WO2006011410A1 - 変調器、光送信器および光伝送装置 - Google Patents

変調器、光送信器および光伝送装置 Download PDF

Info

Publication number
WO2006011410A1
WO2006011410A1 PCT/JP2005/013379 JP2005013379W WO2006011410A1 WO 2006011410 A1 WO2006011410 A1 WO 2006011410A1 JP 2005013379 W JP2005013379 W JP 2005013379W WO 2006011410 A1 WO2006011410 A1 WO 2006011410A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
modulated light
phase
signal
modulator
Prior art date
Application number
PCT/JP2005/013379
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Nojima
Tomoaki Ohira
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/570,527 priority Critical patent/US7693427B2/en
Publication of WO2006011410A1 publication Critical patent/WO2006011410A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes

Definitions

  • the present invention relates to an optical transmission device that transmits a multi-channel signal through an optical fiber, and in particular,
  • the present invention relates to a modulator that modulates a multi-channel signal, an optical transmitter that transmits a signal modulated by the modulator, and an optical transmission device that includes the optical transmitter.
  • a multi-channel signal is modulated by a modulator using a optical dyne detection method, and the modulated signal is converted into an optical signal.
  • An optical transmission device for transmission has been proposed (see, for example, Non-Patent Document 1).
  • FIG. 5 shows a configuration diagram of a conventional optical transmission device including an FM modulator using an optical heterodyne detection method.
  • a conventional optical transmission device includes an FM modulator 12 that modulates an input multi-channel signal into an FM signal, which is an electrical signal, and an EO converter that converts the FM signal into an optical signal and sends it to an optical fiber 4.
  • An optical receiver 11 comprising an optical transmitter 11 configured, an OE converter 6 that converts an optical signal transmitted through the optical fiber 4 into an electrical signal, and an FM demodulator 7 that demodulates and outputs the electrical signal. 5 and so on.
  • the FM modulator 12 will be described in detail with reference to each part of the conventional FM modulator shown in FIGS. 5 and 6 and the output spectrum of the FM modulator.
  • the branch circuit 121 When the branch circuit 121 is input to the frequency-multiplexed multi-channel signal force FM modulator shown in FIG. 6 (a), the two multi-channel signals whose phases are inverted are converted into the first different wavelengths.
  • the laser beam is output to each of the semiconductor laser 122a and the second semiconductor laser 122b.
  • Each of the semiconductor laser 122a and the semiconductor laser 122b is based on the inputted multi-channel signal!
  • the spectrum of the FM modulated light output from the semiconductor lasers 122a and 122b is FM-modulated around 200 THz by the multi-channel signal input to the semiconductor lasers 122a and 122b.
  • the optical frequency of the semiconductor lasers 122a and 122b is FM-modulated, the intensity will also change, so the spectrum of the FM-modulated light output from the semiconductor lasers 122a and 122b is the same frequency component as the multichannel signal.
  • Residual AM signal with will be generated.
  • the residual AM signal causes noise in the multi-channel signal after FM demodulation and causes distortion characteristics to deteriorate.
  • the optical power plastic 123 combines the two FM modulated lights and outputs the optical signal to the light receiving element 125. Since the phases of the two multi-channel signals that FM modulate the optical frequencies of the semiconductor laser 122a and the semiconductor laser 122b are inverted, the phase of the residual AM component is also inverted. For this reason, the optical power plastic 124 cancels and combines the residual AM components of the FM modulated light output from the semiconductor laser 122a and the semiconductor laser 122b, respectively. Residual AM signal is not output as shown in (d)
  • the light receiving element 125 outputs an FM signal in which the difference between the frequencies of the two FM modulated lights combined by optical heterodyne detection is also an electrical signal.
  • Figure 6 (e) shows the FM signal output from the light receiving element 125.
  • This FM signal is obtained by FM modulation of the multi-channel signal input to the FM modulator 12, and the center frequency of the FM signal is the difference between the center values of the optical frequencies output by the two semiconductor lasers 122a and 122b. Determined.
  • the optical receiver 16 receives the multi-channel signal shown in FIG. 6 (f) by performing FM demodulation on the FM signal shown in FIG. 6 (e).
  • the two semiconductor lasers are modulated based on the two multi-channel signals whose phases are inverted, and the two semiconductor lasers are respectively modulated.
  • the FM modulated light output from the laser By combining the FM modulated light output from the laser, the residual AM signal contained in each FM modulated light can be canceled, so the residual AM signal is suppressed from the multi-channel signal input to the FM modulator.
  • FM modulation see Patent Document 1, for example).
  • FIG. 7 is a block diagram of a conventional optical transmission device including the optical phase modulator using the optical heterodyne detection method, as shown in FIG.
  • the semiconductor lasers 222a and 222b output an unmodulated optical signal (local light) shown in FIG. 8 (b).
  • the optical phase modulator 223 modulates the phase of the local light output from the semiconductor laser 222b based on the frequency-multiplexed multi-channel signal, and outputs the phase-modulated light shown in FIG. 8 (c).
  • the spectrum of the phase modulated light output from the optical phase modulator 223 is modulated around 200 THz by the multi-channel signal input to the optical phase modulator 223. Further, the residual AM signal is not generated by phase-modulating the local light output from the semiconductor laser by the optical phase modulator 223.
  • the optical power plug 223 combines the local light output from the semiconductor laser 222a and the phase-modulated light output from the optical phase modulator 223, and receives the optical signal shown in FIG. Output to 223.
  • the light receiving element 225 outputs a phase-modulated signal that is also an electric signal having a difference in frequency between two optical signals combined by optical heterodyne detection.
  • Figure 8 (e) shows the phase modulation signal output from the light receiving element 225.
  • This phase-modulated signal is obtained by phase-modulating a multi-channel signal input to the optical phase modulator 223.
  • the center frequency of this phase-modulated signal is the center value of the optical frequencies output by the two semiconductor lasers 222a and 222b. It is determined by the difference.
  • the optical receiver 6 receives the multi-channel signal shown in FIG. 8 (f) by performing FM demodulation on the phase modulation signal shown in FIG. 8 (e). Since phase modulation and frequency modulation are almost the same angle modulation method, the multi-channel signal can be demodulated by the FM demodulator 7 of the optical receiver 6.
  • the local light output from the semiconductor laser is phase-modulated based on the multichannel signal, and is input to the phase modulator. It is possible to modulate the phase of the multi-channel signal without generating a residual AM signal (see, for example, Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 11-112433
  • Patent Document 2 JP-A-10-13354
  • Non-Patent Document 1 K. Kikushima, et al .: Super-wide -band optical FM modulation scheme and its application to multi-channel AM video transmission systems, IEEE Photonics Technology Letters, pp. 839-841, 1996.
  • the frequency of a multi-channel signal that FM modulates the optical frequency of a semiconductor laser is high, and two FM modulated lights whose phases are accurately inverted Therefore, it is difficult to cancel the residual AM signal because it is difficult to cancel the residual AM signal even if the two FM modulated lights are combined.
