれの光変調信号が合波された際に 打ち消し合う。この場合、第 3の光 SSB— SC変調部 321から出力される光変調信号 Om21のスペクトルは、図 6Cに示される光角度変調部 305から出力される第 3の光信 号 Om2gのスペクトルと略同一となる。このような構成によれば、光角度変調部 305を 設けることなぐより効率の高い変調を光変調部 321において施すことができ、雑音 特性および歪み特性に優れた広帯域な角度変調信号を提供することができる。 なお、角度変調装置 32において、第 2の分岐部 3217から出力された一方の第 3の 電気信号 E3が第 3の MZ型干渉計 3213の一方の電極に到達するまでの伝搬遅延 量と、第 2の分岐部 3217から出力された他方の第 3の電気信号 E3が第 3の MZ型干 渉計 3213の他方の電極に到達するまでの伝搬遅延量と力 互いに一致するように、 または、第 2の分岐部 3217から出力された一方の第 3の電気信号 E3が第 3の MZ型 干渉計 3213の一方の電極を介して、第 1の MZ型干渉計 3211から出力された第 1 の光変調信号 Om2raを光角度変調し、光信号として第 3の MZ型干渉計 3213の出 力端に到達するまでの伝搬遅延量と、第 2の分岐部 3217から出力された他方の第 3 の電気信号 E3が第 3の MZ型干渉計 3213の他方の電極を介して、第 2の MZ型干 渉計 3212から出力された第 2の光変調信号 Om2rbを光角度変調し、光信号として 第 3の MZ型干渉計 3213の出力端に到達するまでの伝搬遅延量とが、互 、に一致 するように、第 2の分岐部 3217と第 3の MZ型干渉計 3213のいずれか一方または双 方の電極との間に、伝搬遅延量を調整する遅延調整部を設けても良い。そうすること で、より容易に 2つの伝搬遅延量を調整することができ、より効率の高い光角度変調 信号を提供することができる。
[0118] また、前述した様に、角度変調装置 32において、光分岐部 302から光変調部 321 を経て、光合波部 306に至る経路を通過する光の伝搬遅延量と、光分岐部 302から 第 1の光 SSB— SC変調部 303を経て、光合波部 306に至る経路を通過する光の伝 搬遅延量とが互 、に一致するように、前述の経路の!/、ずれか一方または双方に光遅 延調整部をさらに備えても良い。これにより、光検波部 307から出力される角度変調 信号の位相雑音を、より理想に近い状態で相殺することができる。
[0119] なお、本実施形態において、角度変調信号 Fsl lが有する信号の帯域幅を B1とし たとき、帯域幅 B1、周波数 fclおよび周波数 fc2のそれぞれが I fcl— fc2 I ≥B1 Z2の条件を満たすことが必要である。これにより、所望の角度変調信号 Fsl lの信 号が周波数 (0)以下になることなぐ光検波部 307が出力する角度変調信号を復調 した後の歪み特性への影響を受けない所望の搬送波周波数の角度変調信号が得ら れる。
[0120] なお、本実施形態において、角度変調信号 Fsl4が有する信号の帯域幅を B2とし て、周波数 fclと周波数 fc2との関係が fcl <fc2である場合、 I fcl -fc2 | +B1/ 2<fcl— B2Z2の条件を満たすことで、不要な角度変調信号 Fsl4が、所望の角度 変調信号 Fsl lに重なることなぐ光検波部 307が出力する角度変調信号を復調した 後の歪み特性への影響を受けない所望の搬送波周波数の角度変調信号が得られる
[0121] なお、本実施形態において、角度変調信号 Fsl5が有する信号の帯域幅を B3とし て、周波数 fclと周波数 fc2との関係が fcl >fc2である場合、 I fcl -fc2 | +B1/ 2<fc2— B3Z2の条件を満たすことで、不要な角度変調信号 Fsl5が、所望の角度 変調信号 Fsl 1に重なることなぐ光検波部 307が出力する光変調信号を復調した後 の歪み特性への影響を受けない所望の搬送波周波数の角度変調信号が得られる。
[0122] なお、本実施の形態では、光検波部 307が出力する角度変調信号には、所望の角 度変調信号 Fsl lとは異なる周波数を有する信号も含まれているが、光検波部 307 の後段に、所望の角度変調信号 Fsl lおよび不要な角度変調信号 Fsl2および不要 な角度変調信号 Fsl3のみを抽出可能なローパスフィルタ、または、所望の角度変調 信号 Fsl lおよび不要な角度変調信号 Fsl2のみを抽出可能なバンドパスフィルタを 備えれば、所望の角度変調信号 Fsl lと同じ周波数を有する信号のみが出力される ため、当該角度変調信号を復調した後の歪み特性がさらに改善された角度変調信 号が得られる。
