WO2007074664A1 - ジアルキルカーボネートの工業的分離方法 - Google Patents

ジアルキルカーボネートの工業的分離方法 Download PDF

Info

Publication number
WO2007074664A1
WO2007074664A1 PCT/JP2006/325089 JP2006325089W WO2007074664A1 WO 2007074664 A1 WO2007074664 A1 WO 2007074664A1 JP 2006325089 W JP2006325089 W JP 2006325089W WO 2007074664 A1 WO2007074664 A1 WO 2007074664A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
carbonate
continuous multistage
multistage distillation
perforated plate
Prior art date
Application number
PCT/JP2006/325089
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to BRPI0620605A priority Critical patent/BRPI0620605B1/pt
Priority to JP2007551903A priority patent/JP4260212B2/ja
Priority to EA200800919A priority patent/EA012062B1/ru
Priority to EP06834816.8A priority patent/EP1967508B1/en
Priority to US11/991,073 priority patent/US8049028B2/en
Priority to CN2006800492531A priority patent/CN101346340B/zh
Publication of WO2007074664A1 publication Critical patent/WO2007074664A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a large amount of dialkyl carbonate produced by a reactive distillation method of cyclic carbonate and aliphatic monohydric alcohol and a low boiling point reaction mixture containing the aliphatic monohydric alcohol.
  • the present inventors first disclosed a reactive distillation method for producing a dialkyl carbonate and a diol from a reaction between a cyclic carbonate and an aliphatic monohydric alcohol (Patent Documents 1 to 10). Thereafter, applications using the reactive distillation method (Patent Documents 11 to 15) have been filed by other companies. When reactive distillation is used for this reaction, it is possible to proceed with a high reaction rate.
  • the reactive distillation method that has been proposed so far relates to a method for producing a small amount of dialkyl carbonate and diol, and a short-term production method. It was not related to stable production.
  • dialkyl carbonate is stably produced in a large amount (for example, 2 tons or more per hour) for a long period (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 500 hours or more). It did not achieve the purpose.
  • the height (H: cm) and the diameter (H) of the reactive distillation column disclosed in this example are disclosed for producing dimethyl carbonate (DMC) and ethylene glycol (EG) from ethylene carbonate and methanol.
  • Table 1 shows the maximum values for D: cm), number of plates (n), dimethyl carbonate production P (kg / hr), and continuous production time T (hr).
  • Patent Literature H cm D: cm Number of steps: n P: kg / hr T: hr
  • Patent Document 14 (paragraph 0060), “This example employs a process flow similar to that of the preferred embodiment shown in FIG. 1 above, and transesterifies by a catalytic conversion reaction between ethylene carbonate and methanol.
  • the numerical values shown below in this example are sufficiently applicable to the operation of the actual apparatus.
  • 3 750 kgZhr of dimethyl carbonate was specifically produced. Since this scale described in the examples corresponds to an annual output of 30,000 tons or more, at the time of filing of patent document 14 (April 9, 2002), the world's largest commercial plant was operated by this method. It has been implemented. However, even at the time of filing this application, there is no such fact.
  • Patent Document 14 the production amount of dimethyl carbonate is the same as the theoretical calculation value.
  • the yield of ethylene glycol is about 85.6%, and the selectivity is about 88.4. %, It is difficult to say that high yields' high selectivity is achieved. In particular, the low selectivity indicates that this method has a fatal defect as an industrial production method. (Note that Patent Document 14 was deemed to be dismissed on July 26, 2005 by an unexamined request.)
  • the reactive distillation method includes a composition change caused by a reaction in a distillation column, a composition change caused by distillation, There are many fluctuation factors such as temperature changes and pressure changes, and it is often difficult to continue stable operation for a long period of time, especially when dealing with large quantities.
  • a composition change caused by a reaction in a distillation column There are many fluctuation factors such as temperature changes and pressure changes, and it is often difficult to continue stable operation for a long period of time, especially when dealing with large quantities.
  • it is necessary to devise reactive distillation equipment In order to maintain high yield and high selectivity of dialkyl carbonates and diols by reactive distillation while maintaining their mass production stably for a long period of time, it is necessary to devise reactive distillation equipment .
  • the description of the long-term continuous stable production in the reactive distillation method proposed so far was only 200 to 400 hours in Patent Documents 1 and 2.
  • the inventors of the present invention established an industrial reactive distillation method capable of stably continuing large-scale production of dialkyl carbonates and diols for a long period of time with high yield and high selectivity. It was necessary to establish an industrial method for separating the target dialkyl carbonate from a low boiling point reaction mixture that was continuously extracted in large quantities. The present invention has been made to achieve this object.
  • the production amount of dialkyl carbonate per hour by the reactive distillation method proposed so far, as shown in Table 1, is a small amount of 1 kg or less per hour except for Patent Document 14.
  • the top component (mixture of methanol and dimethyl carbonate) of the first-stage reactive distillation tower is sent to the second-stage distillation tower and subjected to extractive distillation using ethylene carbonate. Yes.
  • this mixture is further sent to the third-stage distillation tower, and used as the top component of the third-stage distillation tower.
  • Distillation separation is performed to obtain dimethyl carbonate and to obtain ethylene carbonate as a tower bottom component.
  • Patent Document 1 Japanese Patent Laid-Open No. 4 198141
  • Patent Document 2 Japanese Patent Laid-Open No. 4-230243
  • Patent Document 3 Japanese Patent Laid-Open No. 9 176061
  • Patent Document 4 Japanese Patent Laid-Open No. 9-183744
  • Patent Document 5 Japanese Patent Laid-Open No. 9-194435
  • Patent Document 6 International Publication W097Z23445 (European Patent No. 0889025, US Patent No. 5847189)
  • Patent Document 7 International Publication W099Z64382 (European Patent No. 1086940, US Patent No. 6346638)
  • Patent Document 8 International Publication WO00Z51954 (European Patent No. 1174406, US Patent No. 6479689)
  • Patent Document 9 Japanese Patent Laid-Open No. 2002-308804
  • Patent Document 10 Japanese Unexamined Patent Application Publication No. 2004-131394
  • Patent Document 11 Japanese Patent Laid-Open No. 5-213830 (European Patent No. 0530615, US Patent No. 5231212)
  • Patent Document 12 JP-A-6-9507 (European Patent No. 0569812, US Patent No. 5359118)
  • Patent Document 13 Japanese Patent Laid-Open No. 2003-119168 (International Publication WO03Z006418)
  • Patent Document 14 Japanese Patent Laid-Open No. 2003-300936
  • Patent Document 15 Japanese Patent Application Laid-Open No. 2003-342209
  • the problem to be solved by the present invention is that a cyclic carbonate and an aliphatic monohydric alcohol are used as raw materials, and this raw material is continuously fed into a continuous multistage distillation column in which a homogeneous catalyst exists, and the reaction is carried out in the column.
  • the low-boiling reaction mixture containing a large amount of dialkyl carbonate and the aliphatic monohydric alcohol produced by the reactive distillation method in which the distillation and distillation are performed simultaneously is performed using a single distillation column, and the aliphatic monohydric alcohol is mainly used.
  • dialkyl carbonate can be stably separated by distillation in an amount of 2 tons or more per hour for a long period of time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more). It is to provide a reasonable and inexpensive apparatus and method. Means for solving the problem
  • the continuous multistage distillation column B has a length L (cm) satisfying the following formulas (1) to (8), an inner diameter D (cm), an internal recovery unit having n stages inside, a length L (cm), inner diameter D (cm
  • a distillation column with a concentrating capacity having an internal with n stages inside
  • the perforated plate tray has 150 to 1200 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2.
  • the perforated plate tray has 200 to L per unit area lm 2 of the perforated plate portion: L 100 holes, and the cross-sectional area per hole is 0.7 to 4 cm 2 .
  • the perforated plate tray has 250 to L000 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.9 to 3 cm 2.
  • the tower top component (B) is used as a raw material for the production of dialkyl carbonates and diols.
  • Cyclic carbonate is ethylene carbonate and Z or propylene carbonate
  • aliphatic monohydric alcohol power is methanol and Z or ethanol
  • dialkyl carbonate to be separated is dimethyl carbonate and Z or jetyl carbonate.
  • a dialkyl carbonate which is separated by the method according to any one of items 1 to 16 and has a halogen content of 0.1 ppm or less,
  • a low-boiling-point reaction mixture (A) containing the dialkyl carbonate produced and extracted continuously in the form of gas from the top of the tower and the aliphatic monohydric alcohol is mixed with the aliphatic monohydric alcohol.
  • the tower top component (B) mainly composed of ru and the bottom component mainly composed of dialkyl carbonate
  • the continuous multistage distillation column B has a length L (cm) satisfying the following formulas (1) to (8), an internal diameter D (cm), an internal part having an internal number n of stages, a length L (cm), Inside diameter D (cm),
  • the perforated plate tray has 150 to 1200 holes per area lm 2 of the perforated plate portion, and has a cross-sectional area of 0.5 to 5 cm 2 per hole.
  • porous plate tray 200 per area lm 2 of the porous plate: L has 100 holes, and it cross-sectional area per hole is 0. 7 ⁇ 4cm 2
  • the continuous multistage distillation column as described in 24 or 25 above, wherein
  • the perforated plate tray has 250 to: L000 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.9 to 3 cm 2.
  • the continuous multistage distillation column according to any one of 24 or 26 above, characterized in that
  • a cyclic carbonate and an aliphatic monohydric alcohol are used as raw materials, and these raw materials are continuously supplied into a continuous multistage distillation column A in which a homogeneous catalyst exists,
  • a low-boiling reaction mixture (A) containing a large amount of dialkyl carbonate and the aliphatic monohydric alcohol produced by the reactive distillation method in which the reaction and distillation are performed simultaneously is used in one distillation column B.
  • a tower top component (B) mainly composed of the aliphatic monohydric alcohol and a dialkyl carbonate.
  • a specific inexpensive that can stably distill and separate dialkyl carbonate in an amount of 2 tons or more per hour for a long time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more).
  • Devices and methods have been found.
  • the reaction of the present invention is a reversible equilibrium transesterification reaction represented by the following formula in which a dialkyl carbonate and a diol are produced from a cyclic carbonate and an aliphatic monohydric alcohol.
  • R 1 represents a divalent group — (CH 2) m- (m is an integer of 2 to 6),
  • the element may be substituted by an alkyl group having 1 to 10 carbon atoms or a allyl group.
  • R 2 represents a monovalent aliphatic group having 1 to 12 carbon atoms, and one or more hydrogens thereof may be substituted with an alkyl group having 1 to 10 carbon atoms or a aryl group.
  • the cyclic carbonate used as a raw material in the present invention is a compound represented by (A) in the above formula, for example, alkylene carbonates such as ethylene carbonate and propylene carbonate, and 1, 3- Dioxacyclohexer-2-one, 1,3-dioxy Sacyclohepter-2-one and the like are preferably used, ethylene carbonate and propylene carbonate are more preferably used from the viewpoint of availability, and ethylene carbonate is particularly preferably used.
  • the aliphatic monohydric alcohol as the other raw material is a compound represented by (B) in the above formula and having a lower boiling point than the diol to be produced. Therefore, power that can vary depending on the type of cyclic carbonate used.
  • methanol, ethanol, propanol (each isomer), allyl alcohol, butanol (each isomer), 3 butene 1 ol, amyl alcohol ( Isomers), hexyl alcohol (each isomer), heptyl alcohol (each isomer), octyl alcohol (each isomer), nonyl alcohol (each isomer), decyl alcohol (each isomer), Decyl alcohol (each isomer), dodecyl alcohol (each isomer), cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentanol (each isomer), ethylcyclopentanol ( Each isomer), methylcyclohexanol (each isomer), ethylcyclopentanol (each isomer) ), Dimethylcyclohexanol (e
  • substitution of halogen, lower alkoxy group, cyano group, alkoxycarbol group, aryloxycarboro group, acyloxy group, nitro group, etc. May be substituted by a group.
  • alcohols having 1 to 6 carbon atoms are preferably used, and more preferably methanol, ethanol, propanol (each heterogeneous substance), butanol ( Each isomer) is an alcohol having 1 to 4 carbon atoms.
  • methanol and ethanol are preferable, and methanol is particularly preferable.
  • a homogeneous catalyst is present in the reactive distillation column A. Any method can be used for the homogeneous catalyst to exist, but the catalyst is present in the liquid phase in the reactive distillation column A by continuously supplying the catalyst into the reactive distillation column A. Is preferred.
  • the homogeneous catalyst When the homogeneous catalyst is continuously fed into the reactive distillation column A, it may be fed simultaneously with the cyclic carbonate and Z or aliphatic monohydric alcohol, or at a position different from the raw material. You may pay. Since the reaction actually proceeds in the distillation column A is a region below the catalyst supply position, it is preferable to supply the catalyst to a region between the top of the column and the raw material supply position.
  • the number of stages in which the catalyst is present needs to be 5 or more, preferably 7 or more, and more preferably 10 or more.
  • Alkali metals and alkaline earth metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, and nor;
  • Basic compounds such as alkali metal and alkaline earth metal hydrides, hydroxides, alkoxides, alicyclic oxides, amidides, and the like;
  • Basic compounds such as alkali metal and alkaline earth metal carbonates, bicarbonates, organic acid salts;
  • Tertiary amines such as triethylamine, tributylamine, trihexylamine, benzyljetylamine;
  • Cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN);
  • Thallium compounds such as acid thallium, halogen thallium, hydroxide thallium, thallium carbonate, thallium nitrate, thallium sulfate, organic acid salts of thallium;
  • Tin compounds such as butyltin, tributyltin chloride and tin 2-ethylhexanoate
  • dumbbell compounds such as dimethoxysulfite, diethoxysulfite, ethylenedioxydumbbell and dibutoxydumbbell;
  • Aluminum compounds such as aluminum trimethoxide, aluminum triisopropoxide, aluminum tributoxide;
  • Titanium compounds such as tetramethoxytitanium, tetraethoxytitanium, tetrabutoxytitanium, dichlorodimethoxytitanium, tetraisopropoxytitanium, titanium acetate, titanium acetylethyltonate;
  • Phosphorus compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tributylmethylphosphonium halide, trioctylbutylphosphonium halide, trimethylmethylphosphonium halide, etc .;
  • Zirconium compounds such as zirconium halide, zirconium acetyl cetate, zirconium alkoxide, zirconium acetate;
  • Lead carbonates such as PbCO, 2PbCO 2 -Pb (OH) and their basic salts;
  • Lead minerals such as howenite, senyanite, and hydrates of these lead compounds; Is mentioned.
  • reaction raw materials reaction raw materials, reaction mixtures, reaction by-products, etc.
  • they can be used as homogeneous catalysts as they are, and these compounds can be used as reaction raw materials, reaction mixtures, reaction by-products. It is also preferable to use a mixture dissolved in advance by a living organism or by reacting it as a homogeneous catalyst.
  • the amount of the catalyst used in the present invention varies depending on the type of catalyst used, but is usually expressed as a ratio to the total mass of the cyclic carbonate as the feedstock and the aliphatic monohydric alcohol. 50 mass 0/0, preferably from 0.005 to 20 mass 0/0, more preferably 0. 01 to: as used L0 mass%.
  • the method for continuously supplying cyclic carbonate and aliphatic monohydric alcohol to continuous multi-stage distillation column A is not particularly limited. Any supply method can be used as long as it can contact with the catalyst in the region of at least 5 stages, preferably 7 stages or more, more preferably 10 stages or more in the column A. That is, the cyclic carbonate and the aliphatic monohydric alcohol can be continuously supplied as many times as the number of introduced loci required for the stage satisfying the above conditions of the continuous multistage distillation column A. Further, the cyclic carbonate and the aliphatic monohydric alcohol may be introduced into the same stage of the distillation column, or may be introduced into different stages.
  • the raw material is continuously supplied to the distillation column A as a liquid, a gas, or a mixture of a liquid and a gas.
  • it is also a preferred method to supply a gaseous raw material intermittently or continuously in the lower part of the distillation column A.
  • the cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state to the upper stage from the stage where the catalyst is present, and the aliphatic monohydric alcohol is gaseous to the lower part of the distillation tower A.
  • a method of continuously supplying Z or liquid is also a preferable method. In this case, it goes without saying that an aliphatic monohydric alcohol is contained in the cyclic force carbonate.
  • the product may contain dialkyl carbonate and Z or diol as the product.
  • the content of the dialkyl carbonate is usually represented by mass% of dialkyl carbonate in the aliphatic monohydric alcohol Z dialkyl carbonate mixture, and is usually 0 to 40 mass%, preferably 0 to 30 mass%, more preferably Is 0 to 20% by mass, and the diol is expressed by mass% in the cyclic carbonate Z diol mixture, and is usually 0 to 10% by mass, preferably 0 to 7% by mass, more preferably 0 to 5% by mass. is there.
  • the material strength mainly composed of cyclic carbonate and Z or aliphatic monohydric alcohol can be used as these raw materials.
  • the present invention makes this possible and is an excellent feature of the present invention.
  • the other step includes, for example, a step of producing diaryl carbonate with dialkyl strength-bonate and aromatic monohydroxy compound strength.
  • aliphatic monohydric alcohol is by-produced and recovered.
  • These recovered by-product aliphatic monohydric alcohols usually contain dialkyl carbonates, aromatic monohydroxy compounds, alkylaryl ethers, etc. May be included.
  • the by-product aliphatic monohydric alcohol can be used as it is as a raw material of the present invention, or it can be used as a raw material after reducing the content of substances having a boiling point higher than that of the aliphatic monohydric alcohol by distillation or the like. .
  • the cyclic carbonate used in the present invention is produced by the reaction of alkylene oxide such as ethylene oxide, propylene oxide, and styrene oxide with carbon dioxide.
  • alkylene oxide such as ethylene oxide, propylene oxide, and styrene oxide
  • An annular force carbonate containing a small amount of a compound or the like can also be used as a raw material of the present invention.
  • the amount ratio between the cyclic carbonate and the aliphatic monohydric alcohol supplied to the reactive distillation column A varies depending on the type and amount of the transesterification catalyst and the reaction conditions, but is usually supplied.
  • the aliphatic monohydric alcohols can be supplied in a molar ratio of 0.01 to LOOO times with respect to the cyclic carbonate.
  • the molar ratio of the aliphatic monohydric alcohol to the cyclic carbonate is preferably 2 to 20, more preferably 3 to 15, and even more preferably 5 to 12. Unreacted annular carbon If a large amount of acid remains, it reacts with the product diols to produce by-products such as dimers and trimers. Is preferably reduced as much as possible. In the method of the present invention, even when the molar ratio is 10 or less, the reaction rate of the cyclic carbonate can be 98% or more, preferably 99% or more, and more preferably 99.9% or more. . This is also one of the features of the present invention.
  • the present invention preferably, 2 tons or more of dialkyl carbonate per hour is continuously produced, and this is distilled and separated using a continuous multistage distillation column B.
  • the minimum amount of cyclic carbonate supplied is usually 2.2 P ton Zhr, preferably 2.1 P ton Z hr, more preferably 2.
  • OP relative to the amount of dialkyl force-bonate to be produced (P ton Zhr). Ton Zhr. In a more preferable case, it can be less than 1.9 P ton Zhr.
  • the continuous multi-stage distillation column A for carrying out the reactive distillation method according to the present invention is not particularly limited, but not only distillation but also the reaction is carried out simultaneously, and preferably 2 tons or more of dialkyl carbonate per hour and Z or preferably diols of 1.3 tons or more per hour can be produced stably over a long period of time.
  • a cyclic carbonate and an aliphatic monohydric alcohol are used as raw materials, and the raw materials are continuously supplied into a continuous multistage distillation column A in which a uniform catalyst is present, and the reactive distillation is performed in the column A.
  • the high boiling point reaction mixture (A) containing diols generated from the bottom of the tower is connected in liquid form.
  • the low-boiling-point reaction mixture (A) containing the resulting dialkyl carbonate and the aliphatic monohydric alcohol continuously extracted and gaseously extracted from the upper part of the tower is mixed with the aliphatic monohydric alcohol.
  • a continuous multistage distillation column B is used for distillative separation into component (B).
  • the continuous multistage distillation column B according to the present invention is required to have a function of stably separating dialkyl carbonate from a large amount of reaction mixture with a predetermined separation efficiency for a long period of time. Must be satisfied at the same time.
  • the continuous multistage distillation column B has a length L (cm) satisfying the following formulas (1) to (8) and an inner diameter D (cm).
  • a recovery part having an internal with n stages inside, a length L (cm), an inner diameter D (cm),
  • the purity of the separated dialkyl carbonate is usually 97% by mass or more, and a high purity of 99% by mass or more can be easily achieved.
  • L (cm) is smaller than 500, the separation efficiency of the recovery unit is reduced, so that the target separation efficiency cannot be achieved, and the facility cost can be reduced while ensuring the target separation efficiency.
  • a more preferable range of L (cm) is 800 ⁇ L ⁇ 2500, and more preferably 1000 ⁇ L ⁇ 2000.
  • D (cm) is less than 100, the target distillation amount cannot be achieved, and the target distillation amount In order to reduce the equipment cost while achieving the above, it is necessary to reduce to 1000 or less.
  • a more preferable range of D (cm) is 120 ⁇ D ⁇ 800, and more preferably 150 ⁇ D ⁇ 600.
  • L / repulsive force is less than or greater than 30, long-term stable operation becomes difficult.
  • a more preferred range of L / ⁇ is 5 ⁇ L ZD ⁇ 20, more preferably 7 ⁇ L / ⁇ ⁇ 15.
  • n is smaller than 10, the separation efficiency of the recovery unit is lowered, so that the target separation efficiency cannot be achieved.
  • n is made 40 or less. It is necessary.
  • a more preferable range of n is 13 ⁇ n ⁇ 25, and more preferably 15 ⁇ n ⁇ 20.
  • L (cm) is smaller than 700, the separation efficiency of the concentrating part is lowered, so that the desired separation effect is achieved.
  • the range of 2 is 1500 ⁇ L ⁇ 3500, more preferably 2000 ⁇ L ⁇ 3000.
  • D (cm) is less than 50, the target distillation amount cannot be achieved, and the target distillation amount cannot be achieved.
  • D In order to reduce equipment costs while achieving this, D must be 800 or less.
  • the preferred range of D (cm) is 70 ⁇ D ⁇ 600, more preferably 80 ⁇ D ⁇ 400
  • the range of new L / 15 is 15 ⁇ L ZD ⁇ 30, more preferably 20 ⁇ L / ⁇ ⁇
  • n is less than 35, the separation efficiency of the concentrating part is lowered, so the target separation efficiency is achieved.
  • n is greater than 100, the pressure difference between the top and bottom of the tower is large.
  • n range is 40 ⁇ n ⁇ 7 0, and more preferably 45 ⁇ n ⁇ 65.
  • L ⁇ L is more preferable.
  • D ⁇ D is more preferable, and D and D are more preferable.
  • L Preferably, L ⁇ L and D ⁇ D.
  • the recovery section and the concentration section of the continuous multistage distillation column B of the present invention are preferably a distillation column having a tray and Z or packing as an internal.
  • the term “internal” means a portion in the distillation column that is actually brought into contact with gas and liquid.
  • trays include, for example, foam trays, perforated plate trays, ripple trays, ballast trays, valve trays, counterflow trays, dual flux trays, super flack trays, max flack trays, dual flow trays, grids.
  • Regular packing such as gem pack, techno back, flexi pack, sulza packing, good roll packing, glitch grid and the like is preferable.
  • a multistage distillation column having both a tray part and a packed part can also be used.
  • the term “internal plate number n” used in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing. Therefore, in the case of a continuous multistage distillation column having both a tray part and a packed part, n is the sum of the number of trays and the number of theoretical plates.
  • the internal parts of the recovery section and the concentration section of the continuous multistage distillation column B are trays. Furthermore, it has been found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It has also been found that it is preferred that the perforated plate tray has 150 to 1200 holes per lm 2 area of the perforated plate portion. More preferably, the number of fistulas is 200 to L 100 per lm 2 , and more preferably 250 to LOOO. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 . More In the case where the perforated plate tray has 150 to 1200 holes per area lm 2 of the perforated plate portion and the cross-sectional area per hole is 0.5 to 5 cm 2 , It has been found to be particularly preferred. By adding the above conditions to the continuous multistage distillation column B, it has been found that the object of the present invention can be achieved more easily.
  • the dialkyl carbonate produced by the reactive distillation in the continuous multistage distillation column A is usually used in excess, and the low-boiling point reaction mixture (A) with the aliphatic monohydric alcohol remaining unreacted. As shown in FIG. Low boiling point
  • reaction mixture (A) is continuously fed into the continuous multistage distillation column B, and the aliphatic monovalent alcohol
  • High boiling point mixture (B) mainly composed of alkyl carbonate is liquid and continuous from the bottom of the tower
  • the low boiling point reaction mixture (A) is supplied to the continuous multistage distillation column B.
  • the low boiling point reaction mixture (A) may be supplied in a gaseous state or in a liquid state.
  • heating or cooling is preferably performed in order to obtain a temperature close to the liquid temperature near the supply port of the distillation column B.
  • the continuous multistage distillation column B preferably has a reboiler for heating the distillate and a reflux device.
  • the low boiling point reaction mixture (A) is usually a continuous multistage of 2 tons Zhr or more.
  • the concentration of the aliphatic monohydric alcohol in the low boiling point mixture (B) is the concentration of the aliphatic monohydric alcohol in the low boiling point mixture (B)
  • the concentration of the dialkyl carbonate in the high boiling point mixture (B) can be increased.
  • the alcohol separated as the main component of the low boiling point mixture (B) is usually 500 kgZhr or more, preferably 1
  • this low boiling point mixture (B) Since the component is mainly a dialkyl carbonate, it can be reused as it is or as an aliphatic monohydric alcohol to be reacted with a cyclic carbonate after being mixed with alcohols recovered in other steps. This is one of the preferred embodiments of the present invention. If the amount of alcohol recovered is insufficient, new aliphatic monohydric alcohol is added.
  • the high boiling point mixture (B) separated in the present invention is mainly composed of a dialkyl carbonate.
  • the content of unreacted aliphatic monohydric alcohol is 3% by mass or less, preferably 1% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
  • the reaction is carried out using a raw material or catalyst that does not contain halogen, so that the dialkyl carbonate to be produced can contain no halogen at all. Therefore, in the present invention, the halogen content is 0.1 Ippm or less, preferably lppb or less, and the concentration is 97% by mass or more, preferably 99% by mass or more, more preferably 99.9% by mass or more, and even more preferably. Can easily achieve 99.99% by mass or more of high-purity dialkyl carbonate.
  • Distillation conditions in the continuous multi-stage distillation column B performed in the present invention include the internal shape and number of stages of the distillation column, the type, composition and amount of the low-boiling-point reaction mixture (A) to be supplied.
  • the force varies depending on the purity of the alkyl carbonate.
  • the bottom temperature is at a specific temperature in the range of 150-250 ° C.
  • a more preferable temperature range is 170 to 230 ° C, and a more preferable temperature range is 180 to 220 ° C.
  • the bottom pressure is different depending on the composition in the tower and the bottom temperature used. In the present invention, the bottom pressure is usually carried out under pressure.
  • the reflux ratio of the continuous multistage distillation column B is preferably in the range of 0.5 to 5, more preferably 0.
  • the materials constituting the continuous multistage distillation columns A and B used in the present invention are mainly metal materials such as carbon steel and stainless steel, and the quality of dialkyl carbonates and diols that are produced and separated. From this aspect, stainless steel is preferable.
  • MeOH ethylene carbonate
  • MeOH methanol
  • catalyst KOH heat dehydrated in ethylene glycol: K concentration is 0 for EC
  • Continuous multistage distillation column B was operated continuously at a bottom temperature of about 205 ° C, a bottom pressure of about 1.46 MPa, and a reflux ratio of 1.8.
  • the ethanol concentration was 91.42% by mass.
  • the bottom component (B) continuously extracted at 3.1 tons Zhr from the bottom 2 of the continuous multistage distillation column B is not less than 99.99% by mass of dimethy.
  • This tower top component (A) is a continuous multistage
  • Distillation tower B was continuously fed from inlet 3-b.
  • the ethanol concentration was 91.43% by mass.
  • the bottom component (B) continuously extracted at 4.65 ton Zhr from the bottom 2 of the continuous multistage distillation column B is 99.99% by mass or more of dimethyl ether.
  • the amount of dimethyl carbonate obtained per hour is 4.65 tons, 4.65 tons, 4.65 tons, 4.65 tons 4. It is 65 tons and always stable.
  • the purity of the separately purified dimethyl carbonate was 99.99%, and the halogen content was lppb or less outside the detection limit.
  • a continuous multistage distillation column B as shown in Fig. 1 was used.
  • Reactive distillation and separation and purification of dimethyl carbonate were carried out in the same manner as in Example 1.
  • the top component (A) of the continuous multistage distillation column A (reactive distillation column) was also extracted continuously.
  • the methanol concentration of was 91.43% by mass. Further, the bottom component (B) continuously extracted at 9.3 ton Zhr from the bottom 2 of the continuous multistage distillation column B is 99.99% by mass or more of dimethyl ether.
  • the amount of dimethyl carbonate obtained per hour after 500 hours, 2000 hours, and 3000 hours was 9.3 tons, 9.3 tons, and 9.3 tons, which were very stable.
  • the purity of the separated and purified dimethyl carbonate was 99.99%, and the halogen content was lppb or less outside the detection limit.
  • the purity of the dialkyl carbonate and diol produced from the cyclic carbonate and the aliphatic monohydric alcohol by the reactive distillation method is 97% or more, preferably 99% or more, and High purity dialkyl carbonate, preferably 99.9% or more Power 2 tons or more per hour, preferably 3 tons or more per hour, more preferably 4 tons or more per hour, 1000 hours or more, preferably It has been found that can be stably obtained in a high yield for a long period of 3000 hours or more, more preferably 5000 hours or more.
  • Fig. 1 is a schematic view of an example of a continuous multistage distillation column B for carrying out the present invention. Inside the barrel, a tray is provided as an internal for both the collection unit and concentration unit (in this figure, the tray is shown in the figure). Is not installed).
  • the symbols used in Fig. 1 are explained as follows: 1: Gas outlet, 2: Liquid outlet, 3-a to 3-c, 4: Inlet, L: Continuous multistage distillation Length of recovery section of column B (cm), L: Length of concentrating section of continuous multistage distillation column B (c

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

ジアルキルカーボネートの工業的分離方法
技術分野
[0001] 本発明は、環状カーボネートと脂肪族 1価アルコールとの反応蒸留法で製造された 大量のジアルキルカーボネート及び該脂肪族 1価アルコールを含む低沸点反応混 合物を該脂肪族 1価アルコールを主成分とする塔頂成分 (B )とジアルキルカーボネ
T
ートを主成分とする塔底成分 (B )とに工業的に長期間安定的に蒸留分離する方法
B
に関する。
背景技術
[0002] 環状カーボネートと脂肪族 1価アルコール類の反応から、ジアルキルカーボネート とジオール類を製造する反応蒸留法につ 、ては、本発明者等が初めて開示した (特 許文献 1〜10)が、その後、他社からも反応蒸留方式を用いる出願 (特許文献 11〜1 5)がなされている。この反応に反応蒸留方式を用いた場合、高い反応率で反応を進 行させることが可能である。しカゝしながら、これまで提案されている反応蒸留法は、少 量のジアルキルカーボネートとジオール類を製造する方法であるカゝ、短期間の製造 方法に関するものであり、工業的規模での長期間安定製造に関するものではなかつ た。すなわち、ジアルキルカーボネートを連続的に大量 (例えば、 1時間あたり 2トン以 上)に、長期間(例えば 1000時間以上、好ましくは 3000時間以上、より好ましくは 50 00時間以上)安定的に製造するという目的を達成するものではな力つた。
[0003] 例えば、エチレンカーボネートとメタノールからジメチルカーボネート (DMC)とェチ レンダリコール (EG)を製造するために開示されて 、る実施例における反応蒸留塔の 高さ(H: cm)、直径 (D: cm)、段数 (n)、ジメチルカーボネートの生産量 P (kg/hr) 、連続製造時間 T(hr)に関する最大値を示す記述は、表 1のとおりである。
[0004] [表 1] 特許文献 H: cm D: cm 段数: n P: kg/hr T : hr
1 100 2 30 0.106 400
4 160 5 40 0.427 (注 5)
5 160 5 40 0.473 (注 5)
7 200 4 充填塔(Dixon) 0.932 (注 5)
8 (注 1) 5 60 0.275 (注 5)
9 (注 1) 5 60 0.258 (注 5)
10 (注 1) 5 60 0.258 (注 5)
11 250 3 充填塔(Raschig) 0.392 (注 5)
12 (注 2) (注 2) (注 2) 0.532 (注 5)
13 (注 3) (注 3) 42 (注 4) (注 5)
14 (注 3) (注 3) 30 3750 (注 5)
15 200 15 充填塔 (BX) 0.313 (注 5)
(注 1)オールダ一ショゥ蒸留塔。 (注 2)蒸留塔を規定する記述はまつたく無い。 (注 3)蒸留塔を規定する記述は段数のみ。 (注 4)生産量の記述はまつたく無い。 (注 5)長期間の安定製造に関する記述はまったく無い。
[0005] なお、特許文献 14 (第 0060段落)には、「本実施例は上記の図 1に示した好ましい 態様と同様のプロセスフローを採用し、エチレンカーボネートとメタノールの接触転化 反応によりエステル交換させてジメチルカーボネート及びエチレングリコールを製造 する商業的規模装置の操業を目的になされたものである。なお、本実施例で下記す る数値は実装置の操作にも十分適用可能である。」と記載され、その実施例として、 3 750kgZhrのジメチルカーボネートを具体的に製造したとの記載がなされて 、る。実 施例に記載のこの規模は年産 3万トン以上に相当するので、特許文献 14の出願当 時 (2002年 4月 9日)としては、この方法による世界一の大規模商業プラントの操業 が実施されたことになる。しかしながら、本願出願時でさえ、このような事実は全くない 。また、特許文献 14の実施例では、ジメチルカーボネートの生産量は理論計算値と 全く同一の値が記載されている力 エチレングリコールの収率は約 85. 6%で、選択 率は約 88. 4%であり、高収率'高選択率を達成しているとはいい難い。特に選択率 が低レ、ことは、この方法が工業的製造法として、致命的な欠点を有してレ、ることを表し ている。(なお、特許文献 14は、 2005年 7月 26日、未審査請求によるみなし取下処 分がなされている。)
[0006] 反応蒸留法は、蒸留塔内での反応による組成変化と蒸留による組成変化と、塔内 の温度変化と圧力変化等の変動要因が非常に多ぐ長期間の安定運転の継続させ ることは困難を伴うことが多ぐ特に大量を扱う場合にはその困難性はさらに増大する 。反応蒸留法によるジアルキルカーボネートとジオール類を高収率 ·高選択率を維持 しつつ、それらの大量生産を長期間安定的に継続させるためには、反応蒸留装置に 工夫をすることが必要である。し力しながら、これまでに提案されている反応蒸留法に おける、長期間の連続安定製造に関する記述は、特許文献 1及び 2の 200〜400時 間のみであった。
[0007] 本発明者等は、高収率 ·高選択率でジアルキルカーボネートとジオール類の大量 生産を長期間安定的に継続できる工業的な反応蒸留法を確立したが、その際、反応 蒸留塔の上部力 連続的に大量に抜き出される低沸点反応混合物から、目的とする ジアルキルカーボネートを分離する工業的な方法も確立する必要があった。本発明 はこの目的を達成するためになされたものである。
[0008] これまでに提案されて 、る反応蒸留法によるジアルキルカーボネートの 1時間あた りの生産量は表 1に示されるとおり、特許文献 14以外は 1時間あたり lkg以下の少量 である。また、特許文献 14の方法では、第 1工程の反応蒸留塔の塔頂成分 (メタノー ルとジメチルカーボネートの混合物)は第 2工程の蒸留塔に送られ、エチレンカーボ ネートによる抽出蒸留が行われている。そしてエチレンカーボネートとジメチルカーボ ネートとの混合物を第 2工程の蒸留塔の塔底成分として得た後、さらにこの混合物を 第 3工程の蒸留塔に送り、第 3工程の蒸留塔の塔頂成分としてジメチルカーボネート を得、塔底成分としてエチレンカーボネートを得る蒸留分離が行われている。すなわ ち、特許文献 14の方法ではメタノールとジメチルカーボネートの混合物からジメチル カーボネートを分離するためには、 2塔を用いることが必要であり、設備的に高価なも のになる。し力もこの方法では互 、に連動する 4本の蒸留塔を運転する必要があり、 長期間の安定運転が困難になることが予測される。
[0009] 特許文献 1 :特開平 4 198141号公報
特許文献 2:特開平 4— 230243号公報
特許文献 3:特開平 9 176061号公報
特許文献 4:特開平 9 - 183744号公報 特許文献 5:特開平 9 - 194435号公報
特許文献 6:国際公開 W097Z23445号公報 (欧州特許第 0889025号明細書、 米国特許第 5847189号明細書)
特許文献 7:国際公開 W099Z64382号公報 (欧州特許第 1086940号明細書、 米国特許第 6346638号明細書)
特許文献 8:国際公開 WO00Z51954号公報 (欧州特許第 1174406号明細書、 米国特許第 6479689号明細書)
特許文献 9:特開 2002 - 308804号公報
特許文献 10:特開 2004— 131394号公報
特許文献 11 :特開平 5— 213830号公報 (欧州特許第 0530615号明細書、米国特 許第 5231212号明細書)
特許文献 12 :特開平 6— 9507号公報 (欧州特許第 0569812号明細書、米国特許 第 5359118号明細書)
特許文献 13 :特開 2003— 119168号公報(国際公開 WO03Z006418号公報) 特許文献 14:特開 2003 - 300936号公報
特許文献 15:特開 2003 - 342209号公報
発明の開示
発明が解決しょうとする課題
本発明が解決しょうとする課題は、環状カーボネートと脂肪族 1価アルコールとを原 料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該 塔内で反応と蒸留を同時に行う反応蒸留法で製造された大量のジアルキルカーボネ 一トと該脂肪族 1価アルコールを含む低沸点反応混合物を 1本の蒸留塔を用いて、 該脂肪族 1価アルコールを主成分とする塔頂成分 (B )とジアルキルカーボネートを
T
主成分とする塔底成分 (B )とに工業的に長期間安定的に蒸留分離する具体的な装
B
置及び方法を提供することにある。そしてそのことによって、例えば、ジアルキルカー ボネートを 1時間あたり 2トン以上の量で、長期間(例えば、 1000時間以上、好ましく は 3000時間以上、より好ましくは 5000時間以上)安定的に蒸留分離できる具体的 な安価な装置及び方法を提供することにある。 課題を解決するための手段
すなわち、本発明の第 1の態様では、
1. 環状カーボネートと脂肪族 1価アルコールとを原料とし、この原料を均一系触媒 が存在する連続多段蒸留塔 A内に連続的に供給し、該塔 A内で反応蒸留を行い、 塔下部より生成するジオール類を含む高沸点反応混合物 (A )
Bを液状で連続的に抜 出し、塔上部より生成するジアルキルカーボネート及び該脂肪族 1価アルコールを含 む低沸点反応混合物 (A )をガス状で連続的に抜出し、該低沸点反応混合物 (A )
T T
を連続多段蒸留塔 Bに連続的に供給することによって、該脂肪族 1価アルコールを 主成分とする塔頂成分 (B )とジアルキルカーボネートを主成分とする塔底成分 (B )
T B
とに蒸留分離するにあたり、
該連続多段蒸留塔 Bとして、下記式(1)〜(8)を満足する長さ L (cm)、内径 D (c m)、内部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm
1 2 2
)、内部に段数 nをもつインターナルを有する濃縮部力 なる蒸留塔
500 < L ≤ 3000
1 式 (1)
100 < D ≤ 1000 式 (2)
1
2 < L /Ό ≤ 30 式 (3)
1 1
10 < n ≤ 40 式 (4)
1
700 < L ≤ 5000 式 (5)
2
50 < D ≤ 800 式 (6)
2
10 < L /Ό ≤ 50 式 (7)
2 2
35 < n ≤ 100 式 (8)
を用いることを特徴とするジアルキルカーボネートの工業的分離方法、
2. 分離されるジアルキルカーボネートの量力 1時間あたり 2トン以上であることを 特徴とする前項 1に記載の方法、
3. 該連続多段蒸留塔 Bの L、D、L ZD、n、L、D、L ZD、nがそれぞれ、
1 1 1 1 1 2 2 2 2 2
800≤L ≤2500, 120≤D ≤800、 5≤L /Ό ≤20, 13≤n≤25, 1500 ≤L ≤3500、 70≤D ≤600、 15≤L /Ό ≤30、 40≤n≤70 L ≤L、
2 2 2 2 2 1 2
D ≤Dであることを特徴とする前項 1又は 2に記載の方法、 4. 該連続多段蒸留塔 Bの回収部及び濃縮部のインターナルが、それぞれトレィ及 び Z又は充填物であることを特徴とする前項 1ないし 3のうち何れか一項に記載の方 法、
5. 該連続多段蒸留塔 Bの回収部及び濃縮部のインターナルが、それぞれトレイで あることを特徴とする前項 4に記載の方法、
6. 該トレイが、多孔板トレイであることを特徴とする前項 5に記載の方法、
7. 該多孔板トレイが、該多孔板部の面積 lm2あたり 150〜 1200個の孔を有してお り、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 6に記載 の方法、
8. 該多孔板トレイが、該多孔板部の面積 lm2あたり 200〜: L 100個の孔を有してお り、且つ、孔 1個あたりの断面積が 0. 7〜4cm2であることを特徴とする前項 6又は 7に 記載の方法、
9. 該多孔板トレイが、該多孔板部の面積 lm2あたり 250〜: L000個の孔を有してお り、且つ、孔 1個あたりの断面積が 0. 9〜3cm2であることを特徴とする前項 6ないし 8 のうち何れか一項に記載の方法、
10. 該連続多段蒸留塔 Bの塔底温度が、 150〜250°Cの範囲であることを特徴と する前項 1ないし 9のうち何れか一項に記載の方法、
11. 該連続多段蒸留塔 Bの還流比が、 0. 5〜5の範囲であることを特徴とする前項 1ないし 10のうち何れか一項に記載の方法、
12. 該塔底成分 (B )中のジアルキルカーボネートの濃度力 該塔底成分 100質
B
量%に対して、 97質量%以上であることを特徴とする前項 1ないし 11のうち何れか一 項に記載の方法、
13. 該塔底成分 (B )中のジアルキルカーボネートの濃度力 該塔底成分 100質
B
量%に対して、 99質量%以上であることを特徴とする前項 1ないし 12のうち何れか一 項に記載の方法、
14. 該塔底成分 (B )中のジアルキルカーボネートの濃度力 該塔底成分 100質
B
量%に対して、 99. 9質量%以上であることを特徴とする前項 1ないし 13のうち何れ か一項に記載の方法、 15. 該塔頂成分 (B )をジアルキルカーボネートとジオール類の製造用原料として
T
リサイクルすることを特徴とする前項 1ないし 14のうち何れか一項に記載の方法、
16. 環状カーボネートが、エチレンカーボネート及び Z又はプロピレンカーボネート であり、脂肪族 1価アルコール力 メタノール及び Z又はエタノールであり、分離すベ きジアルキルカーボネートが、ジメチルカーボネート及び Z又はジェチルカーボネー トであることを特徴とする前項 1ないし 15のうち何れか一項に記載の方法、 を提供する。
[0012] また、本発明の第 2の態様では、
17. 前項 1ないし 16のうち何れか一項に記載の方法で分離され、ハロゲン含有量 が 0. lppm以下であることを特徴とするジアルキルカーボネート、
18. 前項 1ないし 16のうち何れか一項に記載の方法で分離され、ハロゲン含有量 が lppb以下であることを特徴とするジアルキルカーボネート、
19. 脂肪族 1価アルコールの含有量が 0. 1質量%以下であって、且つ、ハロゲン 含有量が lppb以下あることを特徴とする前項 17又は 18に記載の高純度ジアルキル カーボネート、
を提供する。
[0013] さらに、本発明の第 3の態様では、
20. 環状カーボネートと脂肪族 1価アルコールとを原料とし、この原料を均一系触 媒が存在する連続多段蒸留塔 A内に連続的に供給し、該塔 A内で反応蒸留を行い 、塔下部より生成するジオール類を含む高沸点反応混合物 (A )を液状で連続的に
B
抜出し、塔上部よりガス状で連続的に抜出された生成ジアルキルカーボネート及び 該脂肪族 1価アルコールを含む低沸点反応混合物 (A )を、該脂肪族 1価アルコー
T
ルを主成分とする塔頂成分 (B )とジアルキルカーボネートを主成分とする塔底成分
T
(B )とに蒸留分離するための連続多段蒸留塔 Bであって、
B
該連続多段蒸留塔 Bが、下記式(1)〜(8)を満足する長さ L (cm)、内径 D (cm) 、内部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm) ,
1 2 2 内部に段数 nをもつインターナルを有する濃縮部とを備える、
2
500 ≤ L ≤ 3000 式(1) 100 D ≤1000 式 (2)
1
2 L /D ≤ 30 式 (3)
1 1
10 n ≤ 40 式 (4)
1
700 L ≤ 5000 式 (5)
2
50 D ≤ 800 式 (6)
2
10 L /D ≤ 50 式 (7)
2 2
35 n ≤ 100 式 (8)
ことを特徴とする連続多段蒸留塔、
21. : L、 D、: L ZD、 n、 L、 D、: L ZD、 n力それぞれ、 800≤ ≤2500、 1
1 1 1 1 1 2 2 2 2 2 1
20≤D ≤800, 5≤L /Ό ≤20, 13≤n ≤25, 1500≤L ≤3500, 70≤ D ≤600、 15≤L /Ό ≤30、 40≤n ≤70、 L ≤L、 D ≤Dであることを特
2 2 2 2 1 2 2 1
徴とする前項 20に記載の連続多段蒸留塔、
22. 回収部及び濃縮部のインターナルカ それぞれ、トレイ及び Z又は充填物で あることを特徴とする前項 20又は 21に記載の連続多段蒸留塔、
23. 回収部及び濃縮部のインターナルカ それぞれトレイであることを特徴とする 項 22に記載の連続多段蒸留塔、
24. 該トレイが、多孔板トレイであることを特徴とする前項 23に記載の連続多段蒸 留塔、
25. 該多孔板トレイが、該多孔板部の面積 lm2あたり 150〜 1200個の孔を有して おり、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 24に記 載の連続多段蒸留塔、
26. 該多孔板トレイが、該多孔板部の面積 lm2あたり 200〜: L 100個の孔を有して おり、且つ、孔 1個あたりの断面積が 0. 7〜4cm2であることを特徴とする前項 24又は 25に記載の連続多段蒸留塔、
27. 該多孔板トレイが、該多孔板部の面積 lm2あたり 250〜: L000個の孔を有して おり、且つ、孔 1個あたりの断面積が 0. 9〜3cm2であることを特徴とする前項 24ない し 26のうち何れか一項に記載の連続多段蒸留塔、
を提供する。 発明の効果
[0014] 本発明を実施することによって、環状カーボネートと脂肪族 1価アルコールとを原料 とし、この原料を均一系触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該 塔内で反応と蒸留を同時に行う反応蒸留法で製造された大量のジアルキルカーボネ 一トと該脂肪族 1価アルコールを含む低沸点反応混合物 (A )を 1本の蒸留塔 Bを用
T
いて、該脂肪族 1価アルコールを主成分とする塔頂成分 (B )とジアルキルカーボネ
T
ートを主成分とする塔底成分 (B )とに工業的に長期間安定的に蒸留分離することが
B
できる。例えば、ジアルキルカーボネートを 1時間あたり 2トン以上の量で、長期間(例 えば、 1000時間以上、好ましくは 3000時間以上、より好ましくは 5000時間以上)安 定的に蒸留分離できる具体的な安価な装置及び方法が見出されたのである。
発明を実施するための最良の形態
[0015] 以下、本発明について具体的に説明する。
本発明の反応は、環状カーボネートと脂肪族 1価アルコール類とから、ジアルキル カーボネートとジオール類が生成する下記式で表わされる可逆平衡なエステル交換 反応である。
[0016] [化 1]
Figure imgf000011_0001
(A) (B) (0 (D)
[0017] (式中、 R1は 2価の基—(CH ) m- (mは 2〜6の整数)を表わし、その 1個以上の水
2
素は炭素数 1〜10のアルキル基ゃァリール基によって置換されていてもよい。また、 R2は炭素数 1〜12の 1価の脂肪族基を表わし、その 1個以上の水素は炭素数 1〜10 のアルキル基ゃァリール基で置換されていてもよい。 )
[0018] 本発明で原料として用いられる環状カーボネートとは、上記式において (A)で表さ れる化合物であって、例えば、エチレンカーボネート、プロピレンカーボネート等のァ ルキレンカーボネート類や、 1, 3—ジォキサシクロへキサー2—オン、 1, 3—ジォキ サシクロヘプター 2—オンなどが好ましく用いられ、エチレンカーボネート及びプロピ レンカーボネートが入手の容易さなどの点から更に好ましく使用され、エチレンカー ボネートが特に好ましく使用される。
[0019] また、もう一方の原料である脂肪族 1価アルコール類とは、上記式において (B)で 表わされる化合物であって、生成するジオールより沸点が低いものが用いられる。し たがって、使用する環状カーボネートの種類によっても変わり得る力 例えば、メタノ ール、エタノール、プロパノール(各異性体)、ァリルアルコール、ブタノール(各異性 体)、 3 ブテン 1 オール、ァミルアルコール(各異性体)、へキシルアルコール( 各異性体)、ヘプチルアルコール (各異性体)、ォクチルアルコール (各異性体)、ノニ ルアルコール(各異性体)、デシルアルコール(各異性体)、ゥンデシルアルコール( 各異性体)、ドデシルアルコール(各異性体)、シクロペンタノール、シクロへキサノー ル、シクロへプタノール、シクロォクタノール、メチルシクロペンタノール(各異性体)、 ェチルシクロペンタノール(各異性体)、メチルシクロへキサノール(各異性体)、ェチ ルシクロへキサノール(各異性体)、ジメチルシクロへキサノール(各異性体)、ジェチ ルシクロへキサノール(各異性体)、フ ニルシクロへキサノール(各異性体)、ベンジ ルアルコール、フエネチルアルコール(各異性体)、フエ-ルプロパノール(各異性体
)などが挙げられ、さらにこれらの脂肪族 1価アルコール類において、ハロゲン、低級 アルコキシ基、シァノ基、アルコキシカルボ-ル基、ァリーロキシカルボ-ル基、ァシ ロキシ基、ニトロ基等の置換基によって置換されて 、てもよ 、。
[0020] このような脂肪族 1価アルコール類の中で、好ましく用いられるのは炭素数 1〜6の アルコール類であり、さらに好ましいのはメタノール、エタノール、プロパノール(各異 性体)、ブタノール (各異性体)の炭素数 1〜4のアルコール類である。環状カーボネ ートとしてエチレンカーボネートやプロピレンカーボネートを使用する場合に好ましい のはメタノール、エタノールであり、特に好ましいのはメタノールである。
[0021] 本発明の方法においては、反応蒸留塔 A内に均一系触媒を存在させる。均一系触 媒を存在させる方法はどのような方法であってもよいが、反応蒸留塔 A内に連続的に 触媒を供給することにより、反応蒸留塔 A内の液相に触媒を存在させることが好まし い。 [0022] 均一系触媒を反応蒸留塔 A内に連続的に供給する場合には、環状カーボネート及 び Z又は脂肪族 1価アルコールと同時に供給してもよ 、し、原料とは異なる位置に供 給してもよい。該蒸留塔 A内で実際に反応が進行するのは触媒供給位置から下の領 域であることから、塔頂から原料供給位置までの間の領域に該触媒を供給することが 好ましい。そして該触媒が存在する段は 5段以上あることが必要であり、好ましくは 7 段以上であり、さらに好ましくは 10段以上である。
[0023] 本発明において用いられる触媒としては、これまでに知られている種々のものが使 用することができる。例えば、
リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、スト ロンチウム、ノ リウム等のアルカリ金属及びアルカリ土類金属類;
アルカリ金属及びアルカリ土類金属の水素化物、水酸化物、アルコキシド化物類、 ァリ一口キシド化物類、アミドィ匕物類等の塩基性ィ匕合物類;
アルカリ金属及びアルカリ土類金属の炭酸塩類、重炭酸塩類、有機酸塩類等の塩 基性化合物類;
トリエチルァミン、トリブチルァミン、トリへキシルァミン、ベンジルジェチルァミン等の 3級ァミン類;
N—アルキルピロール、 N—アルキルインドール、ォキサゾール、 N—アルキルイミ ダゾール、 N—アルキルピラゾール、ォキサジァゾール、ピリジン、アルキルピリジン、 キノリン、アルキルキノリン、イソキノリン、アルキルイソキノリン、アタリジン、アルキルァ クリジン、フエナント口リン、アルキルフエナント口リン、ピリミジン、アルキルピリミジン、 ピラジン、アルキルビラジン、トリアジン、アルキルトリァジン等の含窒素複素芳香族化 合物類;
ジァザビシクロウンデセン(DBU)、ジァザビシクロノネン(DBN)等の環状アミジン 類;
酸ィ匕タリウム、ハロゲンィ匕タリウム、水酸ィ匕タリウム、炭酸タリウム、硝酸タリウム、硫酸 タリウム、タリウムの有機酸塩類等のタリウム化合物類;
トリブチルメトキシ錫、トリブチルエトキシ錫、ジブチルジメトキシ錫、ジェチルジェト キシ錫、ジブチルジェトキシ錫、ジブチルフエノキシ錫、ジフエ-ルメトキシ錫、酢酸ジ ブチル錫、塩化トリブチル錫、 2—ェチルへキサン酸錫等の錫化合物類; ジメトキシ亜 ジエトキシ亜 エチレンジォキシ亜鈴、ジブトキシ亜鈴等の亜鈴 化合物類;
アルミニウムトリメトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシ ド等のアルミニウム化合物類;
テトラメトキシチタン、テトラエトキシチタン、テトラブトキシチタン、ジクロロジメトキシ チタン、テトライソプロポキシチタン、酢酸チタン、チタンァセチルァセトナート等のチ タン化合物類;
トリメチルホスフィン、トリェチルホスフィン、トリブチルホスフィン、トリフエニルホスフィ ン、トリブチルメチルホスホニゥムハライド、トリオクチルブチルホスホニゥムハライド、ト リフエ-ルメチルホスホ-ゥムハライド等のリンィ匕合物類;
ハロゲン化ジルコニウム、ジルコニウムァセチルァセトナート、ジルコニウムアルコキ シド、酢酸ジルコニウム等のジルコニウム化合物類;
鉛及び鉛を含む化合物類、例えば、 PbO、 PbO、 Pb oなどの酸ィ匕鉛類;
2 3 4
PbSゝ Pb S、 PbSなどの硫化鉛類; Pb (OH) 、 Pb O (OH) 、 Pb [PbO (OH)
2 3 2 2 3 2 2 2 2
]、 Pb O (OH) などの水酸化鉛類;
2 2 2
Na PbO、 K PbO、 NaHPbO、 KHPbOなどの亜ナマリ酸塩類;
2 2 2 2 2 2
Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 Ca PbO、 CaPb
2 3 2 2 4 2 3 2 6 4 4 2 4
Oなどの鉛酸塩類;
3
PbCO、2PbCO -Pb (OH) などの鉛の炭酸塩及びその塩基性塩類;
3 3 2
Pb (OCH ) 、 (CH 0) Pb (OPh)、 Pb (OPh) などのアルコキシ鉛類、ァリールォ
3 2 3 2
キシ鉛類;
Pb (OCOCH ) 、 Pb (OCOCH ) 、 Pb (OCOCH ) -PbO - H Oなどの有機酸
3 2 3 4 3 2 3 2 の鉛塩及びその炭酸塩や塩基性塩類;
Bu Pb、 Ph Pb、 Bu PbCl、 Ph PbBr、 Ph Pb (又は Ph Pb ) , Bu PbOH、 Ph P
4 4 3 3 3 6 2 3 2 bOなどの有機鉛ィ匕合物類 (Buはブチル基、 Phはフエ二ル基を示す);
Pb— Naゝ Pb— Ca、 Pb— Ba、 Pb— Sn、 Pb— Sbなどの口、の合金類;
ホウェン鉱、センァェン鉱などの鉛鉱物類、及びこれらの鉛化合物の水和物類; が挙げられる。
[0024] これらの化合物は、反応原料や、反応混合物、反応副生物などに溶解する場合に は、そのまま均一系触媒として用いることができるし、これらの化合物を反応原料や、 反応混合物、反応副生物などで事前に溶解させたり、あるいは反応させることによつ て溶解させた混合物を均一系触媒として用いることも好ま 、方法である。
[0025] 本発明で用いられる触媒の量は、使用する触媒の種類によっても異なるが、供給 原料である環状カーボネートと脂肪族 1価アルコールの合計質量に対する割合で表 わして、通常 0. 0001〜50質量0 /0、好ましくは 0. 005〜20質量0 /0、さらに好ましくは 0. 01〜: L0質量%で使用される。
[0026] 本発明にお 、て反応蒸留塔である連続多段蒸留塔 Aに、環状カーボネート及び脂 肪族 1価アルコールを連続的に供給する方法については、特別な限定はなぐそれ らが該蒸留塔 Aの少なくとも 5段以上、好ましくは 7段以上、より好ましくは 10段以上 の領域において触媒と接触させることができるような供給方法であれば如何なる方法 であってもよい。すなわち、該環状カーボネートと該脂肪族 1価アルコールは、連続 多段蒸留塔 Aの上記の条件を満たす段に必要な数の導入ロカ 連続的に供給する ことができる。また、該環状カーボネートと該脂肪族 1価アルコールは該蒸留塔の同じ 段に導入されてもょ ヽし、それぞれ別の段に導入してもよ ヽ。
[0027] 原料は、液状、ガス状又は液とガスとの混合物として該蒸留塔 Aに連続的に供給さ れる。このようにして原料を該蒸留塔 Aに供給する以外に、付加的にガス状の原料を 該蒸留塔 Aの下部力 断続的又は連続的に供給することも好ましい方法である。また 、環状カーボネートを触媒の存在する段よりも上部の段に液状又は気液混合状態で 該蒸留塔に連続的に供給し、該蒸留塔 Aの下部に該脂肪族 1価アルコールをガス状 及び Z又は液状で連続的に供給する方法も好ましい方法である。この場合、環状力 ーボネート中に、脂肪族 1価アルコールが含まれていても、もちろん構わない。
[0028] 本発明にお 、て、供給原料中に、生成物であるジアルキルカーボネート及び Z又 はジオール類が含まれていてもよい。その含有量は、ジアルキルカーボネートが、脂 肪族 1価アルコール Zジアルキルカーボネート混合物中のジアルキルカーボネート の質量%で表わして、通常、 0〜40質量%、好ましくは 0〜30質量%、さらに好ましく は 0〜20質量%であり、ジオール類が環状カーボネート Zジオール混合物中の質量 %で表わして、通常、 0〜10質量%、好ましくは 0〜7質量%、さらに好ましくは 0〜5 質量%である。
[0029] 本反応を工業的に実施する場合、新規に反応系に導入される環状カーボネート及 び Z又は脂肪族 1価アルコールに加え、この工程及び Z又は他の工程で回収された
、環状カーボネート及び Z又は脂肪族 1価アルコールを主成分とする物質力 これら の原料として使用できることは好ましいことである。本発明はこのことを可能にするも のであり、これは本発明の優れた特徴である。他の工程とは、例えば、ジアルキル力 ーボネートと芳香族モノヒドロキシィ匕合物力もジァリールカーボネートを製造する工程 があり、この工程では、脂肪族 1価アルコールが副生し、回収される。この回収副生脂 肪族 1価アルコールには、通常ジアルキルカーボネート、芳香族モノヒドロキシ化合 物、アルキルァリールエーテルなどが含まれる場合が多ぐさらには少量のアルキル ァリールカーボネート、ジァリールカーボネートなどが含まれる場合がある。副生脂肪 族 1価アルコールはそのままで本願発明の原料とすることもできるし、蒸留等により該 脂肪族 1価アルコールよりも沸点の高い含有物質量を減少させた後に原料とすること ちでさる。
[0030] また、本願発明に用いられる好ま 、環状カーボネートは、例えば、エチレンォキシ ド、プロピレンォキシド、スチレンォキシドなどのアルキレンォキシドと二酸化炭素との 反応によって製造されたものであるので、これらの原料ィ匕合物などを少量含む環状力 ーボネートを、本願発明の原料として用いることもできる。
[0031] 本発明において、反応蒸留塔 Aに供給する環状カーボネートと脂肪族 1価アルコ ール類との量比は、エステル交換触媒の種類や量及び反応条件によっても異なるが 、通常、供給される環状カーボネートに対して、脂肪族 1価アルコール類はモル比で 0. 01〜: LOOO倍の範囲で供給することができる。環状カーボネートの反応率を上げ るためには脂肪族 1価アルコール類を 2倍モル以上の過剰量供給することが好ま ヽ 力 あまり大過剰に用いると装置を大きくする必要がある。このような意味において、 環状カーボネートに対する脂肪族 1価アルコール類のモル比は、 2〜20が好ましぐ さらに好ましくは 3〜15、さらにより好ましくは 5〜12である。なお、未反応環状カーボ ネートが多く残存していると、生成物であるジオール類と反応して 2量体、 3量体など の多量体を副生するので、工業的に実施する場合、未反応環状カーボネートの残存 量をできるだけ減少させることが好ましい。本発明の方法では、このモル比が 10以下 であっても、環状カーボネートの反応率を 98%以上、好ましくは 99%以上、さらに好 ましくは 99. 9%以上にすることが可能である。このことも本発明の特徴のひとつであ る。
[0032] 本発明においては、好ましくは 1時間あたり 2トン以上のジアルキルカーボネートを 連続的に製造し、これを、連続多段蒸留塔 Bを用いて蒸留分離するのであるが、その ために連続的に供給される環状カーボネートの最低量は、製造すべきジアルキル力 ーボネートの量(Pトン Zhr)に対して、通常 2. 2Pトン Zhr、好ましくは、 2. 1Pトン Z hr、より好ましくは 2. OPトン Zhrである。さらに好ましい場合は、 1. 9Pトン Zhrよりも 少なくできる。
[0033] 本発明に係る反応蒸留法を実施する連続多段蒸留塔 Aについては、特に限定は ないが、蒸留だけでなく反応も同時に行って、 1時間あたり好ましくは 2トン以上のジ アルキルカーボネート及び Z又は 1時間あたり好ましくは 1. 3トン以上のジオール類 を長期間安定的に製造できるものであることが必要である。
[0034] 本発明では、環状カーボネートと脂肪族 1価アルコールとを原料とし、この原料を均 一系触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該塔 A内で反応蒸留 を行い、塔下部より生成するジオール類を含む高沸点反応混合物 (A )を液状で連
B
続的に抜出し、塔上部よりガス状で連続的に抜出された生成ジアルキルカーボネー ト及び該脂肪族 1価アルコールを含む低沸点反応混合物 (A )を、該脂肪族 1価アル
T
コールを主成分とする塔頂成分 (B )とジアルキルカーボネートを主成分とする塔底
T
成分 (B )とに蒸留分離するために連続多段蒸留塔 Bが用いられる。
B
[0035] 本発明に係る該連続多段蒸留塔 Bは、大量の反応混合物から所定の分離効率で ジアルキルカーボネートを長期間安定的に分離する機能を有することが必要であり、 そのために種々の条件を同時に満足させるものでなければならない。
[0036] 具体的には、
該連続多段蒸留塔 Bは、下記式(1)〜(8)を満足する長さ L (cm)、内径 D (cm) 、内部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm) ,
1 2 2 内部に段数 nをもつインターナルを有する濃縮部力 なる蒸留塔である;
500 < L ≤ 3000
1 式 (1)
100 < D ≤ 1000 式 (2)
1
2 < L /Ό ≤ 30 式 (3)
1 1
10 < n ≤ 40 式 (4)
1
700 < L ≤ 5000 式 (5)
2
50 < D ≤ 800 式 (6)
2
10 < L /D ≤ 50 式 (7)
2 2
35 < n ≤ 100 式 (8)。
[0037] 式(1)〜(8)を同時に満足する連続多段蒸留塔 Bを用いることによって、環状カー ボネートと脂肪族 1価アルコール類との反応蒸留で製造された大量の低沸点反応混 合物 (A )から、 97質量%以上でありを塔底成分 (B )として、 1時間あたり好ましくは
T B
2トン以上の工業的規模で、例えば 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上の長期間、安定的に分離精製できることが見出されたの である。しかも、分離されたジアルキルカーボネートの純度は、通常、 97質量%以上 であり、好ましくは 99質量%以上の高純度が容易に達成できる。本発明では、塔底 成分として得られるジアルキルカーボネートの純度を、好ましくは 99. 9質量%以上、 さらに好ましくは 99. 99質量%以上の超高純度にすることも容易である。本発明の方 法を実施することによって、このような優れた効果を有する工業的規模でのジアルキ ルカーボネートの分離精製が可能になった理由は明らかではないが、式(1)〜(8) の条件が組み合わさった時にもたらされる複合効果のためであると推定される。なお 、各々の要因の好ましい範囲は下記に示される。
[0038] L (cm)が 500より小さ 、と、回収部の分離効率が低下するため目的とする分離効 率を達成できないし、目的の分離効率を確保しつつ設備費を低下させるには、 を 3 000以下にすることが必要である。より好ましい L (cm)の範囲は、 800≤L ≤2500 であり、さらに好ましくは、 1000≤L ≤2000 である。
[0039] D (cm)が 100よりも小さいと、目的とする蒸留量を達成できないし、目的の蒸留量 を達成しつつ設備費を低下させるには、 を 1000以下にすることが必要である。よ り好ましい D (cm)の範囲は、 120≤D ≤800 であり、さらに好ましくは、 150≤D ≤600 である。
[0040] L /Ό力^より小さい時や 30より大きい時は長期安定運転が困難となる。より好ま しい L /Όの範囲は、 5≤L ZD ≤20 であり、さらに好ましくは、 7≤L /Ό ≤15 である。
[0041] nが 10より小さいと回収部の分離効率が低下するため目的とする分離効率を達成 できないし、目的の分離効率を確保しつつ設備費を低下させるには、 nを 40以下に することが必要である。より好ましい nの範囲は、 13≤n ≤25 であり、さらに好まし くは、 15≤n ≤20 である。
[0042] L (cm)が 700より小さいと、濃縮部の分離効率が低下するため目的とする分離効
2
率を達成できないし、目的の分離効率を確保しつつ設備費を低下させるには、 Lを 5
2
000以下にすることが必要である。 Lが 5000よりも大きいと塔の上下における圧力
2
差が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度 を高くしなければならないため、副反応が起こりやすくなる。より好ましい L (cm)
2 の範 囲は、 1500≤L ≤3500 であり、さらに好ましくは、 2000≤L ≤3000 である。
2 2
[0043] D (cm)が 50よりも小さいと、目的とする蒸留量を達成できないし、目的の蒸留量を
2
達成しつつ設備費を低下させるには、 Dを 800以下にすることが必要である。より好
2
ましい D (cm)の範囲は、 70≤D ≤600 であり、さらに好ましくは、 80≤D ≤400
2 2 2 である。
[0044] L /Όが 10より小さい時や 50より大きい時は長期安定運転が困難となる。より好ま
2 2
しい L /Όの範囲は、 15≤L ZD ≤30 であり、さらに好ましくは、 20≤L /Ό ≤
2 2 2 2 2 2
28 である。
[0045] nが 35より小さいと濃縮部の分離効率が低下するため目的とする分離効率を達成
2
できないし、目的の分離効率を確保しつつ設備費を低下させるには、 nを 100以下
2
にすることが必要である。 nが 100よりも大きいと塔の上下における圧力差が大きくな
2
りすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなけ ればならないため、副反応が起こりやすくなる。より好ましい nの範囲は、 40≤n ≤7 0 であり、さらに好ましくは、 45≤n≤65 である。
2
[0046] なお、本発明の連続多段蒸留塔 Bにおいては、 L≤L が好ましぐさらに好ましく
1 2
は、 Lく L である。また、 D ≤D が好ましぐさらに好ましくは、 Dく D である。
1 2 2 1 2 1 従って、本発明においては、 L ≤L で、且つ、 D ≤D の場合が好ましぐさらに
1 2 2 1
好ましくは、 L < L で、且つ、 D < D の場合である。
1 2 2 1
[0047] 本発明の連続多段蒸留塔 Bの回収部及び濃縮部は、インターナルとしてトレイ及び Z又は充填物を有する蒸留塔であることが好まし 、。本発明で 、うインターナルとは 、蒸留塔において実際に気液の接触を行わせる部分のことを意味する。このようなト レイとしては、たとえば、例えば泡鍾トレイ、多孔板トレイ、リップルトレイ、バラストトレイ 、バルブトレイ、向流トレイ、ュ-フラックストレイ、スーパーフラックトレイ、マックスフラ ックトレイ、デュアルフロートレイ、グリッドプレートトレイ、ターボグリッドプレートトレイ、 キッテルトレイ等が好ましぐ充填物としては、ラシヒリング、レッシングリング、ポールリ ング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキン グ、ヘリパック等の不規則充填物やメラパック、ジェムパック、テクノバック、フレキシパ ック、スルザ一パッキング、グッドロールパッキング、グリッチグリッド等の規則充填物 が好ましい。トレイ部と充填物の充填された部分とを合わせ持つ多段蒸留塔も用いる ことができる。なお、本発明で用いる用語「インターナルの段数 n」とは、トレイの場合 は、トレイの数を意味し、充填物の場合は、理論段数を意味する。したがって、トレイ 部と充填物の充填された部分とを合わせ持つ連続多段蒸留塔の場合、 nはトレイの 数と、理論段数の合計である。
[0048] 本発明においては連続多段蒸留塔 Bの回収部及び濃縮部のインターナルが、それ ぞれトレイである場合が特に好ましい。さらに該トレイが多孔板部とダウンカマー部を 有する多孔板トレイが機能と設備費との関係で特に優れていることが見出された。そ して、該多孔板トレイが該多孔板部の面積 lm2あたり 150〜 1200個の孔を有してい ることが好ま U、ことも見出された。より好まし ヽ孔数は該面積 lm2あたり 200〜: L 100 個であり、さらに好ましくは、 250〜: LOOO個である。また、該多孔板トレイの孔 1個あ たりの断面積が 0. 5〜5cm2であることが好ましいことも見出された。より好ましい孔 1 個あたりの断面積は、 0. 7〜4cm2であり、さらに好ましくは 0. 9〜3cm2である。さら には、該多孔板トレイが該多孔板部の面積 lm2あたり 150〜1200個の孔を有してお り、且つ、孔 1個あたりの断面積が 0. 5〜5cm2である場合、特に好ましいことが見出 された。連続多段蒸留塔 Bに上記の条件を付加することによって、本発明の課題が、 より容易に達成されることが判明したのである。
[0049] 本発明では、連続多段蒸留塔 A内での反応蒸留によって生成するジアルキルカー ボネートは、通常過剰に用いられ未反応で残っている脂肪族 1価アルコールとの低 沸点反応混合物 (A )として、塔上部よりガス状で連続的に抜出される。該低沸点反
T
応混合物 (A )は連続多段蒸留塔 B内に連続的に供給され、該脂肪族 1価アルコー
T
ルを主成分とする低沸点混合物 (B )が塔上部よりガス状で連続的に抜き出され、ジ
T
アルキルカーボネートを主成分とする高沸点混合物 (B )が塔下部より液状で連続的
B
に抜出される。該低沸点反応混合物 (A )を連続多段蒸留塔 B内に供給するにあた
T
り、ガス状で供給してもよいし、液状で供給してもよい。該低沸点反応混合物 (A )を
T
連続多段蒸留塔 B内に供給するに先立って該蒸留塔 Bの供給口付近の液温に近い 温度にするために、加熱又は冷却することも好まし 、。
[0050] また、該低沸点反応混合物 (A )を連続多段蒸留塔 B内に供給する位置は、回収
T
部と濃縮部の間付近が好ましい。連続多段蒸留塔 Bは、蒸留物の加熱のためのリボ イラ一と、還流装置を有することが好ましい。
[0051] 本発明においては、該低沸点反応混合物 (A )は通常 2トン Zhr以上で連続多段
T
蒸留塔 Aから抜出され、連続多段蒸留塔 B内に供給され、蒸留分離され、該蒸留塔 Bの上部から低沸点混合物 (B )が、下部から高沸点混合物 (B )がそれぞれ連続的
T B
に抜出される。
[0052] 本発明にお 、ては、該低沸点混合物 (B )中の該脂肪族 1価アルコール類の濃度
T
を 80質量%以上、好ましくは 85質量%以上、さらに好ましくは 90質量%以上にする ことが可能であり、また、該高沸点混合物(B )中のジアルキルカーボネートの濃度を
B
97質量%以上、好ましくは 99質量%以上、より好ましくは 99. 9質量%以上、さらに より好ましくは、 99. 99質量%以上とすることが容易にできる。そして、低沸点混合物 (B )の主成分として分離されるアルコール類は、通常 500kgZhr以上、好ましくは 1
T
トン Zhr以上、より好ましくは 2トン Zhr以上の量である。この低沸点混合物(B )の他 の成分は主としてジアルキルカーボネートであるので、これをそのままで、あるいは他 の工程で回収されたアルコール類と混合した上で、環状カーボネートと反応させる脂 肪族 1価アルコールとして再使用することができる。このことは本発明の好ましい実施 態様のひとつである。回収されたアルコール類の量だけでは、不足する場合には新 たに脂肪族 1価アルコールが追加される。
[0053] また、本発明で分離される高沸点混合物 (B )は、主成分がジアルキルカーボネー
B
トであり、未反応脂肪族 1価アルコールの含有量は 3質量%以下、好ましくは 1質量 %以下、より好ましくは 0. 1質量%以下、さらにより好ましくは 0. 01質量%以下であ る。また、本発明の好ましい実施態様では、ハロゲンを含まない原料や触媒を用いて 反応が実施されるので、生成するジアルキルカーボネートには、まったくハロゲンを 含まないようにすることができる。したがって、本発明ではハロゲン含有量が 0. Ippm 以下、好ましくは、 lppb以下であって、濃度が 97質量%以上、好ましくは 99質量% 以上、より好ましくは 99. 9質量%以上、さらにより好ましくは、 99. 99質量%以上の 高純度ジアルキルカーボネートを得ることが容易に達成できる。
[0054] 本発明で行われる連続多段蒸留塔 B内での蒸留条件は、蒸留塔のインターナルの 形状や段数、供給される低沸点反応混合物 (A )の種類と組成と量、分離されるジァ
T
ルキルカーボネートの純度などによって異なる力 通常、塔底温度が 150〜250°Cの 範囲の特定の温度で行われる。より好ましい温度範囲は、 170〜230°Cであり、さら に好ましい温度範囲は、 180〜220°Cである。塔底圧力は、塔内組成と使用する塔 底温度によって異なる力 本発明では、通常、加圧下で行われる。
[0055] また、連続多段蒸留塔 Bの還流比は、 0. 5〜5の範囲が好ましぐより好ましくは 0.
8〜3の範囲であり、さらに好ましくは 1〜2. 5の範囲である。
[0056] 本発明で用いられる連続多段蒸留塔 A及び Bを構成する材料は、主に炭素鋼、ス テンレススチールなどの金属材料である力 製造され、分離されるジアルキルカーボ ネートとジオール類の品質の面からは、ステンレススチールが好ましい。
[0057] 実施例
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。 [0058] [実施例 1]
図 1に示されるような Ι^ = 1600«η、 Di = 260cm、 L^ O^ = 6. 2、 1^ = 18、 Lg= 2700cm, D = 160cm, L /Ό = 16. 9、 n = 58である連続多段蒸留塔 Bを用い
2 2 2 2
た。この実施例では、インターナルとして回収部、濃縮部ともに多孔板トレイ(孔 1個あ たりの断面積 =約 1. 3cm2,孔数 =約 300〜440個/ m2)を用いた。
エチレンカーボネート (EC)とメタノール(MeOH)からなる原料(モル比: MeOH/ EC = 8. 4)と触媒 (KOHをエチレングリコール中で加熱脱水処理したもの: K濃度と して ECに対して 0. 1質量%)を連続多段蒸留塔 Aに連続的に供給し、反応蒸留を 行うことによって、塔頂成分 (A ) 8. 18トン Zhrが連続的に抜き出された。メタノール
T
4. 644トン Zhr、ジメチノレカーボネート 3. 536トン Zhrから成るこの塔頂成分 (A )
T
力 連続多段蒸留塔 Bに導入口 3— bから連続的に供給された。この導入口は、連続 多段蒸留塔 Bの下力 18段目と 19段目のトレイの間に設置されている。連続多段蒸 留塔 Bは、塔底温度約 205°C、塔底圧力約 1.46MPa、還流比 1. 8で連続的に運転 された。
[0059] 24時間後には安定的な定常運転が達成できた。連続多段蒸留塔 Bの塔頂部 1か ら、 5. 08トン Zhrで連続的に抜き出された塔頂成分 (B )は、メタノール 4. 644トン
T
Zhrで、ジメチルカーボネート 0. 436トン Zhr力ら成っていた。塔頂成分(B )中のメ
T
タノール濃度は 91. 42質量%であった。また、連続多段蒸留塔 Bの塔底部 2から、 3 . 1トン Zhrで連続的に抜き出された塔底成分 (B )は、 99. 99質量%以上のジメチ
B
ルカーボネートであった。 (メタノール含有量: 0. 01質量%以下)
連続多段蒸留塔 Bに供給されたジメチルカーボネートのうち、約 87. 7%が高純度 ジメチルカーボネートとして得られたことになる。なお、塔頂成分 (B )はそのままで反
T
応蒸留塔 Aに送られ、ジメチルカーボネートとジオール類を製造する原料の一部とし て用いられた。
この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりのジメチルカーボネートの取得量は、 3. 1トン、 3. 1トン、 3. 1トン、 3. 1トン、 3. 1トンであり、非常に安定していた。分離精製 されたジメチルカーボネート純度は、いずれも 99. 99%であり、ハロゲン含有量は検 出限界外の lppb以下であった。
[0060] [実施例 2]
実施例 1と同じ連続多段蒸留塔 Bを用いて、同様な方法で反応蒸留とジメチルカ一 ボネートの分離精製を行った。連続多段蒸留塔 A (反応蒸留塔)の塔頂から連続的 に抜き出された、塔頂成分 (A ) 12. 27トン Zhrは、メタノール 6. 967トン Zhr、ジメ
T
チルカーボネート 5. 303トン Zhr力も成っていた。この塔頂成分 (A )が、連続多段
T
蒸留塔 Bに導入口 3— bから連続的に供給された。
24時間後には安定的な定常運転が達成できた。連続多段蒸留塔 Bの塔頂部 1か ら、 7. 62トン Zhrで連続的に抜き出された塔頂成分 (B )は、メタノール 6. 967トン
T
Zhrで、ジメチルカーボネート 0. 654トン Zhrから成っていた。塔頂成分(B )中のメ
T
タノール濃度は 91. 43質量%であった。また、連続多段蒸留塔 Bの塔底部 2から、 4 . 65トン Zhrで連続的に抜き出された塔底成分 (B )は、 99. 99質量%以上のジメ
B
チルカーボネートであった。(メタノール含有量: 0. 01質量%以下)
[0061] 連続多段蒸留塔 Bに供給されたジメチルカーボネートのうち、約 87. 7%が高純度 ジメチルカーボネートとして得られたことになる。なお、塔頂成分 (B )はそのままで反
T
応蒸留塔 Aに送られ、ジメチルカーボネートとジオール類を製造する原料の一部とし て用いられた。
この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりのジメチルカーボネートの取得量は、 4. 65トン、 4. 65トン、 4. 65トン、 4. 65トン、 4. 65トンであり、 常【こ安定して ヽた。分 離精製されたジメチルカーボネート純度は、いずれも 99. 99%であり、ハロゲン含有 量は検出限界外の lppb以下であった。
[0062] [実施例 3]
図 1に示されるような連続多段蒸留塔 Bを用いた。ただし、この実施例では、インタ ーナルとして回収部、濃縮部ともに多孔板トレイ(孔 1個あたりの断面積 =約 1. 3cm2 、孔数 =約 530〜800個/ m2)を用いた。
実施例 1と同様な方法で反応蒸留とジメチルカーボネートの分離精製を行った。連 続多段蒸留塔 A (反応蒸留塔)の塔頂力も連続的に抜き出された、塔頂成分 (A ) 2
T 4. 54トン/ hrは、メタノール 13. 934トン/ hr、ジメチルカーボネート 10. 606トン Z hrから成っていた。この塔頂成分 (A )が、連続多段蒸留塔 Bに導入口 3— bから連
T
続的に供給された。
24時間後には安定的な定常運転が達成できた。連続多段蒸留塔 Bの塔頂部 1か ら、 15. 24トン Zhrで連続的に抜き出された塔頂成分 (B )は、メタノール 13. 934ト
T
ン Zhrで、ジメチルカーボネート 1. 306トン Zhr力ら成っていた。塔頂成分(B )中
T
のメタノール濃度は 91. 43質量%であった。また、連続多段蒸留塔 Bの塔底部 2から 、 9. 3トン Zhrで連続的に抜き出された塔底成分 (B )は、 99. 99質量%以上のジメ
B
チルカーボネートであった。(メタノール含有量: 0. 01質量%以下)
[0063] 連続多段蒸留塔 Bに供給されたジメチルカーボネートのうち、約 87. 7%が高純度 ジメチルカーボネートとして得られたことになる。なお、塔頂成分 (B )はそのままで反
T
応蒸留塔 Aに送られ、ジメチルカーボネートとジオール類を製造する原料の一部とし て用いられた。
この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 3000時間後 の 1時間あたりのジメチルカーボネー卜の取得量は、 9. 3トン、 9. 3トン、 9. 3トンであ り、非常に安定していた。分離精製されたジメチルカーボネート純度は、いずれも 99 . 99%であり、ハロゲン含有量は検出限界外の lppb以下であった。
産業上の利用可能性
[0064] 本発明によれば、環状カーボネートと脂肪族 1価アルコールとから、反応蒸留方式 で製造されるジアルキルカーボネートとジオール類のうち、純度が 97%以上、好まし くは 99%以上、さらに好ましくは 99. 9%以上である高純度ジアルキルカーボネート 力 1時間あたり 2トン以上、好ましくは 1時間あたり 3トン以上、さらに好ましくは 1時間 あたり 4トン以上の工業的規模で、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上の長期間、安定的に高収率で取得できることが見出され た。
図面の簡単な説明
[0065] [図 1]本発明を実施する連続多段蒸留塔 Bの一例の概略図である。胴部内部にはィ ンターナルとして回収部、濃縮部のいずれにもトレイ (本図では、トレィは図示されて いない)が設置されている。 なお、図 1で使用した符号の説明は、以下のとおりであ る: 1 : ガス抜出し口、 2 : 液抜出し口、 3— a〜3— c、4 : 導入口、 L : 連 続多段蒸留塔 Bの回収部の長さ (cm)、L : 連続多段蒸留塔 Bの濃縮部の長さ (c
2
m)、D : 連続多段蒸留塔 Bの回収部の内径 (cm)、D : 連続多段蒸留塔 Bの
1 2
濃縮部の内径 (cm)

Claims

請求の範囲
環状カーボネートと脂肪族 1価アルコールとを原料とし、この原料を均一系触媒が 存在する連続多段蒸留塔 A内に連続的に供給し、該塔 A内で反応蒸留を行い、塔 下部より生成するジオール類を含む高沸点反応混合物 (A )を液状で連続的に抜出
B
し、塔上部より生成するジアルキルカーボネート及び該脂肪族 1価アルコールを含む 低沸点反応混合物 (A )をガス状で連続的に抜出し、該低沸点反応混合物 (A )を
T T
連続多段蒸留塔 Bに連続的に供給することによって、該脂肪族 1価アルコールを主 成分とする塔頂成分 (B )とジアルキルカーボネートを主成分とする塔底成分 (B )と
T B
に蒸留分離するにあたり、
該連続多段蒸留塔 Bとして、下記式(1)〜(8)を満足する長さ L (cm)、内径 D (c m)、内部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm
1 2 2
)、内部に段数 nをもつインターナルを有する濃縮部力 なる蒸留塔
500 < L ≤ 3000
1 式 (1)
100 < D ≤ 1000 式 (2)
1
2 < L /Ό ≤ 30 式
(3)
1 1
10 < n ≤ 40 式
(4)
1
700 < L ≤ 5000 式 (5)
2
50 < D ≤ 800 式 (6)
2
10 < L /Ό ≤ 50 式 (7)
2 2
35 < n ≤ 100 式 (8)
を用いることを特徴とするジアルキルカーボネートの工業的分離方法。
分離されるジアルキルカーボネートの量が、 1時間あたり 2トン以上であることを特徴 とする請求項 1に記載の方法。
該連続多段蒸留塔 Bの L、D、L ZD、n、L、D、L ZD、nがそれぞれ、 80
1 1 1 1 1 2 2 2 2 2
0≤L ≤2500, 120≤D ≤800、 5≤L /Ό ≤20, 13≤n≤25, 1500≤ L ≤3500、 70≤D ≤600, 15≤L /Ό ≤30, 40≤n≤70, L ≤L、 D
2 2 2 2 2 1 2 2
≤Dであることを特徴とする請求項 1又は 2に記載の方法。
該連続多段蒸留塔 Bの回収部及び濃縮部のインターナルが、それぞれトレイ及び Z又は充填物であることを特徴とする請求項 1ないし 3のうち何れか一項に記載の方 法。
[5] 該連続多段蒸留塔 Bの回収部及び濃縮部のインターナルが、それぞれトレイである ことを特徴とする請求項 4に記載の方法。
[6] 該トレイが、多孔板トレイであることを特徴とする請求項 5に記載の方法。
[7] 該多孔板トレイが、該多孔板部の面積 lm2あたり 150〜 1200個の孔を有しており、 且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求項 6に記載の 方法。
[8] 該多孔板トレイが、該多孔板部の面積 lm2あたり 200〜: L 100個の孔を有しており、 且つ、孔 1個あたりの断面積が 0. 7〜4cm2であることを特徴とする請求項 6又は 7に 記載の方法。
[9] 該多孔板トレイが、該多孔板部の面積 lm2あたり 250〜: L000個の孔を有しており、 且つ、孔 1個あたりの断面積が 0. 9〜3cm2であることを特徴とする請求項 6ないし 8 のうち何れか一項に記載の方法。
[10] 該連続多段蒸留塔 Bの塔底温度が、 150〜250°Cの範囲であることを特徴とする 請求項 1ないし 9のうち何れか一項に記載の方法。
[11] 該連続多段蒸留塔 Bの還流比が、 0. 5〜5の範囲であることを特徴とする請求項 1 ないし 10のうち何れか一項に記載の方法。
[12] 該塔底成分 (B )中のジアルキルカーボネートの濃度が、該塔底成分 100質量%
B
に対して、 97質量%以上であることを特徴とする請求項 1ないし 11のうち何れか一項 に記載の方法。
[13] 該塔底成分 (B )中のジアルキルカーボネートの濃度が、該塔底成分 100質量%
B
に対して、 99質量%以上であることを特徴とする請求項 1ないし 12のうち何れか一項 に記載の方法。
[14] 該塔底成分 (B )中のジアルキルカーボネートの濃度が、該塔底成分 100質量%
B
に対して、 99. 9質量%以上であることを特徴とする請求項 1ないし 13のうち何れか 一項に記載の方法。
[15] 該塔頂成分 (B )をジアルキルカーボネートとジオール類の製造用原料としてリサィ クルすることを特徴とする請求項 1ないし 14のうち何れか一項に記載の方法。
[16] 環状カーボネートが、エチレンカーボネート及び Z又はプロピレンカーボネートであ り、脂肪族 1価アルコール力 メタノール及び Z又はエタノールであり、分離すべきジ アルキルカーボネートが、ジメチルカーボネート及び z又はジェチルカーボネートで あることを特徴とする請求項 1ないし 15のうち何れか一項に記載の方法。
[17] 請求項 1ないし 16のうち何れか一項に記載の方法で分離され、ハロゲン含有量が 0
. lppm以下であることを特徴とするジアルキルカーボネート。
[18] 請求項 1ないし 16のうち何れか一項に記載の方法で分離され、ハロゲン含有量が 1 ppb以下であることを特徴とするジアルキルカーボネート。
[19] 脂肪族 1価アルコールの含有量が 0. 1質量%以下であって、且つ、ハロゲン含有 量が lppb以下あることを特徴とする請求項 17又は 18に記載の高純度ジアルキル力 ーボネート。
[20] 環状カーボネートと脂肪族 1価アルコールとを原料とし、この原料を均一系触媒が 存在する連続多段蒸留塔 A内に連続的に供給し、該塔 A内で反応蒸留を行い、塔 下部より生成するジオール類を含む高沸点反応混合物 (A )
Bを液状で連続的に抜出 し、塔上部よりガス状で連続的に抜出された生成ジアルキルカーボネート及び該脂 肪族 1価アルコールを含む低沸点反応混合物 (A )を、該脂肪族 1価アルコールを
T
主成分とする塔頂成分 (B )とジアルキルカーボネートを主成分とする塔底成分 (B )
T B
とに蒸留分離するための連続多段蒸留塔 Bであって、
該連続多段蒸留塔 Bが、下記式(1)〜(8)を満足する長さ L (cm)、内径 D (cm) 、内部に段数 nをもつインターナルを有する回収部と、長さ L (cm) ,内径 D (cm) ,
1 2 2 内部に段数 nをもつインターナルを有する濃縮部とを備える、
2
500 ≤ L ≤ 3000 式(1)
100 ≤ D ≤1000 式(2)
2 ≤ L /Ό ≤ 30 式(3)
10 ≤ n ≤ 40 式(4)
700 ≤ L ≤ 5000 式(5)
2
50 ≤ D ≤ 800 式(6) 10 ≤ L /D ≤ 50 式(7)
2 2
35 ≤ n ≤ 100 式(8)
2
ことを特徴とする連続多段蒸留塔。
[21] L、 D、 L ZD、 n、 L、 D、 L ZD、 nがそれぞれ、 800≤L ≤2500、 120
1 1 1 1 1 2 2 2 2 2 1
≤D ≤800, 5≤L /Ό ≤20, 13≤n ≤25, 1500≤L ≤3500, 70≤D
1 1 1 1 2 2
≤600、 15≤L /Ό ≤30、 40≤n ≤70、 L ≤L、 D ≤Dであることを特徴
2 2 2 1 2 2 1
とする請求項 20に記載の連続多段蒸留塔。
[22] 回収部及び濃縮部のインターナルカ それぞれ、トレイ及び Z又は充填物であるこ とを特徴とする請求項 20又は 21に記載の連続多段蒸留塔。
[23] 回収部及び濃縮部のインターナルカ それぞれトレイであることを特徴とする請求 項 22に記載の連続多段蒸留塔。
[24] 該トレイが、多孔板トレイであることを特徴とする請求項 23に記載の連続多段蒸留 塔。
[25] 該多孔板トレイが、該多孔板部の面積 lm2あたり 150〜 1200個の孔を有しており、 且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求項 24に記載 の連続多段蒸留塔。
[26] 該多孔板トレイが、該多孔板部の面積 lm2あたり 200〜: L 100個の孔を有しており、 且つ、孔 1個あたりの断面積が 0. 7〜4cm2であることを特徴とする請求項 24又は 25 に記載の連続多段蒸留塔。
[27] 該多孔板トレイが、該多孔板部の面積 lm2あたり 250〜: L000個の孔を有しており、 且つ、孔 1個あたりの断面積が 0. 9〜3cm2であることを特徴とする請求項 24ないし 2
6のうち何れか一項に記載の連続多段蒸留塔。
PCT/JP2006/325089 2005-12-26 2006-12-15 ジアルキルカーボネートの工業的分離方法 WO2007074664A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0620605A BRPI0620605B1 (pt) 2005-12-26 2006-12-15 processo industrial para separar um carbonato de dialquila, carbonato de dialquila, e, coluna de destilação contínua de estágios múltiplos
JP2007551903A JP4260212B2 (ja) 2005-12-26 2006-12-15 ジアルキルカーボネートの工業的分離方法
EA200800919A EA012062B1 (ru) 2005-12-26 2006-12-15 Промышленный способ отделения диалкилкарбоната
EP06834816.8A EP1967508B1 (en) 2005-12-26 2006-12-15 Process for industrial separation of dialkyl carbonate
US11/991,073 US8049028B2 (en) 2005-12-26 2006-12-15 Industrial process for separating out dialkyl carbonate
CN2006800492531A CN101346340B (zh) 2005-12-26 2006-12-15 碳酸二烷基酯的工业分离方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-371643 2005-12-26
JP2005371643 2005-12-26

Publications (1)

Publication Number Publication Date
WO2007074664A1 true WO2007074664A1 (ja) 2007-07-05

Family

ID=38217884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325089 WO2007074664A1 (ja) 2005-12-26 2006-12-15 ジアルキルカーボネートの工業的分離方法

Country Status (10)

Country Link
US (1) US8049028B2 (ja)
EP (1) EP1967508B1 (ja)
JP (1) JP4260212B2 (ja)
KR (1) KR101002863B1 (ja)
CN (1) CN101346340B (ja)
BR (1) BRPI0620605B1 (ja)
EA (1) EA012062B1 (ja)
IN (1) IN2008KO00869A (ja)
TW (1) TWI314549B (ja)
WO (1) WO2007074664A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105717A (ja) * 2009-11-14 2011-06-02 Bayer Materialscience Ag ジアルキルカーボネートの精製方法
KR20120048478A (ko) * 2010-10-26 2012-05-15 바이엘 머티리얼사이언스 아게 디알킬 카르보네이트의 연속 제조 방법
JP2012092101A (ja) * 2010-10-26 2012-05-17 Bayer Materialscience Ag ジアルキルカーボネートの連続的製法
WO2022230776A1 (ja) * 2021-04-28 2022-11-03 旭化成株式会社 ジアルキルカーボネートの製造方法、及びジアルキルカーボネートの製造装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060893A1 (ja) * 2005-11-25 2007-05-31 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオール類を工業的に製造する方法
TWI334410B (en) 2006-01-10 2010-12-11 Asahi Kasei Chemicals Corp Industrial process for production of high-purity diol
KR101668571B1 (ko) * 2012-10-15 2016-10-21 우베 고산 가부시키가이샤 디에틸카보네이트의 제조 방법
WO2016151488A1 (en) 2015-03-23 2016-09-29 Sabic Global Technologies B.V. Integrated method and apparatus for the production of aryl carbonates
KR102377034B1 (ko) 2015-03-23 2022-03-21 사빅 글로벌 테크놀러지스 비.브이. 아릴 카보네이트의 제조를 위한 통합된 방법 및 장치
CN105194899A (zh) * 2015-10-16 2015-12-30 青岛科技大学 一种分离甲苯-异丁苯混合物的变径精馏装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196464A (ja) * 1992-12-25 1994-07-15 San Seal:Kk 半導体洗浄用炭酸ジエチルの製造方法
JPH06228026A (ja) * 1993-02-01 1994-08-16 Mitsubishi Gas Chem Co Inc メタノールとジメチルカーボネートの分離法
JPH0725830A (ja) * 1993-07-08 1995-01-27 Daicel Chem Ind Ltd 炭酸ジエステルの精製法及びその精製法によって得られた炭酸ジエステルを用いて製造したポリカーボネート
JPH09183744A (ja) * 1995-10-31 1997-07-15 Asahi Chem Ind Co Ltd ジアルキルカーボネートおよびジオールの連続的製造法
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2000281630A (ja) * 1999-03-26 2000-10-10 Mitsubishi Chemicals Corp 非対称ジアルキルカーボネートの製造方法
JP2002371037A (ja) * 2001-06-12 2002-12-26 Mitsubishi Chemicals Corp 高純度ジメチルカーボネートの製造方法
JP2003342209A (ja) * 2002-05-23 2003-12-03 Mitsubishi Chemicals Corp ジメチルカーボネート及びエチレングリコールの製造方法
WO2005123638A1 (ja) * 2004-06-17 2005-12-29 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオールの製造方法
WO2006001256A1 (ja) * 2004-06-25 2006-01-05 Asahi Kasei Chemicals Corporation 芳香族カーボネートの工業的製造法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642858A (en) 1969-02-12 1972-02-15 Dow Chemical Co Carbonate synthesis from alkylene carbonates
US3803201A (en) 1971-02-22 1974-04-09 Dow Chemical Co Synthesis of dimethyl carbonate
IT1034961B (it) 1975-04-09 1979-10-10 Snam Progetti Procedimento per la preparazione di dialchilcarbonati
DE2740243A1 (de) 1977-09-07 1979-03-15 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
DE2740251A1 (de) 1977-09-07 1979-03-22 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
JPS5463023A (en) 1977-10-26 1979-05-21 Mitsubishi Chem Ind Ltd Ester exchange of carbonate
JPS6022697B2 (ja) 1978-05-16 1985-06-03 日曹油化工業株式会社 ジアルキル炭酸エステルの製造法
DE3146142A1 (de) 1981-11-21 1983-06-01 Henkel KGaA, 4000 Düsseldorf Reaktionskolonne und dessen verwendung
JPS6431737A (en) 1986-01-03 1989-02-02 Texaco Development Corp Manufacture of ethylene glycol and dimethyl carbonate
US4691041A (en) 1986-01-03 1987-09-01 Texaco Inc. Process for production of ethylene glycol and dimethyl carbonate
US4661609A (en) 1986-07-31 1987-04-28 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
US4734518A (en) 1987-01-12 1988-03-29 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
JPH0737422B2 (ja) 1987-03-26 1995-04-26 旭化成工業株式会社 ジアルキルカ−ボネ−トの製造方法
JP2529025B2 (ja) 1990-11-29 1996-08-28 旭化成工業株式会社 ジアルキルカ―ボネ―トとジオ―ル類の連続的製造法
JPH0768180B2 (ja) 1990-12-27 1995-07-26 旭化成工業株式会社 ジアルキルカーボネートとジオール類の連続的製法
DE4129316A1 (de) 1991-09-03 1993-03-04 Bayer Ag Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten
DE4216121A1 (de) 1992-05-15 1993-11-18 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Dialkylcarbonaten
JP4093607B2 (ja) 1995-11-14 2008-06-04 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールの連続的製造方法
DE69620470T2 (de) 1995-12-22 2002-11-21 Asahi Chemical Ind Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten und diolen
JPH09176061A (ja) 1995-12-28 1997-07-08 Asahi Chem Ind Co Ltd ジアルキルカーボネートとジオールの連続的製造法
JP4565742B2 (ja) 1998-06-10 2010-10-20 旭化成ケミカルズ株式会社 ジアルキルカーボネートとジオールを連続的に製造する方法
JP4467204B2 (ja) 2001-04-13 2010-05-26 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールの製造方法
WO2003006418A1 (fr) 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Procede de production de dialkylcarbonate
JP4380102B2 (ja) 2001-10-10 2009-12-09 三菱化学株式会社 ジメチルカーボネートの製造方法
US6573396B2 (en) 2001-10-12 2003-06-03 Exxonmobil Chemical Patents Inc. Co-production of dialkyl carbonates and diols with treatment of hydroxy alkyl carbonate
JP2003300936A (ja) 2002-04-09 2003-10-21 Mitsui Chemicals Inc ジアルキルカーボネートとグリコールの連続同時製造方法
JP4424898B2 (ja) 2002-10-08 2010-03-03 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールを製造する方法
US20040104108A1 (en) 2002-12-03 2004-06-03 Mason Robert Michael High capacity purification of thermally unstable compounds
EP1795523B1 (en) 2004-09-17 2013-09-04 Asahi Kasei Chemicals Corporation Method for separating by-product alcohols on commercial scale
KR100871306B1 (ko) 2004-09-21 2008-12-01 아사히 가세이 케미칼즈 가부시키가이샤 부생 알코올류를 공업적으로 분리하는 방법
JP2006182683A (ja) 2004-12-27 2006-07-13 Asahi Kasei Chemicals Corp ジオールおよびジアルキルカーボネートを製造する方法
JP2006199643A (ja) 2005-01-21 2006-08-03 Asahi Kasei Chemicals Corp ジオールおよびジアルキルカーボネートの製造方法
JP2006206497A (ja) 2005-01-28 2006-08-10 Asahi Kasei Chemicals Corp ジアルキルカーボネートおよびジオールを製造する方法
WO2007060893A1 (ja) 2005-11-25 2007-05-31 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオール類を工業的に製造する方法
JP4236276B2 (ja) 2005-12-12 2009-03-11 旭化成ケミカルズ株式会社 ジアルキルカーボネートとジオール類の工業的製造方法
TWI308911B (en) 2005-12-13 2009-04-21 Asahi Kasei Chemcials Corp Process for industrially producing dialkyl carbonate and diol
TW200732291A (en) 2005-12-14 2007-09-01 Asahi Kasei Chemicals Corp Process for production of dialkyl carbonate and diol in industrial scale and with high yield
TW200726745A (en) 2005-12-16 2007-07-16 Asahi Kasei Chemicals Corp Industrial process for production of aromatic carbonate
TW200732290A (en) 2005-12-16 2007-09-01 Asahi Kasei Chemicals Corp Industrial process for production of high-purity diaryl carbonate
CN101341114B (zh) 2005-12-19 2012-07-25 旭化成化学株式会社 工业规模制备高纯度碳酸二苯酯的方法
TW200734301A (en) 2005-12-21 2007-09-16 Asahi Kasei Chemicals Corp Process for industrially producing dialkyl carbonate and diol
TW200738601A (en) 2005-12-27 2007-10-16 Asahi Kasei Chemicals Corp Industrial process for production of dialkyl carbonate and diol
TW200738602A (en) 2006-02-01 2007-10-16 Asahi Kasei Chemicals Corp Industrial process for producing high-purity diol

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196464A (ja) * 1992-12-25 1994-07-15 San Seal:Kk 半導体洗浄用炭酸ジエチルの製造方法
JPH06228026A (ja) * 1993-02-01 1994-08-16 Mitsubishi Gas Chem Co Inc メタノールとジメチルカーボネートの分離法
JPH0725830A (ja) * 1993-07-08 1995-01-27 Daicel Chem Ind Ltd 炭酸ジエステルの精製法及びその精製法によって得られた炭酸ジエステルを用いて製造したポリカーボネート
JPH09183744A (ja) * 1995-10-31 1997-07-15 Asahi Chem Ind Co Ltd ジアルキルカーボネートおよびジオールの連続的製造法
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2000281630A (ja) * 1999-03-26 2000-10-10 Mitsubishi Chemicals Corp 非対称ジアルキルカーボネートの製造方法
JP2002371037A (ja) * 2001-06-12 2002-12-26 Mitsubishi Chemicals Corp 高純度ジメチルカーボネートの製造方法
JP2003342209A (ja) * 2002-05-23 2003-12-03 Mitsubishi Chemicals Corp ジメチルカーボネート及びエチレングリコールの製造方法
WO2005123638A1 (ja) * 2004-06-17 2005-12-29 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオールの製造方法
WO2006001256A1 (ja) * 2004-06-25 2006-01-05 Asahi Kasei Chemicals Corporation 芳香族カーボネートの工業的製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1967508A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105717A (ja) * 2009-11-14 2011-06-02 Bayer Materialscience Ag ジアルキルカーボネートの精製方法
KR20120048478A (ko) * 2010-10-26 2012-05-15 바이엘 머티리얼사이언스 아게 디알킬 카르보네이트의 연속 제조 방법
JP2012092101A (ja) * 2010-10-26 2012-05-17 Bayer Materialscience Ag ジアルキルカーボネートの連続的製法
KR101890434B1 (ko) * 2010-10-26 2018-08-21 코베스트로 도이칠란드 아게 디알킬 카르보네이트의 연속 제조 방법
WO2022230776A1 (ja) * 2021-04-28 2022-11-03 旭化成株式会社 ジアルキルカーボネートの製造方法、及びジアルキルカーボネートの製造装置

Also Published As

Publication number Publication date
EA200800919A1 (ru) 2008-08-29
TWI314549B (en) 2009-09-11
JPWO2007074664A1 (ja) 2009-06-04
BRPI0620605B1 (pt) 2016-06-21
US20090054676A1 (en) 2009-02-26
CN101346340B (zh) 2012-03-28
BRPI0620605A2 (pt) 2012-07-24
EP1967508A4 (en) 2010-12-29
IN2008KO00869A (ja) 2008-11-28
EP1967508A1 (en) 2008-09-10
KR101002863B1 (ko) 2010-12-21
US8049028B2 (en) 2011-11-01
KR20080072936A (ko) 2008-08-07
EA012062B1 (ru) 2009-08-28
JP4260212B2 (ja) 2009-04-30
CN101346340A (zh) 2009-01-14
TW200734299A (en) 2007-09-16
EP1967508B1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4818103B2 (ja) ジアルキルカーボネートとジオールの製造方法
WO2007074664A1 (ja) ジアルキルカーボネートの工業的分離方法
JP4986867B2 (ja) 高純度ジオールを工業的に製造する方法
JP4937140B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP4236208B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP5074213B2 (ja) ジオールの工業的製造方法
JP4986866B2 (ja) 高純度ジオールの工業的製造法
JP4236277B2 (ja) ジアルキルカーボネートとジオール類を工業的に高収率で製造する方法
WO2007069529A1 (ja) 高純度ジアリールカーボネートの工業的製造法
JPWO2007069531A1 (ja) 芳香族カーボネートの工業的製造法
JP4246779B2 (ja) ジアルキルカーボネートとジオール類を工業的に製造する方法
WO2007069513A1 (ja) ジアルキルカーボネートとジオール類の工業的製造法
JP4236276B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP2004131394A (ja) ジアルキルカーボネートおよびジオールを製造する方法
JP5088954B2 (ja) 高純度ジオールの工業的製造方法
KR20230159594A (ko) 디알킬카르보네이트의 제조 방법 및 디알킬카르보네이트의 제조 장치
KR20170129909A (ko) 아릴 카보네이트의 제조를 위한 통합된 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049253.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007551903

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006834816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 869/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200800919

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 1020087015406

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991073

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0620605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080626