  • the allowable phase difference between two multi-channel signals is set to 10 degrees to sufficiently cancel out the residual AM signal
  • the delay difference between the two nodes up to the optical power bra is allowed to about 280 ps at 100 MHz. In the case of 2 GHz, only up to 14 ps is allowed. This 14 ps delay difference is easily generated by variations in the group delay of the semiconductor laser and the group delay of the branch circuit, and it is difficult to sufficiently cancel the residual AM signal.
  • Multi-channel signals obtained by demodulating phase-modulated signals with a detector have a frequency characteristic in which the amplitude decreases as the frequency of the lower-frequency channel signal decreases. Resulting in.
  • the present invention has been made in view of the above circumstances, and suppresses the residual AM signal regardless of the frequency of the channel signal and degrades the channel signal due to insufficient FM demodulation amplitude being obtained. It is an object of the present invention to provide a modulator, an optical transmitter, and an optical transmission device that can modulate a channel signal while suppressing the above.
  • the modulator of the present invention is a modulator that modulates an input signal, and a phase inversion unit that outputs an inverted signal obtained by inverting the phase of the first input signal transmitted in the first frequency band.
  • a first semiconductor laser that FM modulates the first input signal and outputs a first FM modulated light and a second semiconductor laser that FM modulates the inverted signal and outputs a second FM modulated light; Changing one phase of the first FM modulated light or the second FM modulated light based on the second input signal transmitted in the second frequency band, and outputting the phase modulated light
  • the low frequency channel signal modulates the optical frequency of the semiconductor laser by FM modulation
  • the high frequency channel signal modulates the optical frequency of the semiconductor laser by the optical phase modulator.
  • the residual AM signal can be suppressed, and deterioration of the channel signal due to insufficient FM demodulation amplitude can be suppressed.
  • the optical phase modulation means changes the phase of the first FM modulated light based on the second input signal, and outputs the first phase modulated light. And changing the phase of the second FM modulated light based on a third input signal transmitted in a third frequency band, outputting a second phase modulated light, and the optical multiplexing means And outputting the modulated light obtained by combining the first phase modulated light and the second phase modulated light.
  • the modulator according to the present invention outputs the second FM modulated light at the timing of outputting the first FM modulated light from the first semiconductor laser, or the second semiconductor laser power. Including a timing control means for controlling the timing to be performed.
  • phase of one of the first FM modulated light and the second FM modulated light is delayed. Including those provided with optical delay means.
  • the modulator of the present invention includes one in which the first input signal, the second input signal, and the third input signal are frequency-multiplexed multi-channel signals.
  • a large number of channel signals can be modulated at a time by inputting a plurality of frequency-multiplexed input signals to the modulator.
  • the modulator of the present invention includes a modulator in which the first frequency band is 900 MHz or less and the second and third frequency bands are 900 MHz or more.
  • the optical transmitter of the present invention is an optical transmitter including the modulator of the present invention, and an EO conversion unit that converts a modulated signal modulated by the modulator into an optical signal; and the EO conversion unit And transmitting means for transmitting the optical signal converted by.
  • the low-frequency channel signal modulates the optical frequency of the semiconductor laser by FM modulation
  • the high-frequency channel signal modulates the optical frequency of the semiconductor laser by the optical phase modulator. Regardless of the frequency of the channel signal, the residual AM signal can be suppressed, and deterioration of the channel signal due to insufficient FM demodulation amplitude can be suppressed.
  • An optical transmission device of the present invention is an optical transmission device configured with the optical transmitter of the present invention and an optical receiver that receives an optical signal transmitted from the optical transmitter via an optical fiber.
  • the optical receiver receives the optical signal transmitted through the optical fiber, an OE converter that converts the optical signal into an electrical signal, and an OE converter that converts the optical signal.
  • an FM demodulator for FM demodulating the electrical signal.
  • the low frequency channel signal modulates the optical frequency of the semiconductor laser by FM modulation
  • the high frequency channel signal modulates the optical frequency of the semiconductor laser by the optical phase modulator. Regardless of the frequency of the channel signal, the residual AM signal can be suppressed, and deterioration of the channel signal due to insufficient FM demodulation amplitude can be suppressed.
  • the residual AM signal is suppressed regardless of the frequency of the channel signal, and sufficient FM demodulation amplitude cannot be obtained.
  • the channel signal can be modulated while suppressing the deterioration of the channel signal.
  • FIG. 1 is a configuration diagram of an optical transmission device including a modulator according to a first embodiment of the invention.
  • FIG. 2 Each part of the modulator of the first embodiment of the present invention and the output spectrum of the FM demodulator.
  • FIG. 3 Configuration diagram of the modulator of the second embodiment of the present invention.
  • FIG. 7 Configuration diagram of a conventional optical transmission device including an optical phase modulator using optical heterodyne detection.
  • FIG. 1 shows a configuration diagram of an optical transmission apparatus including the modulator according to the first embodiment of the present invention.
  • the optical transmission device including the modulator according to the first embodiment of the present invention includes an optical fiber that converts the modulated signal into an optical signal by the modulator 2 that modulates the input first and second multi-channel signals.
  • Optical transmitter 1 composed of an EO converter that sends to 4 and an OE converter 6 that converts the optical signal transmitted by optical fiber 4 into an electrical signal and FM that demodulates and outputs the electrical signal FM
  • the modulator 2 will be described in detail with reference to each part of the modulator according to the first embodiment of the present invention shown in FIGS. 1 and 2 and the output spectrum of the FM demodulator.
  • the two first inverted phases are provided. Are output to the first semiconductor laser 22a and the second semiconductor laser 22b having different wavelengths.
  • Each of the semiconductor laser 22a and the semiconductor laser 22b has the first FM modulated light and the second FM shown in FIGS. 2 (b) and 2 (c), respectively, in which the optical frequency is FM-modulated based on the input multi-channel signal.
  • the modulated light is output to the light intensity bra 23.
  • Residual AM signals having the same frequency component as the first multichannel signal are generated in the spectrum of the FM modulated light output from the semiconductor lasers 22a and 22b.
  • the optical phase modulator 23 is a second multi-channel in which the second FM modulated light input from the semiconductor laser 22b is frequency-multiplexed with a high-frequency channel signal of 900 MHz or higher, as shown in FIG. 2 (d). Further phase modulation is performed based on the signal, and the phase-modulated light shown in Fig. 2 (e) is output.