[0123] (第 4の実施形態)
本発明の第 4の実施形態について図面を参照しながら説明する。図 11は、本発明 の第 4の実施形態に係る角度変調装置 40の構成を示すブロック図である。角度変調 装置 40は、光源 301と、光分岐部 302と、第 1の光 SSB— SC変調部 303と、第 2の 光 SSB— SC変調部 304と、第 1の光角度変調部 305と、位相反転部 401と、第 2の 光角度変調部 402と、光合波部 306と、光検波部 307とを備える。第 4の実施形態で は、第 1の光 SSB— SC変調部 303が特許請求の範囲に記載の第 1の光強度変調 部として機能し、第 2の光 SSB— SC変調部 304が特許請求の範囲に記載の第 2の 光強度変調部として機能する。
[0124] 第 4の実施形態に係る角度変調装置 40は、位相反転部 401と、第 2の光角度変調 部 402とを備えることが、前述の第 3の実施形態に係る角度変調装置 30と異なる点 である。したがって、角度変調装置 40の基本的な動作は、角度変調装置 30とほぼ同 様であるため、角度変調装置 30と同じ構成については同じ参照符号を付して説明を 省略し、位相反転部 401および第 2の光角度変調部 402の動作を中心に角度変調 装置 40の動作を説明する。
[0125] 角度変調装置 40において、位相反転部 401は、第 3の信号源 311から出力された 第 3の電気信号 E3から、位相が第 3の電気信号 E3と同じ電気信号 E4aと、位相が第 3の電気信号 E3と 180° 異なる反転信号 E4bとを生成して、生成した電気信号 E4a と反転信号 E4bとのそれぞれを第 1の光角度変調部 305および第 2の光角度変調部 402のそれぞれへ入力する。
[0126] 第 1の光角度変調部 305には、第 2の光 SSB—SC変調部 304から出力された第 2 の光信号 Om2nと、位相反転部 401から出力された電気信号 E4aとが入力される。 第 1の光角度変調部 305は、入力された電気信号 E4aの振幅に応じて、第 2の光信 号 Om2nを光角度変調し、第 3の光信号 Om2oとして出力する。第 2の光角度変調 部 402には、第 1の光 SSB— SC変調部 303から出力された第 1の光信号 Omluと、 位相反転部 401から出力された反転信号 E4bとが入力される。第 2の光角度変調部 402は、入力された反転信号 E4bの振幅に応じて、第 1の光信号 Omluを光角度変 調し、第 4の光信号 Omloとして出力する。
[0127] ここで、位相反転部 401から出力された電気信号 E4aが、第 1の光角度変調部 305 に到達するまでの伝搬遅延量と、位相反転部 401から出力された反転信号 E4bが、 第 2の光角度変調部 402に到達するまでの伝搬遅延量とが、互いに一致するように しておく。さらに、位相反転部 401から出力された電気信号 E4aが、第 1の光角度変 調部 305を経て、第 3の光信号 Om2oとして光合波部 306に到達するまでの伝搬遅 延量と、位相反転部 401から出力された反転信号 E4bが、第 2の光角度変調部 402 を経て、第 4の光信号 Omloとして光合波部 306に到達するまでの伝搬遅延量とが、 互 ヽに一致するようにしておく。
[0128] このような第 2の光角度変調部 402を設ける理由について説明する。一般に、光角 度変調部には、ニオブ酸リチウム基板等の結晶基板上に光導波路が配置されたもの が多い。このような光変調器は、入力電圧に対する光位相(光周波数)の変化率が低 いため、変調信号として大きな電圧振幅が必要となる。一方、変調信号を増幅するた めの電気増幅器の出力は、あるレベルで飽和してしまう。そして、電気増幅器の性能 を改善することは、困難である。そこで、本実施形態のように、第 3の電気信号 E3を 位相反転部 401にお 、て分岐して、分岐した信号のそれぞれに対して電気増幅等 の信号処理を施した後に、それぞれの光角度変調部へ入力する。このような構成に より、光変調部を駆動するための電気増幅器の負担を軽減できる。さらに、光合波部 306で合波される第 3の光信号 Om2oおよび第 4の光信号 Omloのそれぞれの位相 の偏移量を同じにすることができるため、角度変調装置 40の構成は、プッシュプル型 の変調を施すことができる構成となり、光検波部 307から出力される角度変調信号の 位相偏移量をより効率良く増大させることができる。
