WO2006013902A1 - 複合部材及びその製造方法 - Google Patents

複合部材及びその製造方法 Download PDF

Info

Publication number
WO2006013902A1
WO2006013902A1 PCT/JP2005/014231 JP2005014231W WO2006013902A1 WO 2006013902 A1 WO2006013902 A1 WO 2006013902A1 JP 2005014231 W JP2005014231 W JP 2005014231W WO 2006013902 A1 WO2006013902 A1 WO 2006013902A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
mass
ethylene
thermoplastic elastomer
composite member
Prior art date
Application number
PCT/JP2005/014231
Other languages
English (en)
French (fr)
Inventor
Kentarou Kanae
Hideo Nakanishi
Minoru Tanaka
Minoru Maeda
Yutaka Abe
Masato Kobayashi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004228698A external-priority patent/JP2006044077A/ja
Priority claimed from JP2004241293A external-priority patent/JP2006057016A/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2006013902A1 publication Critical patent/WO2006013902A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C45/14409Coating profiles or strips by injecting end or corner or intermediate parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/15Sealing arrangements characterised by the material
    • B60J10/16Sealing arrangements characterised by the material consisting of two or more plastic materials having different physical or chemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/20Sealing arrangements characterised by the shape
    • B60J10/21Sealing arrangements characterised by the shape having corner parts or bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/80Sealing arrangements specially adapted for opening panels, e.g. doors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a composite member and a method for manufacturing the same, and more specifically, a composite member excellent in adhesiveness between molding members constituting the composite member, and to be manufactured in a short time and safely. It is related with the manufacturing method of the composite member which can be performed.
  • the composite member of the present invention is used as a weather strip, a gasket, a seal material, a packing or the like for a vehicle.
  • Weather strips for vehicles, gaskets for building materials, and the like are usually rubber products having vulcanized rubber power, and have a complicated structure in which straight portions and curved portions are combined depending on purposes and applications.
  • vulcanized rubber those having the same strength as the rubber composition disclosed in Patent Documents 1, 2, 3 and the like are used. Rubber products with the above complex structure
  • a straight line portion that has been prepared in advance by extrusion molding or the like is placed in a mold and is used for vulcanization for a curved portion that is to be joined to the end of this straight line portion.
  • the rubber composition is introduced into the mold cavity, placed in a mold heated to about 160 to 180 ° C, and vulcanized for about 3 to 5 minutes to form the curved section. And a curved structure are obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-175440
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-72935
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-322328
  • the present invention has been made in view of the above circumstances, and can be manufactured in a short time and safely in a composite member excellent in adhesiveness between a molded member having a strength such as vulcanized rubber and another molded member.
  • An object of the present invention is to provide a method for producing a composite material that can be produced.
  • a composition (P1) containing a cross-linkable rubber and a cocoon or olefin-based thermoplastic elastomer
  • the melt flow rate of the olefin-based thermoplastic elastomer composition (P2) is not less than 0.1 lgZlO at a temperature of 230 ° C and a load of 21 N in accordance with JIS K7210. A method for producing a composite member.
  • the polyolefin-based thermoplastic elastomer composition (6) and Z or (8) used for forming the first molded part and Z or the second molded part is an ethylene-a-olefin-based co-polymer.
  • Polymerized rubber (1), ⁇ -year-old refin crystalline thermoplastic resin (2), ⁇ -year-old refin amorphous thermoplastic resin (3) and mineral oil-based softener (4 ') Further, according to any one of 1 to 5 above, which is a black thermoplastic elastomer composition (6 ′) containing a weathering agent (9) and carbon black (10) and having a sulfur (S) content of 20 ppm or less.
  • Composite member is a black thermoplastic elastomer composition (6 ′) containing a weathering agent (9) and carbon black (10) and having a sulfur (S) content of 20 ppm or less.
  • the polyolefin-based thermoplastic elastomer composition (6) and Z or (8) used for forming the first molded part and Z or the second molded part is ethylene'a-olefin.
  • the composite member according to any one of 1 to 5 above, which is 6 ′).
  • [0019] 13 be contained in the black-based thermoplastic elastomer first composition (6 '), wherein the ethylene - a- Orefuin copolymer rubber (1) 20 to 70 weight 0/0, the ⁇ - Orefin system 1 to 35% by mass of the crystalline thermoplastic resin (2), 1 to 20% by mass of the a-olefin-based amorphous thermoplastic resin (3), and 25 of the mineral oil-based softener (4 ′).
  • Black thermoplastic elastomer composition (6,) strength In place of the ethylene- ⁇ -olefin-based copolymer rubber (1), a mineral oil-based softener and an ethylene-a-olefin-based copolymer rubber 13.
  • Steps (I) and Z or Step (i) Force Ethylene ⁇ --olefin copolymer rubber (11) 10 to 93 parts by mass, crystalline polyethylene type resin (12) 3 to 30 parts by mass Block copolymer in which both and both ends are conjugated diene polymer blocks having a 1,2-bule bond content of 25% or less, and the intermediate block is a conjugated diene polymer block having a 1,2-bule bond content of more than 25%.
  • Hydrogenated block copolymer (13) 3 to 30 parts by mass, ⁇ -olefin finned resin having 3 or more carbon atoms (14) 1 to 30 parts by mass [However, (11), (12)
  • the melt flow rate at a temperature of 230 ° C and a load of 10 kg is 5 gZlO min. And the melt tension at 210 ° C and a take-up speed of 2 mZ min. 3.
  • An olefin-based thermoplastic elastomer composition (P,) having an Ogf of less than Ogf 10.
  • the composite member of the present invention includes a mixture containing ethylene 'a-olefin-based copolymer rubber, a-olefin-based crystalline thermoplastic resin, a one-year-old refin-based amorphous thermoplastic resin, and a softening agent.
  • the method for producing a composite member of the present invention includes a step of forming a composition (P1) containing a crosslinkable rubber and Z or olefin-based thermoplastic elastomer into a molded member by an extrusion molding machine or an injection molding machine, A step of installing the molded member so that at least a part of the surface and Z or the cross section of the molded member is exposed to the mold cavity; an ethylene-a-olefin-based copolymer rubber; An olefin thermoplastic elastomer obtained by dynamically heat-treating a mixture containing an in crystalline thermoplastic resin, a 1-year-old refin amorphous thermoplastic resin and a softening agent in the presence of a crosslinking agent.
  • the melt flow rate of the above olefin-based thermoplastic elastomer composition (P2) is more than 0.1 lg / 10 min under the conditions of JIS K7210 at a temperature of 230 ° C and a load of 21N. Efficient production can be performed.
  • FIG. 1 is a schematic explanatory view showing an example of a composite member.
  • FIG. 2 is a schematic explanatory view showing another example of a composite member.
  • FIG. 3 is a schematic explanatory view showing an arrangement example when a composite member having an annular structure is used as a weather strip for an automobile door.
  • FIG. 4 is a schematic explanatory view showing a method for producing a test piece when measuring tensile strength in Examples.
  • the composite member of the present invention comprises a mixture containing ethylene'a-olefin-based copolymer rubber, a-olefin-based crystalline thermoplastic resin, a 1-year-old refin-based amorphous thermoplastic resin, and a softening agent. It is also referred to as a first molded part (hereinafter referred to as “molded part (A)”) obtained by injection molding of an olefin-based thermoplastic elastomer composition obtained by dynamic heat treatment in the presence of a crosslinking agent.
  • molded part (A) obtained by injection molding of an olefin-based thermoplastic elastomer composition obtained by dynamic heat treatment in the presence of a crosslinking agent.
  • a second molded part obtained by molding or injection molding and containing a crosslinked rubber composition and a Z or olefin-based thermoplastic elastomer composition is provided.
  • This first molded part (molded part (A)) is made of ethylene 'a-olefin copolymer rubber, a-olefin crystalline thermoplastic resin, a 1-year-old refin amorphous thermoplastic resin, and It is obtained by injection molding an olefin-based thermoplastic elastomer composition obtained by dynamically heat-treating a mixture containing a softener in the presence of a crosslinking agent. Accordingly, the molded part (A) contains ethylene 'a-olefin-based copolymer rubber, a-olefin-based crystalline thermoplastic resin, a 1-year-old ref-in amorphous thermoplastic resin and softener.
  • the ethylene'a-olefin-based copolymer rubber (1) is not particularly limited as long as it is a copolymer rubber including an ethylene unit (al) made of ethylene and a unit (a2) having 3 or more carbon atoms (X-olefin copolymer (a2). the content of the unit (al), when the total amount of all structural units constituting the ethylene 'a Orefuin copolymer rubber (1) and 100 mole 0/0, preferably 35 mol 0/0 or more, more preferably 40 to 90 moles 0/0, more preferably from 45 to 85 mole 0/0.
  • the content of the unit (al) is too large, the flexibility of the shaped part obtained (a) is not sufficient
  • the mechanical strength of the resulting molded part (A) may not be sufficient.
  • Examples of a-olefins having 3 or more carbon atoms that form the unit (a2) include propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-methyl-1-butene, 2-methyl-2-butene 3-methylbutene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1undecene, and the like.
  • the unit (a2) composed of these a-olefins may be composed of one kind alone, or may be composed of a combination of two or more kinds.
  • a unit that also has propylene power, a unit that also has 1-buteneca, and the like are preferable.
  • the content of the unit (a2) when the total amount of all structural units constituting the ethylene 'a Orefuin copolymer rubber (1) and 100 mole 0/0, preferably 5 to 65 Mo Le%, more preferably 10 to 45 mole 0/0, and particularly preferably 15 to 40 mol%. If the content of the unit (a2) is too small, the resulting molded part (A) may not exhibit the desired rubber elasticity. On the other hand, if the amount is too large, the durability of the resulting molded part (A) may decrease.
  • the ethylene 'a-olefin copolymer rubber (1) may be a binary copolymer composed of the units (al) and (a2), or these units (al) and It may be a polymer (ternary copolymer, quaternary copolymer, etc.) composed of (a2) and other units. Examples of other units include a unit consisting of a non-conjugated genie compound.
  • Examples of the ethylene 'a-olefin binary copolymer include ethylene' propylene copolymer (hereinafter simply referred to as "EPM ⁇ ”) and ethylene 1-butene copolymer (hereinafter simply referred to as " ⁇ ").
  • EPM ⁇ ethylene' propylene copolymer
  • ethylene 1-butene copolymer
  • Ethylene 1-pentene copolymer ethylene 3-methyl-1-butene copolymer, ethylene 1-hexene copolymer, ethylene 3-methyl-1 pentene copolymer, ethylene 4-methyl-1 pentene copolymer
  • a polymer an ethylene / 3-ethyl-1-pentene copolymer, an ethylene / 1-octene copolymer, an ethylene / 1-decene copolymer, and an ethylene / 1-undecene copolymer.
  • ⁇ and ⁇ are preferred. These can be used alone or in combination of two or more.
  • the ethylene 'a-olefin-based copolymer rubber (1) is a terpolymer
  • examples of the terpolymer include ethylene' a-olefin-non-conjugated terpolymer. It is done.
  • Non-conjugated jeny compounds that form the non-conjugated gen units (hereinafter referred to as “unit (a3)”) constituting this ethylene 'a-olefin' non-conjugated gen terpolymer include 1, 4 Linear hexene compounds such as monohexagen, 1,5 hexagen, 1,6 hexagen, 5-methyl-1,4 monohexagen, 3,7 dimethyl-1,6-octagen, 5,7 dimethylocta 1, 6 Gen, 3, 7 Dimethyl-1, 7— Octagen, 7 Methyl Otata 1, 6 Gen, Dihydromyrcene, etc.
  • Cyclic pheny compounds tetrahydroindene, methyltetrahydroindene, dicyclopentagen, bicyclo [2. 2. 1] —hepter 2,5 gen, 5—methylene-2-norbornene, 5 ethylidene 2 norbornene, 5—probelu 2 Examples thereof include alicyclic pheny compounds such as norbornene, 5-isopropyl pyridene-2-norbornene, 5-cyclohexylidene-2-norbornene, and 5-biruol-2-norbornene.
  • the unit (a3) consisting of these non-conjugated phenoxy compounds may be composed of one kind alone, or may be composed of a combination of two or more kinds.
  • 1,4 units of hexadiene force, units of dicyclopentagen, units of 5 ethylidene-1,2 norbornene force and the like are preferable.
  • the content of the unit (a3) is preferably not more than 10 mol%, more preferably not more than 100 mol% when the total amount of all structural units constituting the ethylene 'a-olefin copolymer rubber (1) is 100 mol%. 1 to 8 mol%. If the content of the unit (a3) is too large, the durability of the resulting composition may be lowered.
  • the ethylene 'a-olefin copolymer rubber (1) includes a part of hydrogen atoms of these polymers.
  • Halogenated copolymers in which is substituted with a halogen atom such as a chlorine atom or bromine atom, or a derivative of butyl chloride, butyl acetate, (meth) acrylic acid, (meth) acrylic acid [methyl (meth) acrylate, glycidyl (Meth) acrylate, (meth) acrylamide, etc.], maleic acid, maleic acid derivatives (maleic anhydride, maleimide, dimethyl maleate, etc.), conjugated diene (butadiene, isoprene, black mouth prene, etc.)
  • a graft copolymer obtained by graft-polymerizing a saturated monomer with the binary copolymer, ternary copolymer, halogenated
  • the ethylene'a-olefin-based copolymer rubber (1) is made of, for example, ethylene, a in the presence of a solvent-powered catalyst containing a Ziegler'Natta catalyst, a soluble vanadium compound, and an organoaluminum compound.
  • the olefin and non-conjugated gen can be obtained by a polymerization method based on a medium-low pressure method such as a method of polymerizing while supplying hydrogen as a molecular weight regulator as necessary.
  • the polymerization can also be carried out by a gas phase method (fluidized bed or stirred bed) or a liquid phase method (slurry method or solution method).
  • the intrinsic viscosity (measured in decalin solvent at 135 ° C) of the ethylene 'a-olefin copolymer rubber (1) is preferably 2. OdlZg or more, more preferably 2.5 to 7. Odl. / g, more preferably 3.0 to 6. OdlZg. If this intrinsic viscosity is too small, the surface strength of the resulting molded part (A) may also cause the softener to bleed out or the rubber elasticity may decrease. On the other hand, if it is too large, the moldability may be reduced. Further, the crystallinity of the ethylene 'a -olefin copolymer rubber by X-ray diffraction is preferably 20% or less, more preferably 15% or less. If the crystallinity is too high, the flexibility of the resulting molded part (A) may be reduced.
  • the iodine value of the ethylene 'a-olefin copolymer rubber is preferably 5 to 30, more preferably 7 to 20. If the iodine value is too small, the crosslinking density of the resulting olefin-based thermoplastic elastomer composition may be lowered, and the mechanical properties of the resulting molded part (A) may be lowered. On the other hand, if it is too large, the crosslinking density of the resulting olefin-based thermoplastic elastomer composition becomes excessive, and the mechanical properties of the resulting molded part (A) may deteriorate.
  • a softener (4) preferably a mineral oil-based softener, instead of the ethylene'a one-year-old refin copolymer rubber (1) Oil-extended rubber (1,) containing (4,) and ethylene. A 1 year old refin copolymer rubber can also be used.
  • the blending ratio of ethylene a-olefin copolymer rubber and softener is preferably 20-80% by mass and 80- 20 wt%, more preferably 25 to 75 wt% and 75 to 25 wt%, more preferably from 30 to 70 weight 0/0 and from 70 to 30 weight 0/0.
  • the handling becomes easy in producing the olefin-based thermoplastic elastomer composition.
  • the a-olefin crystalline thermoplastic resin (2) is not particularly limited as long as it contains a unit (bl) of a-olefin resin and has a crystallinity by X-ray diffraction of 50% or more. This crystallinity is preferably 53% or more, more preferably 55% or more. Note that this crystallinity is closely related to the density of coconut resin. For example, in the case of polypropylene, ⁇ -type crystals ( The density of the monoclinic crystal is 0. The density of smectic type microcrystal (pseudo hexagonal form) is 0. The density of the amorphous (atactic) component is 0.850 gZcm 3 .
  • the density of the isotactic crystal component is 0.91 g / cm 3
  • the density of the amorphous (atactic) component is 0.87 gZcm 3
  • the preferable density of the ⁇ -olefin-based crystalline thermoplastic resin is 0.98 g / cm 3 or more, more preferably 0.90 to 0.94 gZcm 3 .
  • the crystallinity can be 50% or more.
  • the ⁇ -year-old refin crystalline thermoplastic resin has a crystallinity of less than 50% and a density of 0.89 gZcm 3 or less, the resulting molded part (A) has low heat resistance, strength, etc. Tend to go down.
  • the a-olefin, which forms the unit (bl), preferably has 3 or more carbon atoms, and more preferably has 3 to 12 carbon atoms. Of these, propylene and 1-butene are preferred.
  • the content of the unit (bl) is preferably 60 mol% or more, more preferably when the total amount of all the structural units constituting the ⁇ -olefin-based crystalline thermoplastic resin (2) is 100 mol%. 80 mol% or more, more preferably 90 to: L00 mol%. (B l) When the content is low, the crystallization degree and melting point of the ⁇ -year-old refin crystalline thermoplastic resin (2) tend to decrease.
  • the copolymer may be either a block copolymer or a random copolymer.
  • the total amount of the structural units excluding the unit (bl) of ⁇ -olefin linker is 100% of the total amount of all the structural units constituting the block copolymer.
  • mol% it is preferably 40 mol% or less, more preferably 20 mol% or less, and further preferably 10 mol% or less.
  • the crystallinity and melting point of the ⁇ -olefin-based crystalline thermoplastic resin (2) tend to decrease.
  • the structural unit excluding the above (bl) include structural units derived from ethylene.
  • the block copolymer can be obtained by living polymerization using a Ziegler-Natta catalyst.
  • the total amount of the structural units excluding the unit (bl) that is ⁇ -olefin linker is the total amount of all the structural units constituting the random copolymer. Is 100 mol%, preferably 15 mol% or less, more preferably 10 mol%. % Or less.
  • the random copolymer can be obtained, for example, by polymerizing ⁇ -olefin or the like in the presence of a catalyst component containing a Ziegler-Natta catalyst, a soluble vanadium compound, an organoaluminum compound, and a solvent. it can.
  • Examples of the polymerization method include a medium / low pressure method, and can be carried out by a gas phase method (fluidized bed or stirred bed), a liquid phase method (slurry method or solution method) and the like.
  • a molecular weight regulator such as hydrogen gas may be used as necessary.
  • the soluble vanadium compound includes VOC1 and cocoon or VC1 and alcohol.
  • Alcohols having 2 12 carbon atoms are preferred, for example, methanol, ethanol, ⁇ -propanol, isopropanol, ⁇ -butanol, sec-butanol, t-butanol, n xanol, n-octanol, 2-ethylhexanol N-decanol, n-dodecanol and the like. These can be used alone or in combination of two or more. Of these, alcohols having 38 carbon atoms are particularly preferred.
  • organoaluminum compound examples include triethylaluminum, triisobutylaluminum, tri- n -xylaluminum, jetylaluminum monochloride, disobutylaluminum monochloride, ethylaluminum sesquioxide, butylaluminum sesquisk.
  • Methyl aluminoxane which is a reaction product of trimethylaluminum and water, may be mentioned.
  • ethyl ether sesquichloride butyl aluminum sesquioxide, a mixture of ethyl aluminum sesquichloride and triisobutyl aluminum, triisobutyl alcohol and butyl aluminum sesquichloride, Is preferred.
  • solvent hydrocarbons are preferable, and n-pentane, n-hexane, n-heptane, n-octane, isooctane, and cyclohexane are particularly preferable. These can be used alone or in combination of two or more.
  • the melting point of the oc 1-year-old refin crystalline thermoplastic resin (2) is preferably 100 ° C or higher, more preferably 120 ° C or higher. . If the melting point is less than 100 ° C, sufficient heat resistance and strength tend not to be exhibited.
  • the melt flow rate (temperature 230 ° C, load 2.16 kg (21N)) (hereinafter simply referred to as “MFR”! /, U) of the ⁇ -olefin-based crystalline thermoplastic resin is preferably 0. 1 to 1, OOOg / 10 minutes, more preferably 0.5 to 500 gZlO minutes, still more preferably 1 to: LOOgZlO minutes.
  • the MFR is less than 0.1 lgZlO, the kneading processability and extrusion processability of the olefin thermoplastic elastomer composition (6) tend to be insufficient. On the other hand, if it exceeds 1, OOOgZlO, the mechanical strength of the molded part (A) obtained tends to be lowered.
  • the ⁇ -year-old refin crystalline thermoplastic resin (2) preferred in the present invention has a crystallinity of 0% or more, a density of 0.89 g / cm 3 or more, and an ethylene unit content of 20 mol%.
  • the melting point is 100 ° C or more and the MFR is 0.1 to: LOOgZlO.
  • Particularly preferred resin is polypropylene or propylene / ethylene copolymer having a melting point of 140 to 170 ° C.
  • the ⁇ -olefin-based crystalline thermoplastic resin can be used singly or in combination of two or more.
  • Examples of the a-olefin crystalline 'thermoplastic' resin (2) include, for example, polypropylene, propylene 'ethylene copolymer, propylene / 1-butene copolymer, propylene / 1-pentene copolymer.
  • Examples thereof include a pentene copolymer, a propylene / 1-otaten copolymer, a propylene / 1-decene copolymer, and a propylene / 1-undecene copolymer.
  • polypropylene and propylene / ethylene copolymers are preferably used. These can be used alone or in combination of two or more.
  • the a-olefin-based amorphous thermoplastic resin (3) is not particularly limited as long as it contains a unit (cl) that also becomes oc-olefin, and has a crystallinity of less than 50% by X-ray diffraction.
  • the crystallinity is preferably 30% or less, more preferably 20% or less. From the viewpoint of density, it is preferably 0.85 to 0.89 gZcm 3 , more preferably 0.85 to 0.88 gZcm 3 .
  • the a-olefin, which forms the unit (cl), preferably has 3 or more carbon atoms. More preferably 3-12.
  • the content of the unit (cl) is preferably 50 mol% or more when the total amount of all the structural units constituting the ⁇ -aged refin amorphous thermoplastic resin is 100 mol%. More preferably, it is 60 mol% or more.
  • ⁇ -olefin ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl — 1-pentene,
  • Atactic polypropylene and atactic poly-1-butene can be obtained by polymerization using a zirconocene compound monomethylaluminoxane catalyst.
  • the atactic polypropylene can be obtained as a by-product of polypropylene exemplified as the ⁇ -olefin-based crystalline thermoplastic resin.
  • the copolymer may be a block copolymer or a random copolymer.
  • This block copolymer can be obtained by living polymerization using a Ziegler Natta catalyst. Further, the random copolymer can be obtained by the same method as the above ⁇ -olefin-based crystalline thermoplastic resin.
  • the ⁇ -olefin-based amorphous thermoplastic resin is a copolymer containing the unit (cl) and an ethylene unit composed of ethylene, the ⁇ -talifine-based amorphous thermoplastic resin
  • the content of the unit (c 1) is preferably 50 mol% or more, more preferably 60 to: L00 mol%.
  • the number average molecular weight ⁇ in terms of polystyrene by GPC of the a-olefin amorphous thermoplastic resin (3) is preferably 1,000 to 20,000, more preferably 1,500 to 15,000. It is.
  • the heat resistance of the first molded part obtained by using the olefin thermoplastic elastomer composition (6) tends to deteriorate, whereas if it exceeds 20,000, the olefin heat The fluidity and heat-fusibility of the plastic elastomer composition (6) tend to deteriorate.
  • the ⁇ -olefin-based amorphous thermoplastic resin can be used singly or in combination of two or more.
  • the melt viscosity at 190 ° C of the oc 1-year-old refin amorphous thermoplastic resin (3) is preferably 50, OOOcPs or less, more preferably 100 to 30,000 cPs, and even more preferably 200 ⁇ 20, OOOcPs. If this viscosity exceeds 50, OOOcPs, the adhesive strength with the adherend tends to decrease. However, even if it does not exceed 50, OOOcPs, if the crystallinity exceeds 50% and the density exceeds 0.89 gZcm 3 , the adhesive strength with the adherend tends to decrease.
  • softening agent (4) known softening agents used in rubber products can be used.
  • These softeners include process oils such as mineral oil softeners, petroleum oils such as lubricating oil, paraffin, liquid paraffin, petroleum asphalt and petroleum jelly; coal tars such as coal tar and coal tar bitch; castor oil and flax -Fat oils such as oil, rapeseed oil, soybean oil, coconut oil; waxes such as tall oil, beeswax, carnauba wax, lanolin; fatty acids such as ricinoleic acid, palmitic acid, stearic acid, barium stearate, calcium stearate Or a metal salt thereof; synthetic high molecular weight materials such as petroleum resin, coumarone indene resin, and atactic polypropylene; ester compounds such as dioctyl phthalate, dioctyl adipate, dioctyl sebacate; Crystallin wax, sub (fattis), liquid polybutadiene,
  • paraffinic, naphthenic, and aromatic mineral oil softeners (4 ′) are particularly preferred for which process walls are preferred.
  • the mineral oil softener (4 ′) is generally a mixture of three of an aromatic ring, a naphthene ring, and a paraffin chain.
  • Paraffinic mineral oils that have 50% or more of the carbon atoms of the norafin chain, and 30 to 30% of the total number of carbons in the naphthene ring 45% oils are classified as naphthenic mineral oils, and those with 30% or more of the total number of carbon atoms in the aromatic ring are classified as aromatic mineral oils.
  • the paraffinic, naphthenic, and aromatic mineral oil softeners can be used in combination, and each can be used alone or in combination of two or more. .
  • the weight-average molecular weight Mw in terms of polystyrene by GPC of the mineral oil softener (4 ') is preferably 300 to 2,000, more preferably 500 to 1,500.
  • the kinematic viscosity at 40 ° C is preferably 20 to 800 cSt, more preferably 50 to 600 cSt.
  • the pour point is preferably 40 to 0 ° C, more preferably -30 to 0 ° C.
  • the olefin-based thermoplastic elastomer composition (6) used for forming the molded part (A) is composed of ethylene- a- olefin-based copolymer rubber (1), a-olefin-based crystalline thermoplastic resin (2), a —Contains an olefin-based amorphous thermoplastic resin (3) and a softening agent (4).
  • the content ratio of each component is as follows. That is, the content of the ethylene 'a-olefin copolymer rubber (1) is preferably 20 to 97 parts by mass, more preferably 23 to 94 parts by mass, still more preferably 25 to 90 parts by mass.
  • the content of the crystalline thermoplastic resin (2) is preferably 1 to 49 parts by mass, more preferably 2 to 45 parts by mass, and still more preferably 3 to 40 parts by mass.
  • the content of the thermoplastic thermoplastic resin is preferably 1 to 49 parts by mass, more preferably 2 to 45 parts by mass, still more preferably 3 to 40 parts by mass, and the content of the softener (4) is preferably 1-70 mass parts, More preferably, it is 2-67 mass parts, More preferably, it is 4-65 mass parts.
  • the flexibility and rubber elasticity of the resulting molded part ( ⁇ ) tend to decrease. If the content of the ⁇ -olefin amorphous thermoplastic resin is less than 1 part by mass, the resulting molded part ( ⁇ ), Adhesiveness with the second molded part (molded part (B)) tends to be lowered. On the other hand, when it exceeds 49 parts by mass, the flexibility and rubber elasticity of the obtained molded part (A) tend to be lowered. Further, when the content of the softening agent is less than 1 part by mass, the flexibility of the obtained molded part (A) tends to be lowered. On the other hand, if it exceeds 70 parts by mass, the mechanical properties of the resulting olefin-based thermoplastic elastomer composition tend to deteriorate.
  • the olefin-based thermoplastic elastomer composition (6) used for forming the molded part (A) includes ethylene- a- olefin-based copolymer rubber (1), a-olefin-based crystalline thermoplastic resin (2) In addition to the ⁇ -year-old refin-based amorphous thermoplastic resin (3), other polymer components may be contained. Other polymer components are not particularly limited as long as they do not hinder the mechanical strength, flexibility, and the like of the obtained thermoplastic elastomer composition.
  • polymer components include ionomer resin, aminoacrylamide polymer, polyethylene and its maleic anhydride graft polymer, polyisobutylene, ethylene 'bule chloride copolymer, ethylene' butalcohol copolymer, ethylene 'butylacetate.
  • Copolymer Polyethylene oxide, Ethylene'acrylic acid copolymer, Polypropylene and its maleic anhydride graft polymer, Polyisobutylene and its maleic anhydride graft polymer, Chlorinated polypropylene, 4-methylpentene Resin, polystyrene, ABS resin, ACS resin, AS resin, AES resin, ASA resin, MBS resin, acrylic resin, methallyl resin, vinyl chloride resin, salt vinylidene resin, polyamide Resin, polycarbonate, vinyl alcohol resin, buracetal resin, fluorine resin , Polyether resin, polyethylene terephthalate, nitrile rubber and its hydrogenated products, acrylic rubber, silicone rubber, fluorine rubber, butyl rubber, natural rubber, chlorinated polyethylene thermoplastic elastomer, syndiotactic 1, 2-polybutadiene, Simple blend type thermoplastic elastomer, Implant type thermoplastic elastomer, Dynamically cross-linked type thermoplastic elastomer
  • These polymer components can be used alone or in combination of two or more. Content ratio of these polymer components Is preferably 0 when the total of a -olefin-based copolymer rubber, a-olefin-based crystalline thermoplastic resin, and ⁇ -olefin-based amorphous thermoplastic resin is 100 parts by mass. 1 to: L00 parts by mass, more preferably 0.1 to 80 parts by mass.
  • the olefin-based thermoplastic elastomer composition (6) used for forming the molded part ( ⁇ ) includes a filler, an antioxidant, an antioxidant, a plasticizer, an ultraviolet absorber, an antistatic agent, and a weathering agent.
  • Stabilizers such as flame retardants, fillers, antifungal agents, antifungal agents, blocking agents, sealability improvers, lubricants (metal stalagmite, wax, etc.), heat stabilizers, light stabilizers, copper damage inhibitors, It may contain additives such as metal deactivators, crystal nucleating agents, tackifiers, foaming agents, foaming aids, and coloring agents (dyes, pigments, etc.).
  • Fillers include metal powders such as ferrite, inorganic fibers such as glass fibers and metal fibers, organic fibers such as carbon fibers and aramid fibers, composite fibers, inorganic whiskers such as potassium titanate whisker, glass beads, and glass balloons.
  • metal powders such as ferrite, inorganic fibers such as glass fibers and metal fibers, organic fibers such as carbon fibers and aramid fibers, composite fibers, inorganic whiskers such as potassium titanate whisker, glass beads, and glass balloons.
  • the above olefin-based thermoplastic elastomer composition (6) is composed of an ethylene-a-olefin-based copolymer rubber (1), an ⁇ -year-old refin-based crystalline thermoplastic resin (2), an ⁇ -year-old refin-based amorphous heat. It was obtained by dynamically heat-treating a mixture containing the plastic rosin (3) and the softening agent (4) in the presence of the crosslinking agent (5).
  • the cross-linking agent (5) is not particularly limited, but is a melting point of a 1 year old refin crystalline thermoplastic resin (1) and an ⁇ -year refin amorphous thermoplastic resin (2).
  • a compound that can crosslink at least ethylene-a-year-old refin copolymer rubber (1) by dynamic heat treatment at a temperature is preferred.
  • Examples of the cross-linking agent (5) include organic peroxides, phenol resin cross-linking agents, sulfur, sulfur compounds, p quinones, p quinone dioxime derivatives, bismaleimide compounds, epoxy compounds, silanic acids. Compound, amino resin, polyol cross-linking agent, polyamine, triazine compound, metal stone, and the like. These can be used alone or in combination of two or more. Of these, organic peroxides and phenolic resin crosslinkers are preferred.
  • Organic peroxides include 1,3 bis (t-butylperoxyisopropyl) benzene, 2,5 dimethyl-2,5 bis (t-butylperoxy) hexyne-3, 2,5 dimethyl-2,5 bis (T-butylperoxy) hexene-3, 2, 5 dimethyl-2,5 bis (t butylperoxy) hexane, 2,2,1bis (t butylperoxy) p isopropylbenzene, dicumyl peroxide, di-t-butylperoxide Xoxide, t-butyl peroxide, p-menthane peroxide, 1, 1 bis (t butyl peroxide) 3, 3, 5— trimethylcyclohexane, dilauroyl peroxide, diacetylyloxide, tert chinoleper Oxybenzoate, 2,4-dichlorobenzoinole peroxide, p-chlorobenzoyl peroxid
  • 1,3 bis (t-butylperoxyisopropyl) benzene, 2,5 dimethyl-2,5 di (t-butylbaroxy) hexyne-3, 2,5 dimethyl-2,5 di (t— Butyl peroxide) and ⁇ , a-bis (t butylperoxy) diisopropylbenzene, dicumyl peroxide, and di-t-butyl peroxide are preferred!
  • phenolic cross-linking agents include p-substituted phenolic compounds represented by the following general formula (I), o-substituted phenol'aldehyde condensates, m-substituted phenol'aldehyde condensates, and bromination.
  • Examples include alkylphenol 'aldehyde condensates. These can be used alone or in combination of two or more. Of these, p-substituted phenol compounds are preferred.
  • X is a hydroxyl group, a halogenated alkyl group or a halogen atom
  • R is a saturated hydrocarbon group having 1 to 15 carbon atoms
  • n is an integer of 0 to 10).
  • the p-substituted phenol compound can be obtained by a condensation reaction of a p-substituted phenol and an aldehyde (preferably formaldehyde) in the presence of an alkali catalyst.
  • an aldehyde preferably formaldehyde
  • the amount of the crosslinking agent (5) used is as follows: ethylene 'a-olefin-based copolymer rubber (1), a-olefin-based crystalline thermoplastic resin (2), a-olefin-based amorphous thermoplastic resin
  • the total amount of the polymer components including the fat (3) and the like is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and still more preferably 1 to 10 parts by mass with respect to 100 parts by mass. is there.
  • the amount is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the degree of cross-linking becomes excessively high, and the moldability tends to deteriorate and the mechanical properties tend to decrease.
  • the amount is too small, the degree of crosslinking may be insufficient, and the rubber elasticity and mechanical strength of the resulting molded part (A) may decrease.
  • a phenol type crosslinking agent as said crosslinking agent (5), it becomes like this.
  • Preferably it is 0.2-10 mass parts, More preferably, it is 0.5-5 mass parts. If the amount of the phenolic crosslinking agent used is too large, the moldability may be deteriorated. On the other hand, if the amount is too small, the degree of crosslinking may be insufficient, and the rubber elasticity and mechanical strength of the resulting molded part (A) may decrease.
  • crosslinking agent (5) When the crosslinking agent (5) is used in combination with a crosslinking aid or a crosslinking accelerator, the crosslinking reaction can be carried out gently, and particularly uniform crosslinking can be formed.
  • organic peroxides are used as the crosslinking agent (5), sulfur, sulfur compounds (powder sulfur, colloidal sulfur, precipitated sulfur, insoluble sulfur, surface-treated sulfur, dipentamethylene thiuram tetras Rufide, etc.), oxime compounds (p-quinone oxime, p, p, -dibenzoyl quinone oxime, etc.), multifunctional monomers (ethylene glycol di (meth) acrylate, diethylene diol diol di (meth) acrylate, tri Ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, diallyl
  • N, N, -m-phelene bismaleimide can also be used as a crosslinking agent because it has a function as a crosslinking agent.
  • the amount of the crosslinking aid used is preferably 10 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the raw material composition. Part or less, More preferably, it is 0.2 to 5 parts by mass. If the amount of the crosslinking aid used is too large, the crosslinking degree becomes excessively high, and the molding processability tends to deteriorate or the mechanical properties tend to deteriorate.
