WO2007080934A1 - 真空処理装置及び真空処理方法 - Google Patents

真空処理装置及び真空処理方法 Download PDF

Info

Publication number
WO2007080934A1
WO2007080934A1 PCT/JP2007/050271 JP2007050271W WO2007080934A1 WO 2007080934 A1 WO2007080934 A1 WO 2007080934A1 JP 2007050271 W JP2007050271 W JP 2007050271W WO 2007080934 A1 WO2007080934 A1 WO 2007080934A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
vacuum
purge gas
load lock
pressure
Prior art date
Application number
PCT/JP2007/050271
Other languages
English (en)
French (fr)
Inventor
Masaki Kondo
Teruyuki Hayashi
Misako Saito
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007080934A1 publication Critical patent/WO2007080934A1/ja
Priority to US12/169,660 priority Critical patent/US7993458B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • Y10S414/139Associated with semiconductor wafer handling including wafer charging or discharging means for vacuum chamber

Definitions

  • the present invention relates to a vacuum processing apparatus and a vacuum processing method for performing a desired process on a target object in a vacuum, and in particular, in a vacuum transfer chamber for transferring a target object to and from a vacuum processing chamber under reduced pressure.
  • the present invention relates to a technique for controlling the atmosphere.
  • Such non-adhesion or contamination of organic substances greatly lowers the reliability and manufacturing yield of processes such as film formation and etching in a vacuum processing chamber.
  • gate oxide Deterioration of oxide breakdown voltage during formation increase of contact resistance by promoting the growth of natural oxide film during contact formation, and increase in in-plane variation due to increase of incubation time in film formation process Will occur.
  • the grease is applied to O-rings or bearings used for vacuum sealing, or organic matter that is scattered or scattered, organic matter that is generated from a transport mechanism (for example, a transport belt), or cleaning is performed. If organic matter that adheres to the surface of each part of the room and is released from the force adheres to the surface of the object to be processed, it is difficult to remove it and the defective area of the surface to be processed becomes wide. Make the drop noticeable.
  • An object of the present invention is to provide a vacuum processing apparatus and a vacuum processing method in which an object to be processed is prevented from being contaminated with organic matter as much as possible in a vacuum transfer chamber.
  • a vacuum processing apparatus includes a vacuum transfer chamber in which a chamber is kept in a reduced pressure state and a transfer mechanism for transferring an object to be processed is provided between the chamber and an adjacent chamber; A vacuum processing chamber that is provided adjacent to the vacuum transfer chamber and performs a predetermined process on the object to be processed in a chamber under reduced pressure; an exhaust unit that evacuates the vacuum transfer chamber; and a purge gas in the vacuum transfer chamber.
  • the purge gas supply unit for supplying the vacuum gas and the flow rate of the purge gas supplied to the vacuum transfer chamber from the purge gas supply unit are monitored so that the pressure in the vacuum transfer chamber does not deviate from a predetermined pressure range. And a control unit.
  • the apparatus In the apparatus according to the first aspect, even if the organic matter is scattered by degassing of the organic matter material in the vacuum transfer chamber, the organic matter is diluted by the purge gas supplied from the purge gas supply unit, and is supplied to the object to be processed. Adhesion is reduced. In particular, under high vacuum, the adhesion of organic matter to the object to be treated becomes remarkable, but the effect of reducing the amount of organic matter adhesion by controlling the flow rate of the purge gas also becomes large.
  • the pressure upper limit value is set to a value of 66.7 Pa (500 mTorr) or less, and the purge gas flow rate is controlled to a set value of lOsccm or more.
  • an aperture lock chamber is provided adjacent to the vacuum transfer chamber.
  • the interior of the chamber is selectively switched to an atmospheric state or a depressurized state, and the object to be processed transferred between the atmospheric space and the vacuum transfer chamber is temporarily retained.
  • the vacuum transfer chamber is configured as a load lock chamber. .
  • a transfer mechanism is provided in the load lock chamber, and the chamber is selectively switched to an atmospheric state or a reduced pressure state.
  • An apparatus includes a vacuum transfer chamber in which a chamber is maintained in a reduced pressure state, and a transfer mechanism for transferring an object to be processed between the chamber and an adjacent chamber, and the vacuum transfer chamber. Adjacent to the vacuum processing chamber in which predetermined processing is performed on the object to be processed in a chamber under reduced pressure, and adjacent to the vacuum transfer chamber, the chamber is selectively brought into an atmospheric state or a reduced pressure state.
  • a load-lock chamber that temporarily holds a workpiece to be transferred and transferred between the atmospheric space and the vacuum transfer chamber; an exhaust section that evacuates the load-lock chamber; and the load-lock chamber
  • a purge gas supply unit for supplying a purge gas to the load lock chamber, and controlling a flow rate of the purge gas supplied from the purge gas supply unit to the load lock chamber while monitoring the pressure so that the pressure in the load lock chamber does not deviate from a predetermined pressure range.
  • the apparatus even if the organic matter is scattered by degassing from the organic material or the like in the load lock chamber, it is diluted with the purge gas supplied from the purge gas supply unit, and is supplied to the object to be processed. Adhesion is reduced. In particular, under high vacuum, the adhesion of organic matter to the object to be processed becomes remarkable, but the effect of reducing the amount of organic matter attached by controlling the flow rate of the purge gas also becomes large.
  • the pressure upper limit value is set to a value of 66.7 Pa (500 mTorr) or less, and the purge gas flow rate is controlled to a set value of lOsccm or more.
  • the pressure in the load lock chamber is preferably higher than the pressure in the vacuum transfer chamber.
  • a device includes a vacuum transfer chamber in which a chamber is maintained in a reduced pressure state, and a transfer mechanism for transferring an object to be processed between the chamber and an adjacent chamber, and the vacuum transfer chamber includes A vacuum processing chamber that is provided adjacently and performs predetermined processing on the object to be processed in a chamber under reduced pressure, an exhaust unit that evacuates the vacuum transfer chamber, and a parcel that supplies purge gas to the vacuum transfer chamber. And controlling the pressure in the vacuum transfer chamber while monitoring the flow rate of the purge gas supplied to the vacuum transfer chamber from the purge gas supply unit and the purge gas supply unit so as not to be smaller than a predetermined lower limit of flow rate. And a control unit.
  • organic material isoelectric degassing can be performed in the vacuum transfer chamber. Even if the organic matter is scattered, it is diluted by the purge gas supplied from the purge gas supply unit, and adhesion to the object to be processed is reduced. In particular, under high vacuum, the adhesion of organic substances to the object to be processed becomes remarkable, but the effect of reducing the organic substance adhesion amount by controlling the flow rate of the purge gas also becomes large.
  • the flow rate is set to a value not less than the lower limit lOsccm, and the pressure in the vacuum transfer chamber is controlled to a set value of 66.7 Pa (500 mTorr) or less.
  • an aperture lock chamber is provided adjacent to the vacuum transfer chamber.
  • the interior of the chamber is selectively switched to an atmospheric state or a depressurized state, and the object to be processed transferred between the atmospheric space and the vacuum transfer chamber is temporarily retained.
  • the vacuum transfer chamber is configured as a load lock chamber. In this case, a transfer mechanism is provided in the load lock chamber, and the chamber is selectively switched to an atmospheric state or a reduced pressure state.
  • An apparatus includes a vacuum transfer chamber in which a chamber is maintained in a reduced pressure state and a transfer mechanism for transferring an object to be processed is provided between the chamber and an adjacent chamber, and the vacuum transfer chamber includes Adjacent to the vacuum processing chamber in which predetermined processing is performed on the object to be processed in a chamber under reduced pressure, and adjacent to the vacuum transfer chamber, the chamber is selectively brought into an atmospheric state or a reduced pressure state.
  • a load-lock chamber that temporarily holds a workpiece to be transferred and transferred between the atmospheric space and the vacuum transfer chamber; an exhaust section that evacuates the load-lock chamber; and the load-lock chamber
  • the pressure in the load lock chamber is monitored while monitoring the flow rate of the purge gas supplied to the load lock chamber from the purge gas supply unit so that the flow rate of the purge gas supplied from the purge gas supply unit does not become lower than a predetermined lower limit flow rate. Control And a control unit.
  • the apparatus even if the organic matter is scattered by degassing from the organic material or the like in the load lock chamber, it is diluted with the purge gas supplied from the purge gas supply unit, and is supplied to the object to be processed. Adhesion is reduced. In particular, under high vacuum, the adhesion of organic matter to the object to be processed becomes remarkable, but the effect of reducing the amount of organic matter attached by controlling the flow rate of the purge gas also becomes large.
  • the lower limit value of the flow rate is set to a value of lOsccm or more, and the pressure in the vacuum transfer chamber is controlled to a set value of 66.7 Pa (500 mTorr) or less.
  • the pressure in the load lock chamber should be higher than the pressure in the vacuum transfer chamber. preferable.
  • the vacuum processing method of the present invention is a vacuum in which an object to be processed is transferred under reduced pressure between a vacuum processing chamber and a vacuum transfer chamber, and a predetermined process is performed on the object to be processed in the vacuum processing chamber.
  • purge gas is supplied into the chamber while evacuating the vacuum transfer chamber, the pressure in the chamber is controlled to a value of 66.7 Pa (500 mTorr) or less, and the flow rate of the purge gas is a value of 10 sccm or more. To control.
  • FIG. 1 is a schematic plan view showing a vacuum processing apparatus (cluster tool) according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a mechanism for controlling the atmosphere in the vacuum transfer chamber and the load lock chamber, respectively.
  • Fig. 3 is a characteristic diagram showing the dependency of the amount of organic matter on the wafer on the purge gas flow rate.
  • FIG. 4 is a block diagram showing another mechanism for controlling the atmosphere in the vacuum transfer chamber and the load lock chamber, respectively.