[0129] 以上より、第 4の実施形態に係る角度変調装置 40によれば、 2つの光角度変調部 を設けることにより、第 3の実施形態に係る角度変調装置 30によって得られる効果に 加えて、角度変調信号の位相偏移量をより効率よく増大させることができる。
[0130] なお、前述の第 1の実施形態と同様に、角度変調装置 40において、位相反転部 4 01から出力された電気信号 E4aが、第 1の光角度変調部 305に到達するまでの伝 搬遅延量と、位相反転部 401から出力された反転信号 E4bが、第 2の光角度変調部 402に到達するまでの伝搬遅延量と力 互いに一致するように、または、光分岐部 30 2から第 2の光 SSB— SC変調部 304および第 1の光角度変調部 305を経て、光合波 部 306に至る経路を通過する光の伝搬遅延量と、光分岐部 302から第 1の光 SSB— SC変調部 303および第 2の光角度変調部 402を経て、光合波部 306に至る経路を 通過する光の伝搬遅延量とが互 ヽに一致するように、前述した経路の!/ヽずれか一方 または双方に光位相調整部をさらに備えても良い。そのことによって、光検波部 307 力も出力される角度変調信号の位相雑音を、より理想に近い状態で相殺することが できる。
[0131] このため、図示はしていないが、本実施形態に係る角度変調装置 40が、位相反転 部 401と、第 1の光角度変調部 305および第 2の光角度変調部 402のそれぞれとの 間に位相反転部 401から出力される電気信号 E4aと反転信号 E4bとのそれぞれを増 幅する増幅器を備えて 、てもよ 、のは、言うまでもな 、。
[0132] また、前述した第 1の実施形態と同様に、角度変調装置 40において、光 SSB— SC 変調部と光角度変調部とを一体ィ匕しても良い。より具体的には、第 1の光 SSB— SC 変調部 303と第 2の光角度変調部 402とを一体ィ匕し、第 2の光 SSB— SC変調部 30 4と第 1の光角度変調部 305とを一体ィ匕しても良い。
[0133] 図 12は、第 1の光 SSB— SC変調部 303と第 2の光角度変調部 402とを一体ィ匕して 第 1の光変調部 411とし、第 2の光 SSB—SC変調部 304と第 1の光角度変調部 305 とを一体ィ匕して第 2の光変調部 412とした、角度変調装置 41の構成を示すブロック 図である。また、第 1の光変調部 411および第 2の光変調部 412の構成は、図 9に示 される光変調部 321の構成と同様なので説明を省略する。このような構成により、角 度変調装置 41は、第 1の光角度変調部 305および第 2の光角度変調部 402を設け ることなぐより効率の高い光角度変調が第 1の光変調部 411および第 2の光変調部 412において施すことができ、雑音特性および歪み特性に優れた広帯域な角度変 調信号を提供することができる。尚、角度変調装置 41では、第 1の光変調部 411に 含まれる光強度変調部 3227が特許請求の範囲に記載の第 1の光強度変調部として 機能し、第 2の光変調部 412に含まれる光強度変調部 3218が特許請求の範囲に記 載の第 2の光強度変調部として機能する。また、第 2の光変調部に含まれる光角度変 調部 3219が特許請求の範囲に記載の第 1の光角度変調部として機能する。
[0134] なお、前述した第 1の実施形態と同様に、角度変調装置 41において、光分岐部 10 2から第 1の光変調部 411を経て、光合波部 306に至る経路を通過する光の伝搬遅 延量と、光分岐部 302から第 2の光変調部 412を経て、光合波部 306に至る経路を 通過する光の伝搬遅延量とが互 、に一致するように、前述の経路の!/、ずれか一方ま たは双方に光位相調整部をさらに備えても良い。そのことによって、光検波部 307か ら出力される角度変調信号の位相雑音を、より理想に近い状態で相殺することができ る。
[0135] また、図示はしていないが、角度変調装置 41が、角度変調装置 40と同様に、位相 反転部 401と、第 1の光変調部 411および第 2の光変調部 412のそれぞれとの間に 位相反転部 401から出力される電気信号 E4aと反転信号 E4bとのそれぞれを増幅す る増幅器を備えていてもよいのは、言うまでもない。