  • the optical power bra 24 combines the first FM modulated light output from the semiconductor laser 22a and the phase modulated light output from the optical phase modulator 23, and outputs the optical signal to the light receiving element 25. . Since the phases of the two multichannel signals that FM modulate the optical frequencies of the semiconductor laser 22a and the semiconductor laser 22b are inverted, the phase of the residual AM component is also inverted. For this reason, the optical power bra 24 cancels and combines the remaining AM components of the FM modulated light output from the semiconductor laser 22a and the semiconductor laser 22b, respectively. As shown in Fig. 2 (f), the residual AM signal is not output.
  • the light receiving element 25 outputs a modulated signal that is a difference electric signal between the frequencies of the first FM modulated light and the phase modulated light combined by optical heterodyne detection.
  • Fig. 2 (g) shows the modulation signal output from the light receiving element 25.
  • This modulated signal is obtained by FM-modulating the first multi-channel signal input to the semiconductor lasers 2a and 2b and phase-modulating the second multi-channel signal input to the optical phase modulator 3.
  • the center frequency of the above signal is determined by the difference between the center values of the optical frequencies of the two semiconductor lasers 2a and 2b.
  • the optical receiver 5 performs FM demodulation on the modulation signal output from the light receiving element 25, so that the first multi-channel signal and the second multi-channel signal shown in FIG. Receives a channel signal.
  • Multi-channel signals can be demodulated without any deterioration in low-frequency channel signals. Since phase modulation and frequency modulation are almost the same angle modulation method, the multi-channel signal can be demodulated by the FM demodulator 7 of the optical receiver 6.
  • the low-frequency channel signal modulates the optical frequency of the semiconductor laser by FM modulation
  • the high-frequency channel signal is By modulating the optical frequency of the semiconductor laser with the optical phase modulator, the residual AM signal can be suppressed regardless of the frequency of the channel signal, and the sufficient FM demodulation amplitude cannot be obtained. Deterioration can be suppressed.
  • FIG. 3 shows a configuration diagram of the modulator according to the second embodiment of the present invention. Note that the same reference numerals as those in FIG. 1 denote the same components, and a description thereof will be omitted.
  • the modulator of the second embodiment of the present invention includes a first optical phase modulator 23a that performs optical phase modulation between the first semiconductor laser 22a and the optical power bra 24, and a second optical phase modulator 23b.
  • a first optical phase modulator 23a that performs optical phase modulation between the first semiconductor laser 22a and the optical power bra 24, and a second optical phase modulator 23b.
  • the second and third multi-channel signals which are frequency-multiplexed with a high-frequency channel signal of 900 MHz or higher, are modulated with the respective optical phases. This is input to the devices 23a and 23b.
  • the optical power bra 24 combines the phase-modulated lights output from the optical phase modulators 23a and 23b, and outputs the optical signals to the light receiving element 25.
  • each FM modulated light output from the first and second semiconductor lasers is phase-modulated with different multi-channel signals. By doing so, many multi-channel signals can be modulated at once.
  • FIG. 4 shows a configuration diagram of the modulator according to the third embodiment of the present invention. Note that the same reference numerals as those in FIG. 1 denote the same components, and a description thereof will be omitted.
  • the FM modulated light output from the second semiconductor laser 22b is optically phase modulated by the optical phase modulator 23 as in the modulator of the first embodiment of the present invention shown in FIG. Due to the delay caused by the first semiconductor laser 22a and the time required for FM modulated light to be input to the optical power bra 24 and the optical power from the second semiconductor laser 22b via the optical phase modulator 23. There is a time difference in the time required for the phase modulated light to be input to the bra 24, and the phase of the FM modulated light output from the first semiconductor laser power and the phase of the phase modulated light output from the second semiconductor laser power. May not be correctly inverted.
  • an optical delay function unit 26 is provided between the first semiconductor laser 22 a and the optical power bra 24.
  • the optical delay function unit 26 the phase of the FM modulated light output by the first semiconductor laser power is delayed by the delay generated by the optical phase modulation by the optical phase modulator 23.
  • the optical transmission device including the modulator of the third embodiment of the present invention, even if a delay occurs when phase modulation is performed by the optical phase modulator, the FM modulated light output from the first semiconductor laser And the phase of the phase-modulated light that is output from the second semiconductor laser force can be accurately inverted, and the residual AM signal can be canceled by combining the two modulated light components that have been inverted. .
  • the optical delay function unit 26 may be an optical waveguide such as an optical fiber.
  • the FM modulated light output from the first and second semiconductor laser powers is phase-modulated by the optical phase modulator, respectively, and the phase modulated light delayed by the same time is output.
  • a time difference may not be generated in the phase-modulated light output from each optical phase modulator.
  • the modulator according to the third embodiment of the present invention has a force that optically delays the phase of the FM modulated light output from the first semiconductor laser 22a by the optical delay function unit 26.
  • a control unit for controlling the timing of outputting the FM modulated light to the second semiconductor laser 22 is provided between the branch circuit 21 and the first and second semiconductor lasers 22, and a multi-channel signal is input to the second semiconductor laser. Control may be made so that the multichannel signal is input to the first semiconductor laser at a timing later than the timing, and conversely, the second channel is input at a timing earlier than the timing when the multichannel signal is input to the first semiconductor laser. It may be controlled to input a multi-channel signal to the semiconductor laser.
  • the modulator, the optical transmitter, and the optical transmission device of the present invention suppress the residual AM signal regardless of the frequency of the channel signal, and suppress the deterioration of the channel signal due to insufficient FM demodulation amplitude.
  • the optical transmission device that has the effect of transmitting the multi-channel signal through the optical fiber, in particular, the modulator that modulates the multi-channel signal, and the signal modulated by the modulator.
  • the present invention is useful for an optical transmitter that transmits an optical signal and an optical transmission apparatus including the optical transmitter.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明は、チャンネル信号の周波数によらず、残留AM信号を抑圧し、かつ、充分なFM復調振幅が得られないことによるチャンネル信号の劣化を抑圧してチャンネル信号を変調することができる変調器、光送信器および光伝送装置を提供することを目的とする。  本発明の変調器2は、入力信号を変調する変調器2であって、第1の周波数帯域で伝送される第1の入力信号の位相を反転した反転信号を出力する分岐回路21と、前記第1の入力信号をFM変調して第1のFM変調光を出力する第1の半導体レーザ22aと、前記反転信号をFM変調して第2のFM変調光を出力する第2の半導体レーザ22bと、前記第1のFM変調光または前記第2のFM変調光の一方の位相を、第2の周波数帯域で伝送される第2の入力信号に基づいて変化させ、位相変調光を出力する光位相変調手段23と、前記第1のFM変調光または前記第2のFM変調光の他方と、前記位相変調光とを合波した変調光を出力する光合波手段24と、前記変調光を光ヘテロダイン検波して変調信号に変換する光電変換手段25と、を備えるものである。