  • FIG. 5 is a schematic plan view showing a vacuum processing apparatus (cluster tool) according to another embodiment of the present invention.
  • FIG. 6 is a block diagram showing the main part of the exposure apparatus.
  • FIG. 7 is a block diagram showing a mechanism for controlling the atmosphere in the vacuum transfer chamber and the load lock chamber in the exposure apparatus of the embodiment.
  • FIG. 1 shows an overall configuration of a vacuum processing apparatus according to an embodiment of the present invention.
  • This vacuum processing device is a so-called cluster tool, which is installed in a clean room and has, for example, a hexagonal transfer 'module TM having a transfer chamber 10 and process modules PM, PM, PM, PM and two loads.
  • the process modules PM, PM, PM, and PM are not individually set in the room pressure. It has a chamber-type vacuum processing chamber 12 to be controlled.
  • Load lock module LLM Load lock module
  • LLM selectively switches the room to atmospheric or depressurized state as described later
  • the chamber type load lock chamber 14 is provided. Process module PM, PM, and
  • the vacuum processing chamber 12 for PM and PM is transferred to the transfer module via the gate valve GA.
  • Each of the M load lock chambers 14 is connected to the vacuum transfer chamber 10 via the gate valve GB.
  • a vacuum transfer robot RB with F is provided.
  • the process modules PM 1, PM 2, PM 3 and PM are predetermined in each vacuum processing chamber 12.
  • the load lock module LLM, LLM greatly increases the atmosphere in each load lock chamber 14.
  • Each load lock chamber 14 is connected via a door valve DV to an atmospheric transfer chamber 16 of a guard module LM under atmospheric pressure on the opposite side as viewed from the transfer module TM side.
  • a load port LP and an orientation flat alignment mechanism (orientation alignment mechanism) ORT are provided adjacent to the loader module LM.
  • the load port LP is used for loading and unloading a wafer cassette CR capable of storing, for example, 25 batches of semiconductor wafers (hereinafter simply referred to as “wafers”) W with an external carrier.
  • Orientation flat alignment mechanism ORT is used to align the orientation flat or notch of wafer W to a predetermined position or orientation.
  • the atmospheric transfer robot RB provided in the loader module LM can be extended and contracted in a pair.
  • the atmospheric transfer robot RB is an LP installed on the front surface of the wafer cassette CR. With the door (not shown) open, the semiconductor wafer W is loaded into the loader module LM.
  • the linear guide LA is composed of, for example, a magnet such as a permanent magnet, a driving magnetic coil, a scale head, and the like, and performs linear motion control of the atmospheric transfer robot RBZ according to a command from the controller.
  • Loader's module LM transport robot RB is wafer cassette C on load port LP
  • M receives the wafer W under atmospheric pressure and evacuates the load lock chamber 14 after loading.
  • the wafer W is received by the transfer module TM vacuum transfer robot RB.
  • the transfer robot RB uses one of the transfer arms F 1 and F 2 to load-lock the module L
  • Wafer W taken out from LM is loaded into the first process' module (eg PM)
  • the process' module PM follows a preset process condition according to a preset recipe.
  • the transfer robot RB processes the wafer W.
  • the transfer robot RB is the first process module.
  • the second process of single wafer processing is carried out under the prescribed process conditions.
  • the transfer robot RB transfers the wafer W to the second pre-process.
  • load lock module LLM L
  • Received wafer W is loaded into one of the loadlock modules (for example, LLM)
  • This load lock module LLM load lock chamber 14 is in a reduced pressure state to an atmospheric pressure state
  • this cluster tool is capable of carrying out a series of processes continuously by serially transferring wafers to a plurality of process modules in a vacuum, and in particular, forming a vacuum thin film.
  • a desired thin film can be laminated in-line by continuously performing different film forming processes on a plurality of process modules.
  • multiple process modules continuously repeat each single-wafer processing in a pipeline manner, it enables high V operation rate and productivity.
  • a second wafer loading / unloading port 10b connected through the gate valve GB is provided.
  • An exhaust port 20 is provided on the bottom surface of the vacuum transfer chamber 10, and an exhaust mechanism 24 is connected to the exhaust port 20 via an exhaust pipe 22.
  • the on-off valve 26 provided in the exhaust pipe 22 is normally kept open.
  • the exhaust mechanism 24 includes, for example, a vacuum pump that also has a turbo molecular pump force, a flow control valve that includes a throttle valve, and the like, so that the inside of the vacuum transfer chamber 10 is evacuated at a constant exhaust amount or exhaust speed. .
  • An air supply port 28 is provided in the upper portion of the vacuum transfer chamber 10, for example, on the ceiling surface.
  • An air supply pipe 32 from a purge gas supply source 30 is connected to the air port 28, and the air supply pipe 32 is provided with a mass flow controller (MFC) 34 and an opening / closing valve 36.
  • MFC mass flow controller
  • the on-off valve 36 is kept open, and an inert gas, preferably N gas, is purged from the purge gas supply source 30 as purge gas or pressure adjusting gas through the MFC 34 and the on-off valve 36.
  • the MFC 34 is provided with a gas mass sensor and a flow rate adjustment valve, and the flow rate of N gas flowing through the supply pipe 32 is set by internal feedback control.
  • the main control unit 38 gives the flow rate setting value to the MFC 34.
  • a vacuum gauge 40 for measuring the pressure in the room is attached to the ceiling of the vacuum transfer chamber 10, and an output signal (pressure measurement value) of the vacuum gauge 40 is used as a pressure monitor signal in the main controller 3 8.
  • the pressure in the vacuum transfer chamber 10 depends on the flow rate of the purge gas supplied from the purge gas supply mechanism (30, 32, 34). Therefore, the main control unit 38 can control the pressure in the vacuum transfer chamber 10 within a predetermined range through the flow rate setting value for the MFC 36.
  • the pressure in the vacuum transfer chamber 10 becomes abnormal even if the purge gas flow rate is controlled as set. Can be expensive.
  • the main control unit 38 monitors the pressure in the vacuum transfer chamber 10 through the vacuum gauge 40, when the pressure exceeds a predetermined upper limit value, it is determined as abnormal, and the flow rate setting value for the MFC 34 is set. Actions such as change, generation of alarm, stop of device operation can be taken.
  • the pressure in the vacuum transfer chamber 10 is selected to be a reasonably higher value based on the pressure in the vacuum processing chamber 12 of the process module PM.
  • the flow rate of the purge gas supplied to the vacuum transfer chamber 10 is set or controlled to an optimum value from the viewpoint of reducing the adhesion of organic matter to the wafer w staying in the vacuum transfer chamber 10 as much as possible.
  • FIG. 3 shows the result of measuring the dependence of the organic substance adhesion amount on the wafer on the purge gas flow rate.
  • the inner wall temperature of the vacuum chamber is 23 ° C
  • the pressure is 53 Pa
  • the purge gas is N gas
  • lOsccm is about 180ng
  • 40sccm is about 180ng
  • 75sccm is about 140ng
  • 96sccm is about 135ng
  • the purge gas (N gas) flow rate is more than lOsccm
  • organic contaminants in the vacuum transfer chamber are O-rings for vacuum sealing, organic materials such as grease, and organic solvents such as acetone.
  • the surface force of these organic materials and the inner wall of the device The rate at which gaseous organic matter is released depends on the temperature and the evaporation enthalpy of each organic component, according to the Clausius Clapeyron equation. For this reason, when the temperature is constant, the organic substance release rate is constant.
  • the amount of organic matter adhering to the wafer in the vacuum transfer chamber depends on the organic matter concentration in the vacuum transfer chamber. Therefore, in order to reduce the amount of organic substances attached on the wafer in the vacuum transfer chamber, it is considered effective to reduce the concentration of organic substances by supplying purge gas into the vacuum transfer chamber.
  • the purge gas (N gas) flow rate has an effect on the process, the exhaust capacity of the exhaust mechanism, etc.
  • An upper limit is set from various viewpoints. Usually, lOOOsccm can be set as the upper limit.
  • the load lock module LLM is provided with a mounting table 40 for mounting and supporting the wafer W in the load lock chamber 14.
  • a lift pin for raising and lowering the wafer W in a horizontal posture when the wafer W is transferred to and from the transfer robots RB and RB.
  • a mechanism (not shown) is provided.
  • a heater (not shown) or a cooling mechanism (not shown) can be provided on the mounting table 40.
  • An exhaust port 42 is provided on the bottom surface of the load lock chamber 14, and an exhaust mechanism 46 is connected to the exhaust port 42 via an exhaust pipe 44.
  • the exhaust pipe 44 is provided with an open / close valve 48.
  • the on-off valve 48 is opened when the inside of the load lock chamber 14 is switched to a reduced pressure state or during a period during which the reduced pressure state is maintained, and when the inside of the load lock chamber 14 is switched to an atmospheric pressure state or during a period during which the atmospheric pressure state is maintained. Is closed.
  • the exhaust mechanism 46 includes, for example, a roughing dry pump, a high-vacuum turbo molecular pump, and a flow control valve such as a throttle valve, which is large when the load lock chamber 14 is switched to a reduced pressure state.
  • An air supply port 50 is provided in the upper part of the load lock chamber 14, for example, on the ceiling surface.
  • An air supply pipe 54 from a purge gas supply source 52 is connected to the air supply port 50, and a mass flow controller (MFC) 56 and an opening / closing valve 58 are provided in the air supply pipe 54.
  • MFC mass flow controller
  • the on-off valve 58 is used when supplying purge gas to the load lock chamber 14 or during a period (when switching the load lock chamber 14 from a reduced pressure state to an atmospheric pressure state, and during a period during which the load lock chamber 14 is maintained at a set vacuum pressure. ) Is open and closed during other periods.
  • an inert gas preferably N gas
  • the purge gas supply source 52 is supplied from the purge gas supply source 52 as the purge gas or pressure-regulating gas through the MFC 56 and the on-off valve 58.
  • the MFC 56 includes a gas mass sensor and a flow rate adjustment valve.
  • the flow rate adjustment valve is fully opened and the load lock chamber 14 is opened.
  • the flow rate of N gas flowing through the supply pipe 58 is maintained at the set value by internal feedback control.
  • the main control unit 38 gives the flow set value to the MFC 56.
  • a vacuum gauge 60 for measuring the pressure in the room is attached to the ceiling of the load lock chamber 14, and an output signal (pressure measurement value) of the vacuum gauge 60 is given to the main control unit 38 as a pressure monitor signal.