[0136] なお、前述した第 3の実施形態と同様に、本実施形態に係る角度変調装置 40及び 角度変調装置 41において、角度変調信号 Fs 11が有する信号の帯域幅を B 1とした とき、帯域幅 B1、周波数 fclおよび周波数 fc2のそれぞれが I fcl— fc2 I ≥Β1/2 の条件を満たすことが必要である。これにより、所望の角度変調信号 Fsl lの中心周 波数を有する信号が周波数 (0)以下になることなぐ角度変調信号を復調した後の 歪み特性への影響を受けない所望の搬送波周波数の角度変調信号が得られる。さ らに、角度変調信号 Fsl4が有する信号の帯域幅を B2として、周波数 fclと周波数 fc 2との関係が fcl < fc2である場合、 | fcl—fc2 I +B1/2く fcl— B2/2の条件を 満たすことで、不要な角度変調信号 Fsl4が、所望の角度変調信号 Fs 11に重なるこ となぐ角度変調信号を復調した後の歪み特性への影響を受けない所望の搬送波周 波数の角度変調信号が得られる。
[0137] なお、本実施形態において、角度変調信号 Fsl5が有する信号の帯域幅を B3とし て、周波数 fclと周波数 fc2との関係が fcl >fc2である場合、 I fcl -fc2 | +B1/ 2< fc2— B3Z2の条件を満たすことで、不要な角度変調信号 Fsl5が、所望の角度 変調信号 Fsl 1に重なることなぐ光検波部 307が出力する光変調信号を復調した後 の歪み特性への影響を受けない所望の搬送波周波数の角度変調信号が得られる。
[0138] なお、前述した第 1の実施形態と同様に、本実施形態に係る角度変調装置 40及び 角度変調装置 41において、光検波部 307が出力する角度変調信号には、所望の角 度変調信号 Fsl lとは異なる周波数を有する信号も含まれているが、光検波部 307 の後に、所望の角度変調信号 Fsl lおよび不要な角度変調信号 Fsl2および不要な 角度変調信号 Fsl3のみを抽出可能なローパスフィルタ、または、所望の角度変調信 号 Fsl lおよび不要な角度変調信号 Fsl2のみを抽出可能なバンドパスフィルタを備 えれば、所望の角度変調信号 Fsl lと同じ周波数を有する信号のみが出力されるた め、当該角度変調信号を復調した後の歪み特性がさらに改善された角度変調信号 が得られる。
産業上の利用可能性
[0139] 本発明に係る角度変調装置は、優れた雑音特性に加えて優れた歪み特性を有す るので、例えば映像信号分配システムなどに有用である。また、本発明に係る角度変 調装置は、例えば、ミリ波およびマイクロ波発生装置などの用途にも応用できる。

Claims

請求の範囲
[1] 入力信号を角度変調信号に変換するための角度変調装置であって、
光源と、
前記光源力 出力される光を第 1の経路を伝搬する光と第 2の経路を伝搬する光と に分岐する光分岐部と、
前記第 1の経路上に配置され、入力される光を周波数 fc 2の第 2の電気信号で強 度変調する第 1の光強度変調部と、
前記第 2の経路上に配置され、入力される光を入力される信号で角度変調する第 1 の光角度変調部と、
前記第 1の経路を伝搬する光と前記第 2の経路を伝搬する光とを、当該第 1の経路 および当該第 2の経路のそれぞれの終点において合波する光合波部と、
前記第 1の光強度変調部又は前記第 1の光角度変調部のいずれか一方の前段に 配置され、前記周波数 f c2と異なる周波数 f c 1の第 1の電気信号で入力される光を強 度変調し、強度変調された光を出力する第 2の光強度変調部と、
自乗検波特性を有し、前記光合波部から出力される光信号を角度変調信号に変 換する光検波部とを備える、角度変調装置。
[2] 前記第 2の光強度変調部は、前記第 1の光強度変調部の前段に配置され、入力さ れる光を光 SSB変調し、
前記第 1の光強度変調部は、光 SSB変調された光を光 SSB-SC変調することを特 徴とする、請求項 1に記載の角度変調装置。
[3] 前記光角度変調部力 出力される光信号の帯域幅を Bとすると、
I fcl -fc2 I >B/2、かつ
2 X fc2-fcl >B
を満たすことを特徴とする、請求項 2に記載の角度変調装置。
[4] 前記第 2の光強度変調部は、前記第 1の光強度変調部の前段に配置され、入力さ れる光を光 SSB- SC変調し、
前記第 1の光強度変調部は、光 SSB-SC変調された光を光 SSB変調することを特 徴とする、請求項 1に記載の角度変調装置。
[5] 前記光角度変調部力 出力される光信号の帯域幅を Bとすると、
I fcl -fc2 I >B/2、かつ
2 X fc2-fcl >B
を満たすことを特徴とする、請求項 4に記載の角度変調装置。
[6] 前記第 2の光強度変調部は、前記第 1の光角度変調部の前段に配置されることを 特徴とする、請求項 1に記載の角度変調装置。