Description

変調器、光送信器および光伝送装置
技術分野
[0001] 本発明は、光ファイバにより多チャンネル信号を伝送する光伝送装置に関し、特に
、多チャンネル信号を変調する変調器、この変調器により変調した信号を送信する光 送信器、および、この光送信器を含む光伝送装置に関する。
背景技術
[0002] 光ファイバにより多チャンネル信号を伝送する従来の光伝送装置としては、光へテ 口ダイン検波方式を用いた変調器により多チャンネル信号を変調し、変調した信号を 光信号に変換して伝送する光伝送装置が提案されている (例えば、非特許文献 1参 照)。
[0003] 図 5に、光へテロダイン検波方式を用いた FM変調器を含む、従来の光伝送装置の 構成図を示す。従来の光伝送装置は、入力された多チャンネル信号を電気信号であ る FM信号に変調する FM変調器 12と FM信号を光信号に変換して光ファイバ 4へと 送出する EO変換部とから構成される光送信器 11と、光ファイバ 4で伝送された光信 号を電気信号に変換する OE変換部 6とその電気信号を FM復調して出力する FM 復調器 7とから構成される光受信器 5、とを含んで構成される。
[0004] FM変調器 12について、図 5及び図 6に示す従来の FM変調器の各部及び FM復 調器の出力スペクトラムを参照して、詳細に説明する。
[0005] 分岐回路 121は、図 6 (a)に示す周波数多重された多チャンネル信号力FM変調 器に入力されると、位相を反転させた 2つの多チャンネル信号を、波長の異なる第 1 の半導体レーザ 122a、第 2の半導体レーザ 122bそれぞれに出力する。
[0006] 半導体レーザ 122aおよび半導体レーザ 122bはそれぞれ、入力された多チャンネ ル信号に基づ!、て光周波数が FM変調された、図 6 (b)及び図 6 (c)に示す FM変調 光を光力プラ 123に出力する。半導体レーザ 122a、 122bが出力する FM変調光の スペクトラムは、半導体レーザ 122a、 122bに入力される多チャンネル信号によって、 約 200THz付近で FM変調される(FM変調することによりスペクトラムは広がって!/ヽ る)。また、半導体レーザ 122a、 122bの光周波数を FM変調した際にその強度も変 調してしまうため、半導体レーザ 122a、 122bが出力する FM変調光のスペクトラムに はそれぞれ、多チャンネル信号と同一周波数成分をもつ残留 AM信号が発生してし まう。残留 AM信号は、 FM復調後の多チャンネル信号にノイズを生じさせ、また歪特 性を劣化させる原因となる。
[0007] 光力プラ 123は、この 2つの FM変調光を合波し、その光信号を受光素子 125に出 力する。半導体レーザ 122aと半導体レーザ 122bの光周波数を FM変調する 2つの 多チャンネル信号の位相が反転して ヽるため、上記の残留 AM成分もまた位相が反 転している。このため、光力プラ 124は半導体レーザ 122aと半導体レーザ 122bとか らそれぞれ出力された FM変調光の残留 AM成分を打ち消して合波するため、光力 ブラ 124が出力した光信号には、図 6 (d)に示すように残留 AM信号が出力されない
[0008] 受光素子 125は、光へテロダイン検波によって、合波された 2つの FM変調光の周 波数の差力も電気信号である FM信号を出力する。図 6 (e)は受光素子 125が出力 する FM信号を示している。この FM信号は、 FM変調器 12に入力された多チャンネ ル信号を FM変調したものであり、 FM信号の中心周波数は 2つの半導体レーザ 122 a、 122bが出力する光周波数の中心値の差で決まる。
[0009] 光受信器 16は、図 6 (e)に示す FM信号を FM復調することで図 6 (f)に示す多チヤ ンネル信号を受信する。
[0010] このように、 FM変調器を含む従来の光伝送装置によれば、位相が反転した 2つの 多チャンネル信号に基づ 、て 2つの半導体レーザの光周波数をそれぞれ変調し、 2 つの半導体レーザから出力された FM変調光を合波することにより、それぞれの FM 変調光に含まれる残留 AM信号を打ち消すことができるため、 FM変調器に入力され た多チャンネル信号を残留 AM信号を抑圧して FM変調することができる(例えば特 許文献 1参照)。
[0011] また、上述の残留 AM信号が発生しない光位相変調器について、図 7に示す、光 ヘテロダイン検波方式を用いた光位相変調器を含む、従来の光伝送装置の構成図 、および、図 8に示す、従来の、光位相変調器の各部及び FM復調器の出カスペタト ラムを参照して説明する。なお、図 5、図 6と同一符号のものは、同一の構成を示して おり、説明は省略する。
[0012] 半導体レーザ 222a、 222bは、図 8 (b)に示す、無変調の光信号(ローカル光)を出 力する。
[0013] 光位相変調器 223は、半導体レーザ 222bから出力されたローカル光を周波数多 重された多チャンネル信号に基づいて位相変調し、図 8 (c)に示す位相変調光を出 力する。光位相変調器 223が出力する位相変調光のスペクトラムは、光位相変調器 223に入力される多チャンネル信号によって、約 200THz付近で変調される。また、 半導体レーザから出力されたローカル光を光位相変調器 223で位相変調することに より、残留 AM信号が発生しない。
[0014] 光力プラ 223は、半導体レーザ 222aから出力されたローカル光と光位相変調器 22 3から出力された位相変調光とを合波し、図 8 (d)に示す光信号を受光素子 223に出 力する。
[0015] 受光素子 225は、光へテロダイン検波によって、合波された 2つの光信号の周波数 の差力も電気信号である位相変調信号を出力する。図 8 (e)に受光素子 225が出力 する位相変調信号を示している。この位相変調信号は、光位相変調器 223に入力さ れた多チャンネル信号を位相変調したものであり、この位相変調信号の中心周波数 は二つの半導体レーザ 222a、 222bが出力する光周波数の中心値の差で決まる。
[0016] 光受信器 6は、図 8 (e)に示す位相変調信号を FM復調することで図 8 (f)に示す多 チャンネル信号を受信する。位相変調と周波数変調は、ほぼ同義の角度変調方式 であるため、光受信器 6の FM復調器 7によって多チャンネル信号を復調することが できる。
[0017] このように、光位相変調器を含む従来の光伝送装置によれば、半導体レーザから 出力されたローカル光を多チャンネル信号に基づ 、て位相変調することにより、位相 変調器に入力された多チャンネル信号を残留 AM信号が発生することなしに位相変 調することができる (例えば特許文献 2参照)。
特許文献 1:特開平 11― 112433号公報
特許文献 2 :特開平 10— 13354号公報 非特許文献 1 :K. Kikushima, et al. : Super -wide -band optical FM modulation scheme and its application to multi― channel AM video transmission systems, IEEE Photonics Technology Letters, pp. 839 - 841, 1996。
発明の開示
発明が解決しょうとする課題
[0018] し力しながら、従来の FM変調器含む光伝送装置においては、半導体レーザの光 周波数を FM変調する多チャンネル信号の周波数が高 、と、正確に位相が反転した 2つの FM変調光を光力ブラに入力することが困難なため、この 2つの FM変調光を 合波しても残留 AM信号を充分に打ち消すことができず、残留 AM信号の抑圧が困 難になる。例えば、残留 AM信号を充分に打ち消すための、 2つの多チャンネル信号 の許容位相差を 10度とした場合、分岐回路力も光力ブラまでの 2つのノ スの遅延差 は 100MHzでは 280ps程度まで許容される力 2GHzの場合は 14ps程度までしか 許容されない。この 14psの遅延差は半導体レーザの群遅延や分岐回路の群遅延等 のばらつきなどによって容易に発生するため、残留 AM信号を充分に打ち消すことが 困難である。