  • crosslinking agent (5) metal halides (such as stannous chloride, salt and ferric iron), and organic halides (chlorinated polypropylene, odor, etc.)
  • the crosslinking rate can be adjusted by using a crosslinking accelerator such as butyl rubber or chloroprene rubber together.
  • a crosslinking accelerator such as butyl rubber or chloroprene rubber together.
  • the above olefin-based thermoplastic elastomer composition (6) is composed of an ethylene-a-olefin-based copolymer rubber (1), an ⁇ -year-old refin-based crystalline thermoplastic resin (2), an ⁇ -year-old refin-based amorphous heat.
  • a raw material composition containing a mixture containing a plastic rosin (3) and a softening agent (4) and a crosslinking agent (5) has been subjected to dynamic heat treatment.
  • dynamically heat-treating means performing both applying shearing force and heating.
  • the ethylene- a- olefin-based copolymer rubber (1), the a-olefin-based crystalline thermoplastic resin (2), and the a-olefin-based amorphous thermoplastic resin (3) may be used as they are, Each may be used as a composition containing the same or different additives.
  • the shape when using ethylene'a 1-year-old refin copolymer rubber may be a deviation of bale, crumb, pellet, powder (including crushed product of bale or crumb). Different ethylene ' ⁇ -olefin copolymers may be used in combination.
  • An apparatus used for "dynamic heat treatment" when producing the olefin-based thermoplastic elastomer composition (6) includes a melt-kneading apparatus and the like.
  • the treatment by this melt kneader may be a continuous type or a notch type.
  • Examples of the melt kneading apparatus include an open type mixing roll, a non-open type Banbury mixer, a single screw extruder, a twin screw extruder, a continuous kneader, and a pressure kneader.
  • a continuous melt kneading apparatus such as a single screw extruder, a twin screw extruder, or a continuous kneader from the viewpoints of economy, processing efficiency, and the like.
  • a continuous melt kneading apparatus such as a single screw extruder, a twin screw extruder, or a continuous kneader from the viewpoints of economy, processing efficiency, and the like.
  • continuous melt-kneading equipment two or more of the same or different equipment may be used in combination!
  • LZD ratio of effective screw length L to outer diameter D
  • LZD ratio of effective screw length L to outer diameter D
  • any twin screw extruder such as one in which two screws are squeezed or one in which they are not squeezed can be used. It is more preferable that the rotation direction is the same direction and the screw is mixed.
  • twin screw extruders include “PCM” manufactured by Ikegai Co., “KTX” manufactured by Kobe Steel Co., Ltd. “ ⁇ ” manufactured by Nippon Steel Co., Ltd. “ ⁇ ” manufactured by Toshiba Machine Co., Ltd. Or the like.
  • L / D ratio of effective screw length L to outer diameter D
  • LZD10 ratio of effective screw length L to outer diameter D
  • examples of such a continuous kneader include “Mixtron KTX ⁇ LCM ⁇ NCM” manufactured by Kobe Steel, and “CIM ⁇ CMPJ” manufactured by Nippon Steel.
  • the treatment temperature during the dynamic heat treatment is usually 120 to 350 ° C, preferably 150 to 290 ° C.
  • the treatment time is usually 20 seconds to 320 minutes, preferably 30 seconds to 25 minutes.
  • the shearing force applied to the mixture is 10 to 20,000 Z seconds, preferably 100 to 1 in terms of shear rate. o, oooZ seconds.
  • the above-mentioned polyolefin-based thermoplastic elastomer yarn (6) is composed of the above-mentioned ethylene-olefin-based copolymer rubber (1), It contains ⁇ -year-old refin crystalline thermoplastic resin (2), ⁇ -year-old refin amorphous thermoplastic resin (3) and mineral oil-based softener (4 '), and weathering agent (9) And a black thermoplastic elastomer composition (6 ′) containing carbon black (10) and having a sulfur (S) content of 20 ppm or less. Further, as the content of X (S), the content of X (S) in the carbon black (10) may be 0.4% by mass or less.
  • the first molded part is black, it has flexibility and rubber-like properties similar to vulcanized rubber, and it can be used for a long time as automotive parts materials such as wind seals, door seals, trunk seals, etc. Even if it is used, it does not cause whitening, has excellent weather resistance, and can be recycled.
  • the whitened material appearing on the surface of the component was a decomposition product of the olefinic amorphous polymer contained in the thermoplastic elastomer composition.
  • a weathering agent typified by a hindered amine light stabilizer.
  • io (S) mixed in carbon black which is a black colorant, the effectiveness of the weathering agent will be reduced and whitening will occur.
  • the xio (S) content in the black thermoplastic elastomer composition (6 ') is 20 ppm or less, and the xio (S) content in the carbon black is 0. Limited to 4% by mass or less.
  • the xio (S) content in the thermoplastic elastomer composition is preferably 15 ppm or less, more preferably 10 ppm or less.
  • the content of sulfur (S) in the carbon black it is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
  • the black thermoplastic elastomer composition (6,) is composed of ethylene-a-olefin-based copolymer rubber (1), ⁇ -year-old refin-based crystalline thermoplastic resin (2), ⁇ -year-old refin-based Contains amorphous thermoplastic resin (3) and mineral oil softener (4 ').
  • amorphous thermoplastic resin (3) When the total of these is 100% by mass, it is preferable to contain 1 to 20% by mass of a 1-year-old refin amorphous thermoplastic resin (3). It is particularly preferable to contain 3 to 10% by mass.
  • the ethylene 'a Orefuin copolymer rubber (1) preferably is 20 to 70 mass 0/0 device still more preferably 25 to 66% by weight, particularly preferably from 30 to 64 wt%, mineral oil
  • the softening agent (4 ′) is preferably 25 to 70% by mass, more preferably 30 to 66% by mass, particularly preferably 35 to 64% by mass.
  • a 1-year-old refin crystalline thermoplastic resin (2 ) Is preferably 1 to 35% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 25% by mass.
  • the total content of ethylene'a-olefin copolymer rubber (1) and mineral oil softener (4,) is 80 to 95% by mass, more preferably 83 to 95% by mass.
  • the blending amount of the ethylene'a-olefin copolymer rubber (1) exceeds 70% by mass, the heat-resistant and strength tends to be lowered and the thermoplastic properties tend to be impaired in the molded article by the ejection fusion. This is not preferable.
  • the mineral oil softener (4 ′) When the mineral oil softener (4 ′) is less than 25% by mass, the fluidity of the resulting black thermoplastic elastomer composition (6 ′) tends to decrease. On the other hand, when the mineral oil softener (4 ′) exceeds 70% by mass, the ⁇ -olefin-based crystalline thermoplastic resin (2) and the a-olefin-based amorphous thermoplastic resin (3 ), which tends to cause poor dispersion during kneading. Further, when the ⁇ -year-old refin crystalline thermoplastic resin (2) is less than 1% by mass, the strength and heat resistance of the resulting black thermoplastic elastomer composition (6 ′) tend to decrease. is there. On the other hand, if the ⁇ -year-old refin crystalline thermoplastic rosin (2) exceeds 35% by mass, the flexibility of the resulting black thermoplastic elastomer composition (6 ′) decreases, which is not preferable! .
  • a weathering agent (9) and carbon black (10) which is a black colorant.
  • the content of the weathering agent (9) is preferably 5 parts by mass or less and more preferably 0.2 parts by mass or less with respect to 100 parts by mass in total of the above four components. When the content of the weathering agent (9) exceeds 5 parts by mass, the rubber elasticity tends to decrease, and the weathering agent (9) is generally expensive and it is not economical to increase the content.
  • the content of carbon black (10) is preferably 0.2 to 10.0 parts by mass, more preferably 0.3 to 1.5 parts by mass with respect to 100 parts by mass in total of the above four components. .
  • the content of carbon black (10) is less than 0.2 parts by mass, the weather resistance tends to be inferior.
  • it exceeds 10.0 parts by mass the rubber elasticity and flow of the thermoplastic elastomer composition are decreased. Tend to decrease.
  • HALS hindered amine light stabilizer
  • zinc oxide, titanium oxide, benzotriazole ultraviolet absorber, benzophenol Non-ultraviolet absorbers, salicylic acid derivatives, benzoic acid derivatives, etc. may be used in combination with HALS.
  • the carbon black (10) used in the present embodiment has a xio (S) content of 0.4 mass% or less as described above.
  • Carbon black (10) having such a low content is, for example, an aromatic hydrocarbon used as a raw material for carbon black (10), a liquid carbon used as a fuel, as described in JP-A-10-195331. It can be obtained by using a production method in which a material having a low content as hydrogen or a gaseous hydrocarbon is used and the raw material carbon black is oxidized with ozone in the presence of water containing 0.01 N or more of an organic acid.
  • Preferable carbon black (10) includes acetylene black, conductive furnace black, super conductive furnace black, etastra conductive furnace black, conductive channel black, furnace black heat-treated at a high temperature of about 1500 ° C, or Channel black etc. can be mentioned.
  • a mineral oil softening agent (4) is oil-extended rubber (1) 30 mass 0/0 or more on, preferably 35 80 mass 0/0, more preferably containing 35-7 0% by weight.
  • the mineral oil-based softener (4,) is a pre-added mineral oil-based softener (4 '') that is separately added after the oil-extended rubber (1,). It can be
  • (1 ′) is preferably 30 to 98 mass% (more preferably 50 to 95 mass%, still more preferably 60 to 95 mass%)
  • ( 4 ′ ′) is 0 to 50% by mass (more preferably 0 to 40% by mass, more preferably 10 to 35% by mass)
  • (2) is 1 to 35% by mass (more preferably 2 to 30% by mass). More preferably 3 to 25% by mass)
  • the oil-extended rubber (1 ') is less than 30% by mass, the flexibility of the resulting black thermoplastic elastomer composition (6') tends to decrease.
  • the content of the oil-extended rubber (1 ′) exceeds 8% by mass, the molded article by injection fusion tends to decrease the heat resistance and strength, and the thermoplastic property tends to be impaired. Absent.
  • the amount of the post-added mineral oil softener (4 ′ ′) exceeds 50% by mass, a-olefin crystalline thermoplastic resin (2) and ⁇ -one-year old refin amorphous thermoplastic resin ( This tends to cause poor dispersion during kneading with 3).
  • thermoplastic resin (2) If the oc 1-year-old refin crystalline thermoplastic resin (2) is less than 1% by mass, the strength and heat resistance of the resulting thermoplastic elastomer composition tend to be lowered. On the other hand, if the a-year-old refin crystalline thermoplastic resin (2) exceeds 35% by mass, the flexibility of the resulting black thermoplastic elastomer composition (6 ′) is impaired. When the content of the ⁇ -olefin-based amorphous thermoplastic resin (3) is less than 1% by mass, the adhesiveness at the time of injection fusion tends to be lowered.
  • the molded part ( ⁇ ) is formed by injection molding and may be a solid body or a foam.
  • the hardness of the molded part ( ⁇ ) is in the range of 10 to 99 when the hardness of the molded part ( ⁇ ) is measured according to JIS ⁇ 6253 using a test piece having the above-mentioned polyolefin-based thermoplastic elastomer composition strength. It is preferable. Within this range, it can be used as a composite member with excellent flexibility.
  • a more preferable Shore A hardness is 12 to 97, and further preferably 15 to 95.
  • the shape of the molded part (A) is not particularly limited, and may be a linear shape, a plate shape, a cylindrical shape, an indefinite shape formed by combining these, or a deformed shape such as a bent shape. It may be. Moreover, you may have a through-hole, a recessed part, a convex part, etc. In the present invention, since a specific constituent material is used, the shape of the formed portion (A) can have a preferable strength even when it is deformed in a curved shape or the like.
  • the size of this molded part (A) is also particularly limited. However, the length, thickness, interval, etc. of each part can also be selected according to the purpose and application.
  • This second molded part (molded part (B)) is obtained by extrusion molding or injection molding, and contains the crosslinked rubber composition (7) and Z or olefin-based thermoplastic elastomer composition (8). is there.
  • the “crosslinked rubber composition (7)” means a composition containing a rubber crosslinked (or vulcanized) with a crosslinking agent containing a vulcanizing agent or a rubber having a crosslinked structure.
  • crosslinked (or vulcanized) rubber or rubber having a crosslinked structure examples include ethylene 'propylene polymer, ethylene' propylene 'non-conjugated diene polymer, ethylene 1-butene polymer, Ethylene 1-butene 'olefin polymer such as non-conjugated gen polymer, ethylene' acrylate rubber, chlorinated polyethylene, chlorosulfonated polyethylene, styrene butadiene rubber, -tolyl rubber, chloroprene rubber, acrylic rubber, urethane rubber, etc.
  • examples thereof include a crosslinked rubber or a vulcanized rubber obtained by crosslinking or vulcanizing one or more rubber components.
  • the type, amount, method and the like of the crosslinking agent or vulcanizing agent used for the rubber component are not particularly limited.
  • the crosslinked rubber composition (7) may contain oc 1-year-old refin amorphous thermoplastic resin. By including this ⁇ -year-old refin-based amorphous thermoplastic resin, the adhesion between the first molded part and the second molded part is further improved. As this ⁇ -olefin-based amorphous thermoplastic resin, the a-olefin-based amorphous thermoplastic resin (3) contained in the composition used for forming the first molded part can be applied. .
  • the ⁇ -olefin-based amorphous thermoplastic resin may be a cross-linked product or a non-cross-linked product in the molded part ( ⁇ ).
  • the content is preferably 0.1 to 50% by mass when the total amount of the polymer components contained in the crosslinked rubber composition is 100% by mass. More preferably, the content is 0.1 to 30% by mass.
  • the above-mentioned olefin-based thermoplastic elastomer composition (8) includes a simple blend-type olefin-based thermoplastic elastomer composition, an implant-type olefin-based thermoplastic elastomer composition, a dynamically cross-linked olefin-based heat composition. And a plastic elastomer composition. These can be used alone or in combination of two or more. Still, Examples of the olefin-based thermoplastic elastomer composition (8) include an olefin-based thermoplastic elastomer composition (6) and a black-type thermoplastic elastomer composition (6, used for forming the molded part (A)). ) Can be used.
  • the molded part (B) may contain a combination of a crosslinked rubber composition and an olefin-based thermoplastic elastomer composition.
  • the molded part (B) may be a solid body as long as it is formed by extrusion molding or injection molding, or may be a foam (sponge or the like).
  • a coextruded product of a crosslinked (vulcanized) rubber composition and a crosslinked (vulcanized) rubber foam a coextrusion of an olefinic thermoplastic elastomer composition and an olefinic thermoplastic elastomer composition foam. Goods may also be used.
  • the type and amount of foaming agent used, the foaming ratio, the foaming method, etc. are not particularly limited.
  • a foaming agent is usually added to the raw material composition for forming the molded part (B).
  • the foaming agent include a pyrolytic foaming agent, a volatile foaming agent, a hollow particle foaming agent, a gas, and a supercritical fluid. These can be used alone or in combination of two or more.
  • the foaming agent can usually be selected according to the type of polymer component contained in the raw material composition, the method for producing the molded part (B), and the like.
  • Thermal decomposition type foaming agents include N-, N-, monodinitrosopentamethylenetetramine, N-, N-, mono-dimethyl N, N, mono-dinitrosotephthalamide, etc .; -troso-based foaming agents; azodicarbonamide, azodicarbon Azo foaming agents of norium azodicarboxylate, such as barium acid; Foaming agents; triazine foaming agents such as trihydrazinotriazine; inorganic foaming agents such as tetrazole foaming agents such as 5-phenoltetrazole, azobistetrazole digazine, azobistetrazolaminoguanidine, carbonic acid Inorganic foaming agents such as sodium hydrogen are listed.
  • the amount of the pyrolytic foaming agent used may be selected according to its type, desired foaming ratio, etc., but the polymer component contained in the raw material composition for forming the molded part (B) may be selected. 100 parts by mass In this case, preferably 0.1 to: LOO parts by mass.
  • Examples of the volatile foaming agent include aliphatic hydrocarbons such as propane, butane and pentane; alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; chlorodifluoromethane, difluoromethane, Trifluoromethane, trichlorofluoromethane, dichloromethane, dichloromethane, dichloromethane dichloromethane, trichloromethane, chloromethane, chloroethane, dichlorotrichloroethane, dichlorofluoroethane, chlorodifluoroethane , Dichloropentafluoroethane, Pentafunoleotane, Trifnoreroethane, Dichlorotetrafluoroethane, Trichlorodifluoroethane, Tetrachlorodifluoroethane, Dichloropentafluoro
  • the amount of the volatile foaming agent used may be selected according to its type, desired foaming ratio, etc., but the polymer component contained in the raw material composition for forming the molded part (B) is 100%. When it is made into a mass part, Preferably it is 0.1-100 mass part.
  • the hollow particle type foaming agent is a thermoplastic swellable thermally expandable microsphere in which an expansion agent is encapsulated in an outer shell made of a thermoplastic scab.
  • thermoplastic resins include (meth) acrylonitrile, (meth) acrylic acid esters, halogenated butyl, halogenated vinylidene, aromatic vinyl compounds such as styrene, butyl acetate, butadiene, black mouth plain, and pyridine. It can be a homopolymer or copolymer having at least one kind of force selected from the above.
  • thermoplastic resin is dibutenebenzene, ethylene glycol (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, 1, 3 -butylene glycol di (meta ) It may be cross-linked or cross-linkable by a cross-linking agent such as attalylate, aryl (meth) acrylate, triacryl formal, triallyl isocyanurate.
  • the expanding agent contained in the hollow particle type foaming agent the compounds exemplified as the volatile foaming agent can be applied.
  • the proportion of the expansion agent in the thermally expandable microspheres is preferably 5 to 30% by mass when the thermoplastic resin for the outer shell is 100% by mass.
  • the hollow particle type foaming agent (unexpanded microsphere state) usually has a weight average particle diameter of 1 to 100 / zm.
  • the amount of the hollow particle foaming agent used may be selected according to the type, desired foaming ratio, etc., but the polymer contained in the raw material composition for forming the molded part (B) When the component is 100 parts by mass, it is preferably 0.1 to L00 parts by mass.
  • a supercritical fluid such as nitrogen or carbon dioxide can be used. These supercritical fluids can be used singly or in combination of two or more. The amount of these supercritical fluids to be used should be selected according to the type and desired expansion ratio.
  • foaming agents thermal decomposition type foaming agent, volatile type foaming agent, hollow particle type foaming agent and supercritical fluid
  • foaming nucleating agents such as an acid and a talc.
  • the amount of the foam nucleating agent used is usually 0.01 to L0 parts by mass when the polymer component contained in the raw material composition for forming the molded part (B) is 100 parts by mass.
  • the molded part (B) may contain the additives and the like exemplified in the description of the molded part (A) depending on the purpose and application.
  • the shape of the molded part (B) is not particularly limited, and can be any shape, the length of each part, the thickness, the interval, and the like, similar to the molded part (A). Further, the molding part (B) can be obtained by cutting an extruded product having a predetermined cross-sectional shape or molding an injection-molded product having a predetermined shape.
  • the molded part (B) may include a reinforcing member on the surface and Z or inside thereof.
  • the reinforcing member is not particularly limited as long as it can stabilize the structure of the molded part (B).
  • the constituent material of the reinforcing member is a material that does not react with the polymer constituting the body of the molded part (B), or a material that does not react with water (decomposition, corrosion, etc.), organic Either a material or an inorganic material may be used. These may be used in combination.
  • organic material a polymer material is preferable.
  • inorganic material metals, alloys, ceramics and the like are preferable.
  • the shape of the reinforcing member may be a lump shape, a line shape, a plate shape, or the like, and may be an indefinite shape formed by combining them, or a deformed shape such as a bend. Also In order to make the integral part of the molded part (B) with the main body more reliable, it may have a through hole, a concave part, a convex part, and the like.
  • the composite member of the present invention includes a molded part (A) and a molded part (B) joined to at least a part of the surface and Z or cross section of the molded part (A).
  • the molded parts (A) and (B) are usually joined at a part having a shape such as a flat surface, a curved surface, and an uneven surface, and the entire contact part may be joined completely or partially. It may be joined to.
  • the foam is not a foam!
  • the material constituting the side member is in the void of the side member that is the foam. Joined by intrusion.
  • the olefin-based thermoplastic elastomer composition (6) which is a forming material of the molded part (A)
  • the olefin-based thermoplastic elastomer composition (6) which is a forming material of the molded part (A)
  • the olefin-based thermoplastic elastomer composition (6) which is a forming material of the molded part (A)
  • the olefin-based thermoplastic elastomer composition (6) which is a forming material of the molded part (A)
  • the molded part (A) contains ⁇ -olefin-based amorphous thermoplastic resin (3), and therefore has excellent adhesion to the molded part ( ⁇ ).
  • the composite member of the present invention can be shaped according to the purpose, application, etc., utilizing the excellent adhesiveness described above, and has a structure shown in [1] to [4] below. Can do.
  • n is an integer greater than or equal to 2.
  • the above structure [4] means that the molded parts (A) and (B) are alternately joined and the main chain is a ring (circular, square, fan-shaped, star-shaped, etc.) structure.
  • the composite member having this structure [4] a composite member having an annular structure in which the ends of the molded parts (A) and (B) are joined is preferable.
  • the present invention is not limited to the above [1] to [4]. That is, the composite member of the present invention may be a combination of the above [1] to [4]. For example, a composite member in which a plurality of other members are joined to the surface of one member is used. Can do. Since the molding part (A) has a specific material force, it is preferable to use the molding part (B) as the straight part and the molding part (A) as the curved part as shown in FIG. . As a result, even if the composite member has a complicated shape, the strength utilizing the excellent adhesiveness can be increased in the molded parts (A) and (B).
  • the composite member of the present invention is produced by forming the molded part (B) by extrusion molding or injection molding, and then forming the molded part (A) by injection molding, and then bonding them together. It is done.
  • the method for producing a composite member of the present invention comprises a composition (P1) containing a crosslinkable rubber and Z or olefin thermoplastic elastomer (P1) formed by an extrusion molding machine or an injection molding machine (hereinafter referred to as “molding”).
  • the step (hereinafter referred to as “step (1)”) and the molded member (b), the surface and at least a part of Z or the cross-section are exposed to the mold cavity.
  • a process (hereinafter referred to as “process (11)”), ethylene'a-olefin-based copolymer rubber, a 1-year-old refin-based crystalline thermoplastic resin, a 1-year-old refin-based amorphous heat
  • An olefin-based thermoplastic elastomer composition (P2) obtained by dynamically heat-treating a mixture containing a plastic resin and a softening agent in the presence of a cross-linking agent is introduced into the mold cavity by an injection molding machine.
  • a process (hereinafter referred to as “process (III)”).
  • a composition (P1) containing a crosslinkable rubber and Z or olefin-based thermoplastic elastomer is molded using an extrusion molding machine such as a screw type or a non-screw type, or an injection molding machine.
  • an extrusion molding machine such as a screw type or a non-screw type, or an injection molding machine.
  • a molded member (b) having a predetermined shape is obtained.
  • This crosslinkable rubber is It is a rubber that can be cross-linked in the presence, and the polymer component exemplified as the forming material of the second molding part in the description of the composite member of the present invention can be used.
  • the molding member (b) is a foam
  • an extrusion molding machine when used, it may be extruded as a foamed state inside the extrusion molding machine, or immediately after leaving the extrusion molding machine. You may make it foam, and after extruding without foaming, you may reheat and foam. Moreover, when using an injection molding machine, it is preferable to make it foam within an injection molding machine.
  • the olefin-based thermoplastic elastomer composition is foam-molded with a gas or a supercritical fluid using the injection molding machine. It is preferable. Then, the olefin-based thermoplastic elastomer composition is mixed with 10 to 93 parts by mass of an ethylene'a-olefin-based copolymer rubber (11), 3 to 30 parts by mass of a crystalline polyethylene resin (12), and both ends are 1 , 2-Conjugated polymer block having a bulge bond content of 25% or less, and water obtained by hydrogenating a block copolymer in which the intermediate block is a conjugated diene polymer block having a 1,2-bule bond content of more than 25%.
  • Coated block copolymer (1 3) 3 to 30 parts by mass, oc-olefin-based resin having 3 or more carbon atoms (14) 1 to 30 parts by mass [However, (11), (12), (13) and (The total amount of (14) is 100 parts by mass), the melt flow rate at a temperature of 230 ° C and a load of 1 Okg is 5 gZlO or more, and the melt tension at 210 ° C and a take-off speed of 2 mZ is 3. Ogf It is preferable to use an olefin-based thermoplastic elastomer composition (P ′) that is less than.
  • a molded member (b) can be obtained.
  • EAO copolymer rubber (1 1) [hereinafter referred to as "EAO copolymer rubber (1 1) "!! ] Is a copolymer composed mainly of ethylene and a-olefin having 3 to 10 carbon atoms excluding ethylene.
  • ⁇ -olefin having 3 to 10 carbon atoms propylene, 1-butene, 1-pentene, 4-methylmonopentene-1, 1-hexene, 1-heptene, 1-octene, 1—Decene. Of these, propylene, 1-butene, 1-hexene and 1-octene are preferred, and propylene and 1-butene are more preferred. These compounds can be used singly or in combination of two or more. When a-olefin having 10 or less carbon atoms is used, the copolymerizability between the a-olefin and other monomers is improved.
  • allocations of oc one year old Refuin constitutional unit derived from occupied during EAO copolymer rubber (11) is 5 to 50 preferably 10 to 45 mol from the preferred instrument that the mole% 0/0, and particularly preferably 1 is a 5 to 40 mol 0/0.
  • composition ratio of the constituent unit derived from a Orefuin is less than 5 mole 0/0 is this a force S becomes difficult to obtain the necessary rubber elasticity as a thermoplastic elastomer scratch.
  • composition ratio of the constituent unit derived from a- Orefuin exceeds 50 mole 0/0, elastomeric one obtained may be as low durability.
  • non-conjugated gen may be contained in the EAO copolymer rubber (11) as required in an amount of 0 to 10 mol%. If the composition ratio of this non-conjugated gen exceeds 10 mol%, the resulting elastomer may be less durable.
  • non-conjugated genes include 1,4 monohexagen, 1,6 hexagen, linear acyclic genes such as 1,5 hexagen, 5-methyl-1,4 hexagen, 3, 7 Dimethyl-1,6-octagen, 5,7 Dimethylocta1,6gen, 3,7 Dimethyl-1,7-octagen, 7 Methyloctater 1,6gen, branched acyclic gene such as dihydromyrcene, tetrahydroindene , Methyltetrahydroindene, dicyclopentadiene, bicyclo [2. 2.
  • the intrinsic viscosity [7?] Of these EAO copolymer rubbers (11) measured at 135 ° C in a decalin solvent is 3.5 dlZg or more (preferably 4. OdlZg or more, more preferably 4.3 dlZg That's it). If this intrinsic viscosity is less than 3.5 dlZg, the rubber elasticity of the thermoplastic elastomer composition tends to decrease, while if it exceeds 6.8 dlZg, the moldability tends to decrease, such being undesirable.
  • EAO copolymer rubber (11) in addition to the binary copolymer and the ternary copolymer, a part of hydrogen atoms of these polymers is a chlorine atom, Halogenated copolymers substituted with halogen atoms such as benzene atoms, vinyl chloride, vinyl acetate, (meth) acrylic acid, (meth) acrylic acid derivatives [methyl (meth) acrylate, (meth) Unsaturated monomers such as glycidyl acrylate, (meth) acrylamide, etc.], maleic acid, maleic acid derivatives (hydrous maleic acid, maleimide, dimethyl maleate, etc.), and conjugates (butadiene, isoprene, black mouthprene, etc.) It is also possible to use a graft copolymer obtained by graft polymerization of the above binary copolymer, the ternary copolymer, the halogenated copolymer,
  • the EAO copolymer rubber (11) may be a non-oil-extended ethylene 'a-olefin copolymer rubber (11-1), or an oil-extended ethylene' a -olefin copolymer rubber ( 11—2).
  • Non-oil-extended ethylene ⁇ ⁇ -olefin-based copolymer rubber (11 1) is an oil-extended ethylene-a-olefin-based copolymer (11-2) to which a mineral oil-based softener (15) is added. Also used as ethylene ⁇ ⁇ -olefin-based copolymer rubber (11-3).
  • oil-extended ethylene 'a polyolefin copolymer rubber (11 2) is used as the AO copolymer rubber (11), an olefin thermoplastic elastomer composition ( ⁇ ') is produced.
  • the blending ratio of ethylene / ⁇ -olefin copolymer rubber (11-3) and mineral oil softener (15) is 'a- Orefuin copolymer rubber (11- 3) is 20 to 80 mass 0/0, the preferred properly 25 to 75 weight 0/0, more preferably from 30 to 70 weight 0/0.
  • ethylene' a -olefin copolymer rubber ( The sum of 11-3) and mineral oil softener (15) is 100% by mass.
  • the EAO-based copolymer rubber (11) includes, for example, ethylene, a-olefin, and olefin in the presence of a catalyst comprising a Ziegler-Natta catalyst, a soluble vanadium compound, and an organoaluminum compound.
  • the non-conjugated gen can be obtained by a polymerization method using a medium / low pressure method such as a method of polymerizing while supplying hydrogen as a molecular weight regulator as necessary.
  • the polymerization can be carried out by a gas phase method (fluidized bed or stirred bed) or a liquid phase method (slurry method or solution method).
  • Examples of the soluble vanadium compound include at least one of VOC1 and VC1.
  • a reaction product of alcohol with alcohol Methanol, ethanol, n -propanol, isopropanol, n-butanol, sec butanol, t-butanol, n-hexanol, n-octanol, 2-ethylhexanol, n-decanol, and n-dodecanol are used as alcohols.
  • alcohols having 3 to 8 carbon atoms are preferably used.
  • organoaluminum compound examples include triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, jetylaluminum monochloride, diisobutylaluminum monochloride, ethylaluminum sesquiquinide, butyl.
  • organoaluminum compound examples include triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, jetylaluminum monochloride, diisobutylaluminum monochloride, ethylaluminum sesquiquinide, butyl.
  • examples thereof include aluminum sesqui-chloride, ethylaluminum dichloride, butylaluminum dichloride, and methylaluminoxane which is a reaction product of trimethylaluminum and water.
  • ethylaluminum sesquichloride ethylaluminum sesquichloride, butylaluminum sesquichloride, a mixture of ethylaluminum sesquichloride and triisobutylaluminum, and a mixture of triisobutylaluminum and butylaluminum sesquichloride are preferably used.
  • hydrocarbons are preferably used as the solvent, and among these, n pentane, n-hexane, n-heptane, n-octane, isooctane, and cyclohexane are particularly preferably used. These can be used alone or in combination of two or more.
  • the non-oil-extended ethylene 'a-olefin copolymer rubber (11 1) and the oil-extended ethylene' a-olefin copolymer rubber (11 2) are in the form of bale, crumb, pellet, powder (veil Any form of (including a pulverized product) may be used. Also, non-oil-extended ethylene 'a olefin-based copolymer (11-1) and oil-extended ethylene' a olefin-based copolymer rubber (11 -2) may be used in combination.
  • the "crystalline polyethylene ⁇ (12)" consists of ethylene as the main monomer, the content of E styrene units is 90-100 mol 0/0. Further, when the crystalline polyethylene resin (12) is dissolved in boiling n-hexane, the insoluble content is preferably 10% by mass or more, particularly preferably 20% by mass or more (usually 95% by mass or less). ). If the insoluble content is less than 10% by mass, the processability of the resulting thermoplastic elastomer composition and the mechanical strength of the foamed molded product may be lowered.
  • the melting peak of the crystalline polyethylene-based resin (12) as measured by a differential scanning calorimeter is preferably 100 ° C or higher.
  • the crystalline polyethylene resin (12) includes polyethylene, ethylene, propylene, butene 1, 4-methyl-pentene 1, hexene 1, otaten 1, and the like having 3 to 8 carbon atoms. will be copolymerized so the ⁇ - old Refuin, the content of ethylene unit include copolymers with 90 moles 0/0 above.
  • polyethylene any of low-density polyethylene produced by the high-pressure method, high-density polyethylene produced by the medium- and low-pressure method, and linear low-density polyethylene can be used. More than one species can be used in combination.
  • the hydrogenated block copolymer (13) is a conjugated diene polymer block (hereinafter also referred to as amber block) with 1,2 bull bond content of 25% or less at both ends, and the intermediate block has a 1,2-bule bond content.
  • the A block is 5 to 90 parts by mass
  • the B block is 10 to 95 parts by mass
  • at least 80% of the double bond of the conjugated gen moiety contained before hydrogenation is saturated
  • the number average molecular weight is 50,000. ⁇ 700,000 are preferred.
  • the above preferred hydrogenated block copolymer (13) is a copolymer having an A block at both ends and a B block between two A blocks (A—B—A type block copolymer). ) Is a block copolymer obtained by hydrogenation. That is, each of the A block and the block is a block before hydrogenation.
  • the content of each block is preferably 5 to 90% by mass (more preferably 10 to 80% by mass) for the A block. If the A block is less than 5% by mass (the B block exceeds 95% by mass), it is difficult to exhibit sufficient crystallinity relative to the EA O copolymer rubber (11) that is the matrix. It becomes difficult to form a network structure. On the other hand, if it exceeds 90% by mass (B block is less than 10% by mass), the hardness will undesirably increase.
  • the A block is a 1,3 butadiene polymer block containing butadiene as a main component (90 mass% or more, preferably 95 mass% or more of the entire A block). Further, the 1,2 bule bond content of the A block is preferably less than 25% (more preferably 20% or less, still more preferably 15% or less). When the 1, 2 bule bond content of the A block is 25% or more, the mechanical strength is prone to decrease significantly because the melting point of the crystal after the hydrogenation is lowered.
  • the number average molecular weight of the A block is preferably 25,000 to 630,000 (more preferably 100,000 to 480,000).
  • the A block is hydrogenated to exhibit a structure similar to low density polyethylene.
  • the B block is a conjugated diene polymer block containing a conjugated geny compound as a main component (50 mass% or more, preferably 60 mass% or more of the entire B block).
  • the conjugate compounds include 1,3 butadiene, isoprene, 2,3 dimethyl-1,3 butadiene, 1,3 pentagen, 2-methyl-1,3 pentagen, 1,3 hexagen, 4,5 jetyl 1,3— Examples include Octagen, 3-Butyl-1,3-Octagen, and Black-mouthed Plain.
  • B block is composed of two or more of these.
  • the 1,2-bule bond content of the B block is preferably more than 25% (more preferably 30 to 95%, still more preferably 35 to 90%). If it is 25% or less, it becomes a greave-like property and the flexibility tends to be lowered. Furthermore, the 1,2-vinyl bond content contained in the B block exceeds the 1,2-bule bond content of the A block. When the 1,2-bule bond content is less than the A block, the flexibility of the thermoplastic elastomer composition used in the present invention tends to decrease.
  • the number average molecular weight in terms of polystyrene by GPC of this B block is from 5,000 to The power is preferably 650,000 S, more preferably 20,000 to 540,000.
  • the content of the vinyl aromatic polymer block is 35% by mass or less when the entire B block is 100% by mass (more L is preferably 30% by mass or less, more preferably 25% by mass or less.
  • L is preferably 30% by mass or less, more preferably 25% by mass or less.
  • butyl aromatic compounds include styrene, tert butyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ ethyl styrene, divinyl benzene, 1, 1-diphenyl styrene, vinyl naphthalene, vinyl anthracene, ⁇ , ⁇ ⁇ jetyl ⁇ —Aminoethyl styrene, bull pyridine and the like. Of these, styrene is preferred.
  • the double bond contained in the hydrogenated block copolymer (13) obtained after hydrogenation is at least 80% (more preferably 90%, and more preferably) of all double bonds before hydrogenation. 95-100%) is preferably saturated. If it is less than 80%, thermal stability and durability are likely to deteriorate.