[7] 前記第 1の光強度変調部は、入力される光を光 SSB— SC変調し、
前記第 2の光強度変調部は、入力される光を光 SSB-SC変調し、
前記第 1の光角度変調部は、光 SSB-SC変調された光を前記入力信号で角度変 調することを特徴とする、請求項 6に記載の角度変調装置。
[8] 前記第 1の光強度変調部の後段に配置され、前記第 1の経路を伝搬する光の伝搬 遅延量と前記第 2の経路を伝搬する光の伝搬遅延量とが等しくなるように、前記第 1 の経路を伝搬する光を伝搬遅延させる光遅延調整部を更に備える、請求項 7に記載 の角度変調装置。
[9] 前記第 2の光強度変調部は、
分岐された前記第 2の経路を伝搬する光を、前記第 1の電気信号と、位相を 180 ° ずらされた当該第 1の電気信号とで光 DSB変調する第 1の光 DSB変調部と、 分岐された前記第 2の経路を伝搬する光を、位相を 90° ずらされた前記第 1の電 気信号と、位相を 90° ずらされた後、更に位相を 180° ずらされた前記第 1の電気 信号とのそれぞれで光 DSB変調する第 2の光 DSB変調部とを含み、
前記第 1の光角度変調部は、前記入力信号で、前記第 1の光 DSB変調部から出 力される光と、前記第 2の光 DSB変調部から出力される光とのそれぞれを光角度変 調した後、合波することを特徴とする、請求項 6に記載の角度変調装置。
[10] 前記入力信号を、位相が当該入力信号と同じ同相信号と、当該入力信号の位相を 反転させた逆相信号とに分岐する位相反転部と、
前記第 1の光強度変調部の後段に配置され、入力される光を入力される信号で光 角度変調する第 2の光角度変調部とを更に備え、
前記第 1の光角度変調部は、入力される光を前記同相信号で角度変調することを 特徴とする、請求項 6に記載の角度変調装置。
[11] 前記第 1の光強度変調部は、入力される光を光 SSB— SC変調することを特徴とし 前記第 2の光強度変調部は、入力される光を光 SSB-SC変調することを特徴とする 、請求項 10に記載の角度変調装置。
[12] 前記第 2の光強度変調部は、
分岐された前記第 2の経路を伝搬する光を、前記第 1の電気信号と、位相を 180 ° ずらされた前記第 1の電気信号とで光 DSB変調する第 1の光 DSB変調部と、 分岐された前記第 2の経路を伝搬する光を、位相を 90° ずらされた前記第 1の電 気信号と、位相を 90° ずらされた後、更に位相を 180° ずらされた前記第 1の電気 信号とで光 DSB変調する第 2の光 DSB変調部とを含み、
前記第 1の光強度変調部は、
分岐された前記第 1の経路を伝搬する光を、前記第 2の電気信号と、位相を 180 ° ずらされた前記第 2の電気信号とで光 DSB変調する第 3の光 DSB変調部と、 分岐された前記第 1の経路を伝搬する光を、位相を 90° ずらされた前記第 2の電 気信号と、位相を 90° ずらされた後、更に位相を 180° ずらされた前記第 2の電気 信号とで光 DSB変調して出力する第 4の光 DSB変調部とを含み、
前記第 1の光角度変調部は、
前記同相信号で、前記第 1の光 DSB変調部から出力される光と、前記第 2の光 D SB変調部力 出力される光とのそれぞれを光角度変調した後、合波することを特徴 とし、
前記第 2の光角度変調部は、
前記逆相信号で、前記第 3の光 DSB変調部から出力される光と、前記第 4の光 D SB変調部力 出力される光とのそれぞれを光角度変調した後、合波することを特徴 とする、請求項 10に記載の角度変調装置。
[13] 前記光検波部から出力される角度変調信号の内、中心周波数 I fcl fc2 Iを有 する角度変調信号の帯域幅を B1とし、中心周波数 fclを有する角度変調信号の帯 域幅を B2とすると、 fcl<fc2のとき、
I fcl fc2 I≥BlZ2、かつ
I fcl-fc2 I +Bl/2<fcl-B2/2
を満たすことを特徴とする、請求項 7又は 9のいずれかに記載の角度変調装置。
[14] 前記光検波部から出力される角度変調信号の内、中心周波数 I fcl fc2 Iを有 する角度変調信号の帯域幅を B1とし、中心周波数 fc2を有する角度変調信号の帯 域幅を B3とすると、
fcl>fc2のとき、
I fcl-fc2 I≥BlZ2、かつ
I fcl-fc2 I +Bl/2<fc2-B3/2
を満たすことを特徴とする、請求項 7又は 9のいずれかに記載の角度変調装置。
[15] 前記光検波部から出力される角度変調信号から、周波数 I fcl fc2 Iを含む周 波数帯域に含まれる信号成分を抽出するフィルタを更に備える、請求項 1に記載の 角度変調装置。