[0019] また、従来の光位相変調器含む光伝送装置においては、半導体レーザの光周波 数を光位相変調する多チャンネル信号の周波数が低いと、図 8 (f)に示すように、光 受信器で位相変調信号を復調した多チャンネル信号は低い周波数のチャンネル信 号ほど振幅が小さくなる周波数特性を持っため、低い周波数のチャンネル信号は充 分な FM復調振幅が得られず、信号劣化が発生してしまう。
[0020] 本発明は、上記事情に鑑みてなされたもので、チャンネル信号の周波数によらず、 残留 AM信号を抑圧し、かつ、充分な FM復調振幅が得られないことによるチャンネ ル信号の劣化を抑圧してチャンネル信号を変調することができる変調器、光送信器 および光伝送装置を提供することを目的とする。
課題を解決するための手段
[0021] 本発明の変調器は、入力信号を変調する変調器であって、第 1の周波数帯域で伝 送される第 1の入力信号の位相を反転した反転信号を出力する位相反転手段と、前 記第 1の入力信号を FM変調して第 1の FM変調光を出力する第 1の半導体レーザと 、前記反転信号を FM変調して第 2の FM変調光を出力する第 2の半導体レーザと、 前記第 1の FM変調光または前記第 2の FM変調光の一方の位相を、第 2の周波数 帯域で伝送される第 2の入力信号に基づ 、て変化させ、位相変調光を出力する光位 相変調手段と、前記第 1の FM変調光または前記第 2の FM変調光の他方と、前記位 相変調光とを合波した変調光を出力する光合波手段と、前記変調光を光へテロダイ ン検波して変調信号に変換する光電変換手段と、を備えるものである。
[0022] この構成によれば、周波数の低いチャンネル信号は、 FM変調により半導体レーザ の光周波数を変調し、周波数の高いチャンネル信号は、光位相変調器により半導体 レーザの光周波数を変調することにより、チャンネル信号の周波数に依らず、残留 A M信号を抑圧することができ、かつ、充分な FM復調振幅が得られないことによるチヤ ンネル信号の劣化を抑えることができる。
[0023] また、本発明の変調器は、前記光位相変調手段が、前記第 1の FM変調光の位相 を、前記第 2の入力信号に基づいて変化させ、第 1の位相変調光を出力し、前記第 2 の FM変調光の位相を、第 3の周波数帯域で伝送される第 3の入力信号に基づ 、て 変化させ、第 2の位相変調光を出力し、前記光合波手段が、前記第 1の位相変調光 と前記第 2の位相変調光とを合波した前記変調光を出力するものを含む。
[0024] この構成によれば、半導体レーザ毎の光周波数を光位相変調することにより、一度 に多くのチャンネル信号を光位相変調することができる。
[0025] また、本発明の変調器は、前記第 1の半導体レーザから前記第 1の FM変調光を出 力するタイミング、または、前記第 2の半導体レーザ力も前記第 2の FM変調光を出力 するタイミングを制御するタイミング制御手段を備えるものを含む。
[0026] この構成によれば、半導体レーザから出力された FM変調光を光位相変調すること により遅延が発生したために、光力ブラに入力する 2つの変調光の位相を正確に反 転することができない場合でも、 2つの半導体レーザが変調光を出力するタイミングを 制御して、位相が反転した 2つの変調光を合波することにより、残留 AM信号を打ち 消すことができる。
[0027] また、前記第 1の FM変調光または前記第 2の FM変調光の一方の位相を遅延する 光遅延手段を備えるものを含む。
[0028] この構成によれば、半導体レーザから出力された FM変調光を光位相変調すること により遅延が発生したために、光力ブラに入力する 2つの変調光の位相を正確に反 転することができな 、場合でも、遅延が発生して 、な 、FM変調光の位相をその遅延 分だけ遅延させて、位相が反転した 2つの変調光を合波することにより、残留 AM信 号を打ち消すことができる。
[0029] また、本発明の変調器は、前記第 1の入力信号、前記第 2の入力信号、および前記 第 3の入力信号が、周波数多重された多チャンネル信号であるものを含む。
[0030] この構成によれば、周波数多重された複数の入力信号を変調器に入力することに より、一度に多くのチャンネル信号を変調することができる。
[0031] さらに、本発明の変調器は、前記第 1の周波数帯域が 900MHz以下であり、前記 第 2、 3の周波数帯域が 900MHz以上であるものを含む。
[0032] この構成によれば、実際の地上波アナログ信号、地上波デジタル信号、 64QAM デジタル信号、 BSデジタル、 BSアナログ、 CSデジタル信号の IF信号に対応するこ とがでさる。
[0033] 本発明の光送信器は、本発明の変調器を含む光送信器であって、前記変調器に より変調された変調信号を光信号に変換する EO変換部と、前記 EO変換部により変 換した前記光信号を送信する送信手段と、を備えるものである。
[0034] この構成によれば、周波数の低いチャンネル信号は、 FM変調により半導体レーザ の光周波数を変調し、周波数の高いチャンネル信号は、光位相変調器により半導体 レーザの光周波数を変調することにより、チャンネル信号の周波数に依らず、残留 A M信号を抑圧することができ、かつ、充分な FM復調振幅が得られないことによるチヤ ンネル信号の劣化を抑えることができる。
[0035] 本発明の光伝送装置は、本発明のの光送信器と、前記光送信器から光ファイバを 介して送信された光信号を受信する光受信器力 構成される光伝送装置であって、 前記光受信器が、前記光ファイバを介して送信された前記光信号を受信する受信手 段と、前記光信号を電気信号に変換する OE変換部と、前記 OE変換部により変換さ れた電気信号を FM復調する FM復調器と、を備えるものである。 [0036] この構成によれば、周波数の低いチャンネル信号は、 FM変調により半導体レーザ の光周波数を変調し、周波数の高いチャンネル信号は、光位相変調器により半導体 レーザの光周波数を変調することにより、チャンネル信号の周波数に依らず、残留 A M信号を抑圧することができ、かつ、充分な FM復調振幅が得られないことによるチヤ ンネル信号の劣化を抑えることができる。
発明の効果
[0037] 本発明の変調器、光送信器および光伝送装置によれば、チャンネル信号の周波数 によらず、残留 AM信号を抑圧し、かつ、充分な FM復調振幅が得られないことによ るチャンネル信号の劣化を抑圧して、チャネル信号を変調することができる。
図面の簡単な説明
[0038] [図 1]本発明の第 1実施形態の変調器を含む光伝送装置の構成図
[図 2]本発明の第 1実施形態の変調器の各部、及び、 FM復調器の出力スペクトラム [図 3]本発明の第 2実施形態の変調器の構成図
圆 4]本発明の第 3実施形態の変調器の構成図
[図 5]光へテロダイン検波方式を用いた FM変調器を含む、従来の光伝送装置の構 成図
[図 6]従来の FM変調器の各部及び FM復調器の出力スペクトラム
[図 7]光へテロダイン検波方式を用いた光位相変調器を含む、従来の光伝送装置の 構成図
[図 8]従来の光位相変調器の各部及び FM復調器の出力スペクトラム
符号の説明
[0039] 21、 121 分岐回路
22a, 122a, 222a 半導体レーザ
22b, 122b, 222b 半導体レーザ
23、 223 光位相変調器
23a, 光位相変調器
23b、 光位相変調器
24、 124、 224 光力プラ 25、 125、 225 受光素子
26 光遅延機能部
1 光达信器
2 変調器
3 EO変換部
4 光ファイバ
5 光受信器
6 OE変換部
7 FM復調器
発明を実施するための最良の形態
[0040] 以下、本発明の実施の形態の変調器、この変調器により変調した信号を送信する 光送信器、および、この光送信器を含む光伝送装置について、図面を参照して詳細 に説明する。なお、図 5から図 8と同一符号のものは、同一の構成を示している。
[0041] (第 1実施形態)
本発明の第 1実施形態の変調器、光送信器および光伝送装置について詳細に説 明する。
[0042] 図 1に、本発明の第 1実施形態の変調器を含む光伝送装置の構成図を示す。本発 明の第 1実施形態の変調器を含む光伝送装置は、入力された第 1、第 2の多チャン ネル信号を変調する変調器 2と変調した信号を光信号に変換して光ファイバ 4へ送 出する EO変換部とから構成される光送信器 1と、光ファイバ 4で伝送された光信号を 電気信号に変換する OE変換部 6とその電気信号を FM復調して出力する FM復調 器 7とから構成される光受信器 5、とを含んで構成される。