  • the number average molecular weight in terms of polystyrene by GPC of the hydrogenated block copolymer (13) is preferably 50,000 to 700,000 (more preferably ⁇ 100,000 to 600,000). If it is less than 50,000, the heat resistance, strength, fluidity and cacheability are likely to deteriorate, while if it exceeds 700,000, the fluidity, workability and flexibility are likely to deteriorate.
  • Hydrogenated block copolymer (13) includes, for example, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane, and fats such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane.
  • aromatic organic solvents such as aromatic hydrocarbon solvents such as benzene, xylene, toluene, and ethylbenzene, or aromatic hydrocarbon solvents such as benzene, xylene, toluene, and ethylbenzene.
  • the compound and other monomers copolymerizable therewith can be obtained by living-ion polymerization using an organic alkali metal compound as a polymerization initiator, and this block copolymer (hereinafter referred to as “pre-hydrogenation weight”).
  • pre-hydrogenation weight this block copolymer
  • the hydrogenated copolymer used in the molding method of the foam molded product of the present invention can be easily obtained.
  • the organic alkali metal compound that is a polymerization initiator include organic lithium compounds and organic sodium compounds, and organic lithium compounds such as n-butyllithium, sec-butyllithium, and tert-butyllithium are particularly preferred. ,.
  • the amount of the organic alkali metal compound used is 0.02 to 15% by mass, preferably 0.03 to 5% per 100% by mass of the monomer. Used in mass%.
  • the polymerization temperature is generally -10 to 150 ° C, preferably 0 to 120 ° C. Furthermore, it is desirable to replace the polymerization atmosphere with an inert gas such as nitrogen.
  • the polymerization pressure is not particularly limited as long as it can be performed within a range of pressure sufficient to maintain the monomer and the solvent in a liquid phase within the above polymerization range.
  • the method for introducing monomers of these compounds into the polymerization system during the process of copolymerizing the copolymer block containing the vinyl aromatic compound and the conjugation compound there is no particular limitation on the method for introducing monomers of these compounds into the polymerization system during the process of copolymerizing the copolymer block containing the vinyl aromatic compound and the conjugation compound. , Continuous, intermittent, or a combination thereof. Furthermore, when copolymerizing a copolymer block containing a bulu aromatic compound and a conjugated diene compound, the addition amount of other copolymer components, the addition amount of a polar substance, the number and type of polymerization vessels, etc.
  • the method for charging the monomer should be selected so that the physical properties of the resulting hydrogenated copolymer, the composition thereof, and the molded article of the composition are preferable.
  • the pre-hydrogenation polymer in the present embodiment is obtained by obtaining a block copolymer by the above-described method, and then using a coupling agent as a copolymer via a copolymer molecular chain force coupling residue. It may be.
  • Examples of coupling agents used include dibulebenzene, 1, 2, 4-tribulene benzene, epoxy 1,2, polypolybutadiene, epoxy soy oil, epoxy amami oil, benzene 1, 2 , 4-Triisocyanate, Jetyl oxalate, Jetyl malonate, Jetyl adipate, Dioctyl adipate, Dimethyl phthalate, Jetyl phthalate, Jetyl terephthalate, Jetyl carbonate, 1, 1, 2, 2-Tetrachrome mouth Ethane, 1,4-bis (trichloromethyl) benzene, trichlorosilane, methyltrichlorosilane, butyltrichlorosilane, tetrachlorosilane, (dichloromethinole) trichlorosilane, hexachlorodisilane, tetraethoxysilane, tetrachlorotin, 1, 3— Examples include dichlor
  • the hydrogenated block copolymer (13) is obtained by partially or selectively hydrogenating the block copolymer obtained as described above.
  • the hydrogenation method and reaction conditions are not particularly limited. Usually, 20 to 150 ° C., 0.1 to: under hydrogen pressure of LOMPa and in the presence of a hydrogenation catalyst.
  • the hydrogenation rate can be arbitrarily selected by changing the amount of the hydrogenation catalyst, the hydrogen pressure during the hydrogenation reaction, or the reaction time.
  • a hydrogenation catalyst a compound containing any of the group metals lb, IVb, Vb, VIb, VIIb, and Group VIII, such as Ti, V, Co, Ni, Zr, Ru, Rh, Pd, Hf, Compounds containing Re and Pt atoms can be used.
  • meta-orthocene compounds such as Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh, and Re, metals such as Pd, Ni, Pt, Rh, and Ru, carbon
  • a supported heterogeneous catalyst supported on a support such as silica, alumina, diatomaceous earth, or a homogeneous Ziegler catalyst that combines an organic salt or acetylaceton salt of a metal element such as Ni or Co with a reducing agent such as organoaluminum.
  • organometallic compounds or complexes such as Ru and Rh, and fullerenes and carbon nanotubes in which hydrogen is occluded.
  • a metallocene compound containing any of Ti, Zr, Hf, Co, and Ni is preferable in that it can be hydrogenated in a homogeneous system in an inert organic solvent.
  • a meta-compound compound containing any of Ti, Zr, and Hf is preferable.
  • a hydrogenation catalyst obtained by reacting a titanocene compound with an alkyl lithium is preferable because it is an inexpensive and industrially particularly useful catalyst.
  • the hydrogenation catalyst may be used alone or in combination of two or more. After hydrogenation, the catalyst residue is removed as necessary, or a phenol-based or amine-based antioxidant is added, and then the hydrogenated copolymer copolymer of the present invention is added from the hydrogenated copolymer solution.
  • the coalescence is isolated. Isolation of the hydrogenated gen-based copolymer can be achieved, for example, by adding acetone or alcohol to the hydrogenated gen-based copolymer solution for precipitation, or stirring the hydrogenated gen-based copolymer solution in hot water. The method can be carried out by adding the solvent and distilling off the solvent.
  • the hydrogenated block copolymer (13) before the hydrogenation of the conjugated-gen block copolymer is composed of a plurality of A—B—A type block copolymers via a coupling agent residue. Concatenated May be contained. That is, [A-B-A-X] n- (A-B-A) [where n is an integer of 2 to 4, and X represents a coupling agent residue] may be used.
  • the block copolymer before hydrogenation does not affect the crystallinity of the conjugation block copolymer (3) in which the coupling agent residue has a sufficiently small molecular weight relative to the A block and B block.
  • [A—B—X] n— (BA) [where n is an integer of 2 to 4, X represents a coupling agent residue] may be used. That is, when a relatively small coupling agent residue is abbreviated, [A—B] n—A may be used.
  • the hydrogenated block copolymer (13) may be a modified block polymer modified with a functional group.
  • the functional group at least one selected from the group strength of carboxyl group, acid anhydride group, hydroxyl group, epoxy group, halogen atom, amino group, isocyanate group, sulfonate group and sulfonate group should be used. Can do. A known method can be used as the denaturing method.
  • the content of the functional group in the modified block polymer is 0.01 to LO mol% (more preferably 0.1 to 0.1% when the entire structural unit constituting the block polymer is 100 mol%. 8 mole 0/0, is preferably more preferably from 0.15 to 5 mole 0/0).
  • Preferred monomers that can be used to introduce a functional group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic anhydride, glycidyl acrylate, daricidyl methacrylate, allyl glycidyl ether, Examples thereof include hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, dimethylaminoethyl methacrylate, and the like.
  • olefin-based resin (14) having 3 or more carbon atoms used in the present invention (hereinafter also referred to as “olefin-based resin (14)”), a homopolymer of ⁇ -olefin having 3 to 20 carbon atoms or A copolymer is mentioned.
  • Specific examples of the olefin-based resin (14) include the following (co) polymers.
  • Specific examples of the above olefins include propylene.
  • olefin fin resins a propylene homopolymer and a random copolymer of propylene and other ⁇ -olefins of 20 mol% or less are particularly preferable.
  • the above olefin resins can be used alone or in combination.
  • the oc 1 year old refin-based resin (14) having 3 or more carbon atoms used in the present invention is preferably crystalline polyolefin resin, and the crystallinity obtained by X-ray method is usually 50. % Or more, preferably 55% or more. Further, the density is preferably 0.98 gZcm 3 or more, particularly preferably 0.90-0.94 g Zcm 3 .
  • the maximum peak temperature by the differential scanning calorimetry of the above crystalline olefin resin, that is, the melting point (hereinafter simply referred to as “Tm”) is 100 ° C or higher (especially 120 ° C or higher, and further 140 to 170 ° C).
  • Tm is less than 100 ° C, sufficient heat resistance and strength tend not to be exhibited.
  • the crystalline polyolefin resin include polypropylene, polybutene-1, poly-4-methyl-pentene 1, polyhexene 1, propylene'-ethylene copolymer, propylene'-butene-1 copolymer, and the like. Only one of these may be used, or two or more may be used in combination.
  • the molecular weight of the olefin-based rosin (14) is 0.3 to L0dlZg, preferably 0.5 to 6dl / g in terms of intrinsic viscosity [] measured at 135 ° C in a decalin solvent.
  • the melt flow rate (hereinafter simply referred to as “MFR”) at a temperature of 230 ° C. and a load of 2.16 kg is preferably 0.1 to 100 gZl0 minutes, and more preferably 0.5 to 80 gZl0 minutes.
  • the olefin-based resin (14) used in the present invention has a crystallinity of 50% or more, a density of 0.89 g / cm 3 or more, and an ethylene unit content of 20 mol% or less.
  • olefin-based resin (14) in addition to the crystalline polyolefin resin, an amorphous resin Nylon can also be used.
  • X Orefuin ethylene, 1-butene , 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-octene, 1-decene, etc.
  • the melt viscosity at 190 ° C of the amorphous olefin resin is 50000 cSt or less, preferably 100 to 30000 cSt, and more preferably 200 to 20000 cSt.
  • the X-ray diffraction determination is such that the degree of crystallinity is less than 50%, preferably 30% or less, more preferably 20% or less.
  • the density is preferably from 0.85 to 0.89 g / cm 3 , more preferably from 0.85 to 0.88 g / cm 3 .
  • the number average molecular weight Mn of the amorphous olefin fin resin is preferably 1000-20000 (especially 1500-15000)! /.
  • the amorphous olefin fin resin may use only one of the forces used in combination with the crystalline olefin resin!
  • the blending ratio of the above (11), (12), (13) and (14) is the ethylene ' ⁇ -olefin type relative to 100 parts by mass of the total amount of (11), (12), (13) and (14).
  • the blending amount of the copolymer (11) is 10 to 93 parts by mass, preferably 15 to 90 parts by mass, and more preferably 20 to 87 parts by mass.
  • the blending amount of the crystalline polyethylene-based resin (12) is 3 to 30 parts by mass, preferably 4 to 28 parts by mass, and more preferably 5 to 25 parts by mass.
  • the compounding quantity of a hydrogenated block copolymer (13) is 3-30 mass parts, Preferably it is 4-28 mass parts, More preferably, it is 5-25 mass parts.
  • the amount of the polyolefin-based resin (14) blended is 1 to 30 parts by mass, preferably 2 to 28 parts by mass, more preferably 3 to 25 parts by mass.
  • the oil bleedability tends to deteriorate when the rubber elasticity, flexibility, moldability, and mineral oil softener are added.
  • the mineral oil-based softener can be added to the olefin-based thermoplastic elastomer composition ( ⁇ '). Good.
  • the mineral oil softener is generally a mixture of an aromatic ring, a naphthene ring, and a paraffin chain, and the carbon number of the norafine chain is 50% or more of the total carbon number. Occupied by paraffinic oil, naphthenic oil whose naphthene ring has 30 to 45% of total carbon atoms, naphthenic oil, and aromatic ring whose aromatic ring carbon number is 30% or more of all carbon atoms
  • a noraffin type is preferable, and a hydrogenated paraffin type is particularly preferable.
  • the kinematic viscosity of C is 20 to 800 cSt, especially ⁇ to 50 to 600 cSt, and the flow / ⁇ , force is 40 to 0 ° C., particularly ⁇ to 30 to o ° c.
  • the mineral oil softener is preferably set to a viscosity specific gravity constant (or a viscosity specific gravity constant, hereinafter abbreviated as VGC) of 0. 790-0.999, more preferably ⁇ or VGC power of 0.790 to A VGC force of from 0.979 to 0.912 is particularly preferred.
  • Deutrex 729UK made by Nippon Oil Corporation Comolex 200, 300, 500, 700, manufactured by ExxonMobil, Esso Process Oil 110, 120, manufactured by Nippon Oil Corporation, Mitsubishi 34 Heavy Process Oil, Mitsubishi 44 Heavy Process Oil, Mitsubishi 38 Heavy Process Oil , Mitsubishi 39 Heavy Process Oil, Fujikosan Fuccall AROMA # 1, # 3, # 5, etc.
  • Diana Process Oil PW-90, PW100, PW-380, PS-32, PS-90, PS-430, manufactured by Idemitsu Kosan Co., Ltd. Fukkor Process P — 100, P—200, P—300, P400, P—500, Kyoishi Process P—200, P—300, P—500, Kyoishi EPT750, 1000, Kyoishi Process S90, manufactured by Shell Chemical Co., Lebrex 26, 100, 460, ExxonMobil, Esso Process Oil 815, 845, B-1, Naxx 32, ExxonMobil
  • Mitsubishi Oil 10 Light Process Oil manufactured by Sekiyu Of these, Diana Process Oil PW90, PW100, PW380 manufactured by Idemitsu Kosan Co., Ltd. is preferably used for the paraffin type.
  • the blending amount of this mineral oil softener is a mixture of thermoplastic elastomer [(11-1) and Z or (11 3), (12), (13) and (14) total amount)] 100
  • the amount is 0 to 400 parts by mass, preferably 0 to 350 parts by mass, and more preferably 0 to 300 parts by mass with respect to parts by mass.
  • Mixture of thermoplastic elastomer [total amount of (11 2), (12), (13) and (14)] 0 to 300 parts by mass, preferably 0 to 250 parts by mass, relative to 100 parts by mass Preferably 0 to 200 parts by mass
  • the mineral oil-based softening agent may be contained in the oil-extended ethylene'a 1-year-old refin copolymer (11 2), or (11), (12), (13) and ( 14) may be added at the time of dynamic melt-kneading, or (11), (12), (13) and (14) may be added after melt-kneading separately after dynamic melt-kneading.
  • the addition method is not particularly limited.
  • a mineral oil softener may be further added to the oil-extended ethylene ′ a -olefin copolymer (11-2).
  • the olefin-based thermoplastic elastomer composition ( ⁇ ') used in the present invention has a melt flow rate of 5 gZlO or more, preferably 10 gZlO min, measured at a temperature of 230 ° C and a load of 10 kg. Above, particularly preferably 15 gZl0 min or more (usually 500 gZl0 min or less).
  • the melt flow rate is less than 5 gZl0 min, the resulting thermoplastic elastomer composition has insufficient fluidity when injected and filled, and poor filling occurs particularly in products with a long flow distance.
  • this thermoplastic elastomer has a melt tension measured at 210 ° C.
  • melt tension is 3. Ogf or more, foaming becomes difficult when foaming using gas or supercritical fluid.
  • the olefin-based thermoplastic elastomer composition ( ⁇ ) has a JIS- ⁇ hardness of the solid molded product thereof of preferably 50 to 90, particularly preferably 55 to 80. If the hardness is less than 50, the surface of the foam molded product becomes excessively soft and easily damaged. On the other hand, when it exceeds 90, flexibility and elastic recovery tend to be lowered.
  • the olefin-based thermoplastic elastomer composition ( ⁇ ') comprises a nucleating agent (16) in addition to the components (11), (12), (13), (14) and (15). Have it.
  • nucleating agent (16) powders of inorganic compounds such as calcium carbonate, talc, my strength, silica, titer and the like can be used. By containing these nucleating agents, the cell diameter can be easily adjusted, and a foam-molded product having appropriate flexibility and the like can be obtained.
  • the particle size of the nucleating agent is not particularly limited, but is preferably 2 to 50 / ⁇ ⁇ , particularly preferably 5 to 20 ⁇ m. If the particle size is less than 2 ⁇ m, it is difficult to obtain the effect as a nucleating agent, and the cell diameter is undesirably increased.
  • the content of the nucleating agent is usually 0 to 20 parts by mass, preferably 100 parts by mass when the total amount of the polymer components contained in the olefin-based thermoplastic elastomer composition ( ⁇ ′) used in the present invention is 100 parts by mass. Is 0.01 to 15 parts by mass, more preferably 0.1 to L0 parts by mass.
  • the nucleating agent (6) is also preferably added to the molding machine as a master batch using, for example, polypropylene-based resin.
  • the olefin-based thermoplastic elastomer composition ( ⁇ ') used in the present invention comprises a copolymer (11), a crystalline polyethylene resin (12), a hydrogenated block copolymer (13), Olefin fins (14), mineral oil-based softener (15) added later if necessary, a Banbury mixer whose temperature has been adjusted to a predetermined temperature, a closed-type kneader such as a pressure-header, It is supplied to a roll mill, a single screw extruder, a twin screw extruder, a kneading extruder, etc., kneaded, and preferably prepared as a thermoplastic elastomer composition in the form of pellets, and then the thermoplastic elastomer composition and nucleation are prepared.
  • the agent (16) can be produced by supplying the agent (16) to an injection molding machine and kneading.
  • the kneading temperature for preparing the thermoplastic elastomer composition is such that (12) or (14) melts Usually, the temperature is preferably 120 to 280 ° C.
  • the kneading time is a force depending on the apparatus used and the kneading temperature, preferably 10 seconds to 60 minutes, particularly preferably 30 seconds to 30 minutes.
  • the nucleating agent (16) is pre-kneaded into the olefin resin of (12) and Z or (14) to obtain a nucleating agent-containing resin, and then the EAO copolymer (11), crystal It is preferably blended with the functional polyethylene-based resin (12), the hydrogenated block copolymer (13), and the oc 1-year-old refin-based resin (14) having 3 or more carbon atoms. In this way, the nucleating agent (16) can be more uniformly dispersed in the resulting olefin-based thermoplastic elastomer composition ( ⁇ ).
  • olefin-based resin a resin mainly composed of ethylene units, a resin mainly composed of propylene units, an ethylene / propylene copolymer, and the like can be used. These may be the same as those used as crystalline polyethylene-based (12) olefin-based (14), which may be crystalline or amorphous. Furthermore, since the amount of olefinic resin is small, the specific structure of the thermoplastic elastomer composition is not impaired.
  • the content of the nucleating agent (16) is preferably 2 to 20% by mass, particularly preferably 5 to 15% by mass, when the nucleating agent-containing resin material is 100% by mass. .
  • master batches By preparing such a high-concentrated rosin raw material, so-called master batches, and blending these master batches so that the nucleating agent is in a predetermined amount, the content of the nucleating agent is particularly high. Even in small quantities, they can be dispersed uniformly.
  • the olefin-based thermoplastic elastomer composition ( ⁇ ') used in the present invention may include various additives (17), for example, a foaming agent, a lubricant, an anti-aging agent, a heat stabilizer, HALS, if necessary.
  • Stabilizers such as light-proofing agents, weathering agents, metal deactivators, UV absorbers, light stabilizers, copper damage prevention agents, antibacterial agents, antifungal agents, dispersants, plasticizers, flame retardants, tackifier Agents, colorants such as titanium oxide, carbon black and organic pigments, metal powders such as ferrite, inorganic fibers such as glass fibers and metal fibers, organic fibers such as carbon fibers and aramid fibers, composite fibers, potassium titanate whiskers Inorganic whiskers, glass beads, glass balloons, glass flakes, asbestos, my strength, calcium carbonate, talc, silica, calcium silicate, hydrated talcite, force orin, diatomaceous earth, graphite, pumice, evo powder , Cotton flock, cork powder, barium sulfate, Fillers such as fluorine resin, polymer beads, polyolefin wax, cellulose powder, rubber powder, wood powder or mixtures thereof, rubbers such as isobutylene'iso
  • the supercritical fluid it is preferable to use a supercritical state of an inert gas such as carbon dioxide or nitrogen.
  • an inert gas such as carbon dioxide or nitrogen.
  • the supercritical state can be obtained by setting the temperature to 31 ° C or higher and the pressure to 7.3 MPa or higher.
  • Dioxide carbon is in a supercritical state at a relatively low temperature and pressure, and has a large amount dissolved in molten resin, so that it is suitable for foam molding using injection molding or the like.
  • carbon dioxide, nitrogen, air or the like as the gas.
  • thermoplastic elastomer yarn and the composition is injected into a cavity space formed in a mold of an injection molding machine, and immediately Alternatively, after a predetermined time elapses, the movable type, or the movable core provided in the movable type, is retracted to a predetermined position at a predetermined speed, and foamed by expanding the cavity space.
  • a molded member can also be obtained by the injection molding method.
  • the temperature of the mold is usually considerably lower than the temperature of the thermoplastic elastomer composition at the time of injection, so that the surface of the foamed product formed in contact with the surface of the cavity is almost foamed and should be small. A dense skin layer is formed, and the inside becomes a foam layer.
  • the expansion ratio of normal gas is not as high as that of supercritical fluids, it can be used for cheaper equipment. It is possible to manufacture a foam molded article. Carbon dioxide or nitrogen can be used as the gas.
  • the retraction speed of the movable mold or the retraction speed of the movable core provided in the movable mold is 0.01 to: L OmmZ Seconds.
  • the mold opening speed is preferably 0.05 to 0.9 mm Z seconds, and more preferably 0.1 to 0.5 mm Z seconds.
  • the average cell diameter is 1 to 200 111, particularly 3 to 150 m, and a fine yarn field is obtained.
  • the mold opening speed is less than 0. OlmmZ seconds, cooling proceeds and foaming is insufficient, resulting in irregularities on the surface.
  • the mold opening speed exceeds 1. OmmZ seconds, the cell diameter becomes large and the mold becomes excessively flexible and a molded member having excellent cushioning properties and the like cannot be obtained.
  • the cell diameter is non-uniform, and in particular, the molded member is greatly different in the cell diameter near the gate and at the end.
  • the temperature of the injected thermoplastic elastomer composition is preferably 180 to 250 ° C, particularly preferably 190 to 220 ° C. If this temperature is less than 180 ° C, the thermoplastic elastomer composition will have insufficient fluidity, and in particular, it may cause poor filling at the end. On the other hand, if the temperature exceeds 250 ° C, there is a concern about thermal deterioration depending on the composition of the thermoplastic elastomer composition.
  • the mold temperature is preferably 20 to 70 ° C, particularly preferably 30 to 60 ° C.
  • thermoplastic elastomer composition in contact with the inner surface of the mold is cooled rapidly, making it impossible to obtain a molded member in a homogeneous foamed state, resulting in poor filling at the end. May occur.
  • it exceeds 70 ° C a homogeneous skin layer may not be formed on the part formed in contact with the cavity surface of the molded member, which is not preferable.
  • the time (mold retraction delay time) from the injection of the thermoplastic elastomer and the composition to the start of retraction of the movable core or the movable core provided in the movable mold is the mold opening time.
  • the mold retraction delay time is preferably 0.3 to 50 seconds, particularly preferably 0.5 to 40 seconds. If the mold retraction delay time exceeds 60 seconds, cooling may progress and a homogeneous foamed product may not be obtained.
  • the amount of retraction of the mold is not limited as long as it is set according to a predetermined expansion ratio.
  • the mold is retracted so that the final thickness of the molded member is 1.1 to 10 times the initial thickness of the material filled in the cavity space in the mold, that is, the mold It is preferable to open it. If this ratio of wall thickness is taken as the expansion ratio, the expansion ratio is preferably 1.3 to 12 times, more preferably 1.5 to 15 times.
  • the cooling time depends on the dimensions of the molded member or the cooling method, it is generally sufficient that the temperature of the molded member at the time of demolding is reduced to about 0 to 80 ° C. 100 seconds is enough even for large products.
  • step (ii) for example, the molded member (b) is formed so that at least part of its surface and Z or cross section is exposed to the mold cavity. Install so that the end (bonded part) of b) is exposed to the mold cavity. That is, the contact surface with the olefin-based thermoplastic elastomer composition (P2) used in the step (II I) is exposed inside the mold.
  • step (III) the composition (P2) is introduced into the mold cavity by an injection molding machine.
  • the composition (P2) flows toward the bonded portion of the molded member (b), and the molded member (hereinafter referred to as “formed member (a)”) of the composition (P2). ) Is formed.
  • the composition (P2) is a mixture of an ethylene-a-olefin-based copolymer rubber, an a-olefin-based thermoplastic thermoplastic resin, a 1-year-old refin-based amorphous thermoplastic resin, and a softening agent.
  • the olefin-based thermoplastic elastomer composition described in the first molding part which is obtained by dynamically heat-treating in the presence of the composite member of the present invention, can be applied as it is.
  • the melt flow rate of this composition (P2) (hereinafter referred to as "MFR" ⁇ ⁇ ) is preferably at least 0.1 lgZlO at a temperature of 230 ° C and a load of 21 N in accordance with JIS K7210. More preferably, it is 1. OgZlO or more, more preferably 2. OgZlO, and particularly preferably 3. Og / 10 min. If this MFR is too small, processability may be insufficient. On the other hand, if it is too large, the mechanical strength of the resulting molded member (a) tends to decrease.
  • the composition (P2) contains a specific polymer and has excellent fluidity as described above.
  • the mold can be used with a long life without causing contamination of the mold after the formation of the molded member (a).
  • the composition (P2) can be reused, the material can be used without waste.
  • the method of introducing the composition (P2) into the mold cavity is not particularly limited!
  • an injection device such as a screw type or a plunger type is usually used.
  • introduction rate usually, l ⁇ 2000cm 3 Z seconds in injection rate, preferably 10 to: a LOOOcm 3 Z seconds.
  • the temperature at which the composition (P2) is introduced into the mold cavity is preferably 150 to 300 ° C.
  • the mold may be used by heating, or may be used at room temperature without heating.
  • the preferred temperature of the mold is in the range of 30-80 ° C.
  • the mold cavity can have a highly smooth inner wall surface or provide characters, patterns, etc., depending on the purpose and application of the composite member to be obtained. .
  • the fluidity of the composition (P2) is excellent, so that the mold transferability is also good, and a molded member having high gloss is provided. It is possible to obtain composite members.
  • the molding member (b) already installed in the step (II) may be preheated.
  • it may be a temperature around room temperature (25 ° C.).
  • both the mold and the molded member (b) are in a low temperature state, and particularly preferably in the range of 20 to 60 ° C.
  • the temperature may be about 60 ° C.
  • the molded members (a) and (b) are preferably bonded by cooling for 1 to 120 seconds, more preferably 5 to 60 seconds. . Thereafter, the integrated composite member is removed from the mold. Therefore, according to the method for producing a composite member of the present invention, the molding member (b) is installed, the composition (P2) is introduced into the mold cavity, and the composition (P2) is cooled in a short time. Can do. That is, the production time of one composite member can be preferably 7 to 180 seconds, more preferably 10 to 120 seconds, and is extremely short. Furthermore, since the mold can be used at a low temperature, it can be safely manufactured without the risk of burns or the like during work.
  • the composite member shown in Fig. 2 can be easily produced. That is, two molded members (b) are manufactured in advance, a mold having a predetermined space is used, and each end of the two molded members (b) is installed so as to be exposed to the mold cavity. An integrated composite member can be obtained by introducing the predetermined composition (P2). By the same method, a composite member having the structures [1] to [4] described in the composite member of the present invention can be obtained.
  • the molded member (a) is a foam
  • an olefin-based thermoplastic elastomer composition is foam-formed using a gas or a supercritical fluid. Also good.
  • the foam molding method is preferably the same method as in the case of foam molding of the molded member (b) with a gas or supercritical fluid using an injection molding machine in the step (I) described above.
  • the composite member of the present invention is suitable as a weather strip, a sealing material, a gasket, a packing and the like for a vehicle.
  • Weather strips include door weather strips, trunk weather strips, luggage weather strips, roof side rail weather strips, slide door weather strips, ventilator weather strips, sliding loop panel weather strips, front window weather strips, rear Examples include window weather strips, quarter window weather strips, lock pillar weather strips, door glass outer weather strips, and door glass inner weather strips.
  • a seal material it can be used for building materials, home appliances, industrial machinery and the like.
  • the weather strip 2 in FIG. 3 has an annular structure in which the first molded portions l la to l le and the second molded portions 12 a to 12 e are alternately joined to each other. It is arranged.
  • This mixture is put into a pressure-type jar (capacity 10 liters, manufactured by Moriyama Co., Ltd.) that has been heated to 150 ° C in advance to melt the a-olefin crystalline thermoplastic resin, and each component is evenly distributed.
  • the mixture was kneaded at 40 rpm for 15 minutes until dispersed. Thereafter, the molten composition was pelletized with a feeder-ruder (manufactured by Moriyama Co., Ltd.).
  • Ethylene 'propylene' 5 ethylidene 2-norbornene terpolymer (ethylene unit 66%, propylene unit 29.5%, 5 ethylidene-2 norbornene unit 4.
  • Ethylene 'propylene' 5 ethylidene 2-norbornene terpolymer (ethylene unit 66%, propylene unit 29.5%, 5 ethylidene-2 norbornene unit 4.
  • a propylene / ethylene random copolymer (trade name “NOVATEC PP FL25R”, manufactured by Nippon Polychem Co., Ltd.) was used. The density is 0.90 g / cm 3 and the MFR (temperature 230 ° C, load 21N) is 23 g / 10 min.
  • the density is 0.87 gZcm 3 and ⁇ is 6,500.
  • a norafine mineral oil softener (trade name “Diana Process Oil PW-380”, manufactured by Idemitsu Kosan Co., Ltd.) was used.
  • Tetrakis [methylene 3- (3,5-ditert-butyl 4-hydroxyphenol) propionate] methane (trade name “Ilganox 1010”, manufactured by Ciba Specialty Chemicals) was used.
  • MFR melt flow rate
  • Shore A hardness
  • tensile rupture strength and tensile rupture elongation pellets with various composition forces were injection molded at 220 ° C using an injection molding machine (model “N-100”, manufactured by Nippon Steel). A sheet (thickness 2 mm, length 12 Omm, width 120 mm) was used as an evaluation test piece.
  • the rubber composition (A-5) was evaluated for hardness (Shore A), tensile strength at break, and tensile elongation at break.
  • a compound comprising an unvulcanized rubber composition (A-5) was placed at 180 ° C from a hot press machine (manufactured by Kansai Roll). Heat-treated for a minute to form a sheet (thickness 2 mm, length 120 mm, width 120 mm), which was used as a test specimen for evaluation. The results are shown in Table 1.
  • Ethylene 'propylene' 5 ethylidene 2 norbornene terpolymer (trade name “EP 103A”, manufactured by JSR) 100 parts, carbon black (trade name “Seast 116”, manufactured by Tokai Carbon) 145 parts, paraffin Mineral oil-based softener (trade name “Diana Process Oil PW-380”, manufactured by Idemitsu Kosan Co., Ltd.) 85 parts, activated zinc white (manufactured by Zhigaku Kogyo Co., Ltd.), stearic acid (trade name “ Lunac S ", manufactured by Kao Co., Ltd.
  • processing aid (trade name” Hitanol 1501 ", manufactured by Hitachi Chemical Co., Ltd.) 1 part, mold release agent (trade name” Stratator WB212 ", Sil 'and' Zirahar A mixture consisting of 2 parts) and 1 part of a plasticizer (polyethylene glycol) was obtained. Thereafter, this mixture was put into a 3 liter vannolly mixer (manufactured by Kobe Steel) and kneaded under the conditions of 50 ° C., 70 rpm, and kneading time of 2.5 minutes.
  • Ethylene 'propylene' 5 ethylidene 2 norbornene terpolymer (trade name “EP 103A”, manufactured by JSR) 100 parts, carbon black (trade name “Seast 116”, manufactured by Tokai Carbon) 145 parts, Paraffin-based mineral oil softener (trade name "Diana Process Oil PW-380”, manufactured by Idemitsu Kosan Co., Ltd.) and propylene 1-butene amorphous copolymer (trade name "UBETAC APAOUT 2780", Ube Industries, Ltd.
  • the composition in a molten state was pelletized with a feeder-ruder (manufactured by Moriyama Co., Ltd.) set at 180 ° C. and 40 rpm.
  • a feeder-ruder manufactured by Moriyama Co., Ltd.
  • the obtained pellets 1 part of an organic peroxide (trade name “Perhexa 25B-40”, manufactured by Nippon Oil & Fats Co., Ltd.), 1 part of a co-crosslinking agent (Dibulbensen, manufactured by Sankyo Chemical Co., Ltd.) was put into a Henschel mixer and mixed for 30 seconds.
  • a mixture consisting of 2 parts was charged into a pressure-type jar (manufactured by Moriama Co., Ltd.) that had been heated to 150 ° C in advance, and each component was homogeneous. Kneaded at 40 rpm for 15 minutes until dispersed. After that, the molten composition is pelletized by a feeder-looper (manufactured by Moriyama Co., Ltd.) set at 180 ° C. and 40 rpm to produce a simple blend-type non-crosslinked olefin-based thermoplastic elastomer composition (B — 5) I got.
  • composition (B-1), (B-2), (B-4) and (B-5) for the second molding part obtained above the melt flow rate (MFR), hardness was (Shore A), tensile breaking strength and tensile breaking elongation were evaluated.
  • MFR melt flow rate
  • hardness was (Shore A)
  • tensile breaking strength and tensile breaking elongation were evaluated.
  • hardness was measured in accordance with JIS K6253 instead of hardness (Shore A).
  • each unvulcanized rubber composition was compounded with a 40 mm plate with a flat plate die (30 mm wide, 2 mm thick).
  • extrusion was carried out under conditions of a cylinder temperature of 70 ° C and a head temperature of 80 ° C to obtain a flat plate-shaped product (width 40 mm, thickness 2 mm). Thereafter, this compact was allowed to stand for 6 minutes in a hot air vulcanization tank set at 230 ° C. to vulcanize. This vulcanized rubber sheet was used as a test specimen for evaluation.
  • the composition (B-3) was evaluated after forming a foam by the following method.
  • the obtained compound was used with a 40 mm extruder (manufactured by Imanaka Kikai Kogyo Co., Ltd.) equipped with a flat plate die (width 30 mm, wall thickness 2 mm) with a hopper temperature of 60 ° C, cylinder temperature of 70 ° C, Extrusion was performed under the condition of a head temperature of 80 ° C. to obtain a flat molded body (width 40 mm, thickness 2 mm). Thereafter, this molded body was left to stand for 6 minutes in a hot air vulcanization tank set at 230 ° C for vulcanization.
  • this vulcanized rubber sheet was vulcanized and foamed for 5 minutes in a hot air vulcanization tank set at 220 ° C. to obtain a vulcanized rubber sponge having a specific gravity of 0.5, and this vulcanized rubber sponge was used as a test specimen for evaluation.
  • the composition (B— For 4) and (B-5) each thermoplastic elastomer composition obtained was transferred to a 40mm extruder (model "FS-40", Ikegai) equipped with a flat plate die (width 30mm, wall thickness 2mm). The product was extruded under the conditions of a cylinder temperature of 210 ° C. to obtain a flat plate-shaped product (width 40 mm, thickness 2 mm). This flat molded body was used as a test specimen for evaluation.
  • 2nd molded part forming composition (B-1) obtained above is placed on the mold cavity after the flat sheet (width 30mm, length 50mm, thickness 2mm) is formed.
  • Composition Olefin-based thermoplastic elastomer composition (A-1)) using an injection molding machine (model "N-100", manufactured by Nippon Steel Works), mold temperature 50 ° C, introduction time 10 seconds By introducing them under the conditions of an injection time of 1 second, a cooling time of 30 seconds, and a sample removal time of 10 seconds, a composite member having a thickness of 2 mm, a length of 120 mm, and a width of 120 mm was manufactured by adhering to the end face of the flat sheet.
  • Table 3 shows the molding time from the introduction of the polyolefin-based thermoplastic elastomer composition (A-1) to the removal of the finished composite member.
  • the dumbbell No. 1 was punched out so that the bonded part was at the center, and the adhesive strength of the composite member was evaluated at a tensile speed of 500 mmZ.
  • a composite member was produced in the same manner as in Example 1, using the first molding part forming composition and the second molding part forming composition obtained above according to the combinations shown in Table 3. Each composite member obtained was evaluated and listed in Table 3.
  • composition for forming the second molding part (B-1) After placing the sheet (width 30mm, length 50mm, thickness 2mm) that can be used in the mold cavity of the injection molding machine, composition for forming the first molding part
  • the product (A-5) was injected with an injection molding machine (model “N-100”, manufactured by Nippon Steel), the mold temperature was 180 ° C, the second molded part was introduced for 10 seconds, the injection time was 3 seconds, and vulcanized.
  • an injection molding machine model “N-100”, manufactured by Nippon Steel
  • the mold temperature was 180 ° C
  • the second molded part was introduced for 10 seconds
  • the injection time was 3 seconds
  • vulcanized By introducing under the conditions of 3 minutes for the time and 10 seconds for the sample removal time, a composite member having a thickness of 2 mm, a length of 120 mm, and a width of 120 mm was produced. Evaluation was performed in the same manner as described above, and is also shown in Table 3.
  • Comparative Examples 1 and 2 are examples in which the first molded part did not contain a-year-old refin-based amorphous thermoplastic resin, and was peeled off at the bonded part by bending and bending.
  • Comparative Example 3 shows the first and second components.
  • the shape part was a vulcanized rubber composition, and the resulting composite member had a sufficiently high adhesive strength, but the peeling at the bonded part was strong, but the molding time was as strong as 203 seconds.
  • the first molding part has a vulcanized rubber composition force and the second molding part has an olefin-based thermoplastic elastomer composition force, and the olefin-based thermoplastic resin of the second molding part in the mold.
  • Examples 1 to 6 a composite member could be obtained in a short time of 51 seconds.
  • Examples 1 to 4 had sufficient adhesive strength between the first and second molded parts.
  • the composite member of the present invention is excellent in adhesiveness between molded parts, it is suitable as a weather strip, a sealing material, a gasket, a packing, etc. for vehicles.
  • Weather strips include door weather strip, trunk weather strip, luggage weather strip, nore side rail weather strip, sliding door weather strip, ventilator weather strip, sliding loop panel weather strip, front window weather strip, rear Examples include window weather strips, quarter window weather strips, lock pillar weather strips, door glass outer weather strips, and door glass inner weather strips.
  • a sealing material it can be used for building materials, home appliances, industrial machinery and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の複合部材1は、エチレン・α-オレフィン系共重合ゴム、α-オレフィン系結晶性熱可塑性樹脂、α-オレフィン系非晶質熱可塑性樹脂及び軟化材を含む混合物を、架橋剤の存在下で動的に熱処理して得られたオレフィン系熱可塑性エラストマー組成物、を射出成形することにより得られた第1成形部11と、この第1成形部11の表面及び/又は断面の少なくとも一部に接合され、押出成形又は射出成形により得られ、且つ、架橋ゴム組成物及び/又はオレフィン系熱可塑性エラストマー組成物を含む第2成形部12とを備える。各成形部どうしの接着性に優れた複合部材、及び、短時間で且つ安全に製造することができる複合部材の製造方法を提供する。

Description

明 細 書
複合部材及びその製造方法
技術分野
[0001] 本発明は、複合部材及びその製造方法に関し、更に詳しくは、本複合部材を構成 する各成形部材どうしの接着性に優れた複合部材、及び、短時間で且つ安全に製 造することができる複合部材の製造方法に関する。本発明の複合部材は、車両用の ウエザーストリップ、ガスケット、シール材、パッキン等として用いられる。
背景技術
[0002] 車両用のウエザーストリップ、建材用のガスケット等は、通常、加硫ゴム力もなるゴム 製品であり、目的、用途等によっては、直線部分と曲線部分とを組み合わせた複雑な 構造を有する。上記加硫ゴムとしては、特許文献 1、 2、 3等に開示されているゴム組 成物等力 なるものが用いられている。上記のような複雑な構造を有するゴム製品は
、その形状に応じた金型に加硫用ゴム組成物を流し込んで熱処理することにより製 造する方法、直線部分及び曲線部分のいずれか一方を予め製造した後、他方の加 硫用ゴム組成物を金型に流し込んで熱処理し、加硫と同時に直線部分及び曲線部 分を接合することにより製造する方法等により得られる。後者の場合の具体的な製造 方法としては、予め押出成形等により作製した直線部分を金型内に設置し、この直 線部分の端部に接合することとなる曲線部分用の、加硫用ゴム組成物を金型キヤビ ティに導入し、 160〜180°C程度に加熱された金型内に設置し、 3〜5分程度加硫反 応させて曲線部分を成形することにより、直線部分と曲線部分とが接合された構造体 が得られる。
[0003] 特許文献 1 :特開平 10— 175440号公報
特許文献 2:特開 2000— 72935号公報
特許文献 3:特開 2002— 322328号公報
発明の開示
[0004] 上記のように、直線部分及び曲線部分を別々に作製する場合には、加硫を完結さ せるために、高温下で十分な反応時間をもって行われる。しかし、加硫後、ゴム製品 の温度が低下する前に金型より取り出すこと、あるいは、ゴム製品を取り出すまでの 冷却時間を要すること等により、安全に対する配慮、歩留まり向上等が求められてい る。また、上記方法により接合されたゴム製品は、両者の接着強度が十分でない場合 がある。更に、加硫用ゴム組成物には、加硫促進剤等の添加剤を含むため、金型の 使用回数の増加とともに、腐食等の金型汚染が進行することがある。本発明は、上記 実情に鑑みてなされたものであり、加硫ゴム等力 なる成形部材と他の成形部材との 接着性に優れた複合部材、及び、短時間で且つ安全に製造することができる複合部 材の製造方法を提供することを目的とする。
[0005] 本発明者らは、特定の重合体成分を含むゴム組成物を用いることにより、その優れ た射出融着性を利用し、加硫ゴム等力 なる成形部材との接着性がより高められ、複 合体としての強度に優れた複合部材が得られることを見出した。
[0006] 本発明は以下に示される。
[0007] 1. エチレン · α—ォレフィン系共重合ゴム(1)、 α—ォレフィン系結晶性熱可塑性 榭脂 (2)、 a—ォレフイン系非晶質熱可塑性榭脂 (3)及び軟化剤 (4)を含む混合物 を、架橋剤 (5)の存在下で動的に熱処理して得られたォレフィン系熱可塑性エラスト マー組成物 (6)、を射出成形することにより得られた第 1成形部と、この第 1成形部の 表面及び Z又は断面の少なくとも一部に接合され、押出成形又は射出成形により得 られ、且つ、架橋ゴム組成物(7)及び Z又はォレフィン系熱可塑性エラストマ一組成 物 (8)を含む第 2成形部とを備えることを特徴とする複合部材。
[0008] 2. 上記第 1成形部及び上記第 2成形部をそれぞれ (A)及び (B)とした場合、下記
[1]〜 [4]力 選ばれる構造を備える上記 1に記載の複合部材。
[ 1 ] ( (A) - ( B)〕 m
[ 2 ] (A) - [ ( B ) - (A) ] m
[ 3 ] (B ) - 〔(A) ― )〕 m [ 4 ] 「〔(A) -_ ( B)〕^r^
(但し、 mは 1以上の整数であり、 nは 2以上の整数である。 ) [0009] 3. 前記 [4]の構造を備える上記 2に記載の複合部材。
[0010] 4. 前記第 1成形部は、曲線状である上記 1〜3のいずれかに記載の複合部材。
[0011] 5. 前記第 1成形部の、 JIS K6253に準ずるショァ A硬度は、 10〜99の範囲にあ る上記 1〜4のいずれかに記載の複合部材。
[0012] 6. 前記第 2成形部は、発泡体である上記 1〜5のいずれかに記載の複合部材。
[0013] 7. 前記第 2成形部の形成に用いられる上記架橋ゴム組成物は、 α—才レフイン系 非晶質熱可塑性榭脂を含む上記 1〜6のいずれかに記載の複合部材。
[0014] 8. 前記第 2成形部は、この第 2成形部の表面及び Ζ又は内部に補強用部材を備 える上記 1〜 7の 、ずれかに記載の複合部材。
[0015] 9. 架橋性ゴム及び Ζ又はォレフィン系熱可塑性エラストマ一を含む組成物(P1)を 、押出成形機又は射出成形機により成形部材とする工程 (工程 (1) )と、この成形部材 を、その表面及び Ζ又は断面の少なくとも一部が金型キヤビティに露出するように設 置する工程(工程 (Π) )と、エチレン' aーォレフイン系共重合ゴム、 aーォレフイン系 結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を含む混 合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン系熱可塑性エラスト マー組成物 (P2)を、射出成形機により上記金型キヤビティに導入する工程 (工程 (II 1) )と、を備えることを特徴とする複合部材の製造方法。
[0016] 10. 前記ォレフィン系熱可塑性エラストマ一組成物(P2)のメルトフローレートは、温 度 230°C、荷重 21Nの JIS K7210に準ずる条件において 0. lgZlO分以上である 上記 9に記載の複合部材の製造方法。
[0017] 11. 前記第 1成形部及び Z又は前記第 2成形部の形成に用いられる前記ォレフィ ン系熱可塑性エラストマ一組成物(6)及び Z又は(8)が、エチレン' aーォレフイン 系共重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂(2)、 α—才レフイン系非 晶質熱可塑性榭脂 (3)及び鉱物油系軟化剤 (4 ' )を含有し、さらに耐候剤 (9)及び カーボンブラック(10)を含有し、ィォゥ(S)含有量が 20ppm以下の黒色系熱可塑性 エラストマ一組成物(6 ' )である上記 1〜5のいずれかに記載の複合部材。
[0018] 12. 前記第 1成形部及び Z又は前記第 2成形部の形成に用いられる前記ォレフィ ン系熱可塑性エラストマ一組成物(6)及び Z又は(8)が、エチレン' aーォレフイン 系共重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂(2)、 α—才レフイン系非 晶質熱可塑性榭脂 (3)及び鉱物油系軟化剤 (4 ' )を含有し、さらに耐候剤 (9)及び カーボンブラック(10)を含有し、前記カーボンブラック(10)中のィォゥ(S)含有量が 0. 4質量%以下の黒色系熱可塑性エラストマ一糸且成物(6 ' )である上記 1〜5のいず れかに記載の複合部材。
[0019] 13. 前記黒色系熱可塑性エラストマ一組成物(6 ' )に含有される、前記エチレン- a—ォレフイン系共重合ゴム(1)が 20〜70質量0 /0、前記 α—ォレフィン系結晶性熱 可塑性榭脂 (2)が 1〜35質量%、前記 a—ォレフイン系非晶質熱可塑性榭脂 (3)が 1〜20質量%、前記鉱物油系軟化剤 (4' )が 25〜70質量%〔但し、前記(1)、 (2)、 (3)及び (4 ' )の各成分の合計が 100質量%〕である上記 11又は 12に記載の複合部 材。
[0020] 14. 前記黒色系熱可塑性エラストマ一組成物(6,)力 エチレン · α—ォレフィン系 共重合ゴム(1)の代わりに、鉱物油系軟化剤とエチレン' aーォレフイン系共重合ゴ ムとを含有する油展ゴム(1 ' )を含有する上記 11又は 12に記載の複合部材。
[0021] 15. 前記黒色系熱可塑性エラストマ一組成物(6 ' )に含有される、前記油展ゴム(1
' )が 30〜98質量0 /0、 a—ォレフイン系結晶性熱可塑性榭脂(2)力^〜 35質量0 /0、 a—ォレフイン系非晶質熱可塑性榭脂(3)力^〜 20質量%、後添加鉱物油系軟ィ匕 剤 (4,,)が 0〜50質量%〔但し、前記(1 ' )、 (2)、 (3)及び (4' ' )の各成分の合計が 100質量%〕である上記 14に記載の複合部材。
[0022] 16. 前記工程 (I)及び Z又は前記工程 (ΠΙ)力 エチレン ·《—ォレフィン系共重合 ゴム(11) 10〜93質量部、結晶性ポリエチレン系榭脂(12) 3〜30質量部、両末端 が 1, 2—ビュル結合含量 25%以下の共役ジェン重合体ブロックであり、中間ブロッ クが 1, 2—ビュル結合含量 25%を超える共役ジェン重合体ブロックであるブロック共 重合体を水素添加してなる水添ブロック共重合体(13) 3〜30質量部、炭素数 3以上 の α—ォレフィン系榭脂(14) 1〜30質量部〔但し、 (11)、 (12)、 (13)及び(14)の 合計量 100質量部〕、を含有し、温度 230°C、荷重 10kgにおけるメルトフローレート が 5gZlO分以上であり、且つ 210°C、引き取り速度 2mZ分における溶融張力が 3. Ogf未満であるォレフィン系熱可塑性エラストマ一組成物(P,)を、射出成形機により 気体又は超臨界流体で発泡成形して成形部材とする工程である上記 9に記載の複 合部材の製造方法。
[0023] 17. 前記エチレン' aーォレフイン系共重合ゴム(11)力 非油展エチレン' aーォ レフイン系共重合ゴム(11 1)または油展エチレン' α—ォレフイン系共重合ゴム(1 1 2)である上記 16記載の複合部材の製造方法。
[0024] 18. 前記油展エチレン' aーォレフイン系共重合ゴム(11 2)力 エチレン' a ォレフィン系共重合ゴム(11 3) 20〜80質量0 /0及び鉱物油系軟化剤(15) 80〜20 質量%〔但し、 (11 - 3) + (15) = 100質量%〕からなる上記 17記載の複合部材の製 造方法。
[0025] 19. 前記ォレフィン系熱可塑性エラストマ一糸且成物(Ρ' )が造核剤(16)を更に含有 する上記 16〜 18のいずれかに記載の複合部材の製造方法。
[0026] 20. 前記ォレフィン系熱可塑性エラストマ一糸且成物(Ρ' )に気体又は超臨界流体を 注入したものを金型内キヤビティ空間に射出し、その後、 0. 01〜: L OmmZ秒の型 開速度をもって金型を開くことにより前記キヤビティ空間を拡大して前記ォレフィン系 熱可塑性エラストマ一組成物(Ρ' )を発泡成形して成形部材を得る上記 16〜19の 、 ずれかに記載の複合部材の製造方法。
[0027] 本発明の複合部材は、エチレン' aーォレフイン系共重合ゴム、 aーォレフイン系 結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を含む混 合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン系熱可塑性エラスト マー組成物、を射出成形することにより得られた第 1成形部と、この第 1成形部の表 面及び Z又は断面の少なくとも一部に接合され、押出成形又は射出成形により得ら れ、且つ、架橋ゴム糸且成物及び Z又はォレフィン系熱可塑性エラストマ一糸且成物を 含む第 2成形部とを備えることから、各成形部どうしの接着性に優れ、複合部材として 十分な強度を有する。従って、部材の形状、構造等の選択性が高い。
[0028] 本発明の複合部材の製造方法は、架橋性ゴム及び Z又はォレフィン系熱可塑性 エラストマ一を含む組成物 (P1)を、押出成形機又は射出成形機により成形部材とす る工程と、この成形部材の表面及び Z又は断面の少なくとも一部が金型キヤビティに 露出するように設置する工程と、エチレン' aーォレフイン系共重合ゴム、 aーォレフ イン系結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を 含む混合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン系熱可塑性 エラストマ一組成物 (P2)を、射出成形機により上記金型キヤビティに導入する工程と 、を備えることから、複合部材を短時間で且つ安全に製造することができる。上記ォレ フィン系熱可塑性エラストマ一組成物(P2)のメルトフローレートは、温度 230°C、荷 重 21Nの JIS K7210に準ずる条件において 0. lg/10分以上である場合には、よ り効率的な製造を行うことができる。
図面の簡単な説明
[0029] [図 1]複合部材の 1例を示す概略説明図である。
[図 2]複合部材の他の例を示す概略説明図である。
[図 3]環状構造の複合部材を自動車のドアのウエザーストリップとして用いる場合の配 置例を示す概略説明図である。
[図 4]実施例において、引張強度を測定する際の試験片の作製方法を示す概略説 明図である。
符号の説明
[0030] 1 ;複合部材、 11, 11a〜: L ie ;第 1成形部、 12, 12a〜12e ;第 2成形部、 2 ;ゥェザ 一ストリップ、 3 ;自動車のドア、 4 ;引張強度測定用試験片、 4a ;第 1成形部形成用組 成物からなる成形部、 4b;加硫ゴムシート(第 2成形部形成用組成物)からなる成形 部。
発明を実施するための最良の形態
[0031] 以下、本発明の実施形態について詳細に説明するが、本発明はこれらの実施形態 に限定されるものではない。
[0032] 1.複合部材
本発明の複合部材は、エチレン' a—ォレフイン系共重合ゴム、 a—ォレフイン系 結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を含む混 合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン系熱可塑性エラスト マー組成物、を射出成形することにより得られた第 1成形部 (以下、「成形部 (A)」とも いう。)と、この第 1成形部の表面及び Z又は断面の少なくとも一部に接合され、押出 成形又は射出成形により得られ、且つ、架橋ゴム組成物及び Z又はォレフィン系熱 可塑性エラストマ一組成物を含む第 2成形部 (以下、「成形部 (B)」ともいう。)とを備 える。
[0033] 1 1.第 1成形部
この第 1成形部 (成形部 (A) )は、エチレン' a—ォレフイン系共重合ゴム、 a—ォレ フィン系結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤 を含む混合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン系熱可塑 性エラストマ一組成物を、射出成形することにより得られたものである。従って、上記 成形部 (A)は、エチレン' aーォレフイン系共重合ゴム、 aーォレフイン系結晶性熱 可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を含む。
[0034] (エチレン' aーォレフイン系共重合ゴム(1) )
エチレン' aーォレフイン系共重合ゴム(1)は、エチレンからなるエチレン単位(al) と、炭素数が 3以上の (Xーォレフインカ なる単位 (a2)とを含む共重合ゴムであれば 特に限定されない。上記単位 (al)の含有量は、上記エチレン' aーォレフイン系共 重合ゴム(1)を構成する全構成単位の全量を 100モル0 /0とした場合、好ましくは 35 モル0 /0以上、より好ましくは 40〜90モル0 /0、更に好ましくは 45〜85モル0 /0である。 上記単位 (al)の含有量が多すぎると、得られる成形部 (A)の柔軟性が十分でなくな る傾向にあり、一方、少なすぎると、得られる成形部 (A)の機械的強度が十分でない 場合がある。
[0035] 上記単位 (a2)を形成することとなる炭素数が 3以上の aーォレフインとしては、プロ ピレン、 1ーブテン、 2—ブテン、イソブテン、 1 ペンテン、 2—メチルー 1ーブテン、 2 ーメチルー 2 ブテン、 3—メチルブテン、 1一へキセン、 4ーメチルー 1 ペンテン、 3—メチルー 1 ペンテン、 3 ェチルー 1 ペンテン、 1 ヘプテン、 1—オタテン、 1 ーデセン、 1 ゥンデセン等が挙げられる。これらの aーォレフインからなる単位(a2) は、 1種単独で構成されていてもよいし、 2種以上の組み合わせで構成されていても よい。また、上記単位 (a2)のうち、プロピレン力もなる単位、 1—ブテンカもなる単位 等が好ましい。上記単位 (a2)の含有量は、上記エチレン' aーォレフイン系共重合 ゴム(1)を構成する全構成単位の全量を 100モル0 /0とした場合、好ましくは 5〜65モ ル%、より好ましくは 10〜45モル0 /0、特に好ましくは 15〜40モル%である。上記単 位 (a2)の含有量が少なすぎると、得られる成形部 (A)が、所望のゴム弾性を示さな い場合がある。一方、多すぎると、得られる成形部 (A)の耐久性が低下する場合があ る。
[0036] 上記エチレン' aーォレフイン系共重合ゴム(1)は、上記単位 (al)及び (a2)力 構 成される二元共重合体であってもよいし、これらの単位 (al)及び (a2)と、更に他の 単位とから構成される重合体 (三元共重合体、四元共重合体等)であってもよい。他 の単位としては、非共役ジェンィ匕合物カゝらなる単位等が挙げられる。
[0037] 上記エチレン' aーォレフイン二元共重合体としては、例えば、エチレン 'プロピレン 共重合体 (以下、単に「EPM^いう。)、エチレン · 1ーブテン共重合体 (以下、単に「 ΕΒΜ」という。)、エチレン · 1 ペンテン共重合体、エチレン · 3—メチルー 1ーブテン 共重合体、エチレン · 1一へキセン共重合体、エチレン · 3—メチルー 1 ペンテン共 重合体、エチレン ·4ーメチルー 1 ペンテン共重合体、エチレン · 3 ェチルー 1 ペンテン共重合体、エチレン · 1 オタテン共重合体、エチレン · 1ーデセン共重合体 及びエチレン · 1 ゥンデセン共重合体等が挙げられる。これらのうち、 ΕΡΜ及び ΕΒ Μが好ましい。また、これらは 1種単独であるいは 2種以上を組み合わせることができ る。
[0038] 上記エチレン' aーォレフイン二元共重合ゴムとして EPM及び Z又は EBMを用い る場合、エチレン含量は、共重合体全体を 100モル%とした場合に 50〜95モル0 /0 ( より好ましくは 60〜90モル0 /0)であることが好ましい。
[0039] 上記エチレン' aーォレフイン系共重合ゴム(1)が三元共重合体である場合、この 三元共重合体としては、エチレン' aーォレフイン'非共役ジェン三元共重合体等が 挙げられる。このエチレン' aーォレフイン'非共役ジェン三元共重合体を構成する 非共役ジェン単位 (以下、「単位 (a3)」という。)を形成することとなる非共役ジェンィ匕 合物としては、 1, 4一へキサジェン、 1, 5 へキサジェン、 1, 6 へキサジェン等の 直鎖の非環状ジェン化合物、 5—メチルー 1, 4一へキサジェン、 3, 7 ジメチルー 1 , 6—ォクタジェン、 5, 7 ジメチルォクタ 1, 6 ジェン、 3, 7 ジメチルー 1, 7— ォクタジェン、 7 メチルオタター 1, 6 ジェン、ジヒドロミルセン等の分岐連鎖の非 環状ジェンィ匕合物、テトラヒドロインデン、メチルテトラヒドロインデン、ジシクロペンタ ジェン、ビシクロ [2. 2. 1]—ヘプター 2, 5 ジェン、 5—メチレン一 2 ノルボルネン 、 5 ェチリデン 2 ノルボルネン、 5—プロべ-ルー 2 ノルボルネン、 5 イソプ 口ピリデン一 2 ノルボルネン、 5 シクロへキシリデン一 2 ノルボルネン、 5 ビ- ルー 2—ノルボルネン等の脂環式ジェンィ匕合物等が挙げられる。これらの非共役ジ ェンィ匕合物カゝらなる単位 (a3)は、 1種単独で構成されていてもよいし、 2種以上の組 み合わせで構成されていてもよい。また、上記単位 (a3)のうち、 1, 4一へキサジェン 力 なる単位、ジシクロペンタジェンからなる単位、 5 ェチリデン一 2 ノルボルネン 力 なる単位等が好ましい。上記単位 (a3)の含有量は、上記エチレン' a—ォレフィ ン系共重合ゴム(1)を構成する全構成単位の全量を 100モル%とした場合、好ましく は 10モル%以下、より好ましくは 1〜8モル%である。上記単位 (a3)の含有量が多す ぎると、得られる組成物の耐久性が低下する場合がある。
[0040] 本発明においては、上記エチレン' aーォレフイン系共重合ゴム(1)として、前記二 元共重合体及び前記三元共重合体等のほか、これらの重合体の有する水素原子の 一部が塩素原子、臭素原子等のハロゲン原子に置換されているハロゲン化共重合 体や、塩化ビュル、酢酸ビュル、(メタ)アクリル酸、(メタ)アクリル酸の誘導体〔メチル (メタ)アタリレート、グリシジル (メタ)アタリレート、(メタ)アクリルアミド等〕、マレイン酸 、マレイン酸の誘導体(無水マレイン酸、マレイミド、マレイン酸ジメチル等)、共役ジ ェン(ブタジエン、イソプレン、クロ口プレン等)等の不飽和モノマーを前記二元共重 合体、三元共重合体及びハロゲン化共重合体等に対してグラフト重合したグラフト共 重合体を用いることもできる。また、これらのエチレン' α—ォレフイン系共重合ゴムは 1種単独であるいは 2種以上を組み合わせることができる。
[0041] 上記エチレン' aーォレフイン系共重合ゴム(1)は、例えば、チーグラー'ナッタ触 媒と、可溶性バナジウム化合物と、有機アルミニウム化合物とを含む溶媒力 なる触 媒の存在下で、エチレン、 aーォレフイン及び非共役ジェンを、必要に応じて分子量 調節剤として水素を供給しつつ重合する方法等の、中'低圧法による重合方法により 得ることができる。また、その重合は気相法 (流動床又は攪拌床)、液相法 (スラリー法 又は溶液法)でも行うことができる。 [0042] 上記エチレン' aーォレフイン系共重合ゴム(1)の極限粘度(デカリン溶媒中、 135 °Cで測定)は、好ましくは 2. OdlZg以上であり、より好ましくは 2. 5〜7. Odl/g,更 に好ましくは 3. 0〜6. OdlZgである。この極限粘度が小さすぎると、得られる成形部 (A)の表面力も軟化剤がブリードアウトしたり、ゴム弾性が低下したりする場合がある 。一方、大きすぎると、成形加工性が低下する場合がある。また、上記エチレン' a - ォレフィン系共重合ゴムの X線回折による結晶化度は、好ましくは 20%以下、より好 ましくは 15%以下である。結晶化度が高すぎると、得られる成形部 (A)の柔軟性が 低下する場合がある。
[0043] 更に、上記エチレン' aーォレフイン系共重合ゴムのヨウ素価は、好ましくは 5〜30 、より好ましくは 7〜20である。このヨウ素価が小さすぎると、得られるォレフィン系熱 可塑性エラストマ一組成物の架橋密度が低下し、得られる成形部 (A)の機械的物性 が低下する場合がある。一方、大きすぎると、得られるォレフィン系熱可塑性エラスト マー組成物の架橋密度が過度になり、得られる成形部 (A)の機械的物性が低下す る場合がある。
[0044] 尚、上記ォレフィン系熱可塑性エラストマ一組成物(6)において、上記エチレン' a 一才レフイン系共重合ゴム(1)の代わりに、軟化剤 (4)、好ましくは鉱物油系軟化剤( 4,)とエチレン. a一才レフイン系共重合ゴムとを含有する油展ゴム(1,)を用いること もできる。油展ゴム(1,)とする場合のエチレン' aーォレフイン系共重合ゴム及び軟 ィ匕剤 (鉱物油系軟化剤 (4' ) )の配合割合は、好ましくは 20〜80質量%及び 80〜20 質量%、より好ましくは 25〜75質量%及び 75〜25質量%、更に好ましくは 30〜70 質量0 /0及び 70〜30質量0 /0である。このように、上記エチレン' aーォレフイン系共重 合ゴムの代わりに油展ゴムを用いた場合には、上記ォレフィン系熱可塑性エラストマ 一組成物を製造する上で取り扱いが容易となる。
[0045] ( a一才レフイン系結晶性熱可塑性榭脂(2) )
aーォレフイン系結晶性熱可塑性榭脂(2)は、 aーォレフインカ なる単位 (bl)を 含み、 X線回折による結晶化度が 50%以上の榭脂であれば特に限定されない。この 結晶化度は、好ましくは 53%以上、より好ましくは 55%以上である。尚、この結晶化 度は、榭脂の密度と密接に関係しており、例えば、ポリプロピレンの場合、 α型結晶( 単斜晶形)の密度は、 0.
Figure imgf000013_0001
スメチカ型微結晶 (擬六方晶形)の密度は、 0 .
Figure imgf000013_0002
非晶質 (ァタクチック)成分の密度は、 0. 850gZcm3である。また、ポ リ— 1—ブテンの場合、ァイソタクチック結晶成分の密度は、 0. 91g/cm3、非晶質( ァタクチック)成分の密度は、 0. 87gZcm3である。従って、上記 α—ォレフィン系結 晶性熱可塑性榭脂の好ましい密度は、 0. 89g/cm3以上であり、より好ましくは 0. 9 0〜0. 94gZcm3である。上記範囲とすることにより、結晶化度を 50%以上とすること ができる。上記 α—才レフイン系結晶性熱可塑性榭脂の結晶化度が 50%未満、密 度が 0. 89gZcm3以下である場合には、得られる成形部 (A)の耐熱性、強度等が低 下する傾向にある。
[0046] 上記単位 (b l)を形成することとなる aーォレフインは、好ましくは炭素数が 3以上の ものであり、より好ましくは炭素数が 3〜12のものである。これらのうち、プロピレン及 び 1ーブテンが好ましい。上記単位 (b l)の含有量は、上記 α—ォレフィン系結晶性 熱可塑性榭脂 (2)を構成する全構成単位の全量を 100モル%とした場合、好ましく は 60モル%以上、より好ましくは 80モル%以上、更に好ましくは 90〜: L00モル%で ある。(b l)含有量が低くなると、上記 α—才レフイン系結晶性熱可塑性榭脂(2)の結 晶化度及び融点が低下する傾向にある。
[0047] 上記 oc一才レフイン系結晶性熱可塑性榭脂 (2)が共重合体である場合、この共重 合体は、ブロック共重合体及びランダム共重合体のいずれであってもよい。但し、上 記の結晶化度のブロック共重合体とするためには、 α—ォレフインカ なる単位 (b l) を除く構成単位の合計量は、ブロック共重合体を構成する全構成単位の全量を 100 モル%とした場合、好ましくは 40モル%以下であり、より好ましくは 20モル%以下、更 に好ましくは 10モル%以下である。 40モル%を超えると上記 α—ォレフィン系結晶 性熱可塑性榭脂 (2)の結晶化度及び融点が低下する傾向にある。上記 (b l)を除く 構成単位としては、エチレン由来の構成単位を挙げることができる。上記ブロック共 重合体は、チーグラー ·ナッタ触媒を用いるリビング重合により得ることができる。
[0048] また、上記の結晶化度のランダム共重合体とするためには、 α—ォレフインカ なる 単位 (b l)を除く構成単位の合計量は、ランダム共重合体を構成する全構成単位の 全量を 100モル%とした場合、好ましくは 15モル%以下であり、より好ましくは 10モ ル%以下である。上記ランダム共重合体は、例えば、チーグラー ·ナッタ触媒と、可溶 性バナジウム化合物と、有機アルミニウム化合物と、溶媒とを含む触媒成分の存在下 で、 α—ォレフィン等を重合することにより得ることができる。重合方法としては、中 · 低圧法等が挙げられ、気相法 (流動床又は攪拌床)、液相法 (スラリー法又は溶液法 )等で行うことができる。尚、重合時には、必要に応じて、水素ガス等の分子量調節剤 を用いてもよい。
[0049] 上記可溶性バナジウム化合物としては、 VOC1及び Ζ又は VC1と、アルコールとの
3 4
反応生成物を用いることが好ましい。アルコールとしては、炭素数が 2 12のものが 好ましぐ例えば、メタノール、エタノール、 η—プロパノール、イソプロパノール、 η- ブタノール、 sec—ブタノール、 tーブタノール、 n キサノール、 n—ォクタノール、 2—ェチルへキサノール、 n—デカノール、 n—ドデカノール等が挙げられる。これら は、 1種単独であるいは 2種以上を組み合わせて用いることができる。また、これらのう ち、炭素数 3 8のアルコールが特に好ましい。
[0050] また、上記有機アルミニウム化合物としては、トリェチルアルミニウム、トリイソブチル アルミニウム、トリー n キシルアルミニウム、ジェチルアルミニウムモノクロリド、ジィ ソブチルアルミニウムモノクロリド、ェチルアルミニウムセスキク口リド、ブチルアルミ- ゥムセスキク口リド、ェチルアルミニウムジクロリド、ブチルアルミニウムジクロリド、トリメ チルアルミニウムと水との反応生成物であるメチルアルミノキサン等が挙げられる。こ れらのうち、ェチルアルミニウムセスキク口リド、ブチルアルミニウムセスキク口リド、ェチ ルアルミニウムセスキク口リドとトリイソブチルアルミニウムとの混合物、トリイソブチルァ ルミ-ゥムとブチルアルミニウムセスキクロリドとの混合物が好ましい。これらは、 1種単 独であるいは 2種以上を組み合わせて用いることができる。更に、上記溶媒としては、 炭化水素が好ましぐ特に、 n—ペンタン、 n—へキサン、 n—ヘプタン、 n—オクタン、 イソオクタン、シクロへキサンが好ましい。これらは、 1種単独であるいは 2種以上を組 み合わせて用いることができる。
[0051] 上記 oc一才レフイン系結晶性熱可塑性榭脂(2)の融点、即ち、示差走査熱量測定 法による最大ピーク温度は、好ましくは 100°C以上、より好ましくは 120°C以上である 。この融点が 100°C未満では、十分な耐熱性及び強度が発揮されない傾向にある。 また、上記 α—ォレフイン系結晶性熱可塑性榭脂のメルトフローレート(温度 230°C、 荷重 2. 16kg (21N) ) (以下、単に「MFR」と! /、う)は、好ましくは 0. 1〜1 , OOOg/1 0分、より好ましくは 0. 5〜500gZlO分、更に好ましくは 1〜: LOOgZlO分である。こ の MFRが 0. lgZlO分未満では、ォレフィン系熱可塑性エラストマ一組成物(6)の 混練加工性、押出加工性等が不十分となる傾向にある。一方、 1 , OOOgZlO分を超 えると、得られる成形部 (A)の機械的強度が低下する傾向にある。
[0052] 本発明において好ましい α—才レフイン系結晶性熱可塑性榭脂(2)は、結晶化度 力 0%以上、密度が 0. 89g/cm3以上、エチレン単位の含有量が 20モル%以下、 融点が 100°C以上、且つ、 MFRが 0. 1〜: LOOgZlO分の榭脂である。特に好ましい 榭脂は、融点が 140〜170°Cのポリプロピレン、プロピレン 'エチレン共重合体等であ る。上記 α—ォレフィン系結晶性熱可塑性榭脂は、 1種単独であるいは 2種以上を組 み合わせて用いることができる。
[0053] 上記 aーォレフイン系結晶'性熱可塑'性榭脂(2)としては、例えば、ポリプロピレン、 プロピレン 'エチレン共重合体、プロピレン · 1ーブテン共重合体、プロピレン · 1ーぺ ンテン共重合体、プロピレン · 3—メチルー 1ーブテン共重合体、プロピレン · 1一へキ セン共重合体、プロピレン · 3—メチルー 1 ペンテン共重合体、プロピレン · 4ーメチ ルー 1 ペンテン共重合体、プロピレン · 3 ェチルー 1 ペンテン共重合体、プロピ レン · 1—オタテン共重合体、プロピレン · 1ーデセン共重合体及びプロピレン · 1ーゥ ンデセン共重合体等が挙げられる。これらのうち、ポリプロピレン及びプロピレン.ェチ レン共重合体が好ましく用いられる。また、これらは 1種単独であるいは 2種以上を組 み合わせて用いることができる。
[0054] ( a一才レフイン系非晶質熱可塑性榭脂 (3) )
a—ォレフイン系非晶質熱可塑性榭脂(3)は、 oc—ォレフインカもなる単位 (c l)を 含み、 X線回折による結晶化度が 50%未満の榭脂であれば特に限定されない。この 結晶化度は、好ましくは 30%以下、より好ましくは 20%以下である。また、密度から 見た場合、好ましくは 0. 85〜0. 89gZcm3、より好ましくは 0. 85〜0. 88gZcm3で ある。
[0055] 上記単位 (cl)を形成することとなる aーォレフインは、好ましくは炭素数が 3以上の ものであり、より好ましくは 3〜 12のものである。
[0056] 上記単位 (cl)の含有量は、上記 α—才レフイン系非晶質熱可塑性榭脂を構成す る全構成単位の全量を 100モル%とした場合、好ましくは 50モル%以上、更に好ま しくは 60モル%以上である。
[0057] 上記 aーォレフイン系非晶質熱可塑'性榭脂(3)としては、ァタクチックポリプロピレ ン、ァタクチックポリ 1—ブテン等の単独重合体、 50モル0 /0を超えるプロピレン単位と 、他の α ォレフィン(エチレン、 1—ブテン、 1—ペンテン、 1—へキセン、 4—メチル — 1—ペンテン、 1—オタテン、 1—デセン等)より形成される単位とからなる共重合体 、 50モル0 /0を超える 1—ブテン単位と、他の α—ォレフイン(エチレン、プロピレン、 1 —ペンテン、 1—へキセン、 4—メチル 1—ペンテン、 1—オタテン、 1—デセン等)よ り形成される単位とからなる共重合体等が挙げられる。ァタクチックポリプロピレン及 びァタクチックポリ一 1—ブテンは、ジルコノセンィ匕合物一メチルアルミノキサン触媒を 用いる重合によって得ることができる。また、上記ァタクチックポリプロピレンは、前記 α—ォレフィン系結晶性熱可塑性榭脂として例示したポリプロピレンの副生成物とし て得ることができる。
[0058] 上記 a一才レフイン系非晶質熱可塑性榭脂(3)が共重合体である場合、この共重 合体は、ブロック共重合体及びランダム共重合体のいずれであってもよい。但し、ブ ロック共重合体の場合、 50モル%を超えて構成される a—ォレフインカゝらなる単位 (c
1)は、ァタクチック構造で結合している必要がある。このブロック共重合体は、チーグ ラー 'ナッタ触媒を用いるリビング重合により得ることができる。また、ランダム共重合 体は、上記 α ォレフィン系結晶性熱可塑性榭脂と同様の方法により得ることができ る。尚、上記 α ォレフィン系非晶質熱可塑性榭脂が、上記単位 (cl)と、エチレンか らなるエチレン単位とを含む共重合体である場合、上記 α—才レフイン系非晶質熱 可塑性榭脂 (3)を構成する全構成単位の全量を 100モル%とした場合、上記単位 (c 1)の含有量は、好ましくは 50モル%以上、更に好ましくは 60〜: L00モル%である。 上記 α—ォレフィン系非晶質熱可塑'性榭脂(3)としては、ァタクチックポリプロピレン 、 50モル0 /0を超えるプロピレン単位とエチレン単位とからなる共重合体、 50モル0 /0を 超えるプロピレン単位と 1—ブテンよりなる単位とからなる共重合体が特に好ましい。 [0059] 上記 aーォレフイン系非晶質熱可塑性榭脂(3)の GPCによるポリスチレン換算の 数平均分子量 Μηは、好ましくは 1 , 000〜20, 000、より好ましくは 1 , 500〜15, 0 00である。 1 , 000未満ではォレフイン系熱可塑性エラストマ一組成物(6)を用いて 得られる第 1成形部の耐熱性が悪ィ匕する傾向にあり、一方、 20, 000を超えるとォレ フィン系熱可塑性エラストマ一組成物(6)の流動性及び熱融着性が悪化する傾向に ある。上記 α—ォレフィン系非晶質熱可塑性榭脂は、 1種単独であるいは 2種以上を 組み合わせて用いることができる。
[0060] 上記 oc一才レフイン系非晶質熱可塑性榭脂(3)の 190°Cにおける溶融粘度は、好 ましくは 50, OOOcPs以下、より好ましくは 100〜30, 000cPs、更に好ましくは 200 〜20, OOOcPsである。この粘度が 50, OOOcPsを超えると被着体との接着強度が低 下する傾向にある。しかし、 50, OOOcPsを超えなくても、結晶化度が 50%を超える 場合、密度が 0. 89gZcm3を超える場合は、各々被着体との接着強度が低下する 傾向にある。
[0061] (軟化剤 (4) )
軟化剤 (4)としては、ゴム製品に用いられている公知の軟化剤を用いることができる 。この軟化剤としては、鉱物油系軟化剤等のプロセスオイル、潤滑油、パラフィン、流 動パラフィン、石油アスファルト、ワセリン等の石油系物質;コールタール、コールター ルビッチ等のコールタール類;ヒマシ油、アマ-油、ナタネ油、大豆油、ヤシ油等の脂 肪油;トール油、蜜ロウ、カルナウパロウ、ラノリン等のロウ類;リシノール酸、パルミチ ン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム等の脂肪酸又はそ の金属塩;石油榭脂、クマロンインデン榭脂、ァタクチックポリプロピレン等の合成高 分子物質;ジォクチルフタレート、ジォクチルアジペート、ジォクチルセバケート等の エステルイ匕合物;マイクロクリスタリンワックス、サブ(ファタチス)、液状ポリブタジエン、 変性液状ポリブタジエン、液状チォコール等が挙げられる。これらのうち、プロセスォ ィルが好ましぐ特に、パラフィン系、ナフテン系、芳香族系の鉱物油系軟化剤 (4 ' ) が好ましい。尚、上記鉱物油系軟化剤 (4 ' )は、一般に、芳香族環、ナフテン環、及 びパラフィン鎖の三者の混合物である。ノ ラフィン鎖の炭素数が全炭素数中の 50% 以上を占めるものがパラフィン系鉱物油、ナフテン環の炭素数が全炭素数中の 30〜 45%のものがナフテン系鉱物油、芳香族環の炭素数が全炭素数中の 30%以上のも のが芳香族系鉱物油と、それぞれ分類されている。上記パラフィン系、ナフテン系、 芳香族系の鉱物油系軟化剤は、これらを組み合わせて用いることができ、更には、そ れぞれを 1種単独であるいは 2種以上を組み合わせて用いることができる。
[0062] 上記鉱物油系軟化剤 (4' )の GPCによるポリスチレン換算の重量平均分子量 Mw は、好ましくは 300〜2, 000、より好ましくは 500〜1, 500である。また、 40°Cにおけ る動粘度は、好ましくは 20〜800cSt、より好ましくは 50〜600cStである。更に、流 動点は、好ましくは 40〜0°C、より好ましくは— 30〜0°Cである。
[0063] (ォレフイン系熱可塑性エラストマ一組成物(6)の組成)
上記成形部 (A)の形成に用いられるォレフィン系熱可塑性エラストマ一組成物(6) は、エチレン. aーォレフイン系共重合ゴム(1)、 aーォレフイン系結晶性熱可塑性 榭脂 (2)、 a—ォレフイン系非晶質熱可塑性榭脂 (3)及び軟化剤 (4)を含有する。こ れら 4成分の合計を 100質量部とした場合、各成分の含有割合は、下記の通りである 。即ち、エチレン' aーォレフイン系共重合ゴム(1)の含有量は、好ましくは 20〜97 質量部、より好ましくは 23〜94質量部、更に好ましくは 25〜90質量部であり、 a - ォレフィン系結晶性熱可塑性榭脂(2)の含有量は、好ましくは 1〜49質量部、より好 ましくは 2〜45質量部、更に好ましくは 3〜40質量部であり、 α—ォレフィン系非晶 質熱可塑性榭脂の含有量は、好ましくは 1〜49質量部、より好ましくは 2〜45質量部 、更に好ましくは 3〜40質量部であり、軟化剤 (4)の含有量は、好ましくは 1〜70質 量部、より好ましくは 2〜67質量部、更に好ましくは 4〜65質量部である。
[0064] 上記エチレン' aーォレフイン系共重合ゴムの含有量が 20質量部未満では、得ら れる成形部 (A)の柔軟性が低下する傾向にある。一方、 90質量部を超えると、架橋 剤の存在下で熱処理して得られたォレフィン系熱可塑性エラストマ一組成物の流動 性が低下し、成形部 (A)とする際の成形加工性が著しく悪化する。上記 α—才レフィ ン系結晶性熱可塑性榭脂の含有量が 1質量部未満では、得られるォレフィン系熱可 塑性エラストマ一組成物の流動性が低下する傾向にある。一方、 49質量部を超える と、得られる成形部 (Α)の柔軟性とゴム弾性が低下する傾向にある。上記 α ォレフ イン系非晶質熱可塑性榭脂の含有量が 1質量部未満では、得られる成形部 (Α)と、 第 2成形部 (成形部 (B) )との接着性が低下する傾向にある。一方、 49質量部を超え ると、得られる成形部 (A)の柔軟性及びゴム弾性が低下する傾向にある。また、上記 軟化剤の含有量が 1質量部未満では、得られる成形部 (A)の柔軟性が低下する傾 向にある。一方、 70質量部を超えると、得られるォレフィン系熱可塑性エラストマ一組 成物の機械的物性が悪化する傾向にある。
(他の重合体成分)
上記成形部 (A)の形成に用いられるォレフィン系熱可塑性エラストマ一組成物(6) には、エチレン. aーォレフイン系共重合ゴム(1)、 aーォレフイン系結晶性熱可塑 性榭脂 (2)及び α—才レフイン系非晶質熱可塑性榭脂 (3)以外に、他の重合体成分 が含有されていてもよい。他の重合体成分としては、得られる熱可塑性エラストマ一 組成物の機械的強度、柔軟性等を阻害しないものであれば、特に限定されない。他 の重合体成分としては、アイオノマー榭脂、アミノアクリルアミド重合体、ポリエチレン 及びその無水マレイン酸グラフト重合体、ポリイソブチレン、エチレン '塩化ビュル共 重合体、エチレン 'ビュルアルコール共重合体、エチレン '酢酸ビュル共重合体、ポリ エチレンオキサイド、エチレン 'アクリル酸共重合体、ポリプロピレン及びその無水マレ イン酸グラフト重合体、ポリイソブチレン及びその無水マレイン酸グラフト重合体、塩 素化ポリプロピレン、 4—メチルペンテン一 1榭脂、ポリスチレン、 ABS榭脂、 ACS榭 脂、 AS榭脂、 AES榭脂、 ASA榭脂、 MBS榭脂、アクリル榭脂、メタタリル榭脂、塩 化ビニル榭脂、塩ィ匕ビニリデン榭脂、ポリアミド榭脂、ポリカーボネート、ビニルアルコ ール榭脂、ビュルァセタール榭脂、フッ素榭脂、ポリエーテル榭脂、ポリエチレンテレ フタレート、二トリルゴム及びその水素添加物、アクリルゴム、シリコーンゴム、フッ素ゴ ム、ブチルゴム、天然ゴム、塩素化ポリエチレン系熱可塑性エラストマ一、シンジオタ クチック 1, 2—ポリブタジエン、単純ブレンド型ォレフイン系熱可塑性エラストマ一、ィ ンプラント型ォレフイン系熱可塑性エラストマ一、動的架橋型ォレフイン系熱可塑性 エラストマ一、ポリ塩ィ匕ビュル系熱可塑性エラストマ一、ポリウレタン系熱可塑性エラ ストマー、ポリエステル系熱可塑性エラストマ一、ポリアミド系熱可塑性エラストマ一、 フッ素系熱可塑性エラストマ一が挙げられる。これらの重合体成分は、 1種単独であ るいは 2種以上を組み合わせて用いることができる。これらの重合体成分の含有割合 は、エチレン. a—ォレフイン系共重合ゴム、 a—ォレフイン系結晶性熱可塑性榭脂 及び α—才レフイン系非晶質熱可塑性榭脂の合計を 100質量部とした場合、好まし くは 0. 1〜: L00質量部、より好ましくは 0. 1〜80質量部である。
[0066] (添加剤)
また、上記成形部 (Α)の形成に用いられるォレフィン系熱可塑性エラストマ一組成 物 (6)は、充填剤、老化防止剤、酸化防止剤、可塑剤、紫外線吸収剤、帯電防止剤 、耐候剤、難燃剤、充填剤、防菌 '防かび剤、ブロッキング剤、シール性改良剤、滑 剤 (金属石鹼、ワックス等)、熱安定剤、光安定剤、銅害防止剤等の安定剤、金属不 活性剤、結晶核剤、粘着付与剤、発泡剤、発泡助剤、着色剤 (染料、顔料等)等の添 加剤を含有してもよい。
[0067] (充填剤)
充填剤としては、フェライト等の金属粉末、ガラス繊維、金属繊維等の無機繊維、炭 素繊維、ァラミド繊維等の有機繊維、複合繊維、チタン酸カリウムウイスカ一等の無機 ゥイスカー、ガラスビーズ、ガラスバルーン、ガラスフレーク、アスベスト、マイ力、炭酸 カルシウム、タルク、湿式シリカ、乾式シリカ、アルミナ、アルミナシリカ、ケィ酸カルシ ゥム、ハイド口タルサイト、カオリン、けい藻土、グラフアイト、軽石、ェボ粉、コットンフロ ック、コルク粉、硫酸バリウム、フッ素榭脂、ポリマービーズ、カーボンブラック、セル口 ースパウダー、ゴム粉、木粉等が挙げられる。これらは、 1種単独であるいは 2種以上 を組み合わせて用いることができる。
[0068] (架橋剤(5) )
上記ォレフィン系熱可塑性エラストマ一組成物(6)は、エチレン' aーォレフイン系 共重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂(2)、 α—才レフイン系非晶 質熱可塑性榭脂 (3)及び軟化剤 (4)を含む混合物を、架橋剤 (5)の存在下で動的 に熱処理して得られたものである。
[0069] 上記架橋剤(5)としては特に限定されないが、 a一才レフイン系結晶性熱可塑性榭 脂(1)及び α—才レフイン系非晶質熱可塑性榭脂(2)の融点以上の温度における動 的熱処理により、少なくともエチレン' a一才レフイン系共重合ゴム(1)を架橋すること ができる化合物が好まし 、。 [0070] 上記架橋剤 (5)としては、有機過酸化物、フエノール榭脂架橋剤、硫黄、硫黄化合 物、 p キノン、 p キノンジォキシムの誘導体、ビスマレイミドィ匕合物、エポキシ化合 物、シランィ匕合物、アミノ榭脂、ポリオール架橋剤、ポリアミン、トリアジンィ匕合物、金属 石鹼等が挙げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いる ことができる。また、これらのうち、有機過酸化物及びフエノール榭脂架橋剤が好まし い。
[0071] 有機過酸化物としては、 1, 3 ビス(t ブチルパーォキシイソプロピル)ベンゼン、 2, 5 ジメチルー 2, 5 ビス(t—ブチルパーォキシ)へキシンー3、 2, 5 ジメチル - 2, 5 ビス(t—ブチルパーォキシ)へキセン— 3、 2, 5 ジメチルー 2, 5 ビス(t ブチルパーォキシ)へキサン、 2, 2,一ビス(t ブチルパーォキシ) p イソプロ ピルベンゼン、ジクミルパーォキシド、ジー t ブチルパーォキシド、 t ブチルパー ォキシド、 p—メンタンパーォキシド、 1, 1 ビス(t ブチルパーォキシ) 3, 3, 5— トリメチルシクロへキサン、ジラウロイルパーォキシド、ジァセチルバーォキシド、 tーブ チノレパーォキシベンゾエート、 2, 4ージクロ口べンゾィノレパーォキシド、 p クロ口べ ンゾィルパーォキシド、ベンゾィルパーォキシド、ジ(t ブチルパーォキシ)パーベン ゾエート、 n—ブチルー 4, 4 ビス(t—ブチルパーォキシ)バレレート、 tーブチルバ 一ォキシイソプロピルカーボネート等が挙げられる。これらは、 1種単独であるいは 2 種以上を組み合わせて用いることができる。また、これらのうち、 1, 3 ビス (t—ブチ ルパーォキシイソプロピル)ベンゼン、 2, 5 ジメチルー 2, 5 ジ(t—ブチルバーオ キシ)へキシンー3、 2, 5 ジメチルー 2, 5 ジ(t—ブチルパーォキシ)へキサン及 び α , a -ビス (t ブチルパーォキシ)ジイソプロピルベンゼン、ジクミルパーォキサ イド、ジー t ブチルパーオキサイドが好まし!/、。
[0072] また、フ ノール系架橋剤としては、例えば、下記一般式 (I)で示される p 置換フ ェノール系化合物、 o 置換フエノール'アルデヒド縮合物、 m 置換フエノール 'ァ ルデヒド縮合物、臭素化アルキルフエノール 'アルデヒド縮合物等が挙げられる。これ らは、 1種単独であるいは 2種以上を組み合わせて用いることができる。また、これら のうち、 p 置換フエノール系化合物が好ましい。
[0073] [化 1]
Figure imgf000022_0001
(但し、上記一般式 (I)において、 Xはヒドロキシル基、ハロゲン化アルキル基又はハ ロゲン原子であり、 Rは炭素数 1〜15の飽和炭化水素基、 nは 0〜10の整数である。 )
[0074] 尚、上記 p—置換フエノール系化合物は、アルカリ触媒の存在下において p—置換 フエノールとアルデヒド (好ましくはホルムアルデヒド)との縮合反応により得ることがで きる。
[0075] 上記架橋剤 (5)の使用量は、エチレン' aーォレフイン系共重合ゴム(1)、 aーォレ フィン系結晶性熱可塑性榭脂 (2)、 a—ォレフイン系非晶質熱可塑性榭脂 (3)等を 含む重合体成分の合計量 100質量部に対して、好ましくは 0. 01〜20質量部、より 好ましくは 0. 1〜15質量部、更に好ましくは 1〜10質量部である。尚、上記架橋剤と して有機過酸化物を使用する場合には、好ましくは 0. 05〜10質量部、より好ましく は 0. 1〜5質量部である。この有機過酸化物の使用量が多すぎると、架橋度が過度 に高くなり、成形加工性が悪化したり、機械的物性が低下する傾向にある。一方、少 なすぎると、架橋度が不足し、得られる成形部 (A)のゴム弾性及び機械的強度が低 下する場合がある。また、上記架橋剤(5)としてフエノール系架橋剤を使用する場合 には、好ましくは 0. 2〜10質量部、より好ましくは 0. 5〜5質量部である。このフエノ ール系架橋剤の使用量が多すぎると、成形加工性が悪化する場合がある。一方、少 なすぎると、架橋度が不足し、得られる成形部 (A)のゴム弾性及び機械的強度が低 下する場合がある。
[0076] 尚、上記架橋剤(5)は、架橋助剤あるいは架橋促進剤と併用することにより架橋反 応を穏やかに行うことができ、特に均一な架橋を形成することができる。特に、上記架 橋剤(5)として有機過酸化物を用いる場合には、硫黄、硫黄化合物 (粉末硫黄、コロ イド硫黄、沈降硫黄、不溶性硫黄、表面処理硫黄、ジペンタメチレンチウラムテトラス ルフイド等)、ォキシム化合物(p—キノンォキシム、 p, p,ージベンゾィルキノンォキシ ム等)、多官能性モノマー類 (エチレングリコールジ (メタ)アタリレート、ジエチレンダリ コールジ (メタ)アタリレート、トリエチレングリコールジ (メタ)アタリレート、テトラエチレ ングリコールジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、トリメチ ロールプロパントリ(メタ)アタリレート、ジァリルフタレート、テトラァリルォキシェタン、ト リアリルシアヌレート、 N, N,一m—フエ-レンビスマレイミド、 N, N,一トルイレンビス マレイミド、無水マレイン酸、ジビュルベンゼン、ジ (メタ)アクリル酸亜鉛等)等の架橋 助剤を用いることが好ましい。これらは、 1種単独であるいは 2種以上を組み合わせて 用いることができる。また、これらのうち、 p, p'—ジベンゾィルキノンォキシム、 N, N, —m—フエ-レンビスマレイミド、ジビュルベンゼンが好ましい。尚、上記架橋助剤の うち、 N, N,—m—フエ-レンビスマレイミドは、架橋剤としての作用を有するため、架 橋剤として使用することもできる。
[0077] 上記架橋剤 (5)として有機過酸化物を使用する場合の架橋助剤の使用量は、原料 組成物に含まれる重合体成分の合計量 100質量部に対して、好ましくは 10質量部 以下、より好ましくは 0. 2〜5質量部である。この架橋助剤の使用量が多すぎると、架 橋度が過度に高くなり、成形加工性が悪化したり、機械的物性が低下する傾向にあ る。
[0078] また、上記架橋剤 (5)としてフエノール系架橋剤を用いる場合には、金属ハロゲン 化物 (塩化第一すず、塩ィ匕第二鉄等)、有機ハロゲンィ匕物 (塩素化ポリプロピレン、臭 化ブチルゴム、クロロプレンゴム等)等の架橋促進剤を併用し、架橋速度を調節する ことができる。また、架橋促進剤のほかに、更に、酸化亜鉛等の金属酸化物ゃステア リン酸等の分散剤を併用することがより望ましい。
[0079] (動的熱処理)
上記ォレフィン系熱可塑性エラストマ一組成物(6)は、エチレン' aーォレフイン系 共重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂(2)、 α—才レフイン系非晶 質熱可塑性榭脂 (3)及び軟化剤 (4)を含む混合物と、架橋剤 (5)とを含む原料組成 物が動的熱処理されたものである。尚、ここで、「動的に熱処理する」とは、剪断力を 加えること及び加熱することの両方を行うことをいう。上記原料組成物の調製の際に は、エチレン. aーォレフイン系共重合ゴム(1)、 aーォレフイン系結晶性熱可塑性 榭脂(2)、 a—ォレフイン系非晶質熱可塑性榭脂(3)は、そのまま用いてもよいし、そ れぞれ、同一又は異なる添加剤を含む組成物として用いてもよい。尚、エチレン' a 一才レフイン系共重合ゴムを使用する際の形状としては、ベール、クラム、ペレット、 粉体 (ベール又はクラムの粉砕品を含む)の 、ずれであってもよく、形状の異なるェ チレン' α—ォレフイン系共重合体を組み合わせて用いてもよい。
[0080] 上記ォレフィン系熱可塑性エラストマ一組成物(6)を製造する際、「動的に熱処理 する」ために用いる装置としては、溶融混練装置等が挙げられる。この溶融混練装置 による処理は連続式でもよいし、ノ ツチ式でもよい。この溶融混練装置としては、例え ば、開放型のミキシングロール、非開放型のバンバリ一ミキサー、一軸押出機、二軸 押出機、連続式混練機、加圧ニーダ一等が挙げられる。これらのうち、経済性、処理 効率等の観点から、一軸押出機、二軸押出機、連続式混練機等の連続式の溶融混 練装置を用いることが好ましい。連続式の溶融混練装置は、同一又は異なる装置を 2 台以上組み合わせて用いてもよ!、。
[0081] 上記二軸押出機を用いる場合には、 LZD (スクリュー有効長さ Lと外径 Dとの比)が 30以上であることが好ましぐより好ましくは 36〜60である。また、この二軸押出機と しては、例えば、 2本のスクリューが嚙み合うもの、嚙み合わないもの等の任意の二軸 押出機を使用することができるが、 2本のスクリューの回転方向が同一方向でスクリュ 一が嚙み合うものがより好ましい。このような二軸押出機としては、池貝社製「PCM」 、神戸製鋼所社製「KTX」、 日本製鋼所社製「ΤΕΧ」、東芝機械社製「ΤΕΜ」、ヮー ナ一社製「ZSK」等が挙げられる。
[0082] また、上記連続式混練機を用いる場合には、 L/D (スクリュー有効長さ Lと外径 Dと の比)が 5以上であることが好ましぐより好ましくは LZD10である。このような連続式 混練機としては、神戸製鋼所社製「ミクストロンKTX·LCM ·NCM」、 日本製鋼所社 製「CIM · CMPJ等が挙げられる。
[0083] 動的熱処理の際の処理温度は、通常、 120〜350°C、好ましくは 150〜290°Cで ある。処理時間は、通常、 20秒間〜 320分間、好ましくは 30秒間〜 25分間である。 また、混合物に加える剪断力は、ずり速度で 10〜20, 000Z秒、好ましくは 100〜1 o, oooZ秒である。
[0084] (黒色系熱可塑性エラストマ一組成物(6 ' ) )
本発明の複合部材において、第 1成形部を黒色にする場合には、上述したォレフィ ン系熱可塑性エラストマ一糸且成物(6)は、上述したエチレン' ーォレフイン系共重 合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂 (2)、 α—才レフイン系非晶質熱 可塑性榭脂 (3)及び鉱物油系軟化剤 (4 ' )を含有し、さらに耐候剤 (9)及びカーボン ブラック(10)を含有し、ィォゥ(S)含有量が 20ppm以下の黒色系熱可塑性エラスト マー組成物(6' )とすることが好ましい。また、ィォゥ(S)含有量としては、カーボンブ ラック(10)中のィォゥ(S)含有量が 0. 4質量%以下であってもよい。これにより、第 1 成形部を黒色とした場合でも、加硫ゴムに似た柔軟性及びゴムらしさを持ち、自動車 のボディシールであるウィンドシール、ドアシール、トランクシール等の自動車部品材 料として長期間使用しても、白化現象が生じず、耐候性に優れ、しかもリサイクルが 可能となる。
[0085] 従来、黒色系熱可塑性エラストマ一組成物を構成材料として使用した部材(自動車 部品)を長期間使用していると、部品表面が白化するという現象が生じることがあった 。その原因について本発明者らが検討したところ、熱可塑性エラストマ一組成物に着 色剤として含有されるカーボンブラックの種類によって白化現象の発生の有無が左 右されることが判明した。すなわち、カーボンブラックに含まれるィォゥ(S)量、換言 すると、熱可塑性エラストマ一組成物に含まれるィォゥ(S)量が所定以下の場合には 白化現象が発生せず、一方、ィォゥ (S)含有量が所定量を超える場合には白化現象 が発生したのである。
[0086] そこで、上記の白化現象の発生機構をさらに仔細に検討したところ、部品表面に表 れる白化物は熱可塑性エラストマ一組成物に含有されている ーォレフイン系非晶 質重合体の分解物であった。通常、黒色系熱可塑性エラストマ一組成物を構成材料 とする自動車部品には、ヒンダードアミン系光安定剤を代表とする耐候剤が混合され ており、長期間使用しても部品表面の白化現象が生じないようにしているが、黒色着 色剤であるカーボンブラック中に混入しているィォゥ(S)が所定以上に多いと、耐候 剤の効力が低下して、白化現象が生じることが分力つた。 [0087] そこで、本実施の形態においては、黒色系熱可塑性エラストマ一組成物(6 ' )中の ィォゥ(S)含有量としては 20ppm以下、カーボンブラック中のィォゥ(S)含有量として は 0. 4質量%以下に限定した。このように、熱可塑性エラストマ一組成物中、あるい はカーボンブラック中のィォゥ(S)含有量を限定することにより、熱可塑性エラストマ 一組成物から構成された部品表面の白化現象発生を防止することが可能となったの である。熱可塑性エラストマ一組成物中のィォゥ(S)含有量は好ましくは 15ppm以下 であり、より好ましくは lOppm以下である。カーボンブラック中のィォゥ(S)含有量で いえば、好ましくは 0. 3質量%以下あり、より好ましくは 0. 2質量%以下である。
[0088] 黒色系熱可塑性エラストマ一組成物(6,)は、エチレン' aーォレフイン系共重合ゴ ム(1)、 α—才レフイン系結晶性熱可塑性榭脂(2)、 α—才レフイン系非晶質熱可塑 性榭脂 (3)、鉱物油系軟化剤 (4' )を含有する。これらの合計を 100質量%とした場 合、 a一才レフイン系非晶質熱可塑性榭脂 (3)を 1〜20質量%含有することが好まし ぐ 2〜15質量%含有することが更に好ましぐ 3〜10質量%含有することが特に好 ましい。
[0089] 上記 a一才レフイン系非晶質熱可塑性榭脂(3)の配合量が 1質量%未満であると、 加硫ゴムとの射出融着時の接着性が低下する傾向にある。一方、 20質量%を超える と、黒色系熱可塑性エラストマ一組成物(6 ' )の耐熱性や強度が低下する傾向にあり 、また、得られる黒色系熱可塑性エラストマ一組成物(6 ' )の粘着性が過度に大きくな り、上記エチレン' a一才レフイン系共重合ゴム(1)と上記鉱物油系軟化剤 (4' )との 混練を行う場合に分散不良を生じる傾向にある。
[0090] また、エチレン' aーォレフイン系共重合ゴム(1)は 20〜70質量0 /0が好ましぐ更に 好ましくは 25〜66質量%、特に好ましくは 30〜64質量%であり、鉱物油系軟化剤( 4' )は25〜70質量%が好ましぐ更に好ましくは 30〜66質量%、特に好ましくは 35 〜64質量%であり、 a一才レフイン系結晶性熱可塑性榭脂(2)は 1〜35質量%が好 ましぐ更に好ましくは 2〜30質量%、特に好ましくは 3〜25質量%の範囲で各々含 有する。更に、エチレン' a—ォレフイン系共重合ゴム(1)と鉱物油系軟化剤 (4,)と を合計で 80〜95質量%含有することが好ましぐ更に好ましくは 83〜95質量%であ る。 [0091] 上記エチレン' aーォレフイン系共重合ゴム(1)が 20質量0 /0未満であると、得られ る黒色系熱可塑性エラストマ一組成物(6 ' )の柔軟性が低下する傾向にある。一方、 上記エチレン' aーォレフイン系共重合ゴム(1)の配合量が 70質量%を超えると、射 出融着による成形体では耐熱性及び強度が低下する傾向、熱可塑的性質が損なわ れる傾向にあり好ましくない。上記鉱物油系軟化剤 (4' )が 25質量%未満であると、 得られる黒色系熱可塑性エラストマ一組成物(6 ' )の流動性が低下する傾向にある。 一方、上記鉱物油系軟化剤 (4' )が 70質量%を超えると、上記 α—ォレフィン系結 晶性熱可塑性榭脂 (2)及び上記 a—ォレフイン系非晶質熱可塑性榭脂 (3)との混 練時に分散不良を生じる傾向にあり好ましくない。また、上記 α—才レフイン系結晶 性熱可塑性榭脂 (2)が 1質量%未満であると、得られる黒色系熱可塑性エラストマ一 組成物(6 ' )の強度及び耐熱性が低下する傾向にある。一方、上記 α—才レフイン系 結晶性熱可塑性榭脂 (2)が 35質量%を超えると、得られる黒色系熱可塑性エラスト マー組成物(6 ' )の柔軟性が低下し好ましくな!/、。
[0092] 黒色系熱可塑性エラストマ一糸且成物(6,)においては、エチレン' aーォレフイン系 共重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂(2)、 α—才レフイン系非晶 質熱可塑性榭脂 (3)、鉱物油系軟化剤 (4' )の 4成分以外に、上記したように、耐候 剤(9)及び黒色着色剤であるカーボンブラック(10)を含有する。耐候剤 (9)の含有 量は、上記 4成分の合計 100質量部に対し、 5質量部以下が好ましぐ 0. 2質量部以 下がより好ましい。耐候剤(9)の含有量が 5質量部を超える場合には、ゴム弾性が低 下する傾向にあるほか、耐候剤(9)は一般に高価であり含有量は多くすると経済的 でない。
[0093] カーボンブラック(10)の含有量は、上記 4成分の合計 100質量部に対し、 0. 2〜1 0. 0質量部が好ましぐ 0. 3〜1. 5質量部がより好ましい。カーボンブラック(10)の 含有量が 0. 2質量部未満の場合には、耐候性に劣る傾向にあり、一方、 10. 0質量 部を超えると、熱可塑性エラストマ一組成物のゴム弾性や流動性が低下する傾向に ある。
[0094] 耐候剤 (9)としては、ヒンダードアミン系光安定剤 (HALS)が好ましく用いられるが 、そのほか、酸化亜鉛、酸化チタン、ベンゾトリアゾール系紫外線吸収剤、ベンゾフエ ノン系紫外線吸収剤、サリチル酸誘導体、安息香酸誘導体等を HALSと併用しても よい。
[0095] また、本実施形態で用いるカーボンブラック(10)は、上記したようにその中に含ま れるィォゥ(S)含有量が 0. 4質量%以下のものである。このような低ィォゥ含有量の カーボンブラック(10)は、例えば、特開平 10— 195331号公報に記載されるように、 カーボンブラック(10)の原料として用いる芳香族炭化水素、燃料として用いる液体 炭化水素や気体炭化水素として低ィォゥ含有量の物を用い、有機酸を 0. 01N以上 含有する水の存在下で原料カーボンブラックをオゾンにより酸ィ匕するという製造方法 を用いて得ることができる。
[0096] 好ましいカーボンブラック(10)としては、アセチレンブラック、コンダクティブファー ネスブラック、スーパーコンダクティブファーネスブラック、エタストラコンダクティブファ 一ネスブラック、コンダクティブチャンネルブラック、 1500°C程度の高温で熱処理され たファーネスブラック又はチャンネルブラック等を挙げることができる。
[0097] なお、黒色系熱可塑性エラストマ一組成物(6,)において、エチレン' aーォレフィ ン系共重合ゴム(1)の代わりに、鉱物油系軟化剤 (4,)とエチレン' aーォレフイン系 共重合ゴムとを含有する油展ゴム(1, )を用いた場合は、鉱物油系軟化剤 (4,)は、 油展ゴム(1,)中に 30質量0 /0以上、好ましくは 35〜80質量0 /0、より好ましくは 35〜7 0質量%含有される。上記鉱物油系軟化剤 (4' )の含有量が 30質量%未満であると 、黒色系熱可塑性エラストマ一組成物(6' )の製造時に油展ゴム(1 ' )の加工性及び 柔軟性が十分に得られ難い。なお、鉱物油系軟化剤 (4,)は、油展ゴム(1,)としてあ らカじめ含有されている以外に、別個に後添加する後添加鉱物油系軟化剤 (4' ' )と することができる。
[0098] 上記油展ゴム(1, )、上記後添加鉱物油系軟化剤 (4" ) , a一才レフイン系結晶性 熱可塑性榭脂 (2)及び a—ォレフイン系非晶質熱可塑性榭脂 (3)の合計を 100質 量%とした場合に、好ましくは、(1 ' )は 30〜98質量% (より好ましくは 50〜95質量 %、更に好ましくは 60〜95質量%)、(4' ' )は 0〜50質量% (より好ましくは 0〜40質 量%、より好ましくは 10〜35質量%)、(2)は 1〜35質量% (より好ましくは 2〜30質 量%、更に好ましくは 3〜25質量%)、(3)は 1〜20質量% (より好ましくは 2〜15質 量%、更に好ましくは 3〜10質量%)、各々含有される。
[0099] 上記油展ゴム(1 ' )が 30質量%未満であると、得られる黒色系熱可塑性エラストマ 一組成物(6 ' )の柔軟性が低下する傾向にある。一方、上記油展ゴム(1 ' )の含有量 力^ 8質量%を超えると、射出融着による成形体では耐熱性及び強度が低下する傾 向、熱可塑的性質が損なわれる傾向にあり好ましくない。上記後添加鉱物油系軟ィ匕 剤 (4 ' ' )が 50質量%を超えると、 a—ォレフイン系結晶性熱可塑性榭脂(2)及び α 一才レフイン系非晶質熱可塑性榭脂(3)との混練時に分散不良を生じる傾向にあり 好ましくない。
[0100] 上記 oc一才レフイン系結晶性熱可塑性榭脂(2)が 1質量%未満であると、得られる 熱可塑性エラストマ一組成物の強度及び耐熱性が低下する傾向にある。一方、上記 a一才レフイン系結晶性熱可塑性榭脂(2)が 35質量%を超えると、得られる黒色系 熱可塑性エラストマ一組成物(6 ' )の柔軟性が損なわれ好ましくない。上記 α—ォレ フィン系非晶質熱可塑性榭脂 (3)の含有量が 1質量%未満であると、射出融着時の 接着性が低下する傾向にある。一方、 20質量%を超えると、射出融着による成形体 では強度が低下する傾向にあり、また、得られる黒色系熱可塑性エラストマ一組成物 (6 ' )の粘着性が過度に大きくなり、上記油展ゴム(1 ' )と上記後添加鉱物油系軟ィ匕 剤 (4 ' ' )との混練を行う場合に分散不良を生じる傾向にある。
[0101] 上記成形部 (Α)は、射出成形によって形成されるものであり、中実体であってよい し、発泡体であってもよい。上記成形部 (Α)の硬度は、 JIS Κ6253に準じ、上記ォ レフイン系熱可塑性エラストマ一組成物力もなる試験片を用いて測定した場合に、シ ョァ Α硬度が 10〜99の範囲にあることが好ましい。この範囲にあれば、柔軟性に優 れた複合部材として使用することができる。尚、より好ましいショァ A硬度は 12〜97で あり、更に好ましくは 15〜95である。
[0102] 上記成形部 (A)の形状は特に限定されず、線状、板状、筒状等とすることができ、 これらを組み合わせてなる不定形状、あるいは、これらが曲がる等変形したものであ つてもよい。また、貫通孔、凹部、凸部等を有してもよい。本発明においては、特定の 構成材料を用いることから、この成形部 (A)の形状は、曲線状等変形した場合であつ ても好ましい強度を備えることができる。また、この成形部 (A)の大きさも特に限定さ れず、各部分の長さ、厚さ、間隔等も目的、用途等に応じて選択することができる。
[0103] 1 2.第 2成形部
この第 2成形部 (成形部 (B) )は、押出成形又は射出成形により得られ、且つ、架橋 ゴム組成物(7)及び Z又はォレフィン系熱可塑性エラストマ一組成物(8)を含むもの である。尚、本発明において、「架橋ゴム組成物(7)」は、加硫剤を含む架橋剤により 架橋 (又は加硫)されたゴムあるいは架橋構造を有するゴムを含む組成物を意味する
[0104] 上記「架橋 (又は加硫)されたゴムあるいは架橋構造を有するゴム」としては、ェチレ ン 'プロピレン重合体、エチレン 'プロピレン '非共役ジェン重合体、エチレン · 1ーブ テン重合体、エチレン · 1—ブテン'非共役ジェン重合体等のォレフィン系ゴム、ェチ レン 'アタリレートゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、スチレンブタジエンゴム、 -トリルゴム、クロロプレンゴム、アクリルゴム、ウレタンゴム等のゴム成 分の 1種以上が架橋又は加硫された架橋ゴム又は加硫ゴム等が挙げられる。尚、上 記ゴム成分に対して用いられる架橋剤又は加硫剤の種類、使用量、方法等は特に 限定されない。
[0105] 上記架橋ゴム組成物(7)は、 oc一才レフイン系非晶質熱可塑性榭脂を含んでもよ い。この α—才レフイン系非晶質熱可塑性榭脂を含むことにより、第 1成形部及び第 2成形部の接着性が更に向上する。この α—ォレフイン系非晶質熱可塑性榭脂とし ては、上記第 1成形部の形成に用いる組成物に含まれる a—ォレフイン系非晶質熱 可塑性榭脂(3)を適用することができる。尚、上記 α ォレフィン系非晶質熱可塑性 榭脂は、成形部(Β)において、架橋物でも非架橋物でもよい。上記 α ォレフィン系 非晶質熱可塑性榭脂を用いる場合のその含有割合は、上記架橋ゴム組成物に含ま れる重合体成分の全量を 100質量%とした場合、好ましくは 0. 1〜50質量%、より好 ましくは 0. 1〜30質量%である。
[0106] また、上記ォレフィン系熱可塑性エラストマ一組成物(8)としては、単純ブレンド型 ォレフィン系熱可塑性エラストマ一組成物、インプラント型ォレフイン系熱可塑性エラ ストマー組成物、動的架橋型ォレフイン系熱可塑性エラストマ一組成物等が挙げられ る。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。尚、 上記ォレフィン系熱可塑性エラストマ一組成物(8)としては、上記成形部 (A)の形成 に用いられる、ォレフィン系熱可塑性エラストマ一組成物(6)や黒色系熱可塑性エラ ストマー組成物(6, )を使用することができる。
[0107] 上記成形部(B)は、架橋ゴム組成物及びォレフィン系熱可塑性エラストマ一組成物 を組み合わせて含むものであってもよい。上記成形部(B)は、押出成形又は射出成 形によって形成されればよぐ中実体であってよいし、発泡体 (スポンジ等)であっても よい。また、共押出によって、架橋 (加硫)ゴム組成物と架橋 (加硫)ゴム発泡体の共 押出物、ォレフィン系熱可塑性エラストマ一組成物とォレフィン系熱可塑性エラストマ 一組成物発泡体の共押出物等としてもよい。尚、上記成形部 (B)が発泡体を含む場 合は、使用される発泡剤の種類及び使用量、発泡倍率、発泡方法等は特に限定さ れない。
[0108] 上記成形部(B)を発泡体とする場合には、通常、上記成形部(B)を形成するため の原料組成物に発泡剤を配合する。この発泡剤としては、熱分解型発泡剤、揮発型 発泡剤、中空粒子型発泡剤、気体、超臨界流体等が挙げられる。これらは、 1種単独 であるいは 2種以上を組み合わせて用いることができる。尚、上記発泡剤は、通常、 上記原料組成物に含まれる重合体成分の種類、成形部 (B)の製造方法等により選 択することができる。
[0109] 熱分解型発泡剤としては、 N, N,一ジニトロソペンタメチレンテトラミン、 N, N,一ジ メチル N, N,一ジニトロソテレフタルアミド等の-トロソ系発泡剤;ァゾジカルボンァ ミド、ァゾジカルボン酸バリウム等、ノリウムァゾジカルボキシレートのァゾ系発泡剤; p , p ォキシビスベンゼンスルホ-ルヒドラジド、 4, 4' ォキシビス(ベンゼンスルホ- ルヒドラジド)、 p トルエンスルホユリルセミカルバジド等のスルホヒドラジド系発泡剤; トリヒドラジノトリアジン等のトリアジン系発泡剤; 5—フエ-ルテトラゾール、ァゾビステト ラゾールジグァ-ジン、ァゾビステトラゾールァミノグァ-ジン等のテトラゾール系発泡 剤等の無機系発泡剤、炭酸水素ナトリウム等の無機系発泡剤が挙げられる。これら は、 1種単独であるいは 2種以上を組み合わせて用いることができる。上記熱分解型 発泡剤の使用量は、その種類、所望の発泡倍率等に応じて選択すればよいが、上 記成形部(B)を形成するための原料組成物に含まれる重合体成分を 100質量部とし た場合、好ましくは 0. 1〜: LOO質量部である。
[0110] 揮発型発泡剤としては、プロパン、ブタン、ペンタン等の脂肪族炭化水素類;シクロ ブタン、シクロペンタン、シクロへキサン等の脂環式炭化水素類;クロロジフルォロメタ ン、ジフルォロメタン、トリフルォロメタン、トリクロ口フルォロメタン、ジクロロメタン、ジク ロロフノレ才ロメタン、ジクロロジフノレ才ロメタン、トリクロロフノレ才ロメタン、クロロメタン、ク ロロェタン、ジクロロトリフノレオロェタン、ジクロロフノレォロェタン、クロロジフノレォロエタ ン、ジクロロペンタフノレォロェタン、ペンタフノレォロェタン、トリフノレォロェタン、ジクロロ テトラフ口ォロェタン、トリクロ口トリフルォロェタン、テトラクロロジフルォロェタン、クロ 口ペンタフルォロェタン、パーフルォロシクロブタン等のハロゲン化炭化水素類;二酸 化炭素、窒素、空気等の無機ガス;水等が挙げられる。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。上記揮発型発泡剤の使用量は、その 種類、所望の発泡倍率等に応じて選択すればよいが、上記成形部 (B)を形成するた めの原料組成物に含まれる重合体成分を 100質量部とした場合、好ましくは 0. 1〜1 00質量部である。
[0111] 中空粒子型発泡剤とは、熱可塑性榭脂からなる外殻に、膨張剤を内包した熱可塑 性榭脂熱膨張性微小球である。この熱可塑性榭脂としては、(メタ)アクリロニトリル、( メタ)アクリル酸エステル、ハロゲン化ビュル、ハロゲン化ビ-リデン、スチレン等の芳 香族ビニル化合物、酢酸ビュル、ブタジエン、クロ口プレン、ビュルピリジン等から選 ばれる少なくとも 1種力もなる単独重合体又は共重合体とすることができる。尚、この 熱可塑性榭脂は、ジビュルベンゼン、エチレングリコール (メタ)アタリレート、トリェチ レングリコールジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、 1, 3 —ブチレングリコールジ (メタ)アタリレート、ァリル (メタ)アタリレート、トリアクリルホル マール、トリアリルイソシァヌレート等の架橋剤により架橋又は架橋可能にされてもよ い。また、上記中空粒子型発泡剤に含まれる膨張剤としては、上記揮発型発泡剤と して例示した化合物を適用することができる。尚、熱膨張性微小球に占める膨張剤の 割合は、外殻用の熱可塑性榭脂を 100質量%とした場合、好ましくは 5〜30質量% である。
[0112] 上記中空粒子型発泡剤 (未膨張の微小球状態)の重量平均粒子径は、通常、 1〜 100 /z mである。また、中空粒子型発泡剤の使用量は、その種類、所望の発泡倍率 等に応じて選択すればよ!、が、上記成形部(B)を形成するための原料組成物に含ま れる重合体成分を 100質量部とした場合、好ましくは 0. 1〜: L00質量部である。
[0113] また、超臨界流体を用いて発泡体を形成する場合には、窒素、二酸化炭素等の超 臨界流体を用いることができる。これらの超臨界流体は、 1種単独であるいは 2種以 上を組み合わせて用いることができる。これらの超臨界流体の使用量は、その種類、 所望の発泡倍率等に応じて選択すればょ 、。
[0114] これらの発泡剤 (熱分解型発泡剤、揮発型発泡剤、中空粒子型発泡剤及び超臨界 流体)においては、生成される気泡径を調整するために、必要に応じて重炭酸ソーダ 、クェン酸、タルク等の発泡核剤を併用してもよい。この発泡核剤の使用量は、上記 成形部(B)を形成するための原料組成物に含まれる重合体成分を 100質量部とした 場合、通常、 0. 01〜: L0質量部である。
[0115] 上記成形部(B)は、目的、用途等に応じて、上記成形部 (A)の説明において例示 した添加剤等を含んでもょ ヽ。
[0116] 上記成形部 (B)の形状は特に限定されず、上記成形部 (A)と同様に、任意の形状 、各部分の長さ、厚さ、間隔等とすることができる。また、上記成形部 (B)は、所定の 断面形状を有する押出成形品を切断するか、又は所定形状の射出成形品を成形す ることで得ることがでさる。
[0117] 尚、上記成形部 (B)は、その表面及び Z又は内部に補強用部材を備えてもよい。
この補強用部材としては、成形部(B)の構造をより安定ィ匕させられるものであれば、 その構成材料、形状等は特に限定されない。
[0118] 上記補強用部材の構成材料は、上記成形部 (B)の本体を構成する重合体と反応 しない材料、あるいは、水によって反応 (分解、腐食等)を起こさない材料であれば、 有機材料及び無機材料のいずれであってもよい。また、これらを組み合わせて用い てもよい。有機材料としては、高分子材料が好ましい。無機材料としては、金属、合金 、セラミックス等が好ましい。
[0119] 上記補強用部材の形状は、塊状、線状、板状等とすることができ、これらを組み合 わせてなる不定形状、あるいは、これらが曲がる等変形したものであってもよい。また 、上記成形部 (B)の本体との一体ィヒをより確実なものとする等のために貫通孔、凹部 、凸部等を有してもよい。
[0120] 1 3.複合部材
本発明の複合部材は、成形部 (A)と、この成形部 (A)の表面及び Z又は断面の少 なくとも一部に接合された成形部 (B)とを備える。上記成形部 (A)及び (B)は、通常 、平面、曲面、凹凸面等の形状を有する部位において接合されており、その接触部 全体が、完全に接合されていてもよいし、部分的に接合されていてもよい。また、成 形部 (A)及び (B)の 、ずれかが発泡体の場合には、発泡体でな!、側の部材を構成 する材料が、発泡体である側の部材の空隙部に侵入することにより接合される。例え ば、成形部 (B)が発泡体の場合には、成形部 (A)の形成材料であるォレフィン系熱 可塑性エラストマ一組成物(6)が、成形部 (B)の被接合部における孔部に侵入する こと〖こより接合される。
[0121] 尚、上記成形部 (A)は、 α—ォレフイン系非晶質熱可塑性榭脂(3)を含むため、上 記成形部 (Β)に対する接着性に優れる。
[0122] 本発明の複合部材は、上記の優れた接着性を利用し、目的、用途等に応じた形状 とすることができ、下記 [ 1 ]〜 [4]等に示される構造を備えることができる。
[ 1 ] 〔(Α) - (B )〕 m
[ 2 ] (A) - [(B) - (A)〕 m
[ 3 ] (B ) - [(A) 一 (B)〕 m [ 4 ] 「〔(A) — _ (Β )〕"^
(但し、 mは 1以上の整数であり、 nは 2以上の整数である。 )
[0123] 上記構造 [1]、 [2]、 [3]及び [4]は、いずれも、成形部 (A)及び (B)が交互に接合 されている。図 1に、上記構造 [1]において、 m= lである場合の複合部材の例を示 す。即ち、図 1は、直線状の第 1成形部 11が、直線状の第 2成形部 12と接合した複 合部材 1を示している。図 2に、上記構造 [2]において、 m= lである場合の複合部材 の例を示す。即ち、図 2の複合部材 1は、曲線状の第 1成形部 11が、 2つの直線状の 第 2成形部 12の間に位置した態様を示している。また、上記構造 [4]は、成形部 (A) 及び (B)が交互に接合され且つ主鎖が環状(円形、角形、扇形、星形等)構造である ことを意味する。この構造 [4]を備える複合部材としては、上記成形部 (A)及び (B) の各端部が接合された環状構造の複合部材が好ましい。
[0124] 尚、本発明においては、上記 [1]〜[4]に限定されない。即ち、本発明の複合部材 は、上記 [1]〜[4]の組み合わせによるものであってもよぐ例えば、一方の部材の表 面に他方の部材が複数接合された複合部材等とすることができる。上記成形部 (A) を特定の材料力 なるものとすることから、図 2のように、複合部材における直線部分 として成形部(B)を、曲線部分として成形部 (A)を用いることが好ましい。これにより、 複合部材が複雑な形状であっても、成形部 (A)及び (B)のぁ 、だの優れた接着性を 利用した強度を高くすることができる。
[0125] 2.複合部材の製造方法
本発明の複合部材は、上記成形部 (B)を押出成形又は射出成形にて作製し、その 後、射出成形にて成形部 (A)を形成し、その際に両者が接着することによって製造さ れる。
[0126] 本発明の複合部材の製造方法は、架橋性ゴム及び Z又はォレフィン系熱可塑性 エラストマ一を含む組成物 (P1)を、押出成形機又は射出成形機により成形部材 (以 下、「成形部材 (b)」という。)とする工程 (以下、「工程 (1)」という。)と、この成形部材( b)を、その表面及び Z又は断面の少なくとも一部が金型キヤビティに露出するように 設置する工程 (以下、「工程 (11)」という。)と、エチレン' a—ォレフイン系共重合ゴム 、 a一才レフイン系結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及 び軟化剤を含む混合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン 系熱可塑性エラストマ一組成物 (P2)を、射出成形機により上記金型キヤビティに導 入する工程 (以下、「工程 (III)」という。)と、を備える。
[0127] (工程 (1) )
まず、工程 (I)において、架橋性ゴム及び Z又はォレフィン系熱可塑性エラストマ一 を含む組成物(P1)を、スクリュー式、非スクリュー式等の押出成形機、又は射出成形 機を使用して成形し、所定形状の成形部材 (b)を得る。この架橋性ゴムは、架橋剤の 存在下で架橋可能なゴムであり、上記本発明の複合部材の説明において、第 2成形 部の形成材料として例示した重合体成分を用いることができる。ォレフィン系熱可塑 性エラストマ一も同様である。尚、押出成形及び射出成形は、通常、組成物(P1)の 溶融状態にて行う。
[0128] 尚、成形部材 (b)を発泡体とする場合には、押出成形機を使用する場合は、押出 成形機の内部で発泡状態として押し出してもよいし、押出成形機を出て直ちに発泡 させてもよいし、発泡させずに押し出した後、再加熱して発泡させてもよい。また、射 出成形機を使用する場合は、射出成形機内で発泡させることが好ましい。
[0129] 射出成形機を使用して、得られる成形部材を発泡体とする場合には、ォレフィン系 熱可塑性エラストマ一組成物を射出成形機を使用して気体又は超臨界流体により発 泡成形することが好ましい。そして、ォレフィン系熱可塑性エラストマ一組成物を、ェ チレン' a—ォレフイン系共重合ゴム(11) 10〜93質量部、結晶性ポリエチレン系榭 脂(12) 3〜30質量部、両末端が 1, 2—ビュル結合含量 25%以下の共役ジェン重 合体ブロックであり、中間ブロックが 1, 2—ビュル結合含量 25%を超える共役ジェン 重合体ブロックであるブロック共重合体を水素添加してなる水添ブロック共重合体( 1 3) 3〜30質量部、炭素数 3以上の oc—ォレフイン系榭脂(14) 1〜30質量部、〔但し 、(11)、 (12)、 (13)及び(14)の合計量 100質量部〕を含有し、温度 230°C、荷重 1 Okgにおけるメルトフローレートが 5gZlO分以上であり、且つ 210°C、引き取り速度 2 mZ分における溶融張力が 3. Ogf未満であるォレフィン系熱可塑性エラストマ一組 成物(P ' )とすることが好ま 、。
[0130] これにより、独泡性が高ぐセルの形状が均一であり、且つセル径が小さぐ弾性回 復性、柔軟性及び表面外観に優れ、臭気がなぐリサイクルに適し、クッション感に優 れた成形部材 (b)を得ることができる。
[0131] 以下、上記ォレフィン系熱可塑性エラストマ一組成物 (Ρ' )を射出成形機を使用し て気体又は超臨界流体で発泡成形して成形部材を形成する方法について説明する
[0132] (エチレン' ーォレフイン系共重合ゴム(11) )
上記「エチレン' aーォレフイン系共重合ゴム(11)」 [以下、「EAO系共重合ゴム(1 1)」と!、うこともある。 ]は、エチレンと、エチレンを除く炭素数が 3〜10の a—ォレフィ ンを主成分とする共重合体である。
[0133] ここで、炭素数が 3〜10の α ォレフィンとしては、プロピレン、 1—ブテン、 1—ぺ ンテン、 4—メチル一ペンテン一 1、 1—へキセン、 1—ヘプテン、 1—オタテン、 1—デ センなどを挙げることができる。中でも、プロピレン、 1—ブテン、 1—へキセン、 1—ォ クテンが好ましぐプロピレン、 1ーブテンがさらに好ましい。これらの化合物は、 1種 単独で又は 2種以上を組合わせて用いることができる。炭素数が 10以下の a—ォレ フィンを用いると、この aーォレフインとそれ以外の単量体との共重合性が良好となる 。 oc一才レフイン由来の構成単位が EAO系共重合ゴム(11)中に占める構成割合は 、 5〜50モル%であることが好ましぐより好ましくは 10〜45モル0 /0、特に好ましくは 1 5〜40モル0 /0である。 aーォレフイン由来の構成単位の構成割合が 5モル0 /0未満で ある場合には、熱可塑性エラストマ一として必要なゴム弾性を得ることが困難となるこ と力 Sある。一方、 a—ォレフイン由来の構成単位の構成割合が 50モル0 /0を超える場 合には、得られるエラストマ一は耐久性が低いものとなることがある。
[0134] さらには、非共役ジェンが必要に応じて EAO系共重合ゴム(11)中に、 0〜10モル %含有されてもよい。この非共役ジェンの構成割合が 10モル%を超える場合には、 得られるエラストマ一は耐久性が低いものとなることがある。非共役ジェンの具体例と しては、 1, 4一へキサジェン、 1, 6 へキサジェン、 1, 5 へキサジェンなどの直鎖 の非環状ジェン、 5—メチルー 1, 4 へキサジェン、 3, 7 ジメチルー 1, 6—ォクタ ジェン、 5, 7 ジメチルォクタ 1, 6 ジェン、 3, 7 ジメチルー 1 , 7—ォクタジェ ン、 7 メチルオタター 1, 6 ジェン、ジヒドロミルセンなどの分岐連鎖の非環状ジェ ン、テトラヒドロインデン、メチルテトラヒドロインデン、ジシクロペンタジェン、ビシクロ [ 2. 2. 1]—ヘプター 2, 5 ジェン、 5—メチレン一 2 ノルボルネン、 5 ェチリデン —2 ノルボルネン、 5 プロべ-ルー 2 ノルボルネン、 5—イソプロピリデン— 2— ノルボルネン、 5 シクロへキシリデン— 2 ノルボルネン、 5 ビュル— 2 ノルボル ネンなどの脂環式ジェンなどを挙げることができる。これらの化合物は、 1種単独で又 は 2種以上を組み合わせて用いることができる。また、上記の非共役ジェンのうち好 ましいものとしては、 1, 4一へキサジェン、ジシクロペンタジェン、 5 ェチリデンー2 -ノルボルネンなどを挙げることができる。
[0135] これらの EAO系共重合ゴム(11)のデカリン溶媒中 135°Cで測定した場合の極限 粘度 [ 7? ]が 3. 5dlZg以上 (好ましくは 4. OdlZg以上、より好ましくは 4. 3dlZg以上 )である。この極限粘度が 3. 5dlZg未満であると熱可塑性エラストマ一組成物のゴム 弾性が低下する傾向にあり、一方、 6. 8dlZgを超えると成形加工性が低下する傾向 にあり好ましくない。
[0136] 本発明においては、 EAO系共重合ゴム(11)として、上記二元共重合体及び上記 三元共重合体等のほか、これらの重合体の有する水素原子の一部が塩素原子、臭 素原子等のハロゲン原子に置換されているハロゲン化共重合体や、塩化ビニル、酢 酸ビニル、(メタ)アクリル酸、(メタ)アクリル酸の誘導体〔(メタ)アクリル酸メチル、(メタ )アクリル酸グリシジル、(メタ)アクリルアミド等〕、マレイン酸、マレイン酸の誘導体 (無 水マレイン酸、マレイミド、マレイン酸ジメチル等)、共役ジェン(ブタジエン、イソプレ ン、クロ口プレン等)等の不飽和モノマーを上記二元共重合体、上記三元共重合体 及びハロゲンィ匕共重合体等に対してグラフト重合したグラフト共重合体等を用いるこ ともできる。これらの共重合ゴムは 1種単独であるいは 2種以上を併用することができ る。
[0137] なお、 EAO系共重合ゴム(11)は、非油展エチレン' aーォレフイン系共重合ゴム( 11— 1)であってもよいし、油展エチレン' a—ォレフイン系共重合ゴム(11— 2)であ つてもよい。、非油展エチレン · α—ォレフィン系共重合ゴム(11 1)は、鉱物油系 軟化剤(15)が添加されてなる油展エチレン' a—ォレフイン系共重合体(11— 2)中 のエチレン · α—ォレフィン系共重合ゴム(11— 3)としても用いられる。このように、 Ε AO系共重合ゴム(11)として油展エチレン' a ォレフィン系共重合ゴム( 11 2)を 用いた場合には、ォレフィン系熱可塑性エラストマ一組成物(Ρ' )を製造する上で取 り扱いが容易となる。また、油展エチレン' aーォレフイン系共重合体(11 2)にお いて、エチレン · α—ォレフィン系共重合ゴム(11— 3)と鉱物油系軟化剤 ( 15)の配 合割合は、エチレン' a—ォレフイン系共重合ゴム(11— 3)が 20〜80質量0 /0、好ま しくは 25〜75質量0 /0、より好ましくは 30〜70質量0 /0である。但し、油展エチレン' a ーォレフイン系共重合体(11 2)において、エチレン' aーォレフイン系共重合ゴム( 11 - 3)と鉱物油系軟化剤(15)の合計は 100質量%である。
[0138] 上記 EAO系共重合ゴム(11)は、例えば、チーグラー ·ナッタ触媒と、可溶性バナ ジゥム化合物と、有機アルミニウム化合物とを含む溶媒からなる触媒の存在下で、ェ チレン、 a—ォレフイン及び非共役ジェンを、必要に応じて分子量調節剤として水素 を供給しつつ重合する方法等の、中 ·低圧法による重合方法により得ることができる。 また、その重合は気相法 (流動床又は攪拌床)、液相法 (スラリー法又は溶液法)によ つて行うことができる。
[0139] 上記可溶性バナジウム化合物としては、例えば、 VOC1及び VC1の少なくとも一方
3 4
とアルコールとの反応生成物を用いることが好ましい。アルコールとしては、メタノー ル、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 sec ブタノ一 ル、 tーブタノール、 n—へキサノール、 n—ォクタノール、 2—ェチルへキサノール、 n ーデカノール及び n ドデカノール等を用いることができる力 これらのうち、炭素数 3 〜8のアルコールが好ましく用いられる。
[0140] また、上記有機アルミニウム化合物としては、例えば、トリェチルアルミニウム、トリイ ソブチルアルミニウム、トリー n—へキシルアルミニウム、ジェチルアルミニウムモノクロ リド、ジイソブチルアルミニウムモノクロリド、ェチルアルミニウムセスキク口リド、ブチル アルミニウムセスキク口リド、ェチルアルミニウムジクロリド、ブチルアルミニウムジクロリ ド、トリメチルアルミニウムと水との反応生成物であるメチルアルミノキサン等が挙げら れる。これらのうち、特にェチルアルミニウムセスキク口リド、ブチルアルミニウムセスキ クロリド、ェチルアルミニウムセスキク口リドとトリイソブチルアルミニウムとの混合物、トリ イソブチルアルミニウムとブチルアルミニウムセスキクロリドとの混合物が好ましく用い られる。更に、上記溶媒としては、炭化水素が好ましく用いられ、これらのうち、特に n ペンタン、 n—へキサン、 n—ヘプタン、 n—オクタン、イソオクタン、シクロへキサン が好ましく用いられる。これらは 1種単独であるいは 2種以上を併用することができる。
[0141] なお、非油展エチレン' aーォレフイン系共重合ゴム(11 1)および油展エチレン' aーォレフイン系共重合ゴム(11 2)の形態としては、ベール、クラム、ペレット、粉 体 (ベール粉砕品を含む)のいずれの形態であってもよい。また、非油展エチレン' a ォレフィン系共重合体(11— 1)と油展エチレン' a ォレフィン系共重合ゴム( 11 —2)とを併用してもよい。
[0142] (結晶性ポリエチレン系榭脂(12) )
上記「結晶性ポリエチレン系榭脂(12)」は、エチレンを主たる単量体としてなり、ェ チレン単位の含有量は 90〜 100モル0 /0である。また、この結晶性ポリエチレン系榭 脂(12)を沸騰 n—へキサンに溶解させた場合に、不溶分が好ましくは 10質量%以 上、特に好ましくは 20質量%以上 (通常、 95質量%以下)である。不溶分が 10質量 %未満であると、得られる熱可塑性エラストマ一組成物の加工性及び発泡成形品の 機械的強度等が低下することがある。尚、結晶性ポリエチレン系榭脂(12)の、差動 走査熱量計による融解ピークは 100°C以上であることが好ましい。
[0143] この結晶性ポリエチレン系榭脂(12)としては、ポリエチレンの他、エチレンと、プロ ピレン、ブテン 1、 4ーメチルーペンテン 1、へキセン 1、オタテン 1等の炭素 数 3〜8の α—才レフインとを共重合させてなり、エチレン単位の含有量が 90モル0 /0 以上である共重合体等が挙げられる。尚、ポリエチレンとしては、高圧法で製造され た低密度ポリエチレン、及び中低圧法で製造された高密度ポリエチレン、線状低密 度ポリエチレンのいずれも使用することができ、異なる方法により製造された 2種以上 を併用することちできる。
[0144] (水添ブロック共重合体(13) )
水添ブロック共重合体(13)は、両末端が 1, 2 ビュル結合含量 25%以下の共役 ジェン重合体ブロック(以下、 Αブロックともいう)であり、中間ブロックが 1, 2—ビュル 結合含量 25%を超える共役ジェン重合体ブロック(以下、 Bブロックとも 、う)であるブ ロック共重合体を水素添カ卩してなるものである力 Aブロックと Bブロックの合計を 100 質量部とした場合に、 Aブロックが 5〜90質量部、 Bブロックが 10〜95質量部であり 、水素添加前に含まれる共役ジェン部分の二重結合の少なくとも 80%が飽和され、 数平均分子量が 5万〜 70万のものであることが好ましい。
[0145] 上記の好ましい水添ブロック共重合体(13)は、両末端に Aブロックを備え、 2つの Aブロックの間に Bブロックを備える共重合体 (A—B— A型ブロック共重合体)を水素 添加することにより得られるブロック共重合体である。すなわち、 Aブロックおよび ブ ロックの各ブロックは水素添加前のブロックである。水添ブロック共重合体(13)中の Aブロックおよび Bブロックの合計を 100質量%とした場合の各ブロックの含有量は、 Aブロックが 5〜90質量% (より好ましくは 10〜80質量%)であることが好ましい。 Aブ ロックが 5質量%未満(Bブロックが 95質量%を超える)であると、マトリックスとなる EA O系共重合ゴム(11)に対して相対的に十分な結晶性を呈し難ぐ 3次元網目構造を 形成し難くなる。一方、 90質量%(Bブロックが 10質量%未満)を超えると、過度に硬 度が上昇し好ましくない。
[0146] 上記 Aブロックは、ブタジエンを主成分 (Aブロック全体の 90質量%以上、好ましく は 95質量%以上)とする 1, 3 ブタジエン重合体ブロックである。また、 Aブロックの 1, 2 ビュル結合含有量は 25%未満 (より好ましくは 20%以下、さらに好ましくは 15 %以下)であることが好ましい。 Aブロックの 1, 2 ビュル結合含有量が 25%以上で あると、水素添加後の結晶の融点の降下が著しぐ機械的強度が低下し易い。この A ブロックの数平均分子量は、 25, 000〜630, 000 (より好ましくは 100, 000〜480 , 000)であることが好ましい。共役ジェン系ブロック共重合体(C)中においては、 A ブロックは水素添加されて、低密度ポリエチレンに類似の構造を示す。
[0147] 上記 Bブロックは、共役ジェンィ匕合物を主成分 (Bブロック全体の 50質量%以上、 好ましくは 60質量%以上)とする共役ジェン重合体ブロックである。この共役ジェン 化合物としては、 1, 3 ブタジエン、イソプレン、 2, 3 ジメチルー 1, 3 ブタジエン 、 1, 3 ペンタジェン、 2—メチルー 1, 3 ペンタジェン、 1, 3 へキサジェン、 4, 5 ジェチルー 1, 3—ォクタジェン、 3 ブチルー 1, 3—ォクタジェン、クロ口プレンな どが挙げられる。中でも、 1, 3 ブタジエン、イソプレン、 1, 3 ペンタジェンを使用 することが好ましぐ 1, 3 ブタジエンを使用することが特に好ましい。 Bブロックは、 これらの 2種以上から構成されて 、てもよ 、。
[0148] また、 Bブロックの 1, 2 ビュル結合含有量は、 25%を超え(より好ましくは 30〜95 %、さらに好ましくは 35〜90%)であることが好ましい。 25%以下では榭脂状の性状 となり柔軟性が低下し易い。さらに、 Bブロックに含有される 1, 2—ビニル結合含有量 は、 Aブロックの 1, 2—ビュル結合含有量を超える。 1, 2—ビュル結合含有量が Aブ ロックを下回ると、本発明に用いられる熱可塑性エラストマ一組成物の柔軟性が低下 し易い。この Bブロックの GPCによるポリスチレン換算の数平均分子量は、 5, 000〜 650, 000であること力 S好ましく、より好ましくは 20, 000〜540, 000である。
[0149] さらに、 Bブロック中にビニル芳香族重合体ブロックを含有する場合、ビニル芳香族 重合体ブロックの含有量は、 Bブロック全体を 100質量%とした場合に、 35質量%以 下 (より好ましくは 30質量%以下、さらに好ましくは 25質量%以下)であることが好ま L 、。ビニル芳香族重合体ブロックを含有させることによりガラス転移温度が上昇し、 低温特性および柔軟性が低下し易い。この Bブロックは、水素添カ卩によりゴム状のェ チレン ·ブテン 1共重合体ブロックあるいはビュル芳香族化合物 ·エチレン ·ブテン 1共重合体と類似の構造を示す重合体ブロックとなる。
[0150] ビュル芳香族化合物としては、スチレン、 tert ブチルスチレン、 α—メチルスチレ ン、 ρ—メチルスチレン、 ρ ェチルスチレン、ジビニルベンゼン、 1, 1—ジフエニルス チレン、ビニルナフタレン、ビニルアントラセン、 Ν, Ν ジェチルー ρ—アミノエチルス チレン、ビュルピリジン等が挙げられる。この中で、スチレンが好ましい。
[0151] また、水素添加後に得られる水添ブロック共重合体(13)に含まれる二重結合は、 水素添加前の全ての二重結合の少なくとも 80% (より好ましくは 90%、さらに好ましく は 95〜100%)が飽和されていることが好ましい。 80%未満では熱安定性および耐 久性が低下し易 、。水添ブロック共重合体( 13)の GPCによるポリスチレン換算の数 平均分子量は、 50, 000〜700, 000 (より好まし <は 100, 000〜600, 000)である ことが好ましい。 50, 000未満では耐熱性、強度、流動性およびカ卩ェ性が低下し易く 、一方、 700, 000を超えると流動性、加工性および柔軟性が低下し易い。
[0152] 水添ブロック共重合体(13)は、例えば、ペンタン、へキサン、ヘプタン、オクタン等 の脂肪族炭化水素溶媒、シクロペンタン、メチルシクロペンタン、シクロへキサン、メチ ルシクロへキサン等の脂環族炭化水素溶媒、又はベンゼン、キシレン、トルエン、ェ チルベンゼン等の芳香族炭化水素溶媒等の不活性有機溶媒中、ビニル芳香族化合 物と共役ジェンィ匕合物、又はビュル芳香族化合物と共役ジェンィ匕合物とこれらと共 重合可能な他の単量体を、有機アルカリ金属化合物を重合開始剤としてリビングァ 二オン重合することにより得ることができ、このブロック共重合体 (以下「水添前重合体
」ともいう)を水素添加することにより、本発明の発泡成形品の成形方法に使用する水 添ジェン系共重合体を容易に得ることができる。 [0153] 重合開始剤である有機アルカリ金属化合物としては、有機リチウム化合物、有機ナ トリウム化合物等が挙げられ、特に n—ブチルリチウム、 sec—ブチルリチウム、 tert- ブチルリチウム等の有機リチウム化合物が好ま 、。有機アルカリ金属化合物の使用 量については特に限定はなぐ必要に応じて種々の量を使用できる力 通常はモノ マー 100質量%当たり 0. 02〜15質量%の量で、好ましくは 0. 03〜5質量%の量で 用いられる。
[0154] また、重合温度は、一般に— 10〜150°C、好ましくは 0〜120°Cである。更に、重 合系の雰囲気は窒素等の不活性ガスをもって置換することが望ましい。重合圧力は 、上記重合範囲でモノマー及び溶媒を液相に維持するに十分な圧力の範囲で行え ばよぐ特に限定されるものではない。
[0155] また、ビニル芳香族化合物及び共役ジェン化合物を含有する共重合ブロックを重 合する過程にぉ 、て、それら化合物の単量体を重合系に投入する方法としては特に 限定されず、一括、連続的、間欠的、又はこれらを組み合わせた方法が挙げられる。 更には、ビュル芳香族化合物及び共役ジェンィ匕合物を含有する共重合ブロックを重 合させるときの、その他の共重合成分の添加量、極性物質の添加量、重合容器の個 数と種類等、及び上記単量体の投入方法は、得られる水添ジェン系共重合体、その 組成物、該組成物の成形体等の物性が好ましくなるよう選べばょ 、。
[0156] 本実施形態における水添前重合体は、上記の方法でブロック共重合体を得た後、 カップリング剤を使用して共重合体分子鎖力カップリング残基を介した共重合体であ つてもよい。
[0157] 使用されるカップリング剤として、例えばジビュルベンゼン、 1, 2, 4—トリビュルべ ンゼン、エポキシィ匕 1, 2—ポリブタジエン、エポキシィ匕大豆油、エポキシィ匕アマ二油、 ベンゼン— 1, 2, 4—トリイソシアナート、シユウ酸ジェチル、マロン酸ジェチル、アジ ピン酸ジェチル、アジピン酸ジォクチル、フタル酸ジメチル、フタル酸ジェチル、テレ フタル酸ジェチル、炭酸ジェチル、 1, 1, 2, 2—テトラクロ口エタン、 1, 4—ビス(トリク 口ロメチル)ベンゼン、トリクロロシラン、メチルトリクロロシラン、ブチルトリクロロシラン、 テトラクロロシラン、(ジクロロメチノレ)トリクロロシラン、へキサクロロジシラン、テトラエト キシシラン、テトラクロロスズ、 1, 3—ジクロロー 2—プロパノンなどが挙げられる。この 中で、ジビニルベンゼン、エポキシ化 1, 2—ポリブタジエン、トリクロロシラン、メチルト リクロロシラン、テトラクロロシランが好ましい。
[0158] 水添ブロック共重合体(13)は、上記のようにして得られたブロック共重合体を部分 的又は選択的に水添して得られるものである。この水添の方法、反応条件について は特に限定はなぐ通常は、 20〜150°C、 0. 1〜: LOMPaの水素加圧下、水添触媒 の存在下で行われる。
[0159] この場合、水添率は、水添触媒の量、水添反応時の水素圧力、又は反応時間等を 変えることにより任意に選定することができる。水添触媒として通常は、元素周期表 lb 、 IVb、 Vb、 VIb、 VIIb、 VIII族金属のいずれかを含む化合物、例えば、 Ti、 V、 Co 、 Ni、 Zr、 Ru、 Rh、 Pd、 Hf、 Re、 Pt原子を含む化合物を用いることができる。具体 的には、例えば、 Ti、 Zr、 Hf、 Co、 Ni、 Pd、 Pt、 Ru、 Rh、 Re等のメタ口セン系化合 物、 Pd、 Ni、 Pt、 Rh、 Ru等の金属をカーボン、シリカ、アルミナ、ケイソゥ土等の担体 に担持させた担持型不均一系触媒、 Ni、 Co等の金属元素の有機塩又はァセチルァ セトン塩と有機アルミニウム等の還元剤とを組み合わせた均一系チーグラー型触媒、 Ru、 Rh等の有機金属化合物又は錯体、及び水素を吸蔵させたフラーレンやカーボ ンナノチューブ等が挙げられる。この中で、 Ti、 Zr、 Hf、 Co、 Niのいずれかを含むメ タロセン化合物は、不活性有機溶媒中、均一系で水添反応できる点で好ましい。更 に、 Ti、 Zr、 Hfのいずれかを含むメタ口センィ匕合物が好ましい。特にチタノセンィ匕合 物とアルキルリチウムとを反応させた水添触媒は安価で工業的に特に有用な触媒で あるので好ましい。なお、上記水添触媒は 1種のみ用いてもよぐ又は 2種以上を併 用することもできる。水添後は、必要に応じて触媒の残渣を除去し、又はフエノール 系又はアミン系の老化防止剤を添加し、その後、水添ジェン系共重合体溶液から本 発明の水添ジェン系共重合体を単離する。水添ジェン系共重合体の単離は、例え ば、水添ジェン系共重合体溶液にアセトン又はアルコール等を加えて沈殿させる方 法、水添ジェン系共重合体溶液を熱湯中に撹拌下投入し、溶媒を蒸留除去する方 法等により行うことができる。
[0160] なお、水添ブロック共重合体(13)の水素添加前の共役ジェン系ブロック共重合体 は、複数の A— B— A型のブロック共重合体がカップリング剤残基を介して連結され て含有されてもよい。すなわち、 [A— B— A— X] n— (A- B -A)〔ただし、 nは 2〜4 の整数、 Xはカップリング剤残基を示す〕であってもよい。さらに、水素添加前のブロッ ク共重合体は、カップリング剤残基が、 Aブロックおよび Bブロックに対して分子量が 十分に小さぐ共役ジェン系ブロック共重合体 (3)の結晶性に影響しない範囲であれ ば [A— B— X] n— (B-A)〔ただし、 nは 2〜4の整数、 Xはカップリング剤残基を示 す〕であってもよい。すなわち、相対的に小さなカップリング剤残基を略して記載した 場合に、 [A— B] n— Aであってもよい。
[0161] また、水添ブロック共重合体(13)は、官能基で変性された変性ブロック重合体であ つてもよい。この官能基としては、カルボキシル基、酸無水物基、ヒドロキシル基、ェポ キシ基、ハロゲン原子、アミノ基、イソシァネート基、スルホ-ル基およびスルホネート 基の群力 選ばれる少なくとも 1種を使用することができる。変性方法は、公知の方法 を使用することができる。この変性ブロック重合体中の官能基の含有量は、ブロック重 合体を構成する構成単位全体を 100モル%とした場合に、 0. 01〜: LOモル% (より好 ましくは 0. 1〜8モル0 /0、さらに好ましくは 0. 15〜5モル0 /0)であることが好ましい。
[0162] 官能基を導入するために使用できる好ま 、単量体としては、アクリル酸、メタクリル 酸、ィタコン酸、マレイン酸、無水マレイン酸、アクリル酸グリシジル、メタクリル酸ダリ シジル、ァリルグリシジルエーテル、ヒドロキシェチルメタタリレート、ヒドロキシプロピル メタタリレート、ヒドロキシェチルアタリレート、ヒドロキシプロピルアタリレート、メタクリル 酸ジメチルアミノエチルなどを挙げることができる。
[0163] (炭素数 3以上の α—才レフイン系榭脂(14) )
本発明で用いられる炭素数 3以上の α ォレフィン系榭脂(14) (以下、「ォレフイン 系榭脂(14)」ともいう)としては、炭素原子数 3〜20の α ォレフィンの単独重合体 または共重合体が挙げられる。上記ォレフィン系榭脂(14)の具体的な例としては、 以下のような(共)重合体が挙げられる。即ち、プロピレン単独重合体、プロピレンと 2 0モル0 /0以下の他の atーォレフインとのランダム共重合体、プロピレンと 30モル%以 下の他の α—ォレフィンとのブロック共重合体、 1ーブテン単独重合体、 1ーブテンと 10モル0 /0以下の他の α—ォレフインとのランダム共重合体、 4ーメチルー 1 ペンテ ン単独重合体、 4—メチル 1—ペンテンと 20モル0 /0以下の他の α—ォレフインとの ランダム共重合体等である。上記のひ ォレフィンとしては、具体的には、プロピレン
、 1ーブテン、 4ーメチルー 1 ペンテン、 1一へキセン、 1—オタテンなどが挙げられ る。上記のォレフィン榭脂の中でも、プロピレン単独重合体、プロピレンと 20モル%以 下の他の α—ォレフインとのランダム共重合体が特に好ましい。上記のようなォレフィ ン榭脂は、単独で、あるいは組合わせて用いることができる。
[0164] 本発明で用いられる炭素数 3以上の oc一才レフイン系榭脂(14)は、結晶性ォレフ イン榭脂であることが好ましぐ X線法により求めた結晶化度が通常 50%以上、好まし くは 55%以上のものである。また、密度は 0. 89gZcm3以上、特に 0. 90-0. 94g Zcm3とすることが好ま 、。上記結晶性ォレフイン樹脂の示差走査熱量測定法によ る最大ピーク温度、即ち融点(以下、単に「Tm」という)は 100°C以上 (特に 120°C以 上、更には 140〜170°C)であることが好ましい。 Tmが 100°C未満では十分な耐熱 性及び強度が発揮されない傾向にある。この結晶性ォレフイン榭脂としては、ポリプロ ピレン、ポリブテン一 1、ポリ 4ーメチルーペンテン 1、ポリへキセン一 1、プロピレン' エチレン共重合体、プロピレン 'ブテン 1共重合体等が挙げられる。これらは 1種の みを用いてもよいし、 2種以上を併用することもできる。
[0165] ォレフィン系榭脂(14)の分子量は、デカリン溶媒中 135°Cで測定した場合の極限 粘度 [ ]で 0. 3〜: L0dlZg、好ましくは 0. 5〜6dl/gである。また、温度 230°C、荷 重 2. 16kgにおけるメルトフローレート(以下、単に「MFR」という)は好ましくは 0. 1 〜100gZl0分、より好ましくは 0. 5〜80gZl0分である。 MFR (温度 230。C、荷重 2. 16kg)が 0. lg/10分未満ではエラストマ一組成物の混練カ卩ェ性、押出加工性 等が不十分となる傾向にある。一方、 lOOgZlO分を超えると強度が低下する傾向に ある。
[0166] 従って、本発明で用いられるォレフィン系榭脂(14)は、結晶化度が 50%以上、密 度が 0. 89g/cm3以上であり、エチレン単位の含有量が 20モル%以下であり、 Tm 力 S 100°C以上であり、 MFR (温度 230°C、荷重 2. 16kg)が 0. 1〜: LOOgZlO分であ り、融点が 140〜170°Cであるポリプロピレン及び/又はプロピレンと、エチレンとの 共重合体を用いることが特に好まし 、。
[0167] ォレフィン系榭脂(14)として、上記結晶性ォレフイン榭脂以外に、非晶質ォレフィ ン榭脂を使用することもできる。
[0168] 非晶質ォレフィン榭脂としては、ァタクチックポリプロピレン、ァタクチックポリ 1— ブテン等の単独重合体や、プロピレン(50モル0 /0以上含有)と他の (Xーォレフイン( エチレン、 1—ブテン、 1—ペンテン、 1—へキセン、 4—メチル 1—ペンテン、 1—ォ クテン、 1—デセン等)との共重合体、 1—ブテン(50モル%以上含有)と他の α—ォ レフイン(エチレン、プロピレン、 1—ペンテン、 1—へキセン、 4—メチル 1—ペンテ ン、 1—オタテン、 1—デセン等)との共重合体等が挙げられる。
[0169] 非晶質ォレフィン樹脂の 190°Cにおける溶融粘度は 50000cSt以下、好ましくは 1 00〜30000cSt、更【こ好ましく ίま 200〜20000cStである。更【こ、 X線回折¾定【こよ る結晶化度は、 50%未満、好ましくは 30%以下、より好ましくは 20%以下である。密 度は 0. 85〜0. 89g/cm3、より好ましくは 0. 85〜0. 88g/cm3であること力 S好まし い。更に、非晶質ォレフィン榭脂の数平均分子量 Mnは 1000〜20000 (特に 1500 〜 15000)であることが好まし!/、。
[0170] 通常、非晶質ォレフィン榭脂は、結晶性ォレフイン樹脂と併用して用いられる力 い ずれか一方のみを用いてもよ!、。
[0171] ( (11)〜(14)の配合割合)
上記(11)、 (12)、 (13)及び(14)の配合割合は、(11)、 (12)、 (13)及び(14)の 合計量 100質量部に対し、エチレン' αォレフイン系共重合体(11)の配合量は、 10 〜93質量部で、好ましくは 15〜90質量部、より好ましくは 20〜87質量部である。同 様に、結晶性ポリエチレン系榭脂(12)の配合量は 3〜30質量部で、好ましくは 4〜2 8質量部、より好ましくは 5〜25質量部である。水添ブロック共重合体(13)の配合量 は 3〜30質量部で、好ましくは 4〜28質量部、より好ましくは 5〜25質量部である。ォ レフイン系榭脂(14)の配合量は 1〜30質量部で、好ましくは 2〜28質量部、より好ま しくは 3〜25質量部である。各成分の配合割合が上記の範囲外になると、ゴム弾性、 柔軟性、成形加工性、鉱物油系軟化剤添加時にはオイルブリード性が悪化する傾向 にある。
[0172] (鉱物油系軟化剤)
ォレフィン系熱可塑性エラストマ一組成物(Ρ' )には鉱物油系軟化剤を添加しても よい。鉱物油系軟化剤としては、上述したように、一般に、芳香族環、ナフテン環、及 びパラフィン鎖の三者の混合物であって、ノラフィン鎖の炭素数が全炭素数中の 50 %以上を占めるものがパラフィン系オイル、ナフテン環の炭素数が全炭素数中の 30 〜45%のものがナフテン系オイル、芳香族環の炭素数が全炭素数中の 30%以上の ものが芳香族系オイル、とそれぞれ分類されているが、本発明においては、ノ ラフィ ン系のものが好ましぐ特に水添パラフィン系のものが好ましい。また、重量平均分子 量 ίま 300〜2, 000、特に ίま 500〜1, 500の分子量を有するもの、 40。Cの動粘度力 20〜800cSt、特に ίま 50〜600cStであるちの、流動/^、力 40〜0oC、特に ίま 30 〜o°cであるものが好ましい。また、鉱物油系軟化剤としては、好ましくは粘度比重恒 数 (または粘度比重定数という。以下、 V. G. C.と略す。)で 0. 790-0. 999、さら に好ましく ίま V. G. C.力 0. 790〜0. 949、特に好ましく ίま V. G. C.力 0. 790〜0 . 912のものである。
[0173] このような、鉱物油系軟化剤の市販品としては、芳香族系としては、出光興産社製 の、ダイアナプロセスオイル AC— 12、 AC460、 AH— 16、 AH— 58、ェクソンモー ビル社製の、モービルゾール K、同 22、同 130、 日鉱共石社製の、共石プロセス Χ5 0、 Χ100、 Χ140、シェル化学社製の、レゾックス No. 3、デュートレックス 729UK、 新日本石油社製の、コゥモレックス 200、 300、 500、 700、ェクソンモービル社製の 、エツソプロセスオイル 110、同 120、新日本石油社製の、三菱 34ヘビープロセス油 、三菱 44ヘビープロセス油、三菱 38ヘビープロセス油、三菱 39ヘビープロセス油、 富士興産社製フッコール AROMA # 1、 # 3、 # 5などが挙げられる。
[0174] また、ナフテン系としては、出光興産社製の、ダイアナプロセスオイル NS 24、 NS
100、 NM— 26、 NM— 280、 NP— 24、ェクソンモービル社製のナプレックス 38 、富士興産社製の、フッコール FLEX# 1060N、 # 1150N、 # 1400N、 # 2040N 、 # 2050N、 日鉱共石社製の、共石プロセス R25、 R50、 R200、 R1000、シェルィ匕 学社製の、シェルフレックス 371JY、同 371N、同 451、同 N— 40、同 22、同 22R、 同 32R、同 100R、同 100S、同 100SA、同 220RS、同 220S、同 260、同 320R、 同 680、新日本石油社製のコゥモレックス 2号プロセスオイル、ェクソンモービル社製 の、エツソプロセスオイル L 2、同 765、新日本石油社製の三菱 20ライトプロセス油 などが挙げられる。
[0175] さらに、パラフィン系としては、出光興産社製の、ダイアナプロセスオイル PW— 90、 PW100、 PW— 380、 PS— 32、 PS— 90、 PS— 430、富士興産社製の、フッコール プロセス P— 100、 P— 200、 P— 300、 P400、 P— 500、 日鉱共石社製の、共石プロ セス P— 200、 P— 300、 P— 500、共石 EPT750、同 1000、共石プロセス S90、シェ ル化学社製の、ルブレックス 26、同 100、同 460、ェクソンモービル社製の、エツソプ ロセスオイル 815、同 845、同 B— 1、ェクソンモービル社製のナプレックス 32、新日 本石油社製の三菱 10ライトプロセス油などが挙げられる。このうち、パラフィン系は出 光興産社製ダイアナプロセスオイル PW90、 PW100、 PW380が好ましく用いられる
[0176] この鉱物油系軟化剤の配合量は、熱可塑性エラストマ一の混合物〔(11— 1)及び Z又は(11 3)、(12)、(13)と(14)の合計量〕 100質量部に対しては、 0〜400質 量部、好ましくは 0〜350質量部、より好ましくは 0〜300質量部である。熱可塑性ェ ラストマーの混合物〔(11 2)、(12)、(13)と(14)の合計量〕 100質量部に対して は、 0〜300質量部、好ましくは 0〜250質量部、より好ましくは 0〜200質量部である
[0177] 鉱物油系軟化剤は、油展エチレン' a一才レフイン系共重合体(11 2)に含有さ れてもよいし、また、(11)、(12)、(13)及び(14)の動的溶融混練り時に添加しても よく、また、(11)、(12)、(13)及び(14)を動的溶融混練りした後に別途溶融混練り して添加してもよ 後添加)、添加方法は特に限定されない。また、油展エチレン' a —ォレフイン系共重合体(11— 2)に、更に鉱物油系軟化剤を後添加してもよい。
[0178] 本発明に用いるォレフィン系熱可塑性エラストマ一組成物(Ρ' )は、温度 230°C、荷 重 10kgの条件で測定したメルトフローレートが、 5gZlO分以上であり、好ましくは 10 gZlO分以上、特に好ましくは 15gZl0分以上 (通常、 500gZl0分以下)である。メ ルトフローレートが 5gZl0分未満であると、得られる熱可塑性エラストマ一組成物を 射出、充填する際の流動性が不十分となり、特に、流動距離が長い製品では充填不 良が発生する。更に、この熱可塑性エラストマ一は、 210°C、引き取り速度 2mZ分で 測定した溶融張力が 3. Ogf未満であり、好ましくは 0. 1〜2. 9gfであり、更に好ましく は 0. 3〜2. 8gfであり、特に好ましくは 0. 5〜2. 6gfである。溶融張力が 3. Ogf以上 であると、気体又は超臨界流体を使用して発泡させる際に発泡し難くなる。
[0179] また、ォレフィン系熱可塑性エラストマ一組成物(Ρ' )は、その中実成形品の JIS— Α硬度が好ましくは 50〜90、特に好ましくは 55〜80である。この硬度が 50未満であ ると、発泡成形品の表面が過度に柔らかくなり、傷が付き易い。一方、 90を超えると、 柔軟性及び弾性回復性が低下する傾向にある。
[0180] ォレフィン系熱可塑性エラストマ一組成物(Ρ' )は、上記(11)、(12)、(13)、(14) 及び(15)の各成分以外に、造核剤(16)を有してもょ 、。
[0181] 上記「造核剤(16)」としては、炭酸カルシウム、タルク、マイ力、シリカ、チタ-ァ等 の無機化合物の粉末を使用することができる。これらの造核剤を含有させることにより 、セル径を容易に調整することができ、適度な柔軟性等を有する発泡成形品とするこ とができる。造核剤の粒径は特に限定されないが、好ましくは 2〜50 /ζ πι、特に好ま しくは 5〜20 μ mである。この粒径が 2 μ m未満であると、造核剤としての効果が得ら れ難くなり、セル径が大きくなつてしまうため好ましくない。一方、粒径が 50 μ mを超 えると、セルが粗大、且つ少数となり、発泡成形品が柔軟になり過ぎ、クッション性に 劣るものとなるため好ましくない。造核剤の含有量は、本発明に用いるォレフィン系熱 可塑性エラストマ一組成物(Ρ' )に含まれる重合体成分の全量を 100質量部とした場 合に、通常 0〜20質量部、好ましくは 0. 01〜15質量部、更に好ましくは 0. 1〜: L0 質量部である。造核剤(6)は、例えば、ポリプロピレン系榭脂等を用いてマスターバッ チとして成形機に添加することも好ましい。
[0182] 本発明に用いるォレフィン系熱可塑性エラストマ一組成物(Ρ' )は、 ΕΑΟ系共重合 体(11)、結晶性ポリエチレン系榭脂(12)、水添ブロック共重合体(13)、ォレフィン 系榭脂(14)、必要に応じ後添加される鉱物油系軟化剤(15)を所定の温度に調温さ れたバンバリ一ミキサ、加圧-一ダ一等の密閉型混練機、ロールミル、一軸押出機、 二軸押出機、或いは混練押出機等に供給し、混練して、好ましくはペレット形状で熱 可塑性エラストマ一組成物として調製した後、この熱可塑性エラストマ一組成物と造 核剤(16)とを射出成形機に供給し、混練することにより製造することができる。熱可 塑性エラストマ一組成物を調製するための混練温度は、 (12)又は(14)が溶融する 温度であることが好ましぐ通常、 120〜280°Cとすることができる。混練時間は、用 いる装置及び混練温度にもよる力 好ましくは 10秒〜 60分、特に好ましくは 30秒〜 30分である。
[0183] 造核剤(16)は、予め(12)及び Zまたは(14)のォレフイン系榭脂に練り込み、造 核剤含有榭脂とした後、 EAO系共重合体 (11)、結晶性ポリエチレン系榭脂(12)、 水添ブロック共重合体(13)、炭素数 3以上の oc一才レフイン系榭脂(14)に配合する ことが好ましい。このようにすれば、造核剤(16)を、得られるォレフィン系熱可塑性ェ ラストマー組成物(Ρ' )中でより均一に分散させることができる。
[0184] ォレフィン系榭脂としては、主としてエチレン単位からなる榭脂、主としてプロピレン 単位からなる榭脂、エチレン 'プロピレン共重合体等を使用することができる。これら は結晶性であっても、非晶性であってもよぐ結晶性ポリエチレン系榭脂(12)ゃォレ フィン系榭脂(14)として用いる榭脂と同じものであってもよい。更に、ォレフィン系榭 脂は少量であるため、熱可塑性エラストマ一組成物の特定の構造が損なわれること はない。
[0185] 造核剤含有榭脂原料を 100質量%とした場合に、造核剤(16)の含有量は、好まし くは 2〜20質量%、特に好ましくは 5〜15質量%である。このような高濃度の榭脂原 料、所謂、マスターバッチを調製し、これらのマスターバッチを、造核剤が所定量とな るように配合することにより、特に、造核剤の含有量が少量である場合でも、それらを 均一に分散させることができる。
[0186] 本発明に用いるォレフィン系熱可塑性エラストマ一組成物(Ρ' )には、必要に応じて 、各種添加剤(17)、例えば、発泡剤、滑剤、老化防止剤、熱安定剤、 HALS等の耐 光剤、耐候剤、金属不活性剤、紫外線吸収剤、光安定剤、銅害防止剤等の安定剤、 防菌剤、防黴剤、分散剤、可塑剤、難燃剤、粘着付与剤、酸化チタン、カーボンブラ ック及び有機顔料等の着色剤、フェライト等の金属粉末、ガラス繊維、金属繊維等の 無機繊維、炭素繊維、ァラミド繊維等の有機繊維、複合繊維、チタン酸カリウムゥイス カー等の無機ウイスカー、ガラスビーズ、ガラスバルーン、ガラスフレーク、アスベスト、 マイ力、炭酸カルシウム、タルク、シリカ、ケィ酸カルシウム、ハイド口タルサイト、力オリ ン、けい藻土、グラフアイト、軽石、ェボ粉、コットンフロック、コルク粉、硫酸バリウム、 フッ素榭脂、ポリマービーズ、ポリオレフインワックス、セルロースパウダー、ゴム粉、木 粉等の充填剤又はこれらの混合物、イソブチレン'イソプレン共重合体、シリコーンゴ ム等のゴム、エチレン.酢酸ビュル共重合体、 ABS榭脂等の熱可塑性榭脂等を含有 させることがでさる。
[0187] (成形方法)
次に、上記ォレフィン系熱可塑性エラストマ一組成物(Ρ' )を、気体又は超臨界流 体を使用して射出成形機で発泡成形する方法について説明する。
[0188] 超臨界流体としては、不活性ガスである二酸ィ匕炭素や窒素を超臨界状態としたも のを使用することが好ましい。例えば、二酸ィ匕炭素であれば、温度 31°C以上、圧力 7 . 3MPa以上とすることにより、超臨界状態とすることができる。二酸ィ匕炭素は、比較 的低い温度、圧力で超臨界状態となり、また溶融榭脂中への溶解量が多いことにより 、射出成形等を使用した発泡成形に適している。また、気体としては、二酸化炭素、 窒素、空気等を使用することが好ましい。
[0189] 射出発泡成形方法では、上記熱可塑性エラストマ一糸且成物に気体又は超臨界流 体を注入したものを、射出成形機の金型内に形成されたキヤビティ空間に射出し、直 ちに、或いは所定時間が経過した後、可動型、或いは可動型に内設された可動コア を所定の速度で所定位置まて後退させ、キヤビティ空間を拡大することにより発泡さ せる、所謂、コアバック方式の射出成形法によって成形部材を得ることもできる。金型 の温度は、通常、射出される際の熱可塑性エラストマ一組成物の温度より相当に低 いため、キヤビティの表面に接して形成される発泡成形品の表面には、ほとんど発泡 して ヽな 、緻密なスキン層が形成され、その内部が発泡層となる。
[0190] 気体又は超臨界流体をォレフイン系熱可塑性エラストマ一組成物(Ρ' )に注入して 均一に混合すると、見掛け粘度が低下するため、流動性が向上する。更に、気体ま たは超臨界流体は、発泡倍率が高いため、平均セル径をコントロールし易ぐクッショ ン感のコントロール性がよい。また、気体又は超臨界流体を使用することにより、平均 セル径を小さくすることが可能となる。超臨界流体としては、二酸化炭素や窒素を超 臨界状態としたものを使用することが好ましい。
[0191] 通常の気体は、発泡倍率が超臨界流体ほど高くはないが、その分、安価な設備に より発泡成形品を製造することが可能である。気体としては、二酸化炭素や窒素を使 用することができる。
[0192] 本発明の射出発泡成形方法では、可動型の後退速度、或いは可動型に内設して 設けられた可動コアの後退速度、即ち、「型開速度」は 0. 01〜: L OmmZ秒である。 この型開速度は、好ましくは 0. 05-0. 9mmZ秒、更に好ましくは 0. 1〜0. 5mm Z秒である。このような型開速度とすることにより、平均セル径が1〜200 111、特に 3 〜 150 mと微糸田となる。
[0193] 型開速度が 0. OlmmZ秒未満であると、冷却が進んで発泡不足が発生し、表面 に凹凸が生じる。一方、型開速度が 1. OmmZ秒を超えると、セル径が大きくなり、過 度に柔軟になって、クッション性等に優れた成形部材が得られない。また、セル径が 不均一になり、特に、ゲート近傍と末端部のセル径が大きく異なった成形部材となる。
[0194] 更に、射出される熱可塑性エラストマ一組成物の温度は、好ましくは 180〜250°C 、特に好ましくは 190〜220°Cである。この温度が 180°C未満であると、熱可塑性ェ ラストマー組成物の流動性が不十分となり、特に、末端部では充填不良が発生するこ と力 Sある。一方、 250°Cを超えると、熱可塑性エラストマ一組成物の組成によっては熱 劣化等が懸念される。また、金型温度は、好ましくは 20〜70°C、特に好ましくは 30〜 60°Cである。この温度が 20°C未満であると、金型内表面と接触した熱可塑性エラスト マー組成物が急激に冷却され、均質な発泡状態の成形部材とすることができず、末 端部で充填不良が発生することもある。一方、 70°Cを超えると、成形部材のキヤビテ ィの表面に接して形成された部分に均質なスキン層が形成されないことがあり、好ま しくない。
[0195] また、熱可塑性エラストマ一糸且成物を射出してから可動型、或いは可動型に内設さ れた可動コアの後退を開始するまでの時間(金型後退遅延時間)は、型開速度にも よるが、 60秒以下とすることが好ましぐ射出完了後、直ちに後退を開始してもよい。 この金型後退遅延時間は、好ましくは 0. 3〜50秒、特に好ましくは 0. 5〜40秒であ る。金型後退遅延時間が 60秒を超えると、冷却が進んで均質な発泡成形品とするこ とができない場合がある。
[0196] 金型の後退量は所定の発泡倍率により設定すればよぐ限定されないが、特に、車 両用内装材等では、金型内キヤビティ空間に充填された素材の初期肉厚に対して成 形部材の最終肉厚が 1. 1〜10倍となるように金型を後退させる、即ち、型開きするこ とが好ましい。この肉厚の比を発泡倍率とすれば、発泡倍率は、好ましくは 1. 3〜12 倍、更に好ましくは 1. 5〜 15倍である。
[0197] 尚、冷却時間は成形部材の寸法、或いは冷却方法にもよるが、脱型時の成形部材 の温度力 0〜80°C程度にまで低下しておればよぐ一般に 30秒以上であればよぐ 大型の製品であっても 100秒で十分である。
[0198] (工程 (Π) )
上述した工程 (I)の後、工程 (Π)において、上記成形部材 (b)を、その表面及び Z 又は断面の少なくとも一部が金型キヤビティに露出するように、例えば、上記成形部 材 (b)の端部 (被接着部)が金型キヤビティに露出するように設置する。即ち、工程 (II I)において用いられるォレフィン系熱可塑性エラストマ一組成物(P2)との接触面を 金型の内側に露出させる。
[0199] (工程 (III) )
次いで、工程 (III)において、組成物(P2)を、射出成形機により金型キヤビティに 導入する。この工程 (III)によって、組成物(P2)が成形部材 (b)の被接着部の方へ 流れ込み、この組成物 (P2)による成形部材 (以下、「成形部材 (a)」と 、う。)が形成 される。上記組成物(P2)は、エチレン' aーォレフイン系共重合ゴム、 aーォレフイン 系結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を含む 混合物を、架橋剤の存在下で動的に熱処理して得られたものであり、上記本発明の 複合部材を構成する第 1成形部において説明したォレフィン系熱可塑性エラストマ一 組成物をそのまま適用することができる。
[0200] この組成物(P2)のメルトフローレート(以下、「MFR」≥\、う。)は、温度 230°C、荷 重 21Nの JIS K7210に準ずる条件において、好ましくは 0. lgZlO分以上、より好 ましくは 1. OgZlO分以上、更に好ましくは 2. OgZlO分、特に好ましくは 3. Og/1 0分以上である。この MFRが小さすぎると、加工性等が不十分となる場合がある。一 方、大きすぎると、得られる成形部材 (a)の機械的強度が低下する傾向にある。
[0201] 上記組成物(P2)は、特定の重合体を含有し、上記のように流動性に優れるため、 成形部材 (a)の形成後における金型汚染を発生させず、金型を長寿命で用いること ができる。また、上記組成物 (P2)は、再利用が可能であるため、材料をむだなく用い ることがでさる。
[0202] 上記組成物 (P2)を金型キヤビティに導入する方法は特に限定されな!ヽ。導入装置 としては、通常、スクリュー式、プランジャー式等の射出装置が用いられる。また、導 入速度は、通常、射出率で l〜2000cm3Z秒、好ましくは 10〜: LOOOcm3Z秒である 。上記組成物(P2)を金型キヤビティへ導入する際の温度は、好ましくは 150〜300 °Cである。このとき、金型は加熱して用いてもよいし、加熱せずに室温のままで用いて もよい。金型の好ましい温度は、 30〜80°Cの範囲である。尚、金型キヤビティは、得 ようとする複合部材の使用目的、用途等に応じて、その内壁面を平滑性の高いものと したり、文字、模様等が得られるようにしたりすることができる。平滑性の高い内壁面を 有する金型キヤビティを用いた場合には、上記組成物(P2)の流動性が優れるため、 金型転写性も良好であり、高い光沢性を有する成形部材を備えた複合部材を得るこ とがでさる。
[0203] また、上記組成物(P2)を金型キヤビティへ導入する際には、工程 (II)にお ヽて既 に設置されている成形部材 (b)が、予め加熱されていてもよいし、例えば、室温(25 °C)付近の温度であってもよい。好ましくは、上記金型及び上記成形部材 (b)が、い ずれも、低温状態にあることであり、 20〜60°Cの範囲にあることが特に好ましい。尚、 連続して製造する場合には、金型等の温度が下がり切る前に次の重合体組成物を 導入することがあるため、 60°C程度であってもよい。
[0204] 上記組成物(P2)が金型キヤビティへ導入された後、好ましくは 1〜120秒間、より 好ましくは 5〜60秒間冷却することにより、成形部材 (a)及び (b)が接着する。その後 、一体化した複合部材が、金型より取り出される。従って、本発明の複合部材の製造 方法によると、成形部材 (b)の設置、組成物(P2)の金型キヤビティへ導入、及び、組 成物(P2)の冷却をそれぞれ短時間で行うことができる。即ち、 1つの複合部材の製 造時間を好ましくは 7〜180秒間、より好ましくは 10〜120秒間とすることができ、極 めて短時間である。更に、金型を低温状態で用いることができるため、作業時に火傷 等をするおそれがなぐ安全に製造することができる。 [0205] 本発明の複合部材の製造方法においては、図 2に示した複合部材を容易に製造 することができる。即ち、予め、 2つの成形部材 (b)を製造しておき、所定の空間部を 有する金型を用い、 2つの成形部材 (b)の各端部が金型キヤビティに露出するように 設置し、所定の組成物 (P2)を導入することにより、一体化した複合部材を得ることが できる。尚、同様の方法によって、上記本発明の複合部材において説明した構造 [1 ]〜 [4]等を備える複合部材を得ることができる。
[0206] 本発明の複合部材の製造方法において、成形部材 (a)を発泡体とする場合には、 ォレフィン系熱可塑性エラストマ一組成物を気体又は超臨界流体を使用して発泡成 形してもよい。発泡成形する方法としては、上述した、工程 (I)において成形部材 (b) を射出成形機を使用して気体又は超臨界流体により発泡成形する場合と同様の方 法とすることが好ましい。
[0207] 本発明の複合部材は、車両用のウエザーストリップ、シール材、ガスケット、パッキン 等として好適である。ウエザーストリップとしては、ドアウエザーストリップ、トランクゥェ ザ一ストリップ、ラゲージウエザーストリップ、ルーフサイドレールウエザーストリップ、ス ライドドアウエザーストリップ、ベンチレータウヱザ一ストリップ、スライディングループパ ネルウエザーストリップ、フロントウィンドウエザーストリップ、リャウィンドウエザーストリ ップ、クォーターウィンドウエザーストリップ、ロックピラーウエザーストリップ、ドアガラス アウターウエザーストリップ、ドアガラスインナーウェザ一ストリップ等が挙げられる。シ ール材としては、建材用、家電用、産業機械用等に用いることができる。
[0208] 上記ウエザーストリップを、自動車のドアに用いる場合には、図 3のような形態で用 いることができる。即ち、図 3のウエザーストリップ 2は、第 1成形部 l la〜l leと、第 2 成形部 12a〜 12eとをそれぞれ交互に接合した環状構造であり、ドア 3の周縁部の所 定の位置に配設される。
実施例
[0209] 以下、本発明について、実施例を挙げて具体的に説明する。尚、本発明は、これら の実施例に何ら制約されるものではない。また、実施例中の「%」及び「部」は、特に 断らない限り質量基準である。
[0210] 1.第 1成形部形成用組成物 (A)の調製及びその評価 1 - 1.ォレフィン系熱可塑性エラストマ一組成物(A— 1)〜(A—4)の調製 まず、以下に示す、エチレン' aーォレフイン系共重合ゴム 50部、 aーォレフイン系 結晶性熱可塑性榭脂 1を 25部、 a—ォレフイン系非晶質熱可塑性榭脂 3部及び軟 ィ匕剤 22部並びに老化防止剤 0. 1部を混合した。この混合物を、予め 150°Cに加熱 した加圧型-一ダー (容量 10リットル、モリヤマ社製)に投入し、 a—ォレフイン系結 晶性熱可塑性榭脂を溶融させ、更に各成分が均一に分散するまで、 40rpmで 15分 間混練した。その後、溶融状態の組成物を、フィーダ一ルーダー(モリヤマ社製)によ りペレツトイ匕した。次いで、得られたペレットと、下記に示す架橋剤 0. 75部及び架橋 助剤 1を 0. 5部とを、ヘンシェルミキサー (三井鉱山社製)に投入し、 30秒間混合した 後、二軸押出機(同方向完全嚙み合い型スクリュー、スクリューフライト部の長さ Lとス クリュー直径 Dとの比(LZD) = 33. 5、型式「PCM—45」、池貝社製)を用ぃ、シリ ンダー温度 200°C、スクリュー回転数 300rpm、滞留時間 2分の処理条件で動的熱 処理を施しながら押出して、ペレット状のォレフィン系熱可塑性エラストマ一組成物( A— 1)を得た。
[0211] 以下に示す各原料をそれぞれ表 1に示す割合で混合し、それ以外は上記 (A— 1) の場合と同様にして、ペレット状のォレフィン系熱可塑性エラストマ一組成物 (A—2)
〜(A— 4)を得た。
[0212] (1)エチレン' ーォレフイン系共重合ゴム
エチレン'プロピレン' 5 ェチリデン 2 ノルボルネン三元共重合体(エチレン単 位量 66%、プロピレン単位量 29. 5%、 5 ェチリデン— 2 ノルボルネン単位量 4.
5%、極限粘度 1. 5dlZg)を用いた。
[0213] (2)油展ゴム
エチレン'プロピレン' 5 ェチリデン 2 ノルボルネン三元共重合体(エチレン単 位量 66%、プロピレン単位量 29. 5%、 5 ェチリデン— 2 ノルボルネン単位量 4.
5%、極限粘度 4. 7dlZg)と、軟化剤 (パラフィン系鉱物油系軟化剤、商品名「ダイァ ナプロセスオイル PW— 380」、出光興産社製)との混合物 (含有割合; 50%/50%
)を用いた。
[0214] (3) a一才レフイン系結晶性熱可塑性榭脂 1 プロピレン 'エチレンランダム共重合体(商品名「ノバテック PP MA2」、 日本ポリケ ム社製)を用いた。密度は 0. 90gZcm3、 MFR (温度 230°C、荷重 21N)は 16gZl 0分である。
[0215] (4) a一才レフイン系結晶性熱可塑性榭脂 2
プロピレン 'エチレンランダム共重合体(商品名「ノバテック PP FL25R」、 日本ポリ ケム社製)を用いた。密度は 0. 90g/cm3、 MFR (温度 230°C、荷重 21N)は 23g/ 10分である。
[0216] (5) a一才レフイン系非晶質熱可塑性榭脂
プロピレン · 1ーブテン非晶質共重合体(商品名「UBETAC APAO UT2780J
、宇部興産社製)を用いた。プロピレン単位量は 71モル%、溶融粘度は 8, 000cPs (
190。C)、密度は 0. 87gZcm3、 Μηは 6, 500である。
[0217] (6)軟化剤
ノラフィン系鉱物油系軟化剤(商品名「ダイアナプロセスオイル PW— 380」、出光 興産社製)を用いた。
[0218] (7)架橋剤及び架橋助剤
架橋剤として、 2, 5 ジメチルー 2, 5 ジ (t—ブチルパーォキシ)へキサン(商品 名「パーへキサ 25B— 40」、 日本油脂社製)を用いた。また、架橋助剤 1として、ジビ -ルベンゼン (三共ィ匕成社製、純度 56%)を、架橋助剤 2として、 N, N,— m—フエ- レンビスマレイミド (商品名「バルノック PM」、大内新興ィ匕学工業社製)を用いた。
[0219] (8)老化防止剤
テトラキス [メチレン 3— (3, 5—ジ一 tert—ブチル 4—ヒドロキシフエ-ル)プロピ ォネート]メタン(商品名「ィルガノックス 1010」、チバスペシャルティケミカルズ社製) を用いた。
[0220] 1 - 2.未加硫ゴム組成物 (A— 5)の調製
まず、エチレン.プロピレン · 5 ェチリデン 2 ノルボルネン三元共重合体(商品 名「EP96」、 JSR社製) 60部と、エチレン 'プロピレン · 5 ェチリデン— 2 ノルボル ネン三元共重合体 (商品名「EP57C」、 JSR社製) 40部と、カーボンブラック(商品名 「旭 50H— G」、旭カーボン社製) 80部と、パラフィン系鉱物油系軟化剤(商品名「ダ ィアナプロセスオイル PW— 380」、出光興産社製) 52部と、重質炭酸カルシウム(商 品名「スーパー S」、丸尾カルシウム社製) 56部と、活性亜鉛華 (堺ィ匕学工業社製) 5 部と、ステアリン酸 (商品名「ルナック S」、花王社製) 1部と、加工助剤(商品名「ヒタノ ール 1501」、日立化成工業社製) 1部と、離型剤(商品名「ストラタトール WB212」、 シル'アンド'ザイラハー社製) 2部と、可塑剤(ポリエチレングリコール) 1部とからなる 混合物を得た。その後、この混合物を容積 3リットルのバンノリーミキサー (神戸製鋼 所社製)に投入し、 50°C、 70rpm、混練時間 2. 5分の条件で混練した。次いで、こ の混練物に、脱水剤(商品名「ベスタ PP」、井上石灰工業社製) 10部、加硫促進剤 1 (商品名「ノクセラー DM」、大内新興ィ匕学工業社製) 1. 2部、加硫促進剤 2 (商品名「 ノクセラー TT」、大内新興ィ匕学工業社製) 0. 6部、加硫促進剤 3 (商品名「ノクセラー ΕΖ」、大内新興ィ匕学工業社製) 0. 5部、加硫促進剤 4 (商品名「ノクセラー ΡΧ」、大内 新興ィ匕学工業社製) 0. 8部、及び、硫黄 2部を添加し、 6インチオープンロール(関西 ロール社製)を用い、 50°Cで 5分間混練することにより未加硫状態のゴム組成物 (A - 5)力もなるコンパウンドを得た。
[0221] 1 - 3.物性評価
上記で得た第 1成形部形成用のォレフィン系熱可塑性エラストマ一組成物 (A— 1) 〜(A— 4)につ!/、て、下記方法により、メルトフローレート(MFR)、硬度(ショァ A)、 引張破断強度及び引張破断伸度の評価を行った。尚、硬度、引張破断強度及び引 張破断伸度の評価に際しては、各組成物力もなるペレットを、射出成形機 (型式「N — 100」、日本製鋼所製)により、 220°Cで射出成形してシート状 (厚さ 2mm、長さ 12 Omm、幅 120mm)とし、これを評価用試験片とした。また、上記ゴム組成物(A— 5) について、硬度 (ショァ A)、引張破断強度及び引張破断伸度の評価を行った。尚、 硬度、引張破断強度及び引張破断伸度の評価に際しては、未加硫ゴム組成物 (A— 5)からなるコンパゥンドを、加熱プレス機(関西ロール社製)〖こより、 180°Cで 5分間熱 処理してシート状(厚さ 2mm、長さ 120mm、幅 120mm)とし、これを評価用試験片 とした。以上の結果を表 1に示す。
[0222] (a)メルトフローレート(MFR)
JIS K7210に準じ、 230°C、荷重 21Nとして測定した。 (b)硬度 (柔軟性)
JIS K6253に準じて測定した。
(c)引張破断強度及び引張破断伸度
JIS K6251に準じて測定した。
[表 1]
Figure imgf000060_0001
2.第 2成形部形成用組成物 (B)の調製及びその評価
2- 1.未加硫ゴム組成物(B— 1)の調製
エチレン'プロピレン' 5 ェチリデン 2 ノルボルネン三元共重合体(商品名「EP 103A」、 JSR社製) 100部と、カーボンブラック(商品名「シースト 116」、東海カー ボン社製) 145部と、パラフィン系鉱物油系軟化剤(商品名「ダイアナプロセスオイル PW— 380」、出光興産社製) 85部と、活性亜鉛華 (堺ィ匕学工業社製) 5部と、ステア リン酸 (商品名「ルナック S」、花王社製) 1部と、加工助剤(商品名「ヒタノール 1501」 、 日立化成工業社製) 1部と、離型剤(商品名「ストラタトール WB212」、シル 'アンド' ザイラハー社製) 2部と、可塑剤(ポリエチレングリコール) 1部とからなる混合物を得た 。その後、この混合物を容積 3リットルのバンノリーミキサー (神戸製鋼所社製)に投 入し、 50°C、 70rpm、混練時間 2. 5分の条件で混練した。次いで、この混練物に、 脱水剤 (商品名「ベスタ PP」、井上石灰工業社製) 10質量部、上記加硫促進剤 2 (商 品名「ノクセラー TT」)0. 5部、上記加硫促進剤 4 (商品名「ノクセラー ΡΧ」) 1部、カロ 硫促進剤 5 (商品名「ノクセラー M」、大内新興化学工業社製) 1部、加硫促進剤 6 (商 品名「ノクセラー D」、大内新興ィ匕学工業社製) 1部、及び、硫黄 2. 2部を添加し、 6ィ ンチオープンロール(関西ロール社製)を用い、 50°Cで 5分間混練することにより未 加硫状態のゴム組成物(B— 1)力もなるコンパゥンドを得た。
[0225] 2- 2.未加硫ゴム組成物(B— 2)の調製
エチレン'プロピレン' 5 ェチリデン 2 ノルボルネン三元共重合体(商品名「EP 103A」、 JSR社製、 ) 100部と、カーボンブラック(商品名「シースト 116」、東海カー ボン社製) 145部と、パラフィン系鉱物油系軟化剤(商品名「ダイアナプロセスオイル PW— 380」、出光興産社製) 85部と、プロピレン · 1ーブテン非晶質共重合体 (商品 名「UBETAC APAOUT 2780」、宇部興産社製) 10部と、活性亜鉛華 (堺ィ匕学 工業社製) 5部と、ステアリン酸 (商品名「ルナック S」、花王社製) 1部と、加工助剤(商 品名「ヒタノール 1501」、日立化成工業社製) 1部と、離型剤(商品名「ストラタトール WB212」、シル'アンド'ザイラハー社製) 2部と、可塑剤(ポリエチレングリコール) 1 部とからなる混合物を得た。その後、この混合物を容積 3リットルのバンバリ一ミキサ 一 (神戸製鋼所社製)に投入し、 50°C、 70rpm、混練時間 2. 5分の条件で混練した 。次いで、この混練物に、脱水剤(商品名「ベスタ PP」、井上石灰工業社製) 10部、 上記加硫促進剤 2 (商品名「ノクセラー TT」)0. 5部、上記加硫促進剤 4 (商品名「ノク セラー ΡΧ」) 1部、上記加硫促進剤 5 (商品名「ノクセラー Μ」) 1部、上記加硫促進剤 6 (商品名「ノクセラー D」) 1部、及び、硫黄 2. 2部を添カ卩し、 6インチオープンロール (関西ロール社製)を用い、 50°Cで 5分間混練することにより未加硫状態のゴム組成 物(B— 2)力もなるコンパゥンドを得た。
[0226] 2- 3.未加硫ゴム組成物(B— 3)の調製
エチレン'プロピレン' 5 ェチリデン 2 ノルボルネン三元共重合体(商品名「EP 804F」、 JSR社製) 100部と、カーボンブラック(商品名「旭 50H— G」、旭カーボン社 製) 100部と、ノ ラフィン系鉱物油系軟化剤(商品名「ダイアナプロセスオイル PW— 3 80」、出光興産社製) 100部と、重質炭酸カルシウム(商品名「スーパー S」、丸尾力 ルシゥム社製) 50部と、活性亜鉛華 (堺ィ匕学工業社製) 5部と、ステアリン酸 (商品名「 ルナック S」、花王社製) 1部と、加工助剤(商品名「ヒタノール 1501」、 日立化成工業 社製) 1部と、離型剤(商品名「ストラタトール WB212」、シル 'アンド'ザイラハー社製 ) 2部と、可塑剤(ポリエチレングリコール) 1部とからなる混合物を得た。その後、この 混合物を容積 3リットルのバンバリ一ミキサー (神戸製鋼所社製)に投入し、 50°C、 70 rpm、混練時間 2. 5分の条件で混練した。次いで、この混練物に、脱水剤(商品名「 べスタ PP」、井上石灰工業社製) 5部、上記加硫促進剤 5 (商品名「ノクセラー M」) 1. 5部、加硫促進剤 7 (商品名「ノクセラー PZ」、大内新興ィ匕学工業社製) 1. 5部、加硫 促進剤 8 (商品名「バルノック R」、大内新興ィ匕学工業社製) 1部、硫黄 1部、並びに、 発泡剤 1 (商品名「ネオセルボン N # 1000SW」、永和化成工業社製) 2部、及び、発 泡剤 2 (商品名「ビニホール AC # LQ」、永和化成工業社製) 4部を添加して、 6イン チオープンロール(関西ロール社製)を用い、 50°Cで 5分間混練することにより、未カロ 硫状態のゴム組成物(B— 3)力もなるコンパゥンドを得た。
2-4.ォレフィン系熱可塑性エラストマ一組成物(B— 4)の調製
ポリプロピレン (商品名「ノバテック MA4」、 日本ポリケム社製) 25部と、油展ェチレ ン ·プロピレン' 5 ェチリデン 2 ノルボルネン三元共重合体(商品名「T7501EF 」、 JSR社製) 75部と、テトラキス [メチレン 3— (3, 5—ジ一 tert—ブチル 4—ヒドロ キシフエ-ル)プロピオネート]メタン(商品名「ィルガノックス 1010」、チバスペシャル ティケミカルズ社製) 0. 2部とからなる混合物を、予め 150°Cに加熱した加圧型-一 ダー (モリヤマ社製)に投入し、各成分が均一に分散するまで、 40rpmで 15分間混 練した。その後、溶融状態の組成物を、 180°C、 40rpmに設定したフィーダ一ルーダ 一(モリヤマ社製)によりペレツトイ匕した。次いで、得られたペレットと、有機過酸化物( 商品名「パーへキサ 25B— 40」、 日本油脂社製) 1部と、共架橋剤 (ジビュルべンゼ ン、三共化学社製) 1部とを、ヘンシェルミキサーに投入し、 30秒間混合した。その後 、重量式フィーダ一 (型式「KF— C88」、クボタ社製)を用いて、二軸押出機(同方向 非嚙み合い型スクリュー、 LZD (外径 45mm、スクリュー有効長 Lと外径 Dとの比) = 38. 5、型式「PCM— 45」、池貝社製)に吐出量 40kgZhで供給した。この二軸押出 機のシリンダー温度を 200°C、スクリュー回転数を 300rpm、滞留時間を 1分として動 的熱処理を施しながら押出して、ォレフィン系熱可塑性エラストマ一組成物(B—4) を得た。 [0228] 2- 5.ォレフィン系熱可塑性エラストマ一組成物(B— 5)の調製
ポリエチレン (商品名「ノバテック HJ490」、 日本ポリケム社製) 10部と、上記ォレフィ ン系熱可塑性エラストマ一組成物 (A— 2)等の形成に用いた油展ゴム 75部と、パラ フィン系鉱物油系軟化剤(商品名「ダイアナプロセスオイル PW— 380」、出光興産社 製) 15部と、テトラキス [メチレン 3— (3, 5 ジ一 tert—ブチル 4 ヒドロキシフエ- ル)プロピオネート]メタン(商品名「ィルガノックス 1010」、チバスペシャルティケミカ ルズ社製) 0. 2部とからなる混合物を、予め 150°Cに加熱した加圧型-一ダー(モリ ャマ社製)に投入し、各成分が均一に分散するまで、 40rpmで 15分間混練した。そ の後、溶融状態の組成物を、 180°C、 40rpmに設定したフィーダ一ルーダー(モリャ マ社製)によりペレツトイ匕して、単純ブレンド系の非架橋ォレフィン系熱可塑性エラスト マー組成物(B— 5)を得た。
[0229] 2-6.物性評価
上記で得た第 2成形部用の組成物(B— 1)、(B— 2)、(B— 4)及び (B— 5)につい て、上記方法により、メルトフローレート(MFR)、硬度 (ショァ A)、引張破断強度及び 引張破断伸度の評価を行った。また、組成物(B— 3)については、硬度 (ショァ A)の 代わりに、 JIS K6253に準じ、硬度 (ァスカー C)を測定した。尚、組成物(B— 1)及 び (B— 2)の評価に際しては、各未加硫状態のゴム組成物力 なるコンパウンドを、 台付き平板ダイス (幅 30mm、肉厚 2mm)を装着した 40mm押出機 (今中機械工業 社製)を用い、シリンダー温度 70°C、ヘッド温度 80°Cの条件で押出して平板状成形 体(幅 40mm、厚さ 2mm)とした。その後、この成形体を 230°Cに設定した熱風加硫 槽中で 6分間静置して加硫した。この加硫ゴムシートを評価用試験片とした。組成物( B- 3)については、以下の方法で発泡体とした後に評価を行った。即ち、得られたコ ンパウンドを、台付き平板ダイス(幅 30mm、肉厚 2mm)を装着した 40mm押出機( 今中機械工業社製)を用い、ホッパー温度 60°C、シリンダー温度 70°C、ヘッド温度 8 0°Cの条件で押出して平板状成形体 (幅 40mm、厚さ 2mm)とした。その後、この成 形体を 230°Cに設定した熱風加硫槽中で 6分間静置して加硫した。更に、この加硫 ゴムシートを 220°Cに設定した熱風加硫槽中で 5分間加硫発泡させ、比重 0. 5の加 硫ゴムスポンジとし、この加硫ゴムスポンジを評価用試験片とした。また、組成物(B— 4)及び (B— 5)については、得られた各熱可塑性エラストマ一組成物を、台付き平板 ダイス(幅 30mm、肉厚 2mm)を装着した 40mm押出機 (型式「FS— 40」、池貝社製 )を用い、シリンダー温度 210°Cの条件で押出して平板状成形体 (幅 40mm、厚さ 2 mm)とした。この平板状成形体を評価用試験片とした。
以上の結果を表 2に示す。
[0230] [表 2]
Figure imgf000064_0001
[0231] 3.複合部材の製造及び評価
(実施例 1)
上記で得た第 2成形部形成用組成物(B— 1)カゝらなる平板状シート(幅 30mm、長 さ 50mm、厚さ 2mm)を金型キヤビティに設置した後、第 1成形部形成用組成物 (ォ レフイン系熱可塑性エラストマ一組成物 (A— 1) )を、射出成形機 (型式「N— 100」、 日本製鋼所製)により、金型温度 50°C、導入時間 10秒、射出時間 1秒、冷却時間 30 秒、サンプル取り出し時間 10秒の条件で導入することで、上記平板状シートの端面 に接着させ、厚さ 2mm、長さ 120mm、幅 120mmの複合部材を製造した。ォレフィ ン系熱可塑性エラストマ一組成物 (A— 1)を導入してから、完成した複合部材を取り 出すまでの成形時間を測定し、表 3に示した。
[0232] 上記で得た複合部材について、下記評価を行った。その結果を表 3に示す。
(a)接着強度試験
図 4のように接着部が中心になるようにダンベル 1号で打ち抜き、引張速度 500mm Z分の速度で複合部材の接着強度を評価した。
(b)接着部屈曲折り曲げ試験
得られた複合部材における、第 1成形部材及び第 2成形部材の継ぎ目部を起点と して、角度 180° に折り曲げ、 10回往復屈曲させた。このときの接着界面の剥離状 態を目視にて観察し、下記基準で評価した。
〇;剥離なし。
X;剥離して破断に到った。
[0233] (実施例 2〜6並びに比較例 1〜2及び 4)
上記で得た第 1成形部形成用組成物及び第 2成形部形成用組成物を、表 3の組み 合わせに従って用い、実施例 1と同様にして複合部材を製造した。得られた各複合 部材の評価を行い、表 3に併記した。
[0234] (比較例 3)
第 2成形部形成用組成物(B— 1)力もなるシート(幅 30mm、長さ 50mm、厚さ 2m m)を、射出成形機の金型キヤビティに設置した後、第 1成形部形成用組成物 (A— 5 )を、射出成形機 (型式「N— 100」、 日本製鋼所製)により、金型温度 180°C、第 2成 形部材導入時間 10秒、射出時間 3秒、加硫時間 3分間、サンプル取り出し時間 10秒 の条件で導入することで、厚さ 2mm、長さ 120mm、幅 120mmの複合部材を製造し た。評価は上記と同様にして行い、表 3に併記した。
[0235] [表 3]
Figure imgf000066_0001
4.実施例の効果
比較例 1及び 2は、第 1成形部が a—才レフイン系非晶質熱可塑性榭脂を含まない 例であり、屈曲折り曲げにより接着部において剥離した。比較例 3は、第 1及び第 2成 形部が 、ずれも加硫ゴム組成物力 なるものであり、得られた複合部材の接着強度 は十分高ぐ接着部における剥離がな力つたものの、成形時間が 203秒も力かった。 比較例 4は、第 1成形部が加硫ゴム組成物力 なり、第 2成形部がォレフィン系熱可 塑性エラストマ一組成物力 なるものであり、金型内で第 2成形部のォレフィン系熱可 塑性エラストマ一が軟ィ匕変形して複合部材の形状を保持できな力つた。一方、実施 例 1〜6は、いずれも 51秒という短い時間で複合部材を得ることができた。特に実施 例 1〜4は、第 1及び第 2成形部のあいだの接着強度が十分であった。
産業上の利用可能性
本発明の複合部材は、各成形部どうしの接着性に優れるため、車両用のウエザー ストリップ、シール材、ガスケット、パッキン等として好適である。ウエザーストリップとし ては、ドアウエザーストリップ、トランクウエザーストリップ、ラゲージウエザーストリップ、 ノレーフサイドレールウエザーストリップ、スライドドアウエザーストリップ、ベンチレータウ ェザーストリップ、スライディングループパネルウエザーストリップ、フロントウィンドゥエ ザ一ストリップ、リャウィンドウエザーストリップ、クォーターウィンドウエザーストリップ、 ロックピラーウエザーストリップ、ドアガラスアウターウエザーストリップ、ドアガラスイン ナーウェザ一ストリップ等が挙げられる。シール材としては、建材用、家電用、産業機 械用等に用いることができる。

Claims

請求の範囲 [1] エチレン' aーォレフイン系共重合ゴム(1)、 aーォレフイン系結晶性熱可塑性榭 脂 (2)、 a—ォレフイン系非晶質熱可塑性榭脂 (3)及び軟化剤 (4)を含む混合物を 、架橋剤 (5)の存在下で動的に熱処理して得られたォレフィン系熱可塑性エラストマ 一組成物 (6)、を射出成形することにより得られた第 1成形部と、この第 1成形部の表 面及び Z又は断面の少なくとも一部に接合され、押出成形又は射出成形により得ら れ、且つ、架橋ゴム糸且成物(7)及び Z又はォレフィン系熱可塑性エラストマ一糸且成物 (8)を含む第 2成形部とを備えることを特徴とする複合部材。 [2] 上記第 1成形部及び上記第 2成形部をそれぞれ (A)及び (B)とした場合、下記 [1] 〜 [4]から選ばれる構造を備える請求項 1に記載の複合部材。
[ 1 ] ( (A) - ( B)〕 m
[ 2 ] (A) 一 [ (B ) ― (A) ] m
[ 3 ] ( B ) 一 〔(A) - ( B)〕 m [ 4 ] 「〔(A) - (Β)〕^^·
(但し、 mは 1以上の整数であり、 nは 2以上の整数である。 )
[3] 前記 [4]の構造を備える請求項 2に記載の複合部材。
[4] 前記第 1成形部は、曲線状である請求項 1〜3のいずれかに記載の複合部材。
[5] 前記第 1成形部の、 JIS K6253に準ずるショァ A硬度は、 10〜99の範囲にある請 求項 1〜4のいずれかに記載の複合部材。
[6] 前記第 2成形部は、発泡体である請求項 1〜5のいずれかに記載の複合部材。
[7] 前記第 2成形部の形成に用いられる上記架橋ゴム組成物は、 α—ォレフィン系非 晶質熱可塑性榭脂を含む請求項 1〜6のいずれかに記載の複合部材。
[8] 前記第 2成形部は、この第 2成形部の表面及び Ζ又は内部に補強用部材を備える 請求項 1〜7のいずれかに記載の複合部材。
[9] 架橋性ゴム及び Ζ又はォレフィン系熱可塑性エラストマ一を含む組成物(P1)を、 押出成形機又は射出成形機により成形部材とする工程 (工程 (1) )と、この成形部材 を、その表面及び Z又は断面の少なくとも一部が金型キヤビティに露出するように設 置する工程(工程 (Π) )と、エチレン' aーォレフイン系共重合ゴム、 aーォレフイン系 結晶性熱可塑性榭脂、 a一才レフイン系非晶質熱可塑性榭脂及び軟化剤を含む混 合物を、架橋剤の存在下で動的に熱処理して得られたォレフィン系熱可塑性エラスト マー組成物 (P2)を、射出成形機により上記金型キヤビティに導入する工程 (工程 (II 1) )と、を備えることを特徴とする複合部材の製造方法。
[10] 前記ォレフィン系熱可塑性エラストマ一組成物(P2)のメルトフローレートは、温度 2 30°C、荷重 21Nの JIS K7210に準ずる条件において 0. lg/10分以上である請 求項 9に記載の複合部材の製造方法。
[11] 前記第 1成形部及び Z又は前記第 2成形部の形成に用いられる前記ォレフィン系 熱可塑性エラストマ一組成物(6)及び Z又は(8)が、エチレン' aーォレフイン系共 重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂 (2)、 α—才レフイン系非晶質 熱可塑性榭脂 (3)及び鉱物油系軟化剤 (4 ' )を含有し、さらに耐候剤 (9)及びカーボ ンブラック(10)を含有し、ィォゥ(S)含有量が 20ppm以下の黒色系熱可塑性エラス トマ一組成物(6, )である請求項 1〜5の 、ずれかに記載の複合部材。
[12] 前記第 1成形部及び Z又は前記第 2成形部の形成に用いられる前記ォレフィン系 熱可塑性エラストマ一組成物(6)及び Z又は(8)が、エチレン' aーォレフイン系共 重合ゴム(1)、 α—才レフイン系結晶性熱可塑性榭脂 (2)、 α—才レフイン系非晶質 熱可塑性榭脂 (3)及び鉱物油系軟化剤 (4 ' )を含有し、さらに耐候剤 (9)及びカーボ ンブラック(10)を含有し、前記カーボンブラック(10)中のィォゥ(S)含有量が 0. 4質 量%以下の黒色系熱可塑性エラストマ一糸且成物(6 ' )である請求項 1〜5のいずれか に記載の複合部材。
[13] 前記黒色系熱可塑性エラストマ一組成物(6 ' )に含有される、前記エチレン' a ォレフィン系共重合ゴム(1)が 20〜70質量0 /0、前記 α ォレフィン系結晶性熱可塑 性榭脂 (2)が 1〜35質量%、前記 a—ォレフイン系非晶質熱可塑性榭脂 (3)が 1〜 20質量%、前記鉱物油系軟化剤 (4' )が 25〜70質量%〔但し、前記(1)、 (2)、 (3) 及び (4 ' )の各成分の合計が 100質量%〕である請求項 11又は 12に記載の複合部 材。
[14] 前記黒色系熱可塑性エラストマ一糸且成物(6 ' )が、エチレン' aーォレフイン系共重 合ゴム(1)の代わりに、鉱物油系軟化剤とエチレン' aーォレフイン系共重合ゴムとを 含有する油展ゴム(1 ' )を含有する請求項 11又は 12に記載の複合部材。
[15] 前記黒色系熱可塑性エラストマ一組成物(6' )に含有される、前記油展ゴム(1 ' )が 30〜98質量0 /0、 α—ォレフィン系結晶性熱可塑性榭脂(2)が 1〜35質量0 /0、 a— ォレフィン系非晶質熱可塑性榭脂 (3)が 1〜20質量%、後添加鉱物油系軟化剤 (4' ' )が 0〜50質量%〔但し、前記(1 ' )、 (2)、 (3)及び (4' ' )の各成分の合計が 100質 量%〕である請求項 14に記載の複合部材。
[16] 前記工程 (I)及び Z又は前記工程 (III)が、
エチレン' aーォレフイン系共重合ゴム(11) 10〜93質量部、
結晶性ポリエチレン系榭脂(12) 3〜30質量部、
両末端が 1, 2 ビニル結合含量 25%以下の共役ジェン重合体ブロックであり、中 間ブロックが 1, 2 ビュル結合含量 25%を超える共役ジェン重合体ブロックである ブロック共重合体を水素添加してなる水添ブロック共重合体(13) 3〜30質量部、 炭素数 3以上の oc一才レフイン系榭脂(14) 1〜30質量部、
〔但し、(11)、 (12)、 (13)及び(14)の合計量 100質量部〕
を含有し、温度 230°C、荷重 10kgにおけるメルトフローレートが 5gZl0分以上で あり、且つ 210°C、引き取り速度 2mZ分における溶融張力が 3. Ogf未満であるォレ フィン系熱可塑性エラストマ一組成物 (Ρ' )を、射出成形機により気体又は超臨界流 体で発泡成形して成形部材とする工程である請求項 9に記載の複合部材の製造方 法。
[17] 前記エチレン' aーォレフイン系共重合ゴム(11)力 非油展エチレン' aーォレフィ ン系共重合ゴム(11— 1)または油展エチレン' aーォレフイン系共重合ゴム(11— 2 )である請求項 16記載の複合部材の製造方法。
[18] 前記油展エチレン' ーォレフイン系共重合ゴム(11 2)力 エチレン' aーォレフ イン系共重合ゴム(11 3) 20〜80質量%及び鉱物油系軟化剤(15) 80〜20質量 %〔但し、(11— 3) + (15) = 100質量%〕からなる請求項 17記載の複合部材の製造 方法。
[19] 前記ォレフィン系熱可塑性エラストマ一組成物 (Ρ' )が造核剤(16)を更に含有する 請求項 16〜18のいずれかに記載の複合部材の製造方法。
[20] 前記ォレフィン系熱可塑性エラストマ一組成物(Ρ' )に気体又は超臨界流体を注入 したものを金型内キヤビティ空間に射出し、その後、 0. 01〜1. OmmZ秒の型開速 度をもって金型を開くことにより前記キヤビティ空間を拡大して前記ォレフィン系熱可 塑性エラストマ一組成物(Ρ' )を発泡成形して成形部材を得る請求項 16〜19の 、ず れかに記載の複合部材の製造方法。
PCT/JP2005/014231 2004-08-04 2005-08-03 複合部材及びその製造方法 WO2006013902A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004228698A JP2006044077A (ja) 2004-08-04 2004-08-04 複合部材及びその製造方法
JP2004-228698 2004-08-04
JP2004-241293 2004-08-20
JP2004241293A JP2006057016A (ja) 2004-08-20 2004-08-20 黒色系熱可塑性エラストマー組成物
JP2005024277 2005-01-31
JP2005-024277 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006013902A1 true WO2006013902A1 (ja) 2006-02-09

Family

ID=35787183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014231 WO2006013902A1 (ja) 2004-08-04 2005-08-03 複合部材及びその製造方法

Country Status (1)

Country Link
WO (1) WO2006013902A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964886A4 (en) * 2005-12-22 2009-06-10 Jsr Corp MOLDED COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THEREOF
CN111362681A (zh) * 2019-12-11 2020-07-03 横店集团东磁股份有限公司 一种高性能注射成型后烧结的永磁铁氧体磁体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269259A (ja) * 1995-03-31 1996-10-15 Japan Synthetic Rubber Co Ltd 射出融着性に優れた熱可塑性エラストマー組成物
JPH0931270A (ja) * 1995-07-19 1997-02-04 Japan Synthetic Rubber Co Ltd 射出融着性に優れた熱可塑性エラストマー組成物
WO2001081462A1 (fr) * 2000-04-21 2001-11-01 Jsr Corporation Composition elastomere thermoplastique
JP2002201320A (ja) * 2000-12-28 2002-07-19 Jsr Corp 熱可塑性エラストマー組成物及びその製造方法
JP2003171511A (ja) * 2001-12-04 2003-06-20 Jsr Corp 熱融着用熱可塑性エラストマー組成物および成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269259A (ja) * 1995-03-31 1996-10-15 Japan Synthetic Rubber Co Ltd 射出融着性に優れた熱可塑性エラストマー組成物
JPH0931270A (ja) * 1995-07-19 1997-02-04 Japan Synthetic Rubber Co Ltd 射出融着性に優れた熱可塑性エラストマー組成物
WO2001081462A1 (fr) * 2000-04-21 2001-11-01 Jsr Corporation Composition elastomere thermoplastique
JP2002201320A (ja) * 2000-12-28 2002-07-19 Jsr Corp 熱可塑性エラストマー組成物及びその製造方法
JP2003171511A (ja) * 2001-12-04 2003-06-20 Jsr Corp 熱融着用熱可塑性エラストマー組成物および成形品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964886A4 (en) * 2005-12-22 2009-06-10 Jsr Corp MOLDED COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THEREOF
CN111362681A (zh) * 2019-12-11 2020-07-03 横店集团东磁股份有限公司 一种高性能注射成型后烧结的永磁铁氧体磁体及其制备方法

Similar Documents

Publication Publication Date Title
WO2006080491A1 (ja) 発泡成形品の成形方法及び発泡成形品
EP1964886A1 (en) Molded composite material and process for production thereof
JP4940660B2 (ja) 熱可塑性エラストマー組成物、成形品、及び低硬度シール材
JP3693017B2 (ja) 熱可塑性エラストマー組成物
JPWO2005066264A1 (ja) 熱可塑性エラストマー組成物及びその成形品
JP2005506403A (ja) 熱可塑性エラストマー組成物
WO2007000191A1 (en) High melt strength thermoplastic elastomer composition
WO2005047375A1 (ja) 熱可塑性エラストマー組成物成形品およびその製造方法
JP2005509061A (ja) 高い溶融強度の熱可塑性エラストマー及びその製造方法
JP2014193969A (ja) 熱可塑性エラストマー組成物
JP2009235309A (ja) 熱可塑性エラストマー組成物及び成形部材
CN113853403B (zh) 用热塑性硫化橡胶组合物形成的汽车挡风雨密封件
JP2010126577A (ja) 発泡成形品の成形方法及び発泡成形品
JP2002201313A (ja) 熱可塑性エラストマー組成物及びその製造方法
WO2006013902A1 (ja) 複合部材及びその製造方法
JPWO2007024025A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2006044077A (ja) 複合部材及びその製造方法
JP2007231181A (ja) 発泡性オレフィン系重合体組成物
JP5088330B2 (ja) 熱可塑性エラストマー組成物、並びにこれを用いた発泡体及びその製造方法
JP3605893B2 (ja) 射出融着性に優れた熱可塑性エラストマー組成物
JP6472205B2 (ja) 低フォギング性熱可塑性エラストマー組成物及びその成形体
KR20070017123A (ko) 열가소성 엘라스토머 조성물, 성형품 및 저 경도 밀봉재
JP2009235245A (ja) 熱可塑性エラストマー組成物及び成形部材
JP2007062255A (ja) 非互着性ゴム組成物ペレット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase