WO2007077859A1 - 加速度計速装置 - Google Patents

加速度計速装置 Download PDF

Info

Publication number
WO2007077859A1
WO2007077859A1 PCT/JP2006/326015 JP2006326015W WO2007077859A1 WO 2007077859 A1 WO2007077859 A1 WO 2007077859A1 JP 2006326015 W JP2006326015 W JP 2006326015W WO 2007077859 A1 WO2007077859 A1 WO 2007077859A1
Authority
WO
WIPO (PCT)
Prior art keywords
importance
axis
acceleration data
acceleration
reference point
Prior art date
Application number
PCT/JP2006/326015
Other languages
English (en)
French (fr)
Inventor
Toru Kitamura
Masaya Yamashita
Original Assignee
Asahi Kasei Emd Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Emd Corporation filed Critical Asahi Kasei Emd Corporation
Priority to CN2006800504986A priority Critical patent/CN101356442B/zh
Priority to JP2007552951A priority patent/JP4663738B2/ja
Priority to US12/159,976 priority patent/US7881900B2/en
Priority to EP06843397A priority patent/EP1970713B1/en
Publication of WO2007077859A1 publication Critical patent/WO2007077859A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the present invention relates to an acceleration measuring device that performs output correction of a multi-axis acceleration sensor. More specifically, the present invention relates to a two-axis or three-axis device that does not require the attitude of the accelerometer speed device to be directed in a specific direction. Accelerometer that can quickly acquire both offset or offset and sensitivity required for output correction of 2-axis or 3-axis acceleration sensor by repeatedly acquiring output data of the axis acceleration sensor Speed device.
  • piezoresistive three-axis acceleration sensors for semiconductor devices using MEMS (Micro Electro Mechanical Systems) technology have been developed as lightweight, small-sized three-axis acceleration sensors that can be incorporated into portable devices (for example, patents). Reference 1).
  • sensitivity and offset vary, and in particular, offset variation is often not negligible. Furthermore, in the case of a piezoresistive acceleration sensor, sensitivity and offset have significant temperature characteristics. In addition, the temperature characteristics of offset often vary greatly.
  • the conventional acceleration measuring apparatus employs the following solution (see, for example, Patent Document 2).
  • sensitivity / offset is measured in different temperature atmospheres such as 0 ° C '25 ° C '60 ° C, and the acceleration measuring device has EEPROM, etc. These measurement data are stored with the storage means.
  • an output correction circuit is mounted on the acceleration measuring device, and the sensitivity and offset included in the acceleration sensor output voltage are determined based on the current temperature data and the previously stored measurement data. The variation and temperature characteristics are calculated and corrected.
  • the conventional acceleration measuring device further employs the following solution.
  • the acceleration measurement device 203 is arranged so that the acceleration detection axis direction of the three-axis acceleration sensor 202 is parallel to the direction of the gravitational acceleration g. Measure the output voltage of the 3-axis accelerometer 202 for each of the six attitudes to obtain the next output voltage data.
  • Sensitivity and offset data required to correct the output of the 3-axis acceleration sensor are calculated using the following equations.
  • the 2-axis or 3-axis output data of the 2-axis or 3-axis acceleration sensor can be obtained repeatedly without recognizing that the orientation of the acceleration measurement device is directed in a specific direction.
  • There is an acceleration measuring device that can acquire both an offset or both sensitivity and offset necessary for output correction of an acceleration sensor see Patent Document 4).
  • the accelerometer device described in Patent Document 4 estimates both offset or offset and sensitivity using acceleration data at rest.
  • the acceleration a can be decomposed into a motion acceleration k and a gravitational acceleration g. Since the gravitational acceleration g is constant,
  • the measured output values (X, y, z) are distributed on an ellipsoid when the kinematic acceleration is 0 (constant velocity motion or stationary) and there is a difference in sensitivity between the axes of the acceleration sensor.
  • G X + BY + CZ + DU + EV + FW
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-101033
  • Patent Document 2 JP-A-6-331647
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-93552
  • Patent Document 4 Japanese Patent Application No. 2005-056597
  • the acquired acceleration data at rest is often acquired at the same posture, and it takes a long time to obtain the acceleration data at rest in a plurality of postures. .
  • the acceleration measurement device When the offset changes due to a change in temperature, the data acquired so far must be discarded and the data acquired again over a long period of time.
  • the acceleration measurement device must be equipped with a storage means such as EEPROM to store all measurement data acquired so far for each appropriate temperature category, or the estimated offset and sensitivity.
  • an object of the present invention is to obtain 2-axis or 3-axis acceleration sensor output data repeatedly without being conscious of directing the attitude of the accelerometer speed device in a specific direction.
  • An object of the present invention is to provide an acceleration measuring speed device that can quickly acquire both an offset or both offset and sensitivity necessary for output correction of an axial acceleration sensor.
  • the present invention provides acceleration detection means for detecting acceleration in a biaxial or triaxial direction, acceleration data acquisition means for acquiring biaxial or triaxial acceleration data detected by the acceleration detection means, and acceleration data acquisition Importance calculation means for calculating the importance of acceleration data acquired by the means, and 2-axis or 3-axis acquired by the acceleration data acquisition means 2-dimensional Cartesian coordinate plane or three-dimensional Cartesian coordinate space distribution with each axis component of each acceleration data in the acceleration data group as a coordinate value, and the importance calculation corresponding to the 2-axis or 3-axis acceleration data group
  • a reference point estimating means for estimating a reference point defined on the two-dimensional or three-dimensional orthogonal coordinate space and a reference length of each axis from an importance group including importance of different values calculated by the means;
  • offset correction means for correcting each acceleration data acquired by the acceleration data acquisition means based on the reference point estimated by the estimation means and the reference length of each axis, the acceleration measurement speed Configure the device.
  • the reference point estimation means includes a two-axis or three-axis acceleration data group acquired by the acceleration data acquisition means in a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal space, and the acceleration data group.
  • a circle or a sphere is defined on the two-dimensional orthogonal coordinate plane or three-dimensional orthogonal coordinate space from the importance group calculated by the importance calculation means, and the center coordinate and radius of the circle or sphere are estimated.
  • the estimated center coordinates are used as the reference point, the radius is used as the reference length of each axis, and the offset correction unit is configured to determine the two axes based on the reference point estimated by the reference point estimation unit. Or you can correct the offset of acceleration data of 3 axes.
  • the reference point estimation means includes a two-axis or three-axis acceleration data group acquired by the acceleration data acquisition means in a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal space, and the acceleration data group.
  • An ellipse or ellipsoidal surface is defined on the two-dimensional orthogonal coordinate plane or three-dimensional orthogonal coordinate space from the importance group calculated by the importance calculating means, and the center coordinates of the ellipse or ellipsoidal surface and each coordinate
  • the radius of the main axis is estimated, the estimated center coordinates are set as the reference point, the radius of each main axis is set as the reference length of each axis, and the offset correction unit is configured to estimate the reference point estimation unit.
  • the offset and sensitivity of each 2-axis or 3-axis acceleration data may be corrected based on the reference point and the reference length of each axis.
  • the reference point estimating means includes a representative value calculating means for calculating a representative value of a predetermined number M of acceleration data groups acquired by the acceleration data acquiring means, and a representative value calculated by the representative value calculating means.
  • a first importance calculating means for calculating the first importance;
  • a second importance calculation means for calculating a second importance corresponding to the representative value from the importance of 1 and the additional information, and the reference point estimation means is stored by the storage means.
  • the distribution of the predetermined number N of the representative values in the two-dimensional Cartesian coordinate plane or three-dimensional Cartesian coordinate space when each axis component is the coordinate value, and the second importance calculation corresponding to the representative value Estimate the reference point and the reference length of each axis determined on the 2D Cartesian coordinate plane or the 3D Cartesian coordinate space from the predetermined number N of the second importance calculated by the means.
  • the second importance level calculating means includes the importance level calculated from the additional information stored in the storage means corresponding to the representative value, and the first level stored in the storage means corresponding to the representative value.
  • the second importance may be calculated from the importance of 1.
  • the reference point estimation means includes a distribution in a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space of a predetermined number N of representative value groups accumulated by the accumulation means, and the second value corresponding to the representative values.
  • a circle or sphere is defined on the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space from the predetermined number N of second importance groups calculated by the importance calculation means, and the center coordinates of the circle or sphere are defined as A radius is estimated, the estimated center coordinate is the reference point, the radius is a reference length of each axis, and the offset correction unit is based on the reference point estimated by the reference point estimation unit, It is also possible to correct the offset of each acceleration data of the 2 or 3 axes.
  • the reference point estimation means includes a distribution in a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space of a predetermined number N of representative value groups accumulated by the accumulation means, and the first corresponding to the representative values.
  • the ellipse or ellipsoid surface is defined on the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space from the predetermined number N of the second importance groups calculated by the importance calculation means of 2, and the ellipse or ellipsoid surface
  • the center coordinates and the radius of each spindle are estimated, the estimated center coordinates are set as the reference point, the radius of each spindle is set as the reference length of each axis, and the offset correction means is the reference point estimation means.
  • the offset and sensitivity of each 2-axis or 3-axis acceleration data are corrected based on the reference point estimated by the above and the reference length of each axis. You can do it.
  • the representative value calculating means may calculate an average value of the predetermined number M of acceleration data groups as a representative value.
  • the first importance level calculating means may include means for calculating a variation in the predetermined number M of acceleration data groups and means for calculating a higher importance level A as the variation becomes smaller.
  • the variation is a sum of variances of the respective axes of the predetermined number M of acceleration data groups or a maximum value of the variances of the respective axes.
  • the variation is 2 of the sum of squares of the difference between the maximum value and the minimum value of each axis of the predetermined number M of acceleration data groups, or the maximum value of the difference between the maximum value and the minimum value of each axis. It may be a power.
  • One of the additional information is a temperature at which the acceleration detection unit detects the acceleration data group used when the representative value calculation unit calculates a representative value, and the second importance level.
  • the calculating means is one of the additional information, that is, the temperature at the time when the acceleration detecting means detects data, and the temperature at the time when the importance is being calculated by the second importance calculating means.
  • a means for calculating a lower importance B as the difference between and may increase may be provided.
  • One of the additional information is a time when the acceleration detection unit detects the data group used when the representative value calculation unit calculates a representative value, and the second importance calculation.
  • the means is one of the additional information, and there is a difference between the time when the acceleration detecting means detects data and the time when the importance is being calculated by the second importance calculating means. You may have the means to calculate importance C that is so low that it becomes large.
  • the apparatus further comprises selection means for selecting whether or not the representative value calculated by the representative value calculation means is appropriate, wherein the selection means is a first value calculated by the first importance calculation means. When the importance of 1 is higher than a predetermined value, the representative value calculated by the representative value calculating means may be determined to be appropriate and selected.
  • the accumulating means predetermines a linear axis that is linearly related to the detection axis of the acceleration detecting means, and when comparing the maximum value, the second important value corresponding to the representative value from the representative value.
  • the representative values are compared with the values obtained by adding the second importance corresponding to the representative values, and the selection means newly selects them.
  • the representative value that maximizes or minimizes the detection axis or linear axis component of the acceleration detecting means may be selectively accumulated. Good.
  • the number of acceleration data groups weighted by the importance of the acceleration data group obtained by the acceleration data acquisition means, the sum of the axis components weighted by the importance of the acceleration data group, and the acceleration data group Holds the sum of squares of each axis component weighted by the importance, coefficient group of simultaneous equations for calculating the reference point and reference length of each axis, and the reference point and reference length Machining data holding means, the latest data obtained by the acceleration data acquisition means, the importance calculated by the importance calculation means corresponding to the data, and the latest various machining data held by the machining data holding means From the above, you can estimate the reference point and the reference length of each axis! /.
  • a distribution in a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space when each axis component of an acceleration data group consisting of a plurality of two-axis or three-axis acceleration data forces is used as a coordinate value.
  • the representative value of the acquired predetermined number M of acceleration data groups is calculated, the first importance of the representative value is calculated, and whether the representative value is appropriate or not is determined.
  • the selected representative value and the first importance and additional information (time, temperature, etc.) corresponding to the representative value are accumulated, and the first importance corresponding to the accumulated representative value and The second importance corresponding to the representative value is calculated from the additional information, and the 2D Cartesian coordinate plane or 3D Cartesian coordinate space when each axis component of the specified number N of accumulated values is used as the coordinate value.
  • the reference point to be determined on the two-dimensional or three-dimensional Cartesian coordinate space and the reference length of each axis are estimated from the distribution in FIG. 5 and the predetermined number N of second importance corresponding to the representative value. As the temperature changes Even if the facets change, it is possible to quickly estimate the offset or both offset and sensitivity.
  • FIG. 1 is a block diagram showing a basic configuration example of an accelerometer speed device which is a first embodiment of the invention.
  • FIG. 2 is a block diagram showing a configuration example of an accelerometer device having a finite length reference point estimation unit, which is a second embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a configuration example of a buffer as a storage unit suitable for storing the maximum value and the minimum value of the detection axis and the linear axis.
  • FIG. 4 is a flowchart showing an example of processing for selecting data stored in an accumulation unit.
  • FIG. 5 is a block diagram illustrating a configuration example of an accelerometer device having an infinite length reference point estimation unit according to a third embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration example of an accelerometer speed device having a finite length and an infinite length reference point estimation unit, which is a fourth embodiment of the present invention.
  • FIG. 7A is an explanatory diagram showing a method for measuring a predetermined axial component in a conventional acceleration measuring device.
  • FIG. 7B is an explanatory diagram showing a method for measuring a predetermined axial component in a conventional acceleration measuring device.
  • FIG. 7C is an explanatory diagram showing a method of measuring a predetermined axial component in a conventional acceleration measuring device.
  • FIG. 7D is an explanatory view showing a method for measuring a predetermined axial component in a conventional acceleration measuring device.
  • FIG. 7E is an explanatory view showing a method for measuring a predetermined axial component in a conventional acceleration measuring device.
  • FIG. 7F is an explanatory diagram showing a method for measuring a predetermined axial component in a conventional acceleration measuring device.
  • FIG. 1 shows a schematic configuration of an accelerometer speed device according to the present invention.
  • the accelerometer speed device includes an acceleration detection unit 1, an acceleration data acquisition unit 2, an importance calculation unit 5, a reference point estimation unit 6, and an offset correction unit 4.
  • the acceleration detector 1 detects the acceleration in the biaxial or triaxial directions.
  • the acceleration data acquisition unit 2 acquires the acceleration detected by the acceleration detection unit 1 as acceleration data.
  • the reference point estimation unit 3 is a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space when each axis component of each acceleration data of the acceleration data group acquired by the acceleration data acquisition unit 2 is used as a coordinate value. From the distribution in, and the importance group associated with the acceleration data group, a reference point defined on a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space and a reference length of each axis are estimated.
  • the importance calculation unit 5 calculates the importance corresponding to the acceleration data acquired by the acceleration data acquisition unit 2.
  • the reference point estimation unit 6 is a distribution on a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space when each axis component of the acceleration data group acquired by the acceleration data acquisition unit 2 is used as a coordinate value.
  • the reference point defined on the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space and the reference length of each axis are estimated from the importance group calculated by the importance calculation unit 5 attached to each acceleration data. .
  • the offset correction unit 4 corrects each acceleration data acquired by the acceleration data acquisition unit 2 based on the reference point estimated by the estimation unit 3 and the reference length of each axis. [0069] Force that can perform such a basic operation Furthermore, the reference point estimation unit 3 can also perform the following operation.
  • the reference point estimation unit 6 distributes the acceleration data group acquired by the acceleration data acquisition unit 2 in the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space, and calculates the importance associated with the acceleration data group.
  • a circle or sphere is defined on the 2D Cartesian coordinate plane or 3D Cartesian coordinate space from the importance group calculated by the means, the center coordinate and radius of the circle or sphere are estimated, and the estimated center coordinate is used as a reference.
  • the point is the radius and the radius is the reference length of each axis.
  • the offset correction unit 4 can correct the offset of the biaxial or triaxial acceleration data based on the reference point estimated by the reference point estimation unit 6.
  • the reference point estimation unit 6 distributes the acceleration data group acquired by the acceleration data acquisition unit 2 in the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space, and the important data accompanying the acceleration data group.
  • the ellipse or ellipsoid surface is defined on the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space from the importance group calculated by the degree calculation unit 5, and the center coordinates of the ellipse or ellipsoid surface and the radius of each principal axis are estimated.
  • the estimated center coordinates are set as a reference point, and the radius of each main axis is set as the reference length of each axis.
  • the offset correction unit 4 can correct the offset and sensitivity of the biaxial or triaxial acceleration data based on the reference point estimated by the reference point estimation unit 6 and the reference length of each axis.
  • FIG. 2 shows a configuration example of an accelerometer speed device according to the present invention.
  • the accelerometer speed device includes an acceleration detection unit 1, an acceleration data acquisition unit 2, a finite length reference point estimation unit 10, and an offset correction unit 4.
  • an acceleration detection unit 1 an acceleration data acquisition unit 2
  • a finite length reference point estimation unit 10 an acceleration data acquisition unit 3
  • an offset correction unit 4 an offset correction unit 4.
  • the finite length reference point estimation unit 10 includes a representative value calculation unit 11, a first importance calculation unit 12, a data selection unit 13, a storage unit 14, and a second importance calculation unit 15.
  • the first reference point estimator 16 comprises.
  • the representative value calculation unit 11 calculates a representative value of a predetermined number M of acceleration data groups acquired by the acceleration data acquisition unit 2.
  • the first importance calculation unit 12 includes L importance calculation units (A1 to AL) 12a and all importance calculation units (1) 12b, and is calculated by the representative value calculation unit 11. The first importance of the representative value is calculated.
  • the data selection unit 13 selects whether or not the representative value calculated by the representative value calculation unit 11 is appropriate.
  • the accumulating unit 14 accumulates the representative value selected by the data selecting unit 13, and the first importance and additional information corresponding to the representative value.
