WO2007072949A1 - 成形複合体及びその製造方法 - Google Patents

成形複合体及びその製造方法 Download PDF

Info

Publication number
WO2007072949A1
WO2007072949A1 PCT/JP2006/325654 JP2006325654W WO2007072949A1 WO 2007072949 A1 WO2007072949 A1 WO 2007072949A1 JP 2006325654 W JP2006325654 W JP 2006325654W WO 2007072949 A1 WO2007072949 A1 WO 2007072949A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded
thermoplastic elastomer
elastomer composition
mass
olefin
Prior art date
Application number
PCT/JP2006/325654
Other languages
English (en)
French (fr)
Inventor
Kentarou Kanae
Hideo Nakanishi
Minoru Tanaka
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US12/158,710 priority Critical patent/US20090176045A1/en
Priority to JP2007551167A priority patent/JPWO2007072949A1/ja
Priority to EP06843100A priority patent/EP1964886A4/en
Publication of WO2007072949A1 publication Critical patent/WO2007072949A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8223Peel tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • B29C66/30326Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined in the form of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5223Joining tubular articles for forming corner connections or elbows, e.g. for making V-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5223Joining tubular articles for forming corner connections or elbows, e.g. for making V-shaped pieces
    • B29C66/52231Joining tubular articles for forming corner connections or elbows, e.g. for making V-shaped pieces with a right angle, e.g. for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/526Joining bars
    • B29C66/5263Joining bars for forming corner connections, e.g. for making V-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/526Joining bars
    • B29C66/5263Joining bars for forming corner connections, e.g. for making V-shaped pieces
    • B29C66/52631Joining bars for forming corner connections, e.g. for making V-shaped pieces with a right angle, e.g. for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7315Mechanical properties
    • B29C66/73151Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/06Sealing strips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • C08L91/08Mineral waxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the present invention relates to a molded composite and a method for producing the same, and more specifically, a molded composite excellent in compression set, flexibility, adhesion between molded parts, and material recyclability, and the production thereof. Regarding the method.
  • Products such as weather strips for vehicles and gaskets for building materials are usually rubber products made of vulcanized rubber.
  • a rubber product may have a complicated structure in which a straight portion and a curved portion are combined depending on the purpose and application.
  • rubber compositions disclosed in Patent Documents 1 to 3 are used as a raw material.
  • a rubber product having a complicated structure as described above has a method of pouring a rubber composition for vulcanization into a mold according to its shape and heat-treating it, or a difference between a straight part and a curved part.
  • the rubber composition for vulcanization which is produced in advance and forms the other, is poured into a mold and heat-treated, and can be produced by a method of joining a straight portion and a curved portion simultaneously with vulcanization.
  • a specific embodiment of the latter method is performed by the following procedure.
  • a straight line part prepared in advance by extrusion molding or the like is placed in the mold cavity, and a rubber composition for vulcanization that forms a curved part is introduced into the mold cavity so as to come into contact with the end of the installed straight line part. To do. After that, it is placed in a mold heated to about 160 to 180 ° C, and the curved part is molded by vulcanization reaction for about 3 to 5 minutes, so that the linear part and the curved part are joined.
  • a body composite member
  • the straight part and the curved part are prepared separately, it is necessary to carry out a reaction for a sufficient time under high-temperature conditions in order to complete the vulcanization.
  • safety must be taken into account when taking out the mold rubber products after vulcanization and before the temperature drops.
  • it takes considerable cooling time to take out the mold force rubber product. For this reason, it is necessary to shorten the cooling time and improve the yield of rubber products.
  • the above Rubber products manufactured by the method may not have sufficient adhesive strength between straight and curved parts.
  • the rubber composition for vulcanization contains additives such as a vulcanization accelerator. For this reason, mold contamination such as corrosion may progress as the number of times the mold is used increases.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-175440
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-72935
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-322328
  • the present invention has been made in view of such problems of the prior art, and the subjects are compression set, adhesion between molded parts, folding between molded parts. Molded composites that can be safely produced in a short time with molded composites that have excellent bending peelability, flexibility, material recyclability, and molded appearance, and such excellent properties It is in providing the manufacturing method of.
  • the following molded composite and a method for producing the same are provided.
  • the first molding part includes a reinforcing member on the surface and Z or inside thereof.
  • a Orefuin copolymer rubber 5-60 wt 0/0 is 8DlZg
  • (C) mineral oil-based softener 30-94% by mass (provided that (A) + (B) + (C) 100% by mass)
  • an olefin-based thermoplastic elastomer obtained by dynamically heat-treating a mixture containing at least the (A) ethylene'a-olefin-based copolymer rubber and the (B) polyolefin-based resin in the presence of a crosslinking agent.
  • the composition other than the thermoplastic elastomer first composition, process and method for producing a molded composite having a to be introduced is injected into the mold Kiyabi tee.
  • the molded composite of the present invention is excellent in compression set, adhesion between molded parts, bending peelability between molded parts, flexibility, material recyclability, and molded appearance. There is an effect.
  • FIG. 1 is a partial schematic view showing one embodiment (weather strip) of a molded composite of the present invention.
  • FIG. 2 is a partial schematic view showing another embodiment (weather strip) of the weather strip of the present invention.
  • FIG. 3 is a schematic view showing an example in which a molded composite (weather strip) is disposed on a door of an automobile.
  • FIG. 1 is a partial schematic view showing an embodiment of a molded composite (weather strip) of the present invention.
  • the molded composite (weather strip 1) of this embodiment comprises a first molded part 11 formed by extrusion foam molding of an olefin-based thermoplastic elastomer yarn and a composition, this olefin-based thermoplastic elastomer composition, and It comprises a surface of a first molding part 11 formed by injection molding Z or another thermoplastic elastomer composition, and a second molding part 12 joined to Z or a cross section.
  • the olefin-based thermoplastic elastomer composition used as a constituent material is: (A) ethylene / ⁇ -olefin-based copolymer rubber (hereinafter also referred to as “( ⁇ ) component” or “ ⁇ -based copolymer rubber”), (Ii) Polyolefin-based resin (hereinafter also referred to as “( ⁇ ) component ”), and (C) mineral oil-based softener (hereinafter also referred to as“ (C) component ”).
  • ( ⁇ ) component ethylene / ⁇ -olefin-based copolymer rubber
  • ( ⁇ ) component ) Polyolefin-based resin
  • C mineral oil-based softener
  • Component (A) is ethylene 'a-olefin copolymer rubber.
  • the intrinsic viscosity [7?] Of this component (A) measured at 135 ° C in a decalline solvent is 3.5 dlZg or more, preferably 3.8 dl / g or more, more preferably 4.0 to 7. Odl / g. g. If this intrinsic viscosity [7?] Is less than 3.5 dl / g, the resulting olefin-based thermoplastic elastomer composition strength mineral oil-based softener may bleed out or the rubber elasticity may decrease.
  • the component (A) include a copolymer including an ethylene monomer unit (al) and an ⁇ -olefin monomer (excluding ethylene) unit (a2). it can.
  • the content of the ethylene monomer unit (al) is preferably 35 to 95 mol% when the total amount of the monomer units constituting the component (A) is 1 OO mol%. 90 mol% is more preferable, and 45 to 85 mol% is particularly preferable. If the ethylene monomer unit (al) content is less than 35 mol%, the mechanical strength tends to be insufficient. On the other hand, if the content of the ethylene monomer unit (al) is more than 95 mol%, the flexibility of the resulting olefin-based thermoplastic elastomer composition tends to be insufficient.
  • the a-olefin forming the a-olefin monomer unit (a2) is preferably one having 3 or more carbon atoms. More specifically, propylene, 1-butene, 2-butene, isobutene, 1 pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methylbutene, 1-hexene, 4-methyl-1-pentene , 3-methyl 1-pentene, 1-heptene, 1-octene, 1-decene, 1-undecene and the like. These can be used individually by 1 type or in combination of 2 or more types. Of these, those having 3 to 10 carbon atoms are more preferred.
  • ⁇ -olefins with 3 to 10 carbon atoms, (ii) Component strength When other monomer units other than ethylene and ⁇ -olefins are included, other monomers are copolymerized It can be made easy. More preferred ⁇ -olefins are propylene, 1-butene, 1-hexene, and 1-octene, with propylene and 1-butene being particularly preferred.
  • the content of the a-olefin monomer unit (a2) is preferably 5 to 65 mol% when the total amount of the monomer units constituting the component (A) is 100 mol%. More preferably, it is 10 to 45 mol%, and particularly preferably 15 to 40 mol%. If the content of the ⁇ -olefin component unit (a2) is less than 5 mol%, the resulting olefin thermoplastic elastomer composition may not exhibit the desired rubber elasticity. On the other hand, if the content of the ⁇ -olefin unit monomer unit (a2) exceeds 65 mol%, the durability of the resulting olefin thermoplastic elastomer composition may be lowered.
  • Component (A) may be a binary copolymer consisting of the above-mentioned ethylene monomer unit (al) and ⁇ -olefin monomer unit (a2), or these monomer units. In addition to these, it may be a copolymer (ternary copolymer, quaternary copolymer, etc.) containing another monomer unit (a3)! /,.
  • Other monomer units (a3) include monomer units composed of non-conjugated gen compounds. Can be mentioned.
  • non-conjugated diene compounds constituting other monomer units (a3) include linear acyclic compounds such as 1,4 monohexagen, 1,5 hexagen, 1,6 hexagen, etc. Gen compounds; 5—Methyl-1,4 monohexagen, 3,7 Dimethyl-1,6-octagen, 5,7 Dimethylocta1,6 gen, 3,7 Dimethyl-1,7-octagen, 7 Methyl otater 1,6 gen, Branched-chain acyclic diene compounds such as dihydromyrcene; tetrahydroindene, methyltetrahydroindene, dicyclopentagen, bicyclo [2.2.1] hepta-2,5gen, 5-methylene-2-norbornene , 5 ethylidene 2 norbornene, 5 probe 2 norbornene, 5—isopropylidene— 2 norbornene, 5 cyclohexylidene 2
  • the content of the other monomer unit (a3) contained in the component (A) is 10 mol% or less when the total amount of the monomer units constituting the component (A) is 100 mol%. 1-8 mol% is more preferable. If the content of the other monomer unit (a3) is more than 10 mol%, the durability of the resulting olefin-based thermoplastic elastomer composition may be lowered.
  • the component (A) may be a neurogenic copolymer in which a part of hydrogen atoms in the molecule is substituted with a halogen atom such as a chlorine atom or a bromine atom.
  • a halogen atom such as a chlorine atom or a bromine atom.
  • the graft polymer obtained in this way can also be used as component (A).
  • the component (A) described above can be used alone or in combination of two or more.
  • the content of the component (A) contained in the olefin-based thermoplastic elastomer composition used for producing the weather strip of the present embodiment includes the components (A), (B), and When the total of component (C) is 100% by mass, it is 5 to 60% by mass, preferably 10 to 58% by mass, and more preferably 15 to 55% by mass. If the content of component (A) is less than 5% by mass, component (C) may bleed out. On the other hand, if the content of component (A) is more than 60% by mass, the flexibility of the resulting olefin-based thermoplastic elastomer composition may be insufficient.
  • component (A) it is also possible to use (X) an oil-extended rubber comprising the component (A) and (C) a mineral oil-based softening agent.
  • X As the ethylene 'a-olefin copolymer rubber contained in the oil-extended rubber, the component (A) described so far can be used as it is.
  • the proportion of component (A) and (C) mineral oil-based softener contained in the oil-extended rubber is preferably 20 to 80% by mass when the total of these is 100% by mass. A more preferred range is 25 to 75% by mass, and a further more preferred range is 30 to 70% by mass.
  • the content of (X) oil-extended rubber contained in the olefin-based thermoplastic elastomer composition is (X) oil-extended rubber, (X).
  • the total of component (B) and (C) is 100% by mass, it is preferably 5 to 60% by mass, more preferably 10 to 58% by mass, and even more preferably 15 to 55% by mass. It is particularly preferred.
  • (C) mineral oil softener may bleed out.
  • the content of (X) oil-extended rubber is more than 60% by mass, the flexibility of the resulting olefin-based thermoplastic elastomer composition may be insufficient.
  • Component (B) is a polyolefin-based resin.
  • This component (B) may be a homopolymer or a copolymer containing more than 50 mol% of monomer units composed of one or more a-olefins.
  • This copolymer may be a copolymer of ⁇ -olefins, or a copolymer of a-olefin and another monomer copolymerizable with this a-olefin.
  • the component (B) includes (Ba) a-olefin-based crystalline thermoplastic resin (hereinafter also referred to as “(B—a) component”), and Z or (B—b) ⁇ -olefin-based.
  • Amorphous thermoplastic resin hereinafter also referred to as “component (B ⁇ b)” can be used.
  • the component (Ba) is a polymer containing a structural unit (bl) derived from ⁇ -olefin.
  • B The crystallinity of component a) by X-ray diffraction is 50% or more, preferably 53% or more, and more preferably 55% or more. This crystallinity is closely related to the density. For example, if ex 1-year-old refin crystalline thermoplastic resin is polypropylene, the density of a-type crystal (monoclinic crystal) is 0.936 gZcm 3 , and the density of smectic crystal (pseudo hexagonal crystal) is 0.
  • the density of 886 g / cm 3 and amorphous (atactic) component is 0.850 gZcm 3 .
  • the density of the isotactic crystal component is 0.91 gZcm 3 and the density of the amorphous (atactic) component is 0.87 gZcm 3 .
  • the density of the component (Ba) is 0.89 gZcm 3 or more, preferably 0.90 to 0.94 g / cm 3 .
  • the crystallinity can be set to 50% or more. If the degree of crystallinity of the component (Ba) is less than 50% and the Z or density is less than 0.89 gZcm 3 , the heat resistance and strength of each molded part tend to decrease.
  • the a-olefin which constitutes the structural unit (bl) preferably has 2 to 12 carbon atoms. Of these, propylene and 1-butene are more preferable.
  • the proportion of the structural unit (bl) contained in the component (Ba) is preferably 60 mol% or more, more preferably 80 mol% or more, assuming that all the structural units are 100 mol%. 90 ⁇ : L00 mol% is particularly preferable. If it is less than 60 mol%, the compatibility with the ethylene'a-olefin copolymer rubber tends to be lowered.
  • the component (Ba) may be a copolymer containing a structural unit (b2) other than the structural unit (bl).
  • This copolymer may be either a block copolymer or a random copolymer.
  • the proportion of the structural unit (b2) must be the entire structural unit in order to increase the crystallization degree of the block copolymer to 50% or more.
  • it is 100 mol%, it is preferably 40 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol% or less.
  • This block copolymer can be produced, for example, by living polymerization using a Ziegler-Natta catalyst.
  • the proportion of the structural unit (b2) is preferably 10 mol% or less, more preferably 15 mol% or less.
  • This random copolymer is, for example, a Ziegler-Natta catalyst, soluble It can be obtained by polymerizing ⁇ -olefin and the like in the presence of a catalyst component including a vanadium compound, an organoaluminum compound, and a solvent.
  • Examples of the polymerization method include a medium-low pressure method and the like, and it can be produced by a gas phase method (fluidized bed or stirred bed), a liquid phase method (slurry method or solution method) and the like.
  • a molecular weight regulator such as hydrogen gas may be used as necessary.
  • Soluble vanadium compounds contained in the catalyst component include VOC1 and soot or VC1.
  • Alcohols include methanol, ethanol, ⁇ -propanol, isopropanol, ⁇ -butanol, sec-butanol, t-butanol, n-hexanol, n-octanol, 2-ethylhexanol, n-decanol, n-dodecanol, etc. Can be mentioned. Of these, alcohols having 3 to 8 carbon atoms are preferred.
  • the organoaluminum compounds contained in the catalyst component include triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, jetylaluminum monochloride, diisobutylaluminum monochloride, ethylaluminum sesquioxide, buty Examples thereof include rualuminum sesqui-chloride, ethylaluminum dichloride, butylaluminum dichloride, methylaluminoxane which is a reaction product of trimethylaluminum and water.
  • ethylaluminum sesquichloride ethylaluminum sesquichloride, butylaluminum sesquichloride, a mixture of ethylaluminum sesquichloride and triisobutylaluminum, and a mixture of triisobutylaluminum and butylaluminum sesquichloride are preferred.
  • the solvent contained in the catalyst component is preferably a hydrocarbon.
  • n-pentane, n-hexane, n-heptane, n-octane, isooctane and cyclohexane are more preferred. These solvents can be used alone or in combination of two or more.
  • the maximum peak temperature (melting point) of component (Ba) measured by differential scanning calorimetry is preferably 100 ° C or higher, more preferably 120 ° C or higher. If the melting point of (Ba) component is less than 100 ° C, the heat resistance and mechanical strength of each molded part tend to be insufficient.
  • melt flow rate (MFR) of component (B—a) (temperature 230 ° C, load 2.16 kg) is 0 1-: LOOOgZlO content is preferred 0.5-500 gZlO content is more preferred l-100 gZlO content is particularly preferred.
  • MFR of the component (Ba) is less than 0.1 lg / 10 minutes, the kneadability and extrusion processability of the olefin-based thermoplastic elastomer composition tend to be insufficient. On the other hand, if it exceeds lOOOgZlO, the mechanical strength of each molded part tends to decrease.
  • the degree of crystallinity is 50% or more, the density is 0.89 gZcm 3 or more, the content of structural units other than the structural unit (bl) is 20 mol% or less, and the melting point is 100 It is preferable that the temperature is higher than ° C and the MFR is from 0.1 to 100 gZlO.
  • polypropylene and propylene / ethylene copolymers having a melting point of 140 to 170 ° C. are preferable. Two or more kinds of (Ba) components can be used in combination.
  • the component (B—b) contains the structural unit (b3) derived from oc 1-year-old refin and has a crystallinity of less than 50%, preferably 30% or less, more preferably 20% or less by X-ray diffraction. is there .
  • the density of the (B-b) component is 0.5 85-0. It is further preferred that 89gZcm is 3 is preferred instrument 0. 85 to 0. 88GZcm 3.
  • the a-olefin that constitutes the structural unit (b3) preferably has 3 or more carbon atoms, and more preferably has 3 to 12 carbon atoms.
  • the ratio of the structural unit (b3) contained in the X-olefin-based amorphous thermoplastic resin is preferably 60 mol% or more when the total structural unit is 100 mol%, and is less than 60 mol%. And compatibility with ethylene 'a-olefin copolymer rubber tends to be lowered.
  • component (Bb) include homopolymers such as atactic polypropylene and atactic poly 1-butene; more than 50 mol% of propylene and other ⁇ -olefins (ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-octene, 1-decene, etc.); more than 50 mol% of 1-butene and other a-olefins (ethylene, propylene, 1 pentene, 1-hexene, 4-methinole 1 pentene, 1-year-old kuten, 1-decene, etc.) Of these, particularly preferred are atactic polypropylene, a copolymer composed of more than 50 mol% propylene and ethylene, and a copolymer composed of more than 50 mol% propylene and 1-butene.
  • Atactic polypropylene and atactic poly 1-butene can be produced by a polymerization method using a zirconocene compound-methylaluminoxane catalyst.
  • atactic polypropylene can also be obtained as a by-product of polypropylene exemplified as the component (Ba).
  • the copolymer may be either a block copolymer or a random copolymer.
  • the structural unit (b3) contained in an amount exceeding 50 mol% must be bonded with atactic structure.
  • This block copolymer can be obtained, for example, by lip polymerization using a Ziegler Natta catalyst.
  • the random copolymer can be obtained by the same method as the component (Ba).
  • (B-b) is a copolymer of a-olefin and ethylene having 3 or more carbon atoms, and when the total structural unit is 100 mol%, the content of structural unit (b 3) is 60-: LOOmol% is preferable. If it is less than 60 mol%, the compatibility with the ethylene-a-olefin copolymer rubber tends to be lowered.
  • the number average molecular weight (Mn) in terms of polystyrene by GPC of the component (B-b) is preferably 1000 to 20000, and more preferably 1500 to 15000. If the Mn of component (Bb) is less than 1000, the mechanical strength tends to deteriorate. On the other hand, if the Mn force exceeds 000 0, the flexibility tends to deteriorate. Note that it is possible to use two or more types of components (Bb) in combination.
  • the content of the component (B) contained in the olefin-based thermoplastic elastomer composition used for producing the molded composite of the present embodiment includes the components (A), (B), and ( C)
  • the total component is 100% by mass, it is 1 to 20% by mass, preferably 3 to 18% by mass, and more preferably 5 to 15% by mass.
  • the content of component (B) is less than 1% by mass, the kneading caloric property tends to decrease.
  • the content of the component (B) is more than 20% by mass, the flexibility of the resulting olefin-based thermoplastic elastomer composition tends to be insufficient.
  • the (B-b) component is contained in the olefin-based thermoplastic elastomer composition used for producing the molded composite of the present embodiment, it is preferable because the injection heat-fusibility is improved. .
  • the content ratio of the component (B-b) in the olefin-based thermoplastic elastomer composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 3% by mass. The above is particularly preferable. Note that the upper limit of the content of the component (BB) is not particularly limited, but should be 15% by mass or less.
  • Component (C) is a mineral oil softener.
  • the component (C) is not particularly limited as long as it is generally used for rubber products. Specifically, norafine, naphthene and aromatic mineral oil softeners can be mentioned as preferred examples.
  • the mineral oil softener is generally a mixture of an aromatic ring, a naphthene ring, and a paraffin chain.