  • the main control unit 38 can control the pressure in the load lock chamber 14 within a predetermined range through the flow rate setting value for the MFC 56.
  • the flow rate in the load lock chamber 14 is controlled even if the flow rate of the Pamzi gas (N gas) is controlled as set.
  • the main control unit 38 monitors the pressure in the load lock chamber 14 through the vacuum gauge 60, when the pressure exceeds a predetermined upper limit value, it is determined to be abnormal, and the flow rate setting value for the MFC56 is changed and an alarm is issued. Such as generation, stoppage of equipment operation, etc. Can take.
  • the pressure in the load lock chamber 14 is a value reasonably higher than the pressure in the vacuum transfer chamber 10 of the transfer module TM, and 500 mTorr (66. 7Pa) or less, for example, 200 to 400 mTorr (26.7 to 53.4 Pa).
  • the flow rate of the purge gas supplied to the load lock chamber 14 is set or controlled to an optimum value from the viewpoint of reducing the adhesion of organic substances to the wafer W staying in the load lock chamber 14 as much as possible.
  • the amount of organic matter adhered to the weno and W in the loadlock chamber 14 is controlled by controlling the flow rate of the purge gas supplied to the loadlock chamber 14 to a value of lOsccm or more. Can be effectively reduced.
  • FIG. 4 shows another embodiment of a mechanism for controlling the atmosphere in the vacuum transfer chamber 10 and the load lock chamber 14.
  • parts having the same configuration or function as those of the first embodiment are given the same reference numerals.
  • an air supply port 32 provided from the purge gas supply source 30 is connected to an air supply port 28 provided in the upper part of the vacuum transfer chamber 10, and an open / close valve 62 is connected to the air supply tube 32.
  • a flow control valve 64 are provided in parallel.
  • the flow control valve 64 is composed of, for example, a proportional control valve, and the valve opening degree is controlled by the pressure control unit 66.
  • the output signal (pressure measurement value) of the vacuum gauge 40 that measures the pressure in the vacuum transfer chamber 10 is given to the pressure control unit 66 as a feedback signal.
  • the air supply pipe 32 is provided with a flow rate sensor 68 in series with the flow rate control valve 64, and an output signal (flow rate measurement value) of the flow rate sensor 68 is given to the main control unit 38 as a flow rate monitor signal.
  • the on-off valve 62 is opened when the inside of the vacuum transfer chamber 10 is brought into an atmospheric pressure state during maintenance work.
  • the purge gas from the purge gas supply source 30 is supplied as pressure-regulating gas into the vacuum transfer chamber 14 via the flow control valve 64 while the on-off valve 62 is kept closed, and the flow control valve 64 is opened.
  • Degree (gas supply flow rate) by vacuum gauge 40 and pressure control 66 With feedback control, the pressure in the vacuum transfer chamber 10 is adjusted to a pressure set value, for example, 200 mTorr (26.7 Pa).
  • the main control unit 38 gives a desired pressure set value to the pressure control unit 66, and monitors the flow rate of the purge gas (N gas) supplied to the vacuum transfer chamber 10 from the output signal (flow rate measurement value) of the flow rate sensor 68. .
  • the main control unit 38 can control the flow rate of the purge gas to a predetermined value or more or within a predetermined range through the pressure set value for the pressure control unit 66.
  • the flow rate of the purge gas may become abnormally low even if the pressure in the vacuum transfer chamber 10 is controlled as set.
  • the main control unit 38 monitors the pressure in the vacuum transfer chamber 10 through the flow rate sensor 68, when the flow rate of the purge gas exceeds a predetermined lower limit value (for example, lOsccm), it is determined as abnormal. Measures such as changing the pressure setting value for the pressure controller 66, generating an alarm, and stopping the operation can be taken.
  • a predetermined lower limit value for example, lOsccm
  • an air supply pipe 54 from a purge gas supply source 52 is connected to the air supply port 50, and an open / close valve 58 and a flow control valve 70 are connected in parallel to the air supply pipe 54. It is installed.
  • the flow control valve 70 is a proportional control valve whose valve opening degree is controlled by the pressure control unit 72.
  • the output signal (pressure measurement value) of the vacuum gauge 60 that measures the pressure in the load lock chamber 14 is given to the pressure control unit 72 as a feedback signal.
  • the air supply pipe 54 is provided with a flow rate sensor 74 in series with the flow rate control valve 70, and an output signal (flow rate measurement value) of the flow rate sensor 74 is given to the main control unit 38 as a flow rate monitor signal.
  • the on-off valve 58 is opened, and the purge gas from the purge gas supply source 52 is opened via the open on-off valve 58. Send in.
  • the purge gas from the purge gas supply source 52 is adjusted while the on-off valve 58 is kept closed.
  • the pressure gas is supplied into the load lock chamber 14 via the flow control valve 70, and the valve opening (gas supply flow rate) of the flow control valve 70 is feedback controlled by the vacuum gauge 60 and the pressure control unit 72, and the load lock chamber 14 is filled. Adjust the pressure to a pressure setting value, eg 400 mTorr (53.4 Pa).
  • the main control unit 38 gives a desired pressure set value to the pressure control unit 72, and monitors the flow rate of the purge gas supplied to the load lock chamber 14 based on the output signal of the flow rate sensor 74 (flow rate side constant value). .
  • the flow rate of the purge gas is a value corresponding to the pressure in the chamber with a constant relationship. Therefore, the main control unit 38 can control the flow rate of the purge gas at a predetermined value or more or within a predetermined range through the pressure set value for the pressure control unit 72.
  • the main control unit 38 monitors the pressure in the load lock chamber 14 through the flow rate sensor 74, and therefore determines that it is abnormal when the flow rate of the purge gas exceeds a predetermined lower limit value (for example, lOsccm). Actions such as changing the pressure setpoint for the pressure controller 72, generating an alarm, or stopping the operation can be taken.
  • a predetermined lower limit value for example, lOsccm
  • the vacuum processing apparatus of the cluster tool in the above embodiment is not limited to the one shown in FIG. 1, and various modifications can be made in the layout and the configuration of each part.
  • a configuration in which two transfer modules T M and TM are connected in series via a path unit 78 in one cluster tool is also possible.
  • a purge gas flow rate control mechanism and pressure motor mechanism (FIG. 2) or a pressure control mechanism and purge gas flow rate monitor mechanism (FIG. 3) having the same configuration or function as the embodiment can be provided.
  • the load lock module LLM, LLM is a semiconductor.
  • a vacuum transfer chamber connected to the vacuum processing chamber via a gate valve is configured with a load lock module, and this load lock module
  • the present invention can also be applied to a system in which a transfer robot is provided. That is, the load lock chamber of the load lock module is equipped with a purge gas flow rate control mechanism and a pressure monitor mechanism (FIG. 2) or a pressure control mechanism and a purge gas flow rate monitor mechanism (FIG. 3) having the same configuration or function as the above embodiment. can do.
  • An accessible wafer stage is provided in the load lock chamber (near the door valve DV).
  • the present invention can also be applied to a configuration in which a cassette chamber is connected to a load lock chamber via a door valve and a wafer cassette CR is disposed in the cassette chamber.
  • the present invention is also applicable to vacuum processing apparatuses other than cluster tools.
  • the vacuum process in the present invention is not limited to using a reactive gas such as CVD or dry etching, but includes, for example, exposure using a reduced pressure system.
  • FIG. 6 shows a configuration of a main part of a decompression type exposure apparatus to which the present invention can be applied.
  • the exposure apparatus includes a vacuum exposure chamber 80 that can be evacuated, a projection optical system 82 disposed above the vacuum exposure chamber 80, a reticle 84 disposed above the projection optical system 82, and the reticle 84. And an illumination optical system 86 disposed above.
  • the wafer W is placed horizontally on the wafer stage 88.
  • the reticle 84 is a photomask on which a pattern to be transferred is formed on the wafer W, and is supported horizontally on the ring-shaped reticle stage 90.
  • a variable aperture stop 92 is disposed at a predetermined intermediate position (near the pupil position) between the reticle 84 and the wafer stage 88.
  • the illumination optical system 86 is, for example, an ArF excimer laser, and illuminates the reticle 84 so that an image of the light source is formed at the pupil position by so-called Koehler illumination.
  • the projection optical system 82 has a reduction projection lens composed of a plurality of optical lenses, and images (transfers) the pattern of the reticle 84 illuminated by Koehler from above onto the wafer W directly below at a predetermined reduction magnification. .
  • An inert gas such as helium gas, is supplied to the vacuum exposure chamber 80 from an inert gas supply unit (not shown) at a predetermined flow rate. Is maintained at a predetermined degree of vacuum.
  • the vacuum transfer chamber 94 of the transfer module TM is connected to the vacuum exposure chamber 80 via the first gate valve GA, and the load lock module 94 is connected to the transfer module TM via the second gate valve GB.
  • LL M load lock chamber 96 is connected.
  • the atmosphere of the transfer 'module TM vacuum transfer chamber 96 and the load lock' module LLM's load lock chamber 98 is the same as in the above embodiment (FIG. 2).
  • the atmosphere control mechanism By controlling the atmosphere control mechanism, it is possible to prevent the contamination of the organic matter in the rooms 96 and 98.
  • an atmosphere control mechanism similar to that shown in FIG. 4 can be employed.
  • the displacement or speed of 6 was fixed.
  • an automatic pressure control device APC
  • the purge gas supply mechanism side can fix the purge gas flow rate to a constant value by a flow control valve such as a throttle valve, and the MFC and the pressure control loop can be omitted.
  • the object to be processed in the present invention is not limited to a semiconductor wafer, and may be another object to be processed that is liable to be contaminated with organic matter in a vacuum processing apparatus such as an LCD substrate.
  • the vacuum processing apparatus or the vacuum processing method of the present invention it is possible to effectively reduce organic contamination of a substrate to be processed even when an organic member or an organic substance is present in the vacuum processing apparatus. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 排気機構24は、一定の排気量または排気速度で真空搬送室10内を真空排気する。定常時は、排気弁36が開状態に保持され、パージガス供給源30よりパージガス(N2ガス)がMFC34および開閉弁36を通って真空搬送室10内に供給される。主制御部38は、MFC34に対する流量設定値を通じて真空搬送室10内の圧力を所定の範囲内に制御すると同時に、真空計40を通じて真空搬送室10内の圧力をモニタし、圧力が所定の上限値を超えたときは異常と判断し、MFC34に対する流量設定値の変更、アラームの発生、装置運転の停止等の処置をとる。