PCT/JP2007/050293 2006-01-13 2007-01-12 角度変調装置 WO2007080950A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/160,290 US20090009259A1 (en) 2006-01-13 2007-01-12 Angle modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006005972 2006-01-13
JP2006-005972 2006-01-13

Publications (1)

Publication Number Publication Date
WO2007080950A1 true WO2007080950A1 (ja) 2007-07-19

Family

ID=38256356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050293 WO2007080950A1 (ja) 2006-01-13 2007-01-12 角度変調装置

Country Status (3)

Country Link
US (1) US20090009259A1 (ja)
CN (1) CN101371469A (ja)
WO (1) WO2007080950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032458A1 (zh) * 2009-09-16 2011-03-24 华为技术有限公司 调制信号的产生方法和传输设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712582B2 (ja) * 2010-12-02 2015-05-07 富士通株式会社 光送信器および光送信装置
WO2014016940A1 (ja) * 2012-07-26 2014-01-30 富士通オプティカルコンポーネンツ株式会社 光変調器及び光送信器
US9042486B2 (en) 2013-10-31 2015-05-26 Zbw Llc Sideband suppression in angle modulated signals
CN104410462B (zh) * 2014-12-25 2017-04-12 武汉邮电科学研究院 基于偏振复用的光信号调制与直接检测的方法及装置
CN105553560B (zh) * 2015-12-07 2018-01-02 武汉邮电科学研究院 基于光强度调制信号的偏振无关直接检测系统及方法
JP7273382B2 (ja) * 2019-09-06 2023-05-15 Kddi株式会社 光送信機および光送信方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133824A (ja) * 1999-05-19 2001-05-18 Matsushita Electric Ind Co Ltd 角度変調装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126870A (en) * 1989-12-22 1992-06-30 Raynet Corporation Linear broadband signal generator using primary and secondary optical modulators
US5168534A (en) * 1991-12-09 1992-12-01 United Technologies Corporation Cascaded optic modulator arrangement
SE469458B (sv) * 1991-12-20 1993-07-05 Ericsson Telefon Ab L M Foerfarande foer att linearisera en oeverfoeringsfunktion
US5644665A (en) * 1995-07-27 1997-07-01 The United States Of America As Represented By The Secretary Of The Navy Multi-octave, high dynamic range operation of low-biased modulators by balanced detection