  • the second importance calculation unit 15 includes an importance calculation unit (B) 15a, an importance calculation unit (C) 15b, and an all importance calculation unit (2) 15c.
  • the second importance corresponding to the representative value is calculated from the first importance and the additional information corresponding to the representative value stored in.
  • the first reference point estimation unit 16 has a predetermined number N of representative values accumulated by the accumulation unit 14 in a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space when each axis component is a coordinate value. Based on the distribution and a predetermined number N of second importance calculated by the second importance calculation unit 15 corresponding to the representative value, a reference point defined on a two-dimensional orthogonal coordinate plane or a three-dimensional orthogonal coordinate space Estimate the reference length of each axis.
  • acceleration is detected by an acceleration sensor, and the detected value is converted into a voltage.
  • the acceleration converted into voltage is amplified, filtered, and the like by the acceleration data acquisition unit 2 and further AD-converted and acquired as acceleration data.
  • the acceleration data is a value in which the true acceleration is expanded and contracted at different ratios in the direction of each measurement axis, and offset is superimposed, mainly due to the sensitivity difference and offset of each axis of the acceleration sensor.
  • the acceleration data includes quantization error and noise.
  • the representative value calculation unit 11 calculates representative values of a predetermined number of acceleration data groups detected successively.
  • the representative value is used when the offset and sensitivity are estimated by the first reference point estimation unit 16 and should be distributed on the spherical surface or the ellipsoidal surface, and is preferably gravitational acceleration data. ,.
  • the representative value is an average value, a median value, acceleration data in a specific order, or the like of a predetermined number of acceleration data groups detected continuously.
  • the output data becomes the representative value as it is.
  • the importance of the representative value is calculated.
  • the importance is calculated in a plurality of different ways by the importance calculation part (A1 to AL) 12a of S and combined in the total importance calculation part (1) 12b, and as a result, the total importance 1 is calculated.
  • the importance is a value representing the importance of the representative value used when the first reference point estimation unit 16 estimates the reference point, and a representative value having a higher importance is preferentially used for reference point estimation.
  • the acceleration is the sum of the normal motion acceleration and the gravitational acceleration. When calculating the offset and sensitivity of the acceleration sensor, it is necessary that the gravitational acceleration is distributed on the spherical surface or the ellipsoidal surface as described above. Use. Therefore, data with smaller motion acceleration is more suitable for offset and sensitivity estimation, that is, it is more important.
  • the variance of each axis of a predetermined number of data (or more than a predetermined number including the data, or a part of the predetermined number of data) including the representative value is calculated, If the sum of variances is large, the representative value is likely to contain large motion acceleration.If the importance is low, the representative value is likely to be calculated from data acquired at rest. So increase the importance. We will show later that importance is a concept based on the inverse of variance. By selecting the reciprocal of the maximum variance of each axis as the importance.
  • the maximum value of each axis of the predetermined number of data (there is! /, More than the predetermined number including the data !, or a part of the predetermined number of data) for which the representative value is calculated, It may be the reciprocal of the sum of squares of the difference from the minimum value, or the reciprocal of the square of the maximum value of the difference between the maximum value and the minimum value of each axis.
  • the present invention is incorporated in a system having only a limited calculation capability, it is more advantageous to calculate the importance from the maximum value and the minimum value than to calculate the variance.
  • ⁇ , ⁇ , and ⁇ are the variances of each axis, and ⁇ , x, y, y, z, and z are respectively
  • Data selection unit 13 is generally composed of a plurality of small data selection units, and only representative values selected by all the small data selection units are selected.
  • the data selection unit 13 determines whether the calculated representative value is suitable for reference point estimation, and selects a representative value determined to be appropriate. Usually, since the number of representative values used for reference point estimation is limited, data with poor features is discarded here.
  • a selection method for example, a representative value having a total importance level 1 equal to or higher than a predetermined value is selected. A representative value with a total importance of 1 that is too small is discarded because it is more likely to estimate false offsets and sensitivities. Also, the representative value selected immediately before
  • the distance between all representative values stored in the storage unit and the representative value newly input to the data selection unit 13 (the norm in the measurement value space! /
  • the absolute value is also compared, and data that is equal to or greater than a predetermined value is selected.
  • the accumulation unit 14 accumulates the representative value selected by the data selection unit 13, the total importance 1 associated with the representative value, and additional information necessary for calculating the total importance 2.
  • time and temperature when the acceleration sensor measures the acceleration data group used for representative value calculation can be used.
  • Patent Document 4 proposes a method of selecting and storing measurement data so that the measurement data is distributed over a wide range in a three-dimensional space.
  • Patent Document 4 an arbitrary linear axis is set in a three-dimensional orthogonal coordinate space, and point data is accumulated on the axis close to the maximum or minimum.
  • the acceleration data is distributed on an ellipsoid whose major axis or minor axis is one of the measurement axes. It has components that are the maximum and minimum values on the measurement axis of the sensor (i.e., on 3 axes). By using one data, the accuracy of the ellipsoid fitting calculation can be increased.
  • the importance is a value based on the dispersion of the representative values as will be described later, and is related to the range in which the representative values can exist. Therefore, when selecting the data stored in the storage unit 14, the maximum value is compared between the minimum values that the representative value can take, and the minimum value is compared between the maximum values that the representative value can take. That is, the worst value in the range where the representative value can exist is compared. By comparing in this way, for example, even if a certain representative value includes a motion acceleration and becomes a large value, if the minimum value that the representative value can take is low and less important than the appropriate value, this The representative value is excluded from the storage unit.
  • FIG. 3 shows a storage unit 1 suitable for storing the maximum and minimum values of the detection axis and the linear axis.
  • a configuration example of the buffer as 4 is shown.
  • the accumulating unit 14 has a nofer with six or more arrays for selectively storing representative values as shown in Fig. 3. That is, SEQ ID NO: 0 contains
  • the buffer also stores the total importance 1 corresponding to each representative value, and the temperature and time at which the acceleration data used to calculate the representative value was acquired.
  • FIG. 4 shows a processing example for selecting data stored in the storage unit 14.
  • step S1 When a new representative value is selected by the data selection unit 13 (step S1), first, the total importance 2 of the new representative value is calculated (step S2). And the total importance of the representative value of each array
  • step S3 to step S5 The new representative value is compared with the representative value of each sequence.
  • the second importance calculation unit 15 combines the importance calculated by the importance calculation units 15a and 15b from the total importance 1 accumulated in the accumulation unit 14, the temperature and the time. Calculate a total importance of 2.
  • the offset and sensitivity of an acceleration sensor have temperature characteristics.
  • the data In systems that estimate offset and sensitivity using spherical or ellipsoidal fittings, the data must be collected from the beginning if the temperature fluctuates. In order not to waste the data once acquired, there is a power to prepare a buffer for each temperature in the storage unit 14, and an extra storage area is required. It is not necessary to use such a method if the offset and reference point can be recalculated quickly enough by re-acquisition of data after fluctuation along with temperature fluctuation.
  • the offset fluctuation of the acceleration sensor due to temperature fluctuation is generally specified in the specifications of the acceleration sensor, and the worst value (C) of the offset fluctuation per 1 ° C is known. Importance calculation
  • the importance ( ⁇ ⁇ 2 ) is calculated from the temperature as follows, for example.
  • the degree is estimated to be low.
  • the representative values stored in the storage unit that has become less important are as described above (selectively storing the maximum and minimum values, taking into account the total importance 1 of the detection axis and linear axis of the acceleration sensor. In any system) it is easy to exchange for a new representative value.
  • the acceleration data is only centrifugal force (gravity acceleration is 0), so the acceleration data is the spherical or ellipsoidal surface that the gravitational acceleration measurement data should draw. Do not climb on.
  • the variance calculated by the importance calculation unit is close to 0, so it becomes very high importance, and the acquired data may remain in the storage unit for a long time. is there.
  • the representative values stored in the storage unit can be replaced within a finite time.
  • the importance ( ⁇ ⁇ 2 ) is calculated from time, for example, as follows:
  • the total importance level 2 is calculated by combining the total importance level 1 and the importance level (Equation 16) for calculating the temperature force and the importance level (Equation 17) calculated from the time. [0123] For example,
  • the first reference point estimation means calculates the offset and sensitivity of the acceleration sensor using the representative value accumulated in the accumulation unit and the total importance 2 calculated by the importance calculation means 2.
  • the offset and sensitivity of the acceleration detection means are calculated by the following equations using the measured values (X, y, z) of N acceleration sensors. .
  • ⁇ / ⁇ Represents the variance of ⁇ ; (ie, the square of the distance between the spherical surface to be drawn by the gravitational acceleration data and the actual acceleration data) for each measured value, y.,.
  • Equation 23 shows that the greater the variance, the smaller the degree of influence when determining the offset and sensitivity.
  • the offset correction unit 4 corrects the data obtained by the acceleration data acquisition unit 2 using the offset and sensitivity estimated by the first reference point estimation unit 16, and calculates the corrected true acceleration. calculate.
  • the representative value of the predetermined number M of acquired acceleration data groups is calculated, the first importance level of the representative value is calculated, and whether the representative value is appropriate or not is selected.
  • the selected representative value and the first importance and additional information (time, temperature, etc.) corresponding to the representative value are accumulated, and the first importance and additional information corresponding to the accumulated representative value are stored.
  • 2nd importance corresponding to the representative value is calculated from the two-dimensional orthogonal coordinate plane or the distribution in the three-dimensional orthogonal coordinate space when each axis component of the predetermined number N of accumulated representative values is used as the coordinate value, From the predetermined number N of second importance corresponding to the representative values, the reference points defined on the two-dimensional orthogonal coordinate plane or the three-dimensional orthogonal coordinate space and the reference length of each axis are estimated.
  • FIG. 5 shows a configuration example of the accelerometer speed device according to the present invention.
  • the accelerometer speed device includes an acceleration detection unit 1, an acceleration data acquisition unit 2, an infinite length reference point estimation unit 20, and an offset correction unit 4.
  • an acceleration detection unit 1 an acceleration data acquisition unit 2
  • an infinite length reference point estimation unit 20 an infinite length reference point estimation unit 20
  • an offset correction unit 4 an offset correction unit 4.
  • the infinite length reference point estimation unit 20 includes an importance calculation unit 21, a storage unit 22, and a second reference point estimation unit 23.
  • the importance calculation unit 21 has L importance calculation units (1 to L) 21a and all importance calculation units 21b. From the acceleration data acquired by the acceleration data acquisition unit 2, the importance calculation unit 21 To obtain the importance associated with the acceleration data group, calculate the importance of each 2-axis or 3-axis acceleration data.
  • the storage unit 22 includes the number weighted by the importance of the acceleration data group obtained by the acceleration data acquisition unit 2, the sum of each axis component weighted by the importance of the acceleration data group, and the acceleration data group. Holds the sum of values weighted by the square of each axis component by importance, coefficient group of simultaneous equations for calculating reference point and reference length of each axis, and reference point and reference length
  • the second reference point estimation unit 23 holds the latest data obtained by the acceleration data acquisition unit 2, the importance calculated by the importance calculation unit 21 corresponding to the data, and the storage unit 22 The reference point and the reference length of each axis are estimated from the latest various machining data.
  • the offset and sensitivity of the acceleration sensor are based on whether the gravitational acceleration data is spherical or elliptical. It is obtained from the distribution on the body surface.
  • normally measured acceleration data includes motion acceleration, which is a factor of error in offset and sensitivity estimation.
  • motion acceleration is a factor of error in offset and sensitivity estimation.
  • PDA mobile phone
  • the mobile device's motion acceleration is directed in various directions relative to the terminal. Is expected to be distributed around the spherical or ellipsoidal surface where the gravitational acceleration is distributed.
  • Equation 19 if the number of acceleration data used for offset and sensitivity estimation is sufficiently large, (Equation 19), (Equation 20), or a spherical surface that can be applied using the methods of (Equation 22) to (Equation 24), or The ellipsoidal surface is expected to be the same as the distribution around the spherical surface or ellipsoidal surface where gravity acceleration is distributed.
  • R 2 can be transformed as follows.
  • the measurement data is retained, and therefore, for example, the offset is changed by a temperature change. If the temperature has changed, only the data before the temperature change cannot be deleted.
  • z is multiplied by 1 / k 2 to obtain all the processed data as new cache data (in the case of a matrix, each component is multiplied by lZk 2 ).
  • the storage unit 22 holds data represented by (Expression 30) or (Expression 34).
  • Offset and sensitivity may fluctuate during acceleration measurement due to factors such as temperature changes.
  • the importance of past data is lowered at an appropriate time.
  • the importance is lowered, for example, every time new data is acquired, the influence of past data can be eliminated with a certain time constant. The same is true whenever a predetermined time elapses.
  • the temperature fluctuation is stored as the temperature immediately after the previous temperature fluctuation, and when the temperature changes more than a predetermined value for this temperature, or the maximum temperature value immediately after the previous temperature fluctuation. And the minimum value are stored, and the difference between the maximum value and the minimum value is changed by a predetermined value or more.
  • the reduction in importance may be requested by a system that realizes numerical calculations that are not based on physical factors such as temperature. In other words, the value in the form of the sum of the measured values in the processed data of (Equation 30) or (Equation 34) increases as the number of measurement data increases. Since the bit length of both the CPU that processes data and the storage area is finite, it is necessary to periodically reduce the value of the cache data.
  • the importance is calculated by a plurality of different methods and is combined in the total importance calculation unit, and as a result, the total importance is calculated.
  • the importance of acceleration data can be calculated as follows, for example. The variance of each axis of a predetermined number of consecutively acquired acceleration data groups is calculated, and if the sum of the variances of each axis is large, the importance is decreased. Conversely, if it is small, the importance is increased. The importance is calculated from the maximum variance of each axis.
  • the square sum of the difference between the maximum value and the minimum value of each axis of a predetermined number of data or the square force of the maximum value of the difference between the maximum value and the minimum value of each axis may be calculated.
  • the present invention is incorporated into a system having only a limited calculation capability, it is more advantageous to calculate the importance from the maximum value and the minimum value than to calculate the variance. For example, the importance (1Z ⁇ 2 ) is
  • ⁇ , ⁇ , ⁇ is the variance of each axis, ⁇ , x, y, y, z, z are
  • a is a constant for normalization.
  • Acceleration data group force that contains a lot of acceleration data at rest in the same posture The estimated offset and sensitivity often contain a lot of errors.
  • the offset estimated by the acceleration data group (gravity acceleration + noise determined by the attitude), which is the power of only the acceleration data at rest in the same posture, is almost the same value as that acceleration data group. That is, the offset is estimated on the spherical surface or ellipsoidal surface to be obtained. Therefore, the importance of acceleration data acquired at or near a static state should be set low.
  • the importance of the acceleration data can be calculated as follows, for example. The variance of each axis of a predetermined number of continuously acquired acceleration data groups is calculated. If the sum of the variances of each axis is large, the importance is increased. Conversely, if the sum is small, the importance is decreased. The importance is calculated from the maximum variance of each axis.
  • the sum of squares of the difference between the maximum value and the minimum value of each axis of a predetermined number of data or the square force of the maximum value of the difference between the maximum value and the minimum value of each axis may be calculated.
  • the present invention is incorporated in a system having limited calculation capability, it is more advantageous to calculate the importance from the maximum value and the minimum value than to calculate the variance.
  • the predetermined number is 2
  • the sum of squares of the variance of each axis represents the square of the distance in the measurement space between the two acceleration data. For example, the importance (1Z ⁇ 2 ) is
  • ⁇ , ⁇ , and ⁇ are the variances of each axis, ⁇ , x, y, y, z, and z are x y z max min max min max min
  • a is a constant for normalization.
  • the second reference point estimation unit 23 uses the machining data stored in the storage unit 22, the newly acquired acceleration data, and the total importance thereof, and the offset and sensitivity of the acceleration sensor. Is estimated.
  • FIG. 6 shows a configuration example of an accelerometer speed device according to the present invention.
  • the accelerometer speed device includes an acceleration detection unit 1, an acceleration data acquisition unit 2, an estimation unit 3, and an offset correction unit 4.
  • the estimation unit 3 includes the finite length reference point estimation unit 10 of the second example (see Fig. 2) and the third example.
  • the infinite length reference point estimation unit 20 (see FIG. 5) and the third reference point estimation unit 30 are configured.
  • the third reference point estimator is calculated by the first reference point estimator of the finite length reference point estimator and the second reference point estimator of the infinite length reference point estimator. 19) matrix A,
  • the offset and sensitivity estimated by the infinite length reference point estimator 20 are values estimated under the assumption that acceleration is distributed around a spherical surface or ellipsoidal surface where heavy acceleration is distributed. There is no guarantee that the estimation is always correct. For this reason, the estimation time of the offset and sensitivity estimated by the infinite length reference point estimation unit 20 is very short, but the accuracy is not always guaranteed in some cases.
  • the finite length reference point estimation unit 10 selects the estimated offset and The accuracy of sensitivity is very high. On the other hand, it takes time to collect static data, and it takes longer time to estimate offset and sensitivity.
  • These two reference point estimation means may be switched at a certain point in time, but by gradually shifting, it is possible to smoothly shift to accurate offset and sensitivity with time.
  • both reference point estimation means eventually obtain coefficient matrices A and B of (Equation 19).
  • the coefficient matrix obtained by the infinite length reference point estimator 20 is defined as A, B
  • the coefficient matrix obtained by the finite length reference point estimation unit 10 is A, B and k is the ratio (nf Nlim Nlim
  • the offset and sensitivity can be calculated using Nfus B.
  • I A I represents the determinant of A, and is for standardizing each matrix.
  • determinant calculations are time consuming and generally have a large dynamic range, so only integer operations are supported (as is the case with small systems), which is not suitable for systems.
  • the matrix normalization method is slightly different, the starting point and the ending point are the same except for the subsequent method of offset and sensitivity, and there is not much merit in obtaining the determinant exactly.
  • use the maximum value of the diagonal component of A instead of the determinant.
  • k is set to 0 at the beginning and approaches 1 as static data gathers.
  • k is calculated as follows.
  • the acceleration sensor has individual differences in the sensitivity differences between the measurement axes, but if the model number is determined, it will have the same value.
  • the finite length reference point estimation unit 10 selectively accumulates the maximum and minimum values of the three measurement axes X, ⁇ , and Z of the acceleration sensor, six measurement data are stored. This means that the larger the volume to be created, the wider the measurement points, and the more the points are distributed in the region.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