  • Paraffinic mineral oils that have 50% or more of the carbon atoms in the norafine chain, and naphthenic mineral oils and aromatic rings that have 30-45% of the total carbon number in the naphthenic ring Those with 30% or more of the total number of carbons are classified as aromatic mineral oils.
  • Paraffinic mineral oil, naphthenic mineral oil, and aromatic mineral oil can be used singly or in combination of two or more. Of these, paraffinic mineral oil is preferred, and hydrogenated paraffinic mineral oil is particularly preferred. Examples of the paraffinic mineral oil include trade name “Diana Process Oil PW90”, trade name “Diana Process Oil PW380” (V, deviation is also made by Idemitsu Kosan Co., Ltd.), and the like.
  • the weight average molecular weight Mw in terms of polystyrene by GPC of the component (C) is preferably 300 to 2000, more preferably 500 to 1500.
  • the kinematic viscosity at 40 ° C. of the component (C) is preferably 20 to 800 cSt, and more preferably 50 to 600 cSt.
  • the pour point of component (C) is preferably 40 to 0 ° C, more preferably 30 to 0 ° C.
  • the component (C) can be used in combination with a low molecular weight hydrocarbon such as polybutene or polybutadiene.
  • the content of the component (C) contained in the olefin-based thermoplastic elastomer composition used for producing the molded composite of the present embodiment includes the components (A), (B), and ( C) When the total component is 100% by mass, it is 30 to 94% by mass, preferably 32 to 87% by mass, and more preferably 35 to 80% by mass. When the content of component (C) is less than 30% by mass, the flexibility of the resulting olefin-based thermoplastic elastomer composition tends to be insufficient.
  • component (C) is more than 94% by mass, the strength of the resulting olefin-based thermoplastic elastomer composition will be insufficient and the component (C) may bleed out. There is a match.
  • the olefin-based thermoplastic elastomer composition preferably further contains (D) an organopolysiloxane (hereinafter also referred to as “component (D)”).
  • component (D) an organopolysiloxane
  • the molded composite of the present embodiment has extremely excellent wear resistance, and coating of a surface treatment agent such as a silicone-based paint. Processing can be made unnecessary.
  • Specific examples of component (D) include: (D1) unmodified organopolysiloxane (hereinafter also referred to as “(D1) component”), (D2) bur group-containing organopolysiloxane (hereinafter referred to as “(D2) component”) Both can be mentioned.
  • the component (D1) is not particularly limited, but examples thereof include dimethylpolysiloxane, methylphenylpolysiloxane, fluoropolysiloxane, tetramethyltetraphenylpolysiloxane, and methylhydropolysiloxane. Can do. Of these, dimethylpolysiloxane is preferably used.
  • the viscosity of component (D1) at 25 ° C as defined by JIS K2283 is preferably less than 100, OOOcSt, more preferably less than OOOcSt 50, less than OOOcSt It is particularly preferred that it is full. If the viscosity of component (C1) at 25 ° C specified by JIS K2283 is more than 100, OOOcSt, the initial slidability tends to decrease.
  • the blending amount of component (D1) is the sum of components (A) and (B) (or (X) the sum of oil-extended rubber and component (B)). : 1 to 8 parts by mass, preferably 1 to 5 parts by mass, more preferably 1 to 5 parts by mass, more preferably L0 parts by mass.
  • the component (D1) may be dynamically melt-kneaded in the presence of a crosslinking agent together with the components (A) and (B) (and (C) as necessary) (
  • the component A) and the component (B) (and the component (C) if necessary) may be added separately after being dynamically melt-kneaded in the presence of a crosslinking agent. That is, the method for adding the component (D1) to the olefin-based thermoplastic elastomer composition is as follows: It is not limited.
  • the component (D2) is preferably a vinyl group-containing organopolysiloxane having a polymerization degree of 500 to 10,000 represented by the following average composition formula (1).
  • R is a substituted or unsubstituted monovalent organic group, 0.0 to 0.2% of R: LOmol% is a bur group, and a is 1.900 to 2.004. Is the number of ranges
  • the component (D2) may be a linear force, or a part thereof may be branched, or may form a three-dimensional structure. Further, it may be a homopolymer, a copolymer, or a mixture thereof.
  • specific examples of the substituted or unsubstituted monovalent organic group (R) include a methyl group, an ethyl group, a propyl group, a bur group, a phenyl group, or these. And a halogen-substituted hydrocarbon group of the above group.
  • the value of a is 1.900-2.004, preferably 1.950-2.002. If the value of a is less than 1.900, the mechanical strength, heat resistance, etc. of each molded part tend to be difficult. On the other hand, if the value of a exceeds 2.004, it tends to be difficult to obtain an organopolysiloxane having a sufficient degree of polymerization.
  • the degree of polymerization of the organopositive siloxane is 500 to 10,000, preferably ⁇ 1,000 to 8,000.
  • the degree of polymerization is less than 500, the mechanical strength and the like of each molded part tends to be difficult.
  • those having a degree of polymerization exceeding 10,000 are difficult to synthesize.
  • the molecular chain terminal of the organopolysiloxane has, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a dimethylvinyl group. It may be blocked with a-rusilyl group, a methyl furyl silyl group, a methyl diphenyl silyl group, or the like.
  • the blending amount of component (D2) is the sum of components (A) and (B) (or (X) the sum of oil-extended rubber and component (B)). : 1 to 8 parts by mass, preferably 1 to 5 parts by mass, more preferably 1 to 5 parts by mass, more preferably L0 parts by mass.
  • Compounding amount of component Power (A) Total of component (B) (or (X) Total of oil-extended rubber and component (B)) 100 parts by mass Less than 0.1 parts by mass And the initial slidability tends to be inferior. On the other hand, if it exceeds 10 parts by mass, the molded appearance may be inferior.
  • Component (D2) may be dynamically melt-kneaded in the presence of a crosslinking agent together with component (A) and component (B) (and component (C) as necessary) ( The component A) and the component (B) (and the component (C) if necessary) may be added separately after being dynamically melt-kneaded in the presence of a crosslinking agent. That is, the method for adding the component (D2) to the olefin-based thermoplastic elastomer composition is not limited.
  • the olefin-based thermoplastic elastomer composition may contain other polymer components.
  • Other polymer components are not particularly limited as long as they do not impair the mechanical strength, flexibility and the like of the obtained thermoplastic elastomer composition.
  • Other polymer components include ionomer resin, aminoacrylamide polymer, polyethylene and its maleic anhydride graft polymer, polyisobutylene, ethylene 'vinyl chloride copolymer, ethylene' Polymers, ethylene 'butyl acetate copolymer, polyethylene oxide, ethylene' acrylic acid copolymer, polypropylene and its maleic anhydride graft polymer, polyisobutylene and its maleic anhydride graft polymer, chlorinated polypropylene, 4-methylpentene — 1 resin, polystyrene, ABS resin, ACS resin, AS resin, AES resin, ASA resin, MBS resin, acrylic resin, methallyl resin, vinyl chloride resin, salt vinylidene resin , Polyamide resin, polycarbonate, vinyl alcohol resin, buracetal resin, vinyl Containing ⁇ , polyether ⁇ , polyethylene terephthalate, nitrile rubber and hydrogenated ⁇ Ka ⁇ , acrylic rubber, silicone
  • the content ratio of the other polymer components is preferably 0.1 to L00 parts by mass with respect to 100 parts by mass of the total of components (A) and (B). 80 parts by mass is even more preferable.
  • Olefin-based thermoplastic elastomer compositions include fillers, anti-aging agents, antioxidants, plasticizers, UV absorbers, antistatic agents, weathering agents, flame retardants, fillers, antibacterial and antifungal agents, blocking Agents, sealability improvers, lubricants (metal stalagmite, wax, etc.), heat stabilizers, light stabilizers, stabilizers such as copper damage inhibitors, metal deactivators, crystal nucleating agents, tackifiers, foaming agents, Additives such as foaming aids and colorants (dyes, pigments, etc.) may be contained.
  • Fillers include metal powders such as ferrite, inorganic fibers such as glass fibers and metal fibers, organic fibers such as carbon fibers and aramid fibers, composite fibers, inorganic whiskers such as potassium titanate whisker, and glass beads.
  • metal powders such as ferrite, inorganic fibers such as glass fibers and metal fibers, organic fibers such as carbon fibers and aramid fibers, composite fibers, inorganic whiskers such as potassium titanate whisker, and glass beads.
  • Glass balloon, glass flake, asbestos, my strength, calcium carbonate, talc, wet silica, dry silica, alumina, alumina silica, calcium silicate, hydrated talcite, kaolin, diatomaceous earth, graphite, pumice Examples include Evo powder, cotton floc, cork powder, barium sulfate, fluorine resin, polymer beads, carbon black, cell mouth powder, rubber powder, and wood powder. These may be used alone or in combination of two or more.
  • the olefin-based thermoplastic elastomer composition is obtained by dynamically heat-treating a mixture containing at least the components (A) and (B) in the presence of a crosslinking agent.
  • the type of the crosslinking agent V is not particularly limited, but the operation at a temperature higher than the melting point of the component (B) It is preferable to use, as a crosslinking agent, a compound capable of crosslinking at least component (A) by mechanical heat treatment!
  • cross-linking agent examples include organic peroxides, phenol resin cross-linking agents, sulfur, sulfur compounds, p quinone, derivatives of p quinone dioxime, bismaleimide compounds, epoxy compounds, silanic compounds. Products, amino resins, polyol crosslinkers, polyamines, triazine compounds, metal stones and the like. Of these, organic peroxides and phenol resin crosslinkers are preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the crosslinking agent used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the mixture, and 0.1 to 15 parts by mass. It is more preferable that 1 to: LO parts by mass is particularly preferable.
  • Organic peroxides include 1,3 bis (t butylperoxyisopropyl) benzene, 2,5 dimethyl-2,5 bis (t-butylperoxy) hexyne-3, 2,5 dimethyl-2,5 bis (t— Butylperoxy) hexene-3, 2, 5 dimethyl-2,5 bis (t butylperoxy) hexane, 2,2,1 bis (t butylperoxy) p isopropylbenzene, dicumyl peroxide, di-t butyl peroxide, t Butyl peroxide, p-menthane peroxide, 1, 1 bis (t butyl peroxide) 3, 3, 5— Trimethylcyclohexane, dilauroyl peroxide, diacetyl chloride, tertinoleperoxybenzoate 2, 4-dichlorobenzoin peroxide, p-benzoyl peroxide, benzoyl peroxide, di (t-butyl peroxide
  • the amount of the organic peroxide used is It is preferable that the amount is 0.05 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the compound.
  • the amount of the organic peroxide used is too large, the degree of crosslinking becomes excessively high, and the molding processability and mechanical properties tend to decrease.
  • the amount of the organic peroxide used is too small, the degree of crosslinking is insufficient, and the rubber elasticity and mechanical strength of each molded part tend to decrease.
  • phenol resin crosslinkers include p-substituted phenolic compounds represented by the following general formula (2), o-substituted phenol'aldehyde condensates, m-substituted phenol'aldehyde condensates, and bromination. Examples thereof include alkylphenol 'aldehyde condensates. Of these, p-substituted phenol compounds are preferred. These can be used alone or in combination of two or more.
  • X is a hydroxyl group, a halogenated alkyl group, or a halogen atom
  • R is a saturated hydrocarbon group having 1 to 15 carbon atoms
  • n is an integer of 0 to 10 is there.
  • the p-substituted phenol compound can be obtained by a condensation reaction between a p-substituted phenol and an aldehyde (preferably formaldehyde) in the presence of an alkali catalyst.
  • the amount of the phenol resin crosslinker used is 0.2 to 1 with respect to 100 parts by mass of the total amount of the polymer components contained in the mixture.
  • the content is preferably 0 part by mass, more preferably 0.5 to 5 parts by mass. If too much phenol rosin cross-linking agent is used, the degree of cross-linking becomes excessively high and the molding processability and mechanical properties tend to decrease. On the other hand, if the amount of the phenolic rosin crosslinking agent used is too small, the degree of crosslinking is insufficient, and the rubber elasticity and mechanical strength of each molded part tend to decrease.
  • Crosslinking aid crosslinking accelerator
  • Z or a crosslinking accelerator it is preferable to use a crosslinking aid and Z or a crosslinking accelerator together with the crosslinking agent because the crosslinking reaction can be performed gently and uniform crosslinking can be formed.
  • organic peroxides sulfur, sulfur compounds (powdered sulfur, colloidal sulfur, precipitated sulfur, insoluble sulfur, surface-treated sulfur, dipentamethylene thiuram tetrasulfide, etc.), oxime are used as crosslinking aids.
  • N, N, 1m-phenylene di-bismaleimide, and dibutenebenzene are preferable. These can be used singly or in combination of two or more.
  • N, N, 1m-phenolene bismaleimide exhibits an action as a crosslinking agent, and therefore can be used alone as a crosslinking agent.
  • the amount of the crosslinking aid used may be 10 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer components contained in the mixture. Preferable 0.2 to 5 parts by mass is more preferable.
  • the amount of the crosslinking aid used is more than 10 parts by mass, the degree of crosslinking becomes excessively high, the molding processability is lowered, and the mechanical properties of each molded part tend to be lowered.
  • a metal halide such as stannous chloride, salt or ferric iron
  • an organic halide chlorinated polypropylene
  • a metal halide such as stannous chloride, salt or ferric iron
  • an organic halide chlorinated polypropylene
  • Butyl bromide rubber, chloroprene rubber, etc. are preferable because the crosslinking rate can be adjusted.
  • a metal oxide such as zinc oxide or a dispersant such as stearic acid.
  • Olefin-based thermoplastic elastomer composition contains at least component (A) and component (B) Can be prepared by dynamically heat treating in the presence of a cross-linking agent.
  • the component (A) and the component (B) may be used as they are, or may be used as compositions containing the same or different additive agents.
  • the shape of component (A) can be any of bale, crumb, pellet, and powder (including crushed products of bale or crumb).
  • An apparatus for performing more specific kneading includes a melt kneading apparatus.
  • the treatment performed in the melt kneading apparatus may be a notch type or a continuous type.
  • Examples of the melt-kneading apparatus include an open type mixing roll, a non-open type Banbury mixer, a single screw extruder, a twin screw extruder, a continuous kneader, and a pressure kneader.
  • a continuous melt kneader such as a single screw extruder, a twin screw extruder, or a continuous kneader from the viewpoint of economy, processing efficiency, and the like. It is also possible to use two or more continuous melt-kneaders that are the same or different.
  • the twin screw extruder preferably has an LZD (ratio of effective screw length L to outer diameter D) of 30 or more, more preferably 36 to 60.
  • LZD ratio of effective screw length L to outer diameter D
  • any twin screw extruder can be used, such as one in which two screws mate or one that does not mate, but the rotation direction of the two screws is the same. It is more preferable that the screws rub in the direction.
  • twin-screw extruders include Ikekai's PCM, Kobe Steel's KT X, Nippon Steel's Sakai, Toshiba Machine's Sakai, Warner's rzSKj, etc. ⁇ ⁇ All are trade names).
  • the continuous kneader preferably has an L / D (ratio of effective screw length L to outer diameter D) of 5 or more, more preferably 10 to 60.
  • L / D ratio of effective screw length L to outer diameter D
  • Examples of such a continuous kneader include “Mixtron KTX ⁇ LCM ⁇ NCM” manufactured by Kobe Steel Co., Ltd., “CIM ⁇ CMPJ” manufactured by Nippon Steel Co., Ltd. (both are trade names).
  • the treatment temperature in the dynamic heat treatment is usually 120 to 350 ° C, preferably 150 to 290 ° C.
  • the treatment time is usually 20 seconds to 320 minutes, preferably 30 seconds to 25 minutes.
  • the shearing force applied to the mixture is usually 10 to 20, OOOZ seconds, preferably 100 to: LO, OOOZ seconds in terms of shear rate.
  • the fluidity (190 ° C, 49N) of the thermoplastic elastomer measured in accordance with JIS K7210 is preferably at least 0.5 lgZlO, and more preferably at least 0.5 gZlO. It is particularly preferable that the content is not less than lgZlO. When the fluidity of the thermoplastic elastomer is within the above range, the extrusion foaming processability can be improved.
  • the upper limit value of the fluidity is not particularly limited, but may be less than lOOOgZlO minutes!
  • the first molded portion 11 of the molded composite (weather strip 1) of this embodiment is a portion formed by extrusion foam molding of the olefin-based thermoplastic elastomer yarn and composition described so far (Fig. 1).
  • the first molded part 11 may be a hollow foam.
  • extrusion molding of thermoplastic elastomer yarn (non-foamed material) and z or metal is performed at the same time as extrusion foaming, for example, solid (thermoplastic elastomer composition) Z sponge (thermoplastic elastomer composition) )
  • Z core material metal
  • the Asker C hardness of the first molded part 11 measured in accordance with JIS K6253 is preferably 80 or less, more preferably 75 or less, and even more preferably 70 or less. I like it. When the Asker C hardness of the first molded part 11 is within the above range, the weather strip 1 can be made excellent in flexibility.
  • the lower limit of the Asker C hardness is not particularly limited, but is 10 or more.
  • the compression set after 50% compression, 70 ° C, 22 hours of the first molded part 11 may be 50% or less. It is particularly preferably 45% or less, more preferably 40% or less.
  • the lower limit value of the compression set is not particularly limited, but may be 1% or more.
  • the foaming ratio of the first molded part 11 is 1.2 or more, preferably 1.3 or more, and more preferably 1.5 or more.
  • the shape of the first molding part 11 is not particularly limited, and may be a linear shape, a plate shape, a cylindrical shape (hollow), or the like. Also, an indeterminate shape formed by combining these shapes, or a shape obtained by bending or deforming these shapes may be used.
  • the molded composite of the present embodiment is made of a specific constituent material, the first molded portion has excellent strength even when the shape is a deformed shape such as a curved shape.
  • the size of the first molding part is not particularly limited. Therefore, the length, thickness, interval, etc. of each part of the first molding part can be appropriately set according to the purpose, application, and the like.
  • the first molding part 11 can also be manufactured by cutting an extruded product having a predetermined cross-sectional shape.
  • the first molded part preferably includes a reinforcing member on the surface and Z or inside thereof.
  • the reinforcing member is not particularly limited as long as it can stabilize the structure of the first molded part.
  • the constituent material of the molding composite is a material that does not substantially react with the polyolefin thermoplastic elastomer composition constituting the first molding part, or a material that does not substantially react with water (not decomposed or corroded). Any organic material or inorganic material may be used. A combination of these can also be used.
  • the organic material a polymer material is preferable.
  • As the inorganic material metals, alloys, ceramics and the like are preferable.
  • the shape of the reinforcing member may be a block shape, a line shape, a plate shape, or the like. Further, the shape may be an indefinite shape formed by combining these shapes, or a shape that is deformed by bending these shapes. Furthermore, it may have a shape having a through hole, a concave portion, a convex portion or the like that makes the integration with the first molded portion more reliable.
  • a foaming agent is blended with the raw material composition (olefin thermoplastic elastomer composition) for forming the first molded part.
  • the foaming agent include a pyrolytic foaming agent, a volatile foaming agent, a hollow particle foaming agent, and a supercritical fluid. These can be used individually by 1 type or in combination of 2 or more types.
  • the foaming agent can be selected depending on the type of polymer component contained in the olefin-based thermoplastic elastomer composition, the method for producing the first molded part, and the like.
  • Pyrolytic foaming agents include N, N, monodinitrosopentamethylenetetramine, N, N, monodi -Troso foaming agents such as methyl N, N, monodinitrosotephthalamide; azo difoaming agents of azodicarbonamide, barium azodicarboxylate, etc .; 4, 4 'oxybis (benzenesulfurhydrazide), p sulfohydrazide foaming agents such as toluenesulfuryl semicarbazide; triazine foaming agents such as trihydrazinotriazine; 5-phenoltetrazole, Inorganic foaming agents such as tetrazole foaming agents such as zobistetrazolaminoguanidine; inorganic foaming agents such as sodium hydrogen carbonate. These can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the pyrolyzable foaming agent used may be appropriately set according to the type, desired foaming ratio, and the like. Specifically, it is preferable to use 0.1 to L00 parts by mass with respect to 100 parts by mass of the polymer component contained in the olefin-type thermoplastic elastomer composition for forming the second molded part.
  • Examples of the volatile blowing agent include aliphatic hydrocarbons such as propane, butane and pentane; alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; chlorodifluoromethane, difluoromethane, Trifluoromethane, trichlorofluoromethane, dichloromethane, dichloromethane, dichloromethane dichloromethane, trichloromethane, chloromethane, chloroethane, dichlorotrifluoromethane, dichlorofluoroethane, chlorodifluoroethane , Dichloropentafluoroethane, Pentafunoleotane, Trifnoreoethane, Dichlorotetrafluoroethanane, Trichlorodiuotrifluoroethane, Tetrachlorodifluoroethanane, Dichloropent
  • the amount of the volatile foaming agent used may be appropriately set according to the type, the desired foaming ratio, and the like. Specifically, it is preferable to use 0.1 to L00 parts by mass with respect to 100 parts by mass of the polymer component contained in the olefin-type thermoplastic elastomer composition for forming the first molded part.
  • the hollow particle type foaming agent refers to thermally expandable microspheres in which an expansion agent is encapsulated in an outer shell made of thermoplastic resin.
  • thermoplastic resin constituting the outer shell, (meth) acrylonitrile , (Meth) acrylic acid ester, halogenated bulu, halogenated vinylidene, aromatic vinyl compounds such as styrene, at least one selected from the group consisting of butyl acetate, butadiene, chloroprene and bulupyridine Mention may be made of a polymer or a copolymer.