Description

明 細 書
真空処理装置及び真空処理方法
技術分野
[0001] 本発明は、真空中で被処理体に所望の処理を施す真空処理装置および真空処理 方法に係り、特に真空処理室との間で被処理体を減圧下で搬送する真空搬送室内 の雰囲気を制御する技術に関する。
背景技術
[0002] 半導体デバイスや FPD (フラット 'パネル ·ディスプレイ)の製造においては、成膜処 理、熱処理、ドライエッチング処理、クリーニング処理等の様々なプロセスが真空容器 の中で所要の処理ガスを用いて行われる。このような真空プロセスを行うための装置 は、例えば特開 2000— 127069号公報および特開平 3— 87386号公報に記載され ている。これらの装置では、真空容器または真空処理室を大気に開放することなく室 内に被処理基板 (半導体ウェハ、ガラス基板等)を搬入出するために、常時減圧状態 を保持するタイプの真空搬送室もしくは室内が選択的に大気圧状態または減圧状態 に切換可能なタイプの真空搬送室がゲートバルブを介して真空処理室に接続され、 該真空搬送室内に搬送ロボットが設けられる。
[0003] し力しながら、真空処理装置においては、真空搬送室内の可動部または擦動部等 から発生する有機物が被処理体に付着するという有機物汚染の問題が顕在化して いる。一般に、被処理体が受ける有機物汚染(吸着)量は大気中よりも真空中の方が はるかに多い。特に、クラスタツールの構成を採る真空処理装置においては、システ ム内の工程数が多!、ために全処理時間つまり被処理体滞在時間が長!、うえ、プロセ スの高精度化に応じて高真空度(10— 4Pa以下)のプロセス処理が指向されており、そ れに伴って真空搬送室の室内も例えば lOmTorr (約 1. 33Pa)以下の真空圧力に 保持されることもある。しかし、真空搬送室の室内が高真空になるほど被処理体に有 機物が付着しやすくなる。
[0004] このような有機物の付着な 、し汚染は、真空処理室内の成膜処理、エッチング加工 等のプロセスの信頼性や製造歩留まりを大きく低下させる。たとえば、ゲート酸化膜 形成において酸化膜耐圧を劣化させたり、コンタクト形成において自然酸化膜の成 長を促進してコンタクト抵抗を増加させたり、成膜プロセスにおいてインキュベーショ ンタイムの増加により膜厚面内のばらつきを増加させるといった悪影響が生ずる。
[0005] 特に、真空封止用に使用される Oリングあるいはベアリング等に施すグリース力 発 生または飛散する有機物、あるいは搬送機構 (たとえば搬送ベルト)から発生する有 機物、あるいは洗浄不良等により処理室内の各部表面に付着して力 放出された有 機物が被処理体の表面に付着すると、その除去が難しぐまた被処理面の不良領域 が広くなることから、上記のように製造歩留りの低下を顕著なものにする。
発明の開示
[0006] 本発明の目的は、真空搬送室内で被処理体が有機物汚染を極力受けないようにし た真空処理装置および真空処理方法を提供することにある。
[0007] 本発明の第 1の観点の真空処理装置は、室内が減圧状態に保たれ、室内と隣室と の間で被処理体の搬送を行う搬送機構が設けられている真空搬送室と、前記真空搬 送室に隣接して設けられ、減圧下の室内で被処理体に所定の処理が行われる真空 処理室と、前記真空搬送室を真空排気する排気部と、前記真空搬送室にパージガス を供給するパージガス供給部と、前記真空搬送室内の圧力が所定の圧力範囲から 外れな 、ようにこれを監視しながら前記パージガス供給部より前記真空搬送室に供 給する前記パージガスの流量を制御する制御部とを有する。
[0008] 上記第 1の観点の装置においては、真空搬送室内で有機物材料等力 の脱ガスで 有機物が飛散しても、パージガス供給部より供給されるパージガスによって希釈化さ れ、被処理体への付着が低減される。特に、高真空下では、被処理体に対する有機 物の付着が顕著になる反面、パージガスの流量制御による有機物付着量の低減効 果も大になる。本発明の好適な一態様によれば、圧力上限値を 66. 7Pa (500mTor r)以下の値に設定し、パージガスの流量を lOsccm以上の設定値に制御する。
[0009] 上記第 1の観点の装置においては、一態様として、上記真空搬送室に隣接して口 ードロック室が設けられる。このロードロック室は、室内が選択的に大気状態または減 圧状態に切り換えられ、大気空間と真空搬送室との間で転送される被処理体を一時 的に留め置く。別の一態様として、上記真空搬送室がロードロック室として構成される 。この場合、ロードロック室内に搬送機構が設けられ、室内が選択的に大気状態また は減圧状態に切り換えられる。
[0010] 第 2の観点の装置は、室内が減圧状態に保たれ、室内と隣室との間で被処理体の 搬送を行う搬送機構が設けられている真空搬送室と、前記真空搬送室に隣接して設 けられ、減圧下の室内で被処理体に所定の処理が行われる真空処理室と、前記真 空搬送室に隣接して設けられ、室内が選択的に大気状態または減圧状態に切り換 えられ、大気空間と前記真空搬送室との間で転送される被処理体を一時的に留め置 くロードロック室と、前記ロードロック室を真空排気する排気部と、前記ロードロック室 にパージガスを供給するパージガス供給部と、前記ロードロック室内の圧力が所定の 圧力範囲から外れないようにこれを監視しながら前記パージガス供給部より前記ロー ドロック室に供給する前記パージガスの流量を制御する制御部とを有する。
[0011] 上記第 2の観点の装置においては、ロードロック室内で有機物材料等からの脱ガス で有機物が飛散しても、パージガス供給部より供給されるパージガスによって希釈化 され、被処理体への付着が低減される。特に、高真空下では、被処理体に対する有 機物の付着が顕著になる反面、パージガスの流量制御による有機物付着量の低減 効果も大になる。本発明の好適な一態様によれば、圧力上限値を 66. 7Pa (500mT orr)以下の値に設定し、パージガスの流量を lOsccm以上の設定値に制御する。な お、真空処理室に近い真空搬送室の雰囲気がロードロック室へ拡散するのを防止す るために、ロードロック室内の圧力を真空搬送室内の圧力よりも高くするのが好ましい
[0012] 第 3の観点の装置は、室内が減圧状態に保たれ、室内と隣室との間で被処理体の 搬送を行う搬送機構が設けられている真空搬送室と、前記真空搬送室に隣接して設 けられ、減圧下の室内で被処理体に所定の処理が行われる真空処理室と、前記真 空搬送室を真空排気する排気部と、前記真空搬送室にパージガスを供給するパー ジガス供給部と、前記パージガス供給部より前記真空搬送室に供給する前記パージ ガスの流量が所定の流量下限値よりも小さくならな 、ようにこれを監視しながら前記 真空搬送室内の圧力を制御する制御部とを有する。
[0013] 上記第 3の観点の装置においても、真空搬送室内で有機物材料等力 の脱ガスで 有機物が飛散しても、パージガス供給部より供給されるパージガスによって希釈化さ れ、被処理体への付着が低減される。特に、高真空下では、被処理体に対する有機 物の付着が顕著になる反面、パージガスの流量制御による有機物付着量の低減効 果も大になる。本発明の好適な一態様によれば、流量下限値 lOsccm以上の値に設 定し、真空搬送室内の圧力を 66. 7Pa (500mTorr)以下の設定値に制御する。
[0014] 上記第 3の観点の装置においては、一態様として、上記真空搬送室に隣接して口 ードロック室が設けられる。このロードロック室は、室内が選択的に大気状態または減 圧状態に切り換えられ、大気空間と真空搬送室との間で転送される被処理体を一時 的に留め置く。別の一態様として、上記真空搬送室がロードロック室として構成される 。この場合、ロードロック室内に搬送機構が設けられ、室内が選択的に大気状態また は減圧状態に切り換えられる。
[0015] 第 4の観点の装置は、室内が減圧状態に保たれ、室内と隣室との間で被処理体の 搬送を行う搬送機構が設けられている真空搬送室と、前記真空搬送室に隣接して設 けられ、減圧下の室内で被処理体に所定の処理が行われる真空処理室と、前記真 空搬送室に隣接して設けられ、室内が選択的に大気状態または減圧状態に切り換 えられ、大気空間と前記真空搬送室との間で転送される被処理体を一時的に留め置 くロードロック室と、前記ロードロック室を真空排気する排気部と、前記ロードロック室 にパージガスを供給するパージガス供給部と、前記パージガス供給部より前記ロード ロック室に供給する前記パージガスの流量が所定の流量下限値よりも小さくならない ようにこれを監視しながら前記ロードロック室内の圧力を制御する制御部とを有する。
[0016] 上記第 4の観点の装置においては、ロードロック室内で有機物材料等からの脱ガス で有機物が飛散しても、パージガス供給部より供給されるパージガスによって希釈化 され、被処理体への付着が低減される。特に、高真空下では、被処理体に対する有 機物の付着が顕著になる反面、パージガスの流量制御による有機物付着量の低減 効果も大になる。本発明の好適な一態様によれば、流量下限値を lOsccm 以上の 値に設定し、真空搬送室内の圧力を 66. 7Pa (500mTorr)以下の設定値に制御す る。なお、真空処理室に近い真空搬送室の雰囲気がロードロック室へ拡散するのを 防止するために、ロードロック室内の圧力を真空搬送室内の圧力よりも高くするのが 好ましい。
[0017] 本発明の真空処理方法は、真空処理室と真空搬送室との間で被処理体を減圧下 で搬送し、前記真空処理室内で前記被処理体に対して所定の処理を行う真空処理 方法であって、前記真空搬送室を真空排気しながら室内にパージガスを供給し、室 内の圧力を 66. 7Pa (500mTorr)以下の値に制御し、前記パージガスの流量を 10s ccm以上の値に制御する。
図面の簡単な説明
[0018] [図 1]図 1は本発明の実施形態に係る真空処理装置 (クラスタツール)を示す平面模 式図である。
[図 2]図 2は真空搬送室およびロードロック室内の雰囲気をそれぞれ制御するための 機構を示すブロック図である。
[図 3]図 3はウェハ上の有機物付着量のパージガス流量依存性を示す特性図である
[図 4]図 4は真空搬送室およびロードロック室内の雰囲気をそれぞれ制御するための 他の機構を示すブロック図である。
[図 5]図 5は本発明の他の実施形態に係る真空処理装置 (クラスタツール)を示す平 面模式図である。
[図 6]図 6は露光装置の要部を示すブロック図である。
[図 7]図 7は実施形態の露光装置において真空搬送室およびロードロック室内の雰 囲気をそれぞれ制御する機構を示すブロック図である。
発明を実施するための最良の形態
[0019] 以下、添付図を参照して本発明の好適な実施の形態について説明する。
[0020] 図 1に、本発明の一実施形態に係る真空処理装置の全体構成を示す。この真空処 理装置は、いわゆるクラスタツールであり、クリーンルーム内に設置され、搬送室 10を 有する例えば六角形のトランスファ'モジュール TMの周りにプロセス ·モジュール PM , PM , PM , PMと、 2つのロードロック'モジュール LLM , LLMとをクラスタ状に
1 2 3 4 1 2
配置している。
[0021] プロセス.モジュール PM , PM , PM , PMは、室内の圧力が個別に設定ないし 制御されるチャンバ型の真空処理室 12を有している。ロードロック'モジュール LLM
1
, LLMは、後述するように、室内を選択的に大気圧状態または減圧状態に切り換え
2
られるチャンバ型のロードロック室 14を有している。プロセス ·モジュール PM, PM,
1 2
PM, PMの真空処理室 12はそれぞれゲートバルブ GAを介してトランスファ ·モジ
3 4
ユール TMの真空搬送室 10に連結されている。ロードロック ·モジュール LLM, LL
1
Mのロードロック室 14はそれぞれゲートバルブ GBを介して真空搬送室 10に連結さ
2
れている。真空搬送室 10の室内には旋回および伸縮可能な一対の搬送アーム F ,
A
Fを有する真空搬送ロボット RBが設けられている。
B 1
[0022] プロセス ·モジュール PM , PM , PM , PMは、各々の真空処理室 12内で所定
1 2 3 4
の用力(処理ガス、高周波、熱等)を用いて所要の枚葉処理、例えば CVD (Chemical Vapor Deposition)、 ALD(Atomic Layer Deposition)ある ヽは PVDD (Physical Vapo r Deposition)等の成膜処理、熱処理、半導体ウェハ表面のクリーニング処理、ドライ エッチング力卩ェ等を行うようになって!/、る。
[0023] ロードロック'モジュール LLM , LLMは、各々のロードロック室 14内の雰囲気を大
1 2
気圧状態と所定真空度の減圧状態との間で切り換えられるようになつている。各ロー ドロック室 14は、トランスファ 'モジュール TM側からみて反対側の大気圧下にある口 ーダ 'モジュール LMの大気搬送室 16にドアバルブ DVを介して接続されている。