[0043] 変調器 2について、図 1及び図 2に示す本発明の第 1実施形態の変調器の各部、 及び、 FM復調器の出力スペクトラムを参照して、詳細に説明する。
[0044] 分岐回路 21は、図 2 (a)に示す、 900MHz以下の低い周波数のチャンネル信号で 周波数多重された第 1の多チャンネル信号が入力されると、位相を反転させた 2つの 第 1の多チャンネル信号を、波長の異なる第 1の半導体レーザ 22a、第 2の半導体レ 一ザ 22bそれぞれに出力する。 [0045] 半導体レーザ 22aおよび半導体レーザ 22bはそれぞれ、入力された多チャンネル 信号に基づいて光周波数が FM変調された、図 2 (b)および図 2 (c)に示す第 1FM 変調光および第 2FM変調光を光力ブラ 23に出力する。半導体レーザ 22a、 22bが 出力する FM変調光のスペクトラムにはそれぞれ、第 1の多チャンネル信号と同一周 波数成分をもつ残留 AM信号が発生する。
[0046] 光位相変調器 23は、半導体レーザ 22bから入力された第 2FM変調光を、図 2 (d) に示す、 900MHz以上の高 、周波数のチャンネル信号で周波数多重された第 2の 多チャンネル信号に基づいてさらに位相変調し、図 2 (e)に示す位相変調光を出力 する。
[0047] 光力ブラ 24は、半導体レーザ 22aから出力された第 1FM変調光と光位相変調器 2 3から出力された位相変調光とを合波し、その光信号を受光素子 25に出力する。半 導体レーザ 22aと半導体レーザ 22bの光周波数を FM変調する 2つの多チャンネル 信号の位相が反転しているため、上記の残留 AM成分もまた位相が反転している。こ のため、光力ブラ 24は半導体レーザ 22aと半導体レーザ 22bとからそれぞれ出力さ れた FM変調光の残留 AM成分を打ち消して合波するため、光力ブラ 24が出力した 光信号には、図 2 (f)に示すように残留 AM信号が出力されない。
[0048] 受光素子 25は、光へテロダイン検波によって、合波された第 1FM変調光と位相変 調光の周波数の差力 電気信号である変調信号を出力する。図 2 (g)に受光素子 25 が出力する変調信号を示している。この変調信号は、半導体レーザ 2a、 2bに入力さ れた第 1の多チャンネル信号を FM変調したものと、光位相変調器 3に入力された第 2の多チャンネル信号を位相変調したものとが混合したものであり、上記の信号の中 心周波数は二つの半導体レーザ 2a、 2bの光周波数の中心値の差で決まる。
[0049] 光受信器 5は、受光素子 25により出力された変調信号を FM復調することで、図 2 ( h)に示す第 1の多チャンネル信号と第 2の多チャンネル信号とが混合した多チャンネ ル信号を受信する。周波数の低いチャンネル信号に劣化が生じずに、多チャンネル 信号を復調することができる。位相変調と周波数変調は、ほぼ同義の角度変調方式 であるため、光受信器 6の FM復調器 7によって多チャンネル信号を復調することが できる。 [0050] 本発明の第 1実施形態の変調器を含む光伝送装置によれば、周波数の低いチャン ネル信号は、 FM変調により半導体レーザの光周波数を変調し、周波数の高いチヤ ンネル信号は、光位相変調器により半導体レーザの光周波数を変調することにより、 チャンネル信号の周波数に依らず、残留 AM信号を抑圧することができ、かつ、充分 な FM復調振幅が得られないことによるチャンネル信号の劣化を抑えることができる。
[0051] (第 2実施形態)
図 3に、本発明の第 2実施形態の変調器の構成図を示す。なお、図 1と同一符号の ものは、同一の構成を示しており、説明を省略する。
[0052] 本発明の第 2実施形態の変調器は、光位相変調を行う第 1光位相変調器 23aを第 1半導体レーザ 22aと光力ブラ 24との間に、第 2光位相変調器 23bを第 2半導体レー ザ 22bと光力プラ 24との間にそれぞれ設け、 900MHz以上の高い周波数のチャンネ ル信号で周波数多重された、異なる第 2、第 3の多チャンネル信号を各々の光位相 変調器 23a、 23bに入力するようにしたものである。
[0053] 光力ブラ 24は、光位相変調器 23a、 23bそれぞれから出力された位相変調光を合 波し、その光信号を受光素子 25に出力する。
[0054] 本発明の第 2実施形態の変調器を含む光伝送装置によれば、第 1、第 2半導体レ 一ザから出力されたそれぞれの FM変調光を、異なる多チャンネル信号でそれぞれ 位相変調することにより、一度に多くの多チャンネル信号を変調することができる。
[0055] (第 3実施形態)
図 4に、本発明の第 3実施形態の変調器の構成図を示す。なお、図 1と同一符号の ものは、同一の構成を示しており、説明を省略する。
[0056] 図 1に示す本発明の第 1実施形態の変調器のように、第 2半導体レーザ 22bから出 力された FM変調光を光位相変調器 23により光位相変調した場合、光位相変調によ る遅延が発生するために、第 1半導体レーザ 22aから光力ブラ 24に FM変調光が入 力されるまでに要する時間と第 2半導体レーザ 22bから光位相変調器 23を介して光 力ブラ 24に位相変調光が入力されるまでに要する時間に時間差が発生してしまい、 第 1半導体レーザ力 出力された FM変調光の位相と第 2半導体レーザ力 出力さ れた位相変調光の位相を正確に反転することができない場合がある。 [0057] 本発明の第 3実施形態の変調器は、第 1半導体レーザ 22aと光力ブラ 24との間に 光遅延機能部 26を設けたものである。光遅延機能部 26を設けることにより、光位相 変調器 23による光位相変調により発生した遅延分だけ第 1半導体レーザ力 出力さ れた FM変調光の位相を遅延する。
[0058] 本発明の第 3実施形態の変調器を含む光伝送装置によれば、光位相変調器により 位相変調した際に遅延が発生しても、第 1半導体レーザから出力された FM変調光 の位相と第 2半導体レーザ力 出力された位相変調光の位相とを正確に反転するこ とができるため、その反転した 2つの変調光を合波することにより残留 AM信号を打ち 消すことができる。
[0059] なお、光遅延機能部 26は光ファイバなどの光導波路であっても構わない。また、第 2実施形態のように第 1、第 2の半導体レーザ力 出力された FM変調光をそれぞれ 光位相変調器により位相変調し、同じ時間だけ遅延した位相変調光をそれぞれ出力 するようにして、それぞれの光位相変調器カゝら出力された位相変調光に時間差が発 生しないようにしても良い。
[0060] また、本発明の第 3実施形態の変調器は、光遅延機能部 26により第 1半導体レー ザ 22aから出力された FM変調光の位相を光学的に遅延させるようにした力 第 1、 第 2半導体レーザ 22に FM変調光を出力するタイミングを制御する制御部を分岐回 路 21と第 1、第 2半導体レーザ 22の間に設け、第 2半導体レーザに多チャンネル信 号を入力するタイミングよりも遅れたタイミングで第 1半導体レーザに多チャンネル信 号を入力するように制御しても良いし、逆に、第 1半導体レーザに多チャンネル信号 を入力するタイミングよりも早いタイミングで第 2半導体レーザに多チャンネル信号を 入力するように制御しても良 、。
[0061] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 7月 30日出願の日本特許出願 (特願 2004— 224146)に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性 本発明の変調器、光送信器および光伝送装置は、チャンネル信号の周波数によら ず、残留 AM信号を抑圧し、かつ、充分な FM復調振幅が得られないことによるチヤ ンネル信号の劣化を抑圧して、チャネル信号を変調することができると 、う効果を有 し、光ファイバにより多チャンネル信号を伝送する光伝送装置、特に、多チャンネル 信号を変調する変調器、この変調器により変調した信号を送信する光送信器、およ び、この光送信器を含む光伝送装置に関して有用である。