  • thermoplastic resin includes dibutenebenzene, ethylene glycol (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, 1, 3-butylene glycol di (meth) ) It may be cross-linked or cross-linkable with a cross-linking agent such as attalylate, aryl (meth) acrylate, triacryl formal, triallyl isocyanurate, etc.
  • a cross-linking agent such as attalylate, aryl (meth) acrylate, triacryl formal, triallyl isocyanurate, etc.
  • the compounds exemplified as the above-mentioned volatile foaming agent can be used as the encapsulating expansion agent.
  • the proportion of the expansion agent in the thermally expandable microspheres is preferably 5 to 30% by mass when the thermoplastic resin for the outer shell is 100% by mass.
  • the weight average particle diameter of the hollow particle type foaming agent (in an unexpanded microsphere state) is preferably 1 to: LOO ⁇ m. Further, the amount of the hollow particle type foaming agent used may be appropriately set according to the type, desired foaming ratio, and the like. Specifically, it is preferable to use 0.1 to L00 parts by mass with respect to 100 parts by mass of the polymer component contained in the olefin-type thermoplastic elastomer composition for forming the first molded part.
  • a supercritical fluid such as nitrogen or carbon dioxide can be used. These supercritical fluids can be used singly or in combination of two or more. The amount of these supercritical fluids to be used may be appropriately set according to the type, desired expansion ratio, and the like.
  • a foaming nucleating agent such as sodium bicarbonate, citrate, or talc as necessary in order to adjust the bubble diameter.
  • the use amount of the foam nucleating agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer component contained in the olefin-type thermoplastic elastomer composition for forming the first molded part. .
  • the second molded part 12 of the molded composite (weather strip 1) of the present embodiment is composed of the olefin-based thermoplastic elastomer composition described so far and the olefin-based thermoplastic elastomer. It is a part formed by injection molding a general-purpose thermoplastic elastomer composition other than the toma composition (see FIG. 1).
  • the second molded part 12 may be any of a solid body, a hollow body, and a foamed body.
  • molding part 12 is a foam
  • the kind and usage-amount of a foaming agent used for forming this foam, an expansion ratio, a foaming method, etc. are not specifically limited.
  • thermoplastic elastomer composition used for constituting the second molded part
  • the component (Bb) (one-year-old refin-based amorphous thermoplastic resin) is contained, the injection adhesion with the first molded part, particularly the bending peelability is improved, which is preferable.
  • the content of the component (Bb) is preferably 0.5% by mass or more and preferably 1% by mass or more in the thermoplastic elastomer composition used for constituting the second molded part. It is particularly preferable that the content be 3% by mass or more.
  • the upper limit of the content of the component (Bb) is not particularly limited, but should be 15% by mass or less.
  • the hardness of the second molded part is preferably 50 or less according to the Duro A hardness meter CFIS K62 63), and more preferably 45 or less. Particularly preferred is 40 or less.
  • the lower limit value of the hardness (du mouth A) of the second molded part is not particularly limited, but may be 5 or more.
  • the second molded part is a foam, its hardness is preferably 80 or less, more preferably 70 or less, with a Asker C hardness meter (JIS K6263 compliant) being 75 or less. Is particularly preferred.
  • the lower limit value of the hardness (Asker C) of the second molded part is not particularly limited, but may be 10 or more.
  • the compression set of the second molding part after 50% compression, 70 ° C, 22 hours is preferably 50% or less 45 It is particularly preferable that it is 40% or less.
  • the compression set of the second molded part is within the above range, the sealing property of the molded composite can be made excellent.
  • the lower limit of compression set is not particularly limited, but should be 1% or more.
  • Thermoplastic elastomer When the one fluidity is within the above range, the injection moldability can be excellent.
  • the upper limit of the fluidity is not particularly limited, but may be less than lOOOgZlO.
  • thermoplastic elastomer composition that may be used to form the second molded part
  • a trade name "Miralastomer” manufactured by Mitsui Chemicals
  • “Thermo Run” trade name “Lavalon” (all manufactured by Mitsubishi Igaku)
  • product name “Sumitomo TPE”, product name “Sumitomo TPE—SB” all manufactured by Sumitomo Chemical
  • DSM Product name "Oreflex”, Product name "Reostomer”, Product name “Multi-Used Reostromer” (V, Displacement) Riken Technos).
  • the shape of the second molding part 12 is not particularly limited, and can be any shape, the length, thickness, spacing, and the like of each part as in the first molding part 11.
  • the molded composite (user strip 1) of the present embodiment includes a first molded part 11, and a second molded part 12 joined to the surface of the first molded part 11 and Z or a cross section. Yes (see Figure 1).
  • the first molding part 11 and the second molding part 12 are joined to each other at a part (joint part) having a shape such as a flat surface, a curved surface, and an uneven surface, for example.
  • the whole contact part may be joined completely or may be joined partially.
  • the material constituting the other (molded part that is not a foam) is joined by entering the void of the foam. .
  • the olefin-based thermoplastic elastomer composition which is a constituent material of the second molded part 12, penetrates into the gap part of the joining part of the first molded part 11. It is joined by doing.
  • the material forming the first molding part 11 and the second molding part 12 contains (B) polyolefin-based resin. Therefore, the weather strip 1 of the present embodiment has extremely excellent adhesion between the molded parts, and can effectively prevent adhesion peeling. Further, in the weather strip 1 of the present embodiment, both the first molding part 11 and the second molding part 12 which are constituent members thereof are formed of a highly recyclable thermoplastic elastomer composition. Therefore, the weather strip 1 of this embodiment is extremely excellent in recyclability.
  • each compression set (70 ° C, 22 hours, 50% compression) is 50% or less It is preferably 45% or less, more preferably 40% or less, and particularly preferably 40% or less.
  • the lower limit of compression set is not particularly limited, but may be 1% or more.
  • the molded composite of this embodiment has a structure of any one of [1] to [4] below, where the first molded part is (P) and the second molded part is (Q). be able to. Therefore, it is possible to obtain a shape according to the purpose and application while making use of excellent adhesiveness.
  • the first molding part and the second molding part are alternately joined, and the main chain has an annular structure (a structure such as a circle, a square, a fan, or a star). Means. Therefore, the molded composite represented by this structure [4] has an annular structure in which the end of the first molded part and the end of the second molded part are joined. [0131]
  • the structure of the molded composite of the present embodiment is not limited to the structure represented by any one of [1] to [4].
  • the structure of the molded composite according to the present embodiment may be, for example, a structure in which a plurality of structures represented by the above [1] to [4] are combined. A structure in which the molded portions are joined may be used.
  • the method for producing a molded composite of the present embodiment comprises (A) component, (B) component, and (C) component, at least a mixture containing (A) component and (B) component as a crosslinking agent.
  • a process for obtaining a molded member having an expansion ratio of 1.2 or more by extrusion foam molding of an olefin-based thermoplastic elastomer composition obtained by dynamically heat-treating in the presence (hereinafter referred to as “Process (1) And a step of placing the resulting molded member so that the surface and Z or cross section of the molded member are exposed to the mold cavity (hereinafter also referred to as “step (ii)”), A process of injecting a thermoplastic elastomer composition other than a thermoplastic elastomer composition and a thermoplastic elastomer composition other than a cocoon or olefin-based thermoplastic elastomer composition into a mold cavity (hereinafter also referred to as “process (111)”) And.
  • an olefin-based thermoplastic elastomer composition is molded into a predetermined-shaped molded member (first molded part) using a screw-type or non-screw-type extrusion molding machine.
  • the extrusion molding is usually performed in a state where the olefin-based thermoplastic elastomer composition is melted.
  • the molded member may be extruded in a foamed state inside the extruder, or it may be foamed immediately after leaving the extruder, or it may be extruded without foaming and then re-extruded. You may make it foam by heating.
  • the obtained molded member is installed so that at least a part of the surface and the crease or the cross section is exposed to the mold cavity.
  • the molding member is installed so that the end portion (bonded portion) is exposed to the mold cavity. That is, the contact surface with the olefinic thermoplastic elastomer composition used in step (III) or a general-purpose thermoplastic elastomer composition is exposed to the inside (cavity) of the mold.
  • the olefin-based thermoplastic elastomer composition or the general-purpose thermoplastic elastomer composition is injected into the mold cavity using an injection molding machine or the like. Introduce. Through this step (III), the olefin-based thermoplastic elastomer composition flows into the bonded part of the molded part, and a molded member (first molded part) is formed.
  • the melt flow rate (MFR) is preferably at least 0.1 lgZlO 1. More preferably at least OgZlO 2. Particularly preferably at least OgZlO 3. Most preferably, it is OgZlO or more. If the MFR of the olefin-based thermoplastic elastomer composition is less than 0.1 lgZlO, the processability tends to be insufficient. On the other hand, if the MFR is too large, the mechanical strength of the resulting molded member tends to decrease. Accordingly, the MFR of the olefin-based thermoplastic elastomer composition is preferably not more than lOOgZlO.
  • the olefin-based thermoplastic elastomer composition used for producing the molded composite of the present embodiment contains a specific polymer and has excellent fluidity as described above. . Therefore, it is possible to use a mold that does not easily cause mold contamination even after forming each molded member for a long period of time. In addition, this olefin-based thermoplastic elastomer composition can be reused. Therefore, defective molding can be reused, and raw materials can be used efficiently without waste.
  • the introduction device an injection device such as a screw type or a plunger type is preferably used.
  • the introduction rate is preferably from 1 to 2000 cm 3 Z seconds in terms of injection rate, more preferably from 10 to L000 cm 3 Z seconds.
  • the temperature at which the olefin-based thermoplastic elastomer composition is introduced into the mold cavity is preferably 150 to 300 ° C. At this time, the mold may be heated, or may be left at room temperature without being heated.
  • the preferred temperature of the mold is in the range of 30-80 ° C.
  • the mold cavity can have a highly smooth inner wall surface or provide characters, patterns, etc., depending on the purpose and application of the molded composite to be obtained. .
  • mold cavities with highly smooth inner walls olefin-based heat transfer is possible. Since the fluidity of the plastic elastomer composition is improved, the mold transferability is improved, and a molded composite having a molded member having high gloss can be obtained.
  • the molding member already installed in step (ii) may be preheated, or may be heated to room temperature (25 ° C).
  • the temperature may be around. However, it is more preferable to heat to a temperature of 30 to 80 ° C.
  • step (III) after the olefin-based thermoplastic elastomer composition is introduced into the mold cavity, it is preferably cooled for 1 to 120 seconds, more preferably 5 to 60 seconds.
  • the molded members are bonded together.
  • the integrated molded composite weather strip
  • the molding member is placed on the mold cavity, the polyolefin thermoplastic elastomer composition is introduced into the mold cavity, and the introduced polyolefin heat is introduced.
  • the plastic elastomer compositions can be cooled in a short time.
  • the production time of one molded composite can be preferably 7 to 180 seconds, more preferably 10 to 120 seconds, and the molded composite can be manufactured in an extremely short time. Furthermore, since the mold can be used at a low temperature, the safety is high that there is no risk of burns during the work.
  • a molded composite having the shape shown in Fig. 2 can be easily produced. That is, two molding members (second molding part 12) are manufactured in advance, and a mold having a predetermined space part (cavity) is used, and the two end parts are exposed to the cavity.
  • An integrated molded composite weather strip 1 can be manufactured by installing the second molded part 12 and introducing the olefin-based thermoplastic elastomer composition into the cavity.
  • a molded composite having the above-described structures [1] to [4] can be produced by the same method.
  • the molded composite of the present embodiment has a preferable property as a member suitable for a weather strip for a vehicle including an automobile interior material and an automobile exterior material.
  • a weather strip for a vehicle including an automobile interior material and an automobile exterior material.
  • weather strips include door weather strips, trunk weather strips, luggage weather strips, roof side rail weather strips, and sliding door weather strips.
  • Trip, ventilator weather strip, sliding norpe panel weather strip, front window weather strip, rear window weather strip, quarter window weather strip, lock pillar weather strip, door glass outer weather strip, door glass inner weather One strip can be mentioned.
  • the sealing material include sealing materials for building materials, home appliances, industrial machines, and the like.
  • the weather strip 2 When the weather strip is used for a door of an automobile, it can be used, for example, in the form as shown in FIG. That is, the weather strip 2 has an annular structure in which the first molding portions lla to lle and the second molding portions 12a to 12e are alternately joined, and is disposed at a predetermined position on the peripheral portion of the door 3.
  • compression set As an index of rubber elasticity, an extruded foamed molded member (hollow molded product) was measured under the conditions of 70 ° C, 22 hours, 50% compression in accordance with JIS K6262. In addition, for the injection-molded part (hollow molded product), measure at 70 ° C, 22 hours, 50% compression.
  • the dynamic friction coefficient measured at room temperature using a test piece one day after injection molding was taken as the “dynamic friction coefficient (initial)” and used as an index of initial slidability.
  • the dynamic friction coefficient measured when the glass ring was slid 10000 times reciprocally was defined as the “dynamic friction coefficient (after 10000 reciprocating slides)” and used as an indicator of durability slidability.
  • Ethylene Z Propylene Z5 Ethylidene 2 norbornene terpolymer ethylene content: 66%, 5 ethylidene 2 norbornene content: 4.5%, intrinsic viscosity: 4.7 7dl / g, Norafin softener (trade name “Diana Process Oil PW90”, manufactured by Idemitsu Kosan Co., Ltd.) Content: 50%)
  • Polypropylene (propylene Z ethylene random copolymer) (trade name “Novatech FL25 R”, manufactured by Nippon Polychem, density: 0.90 gZcm 3 , MFR (temperature 230 ° C, load 2.16 kg): 2 3 gZlO min)
  • Propylene Zl-butene amorphous copolymer (trade name “UBETAC APAO UT 288 0”, manufactured by Ube Lexen, Propylene content: 71 mol%, melt viscosity: 8000 cPs, density: 0.87 gZcm 3 , Mn: 6500)
  • Unmodified polydimethylsiloxane (trade name “Silicone Oil SH-200”, manufactured by Toray 'Dauco Ion Silicone Co., Ltd., viscosity: lOOcSt)
  • Unmodified polydimethylsiloxane (trade name “Silicone Oil SH-200”, manufactured by Toray 'Dauco Ion Silicone Co., Ltd., viscosity: 1, OOOcSt)
  • methylvinylpolysiloxane having a degree of polymerization of about 700,000, consisting of 99.85 mol% of dimethylsiloxane units and 0.1% of 1% moylmethylsiloxane units, and both ends of the molecular chain blocked with dimethylvinylsiloxane.
  • Smoked dry silica (trade name “Aerosil 200”, manufactured by Nippon Aerosil Co., Ltd.) 40 parts mixture (trade name “TSE221-5U”, manufactured by GE Toshiba Silicone)
  • Cross-linking agent 5-dimethyl-2,5-di- (t-butylperoxy) hexane (trade name “Parhexa25B-40”, manufactured by NOF Corporation)
  • Cross-linking aid divinylbenzene (manufactured by Sankyo Kasei Co., Ltd., purity 55%)
  • Anti-aging agent Brand name “Ilganox 1010” (Ciba Specialty Chemicals)
  • Black pigment Mixture of carbon black and crystalline polypropylene (trade name “PP-M 77255”, manufactured by Dainichi Seika Kogyo Co., Ltd., carbon black content: 30%)
  • a heated pressurized mold (capacity 10 liters, manufactured by Moriyama Co., Ltd.), and ao-refin crystalline thermoplastic resin and O-year-old refin amorphous thermoplastic resin are melted and synthesized.
  • the mixture was kneaded for 15 minutes at 40 rpm (shearing speed 200 Zsec) until the components were evenly dispersed.
  • the obtained composition in the molten state was pelletized using a feeder ruder (manufactured by Moriyama Co., Ltd.) to obtain a pellet.
  • 1 part of a cross-linking agent and 1.25 parts of cross-linking aid (1) were added to the obtained pellets and mixed for 30 seconds using a Henschel mixer.
  • a pyrolytic chemical foaming agent masterbatch (trade name “Polyslen EE206”, manufactured by Eiwa Chemical Co., Ltd.) as a foaming agent to an olefin-based thermoplastic elastomer composition (TPV (l)).
  • TPV (l) olefin-based thermoplastic elastomer composition
  • an extruded foam molded member having an inner diameter of 16 mm, a thickness of 2 mm, and a foaming ratio of 1.3 times was obtained.
  • the obtained extrusion foamed molded member was placed in a mold cavity, and an olefin-based thermoplastic elastomer composition (TPV) (TPV) using an injection molding machine (trade name “N-100”, manufactured by Nippon Steel Works).
  • TPV thermoplastic elastomer composition
  • injection molding machine trade name “N-100”, manufactured by Nippon Steel Works.
  • (1) is injection molded (mold temperature: 50 ° C, second molding part introduction time: 10 seconds, injection time: 1 second, cooling time: 30 seconds, sample removal time: 10 seconds)
  • a molded composite (Example 1) having a diameter of 2 mm and an inner diameter of 16 mm was produced.
  • the produced composite was punched out with dumbbell No. 2 so that the bonded portion was at the center, and the injection-bonding property (adhesive strength) was measured.
  • Table 2 shows the measurement results of the adhesive strength.
  • Table 2 shows the measurement results of various physical properties of the extruded foam molded member. Further, only the molded composite force injection molded member was cut and taken out, and its compression set was measured. Table 2 shows the measurement results of compression set.
  • pellet-shaped olefin-based thermoplastic elastomer compositions (TPV (2) to (4)) were obtained by the same operation as in Example 1 described above.
  • Table 1 shows the measurement results of various physical properties of the obtained olefinic thermoplastic elastomer composition (TPV (2) to (4)).
  • TPV (2) to (4) a hollow extruded foam molded member was formed by the same operation as in Example 1 described above. Obtained.
  • Examples 2 to 4 were produced in the same manner as in Example 1 described above.
  • Table 2 shows the measurement results and evaluation results of various physical properties of the formed molded composites (Examples 2 to 4).
  • Ethylene Z propylene Z5 ethylidene 2 norbornene terpolymer (propylene content: 40 mol%, trade name “EP65”, manufactured by JSR, Mu-one viscosity (ML, 100 ° C): 74 , Iodine number: 29)
  • carbon black trade name “Asahi 50HG”, manufactured by Asahi Carbon Co., Ltd.
  • paraffinic process oil (trade name “PW380”, manufactured by Idemitsu Kosan Co., Ltd.) 50 parts
  • Mistron Vapor 50 parts activated zinc white (manufactured by Tsuji Gakki Kogyo Co., Ltd.) 7 parts, stearic acid (manufactured by Asahi Denki Kogyo Kogyo Co., Ltd.) 1 part, processing aid (trade name “HITanol 1501”, Hitachi Chemical Co., Ltd.) 1 part), 2 parts of a release agent (trade name “Stratol 1501
  • the obtained mixture was kneaded using a Banbury mixer under the conditions of 50 ° C, 70 rpm, kneading time 2.5 minutes.
  • 10 parts of dehydrating agent (trade name “Vesta PP”, manufactured by Inoue Lime Industry Co., Ltd.), vulcanization accelerator (trade name “MZ” 1.0 part, product name “PZ” 2.5 part, product name “TL” “0.5 parts”, trade name “DM” 0.5 parts, all manufactured by Ouchi Shinsei Co., Ltd.), and sulfur 1.5 parts were added.
  • a rubber composition for sponge was prepared by mixing at 50 ° C. using an open roll.
  • HAV hot air vulcanization
  • a pellet-like olefin-based thermoplastic elastomer composition (TPV (5)) was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used.
  • Table 1 shows the measurement results of various physical properties of the obtained olefin-based thermoplastic elastomer composition (TPV (5)). Further, using the obtained olefin-based thermoplastic elastomer composition (TPV (5)), a hollow extruded foam molded member was obtained by the same operation as in Example 1 described above.
  • the molded composites of Examples 1 to 4 have low hardness, low pressure compression set, excellent injection fusion, and excellent bending peelability. The balance of these properties is good.
  • the molded composite of Comparative Example 1 is a joined part using vulcanized rubber, it was impossible to recycle the molded composite in a state-of-the-art manner.
  • the molded composite of Comparative Example 2 uses the first molded part having high hardness, the value of compression set is high and the bending peelability is not good.
  • the molded composite of Comparative Example 3 had a high compression set value in both the first molded part and the second molded part.
  • the molded composite of the present invention is excellent in compression set, adhesion between molded parts, flexibility, recyclability, and molded appearance. Therefore, the molded composite of the present invention is suitable as a weather strip for vehicles.
  • Weather strips include door weather strip, trunk weather strip, luggage weather strip, roof side rail weather strip, sliding door weather strip, ventilator weather strip, sliding group panel weather strip, front window weather strip, rear India weather strip, quarter window weather strip, lock pillar weather strip, door glass outer weather strip, door glass inner weather strip, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Seal Device For Vehicle (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 (A)デカリン溶媒中135°Cで測定した極限粘度[η]が、3.5~6.8dl/gであるエチレン・α-オレフィン系共重合ゴム、(B)ポリオレフィン系樹脂、及び(C)鉱物油系軟化剤を所定の割合で含有する、少なくとも(A)エチレン・α-オレフィン系共重合ゴム及び(B)ポリオレフィン系樹脂が含有される混合物を架橋剤の存在下に動的に熱処理して得られたオレフィン系熱可塑性エラストマー組成物を押出発泡成形してなる、発泡倍率1.2倍以上の第1成形部11と、オレフィン系熱可塑性エラストマー組成物、及び/又はそれ以外の熱可塑性エラストマー組成物を射出成形してなる、第1成形部11の表面、及び/又は断面に接合される第2成形部12と、を備えた成形複合体である。