SE515536C2 (sv) * 1995-08-16 2001-08-27 Ericsson Telefon Ab L M Kompensation av dispersion
US6556326B2 (en) * 1996-12-20 2003-04-29 Tyco Telecommunications (Us) Inc. Synchronous amplitude modulation for improved performance of optical transmission systems
JP3094950B2 (ja) * 1997-05-28 2000-10-03 日本電気株式会社 光送信装置及び光送信方法
JP4184474B2 (ja) * 1997-08-22 2008-11-19 松下電器産業株式会社 光伝送システムならびにそれに用いられる光送信装置および光受信装置
US6404535B1 (en) * 1998-11-30 2002-06-11 Trw Inc. Optically implemented wideband complex correlator using a multi-mode imaging device
US6211996B1 (en) * 1999-05-19 2001-04-03 Matsushita Electric Industrial Co., Ltd. Angle modulator
US6252693B1 (en) * 1999-05-20 2001-06-26 Ortel Corporation Apparatus and method for reducing impairments from nonlinear fiber effects in 1550 nanometer external modulation links
JP4028942B2 (ja) * 1999-06-14 2008-01-09 松下電器産業株式会社 周波数多重信号の光伝送システム
JP4210022B2 (ja) * 2000-06-28 2009-01-14 パナソニック株式会社 多重伝送装置
JP4646048B2 (ja) * 2001-03-02 2011-03-09 日本電気株式会社 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
US6744546B2 (en) * 2001-12-27 2004-06-01 Nippon Telegraph And Telephone Corporation Multilevel light-intensity modulating circuit
CA2415910A1 (en) * 2002-01-22 2003-07-22 Robert J. Davies Optical duobinary single sideband modulator
DE60309360T2 (de) * 2002-02-22 2007-09-20 Nippon Telegraph And Telephone Corp. Polarisationsverwürfler und optisches Netzwerk zu dessen Verwendung
JP2003255283A (ja) * 2002-03-04 2003-09-10 Opnext Japan Inc マッハツェンダ型光変調器
JP4440091B2 (ja) * 2004-12-24 2010-03-24 住友大阪セメント株式会社 光変調器
JP4922594B2 (ja) * 2005-05-23 2012-04-25 富士通株式会社 光送信装置、光受信装置、およびそれらを含む光通信システム
US20060263097A1 (en) * 2005-05-23 2006-11-23 Fujitsu Limited Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them
US7369715B2 (en) * 2005-08-22 2008-05-06 University Of Victoria Innovation And Development Corporation Photonic link using angle modulation and method of use thereof
JP4657860B2 (ja) * 2005-09-16 2011-03-23 富士通株式会社 光送信装置および光通信システム
JP2008039809A (ja) * 2006-08-01 2008-02-21 Matsushita Electric Ind Co Ltd 広帯域変調信号発生装置