Claims

請求の範囲
[1] 入力信号を変調する変調器であって、
第 1の周波数帯域で伝送される第 1の入力信号の位相を反転した反転信号を出力 する位相反転手段と、
前記第 1の入力信号を FM変調して第 1の FM変調光を出力する第 1の半導体レー ザと、
前記反転信号を FM変調して第 2の FM変調光を出力する第 2の半導体レーザと、 前記第 1の FM変調光または前記第 2の FM変調光の一方の位相を、第 2の周波数 帯域で伝送される第 2の入力信号に基づ 、て変化させ、位相変調光を出力する光位 相変調手段と、
前記第 1の FM変調光または前記第 2の FM変調光の他方と、前記位相変調光とを 合波した変調光を出力する光合波手段と、
前記変調光を光へテロダイン検波して変調信号に変換する光電変換手段と、 を備える変調器。
[2] 請求項 1記載の変調器であって、
前記光位相変調手段は、前記第 1の FM変調光の位相を、前記第 2の入力信号に 基づいて変化させ、第 1の位相変調光を出力し、前記第 2の FM変調光の位相を、第 3の周波数帯域で伝送される第 3の入力信号に基づ 、て変化させ、第 2の位相変調 光を出力し、
前記光合波手段は、前記第 1の位相変調光と前記第 2の位相変調光とを合波した 前記変調光を出力する変調器。
[3] 請求項 1または 2に記載の変調器であって、
前記第 1の半導体レーザ力 前記第 1の FM変調光を出力するタイミング、または、 前記第 2の半導体レーザ力 前記第 2の FM変調光を出力するタイミングを制御する タイミング制御手段を備える変調器。
[4] 請求項 1から 3の 、ずれかに記載の変調器であって、
前記第 1の FM変調光または前記第 2の FM変調光の一方の位相を遅延する光遅 延手段を備える変調器。
[5] 請求項 1から 4の 、ずれかに記載の変調器であって、
前記第 1の入力信号、前記第 2の入力信号、および前記第 3の入力信号は、周波 数多重された多チャンネル信号である変調器。
[6] 請求項 1から 5の 、ずれかに記載の変調器であって、
前記第 1の周波数帯域は 900MHz以下であり、前記第 2、 3の周波数帯域は 900 MHz以上である変調器。
[7] 請求項 1から 6の 、ずれかに記載の変調器を含む光送信器であって、
前記変調器により変調された変調信号を光信号に変換する EO変換部と、 前記 EO変換部により変換した前記光信号を送信する送信手段と、
を備える光送信器。
[8] 請求項 7記載の光送信器と、前記光送信器から光ファイバを介して送信された光信 号を受信する光受信器から構成される光伝送装置であって、
前記光受信器は、
前記光ファイバを介して送信された前記光信号を受信する受信手段と、 前記光信号を電気信号に変換する OE変換部と、
前記 OE変換部により変換された電気信号を FM復調する FM復調器と、 を備える光伝送装置。
PCT/JP2005/013379 2004-07-30 2005-07-21 変調器、光送信器および光伝送装置 WO2006011410A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/570,527 US7693427B2 (en) 2004-07-30 2005-07-21 Modulator, optical transmitter and optical transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-224146 2004-07-30
JP2004224146A JP3955292B2 (ja) 2004-07-30 2004-07-30 Fm変調器