[0024] ローダ'モジュール LMと隣接してロードポート LPおよびオリエンテーションフラット 位置合わせ機構 (オリフラ合わせ機構) ORTが設けられて 、る。ロードポート LPは、 外部搬送車との間で例えば 1バッチ 25枚の半導体ウェハ(以下、単に「ウェハ」という 。)Wを収納可能なウェハカセット CRの投入、払出しに用いられる。オリフラ合わせ機 構 ORTは、ウェハ Wのオリエンテーションフラットまたはノッチを所定の位置または向 きに合わせるために用いられる。
[0025] ローダ ·モジュール LMに設けられている大気搬送ロボット RBは、一対の伸縮可能
2
な搬送アームを有し、リニアガイド (リニアスライド) LAに沿って水平方向に移動可能 であるとともに、昇降'旋回可能であり、ロードポート LP、オリフラ合わせ機構 ORTお よびロードロック.モジュール LLM , LLMの間を行き来してウェハ Wを 1枚ずっ搬
1 2
送する。ここで、大気搬送ロボット RBは、ウェハカセット CR前面に設けられている LP ドア(図示せず)の開状態において半導体ウェハ Wをローダ ·モジュール LM内に搬 入する。リニアガイド LAは、例えば永久磁石カゝらなるマグネット、駆動用磁気コイルお よびスケールヘッド等で構成され、コントローラからの指令に従って大気搬送ロボット RBZの直線運動制御を行う。
[0026] ここで、ロードポート LPに投入されたウェハカセット CR内の 1枚のウェハにこのクラ スタツール内で一連の処理を受けさせるための基本的なウェハ搬送動作を説明する
[0027] ローダ'モジュール LMの搬送ロボット RBは、ロードポート LP上のウェハカセット C
2
Rから 1枚のウェハ Wを取り出し、このウェハ Wをオリフラ合わせ機構 ORTに搬送して オリフラ合わせを受けさせ、それが済んだ後にロードロック'モジュール LLM , LLM
1 2 のいずれか一方(たとえば LLM )に移送する。移送先のロードロック ·モジュール LL
1
M は、大気圧状態でウェハ Wを受け取り、搬入後にロードロック室 14内を真空引き
1
し、減圧状態でウェハ Wをトランスファ ·モジュール TMの真空搬送ロボット RBに受
1 け渡す。
[0028] 搬送ロボット RBは、搬送アーム F , Fの片方を用いて、ロードロック'モジュール L
1 A B
LMより取り出したウェハ Wを 1番目のプロセス 'モジュール(たとえば PM )に搬入す
1 1 る。プロセス 'モジュール PMは、予め設定されたレシピにしたがい所定のプロセス条
1
件 (ガス、圧力、電力、時間等)で第 1工程の枚葉処理を実施する。
[0029] この第 1工程の枚葉処理が終了した後に、搬送ロボット RBは、ウェハ Wをプロセス
1
•モジュール PM力 搬出する。次に、搬送ロボット RBは、 1番目のプロセス ·モジュ
1 1
ール PM力 搬出したウェハ Wを次に 2番目のプロセス ·モジュール(たとえば PM )
1 2 に搬入する。この 2番目のプロセス ·モジュール PMでも、予め設定されたレシピにし
2
たがい所定のプロセス条件で第 2工程の枚葉処理を実施する。
[0030] この第 2工程の枚葉処理が終了すると、搬送ロボット RBは、ウェハ Wを 2番目のプ
1
ロセス 'モジュール PMから搬出する。次いで、搬送ロボット RBは、プロセス'モジュ
2 1
ール PM力 搬出したウェハ Wを、次工程があるときは 3番目のプロセス 'モジュール
2
(PMもしくは PM )に搬入し、次工程がないときはロードロック'モジュール LLM , L
3 4 1
LMの片方に搬送する。 3番目以降のプロセス 'モジュールで処理が行われた場合 も、その後に次工程があるときは後段のプロセス 'モジュールに搬入し、次工程がな いときはロードロック'モジュール LLM , LLMの片方に戻す。
1 2
[0031] こうしてクラスタツール内の複数のプロセス 'モジュール PM , PM · 'で一連の処理
1 2
を受けたウェハ Wがロードロック'モジュールの片方(たとえば LLM )に搬入されると
2
、このロードロック'モジュール LLMのロードロック室 14は減圧状態から大気圧状態
2
に切り替えられる。し力る後、ローダ'モジュール LMの搬送ロボット RB 1S 大気開放
2
されたロードロック ·モジュール LLMからウェハ Wを取り出して該当のウェハカセット
2
CRに戻す。なお、ロードロック ·モジュール LLM, LLMにおいて滞在中のウェハ W
1 2
に所望の雰囲気下で加熱または冷却処理を施すこともできる。
[0032] 上記のように、このクラスタツールは、ウェハを複数のプロセス ·モジュールに真空 中で順次シリアルに搬送して一連の処理を連続的に実施することが可能であり、特 に真空薄膜形成加工では複数のプロセス 'モジュールに異なる成膜加工を連続的に 行わせて所望の薄膜をインラインで積層形成することができる。また、複数のプロセス •モジュールがパイプライン方式でそれぞれの枚葉処理を連続的に繰り返すため、高 Vヽ稼働率および生産性を可能とする。
[0033] 図 2に、トランスファ 'モジュール TMの真空搬送室 10内の雰囲気および各ロード口 ック 'モジュール LLM (j = l, 2)のロードロック室 14内の雰囲気をそれぞれ制御する 機構を示す。
[0034] トランスファ 'モジュール TMの真空搬送室 10の側面には、各プロセス 'モジュール PMi (i= l, 2, 3, 4)のウェハ搬入出口にゲートバルブ GAを介して連結される第 1 のウェハ搬入出口 10aと、各ロードロック'モジュール LLMのロードロック室 14にゲ j
ートバルブ GBを介して連結される第 2のウェハ搬入出口 10bが設けられている。
[0035] 真空搬送室 10の底面には排気ポート 20が設けられており、この排気ポート 20に排 気管 22を介して排気機構 24が接続されている。排気管 22に設けられる開閉弁 26は 定常時は開状態に保持される。排気機構 24は、たとえばターボ分子ポンプ力もなる 真空ポンプや絞り弁からなる流量制御弁等を含んでおり、一定の排気量または排気 速度で真空搬送室 10内を真空排気するようになって ヽる。
[0036] 真空搬送室 10の上部たとえば天井面には給気ポート 28が設けられている。この給 気ポート 28にはパージガス供給源 30からの給気管 32が接続されており、この給気 管 32にはマスフローコントローラ(MFC) 34と開閉弁 36が設けられている。定常時は 、開閉弁 36が開状態に保持され、パージガス供給源 30よりパージガスまたは調圧ガ スとして不活性ガス、好ましくは Nガスが MFC34および開閉弁 36を通って真空搬
2
送室 10内に供給される。ここで、 MFC34は、ガス質量センサと流量調整弁とを備え ており、給気管 32を流れる Nガスの流量を内部のフィードバック制御によって流量設
2
定値に保つように動作する。主制御部 38は MFC34に流量設定値を与える。
[0037] また、真空搬送室 10の天井には室内の圧力を計測する真空計 40が取り付けられ ており、この真空計 40の出力信号 (圧力測定値)は圧力モニタ信号として主制御部 3 8に与えられる。上記のように排気機構 24の排気量が一定であることから、真空搬送 室 10内の圧力はパージガス供給機構(30, 32, 34)より供給されるパージガスの流 量に依存する。したがって、主制御部 38は、 MFC36に対する流量設定値を通じて 真空搬送室 10内の圧力を所定の範囲内に制御することができる。し力しながら、たと えば排気機構 24において排気流量が低下したり、真空搬送室 10の気密性が低下 すると、パージガスの流量が設定通りに制御されていても真空搬送室 10内の圧力が 異常に高くなることがある。この場合、主制御部 38は、真空計 40を通じて真空搬送 室 10内の圧力をモニタしているので、圧力が所定の上限値を超えたときは異常と判 断し、 MFC34に対する流量設定値の変更、アラームの発生、装置運転の停止等の 処置をとることができる。
[0038] この実施形態において、真空搬送室 10内の圧力はプロセス ·モジュール PMの真 空処理室 12内の圧力を基準としてこれよりも適度に高い値に選ばれ、通常のクラスタ ツールでは 500mTorr(66. 7Pa)以下の値たとえば 200mTorr (26. 7Pa)に選ば れる。一方、真空搬送室 10に供給するパージガスの流量は、真空搬送室 10内に滞 在中のウェハ wに対する有機物の付着を可及的に低減する観点から最適値に設定 ないし制御される。
[0039] 図 3に、ウェハ上の有機物付着量のパージガス流量依存性を測定した結果を示す 。測定条件として、真空室の内壁温度は 23°C、圧力は 53Pa、パージガスは Nガス、
2 ウェハ口径は 300mmである。 [0040] 図 3の測定結果において、パージガス(Nガス)の流量が Osccmのときの有機物付
2
着量が約 300ngであるところ、 lOsccmで約 180ng、 40sccmで約 180ng、 75sccm で約 140ng、 96sccmで約 135ngであり、 lOsccm以上のパージガス(Nガス)流量
2 で有機物付着量を効果的に低減できることがゎカゝる。
[0041] 理論的には、次のように考えられる。すなわち、真空搬送室における有機物汚染源 は真空封止用の Oリング、グリースなどの有機材料、およびアセトン等の有機溶剤で ある。これら有機材料および装置内壁の表面力 ガス状有機物が放出される速度は クラジウス 'クラペイロンの式に従い、温度と各有機成分の蒸発ェンタルピーに依存 する。このため、温度が一定である場合、有機物の放出速度は一定となる。一方、真 空搬送室内のウェハに付着する有機物の量は、真空搬送室内の有機物濃度に依存 する。したがって、真空搬送室におけるウェハ上の有機物付着量を低減させるため には、真空搬送室内にパージガスを供給して有機物濃度を低減させることが有効で あると考えられる。
[0042] なお、パージガス (Nガス)流量にはプロセスへの影響や排気機構の排気能力等
2
の様々な観点から上限が設けられる。通常は、 lOOOsccmを上限値としてよい。
[0043] 再び図 2において、ロードロック'モジュール LLMは、ロードロック室 14内に、ゥェ ハ Wを載置して支持する載置台 40を設けている。この載置台 40の中には、ウェハ W を搬送ロボット RB、 RBとの受け渡しの際に水平姿勢で上げ下げするためのリフトピ
1 2
ン機構(図示せず)が設けられている。なお、ロードロック室 14内でウェハ Wに加熱ま たは冷却処理を施す場合は、載置台 40にヒータ(図示せず)または冷却機構 (図示 せず)を設けることができる。
[0044] ロードロック室 14の底面には排気ポート 42が設けられており、この排気ポート 42に 排気管 44を介して排気機構 46が接続されている。排気管 44には開閉弁 48が設け られている。開閉弁 48は、ロードロック室 14内を減圧状態に切り換える際や減圧状 態を保持する期間中は開けられ、ロードロック室 14内を大気圧状態に切り換える際 や大気圧状態を保持する期間中は閉められる。排気機構 46は、たとえば粗引き用の ドライポンプや高真空用のターボ分子ポンプおよび流量制御弁たとえば絞り弁等を 含んでおり、ロードロック室 14内を大気圧状態力も減圧状態に切り換えるときは大き な一定の排気速度で、ロードロック室 14内を減圧状態を保持するときは比較的小さ な一定の排気速度で、ロードロック室 14を真空排気するようになっている。
[0045] ロードロック室 14の上部たとえば天井面には給気ポート 50が設けられている。この 給気ポート 50にはパージガス供給源 52からの給気管 54が接続されており、この給 気管 54にはマスフローコントローラ(MFC) 56と開閉弁 58が設けられている。開閉弁 58は、ロードロック室 14にパージガスを供給する時または期間(ロードロック室 14内 を減圧状態から大気圧状態に切り換える時と、ロードロック室 14内を真空の設定圧 力に保持する期間)中は開状態となり、それ以外の期間中は閉状態となる。
[0046] 開閉弁 58が開いているときは、パージガス供給源 52よりパージガスまたは調圧ガス として不活性ガス、好ましくは Nガスが MFC56および開閉弁 58を通ってロードロック
2
室 14内に供給される。ここで、 MFC56は、ガス質量センサと流量調整弁とを備えて おり、ロードロック室 14内を減圧状態から大気圧状態に切り換える時は該流量調整 弁を全開状態とし、ロードロック室 14内を真空の設定圧力に保持する期間中は給気 管 58を流れる Nガスの流量を内部のフィードバック制御によって流量設定値に保つ
2
ように動作する。主制御部 38は MFC56に流量設定値を与える。ロードロック室 14の 天井には室内の圧力を計測する真空計 60が取り付けられており、この真空計 60の 出力信号 (圧力測定値)は圧力モニタ信号として主制御部 38に与えられる。
[0047] ロードロック室 14においても、減圧状態を保持するときは、上記したトランスファ'モ ジュール TMの真空搬送室 10と同様の雰囲気制御が行われる。すなわち、上記のよ うに排気機構 46の排気量が一定であることから、ロードロック室 14内の圧力はパージ ガス供給機構(52, 54, 56)より供給されるパージガス (Nガス)の流量に依存する。