 多軸成分を含む複数の加速度データからなる加速度データ群の各軸成分を座標値としたときの3次元直交座標空間上における分布と、該加速度データ群に付随する重要度群とから、2次元又は3次元の直交座標空間上に定める基準点と、各軸の基準長とを推定し、その推定された基準点と各軸の基準長とに基づいて各加速度データを補正する。

Description

明 細 書
加速度計速装置
技術分野
[0001] 本発明は、多軸の加速度センサの出力補正を行う加速度計測装置に関し、より詳 細には、加速度計速装置の姿勢を特定の方向に向けるよう意識することなぐ 2軸又 は 3軸の加速度センサの出力データを繰り返し取得することで、 2軸又は 3軸の加速 度センサの出力補正に必要なオフセット若しくはオフセットと感度との両方を速やか に取得することができるようにした加速度計速装置に関する。
背景技術
[0002] 近年、携帯機器に組込み可能な軽量小型の 3軸加速度センサとして MEMS (Mic ro Electro Mechanical Systems)技術を用いた半導体デバイスのピエゾ抵抗 型 3軸加速度センサが開発されている(例えば、特許文献 1参照)。
[0003] 加速度を検知し、電圧に変換して出力する 3軸加速度センサにおいて、各軸方向 の感度を r , r , r、各軸のオフセットを x , y , zとすると、加速度 a , a , aに対する 加速度センサの出力 x, y, zは次式のように表される。
[0004] [数 1]
Figure imgf000003_0001
一般に感度及びオフセットにはばらつきがあり、特にオフセットのばらつきは無視で きない場合が多い。さらにピエゾ抵抗型の加速度センサの場合、感度及びオフセット は著しい温度特性を有する。加えてオフセットの温度特性は、ばらつきが大きいこと が多い。
[0005] このような問題を解決するために、従来の加速度計測装置においては、次のような 解決手段を採っている (例えば、特許文献 2参照)。
[0006] つまり、出荷前の検査工程において、例えば、 0°C ' 25°C ' 60°Cといった異なる複 数の温度雰囲気の中で感度 ·オフセットを計測し、加速度計測装置に EEPROM等 の記憶手段を搭載してこれらの測定データを記憶する。
[0007] また、加速度計測装置使用時において、加速度計測装置に出力補正回路を搭載 し、現在の温度データと先に記憶された測定データを基に、加速度センサ出力電圧 に含まれる感度及びオフセットのばらつきと温度特性を演算して補正する。
[0008] し力しながら、従来のこの種の加速度計測装置は、以下のような欠点を有している。
[0009] 1)異なる複数の温度雰囲気での測定、及び感度の測定は工程数,測定時間,設 備コストを非常にアップさせる。
[0010] 2)出力補正回路における感度とオフセットの温度特性の演算は回路構成を複雑 にさせコストアップになる。
[0011] 3)感度とオフセットの温度特性の計算精度を高めるためには測定温度を増やし、 かつ出力補正回路における温度特性演算部分をさらに複雑にする必要があり、現実 は困難である。
[0012] また、従来の加速度計測装置においては、さらに次のような解決手段を採っている
(例えば、特許文献 3参照)。
[0013] 加速度計測装置の使用の都度、例えば、図 7A〜図 7Fに示すように、 3軸加速度 センサ 202の加速度検出軸方向が重力加速度 gの方向と平行になるよう、加速度計 測装置 203の姿勢を 6通りに合わせてそれぞれ 3軸加速度センサ 202の出力電圧を 測定し、次の出力電圧データを得る。
[0014] X: 図 7Aの姿勢における X軸測定値
X: 図 7Bの姿勢における X軸測定値
2
y: 図 7Cの姿勢における y軸測定値
y: 図 7Dの姿勢における y軸測定値
2
z: 図 7Eの姿勢における z軸測定値
z: 図 7Fの姿勢における z軸測定値
2
3軸加速度センサの出力補正に必要な感度とオフセットのデータは、次式により算 出される。
[0015] [数 2]
Figure imgf000005_0001
し力しながら、従来のこの種の加速度計測装置は、以下のような欠点を有している。
[0016] 1)使用の都度、加速度計測装置の姿勢を複数の特定の方向にそれぞれ合わせ る必要があることは使用者にとって非常に煩わしく不便である。
[0017] 2)さらに、使用者が手で加速度計測装置を支持しながら方向を正確に合わせる ことは困難であり、上式によって算出される感度及びオフセットは誤差が大きくなりや すい。
[0018] 上記の問題を解決した、加速度計測装置の姿勢を特定の方向に向けるよう意識す ることなく 2軸又は 3軸加速度センサの出力データを繰り返し取得することで、 2軸又 は 3軸加速度センサの出力補正に必要なオフセット若しくは感度とオフセットの両方 を取得することができるようにした加速度計測装置がある (特許文献 4参照)。
[0019] 特許文献 4に記載の加速度計速装置は静止時の加速度データを用いて、オフセッ トもしくはオフセットと感度との両方を推定する。
[0020] 加速度 aは、運動加速度 kと重力加速度 gに分解できる。重力加速度 gは一定なの で、
[0021] [数 3]
|g| = g =const = gr + g v + g, 運度加速度が 0の場合 (等速度運動、ある!/、は静止)加速度センサの各軸の感度 が同じ (r)なら、加速度センサの測定出力値 (X, y, z)は、球面上に分布する。
[0022] 画
■ゥ ■ゥ .- つ つ
_ .ΐ0 ) + { y - y0 ) + (二—二。) = r ^g - 上式 (数 4)によれば 4個の異なる測定点力 オフセット (X , y , z )、及び感度 (r) が推定可能だが、実際には加速度センサの出力にはノイズが重畳されており、以下 のような統計的手法を用いて推定したほうが好ましい。 N個の加速度センサの測定値 (X , y , z、 i=l〜N)【こ対して、
[0023] [数 5]
Figure imgf000006_0001
)' + (ヌ ί - y0 )— + f~g
を定め、 ε iのばらつきを最小にするようなオフセット、及び感度を推定する。ばらつき を ε の自乗の和と定義すれば、オフセット、及び感度は次式で求められる。
[0024] [数 6] 一
+ iノ: 1 '; A- つ.、 ,. 一
+ '/ + ζί 11 ~
Figure imgf000006_0002
[0025] [数 7]
'"2 =— {(λ' -λ¾)" + (> - >'().)" + )"} ここで、
[0026] 画
X 2ί
Figure imgf000006_0003
運度加速度が 0(等速度運動、あるいは静止)で、加速度センサの各軸に感度差が ある場合、測定出力値 (X, y, z)は、楕円体上に分布する。
[0027] [数 9]
[χ -χο ) ( 一)'。)— 2
Figure imgf000006_0004
上式 (数 9)によれば 6個の異なる測定点力 オフセット、及び感度が推定可能だが 、実際には加速度センサの出力にはノイズが重畳されており、以下のような統計的手 法を用いて推定したほうが好ましい。 N個の加速度センサの測定値 (X, y, z、 i=l 〜N)に対して、
[数 10]
st = X + BY, + CZl + DUt +El) + FWi-G
Figure imgf000007_0001
を定め、 ε iのばらつきを最小にするようなオフセット、及び感度を推定する。ばらつき を ε の自乗の和と定義すれば、 Β, C, D, Ε, F, Gは次式で求められる。
[数 11]
Figure imgf000008_0001
( - f
χ,-χ
[0030] [数 12]
G = X + BY + CZ +DU + EV + FW
ここで、
[数 13]
X = W =■
Figure imgf000008_0002
Β, C, D, Ε, F, Gが求められた後、次式でオフセット、及び感度が求められる
[0032] [数 14] ' —— [) _ _ E _ _ F
-¾— ~' o— o— ゥぐ,' 2 = G + ¾f + ¾)- +〔 , ? 2 = ^-, r =
特許文献 1 :特開 2003— 101033号公報
特許文献 2:特開平 6— 331647号公報
特許文献 3:特開 2004— 93552号公報
特許文献 4:特願 2005— 056597号公報
発明の開示
[0033] し力しながら、従来のこの種の加速度計速装置は、以下のような欠点を有している。
[0034] 1)加速度計速装置を使用者が自然に操作した場合、静止時の加速度データは 一般に取得し難い。
[0035] 2)取得される静止時の加速度データは同じような姿勢で取得されたデータである 場合が多ぐ複数の姿勢での静止時の加速度データを取得するには長い時間がか かってしまう。
[0036] 3)温度が変化して明らかにオフセットが変化してしまった場合、今まで取得したデ ータを破棄して、また、長い時間かけてデータを取得しなおさなくてはならない。ある いは、加速度計測装置に、 EEPROM等の記憶手段を搭載して適当な温度区分毎 にそれまでに取得した全測定データ、または、推定されているオフセットおよび感度 を記憶しておかなくてはならな 、。
[0037] そこで、本発明の目的は、加速度計速装置の姿勢を特定の方向に向けるよう意識 することなく 2軸又は 3軸加速度センサの出力データを繰り返して取得することで、 2 軸又は 3軸加速度センサの出力補正に必要なオフセットもしくはオフセットと感度の 両方を速やかに取得することが出来るようにした加速度計測速装置を提供することに ある。
[0038] 本発明は、 2軸又は 3軸方向の加速度を検出する加速度検出手段と、前記加速度 検出手段が検出した 2軸又は 3軸加速度データを取得する加速度データ取得手段と 、前記加速度データ取得手段によって取得された加速度データの重要度を算出す る重要度算出手段と、前記加速度データ取得手段によって取得された 2軸又は 3軸 加速度データ群の各加速度データの各軸成分を座標値としたときの 2次元直交座標 平面又は 3次元直交座標空間上における分布と、該 2軸又は 3軸加速度データ群に 対応する前記重要度算出手段によって算出された異なる値の重要度を含む重要度 群とから、前記 2次元又は 3次元の直交座標空間上に定める基準点と、各軸の基準 長とを推定する基準点推定手段と、前記推定手段によって推定された前記基準点と 前記各軸の基準長とに基づいて、前記加速度データ取得手段によって取得された 各加速度データを補正するオフセット補正手段とを具えることによって、加速度計測 速装置を構成する。
[0039] 前記基準点推定手段は、前記加速度データ取得手段によって取得された 2軸又は 3軸加速度データ群の 2次元直交座標平面又は 3次元の直交座標空間における分 布と、該加速度データ群に付随する前記重要度算出手段によって算出された重要 度群とから、前記 2次元直交座標平面又は 3次元の直交座標空間上に円又は球面 を定め、前記円又は球面の中心座標と半径とを推定し、推定された前記中心座標を 前記基準点とし、前記半径を各軸の基準長とし、前記オフセット補正手段は、前記基 準点推定手段により推定された前記基準点に基づいて、前記 2軸又は 3軸の加速度 データのオフセットを補正してもよ 、。
[0040] 前記基準点推定手段は、前記加速度データ取得手段によって取得された 2軸又は 3軸加速度データ群の 2次元直交座標平面又は 3次元の直交座標空間における分 布と、該加速度データ群に付随する前記重要度算出手段によって算出された重要 度群とから、前記 2次元直交座標平面又は 3次元の直交座標空間上に楕円又は楕 円体面を定め、前記楕円又は楕円体面の中心座標と各主軸の半径とを推定し、推 定された前記中心座標を前記基準点とし、前記各主軸の半径を各軸の基準長とし、 前記オフセット補正手段は、前記基準点推定手段により推定された前記基準点と各 軸の基準長とに基づいて、前記 2軸又は 3軸の各加速度データのオフセットおよび感 度を補正してもよい。
[0041] 前記基準点推定手段は、前記加速度データ取得手段によって取得された所定数 Mの加速度データ群の代表値を算出する代表値算出手段と、前記代表値算出手段 によって算出された代表値の第 1の重要度を算出する第 1の重要度算出手段と、前 記代表値算出手段によって算出された代表値と、該代表値に対応する前記第 1の重 要度および付加情報を蓄積する蓄積手段と、前記蓄積手段に蓄積された前記代表 値に対応する第 1の重要度と前記付加情報とから、前記代表値に対応する第 2の重 要度を算出する第 2の重要度算出手段とを具え、前記基準点推定手段は、前記蓄 積手段によって蓄積された所定数 Nの代表値の、各軸成分を座標値としたときの 2次 元直交座標平面又は 3次元直交座標空間における分布と、該代表値に対応する前 記第 2の重要度算出手段によって算出された所定数 Nの第 2の重要度とから、前記 2 次元直交座標平面又は 3次元直交座標空間上に定める基準点と各軸の基準長とを 推定してちょい。
[0042] 前記第 2の重要度算出手段は、前記代表値に対応する前記蓄積手段に蓄積され た付加情報から算出した重要度と、前記代表値に対応する前記蓄積手段に蓄積さ れた第 1の重要度とから前記第 2の重要度を算出してもよい。
[0043] 前記基準点推定手段は、前記蓄積手段によって蓄積された所定数 Nの代表値群 の 2次元直交座標平面又は 3次元直交座標空間における分布と、該代表値に対応 する前記第 2の重要度算出手段によって算出された所定数 Nの第 2の重要度群とか ら、前記 2次元直交座標平面又は 3次元直交座標空間上に円又は球面を定め、前 記円又は球面の中心座標と半径とを推定し、推定された前記中心座標を前記基準 点とし、前記半径を各軸の基準長とし、前記オフセット補正手段は、前記基準点推定 手段により推定された前記基準点に基づいて、前記 2軸又は 3軸の各加速度データ のオフセットを補正してもよ 、。
[0044] 前記基準点推定手段は、前記蓄積手段によって蓄積された所定数 Nの代表値群 の 2次元直交座標平面又は 3次元の直交座標空間における分布と、該代表値に対 応する前記第 2の重要度算出手段によって算出された所定数 Nの第 2の重要度群と から、前記 2次元直交座標平面又は 3次元の直交座標空間上に楕円又は楕円体面 を定め、前記楕円又は楕円体面の中心座標と各主軸の半径とを推定し、推定された 前記中心座標を前記基準点とし、前記各主軸の半径を各軸の基準長とし、前記オフ セット補正手段は、前記基準点推定手段により推定された前記基準点と各軸の基準 長とに基づいて、前記 2軸又は 3軸の各加速度データのオフセットおよび感度を補正 してちよい。
[0045] 前記代表値算出手段は、前記所定数 Mの加速度データ群の平均値を代表値とし て算出してもよい。
[0046] 前記第 1の重要度算出手段は、前記所定数 Mの加速度データ群のばらつきを算 出する手段と、前記ばらつきが小さくなるほど高い重要度 Aを算出する手段とを含ん でもよい。
[0047] 前記ばらつきは、前記所定数 Mの加速度データ群の各軸の分散の和、又は前記 各軸の分散の最大値としてもょ 、。
[0048] 前記ばらつきは、前記所定数 Mの加速度データ群の各軸の最大値と最小値との差 の 2乗和、又は前記各軸の最大値と最小値との差の最大値の 2乗としてもよい。
[0049] 前記付加情報の 1つは、前記代表値算出手段が代表値を算出するときに使用した 前記加速度データ群を前記加速度検出手段が検出したときの温度であり、前記第 2 の重要度算出手段は、前記付加情報としての 1つである、前記加速度検出手段がデ ータを検出した時点での温度と、該第 2の重要度算出手段により重要度算出中の時 点での温度との差が大きくなるほど低い重要度 Bを算出する手段を具えてもよい。
[0050] 前記付加情報の 1つは、前記代表値算出手段が代表値を算出するときに使用した 前記データ群を前記加速度検出手段が検出したときの時間であり、前記第 2の重要 度算出手段は、前記付加情報としての 1つである、前記加速度検出手段がデータを 検出した時点での時間と、該第 2の重要度算出手段により重要度算出中の時点での 時間との差が大きくなるほど低い重要度 Cを算出する手段を具えてもよい。
[0051] 前記代表値算出手段によって算出された代表値が適当である力否かを選択する選 択手段をさらに具え、前記選択手段は、前記第 1の重要度算出手段によって算出さ れた第 1の重要度が、所定値より高い場合に、前記代表値算出手段によって算出さ れた代表値が適当であると判断して選択してもよい。
[0052] 前記蓄積手段は、前記加速度検出手段の検出軸と線形関係となる線形軸を予め 定め、最大値を比較するときは、前記代表値から該代表値に対応する前記第 2の重 要度を引いた値同士で比較し、最小値を比較するときは、前記代表値と該代表値に 対応する前記第 2の重要度を足した値同士で比較し、前記選択手段が新たに選択し た代表値と、前記蓄積手段に蓄積されている代表値の中で、前記加速度検出手段 の検出軸又は線形軸の成分が、最大又は最小となる代表値を選択的に蓄積するよう にしてもよい。
[0053] 前記加速度データ取得手段によって得られた加速度データ群の前記重要度で重 み付けした個数と、該加速度データ群の前記重要度で重み付けした各軸成分の和と 、該加速度データ群の各軸成分の自乗を前記重要度で重み付けした値の和と、前 記基準点と各軸の基準長とを算出するための連立方程式の係数群と、前記基準点と 基準長とを保持する加工データ保持手段と、前記加速度データ取得手段によって得 られた最新のデータと該データに対応する前記重要度算出手段によって算出された 重要度と、前記加工データ保持手段が保持する直近の各種加工データとから、前記 基準点と各軸の基準長とを推定してもよ!/、。
[0054] 本発明によれば、複数の 2軸又は 3軸加速度データ力 なる加速度データ群の各 軸成分を座標値としたときの 2次元直交座標平面又は 3次元直交座標空間上におけ る分布と、該加速度データ群に付随する重要度群とから、 2次元直交座標平面又は 3次元直交座標空間上に定める基準点と、各軸の基準長とを推定し、その推定され た基準点と各軸の基準長とに基づいて加速度データを補正するようにしたので、カロ 速度計速装置の姿勢を特定の方向に向けるよう意識することなぐ 2軸又は 3軸の加 速度センサの出力データを繰り返し取得して、 2軸又は 3軸の加速度センサの出力補 正に必要なオフセット若しくはオフセットと感度との両方を迅速に推定することが可能 となる。
[0055] また、本発明によれば、取得された所定数 Mの加速度データ群の代表値を算出し 、代表値の第 1の重要度を算出し、代表値が適当である力否かを選択し、該選択さ れた代表値と、該代表値に対応する第 1の重要度および付加情報 (時間や温度等) を蓄積し、蓄積された代表値に対応する第 1の重要度と付加情報とから代表値に対 応する第 2の重要度を算出し、蓄積された所定数 Nの代表値の各軸成分を座標値と したときの 2次元直交座標平面又は 3次元直交座標空間における分布と、該代表値 に対応する所定数 Nの第 2の重要度とから、 2次元又は 3次元直交座標空間上に定 める基準点と各軸の基準長とを推定するようにしたので、温度が変化して明らかにォ フセットが変化してしまった場合でも、オフセット若しくはオフセットと感度との両方を 迅速に推定することが可能となる。
図面の簡単な説明
[図 1]図 1は、発明の第 1の実施形態である、加速度計速装置の基本的構成例を示 すブロック図である。
[図 2]図 2は、本発明の第 2の実施形態である、有限長基準点推定部を有する加速度 計速装置の構成例を示すブロック図である。
[図 3]図 3は、検出軸および線形軸の最大値、最小値を蓄積しておくのに適した蓄積 部としてのバッファの構成例を示す説明図である。
[図 4]図 4は、蓄積部に格納されているデータを取捨選択するための処理例を示すフ ローチャートである。
[図 5]図 5は、本発明の第 3の実施形態である、無限長基準点推定部を有する加速度 計速装置の構成例を示すブロック図である。
[図 6]図 6は、本発明の第 4の実施形態である、有限長および無限長の基準点推定部 を有する加速度計速装置の構成例を示すブロック図である。
[図 7A]図 7Aは、従来の加速度測定装置における所定の軸方向成分を測定する方 法を示す説明図である。
[図 7B]図 7Bは、従来の加速度測定装置における所定の軸方向成分を測定する方法 を示す説明図である。
[図 7C]図 7Cは、従来の加速度測定装置における所定の軸方向成分を測定する方 法を示す説明図である。
[図 7D]図 7Dは、従来の加速度測定装置における所定の軸方向成分を測定する方 法を示す説明図である。
[図 7E]図 7Eは、従来の加速度測定装置における所定の軸方向成分を測定する方法 を示す説明図である。
[図 7F]図 7Fは、従来の加速度測定装置における所定の軸方向成分を測定する方法 を示す説明図である。
発明を実施するための最良の形態 [0057] 以下、図面を参照して、本発明の実施の形態を詳細に説明する。
[0058] [第 1の例]
本発明の第 1の実施の形態を、図 1に基づいて説明する。
[0059] 本発明に係る加速度計速装置の詳細な説明を行う前に、本例では、加速度計速装 置の基本的な構成について概略説明する。
[0060] <概略構成 >
図 1は、本発明に係る加速度計速装置の概略構成を示す。
[0061] 加速度計速装置は、加速度検出部 1と、加速度データ取得部 2と、重要度算出部 5 および基準点推定部 6と、オフセット補正部 4とから構成される。
[0062] <概略動作 >
本加速度計速装置の基本的な動作にっ 、て説明する。
[0063] 加速度検出部 1は、 2軸又は 3軸方向の加速度を検出する。
[0064] 加速度データ取得部 2は、加速度検出部 1により検出された加速度を加速度デー タとして取得する。
[0065] 基準点推定部 3は、加速度データ取得部 2によって取得された加速度データ群の 各加速度データの各軸成分を座標値としたときの 2次元直交座標平面又は 3次元直 交座標空間上における分布と、該加速度データ群に付随する重要度群とから、 2次 元直交座標平面又は 3次元の直交座標空間上に定める基準点と、各軸の基準長と を推定する。
[0066] ここで、重要度算出部 5は、加速度データ取得部 2によって取得された加速度デー タに対応する重要度を算出する。
[0067] 基準点推定部 6は、加速度データ取得部 2によって取得された加速度データ群の 各軸成分を座標値としたときの 2次元直交座標平面又は 3次元直交座標空間上にお ける分布と、該各加速度データに付随する重要度算出部 5によって算出された重要 度群とから、 2次元直交座標平面又は 3次元直交座標空間上に定める基準点と、各 軸の基準長とを推定する。
[0068] オフセット補正部 4は、推定部 3によって推定された基準点と各軸の基準長とに基 づ 、て、加速度データ取得部 2によって取得された各加速度データを補正する。 [0069] このような基本的な動作を行うことができる力 さらに、基準点推定部 3では、以下の ような動作を行うことも可能である。
[0070] (球当てはめ例)
補正例として、基準点推定部 6において、加速度データ取得部 2によって取得され た加速度データ群の 2次元直交座標平面又は 3次元直交座標空間における分布と、 該加速度データ群に付随する前記重要度算出手段によって算出された重要度群と から、 2次元直交座標平面又は 3次元直交座標空間上に円又は球面を定め、円又は 球面の中心座標と半径とを推定し、推定された中心座標を基準点とし、半径を各軸 の基準長とする。これにより、オフセット補正部 4では、基準点推定部 6により推定され た基準点に基づいて、 2軸又は 3軸の加速度データのオフセットを補正することがで きる。
[0071] (楕円当てはめ例)
他の補正例として、基準点推定部 6において、加速度データ取得部 2によって取得 された加速度データ群の 2次元直交座標平面又は 3次元直交座標空間における分 布と、該加速度データ群に付随する重要度算出部 5によって算出された重要度群と から、 2次元直交座標平面又は 3次元直交座標空間上に楕円又は楕円体面を定め 、楕円又は楕円体面の中心座標と各主軸の半径とを推定し、推定された中心座標を 基準点とし、前記各主軸の半径を各軸の基準長とする。これにより、オフセット補正部 4では、基準点推定部 6により推定された基準点と各軸の基準長とに基づいて、 2軸 又は 3軸の加速度データのオフセットおよび感度を補正することができる。
[0072] 以上のような構成および動作することにより、加速度計速装置の姿勢を特定の方向 に向けるよう意識することなぐ 2軸又は 3軸加速度センサの出力データを繰り返し取 得して、 2軸又は 3軸の加速度センサの出力補正に必要なオフセット若しくはオフセッ トと感度との両方を迅速に推定することが可能となる。
[0073] 以下、本発明に係る加速度計速装置の詳細な説明を行う。
[0074] [第 2の例]
本発明の第 2の実施の形態を、図 2〜図 4に基づいて説明する。なお、前述した第 1の例と同一部分については、その説明を省略し、同一符号を付す。 [0075] (有限長 DOE)
<構成>
図 2は、本発明に係る加速度計速装置の構成例を示す。
[0076] 加速度計速装置は、加速度検出部 1と、加速度データ取得部 2と、有限長基準点 推定部 10と、オフセット補正部 4とから構成される。以下の説明では、有限長基準点 推定部 10以外の構成部分についての説明は省略する。
[0077] 有限長基準点推定部 10について説明する。
[0078] 有限長基準点推定部 10は、代表値算出部 11と、第 1の重要度算出部 12と、デー タ選択部 13と、蓄積部 14と、第 2の重要度算出部 15と、第 1の基準点推定部 16とか らなる。
[0079] 代表値算出部 11は、加速度データ取得部 2によって取得された所定数 Mの加速 度データ群の代表値を算出する。
[0080] 第 1の重要度算出部 12は、 L個の重要度算出部 (A1〜AL) 12aと、全重要度算出 部(1) 12bとを有し、代表値算出部 11によって算出された代表値の第 1の重要度を 算出する。
[0081] データ選択部 13は、代表値算出部 11によって算出された代表値が適当であるか 否かを選択する。
[0082] 蓄積部 14は、データ選択部 13によって選択された代表値と、該代表値に対応する 前記第 1の重要度および付加情報を蓄積する。
[0083] 第 2の重要度算出部 15は、重要度算出部(B) 15aと、重要度算出部(C) 15bと、全 重要度算出部 (2) 15cとを有し、蓄積部 14に蓄積された代表値に対応する第 1の重 要度と付加情報とから、代表値に対応する第 2の重要度を算出する。
[0084] 第 1の基準点推定部 16は、蓄積部 14によって蓄積された所定数 Nの代表値の、各 軸成分を座標値としたときの 2次元直交座標平面又は 3次元直交座標空間における 分布と、該代表値に対応する第 2の重要度算出部 15によって算出された所定数 Nの 第 2の重要度とから、 2次元直交座標平面又は 3次元直交座標空間上に定める基準 点と、各軸の基準長とを推定する。
[0085] <動作 > 本装置の動作につ!、て説明する。
[0086] 加速度検出部 1では、加速度センサによって加速度を検出し、その検出値を電圧 に変換する。
[0087] 電圧に変換された加速度は、加速度データ取得部 2で増幅、フィルタリング等が施 され、さらに、 AD変換されて、加速度データとして取得される。加速度データは、主 に加速度センサの各軸の感度差およびオフセットの影響で、真の加速度が各測定軸 方向に異なる比率で伸縮され、さらに、オフセットが重畳された値となる。また、加速 度データには、量子化誤差やノイズが含まれる。
[0088] 代表値算出部 11では、連続して検出された所定数の加速度データ群の代表値が 計算される。代表値は、第 1の基準点推定部 16でオフセットおよび感度を推定する 際に用いられ、球面上あるいは楕円体面上に分布しているべき値であり、重力加速 度データであることが好まし 、。
[0089] しかし、通常運動加速度と重力加速度とを分離することはできな 、ので、代表値を 算出するための効果的な指針はない。
[0090] そこで、代表値は、連続して検出された所定数の加速度データ群の平均値、中央 値、あるいは特定の順番の加速度データ等にしておく。所定数力^の場合は、出力 データがそのまま代表値となる。代表値に加速度データ群の平均を用いる場合は、 もしそれらの加速度データ群が静止時に得られた値であるなら、ノイズの影響を低減 することができるので、オフセットおよび感度の推定精度を高めることができる。
[0091] 第 1の重要度算出部 12において、代表値の重要度が計算される。重要度は、 S の重要度算出部 (A1〜AL) 12aにより異なる複数の方法で算出され、全重要度算 出部(1) 12bにおいて組み合わされ、結果として全重要度 1が算出される。
[0092] 重要度は、第 1の基準点推定部 16が基準点を推定する際に用いる代表値の重要 度を表す値で、重要度が高い代表値ほど基準点推定に優先的に用いられる。加速 度は、通常運動加速度と重力加速度との和であるが、加速度センサのオフセットおよ び感度を求める際には、前述したように重力加速度が球面上、あるいは楕円体面上 に分布することを利用する。従って、運動加速度が小さなデータほど、オフセット及び 感度推定には適している、すなわち、重要度が高い。 [0093] 従って、例えば、代表値を計算した所定数のデータ (あるいはそれを含む所定数よ り多いデータ、あるいは所定数のデータの一部のデータ)の各軸の分散を計算し、各 軸の分散の和が大きければ代表値には大きな運動加速度が含まれている可能性が 大きいとして重要度を低ぐ逆に小さければ代表値は静止時に取得されたデータから 計算された可能性が高いので重要度を高くする。重要度は、分散の逆数を基礎とす る概念であることを後で示す。重要度として、各軸の分散の最大値の逆数を選ぶこと ちでさる。