Publications (1)

Publication Number Publication Date
WO2006011410A1 true WO2006011410A1 (ja) 2006-02-02

Family

ID=35786160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013379 WO2006011410A1 (ja) 2004-07-30 2005-07-21 変調器、光送信器および光伝送装置

Country Status (3)

Country Link
US (1) US7693427B2 (ja)
JP (1) JP3955292B2 (ja)
WO (1) WO2006011410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162207A1 (ja) * 2022-02-28 2023-08-31 日本電信電話株式会社 光送信装置及び送信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042255A (ja) 2006-08-01 2008-02-21 Matsushita Electric Ind Co Ltd 光送信器及び光伝送装置
US9450676B2 (en) * 2011-06-17 2016-09-20 Nec Corporation Variable line-rate optical transmitter by modulation format hopping using electrical-optical-electrical EOE generated QAM Signal
WO2022185400A1 (ja) * 2021-03-02 2022-09-09 日本電信電話株式会社 光送信装置及び送信方法
JP2022184562A (ja) * 2021-06-01 2022-12-13 Kddi株式会社 光角度変調器及び光送信装置
WO2023162213A1 (ja) * 2022-02-28 2023-08-31 日本電信電話株式会社 光送信装置及び送信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183870A (ja) * 1993-12-24 1995-07-21 Matsushita Electric Ind Co Ltd 光伝送有線放送システム
JPH1168670A (ja) * 1997-08-11 1999-03-09 Matsushita Electric Ind Co Ltd Fm変調装置
JPH1174847A (ja) * 1997-08-28 1999-03-16 Matsushita Electric Ind Co Ltd Fm変調装置
JPH11112433A (ja) * 1997-09-30 1999-04-23 Nec Corp Fm変調器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020398A (en) * 1960-04-15 1962-02-06 Research Corp Sideband intermediate frequency communications system
US3624402A (en) * 1968-02-08 1971-11-30 President And Directors Of Geo Electromagnetic beam communication unit
GB2162400B (en) * 1984-07-11 1988-01-06 Matsushita Electric Ind Co Ltd Analog optical transmission system
US4726644A (en) * 1985-07-08 1988-02-23 General Dynamics Electronics Division RF frequency multiplexed fiber optic data bus
US4768186A (en) * 1986-02-11 1988-08-30 Pirelli Cable Corporation Multiplex transmission of analog signals by fiber optic channel
US4959862A (en) * 1988-04-28 1990-09-25 Catel Telecommunications, Inc. Active multichannel video processing hub for optimum transition from fiber to coax
US5016242A (en) * 1988-11-01 1991-05-14 Gte Laboratories Incorporated Microwave subcarrier generation for fiber optic systems
JPH06224852A (ja) * 1993-01-25 1994-08-12 Matsushita Electric Ind Co Ltd 光伝送方式
US5373383A (en) * 1993-03-02 1994-12-13 The Boeing Company Optical carrier filtering for signal/noise and dynamic range improvement
JPH1013354A (ja) 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd 多チャンネル信号変復調装置
JP3003575B2 (ja) * 1996-06-28 2000-01-31 日本電気株式会社 サブキャリア多重信号の光伝送方法と光伝送装置
JP3444519B2 (ja) * 1997-05-19 2003-09-08 松下電器産業株式会社 Fm変調装置
JP4178617B2 (ja) * 1998-10-14 2008-11-12 松下電器産業株式会社 光伝送システム、光送信装置及び光送信方法
JP3338013B2 (ja) * 2000-01-12 2002-10-28 松下電器産業株式会社 光伝送システム及びこのシステムに用いる光送信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183870A (ja) * 1993-12-24 1995-07-21 Matsushita Electric Ind Co Ltd 光伝送有線放送システム
JPH1168670A (ja) * 1997-08-11 1999-03-09 Matsushita Electric Ind Co Ltd Fm変調装置
JPH1174847A (ja) * 1997-08-28 1999-03-16 Matsushita Electric Ind Co Ltd Fm変調装置
JPH11112433A (ja) * 1997-09-30 1999-04-23 Nec Corp Fm変調器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162207A1 (ja) * 2022-02-28 2023-08-31 日本電信電話株式会社 光送信装置及び送信方法

Also Published As

Publication number Publication date
JP2006049977A (ja) 2006-02-16
US7693427B2 (en) 2010-04-06
JP3955292B2 (ja) 2007-08-08
US20080056730A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4184474B2 (ja) 光伝送システムならびにそれに用いられる光送信装置および光受信装置
US8687962B2 (en) Method and arrangement for transmitting signals in a point to multipoint network
US8526817B2 (en) Communications device with discriminator for generating intermediate frequency signal and related methods
US8620158B2 (en) Communications device with discriminator and wavelength division multiplexing for generating intermediate frequency signal and related methods
JP2000124876A (ja) 周波数多重信号の光伝送システム
KR101830478B1 (ko) 광학 주입 잠금 소스를 가진 통신 디바이스 및 관련 방법들
TW201017245A (en) Light-modulating apparatus
JPH11205240A (ja) 光伝送装置
WO2006011410A1 (ja) 変調器、光送信器および光伝送装置
US20100263001A1 (en) Optical-to-millimeter wave conversion
JP2005311722A (ja) 光伝送システム及びその送信機並びに受信機
WO2007080950A1 (ja) 角度変調装置
US10763970B2 (en) Encoding for optical transmission
US20080002984A1 (en) Optical Transmission System Using Ossb-Modulation and Signal Trasmission Method Thereof
JP2006287410A (ja) 光送信装置、光受信装置及び光伝送システム
JP2002341299A (ja) 光変調方法とその光変調装置及び光無線伝送システム
JP4728275B2 (ja) 光ssb送信装置
JP6191595B2 (ja) 光通信システム、光送信装置、光通信方法、及び光送信方法
JP4434688B2 (ja) 光変調装置
JP5579656B2 (ja) 光通信システム及び光送信器
JP2008206063A (ja) 光伝送装置及び方法
JP4230888B2 (ja) 周波数変換器、周波数変換方法及びそれを用いた光無線装置
JP4728276B2 (ja) 光ssb送信装置
KR100559138B1 (ko) 광 통신 시스템 및 그 변조 및 송신 그 방법
KR100572422B1 (ko) 광전송 시스템용 변/복조 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11570527

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11570527

Country of ref document: US