2
したがって、主制御部 38は、 MFC56に対する流量設定値を通じてロードロック室 14 内の圧力を所定の範囲内に制御することができる。し力しながら、たとえば排気機構 46において排気流量が低下し、あるいはロードロック室 14の気密性が低下すると、 パムジガス(Nガス)の流量が設定通りに制御されていてもロードロック室 14内の圧
2
力が異常に高くなることがある。主制御部 38は、真空計 60を通じてロードロック室 14 内の圧力をモニタしているので、圧力が所定の上限値を超えたときは異常と判断し、 MFC56に対する流量設定値の変更、アラームの発生、装置運転の停止等の処置を とることができる。
[0048] なお、図 2にお!/ヽて、主帘 U御咅 38ίま、 MFC34、 56の他にも、開閉弁 26, 48, 36, 58、搬送ロボット RB、ゲートバルブ GA, GB、ドアバルブ DV等の動作を直接または
1
間接的に制御できるようになつている。
[0049] この実施形態において、ロードロック室 14内の圧力はトランスファ 'モジュール TM の真空搬送室 10内の圧力を基準としてこれよりも適度に高い値、それでも通常のクラ スタツールでは 500mTorr (66. 7Pa)以下の値たとえば 200〜400mTorr(26. 7 〜53. 4Pa)に選ばれる。一方、ロードロック室 14に供給するパージガスの流量は、 ロードロック室 14内に滞在中のウェハ Wに対する有機物の付着を可及的に低減する 観点から最適値に設定ないし制御される。ここでも、図 3の計測結果と上記の理論を 基に、ロードロック室 14に供給するパージガスの流量を lOsccm以上の値に制御す ることでロードロック室 14内のウエノ、 Wに対する有機物付着量を効果的に低減するこ とがでさる。
[0050] 図 4に、真空搬送室 10およびロードロック室 14内の雰囲気をそれぞれ制御する機 構の別の実施例を示す。図中、上記した第 1の実施例(図 2)のものと同様の構成ま たは機能を有する部分には同一の参照符号を附してある。
[0051] この実施例において、真空搬送室 10内の上部に設けられている給気ポート 28には パージガス供給源 30からの給気管 32が接続されており、この給気管 32には開閉弁 62と流量制御弁 64とが並列に設けられている。流量制御弁 64は、たとえば比例制 御弁からなり、圧力制御部 66によってバルブ開度を制御されるようになっている。真 空搬送室 10内の圧力を計測する真空計 40の出力信号 (圧力測定値)は、フィードバ ック信号として圧力制御部 66に与えられる。また、給気管 32には流量制御弁 64と直 列に流量センサ 68が設けられており、この流量センサ 68の出力信号 (流量測定値) は流量モニタ信号として主制御部 38に与えられる。
[0052] 開閉弁 62は、メンテナンス作業で真空搬送室 10内を大気圧状態にする際に開け られる。定常時は、開閉弁 62を閉状態に保ったまま、パージガス供給源 30からのパ ージガスを調圧用ガスとして流量制御弁 64経由で真空搬送室 14内に供給し、流量 制御弁 64のバルブ開度 (ガス供給流量)を真空計 40および圧力制御部 66によって フィードバック制御し、真空搬送室 10内の圧力を圧力設定値たとえば 200mTorr (2 6. 7Pa)に合わせる。主制御部 38は、圧力制御部 66に所望の圧力設定値を与える とともに、流量センサ 68の出力信号 (流量測定値)から真空搬送室 10に供給するパ ージガス (Nガス)の流量を監視する。
2
[0053] この場合も、排気機構 24の排気流量が一定であることから、真空搬送室 10に供給 されるパージガスの流量は一定の関係で真空搬送室 10内の圧力に対応した値にな る。したがって、主制御部 38は,圧力制御部 66に対する圧力設定値を通じてパージ ガスの流量を所定値以上または所定範囲内に制御することができる。しかしながら、 たとえば排気機構 24において排気流量が低下すると、真空搬送室 10内の圧力が設 定通りに制御されて 、てもパージガスの流量が異常に低くなることがある。この場合、 主制御部 38は、流量センサ 68を通じて真空搬送室 10内の圧力をモニタしているの で、パージガスの流量が所定の下限値 (たとえば lOsccm)を超えたときは異常と判 断し、圧力制御部 66に対する圧力設定値の変更、アラームの発生、動作停止等の 処置をとることができる。
[0054] ロードロック室 14においても、給気ポート 50にはパージガス供給源 52からの給気 管 54が接続されており、この給気管 54には開閉弁 58と流量制御弁 70とが並列に設 けられている。流量制御弁 70は、圧力制御部 72によってバルブ開度を制御される比 例制御弁である。ロードロック室 14内の圧力を計測する真空計 60の出力信号 (圧力 測定値)は、フィードバック信号として圧力制御部 72に与えられる。さらに、給気管 54 には流量制御弁 70と直列に流量センサ 74が設けられており、この流量センサ 74の 出力信号 (流量測定値)は流量モニタ信号として主制御部 38に与えられる。
[0055] ロードロック室 14の室内を減圧状態力も大気圧状態に切り換える際には、開閉弁 5 8を開けてパージガス供給源 52からのパージガスを開状態の開閉弁 58を介してロー ドロック室 14内に送り込む。また、ロードロック室 14内を大気圧状態力も減圧状態に 切り換えた後に室内の真空圧力を一定値に保持するときは、開閉弁 58を閉状態に 保ったままパージガス供給源 52からのパージガスを調圧用ガスとして流量制御弁 70 経由でロードロック室 14内に供給し、流量制御弁 70のバルブ開度 (ガス供給流量) を真空計 60および圧力制御部 72によってフィードバック制御し、ロードロック室 14内 の圧力を圧力設定値たとえば 400mTorr (53. 4Pa)に合わせる。
[0056] 主制御部 38は、圧力制御部 72に所望の圧力設定値を与えるとともに、流量センサ 74の出力信号 (流量側定値)を基にロードロック室 14に供給するパージガスの流量 を監視する。ロードロック室 14においても、排気機構 46の排気量または排気速度が 一定であることから、パージガスの流量は一定の関係で室内の圧力に対応した値に なる。したがって、主制御部 38は、圧力制御部 72に対する圧力設定値を通じてパー ジガスの流量を所定値以上または所定範囲内に制御することができる。しかしながら 、たとえば排気機構 46において排気流量が低下すると、ロードロック室 14内の圧力 が設定通りに制御されて 、てもパージガスの流量が異常に低くなることがある。この 場合、主制御部 38は、流量センサ 74を通じてロードロック室 14内の圧力をモニタし ているので、パージガスの流量が所定の下限値 (たとえば lOsccm)を超えたときは異 常と判断し、圧力制御部 72に対する圧力設定値の変更やアラームの発生あるいは 動作停止等の処置をとることができる。
[0057] 上記実施形態におけるクラスタツールの真空処理装置は、図 1に示したものに限定 されるものではなぐレイアウトや各部の構成等において種々の変形が可能である。 例えば、図 5に示すように、 1つのクラスタツール内で 2つのトランスファ 'モジュール T M , TMをパスユニット 78を介して直列に連結する構成も可能である。図示のレイァ
1 2
ゥトは、プロセス ·モジュール PMを最大で 6台まで設置できる。パスユニット 78の両側 には、プロセスの前処理を行うためのサブモジュール SM、 SMも配置される。このク
1 2
ラスタツールにおいても、各トランスファ ·モジュール TM, TMの真空搬送室 10お
1 2
よび各ロードロック ·モジュール LLM, LLMのロードロック室 14について、上記実
1 2
施形態と同様の構成または機能を有するパージガス流量制御機構および圧力モ- タ機構 (図 2)あるいは圧力制御機構およびパージガス流量モニタ機構 (図 3)を装備 することができる。
[0058] また、上記した実施形態におけるロードロック'モジュール LLM , LLMは半導体
1 2 ウェハ Wを 1枚単位で一時的に留め置く枚葉式のものであった。これらのロードロック •モジュール LLM, LLMを、図示省略するが、ウェハ Wを複数枚単位で一時的に
1 2
留め置くバッチ式に構成することも可能である。 [0059] さらに、別の実施形態による真空処理装置として、図示省略するが、真空処理室に ゲートバルブを介して接続される真空搬送室をロードロック ·モジュールで構成し、こ のロードロック ·モジュール内に搬送ロボットを設ける方式にも本発明は適用可能であ る。すなわち、該ロードロック'モジュールのロードロック室について上記実施形態と 同様の構成または機能を有するパージガス流量制御機構および圧力モニタ機構 (図 2)あるいは圧力制御機構およびパージガス流量モニタ機構(図 3)を装備することが できる。
[0060] なお、このように真空搬送室にロードロック室を直結する方式にぉ 、て、ロードロック 室にドアバルブを介してローダ'モジュール LMを接続する場合は、ロードロック室内 の搬送ロボットおよびローダ'モジュール LMの大気搬送ロボット RBの双方からァク
2
セス可能なウェハ載置台がロードロック室内(ドアバルブ DVの近く)に設けられる。あ るいは、ロードロック室にドアバルブを介してカセット室を接続し、このカセット室内に ウェハカセット CRを配置する構成にも本発明は適用可能である。
[0061] また、本発明はクラスタツール以外の真空処理装置にも適用可能である。本発明に おける真空プロセスには、 CVDやドライエッチング等のように反応性ガスを用いるも のに限らず、たとえば減圧方式の露光等も含まれる。
[0062] 図 6に、本発明の適用可能な減圧式露光装置の要部の構成を示す。この露光装置 は、真空排気可能な真空露光室 80と、この真空露光室 80の上方に配置される投影 光学系 82と、この投影光学系 82の上方に配置されるレチクル 84と、このレチクル 84 の上方に配置される照明光学系 86とを有している。
[0063] 真空露光室 80内でウェハ Wはウェハステージ 88上に水平に載置される。レチクル 84は、ウェハ W上に転写すべきパターンが形成されているフォトマスクであり、リング 状のレチクルステージ 90に水平に支持される。レチクル 84とウェハステージ 88との 間の所定の中間位置 (瞳位置近傍)に可変の開口絞り 92が配置されている。照明光 学系 86は、たとえば ArFエキシマレーザであり、いわゆるケーラー照明により瞳位置 に光源の像が形成されるようにレチクル 84を照明する。投影光学系 82は、複数の光 学レンズからなる縮小投影レンズを有しており、上方からケーラー照明されたレチクル 84のパターンを所定の縮小倍率で直下のウェハ W上に結像 (転写)させる。 [0064] 真空露光室 80には、不活性ガス供給部(図示せず)より不活性ガスたとえばへリウ ムガスが所定の流量で供給される一方で、排気機構 94により真空排気され、室内の 圧力が所定の真空度に維持される。この真空露光室 80に第 1のゲートバルブ GAを 介してトランスファ'モジュール TMの真空搬送室 94が接続されるとともに、このトラン スファ'モジュール TMに第 2のゲートバルブ GBを介してロードロック ·モジュール LL Mのロードロック室 96が接続される。
[0065] 上記構成の露光装置においても、図 7に示すように、トランスファ 'モジュール TMの 真空搬送室 96およびロードロック'モジュール LLMのロードロック室 98の雰囲気を 上記実施形態(図 2)と同様の雰囲気制御機構によって制御し、各室 96, 98内の有 機物汚染を防止することができる。さらには、図示省略するが、図 4と同様の雰囲気 制御機構を採用することも可能である。
[0066] 以上、本発明の好適な実施形態につ!ヽて説明したが、上述した実施形態は本発明 を限定するものではない。当業者にあっては、具体的な実施態様において本発明の 技術思想および技術範囲力 逸脱せずに種々の変形 ·変更をカ卩えることが可能であ る。
[0067] 上述した実施形態ではトランスファ 'モジュール TMの真空搬送室 10およびロード ロック.モジュール LLM , LLMのロードロック室 14を真空排気する排気機構 24, 4
1 2
6の排気量または排気速度を一定に固定した。しかし、排気機構 24, 46に自動圧力 制御装置 (APC)を設け、排気量を APCで可変制御して各室 10, 14内の圧力を設 定値に合わせる構成も可能である。この場合、パージガス供給機構側は、パージガ スの流量を絞り弁等の流量制御弁によって一定値に固定することが可能であり、 MF Cや圧力制御ループを省くことができる。本発明における被処理体は、半導体ウェハ に限らず、 LCD基板など真空処理装置内で有機物汚染が懸念される他の被処理体 であってもよい。
[0068] 本発明の真空処理装置または真空処理方法によれば、真空処理装置内に有機系 部材あるいは有機物が存在する場合であっても、被処理基板の有機物汚染を効果 的〖こ低減させることができる。

Claims

請求の範囲
[1] 室内が減圧状態に保たれ、室内と隣室との間で被処理体の搬送を行う搬送機構が 設けられて!/、る真空搬送室と、
前記真空搬送室に隣接して設けられ、減圧下の室内で被処理体に所定の処理が 行われる真空処理室と、
前記真空搬送室を真空排気する排気部と、
前記真空搬送室にパージガスを供給するパージガス供給部と、
前記真空搬送室内の圧力が所定の圧力範囲力 外れないようにこれを監視しなが ら前記パージガス供給部より前記真空搬送室に供給する前記パージガスの流量を 制御する制御部と、
を有する真空処理装置。
[2] 前記圧力上限値を 66. 7Pa (500mTorr)以下の値に設定し、前記パージガスの 流量を lOsccm以上の設定値に制御する請求項 1に記載の真空処理装置。
[3] 前記真空搬送室に隣接して設けられ、室内が選択的に大気状態または減圧状態 に切り換えられ、大気空間と前記真空搬送室との間で搬送される被処理体を一時的 に留め置くロードロック室を有する請求項 1に記載の真空処理装置。
[4] 前記真空搬送室が、室内に搬送機構が設けられ、室内を選択的に大気状態また は減圧状態に切り換えられるロードロック室である請求項 1に記載の真空処理装置。
[5] 室内が減圧状態に保たれ、室内と隣室との間で被処理体の搬送を行う搬送機構が 設けられて!/、る真空搬送室と、
前記真空搬送室に隣接して設けられ、減圧下の室内で被処理体に所定の処理が 行われる真空処理室と、
前記真空搬送室に隣接して設けられ、室内が選択的に大気状態または減圧状態 に切り換えられ、大気空間と前記真空搬送室との間で転送される被処理体を一時的 に留め置くロードロック室と、
前記ロードロック室を真空排気する排気部と、
前記ロードロック室にパージガスを供給するパージガス供給部と、
前記ロードロック室内の圧力が所定の圧力範囲力 外れないようにこれを監視しな 力 前記パージガス供給部より前記ロードロック室に供給する前記パージガスの流量 を制御する制御部と、
を有する真空処理装置。
[6] 前記圧力上限値を 66. 7Pa (500mTorr)以下の値に設定し、前記パージガスの 流量を lOsccm以上の設定値に制御する請求項 5に記載の真空処理装置。
[7] 前記ロードロック室内の圧力を前記真空搬送室内の圧力よりも高くする請求項 5に 記載の真空処理装置。
[8] 室内が減圧状態に保たれ、室内と隣室との間で被処理体の搬送を行う搬送機構が 設けられて!/、る真空搬送室と、
前記真空搬送室に隣接して設けられ、減圧下の室内で被処理体に所定の処理が 行われる真空処理室と、
前記真空搬送室を真空排気する排気部と、
前記真空搬送室にパージガスを供給するパージガス供給部と、
前記パージガス供給部より前記真空搬送室に供給する前記パージガスの流量が所 定の流量下限値よりも小さくならないようにこれを監視しながら前記真空搬送室内の 圧力を制御する制御部と、
を有する真空処理装置。
[9] 前記流量下限値を lOsccm以上の値に設定し、前記真空搬送室内の圧力を 66. 7 Pa (500mTorr)以下の設定値に制御する請求項 8に記載の真空処理装置。
[10] 前記真空搬送室に隣接して設けられ、室内が選択的に大気状態または減圧状態 に切り換えられ、大気空間と前記真空搬送室との間で搬送される被処理体を一時的 に留め置くロードロック室を有する請求項 8に記載の真空処理装置。
[11] 前記真空搬送室が、室内に搬送機構が設けられ、室内を選択的に大気状態また は減圧状態に切り換えられるロードロック室である請求項 8に記載の真空処理装置。
[12] 室内が減圧状態に保たれ、室内と隣室との間で被処理体の搬送を行う搬送機構が 設けられて!/、る真空搬送室と、
前記真空搬送室に隣接して設けられ、減圧下の室内で被処理体に所定の処理が 行われる真空処理室と、 前記真空搬送室に隣接して設けられ、室内が選択的に大気状態または減圧状態 に切り換えられ、大気空間と前記真空搬送室との間で転送される被処理体を一時的 に留め置くロードロック室と、
前記ロードロック室を真空排気する排気部と、
前記ロードロック室にパージガスを供給するパージガス供給部と、
前記パージガス供給部より前記ロードロック室に供給する前記パージガスの流量が 所定の流量下限値よりも小さくならないようにこれを監視しながら前記ロードロック室 内の圧力を制御する制御部と、
を有する真空処理装置。
[13] 前記流量下限値を lOsccm以上の値に設定し、前記真空搬送室内の圧力を 66. 7 Pa (500mTorr)以下の設定値に制御する請求項 12に記載の真空処理装置。
[14] 前記ロードロック室内の圧力を前記真空搬送室内の圧力よりも高くする請求項 12 に記載の真空処理装置。
[15] 真空処理室と真空搬送室との間で被処理体を減圧下で搬送し、前記真空処理室 内で前記被処理体にたいして所定の処理を行う真空処理方法であって、 前記真空搬送室を真空排気しながら室内にパージガスを供給し、室内の圧力を 66. 7Pa (500mTorr)以下の値に制御し、前記パージガスの流量を lOsccm以上の値 に制御する真空処理方法。
PCT/JP2007/050271 2006-01-13 2007-01-11 真空処理装置及び真空処理方法 WO2007080934A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/169,660 US7993458B2 (en) 2006-01-13 2008-07-09 Vacuum processing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-006032 2006-01-13
JP2006006032A JP2007186757A (ja) 2006-01-13 2006-01-13 真空処理装置及び真空処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/169,660 Continuation US7993458B2 (en) 2006-01-13 2008-07-09 Vacuum processing apparatus and method

Publications (1)

Publication Number Publication Date
WO2007080934A1 true WO2007080934A1 (ja) 2007-07-19

Family

ID=38256339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050271 WO2007080934A1 (ja) 2006-01-13 2007-01-11 真空処理装置及び真空処理方法

Country Status (5)

Country Link
US (1) US7993458B2 (ja)
JP (1) JP2007186757A (ja)
KR (1) KR20080075202A (ja)
CN (1) CN101310041A (ja)
WO (1) WO2007080934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688303B (zh) * 2007-09-03 2012-06-20 东京毅力科创株式会社 真空处理系统

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450742Y1 (ko) * 2008-06-11 2010-10-26 주식회사 테스 기화기 모니터링 장치
DE102009004493B3 (de) * 2009-01-09 2010-06-10 Sovello Ag Vakuumbeschichtungsanlage und Verfahren zum Betrieb einer Vakuumbeschichtungsanlage
JP5219960B2 (ja) * 2009-08-11 2013-06-26 株式会社アルバック プロセスモニタ装置及び成膜装置、並びにプロセスモニタ方法
JP5358366B2 (ja) * 2009-09-14 2013-12-04 東京エレクトロン株式会社 基板処理装置及び方法
TWI408766B (zh) * 2009-11-12 2013-09-11 Hitachi High Tech Corp Vacuum processing device
JP2012028659A (ja) * 2010-07-27 2012-02-09 Hitachi High-Technologies Corp 真空処理装置
EP2444993A1 (en) * 2010-10-21 2012-04-25 Applied Materials, Inc. Load lock chamber, substrate processing system and method for venting
JP5785712B2 (ja) * 2010-12-28 2015-09-30 株式会社日立ハイテクノロジーズ 真空処理装置
CN102751392A (zh) * 2011-04-19 2012-10-24 北京北方微电子基地设备工艺研究中心有限责任公司 晶片处理装置和晶片处理方法
US8557683B2 (en) * 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
JP5862943B2 (ja) * 2011-11-16 2016-02-16 新東工業株式会社 真空装置及び真空装置の真空容器内の圧力制御方法
JP5598734B2 (ja) * 2012-01-06 2014-10-01 株式会社ダイフク 物品保管設備
KR102068186B1 (ko) 2012-02-29 2020-02-11 어플라이드 머티어리얼스, 인코포레이티드 로드 록 구성의 저감 및 스트립 프로세스 챔버
JP5967993B2 (ja) * 2012-03-19 2016-08-10 芝浦メカトロニクス株式会社 減圧装置
JP6047308B2 (ja) * 2012-05-28 2016-12-21 日精エー・エス・ビー機械株式会社 樹脂容器用コーティング装置
JP5951889B2 (ja) * 2013-03-27 2016-07-13 東京エレクトロン株式会社 基板処理装置
JP6403431B2 (ja) * 2013-06-28 2018-10-10 株式会社Kokusai Electric 基板処理装置、流量監視方法及び半導体装置の製造方法並びに流量監視プログラム
JP6338989B2 (ja) * 2014-09-19 2018-06-06 東京エレクトロン株式会社 基板搬送方法
JP6459462B2 (ja) * 2014-12-11 2019-01-30 東京エレクトロン株式会社 リーク判定方法、基板処理装置及び記憶媒体
US10124492B2 (en) * 2015-10-22 2018-11-13 Lam Research Corporation Automated replacement of consumable parts using end effectors interfacing with plasma processing system
US20170115657A1 (en) 2015-10-22 2017-04-27 Lam Research Corporation Systems for Removing and Replacing Consumable Parts from a Semiconductor Process Module in Situ
US10062599B2 (en) * 2015-10-22 2018-08-28 Lam Research Corporation Automated replacement of consumable parts using interfacing chambers
CN105607427A (zh) * 2016-02-04 2016-05-25 京东方科技集团股份有限公司 涂覆方法
JP6240695B2 (ja) * 2016-03-02 2017-11-29 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
US10358715B2 (en) * 2016-06-03 2019-07-23 Applied Materials, Inc. Integrated cluster tool for selective area deposition
CN208521893U (zh) * 2017-12-14 2019-02-19 长鑫存储技术有限公司 半导体干式蚀刻机台
US11270899B2 (en) * 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
KR102212996B1 (ko) 2019-01-02 2021-02-08 피에스케이홀딩스 (주) 기판 처리 장치 및 기판 처리 방법
KR20210081729A (ko) * 2019-12-24 2021-07-02 에스케이하이닉스 주식회사 반도체 테스트 시스템 및 방법
US11486927B2 (en) * 2020-04-02 2022-11-01 Applied Materials, Inc. Bode fingerprinting for characterizations and failure detections in processing chamber
CN111607783B (zh) * 2020-05-12 2022-07-22 北京北方华创微电子装备有限公司 半导体载具、半导体加工设备及吹扫方法
CN111524841B (zh) * 2020-07-06 2020-10-23 上海陛通半导体能源科技股份有限公司 可实时检测机械微颗粒的半导体工艺设备及方法
JP2022104042A (ja) * 2020-12-28 2022-07-08 東京エレクトロン株式会社 基板処理装置
US11862482B2 (en) * 2021-03-11 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor substrate bonding tool and methods of operation
JP7366952B2 (ja) * 2021-03-23 2023-10-23 芝浦メカトロニクス株式会社 プラズマ処理装置の検査方法
CN117413352A (zh) * 2021-05-11 2024-01-16 Vat控股公司 真空处理系统和处理控制
JP2024002792A (ja) * 2022-06-24 2024-01-11 株式会社島津製作所 真空ポンプシステム、及び、制御方法
US20240141483A1 (en) * 2022-10-26 2024-05-02 Applied Materials, Inc. Apparatus, systems, and methods of using an atmospheric epitaxial deposition transfer chamber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017478A (ja) * 2001-07-05 2003-01-17 Tokyo Electron Ltd 真空処理装置および真空処理方法
JP2003297760A (ja) * 2002-04-02 2003-10-17 Hitachi Kokusai Electric Inc 半導体製造装置
JP2005200680A (ja) * 2004-01-13 2005-07-28 Serubakku:Kk Cvd装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772835B2 (ja) 1989-08-28 1998-07-09 東京エレクトロン株式会社 基板処理装置及び真空処理方法
JP4674705B2 (ja) * 1998-10-27 2011-04-20 東京エレクトロン株式会社 搬送システムの搬送位置合わせ方法及び搬送システム
JP3676983B2 (ja) * 2000-03-29 2005-07-27 株式会社日立国際電気 半導体製造方法、基板処理方法、及び半導体製造装置
JP2004510221A (ja) * 2000-06-14 2004-04-02 アプライド マテリアルズ インコーポレイテッド 環境が制御されたチャンバ内で圧力を維持するための装置及び方法
JP4348921B2 (ja) * 2002-09-25 2009-10-21 東京エレクトロン株式会社 被処理体の搬送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017478A (ja) * 2001-07-05 2003-01-17 Tokyo Electron Ltd 真空処理装置および真空処理方法
JP2003297760A (ja) * 2002-04-02 2003-10-17 Hitachi Kokusai Electric Inc 半導体製造装置
JP2005200680A (ja) * 2004-01-13 2005-07-28 Serubakku:Kk Cvd装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688303B (zh) * 2007-09-03 2012-06-20 东京毅力科创株式会社 真空处理系统

Also Published As

Publication number Publication date
JP2007186757A (ja) 2007-07-26
KR20080075202A (ko) 2008-08-14
US7993458B2 (en) 2011-08-09
US20080274288A1 (en) 2008-11-06
CN101310041A (zh) 2008-11-19

Similar Documents

Publication Publication Date Title
WO2007080934A1 (ja) 真空処理装置及び真空処理方法
JP7206356B2 (ja) ファクトリインターフェースチャンバのフィルタパージを用いた基板処理装置及び方法
US8623457B2 (en) Vacuum processing system
JP4916140B2 (ja) 真空処理システム
US5981399A (en) Method and apparatus for fabricating semiconductor devices
JP2021525954A (ja) 基板製造装置及びファクトリインターフェースチャンバの加熱を用いた方法
JP4634918B2 (ja) 真空処理装置
US20190096702A1 (en) Substrate processing apparatus, substrate processing method, and computer storage medium
JP2005039185A (ja) 被処理体処理装置、その被処理体処理方法、圧力制御方法、被処理体搬送方法、及び搬送装置
JP2014060412A (ja) 半導体製造装置
JP2012109333A (ja) 基板処理装置
JP2008251991A (ja) ロードロック装置および昇圧方法
JP7149144B2 (ja) 真空処理装置及び真空処理装置の制御方法
US20180105933A1 (en) Substrate processing apparatus and method for cleaning chamber
JP2005353986A (ja) 露光装置
WO2013136916A1 (ja) ロードロック装置
TWI828245B (zh) 用於減少基板冷卻時間的設備及方法
JP2005243775A (ja) 基板処理装置および雰囲気置換方法
TWI838931B (zh) 基板處理裝置
KR102553420B1 (ko) 기판 처리 방법 및 기판 처리 장치
JPWO2018220731A1 (ja) 処理装置
KR20210002929A (ko) 로드락 챔버 및 이를 구비하는 기판 처리 시스템
JP2021068893A (ja) 基板処理装置及び方法
KR20020027774A (ko) 반도체 제조설비의 로드락쳄버 압력 제어장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000117.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087015401

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706618

Country of ref document: EP

Kind code of ref document: A1