JP2008042255A (ja) * 2006-08-01 2008-02-21 Matsushita Electric Ind Co Ltd 光送信器及び光伝送装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133824A (ja) * 1999-05-19 2001-05-18 Matsushita Electric Ind Co Ltd 角度変調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHIRA T. ET AL.: "Hikari Homodyne Kenpa ni yoru Koteiiki FM Hencho Hoshiki ni Kansuru Kento-System Teian to Ko Taiiki Henchoki no Kiso Tokusei-", IEICE TECHNICAL REPORT, vol. 105, no. 428 (OCS2005 74-88), 17 November 2005 (2005-11-17), XP003016083 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032458A1 (zh) * 2009-09-16 2011-03-24 华为技术有限公司 调制信号的产生方法和传输设备

Also Published As

Publication number Publication date
CN101371469A (zh) 2009-02-18
US20090009259A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US10418943B2 (en) System and method for high performance photonic down-conversion of microwave signals
US20050286908A1 (en) Optical communication using duobinary modulation
US6211996B1 (en) Angle modulator
WO2007080950A1 (ja) 角度変調装置
JP6540952B2 (ja) 光ツートーン信号の生成方法およびdp−mzm型光変調器の制御方法
WO2005091532A1 (ja) キャリア残留型信号の生成方法及びその装置
WO2013047829A1 (ja) キャリア抑圧光発生装置
JP4494347B2 (ja) 光変調装置
JP2009294263A (ja) 光ssb変調器
JP4577945B2 (ja) 角度変調装置
WO2006011410A1 (ja) 変調器、光送信器および光伝送装置
JPH1174847A (ja) Fm変調装置
US7421209B2 (en) Optical wavelength multiplexing FSK modulation method
JP4724949B2 (ja) 光変調方法とその光変調装置及び光無線伝送システム
KR100713408B1 (ko) 단측파대 변조 모듈과 그를 이용한 단측파대 변조 수단
JP2007215165A (ja) 角度変調装置
JPH11145535A (ja) 信号変換器、光送信器および光ファイバ伝送装置
JP4434688B2 (ja) 光変調装置
US20020080454A1 (en) Method, system and apparatus for optically transferring information
JP4728275B2 (ja) 光ssb送信装置
JP2824420B2 (ja) 光変調装置
JP2008158133A (ja) 光変調回路及び光変調方法
JP4510576B2 (ja) 光送信装置及び光送信方法
JP2007036724A (ja) 角度変調装置、角度復調装置、およびそれらを用いた光ファイバ伝送システム
JP4219519B2 (ja) 周波数変調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12160290

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780002361.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706636

Country of ref document: EP

Kind code of ref document: A1