Description

成形複合体及びその製造方法
技術分野
[0001] 本発明は成形複合体、及びその製造方法に関し、更に詳しくは、圧縮永久歪み、 柔軟性、各成形部どうしの接着性、及びマテリアルリサイクル性等に優れた成形複合 体、並びにその製造方法に関する。
背景技術
[0002] 車両用のウエザーストリップ、建材用のガスケット等の製品は、通常、力!]硫ゴムによ つて作製されるゴム製品である。このようなゴム製品は、その目的や用途等によって、 直線部分と曲線部分とを組み合わせた複雑な構造を有する場合がある。なお、原材 料となる加硫ゴムとしては、例えば、特許文献 1〜3等において開示されているゴム組 成物等が用いられている。
[0003] 上述のような複雑な構造を有するゴム製品は、その形状に応じた金型に加硫用ゴ ム組成物を流し込んで熱処理する方法や、直線部分と曲線部分の ヽずれか一方を 予め製造し、他方を形成する加硫用ゴム組成物を金型に流し込んで熱処理し、加硫 と同時に直線部分と曲線部分を接合する方法等によって製造することができる。後者 の方法の具体的な態様は、以下に示す手順により実施される。即ち、予め押出成形 等により作製した直線部分を金型キヤビティに設置し、設置した直線部分の端部と接 触するように、曲線部分を形成する加硫用ゴム組成物を金型キヤビティに導入する。 その後、 160〜180°C程度に加熱された金型内に設置し、 3〜5分程度加硫反応さ せて曲線部分を成形することにより、直線部分と曲線部分とが接合された成形複合 体 (複合部材)を得ることができる。
[0004] 直線部分と曲線部分を別々に作製する場合には、加硫を完結させるために、高温 条件下で十分な時間反応を行うことが必要となる。しかし、加硫後、温度が低下する 前に金型力 ゴム製品を取り出す場合には、安全に対する配慮が必要となる。一方、 金型力 ゴム製品を取り出すまでには、相当の冷却時間が必要となる。このため、冷 却時間を短縮し、ゴム製品製造の歩留まり向上を図る必要性がある。また、上述の方 法により製造されたゴム製品は、直線部分と曲線部分の接着強度が十分でない場合 がある。更に、加硫用ゴム組成物には、加硫促進剤等の添加剤が含まれている。この ため、金型の使用回数の増加とともに、腐食等の金型汚染が進行する場合もある。
[0005] ところで、近年、環境問題に対する配慮の高まりから、リサイクル性に優れた複合材 料を開発することが要請されている。し力しながら、その一部又は全部が加硫ゴムに よって形成された成形複合体は、リサイクルが容易ではないという問題がある。また、 これらの複合部材は、耐摩耗性が必ずしも良好であるとはいえないため、他の部分と の接触や摩擦が生ずる箇所には、設置することが困難であるといった問題もある。
[0006] 特許文献 1 :特開平 10— 175440号公報
特許文献 2:特開 2000— 72935号公報
特許文献 3:特開 2002— 322328号公報
発明の開示
[0007] 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その 課題とするところは、圧縮永久歪み、各成形部どうしの接着性、各成形部どうしの折り 曲げ剥離性、柔軟性、マテリアルリサイクル性、及び成形外観に優れた成形複合体、 並びにそのような優れた特性を備えた成形複合体を、短時間で安全に製造すること が可能な成形複合体の製造方法を提供することにある。
[0008] 本発明者らは上記課題を達成すべく鋭意検討した結果、特定の熱可塑性エラスト マー組成物を射出成形した成形部と、この熱可塑性エラストマ一組成物を押出発泡 成形した成形部とを接合することによって、上記課題を達成することが可能であること を見出し、本発明を完成するに至った。
[0009] 即ち、本発明によれば、以下に示す成形複合体、及びその製造方法が提供される
[0010] [1] (A)デカリン溶媒中 135°Cで測定した極限粘度 [ 7? ]力 3. 5〜6. 8dlZgであ るエチレン. aーォレフイン系共重合ゴム 5〜60質量0 /0、(B)ポリオレフイン系榭脂 1 〜20質量%、及び (C)鉱物油系軟化剤 30〜94質量% (但し、 (A) + (B) + (C) = 100質量%)、を含有する、少なくとも前記 (A)エチレン' a—ォレフイン系共重合ゴ ム及び前記 (B)ポリオレフイン系榭脂が含有される混合物を架橋剤の存在下に動的 に熱処理して得られたォレフィン系熱可塑性エラストマ一組成物を押出発泡成形し てなる、発泡倍率 1. 2倍以上の第 1成形部と、前記ォレフィン系熱可塑性エラストマ 一組成物、及び Z又は前記ォレフィン系熱可塑性エラストマ一組成物以外の熱可塑 性エラストマ一組成物を射出成形してなる、前記第 1成形部の表面、及び Z又は断 面に接合される第 2成形部と、を備えた成形複合体。
[0011] [2]前記ォレフィン系熱可塑性エラストマ一組成物力 前記 (A)エチレン' a—ォレ フィン系共重合ゴム、前記 (B)ポリオレフイン系榭脂、及び前記 (C)鉱物油系軟化剤 の合計 100質量部に対して、 0. 1〜: L0質量部のオルガノポリシロキサンを更に含有 するものである前記 [1]に記載の成形複合体。
[0012] [3]前記第 1成形部の JIS K6253に準拠して測定されたァスカー C硬度力 80以 下である前記 [1]又は [2]に記載の成形複合体。
[0013] [4]前記第 1成形部の形状が、中空形状である前記 [ 1]〜 [3]の 、ずれかに記載 の成形複合体。
[0014] [5]前記第 1成形部の形状が中空形状である場合に、前記第 1成形部の、圧縮率 5 0%、 70°C、 22時間後の圧縮永久歪みが、 50%以下である前記 [4]に記載の成形 複合体。
[0015] [6]前記第 1成形部が、その表面及び Z又は内部に補強用部材を含む前記 [1]〜
[5] 、ずれかに記載の成形複合体。
[0016] [7]前記第 1成形部を (P)、前記第 2成形部を (Q)とした場合に、下記 [1]〜[4]の
V、ずれかの構造である前記 [1]〜 [6]の 、ずれかに記載の成形複合体。
[0017] [数 1]
[ 1 ] 〔 ( P ) — (Q) 〕 m
[ 2 ] ( P ) - C (Q) - ( P ) 〕 m
[ 3 ] (Q) 一 〔 (P ) — (Q) 〕 m
[ 4 ] 〔 ( P ) " (Q) 〕 n〕
(前記 [1]〜[4]の構造中、 mは 1以上の整数であり、 nは 2以上の整数である) [0018] [8]前記第 1成形部の端部と、前記第 2成形部の端部とが接合された環状構造であ る前記 [ 1]〜 [7]の 、ずれかに記載の成形複合体。 [0019] [9]自動車内装材又は自動車外装材である前記 [1]〜[8]のいずれかに記載の成 形複合体。
[0020] [10]ウエザーストリップである前記 [9]に記載の成形複合体。
[0021] [11] (A)デカリン溶媒中 135°Cで測定した極限粘度 [ r? ]力 3. 5〜6. 8dlZgで あるエチレン. aーォレフイン系共重合ゴム 5〜60質量0 /0、(B)ポリオレフイン系榭脂 1〜20質量%、及び (C)鉱物油系軟化剤 30〜94質量% (但し、 (A) + (B) + (C) = 100質量%)、を含有する、少なくとも前記 (A)エチレン' a—ォレフイン系共重合 ゴム及び前記 (B)ポリオレフイン系榭脂が含有される混合物を架橋剤の存在下に動 的に熱処理して得られたォレフィン系熱可塑性エラストマ一組成物を押出発泡成形 して、発泡倍率 1. 2倍以上の成形部材を得る工程と、得られた前記成形部材を、前 記成形部材の表面及び Z又は断面が金型キヤビティに露出するように設置する工程 と、前記ォレフィン系熱可塑性エラストマ一組成物、及び Z又は前記ォレフィン系熱 可塑性エラストマ一組成物以外の熱可塑性エラストマ一組成物を、前記金型キヤビ ティに射出して導入する工程と、を備えた成形複合体の製造方法。
[0022] 本発明の成形複合体は、圧縮永久歪み、各成形部どうしの接着性、各成形部どう しの折り曲げ剥離性、柔軟性、マテリアルリサイクル性、及び成形外観に優れている t 、つた効果を奏するものである。
[0023] 本発明の成形複合体の製造方法によれば、圧縮永久歪み、各成形部どうしの接着 性、各成形部どうしの折り曲げ剥離性、柔軟性、マテリアルリサイクル性、及び成形外 観に優れた成形複合体を、短時間で安全に製造することができる。
図面の簡単な説明
[0024] [図 1]本発明の成形複合体の一実施形態 (ウエザーストリップ)を示す部分模式図で ある。
[図 2]本発明のウエザーストリップの他の実施形態 (ウエザーストリップ)を示す部分模 式図である。
[図 3]成形複合体 (ウエザーストリップ)を自動車のドアに配設する一例を示す模式図 である。
符号の説明 [0025] 1, 2 ウエザーストリップ
3 自動車のドア
11 , l la〜l le 第 1成形部
12, 12a〜12e 第 2成形部
発明を実施するための最良の形態
[0026] 以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の 形態に限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の通常 の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも 本発明の範囲に入ることが理解されるべきである。
[0027] 1.成形複合体:
図 1は、本発明の成形複合体 (ウエザーストリップ)の一実施形態を示す部分模式図 である。本実施形態の成形複合体 (ウエザーストリップ 1)は、ォレフィン系熱可塑性ェ ラストマー糸且成物を押出発泡成形してなる第 1成形部 11と、このォレフィン系熱可塑 性エラストマ一組成物、及び Z又はそれ以外の熱可塑性エラストマ一組成物を射出 成形してなる、第 1成形部 11の表面、及び Z又は断面に接合される第 2成形部 12と を備えたものである。構成材料として用いられるォレフィン系熱可塑性エラストマ一組 成物は、(A)エチレン · α—ォレフィン系共重合ゴム(以下、「(Α)成分」、又は「ΕΑΟ 系共重合ゴム」ともいう)、(Β)ポリオレフイン系榭脂 (以下、「(Β)成分」ともいう)、及び (C)鉱物油系軟化剤(以下、「(C)成分」ともいう)を含むものである。以下、本発明の 成形複合体の詳細について説明する。
[0028] ( (A)エチレン' aーォレフイン系共重合ゴム)
(A)成分は、エチレン' a—ォレフイン系共重合ゴムである。この(A)成分の、デカリ ン溶媒中 135°Cで測定した極限粘度 [ 7? ]は、 3. 5dlZg以上、好ましくは 3. 8dl/g 以上、更に好ましくは 4. 0〜7. Odl/gである。この極限粘度 [ 7? ]が 3. 5dl/g未満 であると、得られるォレフィン系熱可塑性エラストマ一組成物力 鉱物油系軟化剤が ブリードアウトしたり、ゴム弾性が低下したりする場合がある。
[0029] (A)成分の具体例としては、エチレン単量体単位(al)と、 α—ォレフイン単量体( 但し、エチレンを除く)単位 (a2)とを含む共重合体を挙げることができる。 [0030] エチレン単量体単位 (al)の含有量は、 (A)成分を構成する単量体単位の全量を 1 OOmol%とした場合、 35〜95mol%であることが好ましぐ 40〜90mol%であること が更に好ましぐ 45〜85mol%であることが特に好ましい。エチレン単量体単位(al )の含有量が 35mol%未満であると、機械的強度が不十分となる傾向にある。一方、 エチレン単量体単位(al)の含有量が 95mol%超であると、得られるォレフィン系熱 可塑性エラストマ一組成物の柔軟性が不十分となる傾向にある。
[0031] aーォレフイン単量体単位(a2)を形成する aーォレフインとしては、炭素数が 3以 上であるものが好ましい。より具体的には、プロピレン、 1—ブテン、 2—ブテン、イソブ テン、 1 ペンテン、 2—メチルー 1ーブテン、 2—メチルー 2 ブテン、 3—メチルブテ ン、 1—へキセン、 4—メチル 1—ペンテン、 3—メチル 1—ペンテン、 1—ヘプテ ン、 1—オタテン、 1—デセン、 1—ゥンデセン等を挙げることができる。これらは、一種 単独で又は二種以上を組み合わせて用いることができる。また、これらのうち、炭素 数が 3〜10のものが更に好ましい。炭素数が 3〜10である α ォレフィンを用いるこ とにより、(Α)成分力 エチレン、 α—ォレフィン以外の他の単量体単位を含むもの である場合に、他の単量体を共重合させ易くすることができる。なお、より好ましい α ーォレフインは、プロピレン、 1ーブテン、 1一へキセン、及び 1—オタテンであり、プロ ピレン、及び 1ーブテンが特に好ましい。
[0032] aーォレフイン単量体単位 (a2)の含有量は、(A)成分を構成する単量体単位の全 量を 100mol%とした場合に、 5〜65mol%であることが好ましぐ 10〜45mol%で あることが更に好ましぐ 15〜40mol%であることが特に好ましい。 α—ォレフィン単 量体単位 (a2)の含有量が 5mol%未満であると、得られるォレフィン系熱可塑性エラ ストマー組成物が所望のゴム弾性を示さない場合がある。一方、 α—ォレフィン単量 体単位 (a2)の含有量が 65mol%超であると、得られるォレフィン系熱可塑性エラスト マー組成物の耐久性が低下する場合がある。
[0033] (A)成分は、前述のエチレン単量体単位(al)及び α—ォレフイン単量体単位(a2 )力 なる二元共重合体であってもよいし、これらの単量体単位に加えて、更に他の 単量体単位 (a3)を含む共重合体 (三元共重合体、四元共重合体等)であってもよ!/、 。この他の単量体単位 (a3)としては、非共役ジェン化合物からなる単量体単位等を 挙げることができる。
[0034] 他の単量体単位 (a3)を構成する非共役ジェンィ匕合物としては、 1, 4一へキサジェ ン、 1, 5 へキサジェン、 1, 6 へキサジェン等の直鎖の非環状ジェン化合物; 5— メチルー 1 , 4一へキサジェン、 3, 7 ジメチルー 1, 6—ォクタジェン、 5, 7 ジメチ ルォクタ 1, 6 ジェン、 3, 7 ジメチルー 1 , 7—ォクタジェン、 7 メチルオタター 1, 6 ジェン、ジヒドロミルセン等の分岐連鎖の非環状ジェンィ匕合物;テトラヒドロイン デン、メチルテトラヒドロインデン、ジシクロペンタジェン、ビシクロ [2. 2. 1]一へプタ - 2, 5 ジェン、 5—メチレンー2 ノルボルネン、 5 ェチリデン 2 ノルボルネン 、 5 プロべ-ルー 2 ノルボルネン、 5—イソプロピリデン— 2 ノルボルネン、 5 シ クロへキシリデン 2 ノルボルネン、 5 ビュル 2 ノルボルネン等の脂環式ジェ ン化合物等を挙げることができる。これらは、一種単独で又は二種以上を組み合わせ て用いることができる。これらのうち、 1, 4一へキサジェン、ジシクロペンタジェン、 5 ェチリデン 2—ノルボルネンが好まし!/、。
[0035] (A)成分に含有される他の単量体単位 (a3)の含有量は、(A)成分を構成する単 量体単位の全量 100mol%とした場合に、 10mol%以下であることが好ましぐ 1〜8 mol%であることが更に好ましい。他の単量体単位(a3)の含有量が 10mol%超であ ると、得られるォレフィン系熱可塑性エラストマ一組成物の耐久性が低下する場合が ある。
[0036] (A)成分は、その分子中の水素原子の一部が、塩素原子、臭素原子等のハロゲン 原子に置換されたノヽロゲンィ匕共重合体であってもよい。また、エチレン' a—ォレフィ ン系共重合ゴムに対して、塩化ビュル、酢酸ビュル、(メタ)アクリル酸、(メタ)アクリル 酸の誘導体((メタ)アクリル酸メチル、(メタ)アクリル酸グリシジル、(メタ)アクリルアミド 等)、マレイン酸、マレイン酸の誘導体(無水マレイン酸、マレイミド、マレイン酸ジメチ ル等)、共役ジェン化合物(ブタジエン、イソプレン、クロ口プレン等)等の不飽和モノ マーを重合させて得られるグラフト重合体を、(A)成分として用いることもできる。上述 してきた (A)成分は、一種単独で又は二種以上を組み合わせて用いることができる。
[0037] 本実施形態のウエザーストリップを製造するために用いられるォレフィン系熱可塑 性エラストマ一組成物に含有される (A)成分の含有量は、(A)成分、(B)成分、及び (C)成分の合計を 100質量%とした場合に、 5〜60質量%、好ましくは 10〜58質量 %、更に好ましくは 15〜55質量%である。(A)成分の含有量が 5質量%未満である と、(C)成分がブリードアウトする場合がある。一方、(A)成分の含有量が 60質量% 超であると、得られるォレフィン系熱可塑性エラストマ一組成物の柔軟性が不十分と なる場合がある。
[0038] (A)成分として、 (A)成分及び (C)鉱物油系軟化剤からなる (X)油展ゴムを用いる ことも可能である。(X)油展ゴムに含まれるエチレン' a—ォレフイン系共重合ゴムとし ては、これまで説明した (A)成分をそのまま用いることができる。(X)油展ゴムに含ま れる (A)成分及び (C)鉱物油系軟化剤の割合は、これらの合計を 100質量%とした 場合に、いずれも 20〜80質量%であることが好ましぐ 25〜75質量%であることが 更に好ましぐ 30〜70質量%であることが特に好ましい。
[0039] (X)油展ゴムを使用する場合にお!ヽて、ォレフィン系熱可塑性エラストマ一組成物 に含有される (X)油展ゴムの含有量は、(X)油展ゴム、 (B)成分、及び (C)の合計を 100質量%とした場合に、 5〜60質量%であることが好ましぐ 10〜58質量%である ことが更に好ましぐ 15〜55質量%であることが特に好ましい。(X)油展ゴムの含有 量が 5質量%未満であると、(C)鉱物油系軟化剤がブリードアウトする場合がある。一 方、(X)油展ゴムの含有量が 60質量%超であると、得られるォレフィン系熱可塑性ェ ラストマー組成物の柔軟性が不十分となる場合がある。
[0040] ( (B)ポリオレフイン系榭脂)
(B)成分は、ポリオレフイン系榭脂である。この(B)成分は、単独重合体であっても よいし、一種以上の aーォレフインからなる単量体単位の合計が 50mol%を超えて 含まれる共重合体であってもよい。この共重合体は、 α—ォレフィンどうしの共重合 体であってもよいし、 aーォレフインと、この aーォレフインと共重合可能な他の単量 体との共重合体であってもよい。なお、(B)成分としては、 (B-a) aーォレフイン系 結晶性熱可塑性榭脂(以下、「(B— a)成分」ともいう)、及び Z又は (B— b) α—ォレ フィン系非晶質熱可塑性榭脂 (以下、「 (B— b)成分」とも 、う)を用いることができる。
[0041] ( (B-a) a一才レフイン系結晶性熱可塑性榭脂)
(B— a)成分は、 α—ォレフィンに由来する構成単位 (bl)を含む重合体である。 ( B— a)成分の X線回折による結晶化度は、 50%以上、好ましくは 53%以上、更に好 ましくは 55%以上である。この結晶化度は、密度と密接に関係している。例えば、 ex 一才レフイン系結晶性熱可塑性榭脂がポリプロピレンである場合、 a型結晶(単斜晶 形)の密度は 0. 936gZcm3、スメチカ型微結晶(擬六方晶形)の密度は 0. 886g/ cm3、非晶質 (ァタクチック)成分の密度は 0. 850gZcm3である。また、ひ ォレフィ ン系結晶性熱可塑性榭脂がポリ 1ーブテンである場合、ァイソタクチック結晶成分 の密度は 0. 91gZcm3、非晶質 (ァタクチック)成分の密度は 0. 87gZcm3である。
[0042] 従って、(B— a)成分の密度は、 0. 89gZcm3以上、好ましくは 0. 90〜0. 94g/c m3である。密度を 0. 89gZcm3以上とすることにより、結晶化度を 50%以上とするこ とができる。なお、(B— a)成分の、結晶化度が 50%未満、及び Z又は密度が 0. 89 gZcm3未満であると、各成形部の耐熱性、強度等が低下する傾向にある。
[0043] 構成単位 (bl)を構成する a—ォレフインは、炭素数が 2〜12のものであることが好 ましい。なかでも、プロピレン、 1—ブテンが更に好ましい。(B— a)成分に含まれる構 成単位 (b l)の割合は、全構成単位を 100mol%とした場合に、 60mol%以上である ことが好ましぐ 80mol%以上であることが更に好ましぐ 90〜: L00mol%であること が特に好ましい。 60mol%未満であると、エチレン' aーォレフイン系共重合ゴムとの 相容性が低下する傾向にある。
[0044] (B—a)成分は、構成単位 (bl)以外の他の構成単位 (b2)を含む共重合体であつ てもよい。この共重合体は、ブロック共重合体とランダム共重合体のいずれであっても よい。但し、(B— a)成分がブロック共重合体である場合、このブロック共重合体の結 晶化度を 50%以上とするためには、構成単位 (b2)の割合は、全構成単位を 100m ol%とした場合に、 40mol%以下であることが好ましぐ 20mol%以下であることが更 に好ましぐ 10mol%以下であることが特に好ましい。なお、このブロック共重合体は 、例えば、チーグラー 'ナッタ触媒を用いたリビング重合により製造することができる。
[0045] また、 (B a)成分力ランダム共重合体である場合、このランダム共重合体の結晶 化度を 50%以上とするためには、構成単位 (b2)の割合は、全構成単位を lOOmol %とした場合に、 15mol%以下であることが好ましぐ 10mol%以下であることが更に 好ましい。なお、このランダム共重合体は、例えば、チーグラー ·ナッタ触媒、可溶性 バナジウム化合物、有機アルミニウム化合物、及び溶媒を含む触媒成分の存在下で 、 α—ォレフィン等を重合することにより得ることができる。重合方法としては、中 '低 圧法等を挙げることができ、気相法 (流動床又は撹拌床)、液相法 (スラリー法又は溶 液法)等で製造することができる。重合時には、必要に応じて、水素ガス等の分子量 調節剤を用いてもよい。
[0046] 触媒成分に含まれる可溶性バナジウム化合物としては、 VOC1及び Ζ又は VC1と
3 4
、アルコールとの反応生成物を用いることが好ましい。アルコールとしては、メタノー ル、エタノール、 η—プロパノール、イソプロパノール、 η—ブタノール、 sec—ブタノ一 ル、 tーブタノール、 n—へキサノール、 n—ォクタノール、 2—ェチルへキサノール、 n ーデカノール、 n—ドデカノール等を挙げることができる。これらのうち、炭素数 3〜8 のアルコールが好まし 、。
[0047] 触媒成分に含まれる有機アルミニウム化合物としては、トリェチルアルミニウム、トリ イソブチルアルミニウム、トリー n—へキシルアルミニウム、ジェチルアルミニウムモノク 口リド、ジイソブチルアルミニウムモノクロリド、ェチルアルミニウムセスキク口リド、ブチ ルアルミニウムセスキク口リド、ェチルアルミニウムジクロリド、ブチルアルミニウムジクロ リド、トリメチルアルミニウムと水との反応生成物であるメチルアルミノキサン等を挙げる ことができる。これらのうち、ェチルアルミニウムセスキク口リド、ブチルアルミニウムセ スキクロリド、ェチルアルミニウムセスキク口リドとトリイソブチルアルミニウムとの混合物 、トリイソブチルアルミニウムとブチルアルミニウムセスキクロリドとの混合物が好まし ヽ
[0048] 触媒成分に含まれる溶媒としては、炭化水素が好ましい。なかでも、 n—ペンタン、 n—へキサン、 n—ヘプタン、 n—オクタン、イソオクタン、シクロへキサンが更に好まし い。これらの溶媒を、一種単独で又は二種以上を組み合わせて用いることができる。
[0049] (B— a)成分の、示差走査熱量測定法により測定される最大ピーク温度 (融点)は、 100°C以上であることが好ましぐ 120°C以上であることが更に好ましい。(B— a)成 分の融点が 100°C未満であると、各成形部の耐熱性、及び機械的強度が不十分とな る傾向にある。
[0050] また、(B— a)成分のメルトフローレート(MFR) (温度 230°C、荷重 2. 16kg)は、 0 . 1〜: LOOOgZlO分であることが好ましぐ 0. 5〜500gZlO分であることが更に好ま しぐ l〜100gZlO分であることが特に好ましい。 (B— a)成分のMFRが0. lg/10 分未満であると、ォレフィン系熱可塑性エラストマ一組成物の混練加工性、押出加工 性等が不十分となる傾向にある。一方、 lOOOgZlO分超であると、各成形部の機械 的強度が低下する傾向にある。
[0051] 従って、(B— a)成分としては、結晶化度が 50%以上、密度が 0. 89gZcm3以上、 構成単位 (bl)以外の構成単位の含有量が 20mol%以下、融点が 100°C以上、力 つ、 MFRが 0. l〜100gZlO分であるものが好ましい。特に、融点が 140〜170°C である、ポリプロピレン、プロピレン 'エチレン共重合体が好ましい。なお、二種以上の (B— a)成分を併用することもできる。
[0052] ( (B-b) a一才レフイン系非晶質熱可塑性榭脂)
(B— b)成分は、 oc一才レフインに由来する構成単位 (b3)を含み、 X線回折による 結晶化度が 50%未満、好ましくは 30%以下、更に好ましくは 20%以下のものである 。また、(B—b)成分の密度は、 0. 85-0. 89gZcm3であることが好ましぐ 0. 85〜 0. 88gZcm3であることが更に好ましい。
[0053] 構成単位 (b3)を構成する aーォレフインは、炭素数が 3以上のものであることが好 ましぐ炭素数が 3〜12のものであることが更に好ましい。また、 (Xーォレフイン系非 晶質熱可塑性榭脂に含まれる構成単位 (b3)の割合は、全構成単位を 100mol%と した場合に、 60mol%以上であることが好ましい。 60mol%未満であると、エチレン' aーォレフイン系共重合ゴムと相容性が低下する傾向にある。
[0054] (B—b)成分の具体例としては、ァタクチックポリプロピレン、ァタクチックポリ 1ーブ テン等の単独重合体; 50mol%超のプロピレンと、他の α—ォレフイン(エチレン、 1 —ブテン、 1—ペンテン、 1—へキセン、 4—メチル 1—ペンテン、 1—オタテン、 1— デセン等)とからなる共重合体; 50mol%超の 1ーブテンと、他の aーォレフイン(ェ チレン、プロピレン、 1 ペンテン、 1一へキセン、 4ーメチノレー 1 ペンテン、 1一才ク テン、 1—デセン等)と力もなる共重合体等を挙げることができる。なかでも、ァタクチ ックポリプロピレン、 50mol%超のプロピレンとエチレンとからなる共重合体、 50mol %超のプロピレンと 1—ブテンと力 なる共重合体が特に好ましい。 [0055] ァタクチックポリプロピレン、及びァタクチックポリ 1ーブテンは、ジルコノセン化合 物—メチルアルミノキサン触媒を用いる重合方法によって製造することができる。なお 、ァタクチックポリプロピレンは、前述の(B— a)成分として例示したポリプロピレンの 副生成物として得ることもできる。
[0056] (B-b)成分が共重合体である場合、この共重合体は、ブロック共重合体及びラン ダム共重合体のいずれであってもよい。但し、(B— b)成分がブロック共重合体である 場合、 50mol%を超えて含まれる構成単位 (b3)は、ァタクチック構造で結合している 必要がある。このブロック共重合体は、例えば、チーグラー 'ナッタ触媒を用いるリピン グ重合により得ることができる。また、ランダム共重合体は、(B— a)成分と同様の方 法により得ることができる。なお、(B— b)成分力 炭素数が 3以上である aーォレフィ ンとエチレンとの共重合体であり、全構成単位を 100mol%とした場合、構成単位 (b 3)の含有量は、 60〜: LOOmol%であることが好ましい。 60mol%未満であると、ェチ レン' a—ォレフイン系共重合ゴムと相容性が低下する傾向にある。
[0057] (B-b)成分の、 GPCによるポリスチレン換算の数平均分子量(Mn)は、 1000〜2 0000であること力好ましく、 1500〜15000であること力更に好ましい。(B— b)成分 の Mnが 1000未満であると、機械的強度が悪化する傾向にある。一方、 Mn力 000 0超であると、柔軟性が悪ィ匕する傾向にある。なお、二種以上の(B— b)成分を併用 することちでさる。
[0058] 本実施形態の成形複合体を製造するために用いられるォレフィン系熱可塑性エラ ストマー組成物に含有される (B)成分の含有量は、(A)成分、(B)成分、及び (C)成 分の合計を 100質量%とした場合に、 1〜20質量%、好ましくは 3〜18質量%、更に 好ましくは 5〜15質量%である。(B)成分の含有量が 1質量%未満であると、混練カロ ェ性が低下する傾向にある。一方、(B)成分の含有量が 20質量%超であると、得ら れるォレフイン系熱可塑性エラストマ一組成物の柔軟性が不十分となる傾向にある。
[0059] 本実施形態の成形複合体を製造するために用いられるォレフィン系熱可塑性エラ ストマー組成物中に(B— b)成分が含まれると、射出熱融着性が向上するために好ま しい。ォレフィン系熱可塑性エラストマ一組成物中の(B—b)成分の含有割合は、 0. 5質量%以上とすることが好ましぐ 1質量%以上とすることが更に好ましぐ 3質量% 以上とすることが特に好ましい。なお、(B— b)成分の含有量の上限値については特 に限定されな 、が、 15質量%以下であればょ 、。
[0060] ( (C)鉱物油系軟化剤)
(C)成分は、鉱物油系軟化剤である。この (C)成分は、ゴム製品等に一般的に用 いられるものであれば特に限定されない。具体的には、ノラフィン系、ナフテン系、芳 香族系の鉱物油系軟化剤を好適例として挙げることができる。
[0061] なお、鉱物油系軟化剤は、一般に、芳香族環、ナフテン環、及びパラフィン鎖の三 者の混合物である。ノラフィン鎖の炭素数が全炭素数中の 50%以上を占めるものが パラフィン系鉱物油、ナフテン環の炭素数が全炭素数中の 30〜45%のものがナフ テン系鉱物油、芳香族環の炭素数が全炭素数中の 30%以上のものが芳香族系鉱 物油と、それぞれ分類される。パラフィン系鉱物油、ナフテン系鉱物油、及び芳香族 系鉱物油は、一種単独で又は二種以上を組合せて用いることができる。なかでも、パ ラフィン系鉱物油が好ましぐ特に水添パラフィン系鉱物油が好ましい。パラフィン系 鉱物油としては、例えば、商品名「ダイアナプロセスオイル PW90」、商品名「ダイアナ プロセスオイル PW380」 (V、ずれも出光興産社製)等を挙げることができる。
[0062] (C)成分の GPCによるポリスチレン換算の重量平均分子量 Mwは、 300〜2000で あることが好ましぐ 500〜1500であることが更に好ましい。また、(C)成分の 40°Cに おける動粘度は、 20〜800cStであること力好ましく、 50〜600cStであることが更に 好ましい。(C)成分の流動点は、 40〜0°Cであることが好ましぐ 30〜0°Cである ことが更に好ましい。なお、(C)成分は、ポリブテン系、ポリブタジエン系等の低分子 量の炭化水素等と併用することができる。
[0063] 本実施形態の成形複合体を製造するために用いられるォレフィン系熱可塑性エラ ストマー組成物に含有される (C)成分の含有量は、(A)成分、(B)成分、及び (C)成 分の合計を 100質量%とした場合に、 30〜94質量%、好ましくは 32〜87質量%、 更に好ましくは 35〜80質量%である。(C)成分の含有量が 30質量%未満であると、 得られるォレフィン系熱可塑性エラストマ一組成物の柔軟性が不十分となる傾向にあ る。一方、(C)成分の含有量が 94質量%超であると、得られるォレフィン系熱可塑性 エラストマ一組成物の強度が不十分になるとともに、(C)成分がブリードアウトする場 合がある。
[0064] ( (D)オノレガノポリシロキサン)
ォレフィン系熱可塑性エラストマ一組成物は、(D)オルガノポリシロキサン(以下、「( D)成分」とも 、う)を更に含有するものであることが好ま 、。ォレフィン系熱可塑性 エラストマ一組成物に (D)成分を含有させることにより、本実施形態の成形複合体の 耐摩耗性が極めて優れたものになるとともに、シリコーン系塗料等の表面処理剤の塗 布処理を不要にすることができる。(D)成分の具体例としては、(D1)未変性オルガノ ポリシロキサン(以下、「(D1)成分」ともいう)、(D2)ビュル基含有オルガノポリシロキ サン (以下、「 (D2)成分」とも 、う)を挙げることができる。
[0065] ( (D1)未変性オルガノポリシロキサン)
(D1)成分としては、特に制限されるものではないが、ジメチルポリシロキサン、メチ ルフエ二ルポリシロキサン、フルォロポリシロキサン、テトラメチルテトラフエ二ルポリシ ロキサン、メチルハイドロジエンポリシロキサン等を挙げることができる。これらのうち、 ジメチルポリシロキサンが好ましく用いられる。
[0066] (D1)成分の、 JIS K2283で規定される 25°Cにおける粘度は、 100, OOOcSt未 満であることが好ましぐ 70, OOOcSt未満であることが更に好ましぐ 50, OOOcSt未 満であることが特に好ましい。(C1)成分の、 JIS K2283で規定される 25°Cにおける 粘度が 100, OOOcSt超であると、初期の摺動性が低下する傾向にある。
[0067] (D1)成分の配合量は、 (A)成分と (B)成分の合計 (又は (X)油展ゴムと (B)成分 の合計) 100質量部に対して、 0. 1〜: L0質量部とすることが好ましぐ 1〜8質量部と することが更に好ましぐ 1〜5質量部とすることが特に好ましい。(D1)の配合量力 ( A)成分と (B)成分の合計 (又は (X)油展ゴムと (B)成分の合計) 100質量部に対して 、 0. 1質量部未満であると、初期摺動性が劣る傾向にある。一方、 10質量部超であ ると、成形外観が劣る場合や、ブリードアウトする場合がある。
[0068] (D1)成分は、(A)成分及び (B)成分 (並びに必要に応じて (C)成分)と一緒に、架 橋剤存在下で動的に溶融混練されてもよぐ (A)成分及び (B)成分 (並びに必要に 応じて (C)成分)が架橋剤存在下で動的に溶融混練された後に、別途添加されても よい。即ち、ォレフィン系熱可塑性エラストマ一組成物への(D1)成分の添加方法は 限定されない。
[0069] ( (D2)ビュル基含有オルガノポリシロキサン)
(D2)成分は、下記平均組成式(1)で表される、重合度が 500〜10000のビニル 基含有オルガノポリシロキサンであることが好ましい。
[0070] [化 1]
R a S i 0 4 _ a ( 1 )
2
(前記平均組成式(1)中、 Rは置換又は非置換の一価の有機基であり、 Rのうち 0. 02〜: LOmol%はビュル基であり、 aは 1. 900〜2. 004の範囲の数である)
[0071] (D2)成分は、主として直鎖状のものである力 その一部が分岐鎖状となって ヽても 、三次元構造を形成していてもよい。また、単独重合体、共重合体、又はこれらの混 合物であってもよい。この(D2)成分の平均組成式中、置換又は非置換の一価の有 機基 (R)の具体例としては、メチル基、ェチル基、プロピル基、ビュル基、若しくはフ ニル基、又はこれらの基のハロゲン置換炭化水素基等を挙げることができる。なお 、Rのうちの 0. 02〜: L0mol%、好ましくは 0. 05〜5mol%がビュル基であることが更 に好ましい。 Rに占めるビニル基の割合が 0. 02mol%未満であると、架橋剤との反 応が不十分になり、各成形部の耐久摩耗性が低下する傾向にある。一方、 Rに占め るビニル基の割合が 10mol%超であると、架橋反応が急激に進むため、不均一な混 練状態となり易ぐ得られるォレフィン系熱可塑性エラストマ一組成物の物性に影響 が及ぶ傾向にある。
[0072] 前記平均組成式(1)中、 aの値は 1. 900〜2. 004、好ましくは 1. 950〜2. 002で ある。 aの値が 1. 900未満であると、各成形部の機械的強度、耐熱性等が良好になり 難い傾向にある。一方、 aの値が 2. 004超であると、十分な重合度のオルガノポリシ ロキサンを得難くなる傾向にある。
[0073] また、オルガノポジシロキサンの重合度は、 500〜10, 000、好まし <は 1 , 000〜8 , 000である。重合度が 500未満であると、各成形部の機械的強度等が良好になり 難い傾向にある。一方、重合度 10, 000超のものは合成し難い。オルガノポリシロキ サンの分子鎖末端は、例えば水酸基、アルコキシ基、トリメチルシリル基、ジメチルビ -ルシリル基、メチルフヱ-ルビ-ルシリル基、メチルジフヱ-ルシリル基等で封鎖さ れていてもよい。
[0074] (D2)成分の配合量は、 (A)成分と (B)成分の合計 (又は (X)油展ゴムと (B)成分 の合計) 100質量部に対して、 0. 1〜: L0質量部とすることが好ましぐ 1〜8質量部と することが更に好ましぐ 1〜5質量部とすることが特に好ましい。(D2)成分の配合量 力 (A)成分と (B)成分の合計 (又は (X)油展ゴムと (B)成分の合計) 100質量部に 対して、 0. 1質量部未満であると、初期摺動性が劣る傾向にある。一方、 10質量部 超であると、成形外観が劣る場合がある。
[0075] (D2)成分は、(A)成分及び (B)成分 (並びに必要に応じて (C)成分)と一緒に、架 橋剤存在下で動的に溶融混練されてもよぐ (A)成分及び (B)成分 (並びに必要に 応じて (C)成分)が架橋剤存在下で動的に溶融混練された後に、別途添加されても よい。即ち、ォレフィン系熱可塑性エラストマ一組成物への(D2)成分の添加方法は 限定されない。
[0076] (その他の重合体成分)
ォレフィン系熱可塑性エラストマ一組成物には、(A)成分、(B)成分、及び (D)成 分以外に、その他の重合体成分が含有されていてもよい。その他の重合体成分とし ては、得られる熱可塑性エラストマ一組成物の機械的強度、柔軟性等を阻害しない ものであれば、特に限定されない。
[0077] その他の重合体成分としては、アイオノマー榭脂、アミノアクリルアミド重合体、ポリ エチレン及びその無水マレイン酸グラフト重合体、ポリイソブチレン、エチレン '塩化ビ -ル共重合体、エチレン 'ビュルアルコール共重合体、エチレン '酢酸ビュル共重合 体、ポリエチレンオキサイド、エチレン 'アクリル酸共重合体、ポリプロピレン及びその 無水マレイン酸グラフト重合体、ポリイソブチレン及びその無水マレイン酸グラフト重 合体、塩素化ポリプロピレン、 4—メチルペンテン— 1榭脂、ポリスチレン、 ABS榭脂、 ACS榭脂、 AS榭脂、 AES榭脂、 ASA榭脂、 MBS榭脂、アクリル榭脂、メタタリル榭 脂、塩化ビニル榭脂、塩ィ匕ビユリデン榭脂、ポリアミド榭脂、ポリカーボネート、ビニル アルコール榭脂、ビュルァセタール榭脂、フッ素榭脂、ポリエーテル榭脂、ポリエチレ ンテレフタレート、二トリルゴム及びその水素添カ卩物、アクリルゴム、シリコーンゴム、フ ッ素ゴム、ブチルゴム、天然ゴム、塩素化ポリエチレン系熱可塑性エラストマ一、シン ジオタクチック 1, 2—ポリブタジエン、単純ブレンド型ォレフイン系熱可塑性エラストマ 一、インプラント型ォレフイン系熱可塑性エラストマ一、動的架橋型ォレフイン系熱可 塑性エラストマ一、ポリ塩ィ匕ビュル系熱可塑性エラストマ一、ポリウレタン系熱可塑性 エラストマ一、ポリエステル系熱可塑性エラストマ一、ポリアミド系熱可塑性エラストマ 一、フッ素系熱可塑性エラストマ一を挙げることができる。これらの重合体成分は、一 種単独で又は二種以上を組合せて用いることができる。
[0078] その他の重合体成分の含有割合は、 (A)成分と (B)成分の合計 100質量部に対し て、 0. 1〜: L00質量部とすることが好ましぐ 0. 1〜80質量部とすることが更に好まし い。
[0079] (添加剤)
ォレフィン系熱可塑性エラストマ一組成物には、充填剤、老化防止剤、酸化防止剤 、可塑剤、紫外線吸収剤、帯電防止剤、耐候剤、難燃剤、充填剤、防菌,防かび剤、 ブロッキング剤、シール性改良剤、滑剤 (金属石鹼、ワックス等)、熱安定剤、光安定 剤、銅害防止剤等の安定剤、金属不活性剤、結晶核剤、粘着付与剤、発泡剤、発泡 助剤、着色剤 (染料、顔料等)等の添加剤が含有されていてもよい。
[0080] 充填剤としては、フェライト等の金属粉末、ガラス繊維、金属繊維等の無機繊維、炭 素繊維、ァラミド繊維等の有機繊維、複合繊維、チタン酸カリウムウイスカ一等の無機 ゥイスカー、ガラスビーズ、ガラスバルーン、ガラスフレーク、アスベスト、マイ力、炭酸 カルシウム、タルク、湿式シリカ、乾式シリカ、アルミナ、アルミナシリカ、ケィ酸カルシ ゥム、ハイド口タルサイト、カオリン、けい藻土、グラフアイト、軽石、ェボ粉、コットンフロ ック、コルク粉、硫酸バリウム、フッ素榭脂、ポリマービーズ、カーボンブラック、セル口 ースパウダー、ゴム粉、木粉等を挙げることができる。これらは、一種単独で又は二種 以上を組合せて用いることができる。
[0081] (架橋剤)
ォレフィン系熱可塑性エラストマ一組成物は、少なくとも (A)成分と (B)成分を含有 する混合物が、架橋剤の存在下に動的に熱処理して得られたものである。このとき用 V、る架橋剤の種類は特に限定されな 、が、 (B)成分の融点以上の温度における動 的熱処理により、少なくとも (A)成分を架橋することができる化合物を架橋剤として用 、ることが好まし!/、。
[0082] 架橋剤の具体例としては、有機過酸化物、フエノール榭脂架橋剤、硫黄、硫黄化合 物、 p キノン、 p キノンジォキシムの誘導体、ビスマレイミドィ匕合物、エポキシ化合 物、シランィ匕合物、アミノ榭脂、ポリオール架橋剤、ポリアミン、トリアジンィ匕合物、金属 石鹼等を挙げることができる。なかでも、有機過酸化物、フエノール榭脂架橋剤が好 ましい。これらは、一種単独で又は二種以上を組み合わせて用いることができる。ま た、架橋剤の使用量は、混合物に含まれる重合体成分の合計量 100質量部に対し て、 0. 01〜20質量部とすることが好ましぐ 0. 1〜15質量部とすることが更に好まし く、 1〜: LO質量部とすることが特に好ましい。
[0083] (有機過酸化物)
有機過酸化物としては、 1, 3 ビス(t ブチルパーォキシイソプロピル)ベンゼン、 2, 5 ジメチルー 2, 5 ビス(t—ブチルパーォキシ)へキシンー3、 2, 5 ジメチル - 2, 5 ビス(t—ブチルパーォキシ)へキセン— 3、 2, 5 ジメチルー 2, 5 ビス(t ブチルパーォキシ)へキサン、 2, 2,一ビス(t ブチルパーォキシ) p イソプロ ピルベンゼン、ジクミルパーォキシド、ジー t ブチルパーォキシド、 t ブチルパー ォキシド、 p—メンタンパーォキシド、 1, 1 ビス(t ブチルパーォキシ) 3, 3, 5— トリメチルシクロへキサン、ジラウロイルパーォキシド、ジァセチルバーォキシド、 tーブ チノレパーォキシベンゾエート、 2, 4ージクロ口べンゾィノレパーォキシド、 p クロ口べ ンゾィルパーォキシド、ベンゾィルパーォキシド、ジ(t ブチルパーォキシ)パーベン ゾエート、 n—ブチルー 4, 4 ビス(t—ブチルパーォキシ)バレレート、 tーブチルバ 一ォキシイソプロピルカーボネート等を挙げることができる。
[0084] なかでも、 1 , 3 ビス(t ブチルパーォキシイソプロピル)ベンゼン、 2, 5-ジメチ ルー 2, 5 ジ(t—ブチルパーォキシ)へキシン 3、 2, 5 ジメチルー 2, 5 ジ(t— ブチノレパーォキシ)へキサン、 α , α ビス (t ブチノレパーォキシ)ジイソプロピルべ ンゼン、ジクミルパーオキサイド、ジー t ブチルパーオキサイドが好ましい。これらを 一種単独で又は二種以上を組み合わせて用いることができる。
[0085] 架橋剤として有機過酸化物を使用する場合に、この有機過酸化物の使用量は、混 合物に含まれる重合体成分の合計量 100質量部に対して、 0. 05〜10質量部とする ことが好ましぐ 0. 1〜5質量部とすることが更に好ましい。有機過酸化物の使用量が 多すぎると、架橋度が過度に高くなり、成形加工性や機械的物性が低下する傾向に ある。一方、有機過酸化物の使用量が少なすぎると、架橋度が不足し、各成形部の ゴム弾性及び機械的強度が低下する傾向にある。
[0086] (フエノール榭脂架橋剤)
フエノール榭脂架橋剤としては、例えば、下記一般式 (2)で表される p—置換フエノ ール系化合物、 o—置換フエノール'アルデヒド縮合物、 m—置換フエノール'アルデ ヒド縮合物、臭素化アルキルフエノール'アルデヒド縮合物等を挙げることができる。な かでも、 p—置換フエノール系化合物が好ましい。これらを一種単独で又は二種以上 を組み合わせて用いることができる。
[0087] [化 2]
Figure imgf000020_0001
[0088] 前記一般式(2)中、 Xはヒドロキシル基、ハロゲン化アルキル基、又はハロゲン原子 であり、 Rは炭素数 1〜15の飽和炭化水素基であり、 nは 0〜10の整数である。なお 、 p—置換フエノール系化合物は、アルカリ触媒の存在下における、 p—置換フエノー ルとアルデヒド (好ましくはホルムアルデヒド)との縮合反応により得ることができる。
[0089] 架橋剤としてフエノール榭脂架橋剤を使用する場合に、このフエノール榭脂架橋剤 の使用量は、混合物に含まれる重合体成分の合計量 100質量部に対して、 0. 2〜1 0質量部とすることが好ましぐ 0. 5〜5質量部とすることが更に好ましい。フエノール 榭脂架橋剤の使用量が多すぎると、架橋度が過度に高くなり、成形加工性や機械的 物性が低下する傾向にある。一方、フエノール榭脂架橋剤の使用量が少なすぎると、 架橋度が不足し、各成形部のゴム弾性及び機械的強度が低下する傾向にある。
[0090] (架橋助剤、架橋促進剤) 架橋剤とともに、架橋助剤及び Z又は架橋促進剤を用いると、架橋反応を穏やか に行うことができ、均一な架橋を形成することができるために好ましい。架橋剤として 有機過酸化物を用いる場合には、架橋助剤として、硫黄、硫黄化合物 (粉末硫黄、コ ロイド硫黄、沈降硫黄、不溶性硫黄、表面処理硫黄、ジペンタメチレンチウラムテトラ スルフイド等)、ォキシム化合物(p—キノンォキシム、 p, p,ージベンゾィルキノンォキ シム等)、多官能性モノマー類 (エチレングリコールジ (メタ)アタリレート、ジエチレング リコールジ (メタ)アタリレート、トリエチレングリコールジ (メタ)アタリレート、テトラエチレ ングリコールジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、トリメチ ロールプロパントリ(メタ)アタリレート、ジァリルフタレート、テトラァリルォキシェタン、ト リアリルシアヌレート、 N, N,一m—フエ-レンビスマレイミド、 N, N,一トルイレンビス マレイミド、無水マレイン酸、ジビュルベンゼン、ジ (メタ)アクリル酸亜鉛等)等を用い ることが好ましい。なかでも、 p, p,一ジベンゾィルキノンォキシム、 N, N,一 m—フエ 二レンビスマレイミド、ジビュルベンゼンが好ましい。これらを一種単独で又は二種以 上を組み合わせて用いることができる。なお、 N, N,一m—フエ-レンビスマレイミド は、架橋剤としての作用を示すものであるため、架橋剤として単独で使用することもで きる。
[0091] 架橋剤として有機過酸化物を使用する場合における、架橋助剤の使用量は、混合 物に含まれる重合体成分の合計量 100質量部に対して、 10質量部以下とすることが 好ましぐ 0. 2〜5質量部とすることが更に好ましい。架橋助剤の使用量が 10質量部 超であると、架橋度が過度に高くなり、成形加工性が低下し、各成形部の機械的物 性が低下する傾向にある。
[0092] 架橋剤としてフエノール榭脂架橋剤を用いる場合には、架橋促進剤として、金属ハ ロゲン化物 (塩化第一すず、塩ィ匕第二鉄等)、有機ハロゲンィ匕物 (塩素化ポリプロピレ ン、臭化ブチルゴム、クロロプレンゴム等)等を用いると、架橋速度を調節することがで きるために好ましい。また、架橋促進剤の他に、酸化亜鉛等の金属酸化物ゃステアリ ン酸等の分散剤を使用することが更に望ましい。
[0093] (ォレフイン系熱可塑性エラストマ一組成物の調製方法)
ォレフィン系熱可塑性エラストマ一組成物は、少なくとも (A)成分と (B)成分を含有 する混合物を、架橋剤の存在下に動的に熱処理することによって調製することができ る。(A)成分と (B)成分は、そのまま用いてもよいし、それぞれ同一又は異なる添カロ 剤を含む組成物として用いてもよい。なお、(A)成分の形状は、ベール、クラム、ペレ ット、粉体 (ベール又はクラムの粉砕品を含む)のいずれであってもよぐ形状の異な る (A)成分を組み合わせて用いてもよ!、。
[0094] ここで、「動的に熱処理」するとは、剪断力をカ卩えること、及び加熱することの両方を 行うことをいう。より具体的な混練を行うための装置としては、溶融混練装置を挙げる ことができる。溶融混練装置で行う処理は、ノツチ式でも連続式であってもよい。溶融 混練装置としては、例えば、開放型のミキシングロール、非開放型のバンバリ一ミキサ 一、一軸押出機、二軸押出機、連続式混練機、加圧ニーダ一等を挙げることができ る。これらのうち、経済性、処理効率等の観点から、一軸押出機、二軸押出機、連続 式混練機等の連続式の溶融混練装置を用いることが好ましい。なお、同一又は異な る連続式の溶融混練装置を 2台以上組み合わせて用いてもょ 、。
[0095] 二軸押出機は、 LZD (スクリュー有効長さ Lと外径 Dとの比)が 30以上であるものが 好ましぐ 36〜60のものが更に好ましい。また、二軸押出機としては、例えば、 2本の スクリューが嚙み合うもの、嚙み合わないもの等任意の二軸押出機を使用することが できるが、 2本のスクリューの回転方向が同一方向でスクリューが嚙み合うものがより 好ましい。このような二軸押出機としては、池貝社製「PCM」、神戸製鋼所社製「KT X」、 日本製鋼所社製「ΤΕΧ」、東芝機械社製「ΤΕΜ」、ワーナー社製 rzSKj等 ( ヽ ずれも商品名)を挙げることができる。
[0096] 連続式混練機は、 L/D (スクリュー有効長さ Lと外径 Dとの比)が 5以上であるもの が好ましぐ 10〜60のものが更に好ましい。このような連続式混練機としては、神戸 製鋼所社製「ミクストロン KTX · LCM · NCM」、日本製鋼所社製「CIM · CMPJ等( ヽ ずれも商品名)を挙げることができる。
[0097] 動的熱処理の際の処理温度は、通常、 120〜350°C、好ましくは 150〜290°Cで ある。処理時間は、通常、 20秒間〜 320分間、好ましくは 30秒間〜 25分間である。 また、混合物に加える剪断力は、通常、ずり速度で 10〜20, OOOZ秒、好ましくは 1 00〜: LO, OOOZ秒である。 [0098] JIS K7210に準拠して測定された熱可塑性エラストマ一の流動性(190°C、49N) は、 0. lgZlO分以上であることが好ましぐ 0. 5gZlO分以上であることが更に好ま しぐ lgZlO分以上であることが特に好ましい。熱可塑性エラストマ一の流動性が上 記範囲内であると、押出発泡加工性に優れたものとすることができる。なお、前記流 動性の上限値にっ 、ては特に限定されな 、が、 lOOOgZlO分以下であればよ!、。
[0099] (第 1成形部)
本実施形態の成形複合体 (ウエザーストリップ 1)の第 1成形部 11は、これまで述べ てきたォレフィン系熱可塑性エラストマ一糸且成物を押出発泡成形することによって形 成される部分である(図 1参照)。この第 1成形部 11は、中空発泡体であってもよい。 なお、押出発泡成形と同時に熱可塑性エラストマ一糸且成物 (非発泡体)及び z又は 金属の押出成形を行うと、例えば、ソリッド (熱可塑性エラストマ一組成物) Zスポンジ (熱可塑性エラストマ一組成物) Z心材 (金属)で構成される自動車内側用のゥェザ 一ストリップを製造することができる。
[0100] 第 1成形部 11の、 JIS K6253に準拠して測定されたァスカー C硬度は、 80以下で あることが好ましぐ 75以下であることが更に好ましぐ 70以下であることが特に好まし い。第 1成形部 11のァスカー C硬度が上記範囲内であると、ウエザーストリップ 1を柔 軟性に優れたものとすることができる。なお、前記ァスカー C硬度の下限値について は特に限定されな 、が、 10以上であればょ 、。
[0101] また、第 1成形部 11を中空成形とした場合において、その第 1成形部 11の、 50% 圧縮、 70°C、 22時間後の圧縮永久歪みは、 50%以下であることが好ましぐ 45%以 下であることが更に好ましぐ 40%以下であることが特に好ましい。第 1成形部 11の 圧縮永久歪みが上記範囲内であると、成形複合体のシール性を優れたものとするこ とができる。なお、圧縮永久歪みの下限値については特に限定されないが、 1%以上 であればよい。
[0102] 更に、第 1成形部 11の発泡倍率は、 1. 2以上、好ましくは 1. 3以上、更に好ましく は 1. 5以上である。第 1成形部 11の発泡倍率が上記範囲であると、軽量性に優れた 成形複合体とすることができる。なお、前記発泡倍率の上限地に着いては特に限定 されないが、 30倍以下であればよい。 [0103] 第 1成形部 11の形状は特に限定されず、線状、板状、筒状(中空)等とすることが できる。また、これらの形状を組み合わせてなる不定形状や、これらの形状を曲げる 等変形させた形状であってもよい。更には、貫通孔、凹部、凸部等を有する形状であ つてもよい。本実施形態の成形複合体は、特定の構成材料を用いてなるものである ため、第 1成形部の形状は、曲線形状等の変形した形状であっても優れた強度を備 えたものである。また、第 1成形部の大きさも特に限定されない。従って、第 1成形部 の各部位の長さ、厚さ、間隔等についても、目的、用途等に応じて適宜設定すること ができる。なお、第 1成形部 11は、所定の断面形状を有する押出成形品を切断する こと〖こよっても製造することができる。
[0104] 第 1成形部は、その表面及び Z又は内部に、補強用部材を含んでなるものであるこ とが好ましい。補強用部材としては、第 1成形部の構造をより安定化させられるもので あれば、その構成材料、形状等は特に限定されない。また、成形複合体の構成材料 は、第 1成形部を構成するォレフイン系熱可塑性エラストマ一組成物と実質的に反応 しない材料、又は水と実質的に反応しない (分解、腐食等されない)材料であれば、 有機材料、無機材料のいずれであってもよい。また、これらを組み合わせて用いるこ ともできる。有機材料としては、高分子材料が好ましい。無機材料としては、金属、合 金、セラミックス等が好ましい。
[0105] 補強用部材の形状は、塊状、線状、板状等とすることができる。また、これらの形状 を組み合わせてなる不定形状や、これらの形状を曲げる等変形させた形状であって もよい。更には、第 1成形部との一体化をより確実なものとすべぐ貫通孔、凹部、凸 部等を有する形状であってもよ ヽ。
[0106] また、第 1成形部を押出発泡体とするには、第 1成形部を形成するための原料組成 物 (ォレフイン系熱可塑性エラストマ一組成物)に発泡剤を配合する。発泡剤としては 、熱分解型発泡剤、揮発型発泡剤、中空粒子型発泡剤、超臨界流体等を挙げること ができる。これらは、一種単独で又は二種以上を組合せて用いることができる。なお、 発泡剤は、ォレフィン系熱可塑性エラストマ一組成物に含まれる重合体成分の種類 や、第 1成形部の製造方法等により選択することができる。
[0107] 熱分解型発泡剤としては、 N, N,一ジニトロソペンタメチレンテトラミン、 N, N,一ジ メチル N, N,一ジニトロソテレフタルアミド等の-トロソ系発泡剤;ァゾジカルボンァ ミド、ァゾジカルボン酸バリウム等、ノ リウムァゾジカルボキシレートのァゾ系発泡剤; p , p ォキシビスベンゼンスルホ-ルヒドラジド、 4, 4' ォキシビス(ベンゼンスルホ- ルヒドラジド)、 p トルエンスルホユリルセミカルバジド等のスルホヒドラジド系発泡剤; トリヒドラジノトリアジン等のトリアジン系発泡剤; 5—フエ-ルテトラゾール、ァゾビステト ラゾールジグァ-ジン、ァゾビステトラゾールァミノグァ-ジン等のテトラゾール系発泡 剤等の無機系発泡剤;炭酸水素ナトリウム等の無機系発泡剤を挙げることができる。 これらは、一種単独で又は二種以上を組合せて用いることができる。
[0108] 熱分解型発泡剤の使用量は、その種類、所望とする発泡倍率等に応じて適宜設定 すればよい。具体的には、第 2成形部を形成するためのォレフィン形熱可塑性エラス トマ一組成物に含まれる重合体成分 100質量部に対して、 0. 1〜: L00質量部使用 することが好ましい。
[0109] 揮発型発泡剤としては、プロパン、ブタン、ペンタン等の脂肪族炭化水素類;シクロ ブタン、シクロペンタン、シクロへキサン等の脂環式炭化水素類;クロロジフルォロメタ ン、ジフルォロメタン、トリフルォロメタン、トリクロ口フルォロメタン、ジクロロメタン、ジク ロロフノレ才ロメタン、ジクロロジフノレ才ロメタン、トリクロロフノレ才ロメタン、クロロメタン、ク ロロェタン、ジクロロトリフノレオロェタン、ジクロロフノレォロェタン、クロロジフノレォロエタ ン、ジクロロペンタフノレォロェタン、ペンタフノレォロェタン、トリフノレォロェタン、ジクロロ テトラフ口ォロェタン、トリクロ口トリフルォロェタン、テトラクロロジフルォロェタン、クロ 口ペンタフルォロェタン、パーフルォロシクロブタン等のハロゲン化炭化水素類;二酸 化炭素、窒素、空気等の無機ガス;水等を挙げることができる。これらは、一種単独で 又は二種以上を組合せて用いることができる。
[0110] 揮発型発泡剤の使用量は、その種類、所望とする発泡倍率等に応じて適宜設定す ればよい。具体的には、第 1成形部を形成するためのォレフィン形熱可塑性エラスト マー組成物に含まれる重合体成分 100質量部に対して、 0. 1〜: L00質量部使用す ることが好ましい。
[0111] 中空粒子型発泡剤とは、熱可塑性榭脂からなる外殻に、膨張剤を内包した熱膨張 性微小球のことをいう。外殻を構成する熱可塑性榭脂としては、(メタ)アクリロニトリル 、(メタ)アクリル酸エステル、ハロゲン化ビュル、ハロゲン化ビ-リデン、スチレン等の 芳香族ビニル化合物、酢酸ビュル、ブタジエン、クロ口プレン、ビュルピリジンからなる 群より選択される少なくとも一種力 なる単独重合体又は共重合体を挙げることがで きる。なお、この熱可塑性榭脂は、ジビュルベンゼン、エチレングリコール (メタ)アタリ レート、トリエチレングリコールジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)ァ タリレート、 1, 3—ブチレングリコールジ (メタ)アタリレート、ァリル (メタ)アタリレート、ト リアクリルホルマール、トリアリルイソシァヌレート等の架橋剤により架橋又は架橋可能 にされたものであってもょ 、。
[0112] また、内包される膨張剤としては、前述の揮発型発泡剤として例示した化合物を用 いることができる。なお、熱膨張性微小球に占める膨張剤の割合は、外殻用の熱可 塑性榭脂を 100質量%とした場合、 5〜30質量%であることが好ま 、。
[0113] 中空粒子型発泡剤 (未膨張の微小球状態)の重量平均粒子径は、 1〜: LOO μ mで あることが好ましい。また、中空粒子型発泡剤の使用量は、その種類、所望とする発 泡倍率等に応じて適宜設定すればよい。具体的には、第 1成形部を形成するための ォレフィン形熱可塑性エラストマ一組成物に含まれる重合体成分 100質量部に対し て、 0. 1〜: L00質量部使用することが好ましい。
[0114] 超臨界流体としては、窒素、二酸化炭素等の超臨界流体を用いることができる。こ れらの超臨界流体は、一種単独で又は二種以上を組合せて用いることができる。こ れらの超臨界流体の使用量は、その種類、所望とする発泡倍率等に応じて適宜設定 すればよい。
[0115] 発泡剤を用いる場合において、必要に応じて重炭酸ソーダ、クェン酸、タルク等の 発泡核剤を併用することが、形成される気泡径を調整することが可能となるために好 ましい。発泡核剤の使用量は、第 1成形部を形成するためのォレフィン形熱可塑性 エラストマ一組成物に含まれる重合体成分 100質量部に対して、 0. 1〜100質量部 とすることが好ましい。
[0116] (第 2成形部)
本実施形態の成形複合体 (ウエザーストリップ 1)の第 2成形部 12は、これまで述べ てきたォレフィン系熱可塑性エラストマ一組成物や、このォレフィン系熱可塑性エラス トマ一組成物以外の、汎用の熱可塑性エラストマ一組成物を射出成形することによつ て形成される部分である(図 1参照)。この第 2成形部 12は、中実体、中空体、及び発 泡体のいずれであってもよい。なお、第 2成形部 12が発泡体である場合に、この発泡 体を形成するために用いられる発泡剤の種類や使用量、発泡倍率、発泡方法等は 特に限定されない。
[0117] 第 2成形部を構成するために用いられる熱可塑性エラストマ一組成物中に、前述の
(B—b)成分(ひ一才レフイン系非晶質熱可塑性榭脂)が含まれていると、第 1成形部 との射出接着性、特に折り曲げ剥離性が向上するので好ましい。(B—b)成分の含 有量は、第 2成形部を構成するために用いられる熱可塑性エラストマ一組成物中、 0 . 5質量%以上とすることが好ましぐ 1質量%以上とすることが更に好ましぐ 3質量 %以上とすることが特に好ましい。なお、(B—b)成分の含有量の上限値については 特に限定されな 、が、 15質量%以下であればょ 、。
[0118] 第 2成形部の硬度は、第 2成形部が非発泡体であれば、デュロ A硬度計 CFIS K62 63準拠)で 50以下であることが好ましぐ 45以下であることが更に好ましぐ 40以下 であることが特に好ましい。なお、第 2成形部の前記硬度 (デュ口 A)の下限値につい ては特に限定されないが、 5以上であればよい。一方、第 2成形部が発泡体であれば 、その硬度は、ァスカー C硬度計 (JIS K6263準拠)で 80以下であることが好ましく 、 75以下であることが更に好ましぐ 70以下であることが特に好ましい。なお、第 2成 形部の前記硬度 (ァスカー C)の下限値については特に限定されないが、 10以上で あればよい。
[0119] 第 2成形部を中空成形とした場合において、その第 2成形部の、 50%圧縮、 70°C、 22時間後の圧縮永久歪みは、 50%以下であることが好ましぐ 45%以下であること が更に好ましぐ 40%以下であることが特に好ましい。第 2成形部の圧縮永久歪みが 上記範囲内であると、成形複合体のシール性を優れたものとすることができる。なお、 圧縮永久歪みの下限値にっ ヽては特に限定されな 、が、 1%以上であればょ 、。
[0120] JIS K7210に準拠して測定された第 2成形部用の熱可塑性エラストマ一の流動性
(190°C、49N)は、 0. lgZlO分以上であることが好ましぐ 0. 5gZl0分以上であ ることが更に好ましぐ lgZlO分以上であることが特に好ましい。熱可塑性エラストマ 一の流動性が上記範囲内であると、射出成形性に優れたものとすることができる。な お、前記流動性の上限値については特に限定されないが、 lOOOgZlO分以下であ ればよい。
[0121] なお、第 2成形部を形成するために用いられることのある前記「汎用の熱可塑性ェ ラストマー組成物」の具体例としては、商品名「ミラストマー」(三井化学社製);商品名 「サーモラン」、商品名「ラバロン」(いずれも三菱ィ匕学社製);商品名「住友 TPE」、商 品名「住友 TPE— SB」(いずれも住友化学社製);商品名「サントプレーン」(いずれも アドバンスド 'エラストマ一'システムズ社製);商品名「サーリンク」(DSM社製);商品 名「ォレフレックス」、商品名「レオストマー」、商品名「マルチユーズドレオストマー」( V、ずれもリケンテクノス社製)等を挙げることができる。
[0122] 第 2成形部 12の形状は特に限定されず、第 1成形部 11と同様に、任意の形状、各 部分の長さ、厚さ、間隔等とすることができる。
[0123] (成形複合体)
本実施形態の成形複合体 (ゥ ザ一ストリップ 1)は、第 1成形部 11と、この第 1成形 部 11の表面、及び Z又は断面に接合された第 2成形部 12とを備えるものである(図 1参照)。第 1成形部 11、及び第 2成形部 12は、例えば、平面、曲面、凹凸面等の形 状を有する部位 (接合部位)において相互に接合されている。なお、接触部位全体 が完全に接合されていてもよいし、部分的に接合されていてもよい。また、第 1成形部 11と第 2成形部 12の一方が発泡体である場合には、他方 (発泡体でない成形部)を 構成する材料が発泡体の空隙部に侵入することにより接合される。例えば、第 1成形 部 11が発泡体である場合には、第 2成形部 12の構成材料であるォレフィン系熱可塑 性エラストマ一組成物が、第 1成形部 11の接合部位の空隙部に侵入することにより 接合される。
[0124] 第 1成形部 11と第 2成形部 12を構成する材料には、(B)ポリオレフイン系榭脂が含 まれている。従って、本実施形態のウエザーストリップ 1は、成形部相互の接着性が極 めて優れたものであり、接着剥離を効果的に防止することができる。また、本実施形 態のウエザーストリップ 1は、その構成部材である第 1成形部 11と第 2成形部 12のい ずれもが、リサイクル性の高い熱可塑性エラストマ一組成物によって形成されている。 従って、本実施形態のウエザーストリップ 1は、リサイクル性に極めて優れたものであ る。
[0125] 第 1成形部 11と第 2成形部 12の両方が中空形状である成形複合材については、 各々の圧縮永久歪み(70°C、 22時間、 50%圧縮)が 50%以下であることが好ましく 、 45%以下であることが更に好ましぐ 40%以下であることが特に好ましい。各々の 圧縮永久歪みを前記数値以下とすることにより、成形複合体のシール性を優れたも のとすることができる。なお、圧縮永久歪みの下限値については特に限定されないが 、 1%以上であればよい。
[0126] 本実施形態の成形複合体は、第 1成形部を (P)、前記第 2成形部を (Q)とした場合 に、下記 [1]〜[4]のいずれかの構造とすることができる。従って、優れた接着性を生 かしつつ、目的、用途等に応じた形状とすることができる。
[0127] [数 2]
[ 1 ] 〔 ( P ) - (Q) ) m
[ 2 ] ( P ) - C (Q) - ( P ) 〕 m
[ 3 ] (Q) - C ( P ) - (Q) 〕 m
[ 4 ] C ( P ) (Q) 〕 n
(前記 [1]〜[4]の構造中、 mは 1以上の整数であり、 nは 2以上の整数である) [0128] 前記 [1]〜[4]の構造においては、いずれの場合でも、第 1成形部 (P)と第 2成形 部(Q)が交互に接合されている。図 1では、前記構造 [1]において、 m= lである場 合の成形複合体の一例が表されている。即ち、図 1では、直線状の第 1成形部 11が 、直線状の第 2成形部 12と接合したウエザーストリップ 1が表されて 、る。
[0129] 図 2では、前記構造 [2]において、 m= 1である場合の成形複合体の一例が表され ている。即ち、図 2では、曲線状の第 1成形部 11が、 2つの直線状の第 2成形部 12の 間に配置された状態で接合したウエザーストリップ 1が表されている。
[0130] また、前記構造 [4]は、第 1成形部と第 2成形部が交互に接合され、かつ、主鎖が 環状構造(円形、角形、扇形、星形等の構造)であることを意味する。従って、この構 造 [4]で表される成形複合体は、第 1成形部の端部と、第 2成形部の端部とが接合さ れた環状構造を有するものである。 [0131] なお、本実施形態の成形複合体の構造は、前記 [1]〜 [4]のいずれかで表される 構造に限定されない。本実施形態の成形複合体の構造は、例えば、前記 [1]〜[4] で表される構造の複数を組み合わせた構造であってもよぐ一方の成形部の表面に 、複数の他方の成形部が接合された構造であってもよい。
[0132] 2.成形複合体の製造方法:
次に、本発明の成形複合体の製造方法の一実施形態について説明する。本実施 形態の成形複合体の製造方法は、(A)成分、(B)成分、及び (C)成分を含有する、 少なくとも (A)成分及び (B)成分が含有される混合物を架橋剤の存在下に動的に熱 処理して得られたォレフィン系熱可塑性エラストマ一組成物を、押出発泡成形して、 発泡倍率 1. 2倍以上の成形部材を得る工程 (以下、「工程 (1)」ともいう)と、得られた 成形部材を、成形部材の表面及び Z又は断面が金型キヤビティに露出するように設 置する工程 (以下、「工程 (Π)」ともいう)と、ォレフィン系熱可塑性エラストマ一組成物 、及び Ζ又はォレフィン系熱可塑性エラストマ一組成物以外の熱可塑性エラストマ一 組成物を、金型キヤビティに射出して導入する工程 (以下、「工程 (111)」ともいう)とを 備えている。
[0133] まず、工程 (I)にお 、て、ォレフィン系熱可塑性エラストマ一組成物を、スクリュー式 、非スクリュー式等の押出成形機を使用して、所定形状の成形部材 (第 1成形部)を 得る。なお、押出成形は、通常、ォレフィン系熱可塑性エラストマ一組成物が溶融し た状態で行う。成形部材を発泡体とするには、押出成形機の内部で発泡状態として 押し出してもよいし、押出成形機を出て直ちに発泡させてもよいし、発泡させずに押 し出した後、再加熱して発泡させてもよい。
[0134] 次いで、工程 (Π)において、その表面及び Ζ又は断面の少なくとも一部が金型キヤ ビティに露出するように、得られた成形部材を設置する。例えば、その端部 (被接着 部)が金型キヤビティに露出するように、成形部材を設置する。即ち、工程 (III)にお いて用いられるォレフィン系熱可塑性エラストマ一組成物や汎用の熱可塑性エラスト マー組成物との接触面を、金型の内側(キヤビティ)に露出させる。
[0135] その後、工程 (ΠΙ)において、ォレフィン系熱可塑性エラストマ一組成物や汎用の熱 可塑性エラストマ一組成物を、射出成形機等を使用して、金型キヤビティに射出して 導入する。この工程 (III)により、ォレフィン系熱可塑性エラストマ一組成物が成形部 材の被接着部の方へ流れ込み、成形部材 (第 1成形部)が形成される。
[0136] それぞれの成形部材 (第 1成形部及び第 2成形部)を構成するォレフイン系熱可塑 性エラストマ一組成物の、温度 230°C、荷重 21Nの条件下、 JIS K7210に準拠して 測定されたメルトフローレート(MFR)は、 0. lgZlO分以上であることが好ましぐ 1. OgZlO分以上であることが更に好ましぐ 2. OgZlO分以上であることが特に好まし ぐ 3. OgZlO分以上であることが最も好ましい。ォレフィン系熱可塑性エラストマ一 組成物の MFRが 0. lgZlO分未満であると、加工性等が不十分となる傾向にある。 一方、 MFRが大きすぎると、得られる成形部材の機械的強度が低下する傾向にある 。従って、ォレフィン系熱可塑性エラストマ一組成物の MFRは、 lOOgZlO分以下で あることが好ましい。
[0137] 本実施形態の成形複合体を製造するために用いられるォレフィン系熱可塑性エラ ストマー組成物は、特定の重合体を含有するものであり、上述のように流動性に優れ たものである。従って、それぞれの成形部材を形成した後においても金型汚染を発 生させ難ぐ金型を長期間使用することができる。また、このォレフィン系熱可塑性ェ ラストマー組成物は、再利用が可能である。従って、成形不良品を再利用することも でき、原材料を無駄なく効率的に用いることができる。
[0138] 工程 (III)にお 、て、原材料であるォレフィン系熱可塑性エラストマ一組成物を金型 キヤビティに導入する方法や導入装置には、特に制限はない。導入装置としては、ス クリュー式、プランジャー式等の射出装置が好適に用いられる。また、導入速度は、 射出率で l〜2000cm3Z秒とすることが好ましぐ 10〜: L000cm3Z秒とすることが 更に好ましい。
[0139] ォレフィン系熱可塑性エラストマ一組成物を金型キヤビティへ導入する際の温度は 、 150〜300°Cとすることが好ましい。このとき、金型を加熱してもよいし、加熱せずに 室温のままとしてもよい。金型の好ましい温度は、 30〜80°Cの範囲である。なお、金 型キヤビティは、得ようとする成形複合体の使用目的、用途等に応じて、その内壁面 を平滑性の高いものとしたり、文字、模様等が得られるようにしたりすることができる。 平滑性の高い内壁面を有する金型キヤビティを用いた場合には、ォレフィン系熱可 塑性エラストマ一組成物の流動性が向上するため、金型転写性が良好となり、高い 光沢性を有する成形部材を備えた成形複合体を得ることができる。
[0140] ォレフィン系熱可塑性エラストマ一組成物を金型キヤビティへ導入する際には、ェ 程 (Π)において既に設置されている成形部材を予め加熱しておいてもよいし、室温( 25°C)付近の温度としておいてもよい。但し、 30〜80°Cの温度状態に加温しておく ことがより好ましい。
[0141] 工程 (III)にお 、て、ォレフィン系熱可塑性エラストマ一組成物が金型キヤビティへ 導入された後、好ましくは 1〜 120秒間、更に好ましくは 5〜60秒間冷却することによ り、成形部材どうしが接着する。その後、一体化した成形複合体 (ウエザーストリップ) を金型から取り出すことができる。従って、本実施形態の成形複合体の製造方法によ れば、金型キヤビティへの成形部材の設置、ォレフィン系熱可塑性エラストマ一組成 物の金型キヤビティへ導入、及び、導入されたォレフイン系熱可塑性エラストマ一組 成物の冷却を、それぞれ短時間で行うことができる。即ち、 1つの成形複合体の製造 時間を、好ましくは 7〜180秒間、更に好ましくは 10〜120秒間とすることができ、極 めて短時間で成形複合体を製造することができる。更に、金型を低温状態で用いるこ とができるため、作業時に火傷等をするおそれがなぐ安全性も高い。
[0142] 本実施形態の成形複合体の製造方法においては、例えば図 2に示した形状の成 形複合体を容易に製造することができる。即ち、予め、 2つの成形部材 (第 2成形部 1 2)を製造しておき、所定の空間部 (キヤビティ)を有する金型を用い、それぞれの端 部がキヤビティに露出するように、 2つの第二成形部 12を設置し、ォレフィン系熱可 塑性エラストマ一組成物をキヤビティに導入することにより、一体化した成形複合体( ウエザーストリップ 1)を製造することができる。なお、同様の方法によって、前述の [1] 〜 [4]の構造を有する成形複合体を製造することができる。
[0143] 本実施形態の成形複合体は、自動車内装材ゃ自動車外装材をはじめとする車両 用のウエザーストリップとして好適である力 それ以外の用途部材としても好ましい特 性を有するものである。例えば、シール材、ガスケット、ノ ッキン等としても好適である 。ウエザーストリップとしては、ドアウエザーストリップ、トランクウエザーストリップ、ラゲ ージウエザーストリップ、ルーフサイドレールウエザーストリップ、スライドドアウエザース トリップ、ベンチレータウヱザ一ストリップ、スライディングノレープパネルウエザーストリツ プ、フロントウィンドウエザーストリップ、リャウィンドウエザーストリップ、クォーターウイ ンドウエザーストリップ、ロックピラーウエザーストリップ、ドアガラスアウターウエザースト リップ、ドアガラスインナーウェザ一ストリップ等を挙げることができる。また、シール材 としては、建材用、家電用、産業機械用等のシール材を挙げることができる。
[0144] ウエザーストリップを、自動車のドアに用いる場合には、例えば、図 3のような形態で 用いることができる。即ち、ウエザーストリップ 2は、第 1成形部 l la〜l leと、第 2成形 部 12a〜 12eとをそれぞれ交互に接合した環状構造であり、ドア 3の周縁部の所定の 位置に配設される。
実施例
[0145] 以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施 例に限定されるものではない。
[0146] (実施例 1)
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断ら ない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を 以下に示す。
[0147] [メルトフローレート(MFR) ]:流動性の指標として、メルトフローレート(MFR)を、 JI
S K7210に準拠して 190°C、 49N荷重にて測定した。
[0148] [硬度 (ショァ A) ]:柔軟性の指標として、 JIS K6253に準拠して準拠して測定した
[0149] [引張破断強度、引張破断伸び] : JIS K6251に準拠して測定した。
[0150] [圧縮永久歪み] :ゴム弾性の指標として、 JIS K6262に準拠し、押し出し発泡成 形部材(中空成形品)について、 70°C、 22時間、 50%圧縮の条件で測定した。また 、射出成形部部分(中空成形品)について、 70°C、 22時間、 50%圧縮の条件で測 し 7こ。
[0151] [動摩擦係数]:測定対象となる材料 (ォレフイン系熱可塑性エラストマ一組成物)を 射出成形することより、長さ 110mm、幅 61mm、厚さ 2mmの試験片を作製した。こ の試験片について、外径 25. 7mm、内径 20mm、高さ 16. 5mm、重さ 9. 6gの円筒 型のガラスリングを、往復摺動試験機 (東測精密社製)を使用して摺動させ、動摩擦 係数を測定した。なお、摺動条件は、荷重 233g/3cm2 (面圧 78g/cm2)、ガラスリ ングの摺動速度 = 100mmZmin (lストローク = 50mm)とした。射出成形後、 1日 経過した試験片を使用して室温にて測定した動摩擦係数を「動摩擦係数 (初期)」と し、初期摺動性の指標とした。また、ガラスリングを 10000回往復摺動させたときに測 定した動摩擦係数を「動摩擦係数(10000回往復摺動後)」とし、耐久摺動性の指標 とした。
[0152] [ブリード試験]:測定対象となる材料 (ォレフイン系熱可塑性エラストマ一組成物)を 射出成形して得られたシートから、縦 40mm、横 30mm、厚さ 2mmの四角形状の試 験片を打ち抜いた。得られた試験片を 80°Cの恒温槽中で 168時間静置した後、成 形表面外観を目視及び触感で、液体及び Z又は固体のブリードの有無を観察した。 〇:ブリードなし
X:ブリードあり
[0153] [射出融着性]:製造した成形複合体 (試験片)の継ぎ目部 (融着部分)が中央にく るようにダンベル 2号で打ち抜き、引張り速度 200mmZ分、チャック間距離 40mm引 つ張って «ぎ目部 (融着部分)の接着強度 (MPa)を測定した。
[0154] [折り曲げ剥離性]:製造した成形複合体 (試験片)を使用し、継ぎ目部 (融着部分) を起点として角度 180° 、 10回繰り返し折り曲げた後のせ継ぎ目部の剥離状態を目 視にて観察した。
〇:剥離なし
X:剥離が発生している、又は破断した
[0155] [発泡倍率] :発泡前後の熱可塑性エラストマ一組成物の比重力 算出した。
[0156] (原材料)
以下に示す( 1)〜( 12)の各種原材料を使用した。
[0157] (1)エチレン' aーォレフイン系共重合ゴム(油展ゴム)
エチレン Zプロピレン Z5 ェチリデン 2 ノルボルネン三元共重合体(エチレン 含量: 66%、 5 ェチリデンー2 ノルボルネン含量: 4. 5%、極限粘度: 4. 7dl/g, ノ ラフィン系軟化剤(商品名「ダイアナプロセスオイル PW90」、出光興産社製)含有 量: 50%)
[0158] (2) a一才レフイン系結晶性熱可塑性榭脂
ポリプロピレン (プロピレン Zエチレンランダム共重合体)(商品名「ノバテック FL25 R」、 日本ポリケム社製、密度: 0. 90gZcm3、MFR (温度 230°C、荷重 2. 16kg) : 2 3gZlO分)
[0159] (3) a一才レフイン系非晶質熱可塑性榭脂
プロピレン Zl—ブテン非晶質共重合体(商品名「UBETAC APAO UT 288 0」、宇部レキセン社製、プロピレン含量: 71mol%、溶融粘度: 8000cPs、密度: 0. 87gZcm3、 Mn : 6500)
[0160] (4)鉱物油系軟化剤
ノ《ラフィン系軟化剤(商品名「ダイアナプロセスオイル PW90」、出光興産社製) [0161] (5)未変性オルガノポリシロキサン(1)
未変性ポリジメチルシロキサン(商品名「シリコーンオイル SH— 200」、東レ 'ダウコ 一-ングシリコーン社製、粘度: lOOcSt)
[0162] (6)未変性オルガノポリシロキサン(2)
未変性ポリジメチルシロキサン(商品名「シリコーンオイル SH— 200」、東レ 'ダウコ 一-ングシリコーン社製、粘度:1, OOOcSt)
[0163] (7)ビュル基含有オルガノポリシロキサン
ジメチルシロキサン単位 99. 85mol%、及びメチルビ-ルシロキサン単位 0. 15mo 1%からなり、分子鎖両末端がジメチルビ-ルシロキサンで封鎖された、重合度約 700 0のメチルビ-ルポリシロキサン 100部と、煙霧質乾式シリカ(商品名「ァエロジル 200 」、 日本ァエロジル社製) 40部の混合物(商品名「TSE221— 5U」、 GE東芝シリコー ン社製)
[0164] (8)その他の添加剤
(i)高級脂肪酸アミド:ォレイン酸アミド (花王社製)
(ii)架橋剤: 5—ジメチルー 2, 5—ジ (t—ブチルパーォキシ)へキサン(商品名「パ 一へキサ 25B— 40」、 日本油脂社製) (iii)架橋助剤:ジビニルベンゼン (三共化成社製、純度 55%)
(iv)老化防止剤:商品名「ィルガノックス 1010」(チバスペシャルティケミカルズ社製
)
(vi)黒色顔料:カーボンブラックと結晶性ポリプロピレンの混合物(商品名「PP— M 77255」、大日精化工業社製、カーボンブラック含有量: 30%)
[0165] (実施例 1)
油展ゴム 76部、 oc—ォレフイン系結晶性熱可塑性榭脂 6部、 oc—ォレフイン系非晶 質熱可塑性榭脂 6部、鉱物油系軟化剤 12部、老化防止剤 0. 1部、未変性オルガノ ポリシロキサン(1) 3部、未変性オルガノポリシロキサン(2) 3部、ビニル基含有オルガ ノポリシロキサン 3部、高級脂肪酸アミド 0. 2部、及び黒色顔料 1部を、予め 150°Cに 加熱した加圧型-一ダー (容量 10リットル、モリヤマ社製)に投入し、 aーォレフイン 系結晶性熱可塑性榭脂及び O一才レフイン系非晶質熱可塑性榭脂が溶融して各配 合成分が均一に分散するまで、 40rpm (ずり速度 200Zsec)、 15分間混練した。得 られた溶融状態の組成物を、フィーダ一ルーダー(モリヤマ社製)を使用してペレット 化し、ペレット状物を得た。得られたペレット状物に架橋剤を 1部、及び架橋助剤(1) を 1. 25部添加し、ヘンシェルミキサーを使用して 30秒間混合した。二軸押出機(同 方向完全嚙み合 、型スクリュー、スクリューフライト部の長さ Lとスクリュー直径 Dとの 比 (LZD) = 33. 5、池貝社製、形式「PCM45」)を使用し、 200°C、滞留時間 1分 3 0秒、 300rpm (ずり速度 400Zsec)の処理時間で動的熱処理を施しながら押し出し て、ペレット状のォレフィン系熱可塑性エラストマ一組成物 (TPV ( l) )を得た。得られ たォレフイン系熱可塑性エラストマ一組成物 (TPV ( 1) )の各種物性値の測定結果を 表 1に示す。
[0166] ォレフィン系熱可塑性エラストマ一組成物 (TPV ( l) )に、発泡剤として熱分解型化 学発泡剤マスターバッチ(商品名「ポリスレン EE206」、永和化成工業社製)を 2. 0 部添加して撹拌混合し、マスターバッチを得た。このマスターバッチを直径 40mm単 軸押出機 (池貝社製、商品名「FS—40」、 LZD = 28、発泡温度: 210°C、スクリュー 回転数: 30rpm、フルフライトスクリュー)に入れて押出発泡させて、内径 16mm、肉 厚 2mm、発泡倍率 1. 3倍の中空形状の押出発泡成形部材を得た。 [0167] 得られた押出発泡成形部材を金型キヤビティに設置し、射出成形機 (商品名「N— 100」、 日本製鋼所製)を使用して、ォレフィン系熱可塑性エラストマ一組成物 (TPV (1) )を射出成形 (金型温度: 50°C、第 2成形部導入時間:10秒、射出時間:1秒、冷 却時間: 30秒、サンプル取出時間: 10秒)し、肉厚 2mm、内径 16mmの成形複合体 (実施例 1)を作製した。作製した成形複合体を、接着部が中心になるようにダンベル 2号で打ち抜き、射出融着性 (接着強度)を測定した。接着強度の測定結果を表 2〖こ 示す。また、押出発泡成形部材の各種物性値の測定結果を表 2に示す。更に、成形 複合体力 射出成形部材のみを切断して取り出し、その圧縮永久歪みを測定した。 圧縮永久歪みの測定結果を表 2に示す。
[0168] 作製した成形複合体 (実施例 1)を粉砕機にて粉砕した後、直径 40mm単軸押出 機 (池貝社製、商品名「FS—40」、 LZD = 28、発泡温度: 210°C、スクリュー回転数 : 30rpm、フルフライトスクリュー)に入れ、ペレツトイ匕することでリサイクルを実施し、以 下の基準に従ってリサイクル性を評価した。評価結果を表 2に示す。
〇:リサイクル可能
X:リサイクル不可能
[0169] (実施例 2〜4)
表 1に示す配合処方とすること以外は、前述の実施例 1の場合と同様の操作により 、ペレット状のォレフィン系熱可塑性エラストマ一組成物(TPV (2)〜(4) )を得た。得 られたォレフイン系熱可塑性エラストマ一組成物 (TPV (2)〜(4) )の各種物性値の 測定結果を表 1に示す。また、得られたォレフィン系熱可塑性エラストマ一組成物 (T PV (2)〜(4) )を使用し、前述の実施例 1の場合と同様の操作により、中空形状の押 出発泡成形部材を得た。
[0170] 得られた押出成形部材を使用し、前述の実施例 1の場合と同様の操作により、成形 複合体 (実施例 2〜4)を作製した。作製した成形複合体 (実施例 2〜4)の各種物性 値の測定結果及び評価結果を表 2に示す。
[0171] (比較例 1)
エチレン Zプロピレン Z5 ェチリデン 2 ノルボルネン三元共重合体(プロピレ ン含量: 40mol%、商品名「EP65」、 JSR社製、ム一-一粘度(ML , 100°C): 74 、ヨウ素価: 29) 100部に対して、カーボンブラック(商品名「旭 50HG」、旭カーボン 社製) 90部、パラフィン系プロセスオイル (商品名「PW380」、出光興産社製) 50部、 ミストロンべ一パー 50部、活性亜鉛華 (堺ィ匕学工業社製) 7部、ステアリン酸 (旭電ィ匕 工業社製) 1部、加工助剤 (商品名「ヒタノール 1501」、 日立化成工業社製) 1部、離 型剤(商品名「ストラタトール WB212」、シル'アンド'ザイラハー社製) 2部、及び可塑 剤(ポリエチレングリコール) 1部を配合することにより混合物を得た。
[0172] 得られた混合物を、バンバリ一ミキサーを用いて、 50°C、 70rpm、混練時間 2. 5分 の条件で混練した。次いで、脱水剤(商品名「ベスタ PP」、井上石灰工業社製) 10部 、加硫促進剤(商品名「MZ」 1. 0部、商品名「PZ」2. 5部、商品名「TL」0. 5部、商 品名「DM」0. 5部、すべて大内新興ィ匕学工業社製)、及び硫黄 1. 5部を添加した。 オープンロールを用いて 50°Cで混合して、スポンジ用ゴム組成物を調製した。このス ポンジ用ゴム組成物を使用し、 230°Cで 6分間、熱空気加硫 (HAV)を実施して、内 径 16mm (調査中)、肉厚 2mm、発泡倍率 2. 0倍の加硫ゴムスポンジを得た。
[0173] 得られた加硫ゴムスポンジを金型キヤビティに設置した。射出成形機(商品名「N— 100」、 日本製鋼所製)を使用して、ォレフィン系熱可塑性エラストマ一組成物 (TPV (1) )を射出成形 (金型温度: 50°C、第 2成形部導入時間:10秒、射出時間:1秒、冷 却時間: 30秒、サンプル取出時間: 10秒)し、肉厚 2mm、内径 16mmの成形複合体 (比較例 1)を作製した。作製した成形複合体 (比較例 1)の各種物性値の測定結果 及び評価結果を表 2に示す。
[0174] (比較例 2、 3)
表 1に示す配合処方とすること以外は、前述の実施例 1の場合と同様の操作により 、ペレット状のォレフィン系熱可塑性エラストマ一組成物 (TPV (5) )を得た。得られた ォレフィン系熱可塑性エラストマ一組成物 (TPV (5) )の各種物性値の測定結果を表 1に示す。また、得られたォレフィン系熱可塑性エラストマ一組成物 (TPV (5) )を使 用し、前述の実施例 1の場合と同様の操作により、中空形状の押出発泡成形部材を 得た。
[0175] 得られた押出成形部材を使用し、前述の実施例 1の場合と同様の操作により、成形 複合体 (比較例 2、 3)を作製した。作製した成形複合体 (比較例 2、 3)の各種物性値
Figure imgf000039_0001
Figure imgf000039_0002
0176 ID o
o
> > o 〇
|較例較例較例実施例実施実施実施例例例比比比 3214321 Q. CL Λ
h- 成加硫押泡部材出発ム形
ID o
成部射材出形 o
> > X 〇
Q. CL 成観外形 Λ
1- 成度押泡部材出硬 (カ発形)のァス Cー
寸 成泡倍率倍押出泡部材発 (発)形の σ>
> ο 〇 X
Q. 押泡成部材縮永久出(発歪)形圧みの%
成縮久射部材永出歪()圧形みの%
射融着性接着強度出 () Μ P:a
o o
> > 『 〇 〇
CL Q. げ曲折剥離性り
イクリサル
CO O
σ>
> > ο 〇 〇
CL Q. o o
> > in ο' 〇 〇
CL CL
> > 〇 〇
DL CL
表 2に示す結果から明らかなように、実施例 1〜4の成形複合体は、低硬度、低圧 縮永久歪みであるとともに射出融着性に優れており、かつ、折り曲げ剥離性も優れて おり、これらの性質のバランスが良好である。一方、比較例 1の成形複合体は、加硫 ゴムを用いた接合部品であるため、成形複合体の状態力ものリサイクルが不可能で あった。また、比較例 2の成形複合体は、高硬度の第 1成形部を使用しているため、 圧縮永久歪みの値が高ぐ更には、折り曲げ剥離性も良好ではなかった。比較例 3の 成形複合体は、第 1成形部と第 2成形部のいずれについても圧縮永久歪みの値が高 いものであった。
産業上の利用可能性
本発明の成形複合体は、圧縮永久歪み、各成形部どうしの接着性、柔軟性、リサイ クル性、及び成形外観に優れたものである。従って、本発明の成形複合体は、車両 用のウエザーストリップとして好適である。ウエザーストリップとしては、ドアウエザースト リップ、トランクウエザーストリップ、ラゲージウエザーストリップ、ルーフサイドレールゥ ェザーストリップ、スライドドアウエザーストリップ、ベンチレータウ ザーストリップ、スラ イデイングループパネルウエザーストリップ、フロントウィンドウエザーストリップ、リャゥ インドウエザーストリップ、クォーターウィンドウエザーストリップ、ロックピラーウエザース トリップ、ドアガラスアウターウエザーストリップ、ドアガラスインナーウェザ一ストリップ 等を挙げることができる。

Claims

請求の範囲
[1] (A)デカリン溶媒中 135°Cで測定した極限粘度 [ 7? ]力 3. 5〜6. 8dlZgであるェ チレン' atーォレフイン系共重合ゴム 5〜60質量0 /0
(B)ポリオレフイン系榭脂 1〜20質量0 /0、及び
(C)鉱物油系軟化剤 30〜94質量% (但し、 (A) + (B) + (C) = 100質量%)、 を含有する、少なくとも前記 (A)エチレン' a—ォレフイン系共重合ゴム及び前記 (B) ポリオレフイン系榭脂が含有される混合物を架橋剤の存在下に動的に熱処理して得 られたォレフイン系熱可塑性エラストマ一組成物を押出発泡成形してなる、発泡倍率 1. 2倍以上の第 1成形部と、
前記ォレフィン系熱可塑性エラストマ一組成物、及び Z又は前記ォレフィン系熱可 塑性エラストマ一組成物以外の熱可塑性エラストマ一組成物を射出成形してなる、前 記第 1成形部の表面、及び Z又は断面に接合される第 2成形部と、
を備えた成形複合体。
[2] 前記ォレフィン系熱可塑性エラストマ一組成物が、
前記 (A)エチレン' a—ォレフイン系共重合ゴム、前記 (B)ポリオレフイン系榭脂、 及び前記 (C)鉱物油系軟化剤の合計 100質量部に対して、 0. 1〜10質量部のオル ガノポリシロキサンを更に含有するものである請求項 1に記載の成形複合体。
[3] 前記第 1成形部の JIS K6253に準拠して測定されたァスカー C硬度力 80以下 である請求項 1又は 2に記載の成形複合体。
[4] 前記第 1成形部の形状が、中空形状である請求項 1〜3のいずれか一項に記載の 成形複合体。
[5] 前記第 1成形部の形状が中空形状である場合に、
前記第 1成形部の、圧縮率 50%、 70°C、 22時間後の圧縮永久歪みが、 50%以下 である請求項 4に記載の成形複合体。
[6] 前記第 1成形部が、その表面及び Z又は内部に補強用部材を含む請求項 1〜5の
V、ずれか一項に記載の成形複合体。
[7] 前記第 1成形部を (P)、前記第 2成形部を (Q)とした場合に、
下記 [ 1]〜 [4]の 、ずれかの構造である請求項 1〜6の 、ずれか一項に記載の成 形複合体,
[数 1]
[1] 〔 (P) — (Q) 〕 m
[2] (P) — 〔 (Q) - (P) 〕 m
[3] (Q) - [ (P) - (Q) 〕 m
[4] 「 〔 (P) - (Q) 〕 _n
(前記 [1]〜[4]の構造中、 mは 1以上の整数であり、 nは 2以上の整数である)
[8] 前記第 1成形部の端部と、前記第 2成形部の端部とが接合された環状構造である 請求項 1〜7のいずれか一項に記載の成形複合体。
[9] 自動車内装材又は自動車外装材である請求項 1〜8のいずれか一項に記載の成 形複合体。
[10] ウエザーストリップである請求項 9に記載の成形複合体。
[11] (A)デカリン溶媒中 135°Cで測定した極限粘度 [ 7? ]力 3. 5〜6.8dlZgであるェ チレン' atーォレフイン系共重合ゴム 5〜60質量0 /0
(B)ポリオレフイン系榭脂 1〜20質量0 /0、及び
(C)鉱物油系軟化剤 30〜94質量% (但し、 (A) + (B) + (C) = 100質量%)、を 含有する、少なくとも前記 (A)エチレン' a—ォレフイン系共重合ゴム及び前記 (B)ポ リオレフイン系榭脂が含有される混合物を架橋剤の存在下に動的に熱処理して得ら れたォレフイン系熱可塑性エラストマ一組成物を押出発泡成形して、発泡倍率 1. 2 倍以上の成形部材を得る工程と、
得られた前記成形部材を、前記成形部材の表面及び Z又は断面が金型キヤビティ に露出するように設置する工程と、
前記ォレフィン系熱可塑性エラストマ一組成物、及び Z又は前記ォレフィン系熱可 塑性エラストマ一組成物以外の熱可塑性エラストマ一組成物を、前記金型キヤビティ に射出して導入する工程と、を備えた成形複合体の製造方法。
PCT/JP2006/325654 2005-12-22 2006-12-22 成形複合体及びその製造方法 WO2007072949A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/158,710 US20090176045A1 (en) 2005-12-22 2006-12-22 Molded Composite Material and Process for Production Thereof
JP2007551167A JPWO2007072949A1 (ja) 2005-12-22 2006-12-22 成形複合体及びその製造方法
EP06843100A EP1964886A4 (en) 2005-12-22 2006-12-22 MOLDED COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005370992 2005-12-22
JP2005-370992 2005-12-22

Publications (1)

Publication Number Publication Date
WO2007072949A1 true WO2007072949A1 (ja) 2007-06-28

Family

ID=38188723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325654 WO2007072949A1 (ja) 2005-12-22 2006-12-22 成形複合体及びその製造方法

Country Status (5)

Country Link
US (1) US20090176045A1 (ja)
EP (1) EP1964886A4 (ja)
JP (1) JPWO2007072949A1 (ja)
CN (1) CN101374904A (ja)
WO (1) WO2007072949A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266615A (ja) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd 複合成形体および複合成形体の製造方法
JP2008279656A (ja) * 2007-05-10 2008-11-20 Mitsui Chemicals Inc 複合部材およびその製造方法
JP2009073894A (ja) * 2007-09-19 2009-04-09 Mitsui Chemicals Inc 熱可塑性エラストマー組成物およびその製造方法、並びにそれを用いた成形体
CN103185095A (zh) * 2011-12-29 2013-07-03 上海壬丰复合材料有限公司 一种用于风能发电机偏航器摩擦片及其制造方法
JP2017185771A (ja) * 2016-03-30 2017-10-12 積水化成品工業株式会社 車両用内装材
JP2018521148A (ja) * 2015-05-05 2018-08-02 ダウ グローバル テクノロジーズ エルエルシー 官能化ハロゲン化オレフィン系接着剤、それを含有する物品、及びそれを使用するための方法
WO2019077944A1 (ja) * 2017-10-16 2019-04-25 積水化成品工業株式会社 積層発泡シート、及びその成形体
JP2019210346A (ja) * 2018-06-01 2019-12-12 信越化学工業株式会社 熱可塑性エラストマー及びその成形体
JP2020535270A (ja) * 2017-09-27 2020-12-03 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. イオン変性シロキサンを含む熱界面組成物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336235B1 (en) 2009-12-18 2012-10-03 Actega Artistica S.A. Water-based dispersion of thermoplastic polymer and non-thermoplastic elastomer
US8864148B2 (en) * 2011-04-27 2014-10-21 Global Ip Holdings, Llc Antimicrobial, molded laminate shopping cart part and method of manufacturing same
EP2787035B1 (en) * 2011-11-29 2019-01-02 Sekisui Chemical Co., Ltd. Thermally expandable multilayer packing for building material
CN104139488B (zh) * 2014-06-30 2016-08-24 东莞市建东橡胶制品科技有限公司 一种软硬多色动物咀嚼玩具的制备工艺
FR3052120B1 (fr) * 2016-06-02 2019-11-22 Faurecia Automotive Industrie Dispositif de recouvrement pour plancher de coffre, et coffre de vehicule comprenant un tel dispositif de recouvrement
WO2019073607A1 (ja) * 2017-10-13 2019-04-18 株式会社アシックス 靴底用部材及び靴
US11518881B2 (en) * 2017-11-13 2022-12-06 Avient Corporation Polysiloxanes in thermoplastic elastomer compounds for overmolded thermoplastic articles
JP7307877B2 (ja) * 2018-02-05 2023-07-13 Jsr株式会社 配線部材
JP7083723B2 (ja) * 2018-08-07 2022-06-13 リケンテクノス株式会社 摺動材料組成物、摺動性成形物、および摺動性部材
US11511610B2 (en) 2018-11-12 2022-11-29 Shape Corp. Vehicle door carrier with integrated edge seal and method of manufacture
CN110894359B (zh) * 2019-12-05 2022-02-18 中国电子科技集团公司第三十三研究所 一种海绵型定向导电橡胶及其制备方法
JP7129507B1 (ja) * 2021-02-25 2022-09-01 美津濃株式会社 架橋発泡用樹脂組成物
CN116061468B (zh) * 2023-04-06 2023-06-20 成都泰格尔航天航空科技股份有限公司 一种碳纤维变曲率肋压实方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222325A (ja) * 1983-05-31 1984-12-14 Kinugawa Rubber Ind Co Ltd ウエザ−ストリツプの成形方法
JPH01249847A (ja) * 1988-03-31 1989-10-05 Shin Etsu Chem Co Ltd ゴム組成物
JPH0872631A (ja) * 1994-09-05 1996-03-19 Toyoda Gosei Co Ltd スポンジゴム製ウェザストリップ
JPH10175440A (ja) 1996-12-19 1998-06-30 Jsr Corp ウェザーストリップ用ゴム組成物
JPH10195227A (ja) * 1996-11-15 1998-07-28 Mitsui Chem Inc 注入スポンジ用ゴム組成物およびその加硫ゴム発泡成形体
JPH1170544A (ja) * 1997-06-26 1999-03-16 Toyoda Gosei Co Ltd 自動車用ウエザストリップの製造方法
JPH11310673A (ja) * 1998-04-28 1999-11-09 Nishikawa Rubber Co Ltd カラーゴム組成物及び同組成物を用いたウエザーストリップ
JP2000072935A (ja) 1998-08-31 2000-03-07 Jsr Corp ウェザーストリップ用ゴム組成物
JP2000234038A (ja) * 1999-02-15 2000-08-29 Mitsui Chemicals Inc スポンジ用熱硬化性ゴム組成物及びその加硫ゴム発泡成形体
JP2002322328A (ja) 2001-04-26 2002-11-08 Jsr Corp ゴム組成物
JP2003003023A (ja) * 2001-03-29 2003-01-08 Mitsui Chemicals Inc 熱可塑性エラストマー組成物およびその用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598487B2 (ja) * 1997-03-27 2004-12-08 豊田合成株式会社 自動車用ウェザストリップ
JP3760864B2 (ja) * 2000-03-01 2006-03-29 Jsr株式会社 熱可塑性エラストマー組成物並びにこれを用いた発泡体及び発泡体の製造方法
US20050029692A1 (en) * 2001-08-31 2005-02-10 Tomokazu Abe Thermoplastic elastomer composition for core back type injection foaming and injection foaming method using the same
WO2005075555A1 (ja) * 2004-02-03 2005-08-18 Jsr Corporation 熱可塑性エラストマー組成物、成形品、及び低硬度シール材
WO2006013902A1 (ja) * 2004-08-04 2006-02-09 Jsr Corporation 複合部材及びその製造方法
CN101155864A (zh) * 2005-01-31 2008-04-02 Jsr株式会社 泡沫成型品的成型方法和泡沫成型品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222325A (ja) * 1983-05-31 1984-12-14 Kinugawa Rubber Ind Co Ltd ウエザ−ストリツプの成形方法
JPH01249847A (ja) * 1988-03-31 1989-10-05 Shin Etsu Chem Co Ltd ゴム組成物
JPH0872631A (ja) * 1994-09-05 1996-03-19 Toyoda Gosei Co Ltd スポンジゴム製ウェザストリップ
JPH10195227A (ja) * 1996-11-15 1998-07-28 Mitsui Chem Inc 注入スポンジ用ゴム組成物およびその加硫ゴム発泡成形体
JPH10175440A (ja) 1996-12-19 1998-06-30 Jsr Corp ウェザーストリップ用ゴム組成物
JPH1170544A (ja) * 1997-06-26 1999-03-16 Toyoda Gosei Co Ltd 自動車用ウエザストリップの製造方法
JPH11310673A (ja) * 1998-04-28 1999-11-09 Nishikawa Rubber Co Ltd カラーゴム組成物及び同組成物を用いたウエザーストリップ
JP2000072935A (ja) 1998-08-31 2000-03-07 Jsr Corp ウェザーストリップ用ゴム組成物
JP2000234038A (ja) * 1999-02-15 2000-08-29 Mitsui Chemicals Inc スポンジ用熱硬化性ゴム組成物及びその加硫ゴム発泡成形体
JP2003003023A (ja) * 2001-03-29 2003-01-08 Mitsui Chemicals Inc 熱可塑性エラストマー組成物およびその用途
JP2002322328A (ja) 2001-04-26 2002-11-08 Jsr Corp ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1964886A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266615A (ja) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd 複合成形体および複合成形体の製造方法
JP2008279656A (ja) * 2007-05-10 2008-11-20 Mitsui Chemicals Inc 複合部材およびその製造方法
JP2009073894A (ja) * 2007-09-19 2009-04-09 Mitsui Chemicals Inc 熱可塑性エラストマー組成物およびその製造方法、並びにそれを用いた成形体
CN103185095A (zh) * 2011-12-29 2013-07-03 上海壬丰复合材料有限公司 一种用于风能发电机偏航器摩擦片及其制造方法
JP2018521148A (ja) * 2015-05-05 2018-08-02 ダウ グローバル テクノロジーズ エルエルシー 官能化ハロゲン化オレフィン系接着剤、それを含有する物品、及びそれを使用するための方法
JP2017185771A (ja) * 2016-03-30 2017-10-12 積水化成品工業株式会社 車両用内装材
JP2020535270A (ja) * 2017-09-27 2020-12-03 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. イオン変性シロキサンを含む熱界面組成物
WO2019077944A1 (ja) * 2017-10-16 2019-04-25 積水化成品工業株式会社 積層発泡シート、及びその成形体
JPWO2019077944A1 (ja) * 2017-10-16 2020-04-09 積水化成品工業株式会社 積層発泡シート、及びその成形体
JP7065471B2 (ja) 2017-10-16 2022-05-12 積水化成品工業株式会社 積層発泡シート、及びその成形体
JP2019210346A (ja) * 2018-06-01 2019-12-12 信越化学工業株式会社 熱可塑性エラストマー及びその成形体
JP7155615B2 (ja) 2018-06-01 2022-10-19 信越化学工業株式会社 熱可塑性エラストマー及びその成形体

Also Published As

Publication number Publication date
JPWO2007072949A1 (ja) 2009-06-04
EP1964886A1 (en) 2008-09-03
EP1964886A4 (en) 2009-06-10
CN101374904A (zh) 2009-02-25
US20090176045A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2007072949A1 (ja) 成形複合体及びその製造方法
US7300980B2 (en) Thermoplastic elastomer composition and process for producing the same
CN101208187B (zh) 通过动态硫化制备热塑性弹性体的方法
CN1302014C (zh) 热塑性弹性体组合物
JP3693017B2 (ja) 熱可塑性エラストマー組成物
JP4940660B2 (ja) 熱可塑性エラストマー組成物、成形品、及び低硬度シール材
WO2006080491A1 (ja) 発泡成形品の成形方法及び発泡成形品
JPWO2005066263A1 (ja) 熱可塑性エラストマー組成物およびその成形品
CN100366669C (zh) 热塑性弹性体组合物及其制造方法
JP2018135415A (ja) 熱可塑性エラストマー組成物の製造方法
JP2014193969A (ja) 熱可塑性エラストマー組成物
JP2010215684A (ja) 熱可塑性エラストマー組成物の製造方法、熱可塑性エラストマー組成物、発泡体及び積層シート
JP2009235309A (ja) 熱可塑性エラストマー組成物及び成形部材
JP2006282827A (ja) 熱可塑性エラストマー組成物、これを用いた複合部材及びウェザストリップ
JP3575426B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
WO2007024025A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP3603790B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP5157070B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2006044077A (ja) 複合部材及びその製造方法
CN114144457A (zh) 热塑性弹性体组合物,以及接合构件及其制造方法
WO2006013902A1 (ja) 複合部材及びその製造方法
JP2020147655A (ja) 変性エラストマー組成物、架橋エラストマー組成物及びその成形体
JP2010159321A (ja) 熱可塑性エラストマー組成物、並びにこれを用いた発泡体及びその製造方法
KR20070017123A (ko) 열가소성 엘라스토머 조성물, 성형품 및 저 경도 밀봉재
JP2009235245A (ja) 熱可塑性エラストマー組成物及び成形部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551167

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006843100

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680051821.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12158710

Country of ref document: US