[0094] また、代表値を計算した所定数のデータ (ある!/、はそれを含む所定数より多!、デー タ、あるいは所定数のデータの一部のデータ)の各軸の最大値と最小値との差の自 乗和の逆数、あるいは各軸の最大値と最小値との差の最大値の自乗の逆数としても ょ ヽ。限られた計算能力しか持たな 、システムに本発明を組み込む場合は分散を計 算するより、最大値と最小値から重要度を計算する方が有利である。
[0095] 重要なことは、重要度を正確に求めることではなくて、素性の良 、データ(重力加速 度のみを表すデータ)とそうでな 、データとの重要度に有意な差を付けることである。
[0096] 具体的には、上述の重要度(ΐΖ σ 2)は次式で求める。
[0097] [数 15]
1
ΐ7τ" +び — +び _—
1
/· 1 1 1 '
max 1 <7Tv - ;び—つ
重要度 =一
1
(
-½MX "nun J + J in; ix ,'.ιιω に)
1
max ■ ¾mi ) ( ina ― J nun ) ( x― ½ii
[0098] ここで、 σ , σ , σ は上記各軸の分散、 χ , x , y , y , z , z はそれぞ
z max mm max mm max min
れ各軸測定値の最大値、最小値である。
[0099] データ選択部 13は、一般に複数の小データ選択部より構成され、全ての小データ 選択部で選択された代表値のみが選択される。データ選択部 13では、計算された代 表値が基準点推定に適して 、るかどうか判断し、適当と判断した代表値を選択する。 通常、基準点推定に用いる代表値の数は有限なので、ここで、素性の悪いデータを 破棄する。取捨選択の方法としては、例えば、全重要度 1が予め定めた所定値以上 である代表値を選択する。全重要度 1があまりにも小さな代表値は、誤ったオフセット 及び感度を推定する可能性が大きいので、破棄する。また、直前に選択した代表値
、あるいは蓄積部に蓄積されている全ての代表値と、新たにデータ選択部 13に入力 された代表値の距離 (測定値空間上のノルムでもよ!/、し、各軸の座標軸の差の絶対 値の最大値でもよ 、)を比較し、予め定めた所定値以上であるデータを選択する。
[0100] 蓄積部 14では、データ選択部 13で選択された代表値と、その代表値に付随する 全重要度 1と、全重要度 2の算出に必要な付加情報とが蓄積される。
[0101] 付加情報としては、代表値算出に用いた加速度データ群を加速度センサが測定し たときの時間や温度を用いることができる。
[0102] 球体又は楕円体への当てはめ計算において、加速度データが、 3次元空間内で正 確に球面上又は楕円体面上にあるならば、各測定点が球面上あるいは楕円体面上 の狭い範囲に分布していても中心点を精度良く求めることは可能である。しかし、加 速度データは、ノイズや量子化誤差の影響を受けるため、たとえ加速度センサが静 止していてもその測定データが正確に球面上にあることは稀である。測定点の分布 が狭 、とこれらの誤差の影響を大きく受け、精度良 、推定計算が行えな 、と 、う問題 がある。
[0103] し力しながら、測定データが 3次元空間内で十分広い範囲に分布していれば、これ らの誤差の影響を小さくすることができる。測定データが 3次元空間内で広い範囲に 分布するようデータを取捨選択して蓄積する手法が特許文献 4に提案されている。
[0104] 特許文献 4では、 3次元直交座標空間において、任意の線形軸を設定し、その軸 上にお 、て最大又は最小に近 、点のデータを蓄積するようにして 、る。
[0105] 楕円面当てはめ計算においては、楕円体の長軸、短軸それぞれの両端に近い位 置に一つ以上の測定データがあると、極めて精度の良い推定計算が行える。互いに 直交した 3次元方向の加速度を検出するような 3軸加速度センサの出力においては、 加速度データは測定軸のどれかを長軸又は短軸とするような楕円体上に分布するの で、加速度センサの測定軸上 (すなわち 3軸上)での最大値、最小値となる成分を持 つデータを用いることで、楕円体当てはめ計算の精度を高くすることができる。
[0106] 加速度センサの 3軸測定軸を X, Υ, Zとすると、線形軸として、
X+Y+Z, -X+Y+Z, -X-Y+Z, X-Y+Z
を力!]えた 7軸、更に
X+Y, -X+Y, X+Z, -X+Z, Y+Z, -Y+Z
をカロえた 13軸などが効果的である。
[0107] 重要度は、後述するように代表値の分散を基礎とする値であり、代表値が存在しう る範囲に関係する。従って、蓄積部 14に蓄えられたデータの選択をする際に、最大 値は、代表値が取り得る最小の値同士で比較し、最小値は代表値が取り得る最大の 値同士で比較する。つまり、代表値が存在しうる範囲の最悪値で比較する。このよう に比較することによって、例えば、ある代表値が運動加速度を含むため大きな値にな つたとしても、重要度が低くその代表値が取り得る最小値が、適正な値より小さけれ ば、何れこの代表値は蓄積部から排除されることになる。
[0108] 1例として、 3軸の加速度センサの測定軸 X, Υ, Zの最大値、最小値を選択的に蓄 積する場合について述べる。
[0109] 図 3は、検出軸および線形軸の最大値、最小値を蓄積しておくのに適した蓄積部 1
4としてのバッファの構成例を示す。
[0110] 蓄積部 14は、図 3のような代表値を選択的に格納する配列数 6以上のノ ッファを持 つ。すなわち、配列番号 0には、
X軸測定値 1Z全重要度 2
が最大のデータ(代表値 XMAX)、配列番号 1には、
X軸測定値 + 1Z全重要度 2
が最小のデータ(代表値 XMIN)、配列番号 2には、
Y軸測定値 1Z全重要度 2
が最大のデータ(代表値 YMAX)、(以下同様)、に格納されている。バッファの配列 数が 6を越える場合、上記以外に自由に代表値を格納して構わない。
[0111] バッファにはそれぞれの代表値に対応する全重要度 1、代表値を計算するために 用いられた加速度データが取得された温度、時間も格納しておく。 [0112] 図 4は、蓄積部 14に格納されているデータを取捨選択するための処理例を示す。
[0113] データ選択部 13で新たに代表値が選択された場合 (ステップ S1)、まず、新たな代 表値の全重要度 2が計算される (ステップ S2)。そして、各配列の代表値の全重要度
2が再計算される (ステップ S3〜ステップ S5)。新たな代表値と各配列の代表値との 大小が比較される。比較は、配列番号の小さな順に行われ、上述のように、配列番号 i=0と比較するときは、
X軸測定値 1Z全重要度 2
で、配列番号 i= lと比較するときは、
X軸測定値 + 1Z全重要度 2
で、(以下同様)比較する (ステップ S6〜ステップ S8)。
[0114] 比較の結果、配列に格納されていた代表値より新たな代表値の方が適していると 判断された場合には、配列に格納されていた代表値と新たな代表値とを交換し、次 の配列番号の代表値との比較を続ける。配列番号 i= 5まで比較が終わった時点で 選択を終了する(ステップ S9〜ステップ S 10)。
[0115] 第 2の重要度算出部 15では、蓄積部 14に蓄積された全重要度 1と、温度および時 間とから、重要度算出部 15a, 15bにて算出される重要度を組み合わせて、全重要 度 2を算出する。
[0116] 一般に加速度センサのオフセットおよび感度は、温度特性を持つ。球体当てはめ や楕円体当てはめでオフセット及び感度を推定するシステムでは、温度が変動したと きは、データを始めから収集しなおす必要がある。一度取得したデータを無駄にしな いために、蓄積部 14に温度毎にバッファを用意するという方法がある力 その分だけ 余計に記憶領域を必要とする。温度変動と共に変動後のデータを再取得し、充分速 やかにオフセットおよび基準点を再計算できれば、このような手法を用いる必要がな い。温度変動による加速度センサのオフセット変動は、一般に加速度センサの仕様 で規定されており、 1°Cあたりのオフセット変動の最悪値 (C )はわかる。重要度算出
Te
部 2において、温度から重要度(ΐΖ σ 2)を例えば以下のように算出する。
Te
[0117] [数 16] ここで、 τ , τはそれぞれ、蓄積部に格納されている代表値、現在の温度 (すなわ i 0
ち、重要度算出中の現時点での温度)である。
[0118] 最新の代表値の温度 (すなわち、大抵の場合、現在の温度)と、蓄積部 14に蓄積さ れている代表値の温度とが、離れれば離れるほど、蓄積部の代表値の重要度は低く 見積もられる。重要度の低くなつた蓄積部に蓄積されている代表値は、前述したよう に (加速度センサの検出軸および線形軸の全重要度 1を加味した最大値、最小値を 選択的に蓄積していくようなシステムにおいては)新たな代表値と交換され易くなる。
[0119] 一度蓄積された代表値の重要度を時間と共に低くしていくと、加速度センサを含む システムの特性の経時変化に対応できる。また、例えば加速度センサが回転しながら 自由落下していく場合、取得される加速度データは遠心力のみである(重力加速度 は 0)ため、加速度データは重力加速度の測定データが描くべき球面あるいは楕円 体面上にのらない。充分に長い時間回転しながら自由落下したときは重要度算出部 で算出される分散は 0に近ぐ従って非常に高い重要度となり、取得されたデータは 長い間蓄積部に残ってしまう可能性がある。時間と共に、重要度を低くしていくことに よって、このようなデータを有限の時間内で排除することができる。また、予想できな い要因によりシステムの特性が変化しても、蓄積部に蓄積されている代表値を有限の 時間内で入れ換えることができる。
[0120] 第 2の重要度算出部 15において、時間から重要度(ΐΖ σ 2)を、例えば以下のよう
ti
に算出する。
[0121] [数 17]
1 1
(- ti \i ~ Q ここで、 t i , t 0はそれぞれ、蓄積部に格納されている代表値、現在の時間(すなわち
、重要度算出中の現時点での時間)であり、 c tiは比例係数である。
[0122] 最終的に全重要度 1と温度力も算出される重要度 (数 16)と時間から算出される重 要度 (数 17)とを組み合わせて全重要度 2が算出される。 [0123] 例えば、
[0124] [数 18]
1 1
全重要度 2IV 全重要度 σ Te
第 1の基準点推定手段では、蓄積部に蓄積された代表値と、重要度算出手段 2で 算出された全重要度 2を用いて、加速度センサのオフセット及び感度が算出される。
[0125] 加速度センサの各軸の感度が同じ (r)場合、 N個の加速度センサの測定値 (X, y, z )を用いて、加速度検出手段のオフセット及び感度は次式で算出される。
[0126] [数 19]
Figure imgf000024_0001
N Ν Ν ^
1
Σュ ) 2 。
Figure imgf000024_0002
§ ' (
Ν
∑ 1 ^ -,
び' .
N
— x + v;- + r (Λ- v)
Figure imgf000024_0003
'^ΑΝΧΝ^ΒΝ
[0127] [数 20]
Figure imgf000024_0004
[0128] ここで、例えば、
[0129] [数 21]
Ν / Ν は個々の測定値 , y., に対して、次式の ε ; (即ち、重力加速度データが描 くべき球面と実際の加速度データの間の距離の 2乗)の分散を表す。
[0130] [数 22] ε, = \χ, -χ )' +丄び (—)Ί - )Ό )' +(zi- ζο ) -'ー
(数 19)、(数 20)は、分散が大きなデータほど、オフセットおよび感度を求める際の 影響度が小さ 、ことを示して 、る。
[0131] 全ての加速度データの分散を 1にすると、(数 6)、(数 7)の方法と一致する。
[0132] 加速度センサの各測定軸に感度差が存在する場合、 N個の加速度センサの測定 値 (X, y, z)を用いて、加速度検出部 1のオフセットおよび感度は、次のように算出さ れる。
[0133] まず、次式でパラメータ B, C, D, E, F, Gを求める。
[0134] [数 23]
Figure imgf000025_0001
^MNPN=QN
G = X +ΒΫ +CZ + DU+ EF + FJV
A j ― X — }'i L し i— ή ^ /― }'i ^ ^ i—
m a v ■ " '一'リ,
N N
次に、次式でオフセットおよび感度を計算する。
[0135] [数 24] 0
Figure imgf000025_0002
; - = G + 0-+5y0- +(;¾", rv~ =
B C σ iは個々の測定値 , y., z)に対して、次式の ε (D
[0136] [数 25] ε} = Xt + BYt + CZ} + DU1 + EV1 + FWt - G
[0137] の分散を表す。(数 23)は、分散が大きなデータほど、オフセット及び感度を求める際 の影響度が小さ 、ことを示して 、る。
[0138] 全ての加速度データの分散を 1にすると、(数 11)、(数 12)の方法と一致する。
[0139] オフセット補正部 4は、加速度データ取得部 2で得られたデータを、第 1の基準点推 定部 16で推定されたオフセットおよび感度を用いて補正し、補正された真の加速度 を算出する。
[0140] 補正は (数 1)を逆算することにより、
[0141] [数 26]
Figure imgf000026_0001
[0142] 以上説明したように、取得された所定数 Mの加速度データ群の代表値を算出し、 代表値の第 1の重要度を算出し、代表値が適当である力否かを選択し、該選択され た代表値と、該代表値に対応する第 1の重要度および付加情報 (時間や温度等)を 蓄積し、蓄積された代表値に対応する第 1の重要度と付加情報とから代表値に対応 する第 2の重要度を算出し、蓄積された所定数 Nの代表値の各軸成分を座標値とし たときの 2次元直交座標平面又は 3次元直交座標空間における分布と、該代表値に 対応する所定数 Nの第 2の重要度とから、 2次元直交座標平面又は 3次元直交座標 空間上に定める基準点と各軸の基準長とを推定するようにした。
[0143] これにより、温度が変化して明らかにオフセットが変化してしまった場合でも、今まで 取得して!/、た全データを破棄させたり、長 、時間かけてデータを取得し直す必要が なくなるため、加速度計速装置の温度が変化したときにオフセット若しくはオフセットと 感度との両方を迅速に推定することが可能となる。
[0144] [第 3の例]
本発明の第 3の実施の形態を、図 5に基づいて説明する。なお、前述した各例と同 一部分については、その説明を省略し、同一符号を付す。
[0145] (無限長 DOE)
<構成>
図 5は、本発明に係る加速度計速装置の構成例を示す。
[0146] 加速度計速装置は、加速度検出部 1と、加速度データ取得部 2と、無限長基準点 推定部 20と、オフセット補正部 4とから構成される。以下の説明では、無限長基準点 推定部 20以外の構成部分についての説明は省略する。
[0147] 無限長基準点推定部 20について説明する。
[0148] 無限長基準点推定部 20は、重要度算出部 21と、記憶部 22と、第 2の基準点推定 部 23とからなる。
[0149] 重要度算出部 21は、 L個の重要度算出部(1〜L) 21aと、全重要度算出部 21bと を有し、加速度データ取得部 2によって取得された加速度データから、該加速度デ ータ群に付随する重要度を得るために、 2軸又は 3軸の各加速度データの重要度を 算出する。
[0150] 記憶部 22は、加速度データ取得部 2によって得られた加速度データ群の重要度で 重み付けした個数と、加速度データ群の重要度で重み付けした各軸成分の和と、加 速度データ群の各軸成分の自乗を重要度で重み付けした値の和と、基準点と各軸 の基準長とを算出するための連立方程式の係数群と、基準点と基準長とを保持する
[0151] 第 2の基準点推定部 23は、加速度データ取得部 2によって得られた最新のデータ と該データに対応する重要度算出部 21によって算出された重要度と、記憶部 22が 保持する直近の各種加工データとから、基準点と各軸の基準長とを推定する。
[0152] <動作 >
本装置の動作につ!、て説明する。
[0153] 加速度センサのオフセットおよび感度は、重力加速度データが球面あるいは楕円 体面上に分布することから求められる。
[0154] しかし、通常測定された加速度データには運動加速度も含まれており、オフセット および感度推定の際の誤差の要因となっていることは既に述べた。携帯電話や PD A (以後合わせて携帯端末)に加速度センサを組み込んで、歩行者ナビゲーシヨンに 使用するアプリケーションにお 、ては、携帯端末の運動加速度は端末に対して様々 な方向を向き、加速度は重力加速度の分布する球面あるいは楕円体面を中心として 分布することが予想される。つまり、オフセットおよび感度推定に用いる加速度データ 数を充分大きくすれば、(数 19)、(数 20)、あるいは、(数 22)〜(数 24)の方法を適 用して当てはめられる球面、あるいは楕円体面は、重力加速度の分布する球面ある いは楕円体面を中心として分布することと同じになることが予想される。
[0155] (数 19)、(数 20)、あるいは、(数 22) (数 24)をそのまま適用するなら、データ数が 大きくなると、データの処理時間が長くなり、またデータの記憶領域が大きくなる。特 に携帯端末のような、小規模なシステムでは充分なデータ数を処理できない。以下の ような工夫をすることで、原理的には有限のデータ処理時間とデータ記憶領域で、無 限のデータ数を処理できるようになる(実際には、データ処理のビット長に依存する)
[0156] 球面に当てはめる場合は、例えば N+ 1個のデータで作成される(数 19)の係数行 列 A の 2行 1列目の成分 a 、および B の 1行目の成分 b 、および (数 20)
N+ 1 N+ 1 N+ 1 N+ 1
の r 2は次のように変形できる。
[0157] [数 27]
Figure imgf000028_0001
!={ 1
[0158] [数 28]
Figure imgf000029_0001
[0159] [数 29]
Figure imgf000029_0002
[0160] つまり、 Ν個のデータから作られる加工データ
[0161] [数 30]
Xj一 + Vj~ + zt
Figure imgf000029_0003
と、 N+1個目のデータ
[0162] [数 31] σΛ^ + 1' ΧΜ + 1, >'Ν+1^ ΣΝ+1
から、
[0163] [数 32] ^Λ'+ι ^ ΒΝ + Ι ΐ i +ι' を求めることができる。
[0164] 楕円体面に当てはめる場合は、例えば N+ 1個のデータで作成される(数 22)の係 数列 M の 2行 1列目の成分 m は次のように変形できる。
[0165] [数 33]
σΝ+
1
σ Ν+1
Figure imgf000030_0001
[0166] つまり、 Ν個のデータから作られる加工データ
[0167] [数 34]
Figure imgf000030_0002
[0168] と、 Ν+ 1個目のデータ
[0169] [数 35] σΝ+1 ' -¾ ΛΓ+1' 】ΛΓ+1, ん Λ'+1, ゾ +1' ^N+l
[0170] から、
[0171] [数 36]
Figure imgf000030_0003
[0172] を求めることができる。
[0173] 上記により、オフセットおよび感度推定に用いるデータ数が増えたとしても、いくつ かの加工されたデータ力 帰納的に新たなオフセットおよび感度を求め続けることが できる。
[0174] 上記の方法は、測定データを保持して 、な 、ので、例えば、温度変化によりオフセ ットが変化してしまった場合に温度変化前のデータだけを削除することができない。
[0175] しかし、全ての過去の測定データの重要度を同じ比率で変更することによって、過 去の測定データの影響を低減することができる。過去の N個の測定データの重要度 を l/ σ 2から l/ (k a ) 2に変更する場合、球体当てはめなら (数 30)の r 2, x , y
, z を除ぐ全ての加工データに 1/k2を乗じた値を新たなカ卩ェデータとする(行列 の場合は各成分に lZk2を乗ずる)。
[0176] 同様に、楕円体当てはめなら (数 34)の全ての加工データに lZk2を乗じた値を新 たな加工データとする(行列の場合は各成分に 1/k2を乗ずる)。
[0177] 記憶部 22は、(数 30)、あるいは (数 34)で表されるデータを保持する。
[0178] 温度変化等の要因により、加速度測定中にオフセットおよび感度が変動する場合 がある。このように過去のデータの影響を低減したい場合は、適当な時点で過去のデ ータの重要度を低くする。重要度を低くする時点は、例えば新たなデータが取得され る度にすれば、ある時定数で過去のデータの影響を消すことができる。予め定められ た時間が経過する度にしても、同様である。
[0179] 温度が変動したことが明らかな場合は、急激に過去のデータの重要度を下げてもよ い。温度変動とは、前回温度変動があった直後の温度を記憶しておき、この温度に 対し予め定めた所定値以上温度が変化した場合、あるいは、前回温度変動があった 直後から温度の最大値と最小値を記憶しておき、最大値と最小値の差が予め定めた 所定値以上変化した場合などとすることが出来る。重要度の低減は温度のような物理 的要因ではなぐ数値計算を実現するシステムからの要請の場合もある。つまり、(数 30)、ある 、は(数 34)の加工データの中で測定値の和の形をした値は測定データ 数が増えるに伴 、大きくなる。データの処理を行う CPUも記憶領域もビット長は有限 であるので、定期的にカ卩ェデータの値を小さくする必要がある。
[0180] 重要度算出部 21は、取得された加速度データの重要度を計算する。全ての測定 データの σ 2を 1にしてオフセット及び感度推定を行ってもよいが、適切に σ 2( = lZ 全重要度)を設定した方が、オフセットおよび感度の収束が速い。
[0181] 重要度は、異なる複数の方法で算出され、全重要度算出部において組み合わされ 、結果として全重要度が算出される。 [0182] なるべく早くすなわちなるべく少ない加速度データ数でオフセットおよび感度を求め るためには、運動加速度が多く含まれているデータの重要度は低くした方がよい。加 速度データの重要度は、例えば次のように計算できる。所定数の連続して取得され た加速度データ群の各軸の分散を計算し、各軸の分散の和が大きければ重要度を 低ぐ逆に小さければ重要度を高くする。重要度として、各軸の分散の最大値から算 出することちでさる。
[0183] また、所定数のデータの各軸の最大値と最小値との差の自乗和、あるいは各軸の 最大値と最小値との差の最大値の自乗力 算出してもよい。限られた計算能力しか 持たないシステムに本発明を組み込む場合は分散を計算するより、最大値と最小値 とから重要度を計算する方が有利である。例えば、重要度(1Z σ 2)は、
[0184] [数 37]
重要度
Figure imgf000032_0001
[0185] とする。ここで、 σ , σ , σ は上記各軸の分散、 χ , x , y , y , z , z は
x y z max min max min max min それぞれ各軸測定値の最大値、最小値、 r
aは規格化用の定数である。
[0186] 同じ姿勢の静止時の加速度データを多く含む加速度データ群力 推定されるオフ セットおよび感度は、誤差を多く含む場合が多い。極端な場合、同じ姿勢の静止時 の加速度データのみ力 なる加速度データ群(姿勢によって決まる重力加速度 +ノィ ズ)によって推定されるオフセットは、その加速度データ群とほぼ同じ値となる。つまり 、求めるべき球面上あるいは楕円体面上にオフセットが推定されてしまう。従って、静 止あるいは静止に近い状態で取得された加速度データの重要度は低く設定するべ きである。 [0187] 加速度データの重要度は、例えば次のように計算できる。所定数の連続して取得さ れた加速度データ群の各軸の分散を計算し、各軸の分散の和が大きければ重要度 を高ぐ逆に小さければ重要度を低くする。重要度として、各軸の分散の最大値から 算出することちでさる。
[0188] また、所定数のデータの各軸の最大値と最小値との差の自乗和、あるいは各軸の 最大値と最小値の差の最大値の自乗力 算出してもよい。限られた計算能力しか持 たないシステムに本発明を組み込む場合は分散を計算するより、最大値と最小値か ら重要度を計算する方が有利である。所定数を 2とすれば、各軸の分散の自乗和は 二つの加速度データ間の測定空間上での距離の 2乗を表す。例えば、重要度(1Z σ 2)は、
2
[0189] [数 38]
Figure imgf000033_0001
[0190] とする。ここで、 σ , σ , σ は上記各軸の分散、 χ , x , y , y , z , z は x y z max min max min max min それぞれ各軸測定値の最大値、最小値、 r
aは規格化用の定数である。
[0191] 実際は、大きな運動加速度が含まれて!/ヽる加速度データと静止時の加速度データ との両方のデータの重要度を低くする必要があり、上記の二つの方法で別々に計算 された重要度の和を全重要度とし、オフセット及び感度推定に用いる。
[0192] [数 39]
1 1 1
全重要度 全重要度 1 全重要度 2
[0193] 第 2の基準点推定部 23は、記憶部 22で記憶されている加工データと、新たに取得 された加速度データ、およびその全重要度を用いて、加速度センサのオフセットおよ び感度を推定する。
[0194] [第 4の例] 本発明の第 4の実施の形態を、図 6に基づいて説明する。なお、前述した各例と同 一部分については、その説明を省略し、同一符号を付す。
[0195] (有限長 +無限長 DOE)
<構成>
図 6は、本発明に係る加速度計速装置の構成例を示す。
[0196] 加速度計速装置は、加速度検出部 1と、加速度データ取得部 2と、推定部 3と、オフ セット補正部 4とから構成される。
[0197] 本例では、推定部 3は、第 2の例(図 2参照)の有限長基準点推定部 10と、第 3の例
(図 5参照)の無限長基準点推定部 20と、第 3の基準点推定部 30とにより構成されて いる。
[0198] 第 3の基準点推定部は、有限長基準点推定部の第 1の基準点推定部及び、無限 長基準点推定部の第 2の基準点推定部でそれぞれ計算された、(数 19)の行列 A ,
N
B、あるいは (数 22)の M , N に基づいて基準点と各軸の基準長とを推定する。
N N N
[0199] <動作 >
本装置の動作につ!、て説明する。
[0200] 無限長基準点推定部 20によって推定されたオフセットおよび感度は、加速度は重 力加速度の分布する球面あるいは楕円体面を中心として分布するという仮定のもと に推定された値であり、その推定が常に正しい保証はない。そのため、無限長基準 点推定部 20で推定されるオフセット及び感度の推定時間は非常に短いが、精度は 必ずしも保証されな 、場合がある。
[0201] これに対して、有限長基準点推定部 10は、データ選択部 13での選択条件を厳しく して、静止時に近い加速度データのみを選択するようにすれば、推定されるオフセッ トおよび感度の精度は非常に高くなる。反面、静止データを集めるのに時間が力かり 、オフセットおよび感度の推定時間が長くなる。
[0202] これら 2つの基準点推定手段 (有限長基準点推定部 10、無限長基準点推定部 20) の長所をそれぞれ取り入れて、補正処理開始後は無限長基準点推定部 20で、静止 データが集まってからは有限長基準点推定部 10によってそれぞれ推定されるオフセ ットおよび感度を用いると、速ぐ最終的には精度のよいオフセットおよび感度を得る ことができる。
[0203] これら 2つの基準点推定手段をある時点で切替えてもよ 、が、徐々に移行すること により、時間と共に、滑らかに精度のよいオフセットおよび感度に移行していくことが できる。
[0204] 球体当てはめの場合、どちらの基準点推定手段も結果的には (数 19)の係数行列 A , Bを求める。無限長基準点推定部 20によって求められた係数行列を A , B
N N Ninf Ni
、有限長基準点推定部 10によって求められた係数行列を A , B と、 kを比率 ( nf Nlim Nlim
0≤k≤l)とする。このとき、第 3の基準点推定部 30において、次の係数行列 A
Nfus B を用いて、オフセットおよび感度を算出すればよい。
Nfus
[0205] [数 40]
Figure imgf000035_0001
[0206] I A Iは Aの行列式を表し、各行列を規格ィ匕するためである。しかし、行列式の計 算には時間がかかり、一般にダイナミックレンジが大きいため(小規模のシステムでよ くある)整数演算しかサポートされて 、な 、システムでは不向きである。行列の規格化 の方法が若干異なっても、オフセットおよび感度の以降の仕方が異なるだけで、出発 点と終着点は同じであり、行列式を厳密に求めるメリットはあまりない。代替方法として 例えば、 Aの対角成分の最大値を行列式の代わりに用いればょ 、。
[0207] kは、始め 0とし、静止データが集まるにつれ 1に近付ける。 kは、例えば次のように 計算する。加速度センサは、各測定軸の感度差に個体差があるものの、型番が決ま れば、同じような値となる。有限長基準点推定部 10が、上述したように、加速度セン サの 3軸の測定軸 X, Υ, Zの最大値、最小値を選択的に蓄積している場合、 6個の 測定データが作る体積が大きければ大き 、ほど、測定点が広 、領域に分布して 、る ことを意味している。
[0208] 従って、このような加速度データ群力 推定されるオフセットおよび感度の精度は良 くなり、各軸の測定値の最大値 最小値の最大は、加速度センサの感度の 2倍とな る。
[0209] これにより、 kは、
[0210] [数 41]
1
Figure imgf000036_0001
I if i< k
[0211] となる,

Claims

請求の範囲
[1] 2軸又は 3軸方向の加速度を検出する加速度検出手段と、
前記加速度検出手段が検出した 2軸又は 3軸加速度データを取得する加速度デー タ取得手段と、
前記加速度データ取得手段によって取得された加速度データの重要度を算出す る重要度算出手段と、
前記加速度データ取得手段によって取得された 2軸又は 3軸加速度データ群の各 加速度データの各軸成分を座標値としたときの 2次元直交座標平面又は 3次元直交 座標空間上における分布と、該 2軸又は 3軸加速度データ群に対応する前記重要度 算出手段によって算出された異なる値の重要度を含む重要度群とから、前記 2次元 又は 3次元の直交座標空間上に定める基準点と、各軸の基準長とを推定する基準点 推定手段と、
前記推定手段によって推定された前記基準点と前記各軸の基準長とに基づいて、 前記加速度データ取得手段によって取得された各加速度データを補正するオフセッ ト補正手段と
を具えたことを特徴とする加速度計速装置。
[2] 前記基準点推定手段は、
前記加速度データ取得手段によって取得された 2軸又は 3軸加速度データ群の 2 次元直交座標平面又は 3次元の直交座標空間における分布と、該加速度データ群 に付随する前記重要度算出手段によって算出された重要度群とから、前記 2次元直 交座標平面又は 3次元の直交座標空間上に円又は球面を定め、前記円又は球面の 中心座標と半径とを推定し、推定された前記中心座標を前記基準点とし、前記半径 を各軸の基準長とし、
前記オフセット補正手段は、
前記基準点推定手段により推定された前記基準点に基づいて、前記 2軸又は 3軸 の加速度データのオフセットを補正することを特徴とする請求項 1記載の加速度計速 装置。
[3] 前記基準点推定手段は、 前記加速度データ取得手段によって取得された 2軸又は 3軸加速度データ群の 2 次元直交座標平面又は 3次元の直交座標空間における分布と、該加速度データ群 に付随する前記重要度算出手段によって算出された重要度群とから、前記 2次元直 交座標平面又は 3次元の直交座標空間上に楕円又は楕円体面を定め、前記楕円又 は楕円体面の中心座標と各主軸の半径とを推定し、推定された前記中心座標を前 記基準点とし、前記各主軸の半径を各軸の基準長とし、
前記オフセット補正手段は、
前記基準点推定手段により推定された前記基準点と各軸の基準長とに基づいて、 前記 2軸又は 3軸の各加速度データのオフセットおよび感度を補正することを特徴と する請求項 1記載の加速度計速装置。
[4] 前記基準点推定手段は、
前記加速度データ取得手段によって取得された所定数 Mの加速度データ群の代 表値を算出する代表値算出手段と、
前記代表値算出手段によって算出された代表値の第 1の重要度を算出する第 1の 重要度算出手段と、
前記代表値算出手段によって算出された代表値と、該代表値に対応する前記第 1 の重要度および付加情報を蓄積する蓄積手段と、
前記蓄積手段に蓄積された前記代表値に対応する第 1の重要度と前記付加情報 とから、前記代表値に対応する第 2の重要度を算出する第 2の重要度算出手段とを 具え、
前記基準点推定手段は、前記蓄積手段によって蓄積された所定数 Nの代表値の、 各軸成分を座標値としたときの 2次元直交座標平面又は 3次元直交座標空間におけ る分布と、該代表値に対応する前記第 2の重要度算出手段によって算出された所定 数 Nの第 2の重要度とから、前記 2次元直交座標平面又は 3次元直交座標空間上に 定める基準点と各軸の基準長とを推定することを特徴とする請求項 1記載の加速度 計速装置。
[5] 前記第 2の重要度算出手段は、前記代表値に対応する前記蓄積手段に蓄積され た付加情報から算出した重要度と、前記代表値に対応する前記蓄積手段に蓄積さ れた第 1の重要度とから前記第 2の重要度を算出することを特徴とする請求項 4記載 の加速度計速装置。
[6] 前記基準点推定手段は、
前記蓄積手段によって蓄積された所定数 Nの代表値群の 2次元直交座標平面又 は 3次元直交座標空間における分布と、該代表値に対応する前記第 2の重要度算出 手段によって算出された所定数 Nの第 2の重要度群とから、前記 2次元直交座標平 面又は 3次元直交座標空間上に円又は球面を定め、前記円又は球面の中心座標と 半径とを推定し、推定された前記中心座標を前記基準点とし、前記半径を各軸の基 準長とし、
前記オフセット補正手段は、
前記基準点推定手段により推定された前記基準点に基づいて、前記 2軸又は 3軸 の各加速度データのオフセットを補正することを特徴とする請求項 4または 5に記載 の加速度計速装置。
[7] 前記基準点推定手段は、
前記蓄積手段によって蓄積された所定数 Nの代表値群の 2次元直交座標平面又 は 3次元の直交座標空間における分布と、該代表値に対応する前記第 2の重要度算 出手段によって算出された所定数 Nの第 2の重要度群とから、前記 2次元直交座標 平面又は 3次元の直交座標空間上に楕円又は楕円体面を定め、前記楕円又は楕円 体面の中心座標と各主軸の半径とを推定し、推定された前記中心座標を前記基準 点とし、前記各主軸の半径を各軸の基準長とし、
前記オフセット補正手段は、
前記基準点推定手段により推定された前記基準点と各軸の基準長とに基づいて、 前記 2軸又は 3軸の各加速度データのオフセットおよび感度を補正することを特徴と する請求項 4または 5に記載の加速度計速装置。
[8] 前記代表値算出手段は、
前記所定数 Mの加速度データ群の平均値を代表値として算出することを特徴とす る請求項 4な 、し 7の 、ずれかに記載の加速度計速装置。
[9] 前記第 1の重要度算出手段は、 前記所定数 Mの加速度データ群のばらつきを算出する手段と、
前記ばらつきが小さくなるほど高い重要度 Aを算出する手段と
を含むことを特徴とする請求項 4な ヽし 8の ヽずれかに記載の加速度計速装置。
[10] 前記ばらつきは、
前記所定数 Mの加速度データ群の各軸の分散の和、又は前記各軸の分散の最大 値であることを特徴とする請求項 9記載の加速度計速装置。
[11] 前記ばらつきは、
前記所定数 Mの加速度データ群の各軸の最大値と最小値との差の 2乗和、又は前 記各軸の最大値と最小値との差の最大値の 2乗であることを特徴とする請求項 9記載 の加速度計速装置。
[12] 前記付加情報の 1つは、
前記代表値算出手段が代表値を算出するときに使用した前記加速度データ群を 前記加速度検出手段が検出したときの温度であり、
前記第 2の重要度算出手段は、
前記付加情報としての 1つである、前記加速度検出手段がデータを検出した時点 での温度と、該第 2の重要度算出手段により重要度算出中の時点での温度との差が 大きくなるほど低い重要度 Bを算出する手段を具えたことを特徴とする請求項 4ないし 11の 、ずれかに記載の加速度計速装置。
[13] 前記付加情報の 1つは、
前記代表値算出手段が代表値を算出するときに使用した前記データ群を前記カロ 速度検出手段が検出したときの時間であり、
前記第 2の重要度算出手段は、
前記付加情報としての 1つである、前記加速度検出手段がデータを検出した時点 での時間と、該第 2の重要度算出手段により重要度算出中の時点での時間との差が 大きくなるほど低い重要度 Cを算出する手段を具えたことを特徴とする請求項 4ない し 11の ヽずれかに記載の加速度計速装置。
[14] 前記代表値算出手段によって算出された代表値が適当である力否かを選択する選 択手段をさらに備え、 前記選択手段は、
前記第 1の重要度算出手段によって算出された第 1の重要度が、所定値より高い場 合に、前記代表値算出手段によって算出された代表値が適当であると判断して選択 することを特徴とする請求項 4ないし 13のいずれかに記載の加速度計速装置。
[15] 前記蓄積手段は、
前記加速度検出手段の検出軸と線形関係となる線形軸を予め定め、
最大値を比較するときは、前記代表値から該代表値に対応する前記第 2の重要度 を引いた値同士で比較し、最小値を比較するときは、前記代表値と該代表値に対応 する前記第 2の重要度を足した値同士で比較し、
前記選択手段が新たに選択した代表値と、前記蓄積手段に蓄積されて!、る代表値 の中で、前記加速度検出手段の検出軸又は線形軸の成分が、最大又は最小となる 代表値を選択的に蓄積することを特徴とする請求項 4な 、し 14の 、ずれかに記載の 加速度計速装置。
[16] 前記加速度データ取得手段によって得られた加速度データ群の前記重要度で重 み付けした個数と、該加速度データ群の前記重要度で重み付けした各軸成分の和と 、該加速度データ群の各軸成分の自乗を前記重要度で重み付けした値の和と、前 記基準点と各軸の基準長とを算出するための連立方程式の係数群と、前記基準点と 基準長とを保持する加工データ保持手段と、
前記加速度データ取得手段によって得られた最新のデータと該データに対応する 前記重要度算出手段によって算出された重要度と、前記加工データ保持手段が保 持する直近の各種加工データとから、前記基準点と各軸の基準長とを推定することを 特徴とする請求項 1記載の加速度計速装置。
PCT/JP2006/326015 2006-01-05 2006-12-27 加速度計速装置 WO2007077859A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800504986A CN101356442B (zh) 2006-01-05 2006-12-27 加速度测量装置
JP2007552951A JP4663738B2 (ja) 2006-01-05 2006-12-27 加速度計速装置
US12/159,976 US7881900B2 (en) 2006-01-05 2006-12-27 Acceleration measuring device
EP06843397A EP1970713B1 (en) 2006-01-05 2006-12-27 Acceleration measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-000721 2006-01-05
JP2006000721 2006-01-05

Publications (1)

Publication Number Publication Date
WO2007077859A1 true WO2007077859A1 (ja) 2007-07-12

Family

ID=38228213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326015 WO2007077859A1 (ja) 2006-01-05 2006-12-27 加速度計速装置

Country Status (6)

Country Link
US (1) US7881900B2 (ja)
EP (1) EP1970713B1 (ja)
JP (1) JP4663738B2 (ja)
KR (1) KR101012716B1 (ja)
CN (1) CN101356442B (ja)
WO (1) WO2007077859A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292514A (ja) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd 加速度センサのデータ処理方法、及び呼吸運動検出方法、並びに呼吸運動検出装置。
WO2010058594A1 (ja) 2008-11-20 2010-05-27 旭化成エレクトロニクス株式会社 物理量計測装置および物理量計測方法
JP2010119417A (ja) * 2008-11-17 2010-06-03 Panasonic Corp 洗濯機
US20100216517A1 (en) * 2009-02-24 2010-08-26 Samsung Electronics Co., Ltd. Method for recognizing motion based on motion sensor and mobile terminal using the same
JP2012525864A (ja) * 2009-05-04 2012-10-25 ニンテンドウ・オブ・アメリカ・インコーポレーテッド リモートコントローラの加速度計センサの較正
JP2013205164A (ja) * 2012-03-28 2013-10-07 Seiko Epson Corp 加速度バイアス推定方法及び計測装置
WO2019155686A1 (ja) * 2018-02-09 2019-08-15 アルプスアルパイン株式会社 制御装置、計測装置、球体、計測システム、制御方法、およびプログラム
WO2019155687A1 (ja) * 2018-02-06 2019-08-15 アルプスアルパイン株式会社 較正装置、計測装置、球体、較正方法、およびプログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146757A1 (ja) * 2007-05-24 2008-12-04 Asahi Kasei Emd Corporation 物理量計測装置および物理量計測方法
US20100117959A1 (en) * 2008-11-10 2010-05-13 Samsung Electronics Co., Ltd. Motion sensor-based user motion recognition method and portable terminal using the same
CN101685102B (zh) * 2009-04-17 2012-06-13 幻音科技(深圳)有限公司 三轴加速度计的精度调整装置与调整方法
CA2848150A1 (en) * 2011-09-08 2013-03-14 Leica Geosystems Ag Method of recalibrating inertial sensors
AU2012307068A1 (en) * 2011-09-08 2014-03-13 Leica Geosystems Ag A method and system of recalibrating an inertial sensor
US20130204572A1 (en) * 2012-02-07 2013-08-08 Seiko Epson Corporation State detection device, electronic apparatus, and program
CN103712632B (zh) * 2013-12-31 2016-08-24 英华达(上海)科技有限公司 一种基于3轴加速计的计步方法和计步器
US10345329B2 (en) * 2015-07-07 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Inertial force sensor
CN106813679B (zh) * 2015-12-01 2021-04-13 佳能株式会社 运动物体的姿态估计的方法及装置
KR20200126315A (ko) * 2019-04-29 2020-11-06 일진머티리얼즈 주식회사 폴더블 디바이스의 두 몸체부의 사이각 측정 방법 및 이를 위한 장치
WO2021054715A1 (ko) * 2019-09-18 2021-03-25 일진머티리얼즈 주식회사 폴더블 디바이스의 두 몸체부의 사이각 측정 방법 및 이를 위한 장치
CN111329581B (zh) * 2020-01-23 2022-03-15 诺创智能医疗科技(杭州)有限公司 手术机械臂的力反馈测量方法和手术机械臂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331647A (ja) * 1993-05-25 1994-12-02 Nec Corp 半導体加速度センサおよび製造方法
JP2004093552A (ja) * 2002-07-10 2004-03-25 Hitachi Metals Ltd 加速度検出装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119001B2 (ja) 1992-11-30 2000-12-18 日本電気株式会社 加速度測定方法及び加速度測定装置
JP3874810B2 (ja) 1994-03-07 2007-01-31 株式会社デンソー 車両制御装置
US6299102B2 (en) 1995-05-12 2001-10-09 H. Koch & Sons, Inc. Aviation crash sensor
JPH0943269A (ja) 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
US6337688B1 (en) 1999-01-29 2002-01-08 International Business Machines Corporation Method and system for constructing a virtual reality environment from spatially related recorded images
JP2000356647A (ja) 1999-06-14 2000-12-26 Denso Corp 加速度センサのオフセット誤差検出方法及び装置、車両用現在位置検出装置、ナビゲーション装置
US6545868B1 (en) 2000-03-13 2003-04-08 Legacy Electronics, Inc. Electronic module having canopy-type carriers
JP3985215B2 (ja) 2001-09-26 2007-10-03 日立金属株式会社 半導体加速度センサー
US6810738B2 (en) 2002-07-10 2004-11-02 Hitachi Metals, Ltd. Acceleration measuring apparatus with calibration function
US6892578B2 (en) * 2002-11-29 2005-05-17 Hitachi Metals Ltd. Acceleration sensor
JP2005056597A (ja) 2003-08-05 2005-03-03 Canon Inc ヒータ制御装置
CN101031803B (zh) 2004-08-12 2012-09-05 旭化成电子材料元件株式会社 加速度计测装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331647A (ja) * 1993-05-25 1994-12-02 Nec Corp 半導体加速度センサおよび製造方法
JP2004093552A (ja) * 2002-07-10 2004-03-25 Hitachi Metals Ltd 加速度検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAI A. ET AL.: "Semi-automatic calibration technique using six inertial frames of reference", PROCEEDINGS OF SPIE, vol. 5274, 2003, pages 531 - 542, XP002993355 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292514A (ja) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd 加速度センサのデータ処理方法、及び呼吸運動検出方法、並びに呼吸運動検出装置。
JP2010119417A (ja) * 2008-11-17 2010-06-03 Panasonic Corp 洗濯機
WO2010058594A1 (ja) 2008-11-20 2010-05-27 旭化成エレクトロニクス株式会社 物理量計測装置および物理量計測方法
US8768649B2 (en) 2008-11-20 2014-07-01 Asahi Kasei Microdevices Corporation Physical amount measuring device and physical amount measuring method
US20100216517A1 (en) * 2009-02-24 2010-08-26 Samsung Electronics Co., Ltd. Method for recognizing motion based on motion sensor and mobile terminal using the same
JP2012525864A (ja) * 2009-05-04 2012-10-25 ニンテンドウ・オブ・アメリカ・インコーポレーテッド リモートコントローラの加速度計センサの較正
JP2013205164A (ja) * 2012-03-28 2013-10-07 Seiko Epson Corp 加速度バイアス推定方法及び計測装置
WO2019155687A1 (ja) * 2018-02-06 2019-08-15 アルプスアルパイン株式会社 較正装置、計測装置、球体、較正方法、およびプログラム
WO2019155686A1 (ja) * 2018-02-09 2019-08-15 アルプスアルパイン株式会社 制御装置、計測装置、球体、計測システム、制御方法、およびプログラム

Also Published As

Publication number Publication date
US7881900B2 (en) 2011-02-01
CN101356442B (zh) 2012-02-01
EP1970713A4 (en) 2010-08-11
JPWO2007077859A1 (ja) 2009-06-11
KR101012716B1 (ko) 2011-02-09
US20090133466A1 (en) 2009-05-28
EP1970713A1 (en) 2008-09-17
JP4663738B2 (ja) 2011-04-06
EP1970713B1 (en) 2013-03-27
CN101356442A (zh) 2009-01-28
KR20080055881A (ko) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2007077859A1 (ja) 加速度計速装置
Fong et al. Methods for in-field user calibration of an inertial measurement unit without external equipment
JP5137229B2 (ja) 加速度計測装置
EP2351981B1 (en) Physical quantity measurement device and physical quantity measurement method
WO2006104140A1 (ja) 進行方向計測装置及び進行方向計測方法
CN108458714B (zh) 一种姿态检测系统中不含重力加速度的欧拉角求解方法
JP4787359B2 (ja) 物理量計測装置および物理量計測方法
WO2008068542A1 (en) Auto-calibration method for sensors and auto-calibrating sensor arrangement
JP5706576B2 (ja) オフセット推定装置、オフセット推定方法、オフセット推定プログラムおよび情報処理装置
WO2012111413A1 (ja) 地磁気応用機器
JP4590511B2 (ja) 電子コンパス
CN104215229B (zh) Rtk设备调节方法、系统及rtk测量方法
CN109084806A (zh) 标量域mems惯性系统标定方法
CN107990901B (zh) 一种基于传感器的用户方向定位方法
Ayub et al. Pedestrian direction of movement determination using smartphone
JP2019120587A (ja) 測位システム及び測位方法
JP2009186244A (ja) 傾斜角度推定システム、相対角度推定システム及び角速度推定システム
JP5475873B2 (ja) 地磁気検知装置
CN107883979B (zh) 用于统一惯性传感器坐标系和参考坐标系的方法和系统
JP2020003229A (ja) 半導体装置、携帯端末装置、歩幅導出方法及びプログラム
JP2019196976A (ja) 情報処理装置、情報処理方法、及びプログラム
JP5424224B2 (ja) 相対角度推定システム
Mumtaz et al. Development of a low cost wireless IMU using MEMS sensors for pedestrian navigation
JP2017518488A (ja) ソフト制約及びペナルティ機能を使用した慣性センサの初期化
JP7418250B2 (ja) 進行方向判定装置、携帯端末装置、および進行方向判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087008084

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12159976

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006843397

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007552951

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200680050498.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE