WO2007072737A1 - 反射フィルム - Google Patents

反射フィルム Download PDF

Info

Publication number
WO2007072737A1
WO2007072737A1 PCT/JP2006/324967 JP2006324967W WO2007072737A1 WO 2007072737 A1 WO2007072737 A1 WO 2007072737A1 JP 2006324967 W JP2006324967 W JP 2006324967W WO 2007072737 A1 WO2007072737 A1 WO 2007072737A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
reflective film
fine powder
resin
film
Prior art date
Application number
PCT/JP2006/324967
Other languages
English (en)
French (fr)
Inventor
Miki Nishida
Takashi Hiruma
Kazunari Katsuhara
Takayuki Watanabe
Jun Takagi
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to JP2007533301A priority Critical patent/JP4041160B2/ja
Priority to EP20060834721 priority patent/EP1964669B1/en
Priority to US12/158,829 priority patent/US20100279091A1/en
Priority to CN2006800486742A priority patent/CN101346227B/zh
Publication of WO2007072737A1 publication Critical patent/WO2007072737A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0841Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the present invention relates to a reflection film used for a reflection plate of a liquid crystal display device, a lighting fixture, a lighting signboard, and the like.
  • reflectors have been used in many fields such as liquid crystal display devices, projection screens, planar light source members, lighting fixtures, and lighting signs.
  • the size of the device and the advancement of display performance have progressed, and in order to improve the performance of the backlight unit by supplying as much light as possible to the liquid crystal, a reflector, especially a reflector, is used. Further reflection performance is required for the reflection film to be formed.
  • a thin reflective film for example, a reflective film in which a metal thin film such as silver is vapor-deposited on a polyethylene terephthalate (hereinafter sometimes referred to as "PET") film containing a white pigment (for example, a patent)
  • PET polyethylene terephthalate
  • the reflective film is deteriorated and yellowed due to ultraviolet rays that also generate light source power such as liquid crystal display devices, the reflectance of the reflective film gradually decreases! / Have a problem.
  • an ultraviolet absorber is kneaded in order to improve the light resistance of the film.
  • a film in which a metal thin film such as silver is vapor-deposited on an embedded film or a film provided with a UV-stable resin layer has been proposed (see Patent Document 4).
  • Patent Document 4 A film in which a metal thin film such as silver is vapor-deposited on an embedded film or a film provided with a UV-stable resin layer has been proposed (see Patent Document 4).
  • Patent Document 4 A film in which a metal thin film such as silver is vapor-deposited on an embedded film or a film provided with a UV-stable resin layer.
  • Patent Document 5 discloses a reflective film in which A layers and B layers made of polyester resin and barium sulfate are alternately laminated, A reflective film in which the amount of contained particles is 10% or less is disclosed.
  • the configuration disclosed here there is a problem that the brightness of the liquid crystal screen with low reflection performance is insufficient.
  • a white sheet formed by adding a fine powder filler to a polyolefin resin.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-138150
  • Patent Document 2 JP-A-4-239540
  • Patent Document 3 Japanese Patent Laid-Open No. 10-193494
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-122717
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-330727
  • Patent Document 6 Japanese Patent No. 3617535
  • Patent Document 7 Japanese Patent No. 3755905
  • An object of the present invention is to provide an excellent reflective film that has excellent reflection performance and can exhibit excellent luminance when incorporated in a liquid crystal display device or the like. Means for solving the problem
  • the reflective film of the present invention includes an aliphatic polyester-based resin or polyolefin-based resin, and a resin composition A containing a fine powder filler.
  • a resin composition comprising a layer A having a fine powder filler content of 10 to 80% by mass, and containing an aliphatic polyester-based resin or coconut polyolefin resin, and a fine powder filler
  • a reflective film comprising B, wherein the content ratio of the fine powder filler in the greave composition B is greater than 0.1% by mass and less than 5% by mass as the outermost layer on the reflective use surface side.
  • the glossiness at 60 ° on the reflective surface is 50 to 90.
  • the reflective film of the present invention has excellent light reflection performance, can exhibit excellent luminance when incorporated in a liquid crystal display device or the like, and has a low decrease in reflectance due to ultraviolet absorption. Excellent anti-change properties. Therefore, the reflective film of the present invention is formed by, for example, attaching a metal plate to a resin plate to form a reflective plate used for liquid crystal display devices, lighting fixtures, lighting signs, etc. It is possible to provide a reflector that is well-balanced with respect to the characteristics.
  • a “film” is a thin flat product whose thickness is extremely small compared to the length and width and whose maximum thickness is arbitrarily limited, and is usually in the form of a roll. This refers to what is supplied (Japanese Industrial Standard JISK6900).
  • the term “sheet” generally refers to a product that is thin as defined by JIS, but generally has a thickness that is small for its length and width.
  • the boundary between the sheet and the film is not clear, it is not necessary to distinguish both in terms of the wording. Therefore, in the present invention, even when the term “film” is used, the term “sheet” is included, But “film” is included.
  • main component in the present invention includes the meaning of allowing other components to be contained within a range that does not hinder the function of the main component unless otherwise specified.
  • the content ratio of the main component is not particularly specified, but the main component (when two or more components are main components, the total amount thereof) is preferably 50% by mass or more in the composition. In general, it accounts for 70% by mass or more, particularly preferably 90% by mass or more (including 100%).
  • the reflective film according to the present embodiment (hereinafter referred to as "the present reflective film” t ⁇ ⁇ ) is an aliphatic resin containing an aliphatic polyester-based resin or a polyolefin-based resin, and a fine powder filler.
  • the composition A also has a force, and comprises a layer A in which the content of the fine powder filler in the resin composition A is 10 to 80% by mass, an aliphatic polyester resin or polyolefin resin, and a fine powder A reflection layer comprising a resin composition B containing a filler, and comprising a layer B in which the content of the fine powder filler in the resin composition B is greater than 0.1% by mass and less than 5% by mass. It is a film.
  • the glossiness is 50 to 90 when light is irradiated on the reflective surface and the incident angle and the light receiving angle are measured at 60 °.
  • glossiness is an amount indicating the degree of reflection when light is applied to the surface of a reflective film, and a predetermined glass surface defined in JIS Z 8741 is used as a reference surface.
  • the glossiness of the reference surface is defined as 100 and is a relative value. In general, when the glossiness is high, specularity increases, and the surface appears glossy. Conversely, when the glossiness is low, specularity decreases and the surface appears rough. . Also in the reflection film, when the positive reflection property is high, the front luminance is also high and there is a tendency to have good light reflection characteristics.
  • the glossiness at 60 ° C on the reflective use surface side of the present reflective film is in the range of 50 to 90, good light reflection characteristics, particularly good brightness, can be obtained. Such an effect is particularly prominent in the configuration in which the brightness enhancement sheet, the diffusion sheet, the diffusion plate, the cold cathode tube, and the reflection film are laminated sequentially from the liquid crystal side in the internal configuration of the liquid crystal television.
  • the glossiness is less than 50, the diffuse reflectance increases and the front luminance decreases, so that good light reflection characteristics cannot be obtained.
  • the glossiness exceeds 90, it is not preferable because the line (bright line) of the cold-cathode tube is easily visible when it is assembled into a knocklight.
  • the content of the fine powder filler in the outermost layer on the reflective use surface side is important as described later. It is one of the necessary conditions.
  • the A layer is composed of an aliphatic polyester-based resin, a polyolefin-based resin, or a mixture thereof (collectively referred to as “A-layer base resin”) and a fine powder filler. It is the layer which consists of the rosin composition A contained.
  • Aliphatic polyester-based resin does not contain an aromatic ring in its molecular chain, so even if it is exposed to UV light that absorbs very little UV light or is exposed to a light source such as a liquid crystal display device, It is possible to suppress the temporal deterioration of the light reflectivity of the film, which does not deteriorate or yellow.
  • aliphatic polyester-based resin chemically synthesized, fermented and synthesized by microorganisms, or a mixture thereof can be used.
  • Examples of the chemically synthesized aliphatic polyester-based resin include poly ⁇ -one-prolactam obtained by ring-opening polymerization of rataton, or polyethylene adipate obtained by polymerizing dibasic acid and diol. , Polyethylene gellate, polytetramethylene succinate, cyclohexanedicarboxylic acid ⁇ cyclohexanedimethanol condensation polymer, lactic acid polymer obtained by polymerizing hydroxycarboxylic acid, polyglycol, etc. Examples include aliphatic polyesters in which a part of the ester bonds of the aliphatic polyesters described above are replaced, for example, 50% or less of the ester bonds with amide bonds, ether bonds, urethane bonds, and the like.
  • Examples of the aliphatic polyester-based coconut resin fermented and synthesized by microorganisms include polyhydroxybutyrate, a copolymer of hydroxybutyrate and hydroxyvalerate, and the like.
  • an aliphatic polyester-based resin having a refractive index (n) of less than 1.52 is preferable to use as the base resin of the cocoon layer. If an A-layer containing an aliphatic polyester-based resin having a refractive index (n) of less than 1.52 and a fine powder filler is provided, the interface between the aliphatic polyester-based resin and the fine powder filler is provided. High light reflectivity can be realized by refractive scattering. This refractive scattering effect increases as the refractive index of the aliphatic polyester resin and the fine powder filler increases, so that the refractive index power is preferred as an aliphatic polyester-based resin. From A lactic acid polymer having a very low refractive index of less than 1.46 (generally about 1.45) is the most suitable example. Incidentally, the aromatic polyester has a refractive index of about 1.55 or more.
  • Examples of the lactic acid-based polymer include homopolymers of D-lactic acid or L-lactic acid or copolymers thereof. Specifically, poly (D lactic acid) whose structural unit is D-lactic acid, poly (L lactic acid) whose structural unit is lactic acid, and poly (DL lactic acid) which is a copolymer of L lactic acid and D lactic acid Or a mixture thereof.
  • lactic acid includes two types of optical isomers, that is, L lactic acid and D lactic acid, and the crystallinity differs depending on the ratio of these two types of structural units.
  • a random copolymer with a ratio of L lactic acid and D lactic acid of about 80: 20-20: 80 is a transparent, completely amorphous polymer that softens near the glass transition temperature of 60 ° C where the crystallinity is low.
  • a random copolymer having a ratio of L lactic acid and D lactic acid of about 100: 0 to 80:20, or about 20:80 to 0: 100 has a glass transition point similar to the copolymer described above. Although it is about ° C, it has high crystallinity.
  • Lactic acid polymers with a content ratio of D-lactic acid and L-lactic acid of 100: 0 or 0: 100 show very high crystallinity, tend to have excellent heat resistance and mechanical properties with a high melting point There is. That is, when the film is stretched or heat treated, the resin is crystallized to improve heat resistance and mechanical properties, which is preferable in that respect.
  • a lactic acid-based polymer composed of D-lactic acid and L-lactic acid is preferable in that respect because flexibility is imparted and film forming stability and stretching stability are improved.
  • the lactic acid-based polymer can be produced by a known method such as a condensation polymerization method or a ring-opening polymerization method.
  • a condensation polymerization method D-lactic acid, L-lactic acid, or a mixture of these is directly
  • a lactic acid polymer having an arbitrary composition can be obtained by contact dehydration condensation polymerization.
  • lactide which is a cyclic dimer of lactic acid, is subjected to ring-opening polymerization in the presence of a predetermined catalyst using a polymerization regulator or the like, if necessary, and a lactic acid system having an arbitrary composition.
  • a polymer can be obtained.
  • the lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL lactide, which is a dimer of D-lactic acid and L-lactic acid.
  • Lactic acid polymers having different copolymerization ratios of D lactic acid and L lactic acid may be blended. In this case, it is preferable to adjust so that the average value of the copolymerization ratios of D lactic acid and L lactic acid of a plurality of lactic acid polymers falls within the range of the DL ratio.
  • lactic acid-based polymer a copolymer of lactic acid and another hydroxycarboxylic acid may be used.
  • the “other hydroxycarboxylic acid units” to be copolymerized include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyn-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3 methyl.
  • examples include bifunctional aliphatic hydroxycarboxylic acids such as butyric acid, 2-methyl lactic acid, and 2-hydroxycaproic acid, and ratatones such as force prolatatanes, butyrolatatanes, and valerolatatanes.
  • the lactic acid-based polymer may be a non-aliphatic carboxylic acid such as terephthalic acid and a non-aliphatic diol such as an ethylene oxide adduct of Z or bisphenol A as a small amount copolymerization component.
  • Lactic acid and Z or hydroxycarboxylic acid other than lactic acid may be contained.
  • the lactic acid-based polymer preferably has a high molecular weight.
  • a polymer having a weight average molecular weight of 50,000 or more is preferable, and a polymer having a weight average molecular weight of 60,000 to 400,000 is more preferable. Particularly preferred is ⁇ 300,000. If the weight average molecular weight of the lactic acid polymer is less than 50,000, the resulting film may have poor mechanical properties.
  • polyolefin resin examples include monoolefin polymers such as polyethylene and polypropylene, or those mainly composed of a copolymer.
  • polyolefin resin examples include low density polyethylene, linear low density polyethylene (ethylene a- olefin copolymer), medium density polyethylene, polyethylene resin such as high density polyethylene, polypropylene, and ethylene propylene.
  • polypropylene-based resins such as copolymers, poly-4-methylpentene, polybutene, and ethylene acetate butyl copolymer.
  • the polyolefin-based resin may be produced using a multi-site catalyst such as a Ziegler catalyst, or may be produced using a single-site catalyst such as a metalocene catalyst.
  • a polyolefin thermoplastic elastomer in which ethylene / propylene rubber or the like is dispersed and composited with these polyolefin resins can also be used.
  • linear low-density polyethylene resins such as ethylene a-olefin copolymers are used.
  • Polypropylene resin, ethylene-propylene copolymer, propylene-butene copolymer, ethylene-propylene-butene terpolymer, and ethylene-propylene-gen terpolymer are preferred.
  • One of the propylene copolymers or a mixed resin thereof is particularly preferable.
  • an ethylene propylene random copolymer is particularly preferable.
  • Examples of the fine powder filler in the A layer include organic fine powder and inorganic fine powder.
  • the organic fine powder it is preferable to use at least one selected from cellulose-based powders such as wood powder and pulp powder, polymer beads, polymer hollow particles and the like.
  • Examples of the inorganic fine powder include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, It is preferable to use at least one selected from silica, my strength, talc, kaolin, clay, glass powder, asbestos powder, zeolite, and white silicate.
  • an inorganic fine powder having a refractive index of 1.6 or more such as calcium carbonate.
  • acid titanium is particularly preferable, among which sodium chloride, barium sulfate, acid titanium, and acid zinc are preferable.
  • Titanium oxide has a significantly higher refractive index than that of other inorganic fine powders. Since the refractive index difference from the base resin of the A layer can be significantly increased, other fillers were used. Excellent reflection performance can be obtained with a smaller blending amount. Further, by using titanium oxide, a reflective film having high reflective performance can be obtained even when the film is thin.
  • titanium oxides as the fine powder filler in the A layer, a crystalline form of titanium oxide such as anatase-type rutile is preferred, and the refractive index difference from the base resin is increased.
  • titanium oxide having a refractive index of 2.7 or more it is preferable to use a rutile crystal type titanium oxide. The greater the difference in refractive index, the greater the light scattering and scattering effect at the interface between the base resin and the acid titanium, and the film can be easily given light reflectivity.
  • titanium oxide which has a small light absorption ability for visible light.
  • the amount of coloring elements contained in titanium oxide is small. Titanium oxide with a content of 500 ppm or less is preferred. At the same time, it is more preferable if the vanadium content is 5ppm or less.
  • Titanium acid titanium produced by the chlorine process has high purity. According to this production method, titanium oxide with a niobium content of 500 ppm or less (referred to as "high-purity titanium oxide”) can be obtained.
  • rutile ore containing titanium oxide as a main component is reacted with chlorine gas in a high-temperature furnace of about 1000 ° C to first produce titanium tetrachloride, and then this tetrasalt titanium is converted to oxygen.
  • the high-purity acid titanium can be obtained by burning at
  • the fine powder filler is preferably present in a dispersed state in the base resin of the A layer. Therefore, as the titanium oxide used as the fine powder filler of the A layer, it is preferable that the surface is coated with an inert inorganic oxide.
  • the photocatalytic activity of titanium oxide can be suppressed, and the light resistance (durability when irradiated with light) of the film can be reduced. Can be increased.
  • the inert inorganic oxide for coating the surface of titanium oxide is preferably at least one selected from alumina, silica, and a group force including zirconure force.
  • alumina preferably at least one selected from alumina, silica, and a group force including zirconure force.
  • the light resistance of the film can be enhanced without impairing the high reflection performance obtained with titanium oxide.
  • the surface treatment amount of the inert inorganic oxide is preferably 1 to 7% by mass with respect to the total mass of the titanium oxide after the surface treatment.
  • a surface treatment amount of 1% by mass or more is preferable because it is easy to maintain high light reflectivity. Further, when the surface treatment amount is 7% by mass or less, the dispersibility of the A layer in the base resin is good and a homogeneous film is obtained, which is preferable.
  • At least one kind of organic acid selected from the group consisting of a titanium coupling agent and a silane coupling agent is used on the surface of titanium oxide.
  • organic acid selected from the group consisting of a titanium coupling agent and a silane coupling agent.
  • silane coupling agents are particularly preferred, although surface treatment with a compound is preferred.
  • Examples of the silane coupling agent include alkoxysilanes having an alkyl group, a alkenyl group, an amino group, an aryl group, an epoxy group, chlorosilanes, polyalkoxyalkylsiloxanes, and the like. . Specifically, for example, ⁇ - ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ - ⁇ (aminoethyl) ⁇ -aminopropylmethyltrimethoxysilane, ⁇ - ⁇ (aminoethyl) ⁇ -aminopropyl.
  • Aminosilane coupling agents such as methyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -phenol ⁇ -aminopropyltrimethoxysilane, dimethyldimethoxysilane, methyltri Methoxysilane, Ethyltrimethoxysilane, Propyltrimethoxysilane, ⁇ -Butyltrimethoxysilane, ⁇ -Butyltriethoxysilane, ⁇ -Butylmethyldimethoxysilane, ⁇ -Butylmethyljetoxysilane, Isobutyltrimethoxysilane, Isobutyltriethoxy Syrah , Isobutyl methyl dimethoxy silane, tert- Buchirutorime Tokishishiran, tert- butyl triethoxysilane, tert- but
  • silane coupling agents can be used alone or in combination of two or more.
  • silane coupling agent used for this reflective film an aminosilane coupling agent is preferable.
  • the surface of titanium oxide may be treated with a siloxane compound or a polyhydric alcohol.
  • Examples of the siloxane compound used in this case include dimethyl silicone, methyl hydrogen silicone, and alkyl-modified silicone.
  • polyhydric alcohol examples include trimethylol ethane and trimethylol propane.
  • siloxane compounds and polyhydric alcohol compounds can be used alone or in combination of two or more.
  • the amount of surface treatment with the above-described titanium coupling agent, silane coupling agent, siloxane compound, or polyhydric alcohol is 0.05 to 3 with respect to the total mass of the titanium oxide after the surface treatment. It is preferable that it is mass%.
  • the surface treatment amount is 0.05% by mass or more, moisture adsorption of titanium oxide can be prevented, and the dispersibility can be improved by preventing aggregation of titanium oxide particles. If the dispersibility of titanium oxide is improved, the occurrence of bumps will be suppressed, and the appearance of the film product surface will not be impaired, and troubles of fracture will not occur during stretch film formation.
  • the area of the interface between the base resin and the acid-titanium can be sufficiently secured, the film can be provided with high light reflectivity, and if the surface treatment amount is 3% by mass or less, the acid This is preferable because the lubricity of the titanium particles is appropriate and more stable extrusion and film formation are possible.
  • the above-mentioned "surface treatment amount” refers to the treatment agent used for the surface treatment (for example, an inert inorganic oxide or an organic compound) occupying the total mass of the titanium oxide after the surface treatment. ) Mass ratio.
  • the average particle diameter of the titanium oxide as the fine powder filler of the A layer is preferably 0.1 m to l ⁇ m, and preferably 0.2 / ⁇ ⁇ to 0.5 / zm. More preferably.
  • the particle diameter of the titanium oxide titanium is 0.1 ⁇ m or more, the dispersibility of the A layer in the base resin is good and a homogeneous film can be obtained. Also, if the particle size is 1 ⁇ m or less, the interface between the base resin of the A layer and the titanium oxide titanium is more densely formed. Can do.
  • the average particle size is preferably 0.05 ⁇ m to 15 ⁇ m, preferably 0.1 m to 10 ⁇ m. More preferred.
  • the average particle size of the fine powder filler is 0.05 m or more, light scattering reflection occurs with the roughening of the film, and the glossiness can be increased.
  • the average particle size of the fine powder filler is 15 / zm or less, the interface between the base resin of layer A and the fine powder filler is formed more densely. Thus, more excellent light reflectivity can be imparted to the reflective film.
  • the content of the fine powder filler (particularly titanium oxide) in the A layer is based on the resin composition A constituting the A layer in consideration of the light reflectivity, mechanical properties, productivity, etc. of the film. It is important that the ratio is 10 to 80% by mass, preferably 10 to 70% by mass, particularly 10 to 60% by mass, and more preferably 20 to 45% by mass.
  • the content of the fine powder filler relative to the resin composition A is 10% by mass or more, a sufficient area of the interface between the base resin and the fine powder filler is secured. Therefore, higher light reflectivity can be imparted to the film. If the content of the fine powder filler is 80% by mass or less, the mechanical properties necessary for the film can be ensured.
  • the porosity of the A layer is preferably 35% or less, but is preferably in the range of 3 to 35%. More preferably 5% or more, and even more preferably 7% or more.
  • the porosity of layer A exceeds 35%, the mechanical strength of the film may decrease, and the film may be broken during film production, or durability such as heat resistance may be insufficient during use.
  • the B layer is composed mainly of an aliphatic polyester-based resin, a polyolefin-based resin, or a mixture thereof (collectively, “B-layer base resin” t t) and a fine powder filler. It is a layer having a B composition which is contained as a layer and constituting the outermost layer on the reflection use surface side when used as a reflective film.
  • the reflective film may have two or more B layers, but at least one of them needs to be the outermost layer on the reflective use surface side.
  • the same resins as those described as the base resin for the A layer can be used, and it is particularly preferable to use the same lactic acid polymer as the A layer.
  • the content of the fine powder filler in the B layer is greater than 0.1% by mass and less than 5% by mass, preferably 0.1% with respect to the greave composition B constituting the B layer. mass% It is larger and less than 3% by mass, particularly preferably greater than 0.1% by mass and less than 1% by mass.
  • the reflective film When the reflective film is incorporated in a liquid crystal display device or the like, when the content ratio of the fine powder filler in the B layer is larger than 5% by mass, the brightness tends to be remarkably lowered, while the fine powder filling is observed. When no agent is contained (0% by mass), the luminance is not improved.
  • a certain amount of pulverulent filler specifically greater than 0.1% by weight and less than 5% by weight, in particular greater than 0.1% by weight and less than 3% by weight, in particular from 0.1% by weight. It has been found that the brightness increases when it is large and less than 1% by mass.
  • the light is incident on the brightness enhancement sheet with a certain incident angle as compared to the normal incidence because the light transmittance of the brightness enhancement sheet is increased and the loss is reduced. While it is preferable to diffuse the light with the fine powder filler in the B layer, if the content of the fine powder filler in the B layer is too large, the glossiness decreases, and the luminance decreases accordingly. It can be presumed that the brightness is improved when the B layer contains a certain amount of fine filler, that is, greater than 0.1% by mass and less than 5% by mass.
  • a fine powder filler is contained in the B layer as the outermost layer of the reflective film. If the film surface is too smooth, the films rub against each other during production or transportation. From this point, it is preferable that the layer B contains fine powder filler in a proportion of more than 0.1% by mass and less than 5% by mass. ,.
  • the fine powder filler is not contained in the B layer as the outermost layer of the reflective film, the A layer and the B layer are easily separated. It is preferable to contain 1% by mass of fine filler and less than 5% by mass.
  • the fine powder filler in the B layer the same fine powder filler as in the A layer can be used.
  • the fine powder filler in the B layer preferably has an average particle size of 0.3 ⁇ m to 15 m, more preferably 0.5 / ⁇ ⁇ to 10 / ⁇ ⁇ .
  • the particle size of the fine powder filler is 0.3 ⁇ m or more, diffuse reflection occurs with the roughening of the film, so that the reflection directivity of the film can be reduced. If the particle size of the fine powder filler is 15 m or less, the interface between the base resin of layer B and the fine powder filler Since it is formed more densely, it is possible to impart more excellent light reflectivity to the reflective film.
  • the resin composition A and the resin composition B may contain other additives and other additives as long as they do not interfere with the functions of the base resin and the fine filler.
  • additives and other additives for example, hydrolysis inhibitors, antioxidants, light stabilizers, heat stabilizers, lubricants, dispersants, ultraviolet absorbers, white pigments, fluorescent brighteners, and other additives can be added.
  • hydrolysis inhibitor for the purpose of imparting durability, it is preferable to add a hydrolysis inhibitor, which will be described in detail below.
  • liquid crystal display devices have come to be used in car navigation systems for automobiles, in-car small televisions, etc. in addition to personal computer displays, and it is necessary to withstand high temperatures and high humidity. ing. Therefore, it is preferable to add a hydrolysis inhibitor to the reflective film containing the aliphatic polyester-based rosin for the purpose of imparting durability.
  • Preferred examples of the hydrolysis inhibitor include a carpositimide compound.
  • Preferred examples of the calpositimide compound include those having a basic structure represented by the following general formula.
  • n represents an integer of 1 or more, and R represents an organic bond unit.
  • R can be either aliphatic, alicyclic, or aromatic.
  • n is usually an appropriate integer between 1 and 50.
  • carbodiimide compound examples include bis (dipropylphenol) carbodiimide, poly (4,4'-diphenylmethanecarbodiimide), poly (p-phenylene-carbodiimide), poly (m-phenol- Lencarbodiimide), poly (tolylcarbodiimide), poly (diisopropylphenol-lencarbodiimide), poly (methyl-diisopropylphenol-lencarbodiimide), poly
  • the calpositimide compound is an aliphatic polyester-based resin constituting the resin composition A or B. It is preferable to add at a ratio of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of fat.
  • the amount of the carbodiimide compound added is 0.1 parts by mass or more, the resulting film exhibits a sufficient effect of improving hydrolysis resistance. Further, when the addition amount of the calpositimide compound is 3.0 parts by mass or less, high light reflectivity with little coloring of the obtained film can be obtained.
  • the A layer may contain components other than the resin composition A in a range that does not interfere with the function of the resin composition A.
  • the B layer may contain components other than the resin composition B in a range that does not interfere with the function of the resin composition B.
  • This reflective film has an A layer made of rosin composition A and a B layer that also has rosin composition B, and the B layer is located at least on one side of the A layer and used as a reflective film.
  • any structure may be used as long as it is the outermost layer on the reflection use surface side. Therefore, from the reflective surface side, it is possible to have a two-layer structure of B layer ZA layer, a three-layer structure of B layer ZA layer ZB layer, or a four-layer structure of B layer ZA layer Z ... or more.
  • the thickness ratio of each of the A layer and the B layer is preferably 20: 1 to 1: 1.
  • the ratio of the thickness of the B layer is smaller than the ratio of the thickness of the A layer and the B layer is less than 20: 1, it is difficult to obtain good light reflection characteristics because the glossiness is lowered.
  • the thickness ratio of layer B is greater than 20: 1, the reflectance will decrease.
  • the metal thin film layer and the protective layer may be laminated in this order on the back surface of the reflective film, that is, the surface opposite to the reflective surface.
  • This metal thin film layer can be formed by vapor-depositing a metal.
  • a metal for example, it can be formed by a vacuum deposition method, an ionization deposition method, a sputtering method, an ion plating method, or the like.
  • any material having a high reflectance can be used without any particular limitation. Generally, silver, aluminum and the like are preferable, but silver is particularly preferable.
  • a metal thin film layer film is formed in advance by forming a metal thin film layer on a synthetic resin film (also referred to as "intermediate layer"), and this metal thin film layer film is used as the reflective film. You can form it by laminating it.
  • the metal thin film layer of the metal thin film layer film and the reflective film may be overlapped, or the intermediate layer of the metal thin film layer film and the reflective film may be overlapped. Laminate with a partial or full adhesion.
  • Examples of the bonding method include known bonding methods using various adhesives, and known thermal bonding methods using no adhesives. Among them, the bonding method which does not apply heat or the method of heat bonding at a temperature of 210 ° C. or less is preferable because it can maintain the voids in the reflection film and maintain high reflectivity.
  • the metal thin film layer may be a single layer product or a laminate product of metal, or a single layer product or a laminate product of metal oxide.
  • a laminated body may be sufficient.
  • the thickness of the metal thin film layer is preferably adjusted according to the material forming the layer, the layer forming method, and the like. Usually, it is preferably in the range of 10 nm to 300 nm, but in the range of 20 nm to 200 nm. More preferably. If the thickness of the metal thin film layer is lOnm or more, sufficient reflectance can be obtained. On the other hand, if the thickness of the metal thin film layer is 300 nm or less, the production efficiency is good.
  • this reflective film Z anchor coat layer, if necessary) Z metal thin film layer Z protective layer or this reflective film Z intermediate layer Z (necessary) Depending on the anchor coat layer) Z metal thin film layer Z protective layer layer structure, etc.
  • the reflective film must be disposed on the light-irradiated side, and if so, another layer may be provided between the layers described above, and the reflective film, Each layer such as a metal thin film layer may be composed of a plurality of layers.
  • the thickness of the reflective film is not particularly limited, but is usually 30 m to 500 m, and it is in the range of about 50 ⁇ m to 500 ⁇ m in consideration of handling and properties in practical use. preferable.
  • the thickness force S is preferably 30 ⁇ m or more and less than 100 ⁇ m. If a reflective film with a strong thickness is used, it can be applied to small and thin liquid crystal displays such as notebook computers and mobile phones. Can be used.
  • the reflective film preferably has a surface reflectivity of 95% or more with respect to light having a wavelength of 550 nm, more preferably 97% or more.
  • the reflectance here means the reflectance of the surface on the light irradiation side (reflection use surface side).
  • the reflective film can maintain the excellent reflectance as described above even after being exposed to ultraviolet rays.
  • the present reflective film can use an aliphatic polyester-based resin that does not contain an aromatic ring in the molecular chain as the base resin, so that the film is not deteriorated by ultraviolet rays and maintains excellent reflectivity. can do.
  • this reflective film When aliphatic polyester-based resin is used as the base resin for each layer, this reflective film has the characteristics that it can be decomposed by microorganisms, etc. when landfilled, and does not cause various problems associated with disposal. Become. Aliphatic polyester-based fats are hydrolyzed in soil by the ester bond and the molecular weight is reduced to about 1,000, and then biodegraded by microorganisms in the soil.
  • the aromatic polyester-based resin has high intramolecular bond stability and is unlikely to hydrolyze the ester bond. Therefore, even if an aromatic polyester-based resin and a polypropylene-based resin are landfilled, the molecular weight does not decrease and biodegradation by microorganisms does not occur. As a result, it will remain in the soil for a long period of time, and it will lead to problems such as promoting the shortening of the landfill site and damaging the natural landscape and the living environment of wild animals and plants.
  • the present invention is not limited to the following production method.
  • a production method in the case of using an aliphatic polyester-based resin as the base resin of the A layer and the B layer will be described.
  • a polyolefin resin or an aliphatic resin as the base resin of the A layer and the B layer will be described.
  • Polyester-based resin and polyester In the case of using a mixed resin of riolephine-based resin, it can be produced in the same manner.
  • a pulverized resin composition A and B are prepared by blending a predetermined amount of a fine powder filler and, if necessary, a hydrolysis inhibitor, other additives, etc., into an aliphatic polyester resin. To do.
  • a fine powder filler and, if necessary, a hydrolysis inhibitor, other additives, etc. are added to the aliphatic polyester-based rosin, and a ribbon renderer, tumbler or Henschel mixer, etc.
  • a temperature higher than the melting point of the aliphatic polyester resin for example, 170 ° C to 230 ° C for lactic acid polymers
  • the kneaded resin compositions A and B are respectively prepared by kneading in step (1).
  • the resin compositions A and B are respectively prepared by adding predetermined amounts of aliphatic polyester-based resin, fine powder filler, hydrolysis inhibitor and the like with separate feeders and the like.
  • a so-called master batch in which a fine powder filler, a hydrolysis inhibitor, etc. are blended in a high concentration in an aliphatic polyester resin is prepared in advance, and this master patch and aliphatic polyester are prepared. It is also possible to produce the desired concentration of the rosin compositions A and B by mixing with the system rosin.
  • each of the resin composition A and the resin composition B is dried, each is supplied to an extruder, heated to a temperature equal to or higher than the melting point of the resin, and melted.
  • the resin composition A and the resin composition B may be supplied to the extruder without being dried, but if not dried, it is preferable to use a vacuum vent during melt extrusion.
  • the conditions such as the extrusion temperature in consideration of a decrease in molecular weight due to decomposition.
  • the extrusion temperature is 170 ° C to 230 ° C in the case of a lactic acid polymer. It is preferable to set within the range.
  • molten resin composition A and resin composition B are laminated by extruding each of the slit-shaped discharge loci of the T die, and this laminate is adhered and solidified to the cooling port to form a cast sheet. If you form it.
  • the resin composition A and the resin composition B are melted as described above. After film formation and lamination, it is preferable to stretch this laminate at least 1.1 times in one axial direction.
  • Stretching is also important from the viewpoint of increasing the reflectance by forming voids in the film.
  • the aliphatic polyester-based resin used as a matrix is stretched, but the fine powder filler tries to stay as it is. Since the stretching behavior of aliphatic polyester-based resin and fine powder filler is different during stretching, the interface between fatty polyester-based resin and fine powder filler is separated to form voids, further increasing the reflectivity. be able to.
  • the reflective film is preferably stretched in the biaxial direction.
  • biaxial stretching By biaxial stretching, a higher porosity can be obtained, and the reflectance of the film can be further improved.
  • the film is stretched uniaxially, it does not force the formed void into a fibrous form that stretches in one direction, but by biaxial stretching, the void becomes a disk-like form that is stretched in both the vertical and horizontal directions. Become. That is, by biaxially stretching, the peeled area at the interface between the resin and the fine powder filler is increased, and the whitening of the film proceeds. As a result, the light reflectivity of the film can be further enhanced.
  • biaxial stretching eliminates anisotropy in the shrinking direction of the film, so that the heat resistance of the reflective film can be improved, and the mechanical strength can be increased.
  • biaxial stretching is not particularly limited.
  • simultaneous biaxial stretching or sequential stretching may be used.
  • the film may be stretched in the MD (film take-off direction) by roll stretching, and then stretched in the TD (in the direction perpendicular to the MD) by tenter stretching.
  • Biaxial stretching may be performed by
  • the stretching temperature when stretching the cast sheet is, for example, that the base resin of layer A is aliphatic poly
  • Tg glass transition temperature
  • the stretching temperature is 50 ° C or higher, the film will not break during stretching.
  • the stretching temperature is 90 ° C or lower, the stretching orientation will be high, and as a result, the porosity will be large, so a high reflectance can be obtained. it can.
  • the processing temperature for heat-setting the film is preferably 90 to 160 ° C. 110 to 1
  • the treatment time required for heat setting is preferably 1 second to 5 minutes.
  • the stretching equipment and the like are not particularly limited, but it is preferable to perform tenter stretching that can be heat-set after stretching.
  • This reflective film is characterized by high glossiness and high brightness on the reflective surface where light reflection is high. Therefore, it is suitable not only as a reflective film for use in a reflector such as a display such as a television set, a lighting device, or a lighting signboard, but also particularly suitable as a reflective film for applications requiring thinning.
  • a reflector used in a liquid crystal display or the like can be formed using the present reflective film.
  • the reflecting film can be laminated on a metal plate or a resin plate to form a reflecting plate, and this reflecting plate is useful as a reflecting plate used for liquid crystal display devices, lighting fixtures, lighting signs, etc. .
  • a method of coating the reflective film on a metal plate or a resin plate a method using an adhesive, a method of heat-sealing without using an adhesive, a method of bonding via an adhesive sheet, extrusion coating, There is a method for doing so, and there is no particular limitation.
  • an adhesive such as polyester, polyurethane, or epoxy can be applied to the surface of the metal plate or the resin plate on the side where the reflective film is bonded, and the reflective film can be bonded.
  • commonly used coating equipment such as reverse roll coater, kiss roll coater, etc. is used, and the adhesive film thickness after drying is 2 m to 4 m on the surface of the metal plate etc. on which the reflective film is bonded.
  • the coated surface is dried and heated with an infrared heater and a hot air heating furnace, and while maintaining the surface of the plate at a predetermined temperature, the reflective film is coated and cooled directly using a roll laminator, A reflector can be obtained.
  • the surface temperature of the metal plate or the like is preferably 160 ° C or higher.
  • the measured value and evaluation which are shown to an Example were performed as shown below.
  • the film take-off (flow) direction is displayed as MD
  • its orthogonal direction is displayed as TD.
  • a powder specific surface measuring instrument (transmission method) of model “SS-100” manufactured by Shimadzu Corporation was used.
  • a sample cylinder with a cross-sectional area of 2 cm 2 and a height of 1 cm was filled with 3 g of sample, and the time of 20 cc air permeation was measured with a 500 mm water column, and the average particle size was calculated from this.
  • An integrating sphere was attached to a spectrophotometer (“U-4000”, manufactured by Hitachi, Ltd.), and the reflectance with respect to light having a wavelength of 550 nm was measured. At this time, light was irradiated from the reflective use surface side, that is, the reflective film surface side. Before the measurement, the photometer was set so that the reflectance of the alumina white plate was 100%.
  • a reflective film made in a 26-inch LCD backlight unit (SAMSUNG: LTA260W-02) is incorporated, and CCFL, diffuser plate, diffuser sheet, and DBEF-D are stacked in this order, and a luminance meter (Topcon Engineering ( The central luminance was measured using BM-7).
  • the melt was allowed to cool in the state of being put in a crucible, and then 100 ml of warm water and 50 ml of hydrochloric acid were added to the melt to dissolve it, and water was further added to make up to 250 ml.
  • This solution was measured with an ICP emission spectrometer, and the niobium content was determined. However, the measurement wavelength was 309.42 nm.
  • MDS-2000 model manufactured by Astec Co., Ltd. was used, and the digestion operation was performed according to the steps shown in Table 1 below.
  • the measurement wavelength was 311.07 nm.
  • the refractive index of the resin was measured based on the method A of JIS K-7142.
  • To 100 parts by mass of this mixture 2.5 parts by mass of carpositimide-modified isocyanate (Carpolite LA-1 manufactured by Nisshinbo Co., Ltd.) was added and mixed as a hydrolysis inhibitor, and then mixed using a twin-screw extruder.
  • a so-called master batch was produced. And this masterbatch and the said lactic acid-type polymer were mixed in the mass ratio of 60:40, and the resin composition A was produced.
  • hydrolysis inhibitor bis (dipropylphenyl) carpositimide
  • a batch was made.
  • this master batch and the said lactic acid-type polymer were mixed with the mass ratio of 60:40, and the resin composition B was produced.
  • the amount of the silica in the cocoon yarn and composition B was 0.2% by mass.
  • Resin compositions A and B are fed to extruders A and B heated to 220 ° C, respectively. From extruders A and B, molten resin compositions A and B are respectively sent to T using a T die. Layer Extruded into a sheet at 220 ° C to form a three-layer structure of ZA layer / B layer, cooled and solidified to form a film. The obtained film was biaxially stretched 2.5 times to MD and 2.8 times to TD at a temperature of 65 ° C, and then heat-treated at 140 ° C to a thickness of 250 m (A layer: 210 m, B layer: 20 m 2).
  • the thickness of the fat composition B for layer B was the same as in Example 1 except that silica was added so as to be 2% by mass of the fat composition B.
  • a reflective film having a thickness of 250 / ⁇ ⁇ (a layer: 210 m, a layer: 20 m) was obtained.
  • the resulting reflection film was measured for brightness, reflectance and luminance, and the results are shown in Table 2.
  • Example 2 As shown in Table 2, in Example 1, with respect to the resin composition B for layer B, instead of silica, titanium oxide having an average particle diameter of 0.25 m (niobium concentration: 430 ppm; surface made of alumina, silica, and zirconium) 250 ⁇ m in thickness (A layer: 210 m, B layer: 20 m) in the same manner as in Example 1, except that a master batch was prepared by adding 0.2% by mass to ) Was obtained. The resulting reflective film was measured for gloss, reflectance and brightness, and the results are shown in Table 2.
  • Example 2 in the preparation of the resin composition B for the B layer, the same procedure as in Example 1 was conducted except that silica was added so as to be 0.1% by mass of the resin composition B. A reflective film having a thickness of 250 / ⁇ ⁇ (layer: 210 m, layer B: 20 m) was obtained. The resulting reflective film! / ⁇ The glossiness, reflectance and luminance were measured, and the results are shown in Table 2.
  • the thickness was the same as in Example 1 except that silica was added so as to be 20% by mass of the resin composition B.
  • the resulting reflection film was measured for glossiness, reflectance and brightness, and the results are shown in Table 2.
  • Examples 1 and 2 and Comparative Examples 1 and 2 differ only in the content of the fine powder filler in the B layer, the content of these fine powder fillers and the glossiness and brightness are different. Consider the relationship.
  • Rutile titanium oxide obtained by the so-called chlorine process, which is performed to vaporize titanium rogenide (average particle size: 0.28 m, niobium content: 390 ppm, vanadium content) (Amount: 4ppm) Inactive inorganic oxide layer so that alumina, silicic force, and zircoure are contained 1% by mass, 0.5% by mass, and 0.5% by mass, respectively, on the surface of the treated titanium oxide. Furthermore, trimethylol etathan is formed on the whole treated titanium oxide after treatment. The organic compound layer was formed so as to contain 0.3% by mass of hydrogen.
  • Pellets of ethylene-propylene random copolymer (refractive index: 1.50) and the above titanium oxide were mixed at a mass ratio of 30:70 to obtain a mixture. Use this mixture with a twin screw extruder
  • This master batch and the pellets of the ethylene-propylene random copolymer were mixed at a mass ratio of 90:10 to prepare a resin composition A.
  • Pellets of ethylene-propylene random copolymer (refractive index: 1.50) and the above titanium oxide were mixed at a mass ratio of 30:70 to obtain a mixture. Use this mixture with a twin screw extruder
  • the masterbatch and the ethylene propylene random copolymer pellets are 1: 9
  • the mixture was mixed at a mass ratio of 9 to prepare a resin composition B.
  • Resin compositions A and B are fed to extruders A and B heated to 200 ° C, respectively. From extruders A and B, molten resin compositions A and B are respectively fed using a T-die. layer
  • a film was formed by extruding into a sheet so as to have a two-layer structure of ZA layers, and solidifying by cooling.
  • the obtained film was simultaneously biaxially stretched 5 times to MD and 5 times to TD at a temperature of 135 ° C, and a thickness of 75 m (A layer: 70 m, B layer: 5 m)
  • a reflective film was obtained.
  • the resulting reflective film was measured for glossiness, reflectance and luminance. The results are shown in Table 3.
  • the resin composition A was supplied to the extruder A, and a single layer film (thickness 70 m) of only the A layer was obtained according to the above operation. Measurements were made on the layer film. The results are shown in Table 3.
  • a reflective film was obtained in the same manner as in Example 4 except that the resin composition B for layer B was prepared as follows. The obtained reflective film was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • a reflective film was obtained in the same manner as in Example 4 except that isoptiltriethoxysilane was used instead of trimethylolethane for the production of titanium oxide of Example 4.
  • the obtained reflective film was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • a reflective film was obtained in the same manner as in Example 4 except that the resin composition B for layer B was prepared as follows. The obtained reflective film was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • a mixture of ethylene propylene random copolymer (refractive index: 1.50) pellets and silica (average particle size: 2 m) in a mass ratio of 90:10 is obtained, and this mixture is a twin-screw extruder. Pereztoy was used.
  • a reflective film was obtained in the same manner as in Example 4 except that pellets of ethylene-propylene random copolymer (refractive index: 1.50) were used as they were as the resin composition B for the B layer.
  • the obtained reflective film was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • the reflective films of Examples 4 to 6 have a glossiness of 50 or more and a reflectance of 97% or more, and have excellent light reflectivity including brightness. Being I understood.
  • the reflective film of Comparative Example 3 has a glossiness of less than 50 and a reflectance of less than 97%, and is inferior to the reflective films of Examples 4 to 6 in terms of light reflectivity including brightness.
  • Kagawa Kagawa
  • the reflective film of Comparative Example 4 has a glossiness of 70 or more, has a power reflectivity of less than 97%, and has a light reflectivity including brightness, which is similar to the reflective films of Examples 4 to 6. I was inferior o

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
反射フィルム
技術分野
[0001] 本発明は、液晶表示装置、照明器具、照明看板等の反射板等に使用される反射フ イルムに関する。
背景技術
[0002] 近年、液晶表示装置をはじめ、投影用スクリーンや面状光源の部材、照明器具、照 明看板等の多くの分野で反射板が使用されている。中でも、液晶表示装置の分野で は装置の大型化及び表示性能の高度化が進み、少しでも多くの光を液晶に供給し てバックライトユニットの性能を向上させるため、反射板、特に反射板を構成する反射 フィルムに対してより一層の反射性能が求められて 、る。
[0003] この種の反射フィルムとしては、例えば芳香族ポリエステル系榭脂に酸ィ匕チタンを 添加して形成された白色シートが知られて ヽる(特許文献 1参照)が、液晶表示装置 にお 、て要求される上述のような高 、反射性能を実現することは困難であった。
[0004] また、芳香族ポリエステル系榭脂に充填剤を添加して形成されたシートを延伸する ことによって、シート内に微細な空隙を形成し、光散乱反射を生じさせるように構成し てなる反射フィルムが開示されている(特許文献 2参照)が、やはり液晶表示装置に おいて要求される高い反射性能を実現することは困難であり、特にこれらを形成する 芳香族ポリエステル系榭脂の分子鎖中に含まれる芳香環が紫外線を吸収するため、 液晶表示装置等の光源力 発せられる紫外線によってフィルムが劣化、黄変して、 反射フィルムの光反射性が次第に低下するという課題を抱えていた。
[0005] また、薄肉の反射フィルムとして、例えば白色顔料を含有したポリエチレンテレフタ レート(以下「PET」と略称することもある。)フィルムに、銀等の金属薄膜を蒸着した 反射フィルム (例えば特許文献 3参照)が知られて 、るが、この反射フィルムにお 、て も、液晶表示装置等の光源力も発せられる紫外線によってフィルムが劣化、黄変して 反射フィルムの反射率が次第に低下すると!/、う課題を抱えて 、た。
[0006] このような課題に鑑み、フィルムの耐光性を向上させるため、紫外線吸収剤を練り 込んだフィルムや紫外線安定性榭脂層を設けたフィルムに、銀等の金属薄膜を蒸着 したフィルム (特許文献 4参照)が提案されている。しかし、反射性能が低ぐ液晶画 面の輝度が十分でな 、と 、う課題を有するほか、耐光性にっ 、ても十分な評価を得 られるものではな力 た。
[0007] また、積層構造を備えた反射フィルムとして、例えば特許文献 5には、ポリエステル 榭脂及び硫酸バリウムカゝらなる A層と B層とを交互に積層した反射フィルムであって、 A層に含有される粒子の量が 10%以下である反射フィルムが開示されている。しかし 、ここに開示された構成のままでは反射性能が低ぐ液晶画面の輝度が十分でないと いう課題を抱えていた。
[0008] さらにまた、ポリオレフイン系榭脂に微粉状充填剤を添加して形成された白色シート
(例えば特許文献 6、 7参照)も知られている。しかし、このような白色シートは、光反射 性を得るために空隙率(開孔率)を少なくとも 40%以上確保する必要があつたが、空 隙率 (開孔率)を高めると機械的強度が不足するようになるため、製膜時或いは使用 時に破断する可能性があった。
[0009] 特許文献 1 :特開 2002— 138150号公報
特許文献 2:特開平 4— 239540号公報
特許文献 3 :特開平 10— 193494号公報
特許文献 4:特開 2002— 122717号公報
特許文献 5:特開 2004 - 330727号公報
特許文献 6:特許第 3617535号公報
特許文献 7:特許第 3755905号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、優れた反射性能を備えると共に、液晶表示装置等に組み込んだ 際に優れた輝度を発現させることができる優れた反射フィルムを提供することにある。 課題を解決するための手段
[0011] 本発明の反射フィルムは、脂肪族ポリエステル系榭脂或いはポリオレフイン系榭脂 、及び微粉状充填剤を含有してなる榭脂組成物 Aを含み、榭脂組成物 Aにおける該 微粉状充填剤の含有割合が 10〜80質量%である A層を備えると共に、脂肪族ポリ エステル系榭脂或 ヽはポリオレフイン系榭脂、及び微粉状充填剤を含有してなる榭 脂組成物 Bを含み、榭脂組成物 Bにおける該微粉状充填剤の含有割合が 0. 1質量 %より大きく且つ 5質量%未満である B層を反射使用面側の最外層として備えた反射 フィルムであって、反射使用面側における 60° での光沢度が 50〜90であることを特 徴とする。
[0012] 本発明の反射フィルムは、優れた光反射性能を備えると共に、液晶表示装置等に 組み込んだ際に優れた輝度を発現させることができ、しかも紫外線吸収による反射率 の低下が少なぐ黄変防止性にも優れている。したがって、本発明の反射フィルムは 、例えば金属板ゃ榭脂板に貼着するなどして、液晶表示装置、照明器具、照明看板 等に使用される反射板を形成することにより、光反射性等の特性に関しバランスのと れた反射板を提供することができる。
[0013] なお、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さぐ最大厚さ が任意に限定されている薄い平らな製品であり、通常、ロールの形で供給されるもの を称する(日本工業規格 JISK6900)。他方、一般的に「シート」とは、 JISにおける定 義上、薄ぐ一般にその厚さが長さと幅のわりには小さく平らな製品を称する。しかし、 シートとフィルムの境界は定かでなぐ本発明において文言上両者を区別する必要が ないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、 「シート」と称する場合でも「フィルム」を含むものとする。
[0014] また、本発明において「主成分」と表現した場合、特に記載しない限り、当該主成分 の機能を妨げない範囲で他の成分を含有することを許容する意を包含するものであ る。その際、特に当該主成分の含有割合を特定するものではないが、主成分 (2成分 以上が主成分である場合には、これらの合計量)は組成物中の 50質量%以上、好ま しくは 70質量%以上、特に好ましくは 90質量%以上(100%含む)を占めるのが普 通である。
[0015] また、本明細書にぉ 、て、「X〜Y」 (X, Υは任意の数字)と記載した場合、特にこと わらない限り「X以上 Υ以下」の意味と共に、「好ましくは Xより大きく Υより小さい」の意 味を包含する。 発明を実施するための最良の形態
[0016] 以下、本発明の実施形態の一例について詳しく説明する。
[0017] 本実施形態に係る反射フィルム(以下「本反射フィルム」 t ヽぅ)は、脂肪族ポリエス テル系榭脂或 ヽはポリオレフイン系榭脂、及び微粉状充填剤を含有してなる榭脂組 成物 A力もなり、榭脂組成物 Aにおける該微粉状充填剤の含有割合が 10〜80質量 %である A層を備えると共に、脂肪族ポリエステル系榭脂或いはポリオレフイン系榭 脂、及び微粉状充填剤を含有してなる榭脂組成物 Bからなり、榭脂組成物 Bにおける 該微粉状充填剤の含有割合が 0. 1質量%より大きく且つ 5質量%未満である B層を 備えた反射フィルムである。
[0018] 本反射フィルムにおいては、反射使用面側において光を照射し、その入射角およ び受光角を 60° に合わせて測定した時の光沢度が 50〜90であることが重要であり 、特に 60〜80であること力 子まし!/ヽ。
[0019] ここで、「光沢度」とは、反射フィルムの表面に光を当てたときの反射の程度を示す 量であり、 JIS Z 8741に規定された所定のガラス表面を基準面とし、この基準面の 光沢度を 100と規定し、これに対する相対値で示した値である。一般的には、光沢度 が高いと、正反射性が大きくなり、表面はつやがあるように見え、逆に光沢度が低いと 、正反射性が低くなり、表面が粗であるように見える。反射フィルムにおいても、正反 射性が高いと正面輝度も高くなり、良好な光反射特性を有する傾向がある。
[0020] 本反射フィルムの反射使用面側における 60°Cでの光沢度が 50〜90の範囲内であ れば、良好な光反射特性、特に良好な輝度が得られる。このような効果は、液晶テレ ビの内部構成において、液晶側から順次、輝度向上シート、拡散シート、拡散板、冷 陰極管及び反射フィルムが積層された構成の場合に特に顕著に現れる。逆に光沢 度が 50を下回ると、拡散反射性が高くなり正面輝度が低くなるため、良好な光反射 特性を得られなくなる。また、光沢度が 90を上回るようになると、ノ ックライトに組む込 んだ際、冷陰極管の線 (輝線)が見えやすくなり、好ましくない。
[0021] なお、本反射フィルムにおいて、上記光沢度を所定範囲に設定するためには、後 述するように反射使用面側の最外層に位置する B層における微粉状充填剤の含有 量が重要な条件の一つである。 [0022] <A層〉
A層は、脂肪族ポリエステル系榭脂或いはポリオレフイン系榭脂、或いはこれらの混 合榭脂 (これらをまとめて「A層のベース榭脂」という)と、微粉状充填剤とを、主成分と して含有する榭脂組成物 Aからなる層である。
[0023] (A層の脂肪族ポリエステル系榭脂)
脂肪族ポリエステル系榭脂は、分子鎖中に芳香環を含まないので、紫外線吸収量 が極めて少なぐ紫外線に晒されたとしても、液晶表示装置等の光源に晒されたとし ても、紫外線によってフィルムが劣化したり黄変したりすることがなぐフィルムの光反 射性の経時的低下を抑えることができる。
[0024] 脂肪族ポリエステル系榭脂としては、化学合成されたもの、微生物により発酵合成 されたもの、或いは、これらの混合物を用いることができる。
[0025] 化学合成された脂肪族ポリエステル系榭脂としては、ラタトンを開環重合して得られ るポリ ε一力プロラタタム等、或いは、二塩基酸とジオールとを重合して得られるポリ エチレンアジペート、ポリエチレンァゼレート、ポリテトラメチレンサクシネート、シクロ へキサンジカルボン酸 Ζシクロへキサンジメタノール縮合重合体等、或いは、ヒドロキ シカルボン酸を重合して得られる乳酸系重合体ゃポリグリコール等、或いは、前記し た脂肪族ポリエステルのエステル結合の一部を、例えばエステル結合の 50%以下を アミド結合、エーテル結合、ウレタン結合等に置き換えた脂肪族ポリエステル等が挙 げられる。
[0026] 微生物により発酵合成された脂肪族ポリエステル系榭脂としては、ポリヒドロキシブ チレート、ヒドロキシブチレートとヒドロキシバリレートとの共重合体等が挙げられる。
[0027] 上記のような脂肪族ポリエステル系榭脂の中でも、 Α層のベース榭脂として、屈折 率 (n)が 1. 52未満の脂肪族ポリエステル系榭脂を用いるのが好ましい。屈折率 (n) が 1. 52未満の脂肪族ポリエステル系榭脂と微粉状充填剤を含有してなる A層を備 えていれば、脂肪族ポリエステル系榭脂と微粉状充填剤との界面における屈折散乱 によって高い光反射性を実現することができる。この屈折散乱効果は、脂肪族ポリエ ステル系樹脂と微粉状充填剤との屈折率が大きくなるにしたがって大きくなるため、 脂肪族ポリエステル系榭脂としては屈折率力 、さい方が好ましぐこの観点から、屈 折率が 1.46未満 (一般的には 1.45程度)と非常に低い乳酸系重合体は最も好適 な一例である。ちなみに、芳香族ポリエステルは、屈折率が約 1.55以上である。
[0028] 乳酸系重合体としては、例えば D 乳酸または L 乳酸の単独重合体またはそれ らの共重合体を挙げることができる。具体的には、構造単位が D 乳酸であるポリ(D 乳酸)、構造単位カ^ー乳酸であるポリ(L 乳酸)、更には L 乳酸と D 乳酸の 共重合体であるポリ(DL 乳酸)、或いはこれらの混合体を挙げることができる。
[0029] 乳酸には、上記のように 2種類の光学異性体すなわち L 乳酸及び D 乳酸があり 、これら 2種の構造単位の割合で結晶性が異なる。例えば、 L 乳酸と D 乳酸の割 合が約 80: 20-20: 80のランダム共重合体では結晶性が低ぐガラス転移点 60°C 付近で軟ィ匕する透明完非結晶性ポリマーとなる。その一方、 L 乳酸と D 乳酸の割 合が約 100:0〜80:20、又は約 20: 80〜0: 100のランダム共重合体は、ガラス転 移点は前記の共重合体同様に 60°C程度であるが結晶性が高い。
[0030] 本反射フィルムでは、乳酸系重合体における DL比、すなわち D 乳酸と L 乳酸 との含有比率が、 D—乳酸: L—乳酸 =100:0〜85:15でぁるカ または D—乳酸: L 乳酸 =0:100〜15:85であるのものが好ましぐ中でも特に D 乳酸: L 乳酸 = 99.5:0.5〜95:5である力、、または D—乳酸: L—乳酸 =0.5:99.5〜5:95で あるものが好ましい。
[0031] D—乳酸と L—乳酸との含有比率が 100:0もしくは 0: 100である乳酸系重合体は 非常に高い結晶性を示し、融点が高ぐ耐熱性および機械的物性に優れる傾向があ る。すなわち、フィルムを延伸したり熱処理したりする際に、榭脂が結晶化して耐熱性 及び機械的物性が向上するので、その点で好ましい。その一方、 D 乳酸と L 乳 酸とで構成される乳酸系重合体は、柔軟性が付与され、フィルムの成形安定性及び 延伸安定性が向上するので、その点で好ましい。
[0032] 得られる反射フィルムの耐熱性と成形安定性及び延伸安定性とのバランスを勘案 すると、 D 乳酸と L 乳酸との構成比力 D 乳酸: L 乳酸 =99.5:0.5-95:5 、又は、 D—乳酸: L—乳酸 =0.5:99.5〜5: 95であるのがより好ましい。
[0033] 乳酸系重合体は、縮合重合法、開環重合法等の公知の方法で製造することが出 来る。例えば、縮合重合法では、 D 乳酸、 L 乳酸、または、これらの混合物を直 接脱水縮合重合して任意の組成を有する乳酸系重合体を得ることができる。また、開 環重合法では、乳酸の環状二量体であるラクチドを、必要に応じて重合調整剤等を 用いながら所定の触媒の存在下で開環重合することにより任意の組成を有する乳酸 系重合体を得ることができる。
[0034] 上記ラクチドには、 L 乳酸の二量体である Lーラクチド、 D 乳酸の二量体である D ラクチド、 D 乳酸と L 乳酸の二量体である DL ラクチドがあり、これらを必要 に応じて混合して重合することにより、任意の組成、結晶性を有する乳酸系重合体を 得ることができる。
[0035] D 乳酸と L 乳酸との共重合比が異なる乳酸系重合体をブレンドしてもよい。この 場合には、複数の乳酸系重合体の D 乳酸と L 乳酸との共重合比を平均した値が 上記 DL比の範囲内に入るように調整するのが好ま 、。
[0036] また、乳酸系重合体には、乳酸と他のヒドロキシカルボン酸との共重合体を用いるこ ともできる。この際、共重合される「他のヒドロキシカルボン酸単位」としては、グリコー ル酸、 3 ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 2 ヒドロキシ n—酪酸、 2 ヒドロキ シ—3, 3 ジメチル酪酸、 2 ヒドロキシー3 メチル酪酸、 2 メチル乳酸、 2 ヒド ロキシカプロン酸等の 2官能脂肪族ヒドロキシカルボン酸や力プロラタトン、ブチロラタ トン、バレロラタトン等のラタトン類が挙げられる。
[0037] さらに、乳酸系重合体は、必要に応じ、少量共重合成分として、テレフタル酸のよう な非脂肪族カルボン酸及び Z又はビスフエノール Aのエチレンオキサイド付加物のよ うな非脂肪族ジオールや、乳酸及び Z又は乳酸以外のヒドロキシカルボン酸を含ん でいてもよい。
[0038] 乳酸系重合体は高分子量であることが好ましぐ例えば、重量平均分子量が 5万以 上であるものが好ましぐ 6万〜 40万であるものが更に好ましぐ中でも 10万〜 30万 であるものが特に好ましい。乳酸系重合体の重量平均分子量が 5万未満であると、得 られたフィルムの機械的物性が劣るようになる可能性がある。
[0039] (A層のポリオレフイン系榭脂)
ポリオレフイン系榭脂としては、ポリエチレン、ポリプロピレン等のモノォレフィン重合 体、或 、は共重合体を主成分とするもの等が挙げられる。 [0040] ポリオレフイン系榭脂の具体例としては、低密度ポリエチレン、線形低密度ポリェチ レン (エチレン aーォレフイン共重合体)、中密度ポリエチレン、高密度ポリエチレ ン等のポリエチレン系榭脂、ポリプロピレン、エチレン プロピレン共重合体等のポリ プロピレン系榭脂、ポリ 4ーメチルペンテン、ポリブテン、エチレン 酢酸ビュル共重 合体等が挙げられる。
[0041] ポリオレフイン系榭脂は、例えばチーグラー触媒のようなマルチサイト触媒を用いて 製造されたもの、メタ口セン触媒のようなシングルサイト触媒を用いて製造されたもの であってもよい。
[0042] また、これらのポリオレフイン系榭脂に、エチレン ·プロピレンゴム等を分散複合ィ匕させ たポリオレフイン系熱可塑性エラストマ一を用いることもできる。
これらの榭脂は、単独で使用しても、 2種類以上を混合して使用してもよい。
[0043] シート状に成形する際の成形性、並びにシート状に成形した際の耐熱性等を勘案 すると、上記ポリオレフイン系榭脂の中でも、エチレン aーォレフイン共重合体等の 線形低密度ポリエチレン榭脂、ポリプロピレン榭脂、エチレン プロピレン共重合体、 プロピレンーブテン共重合体、エチレン プロピレンーブテン三元共重合体、及び、 エチレン プロピレン ジェン三元共重合体などが好ましぐその中でも、ポリプロピ レン、エチレン プロピレン共重合体のいずれか或いはこれらの混合樹脂が特に好 ましい。
上記のエチレン プロピレン共重合体としては、エチレン プロピレンランダム共重 合体が特に好ましい。
[0044] A層のベース榭脂としての屈折率の観点からみると、上記ポリオレフイン系榭脂の 中でも、屈折率 (n)が 1. 52未満のポリオレフイン系榭脂を用いるのが好ましい。
[0045] A層にお ヽては、ベース榭脂と微粉状充填剤等との界面における屈折散乱を利用 して光反射性を発現する。この屈折散乱効果は、ベース榭脂と微粉状充填剤等との 屈折率の差が大きくなるに従って大きくなる。したがって、 A層のベース榭脂としては 、微粉状充填剤等との屈折率差が大きくなるように、屈折率の小さい榭脂を用いるこ と力 子ましく、屈折率が 1. 52未満であるポリオレフイン系榭脂を用いることが好ましい [0046] (A層の微粉状充填剤)
A層における微粉状充填剤としては、有機質微粉体、無機質微粉体等が挙げられ る。
[0047] 有機質微粉体としては、木粉、パルプ粉等のセルロース系粉末や、ポリマービーズ 、ポリマー中空粒子等力も選ばれた少なくとも 1種を用いるのが好ま 、。
[0048] 無機質微粉体としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マ グネシゥム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カル シゥム、酸化チタン、アルミナ、水酸化アルミニウム、ヒドロキシアパタイト、シリカ、マイ 力、タルク、カオリン、クレー、ガラス粉、アスベスト粉、ゼォライト、珪酸白土等力ゝら選 ばれた少なくとも 1種が用いるのが好ま 、。
[0049] その中でも、 A層のベース榭脂との屈折率差が大きくて優れた反射性能を得ること ができるという観点から、屈折率が 1. 6以上である無機質微粉体、例えば炭酸カルシ ゥム、硫酸バリウム、酸ィ匕チタンまたは酸ィ匕亜鉛が好ましぐ中でも酸ィ匕チタンが特に 好ましい。
[0050] 酸化チタンは、他の無機質微粉体に比べて屈折率が顕著に高ぐ A層のベース榭 脂との屈折率差を顕著に大きくすることができるため、他の充填剤を使用した場合よ りも少ない配合量で優れた反射性能を得ることができる。また、酸ィ匕チタンを用いるこ とにより、フィルムの厚みが薄くても高い反射性能を有する反射フィルムを得ることが できる。
[0051] 酸化チタンの中でも、 A層における微粉状充填剤としては、アナターゼ型ゃルチル 型のような結晶型の酸ィ匕チタンが好ましぐその中でもベース樹脂との屈折率差を大 きくするという観点力も屈折率が 2. 7以上の酸ィ匕チタンが好ましい。この点で、ルチ ル型の結晶型の酸ィ匕チタンを用いることが好ましい。屈折率差が大きいほど、ベース 榭脂と酸ィ匕チタンとの境界面で光の屈折散乱作用が大きくなり、フィルムに光反射性 を容易に付与することができる。
[0052] また、フィルムに高い光反射性を付与するには、可視光に対する光吸収能が小さい 酸ィ匕チタンであるのが好ましい。酸ィ匕チタンの光吸収能を小さくするには、酸化チタ ンに含有されている着色元素の量が少ないことが好ましぐこの観点から、ニオブ含 有量が 500ppm以下の酸化チタンが好ましい。同時に、バナジウム含有量が 5ppm 以下であればさらに好ま U、。
[0053] 塩素法プロセスで製造される酸ィヒチタンは純度が高ぐこの製造法によればニオブ 含有量 500ppm以下の酸ィ匕チタン(「高純度酸化チタン」と称する)を得ることができ る。
[0054] 塩素法プロセスでは、酸化チタンを主成分とするルチル鉱を 1000°C程度の高温炉 で塩素ガスと反応させて、先ず四塩化チタンを生成させ、次いでこの四塩ィ匕チタンを 酸素で燃焼させることにより、該高純度酸ィ匕チタンを得ることができる。
[0055] 微粉状充填剤は、 A層のベース榭脂中に分散状態で存在するのが好ましい。そこ で、 A層の微粉状充填剤として用いる酸ィ匕チタンとしては、その表面が不活性無機酸 化物で被覆処理されたものが好まし ヽ。
[0056] 酸化チタンの表面を不活性無機酸化物で被覆処理することにより、酸化チタンの光 触媒活性を抑制することができ、フィルムの耐光性 (光の照射を受けた際の耐久性) を高めることができる。
[0057] 酸ィ匕チタンの表面を被覆処理する不活性無機酸ィ匕物としては、アルミナ、シリカ及 びジルコユア力もなる群力も選ばれた少なくとも 1種が好ましい。これらの不活性無機 酸化物で被覆処理すれば、酸化チタンによって得られる高 ヽ反射性能を損なうことな くフィルムの耐光性を高めることができる。また、前記に挙げた不活性無機酸ィ匕物のう ちの 2種類以上を組み合わせて併用するのがさらに好ましぐ中でもシリカと他の不 活性無機酸化物(例えばアルミナ及びジルコユア)とを組み合わせて併用して被覆す るのが特に好ましい。
[0058] 前記不活性無機酸化物の表面処理量は、表面処理後の酸化チタンの全質量に対 して 1〜7質量%となる量であるのが好ましい。表面処理量が 1質量%以上であれば 、高い光反射性を維持するのが容易となるので好ましい。また、表面処理量が 7質量 %以下であれば、 A層のベース榭脂への分散性が良好になり、均質なフィルムが得 られるので好ましい。
[0059] ベース榭脂への分散性を向上させるために、酸ィ匕チタンの表面をチタンカップリン グ剤、およびシランカップリング剤等カゝらなる群より選ばれる少なくとも 1種類の有機化 合物で表面処理することが好ましぐ中でもシランカップリング剤が特に好ま 、。
[0060] シランカップリング剤としては、例えばアルキル基、ァルケ-ル基、アミノ基、ァリー ル基、エポキシ基等を有するアルコキシシラン類のほ力、クロロシラン類、ポリアルコ キシアルキルシロキサン類などが挙げられる。具体的には、例えば η— β (アミノエチ ル) γ—ァミノプロピルメチルジメトキシシラン、 η— β (アミノエチル) γ—ァミノプロピ ルメチルトリメトキシシラン、 η— β (アミノエチル) γ—ァミノプロピルメチルトリエトキシ シラン、 γ—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 η —フエ二ルー γ —ァミノプロピルトリメトキシシラン等のアミノシランカップリング剤、ジメ チルジメトキシシラン、メチルトリメトキシシラン、ェチルトリメトキシシラン、プロピルトリメ トキシシラン、 η—ブチルトリメトキシシラン、 η—ブチルトリエトキシシラン、 η—ブチルメ チルジメトキシシラン、 η—ブチルメチルジェトキシシラン、イソブチルトリメトキシシラン 、イソブチルトリエトキシシラン、イソブチルメチルジメトキシシラン、 tert—ブチルトリメ トキシシラン、 tert—ブチルトリエトキシシラン、 tert—ブチルメチルジメトキシシラン、 t ert—ブチルメチルジェトキシシラン等のアルキルシランカップリング剤を挙げることが できる。
[0061] これらのシランカップリング剤は、それぞれ単独あるいは 2種類以上を組み合わせ て使用することができる。
以上の中でも、本反射フィルムに用いるシランカップリング剤としては、アミノシラン カップリング剤が好ましい。
[0062] また、ベース榭脂への分散性を向上させるために、酸ィ匕チタンの表面をシロキサン 化合物或いは多価アルコールで処理してもよ 、。
[0063] この際に用いるシロキサンィ匕合物としては、例えばジメチルシリコーン、メチルハイド ロジェンシリコーン、アルキル変性シリコーンなどを挙げることができる。
また、多価アルコールとしては、例えばトリメチロールェタン、トリメチロールプロパン
、トリプロパノールェタン、ペンタエリスリトール、およびペンタエリトリットなどを挙げる ことができ、中でもトリメチロールェタン、トリメチロールプロパンが特に好ましい。
[0064] これらシロキサンィ匕合物や多価アルコールィ匕合物は、それぞれ単独或いは 2種類 以上を組み合わせて使用することができる。 [0065] 上記のチタンカップリング剤、シランカップリング剤、シロキサンィ匕合物、或いは多価 アルコールなどによる表面処理量は、表面処理後の酸ィ匕チタンの全質量に対して 0 . 05〜3質量%であるのが好ましい。表面処理量が 0. 05質量%以上であれば、酸 化チタンの水分吸着を防止することができ、酸ィ匕チタン粒子の凝集を防止して分散 性を高めることができる。酸ィ匕チタンの分散性が向上すれば、ブッの発生が抑制され 、フィルム製品表面の外観を損ねたり、延伸製膜時に破断トラブルを起こすことがなく なる。また、ベース榭脂と酸ィ匕チタンとの界面の面積が充分に確保され、フィルムに 高い光反射性を付与することができ、さらには、表面処理量が 3質量%以下であれば 、酸ィ匕チタン粒子の滑性が適切になり、より安定した押出、製膜が可能になるので好 ましい。
[0066] なお、上記の「表面処理量」とは、表面処理後の酸ィ匕チタンの全質量に占める、表 面処理に使用した処理剤 (例えば不活性無機酸ィ匕物や有機化合物など)の質量割 合である。
[0067] 酸ィ匕チタン以外の微粉状充填剤を用いる場合にも、 A層のベース榭脂への分散性 を向上させるために、酸ィ匕チタン同様に表面処理するのが好ましい。例えば上記の 如くシロキサン化合物、多価アルコール系化合物、アミン系化合物、脂肪酸、脂肪酸 エステル等で表面処理するのが好まし 、。
[0068] A層の微粉状充填剤としての酸ィ匕チタンの平均粒径は、 0. 1 m〜l μ mであるの 力 S好ましく、 0. 2 /ζ πι〜0. 5 /z mであるのがより好ましい。
[0069] 酸ィ匕チタンの粒径が 0. 1 μ m以上であれば、 A層のベース榭脂への分散性が良好 であり、均質なフィルムを得ることができる。また、粒径が 1 μ m以下であれば、 A層の ベース榭脂と酸ィ匕チタンとの界面がより緻密に形成されるので、反射フィルムにより一 層優れた光反射性を付与することができる。
[0070] 酸化チタン以外の微粉状充填剤に関しては、その大きさが、平均粒径 0. 05 μ m〜 15 μ mであるのが好ましぐ 0. 1 m〜10 μ mであるのがより好ましい。微粉状充填 剤の平均粒径が 0. 05 m以上であれば、フィルムの粗表面化に伴って光散乱反射 が生じ、光沢度を高めることができる。また、微粉状充填剤の平均粒径が 15 /z m以 下であれば、 A層のベース榭脂と微粉状充填剤との界面がより緻密に形成されるの で、反射フィルムにより一層優れた光反射性を付与することができる。
[0071] A層における微粉状充填剤(特に酸化チタン)の含有量は、フィルムの光反射性、 機械的物性、生産性等を考慮すると、 A層を構成する榭脂組成物 Aに対して 10〜8 0質量%の割合であることが重要であり、 10〜70質量%、特に 10〜60質量%、その 中でも特に 20〜45質量%であることが好ましい。
[0072] A層にお 、て、榭脂組成物 Aに対する微粉状充填剤の含有量が 10質量%以上で あれば、ベース榭脂と微粉状充填剤との界面の面積を充分に確保することができる ので、フィルムに一層高い光反射性を付与することができる。また、微粉状充填剤の 含有量が 80質量%以下であれば、フィルムに必要な機械的性質を確保することがで きる。
[0073] 本反射フィルムの反射性能の点から、 A層の空隙率 (空隙がフィルム中に占める割 合)は 35%以下であるのが好ましぐ中でも 3〜35%の範囲であるのがより好ましぐ 特に 5%以上、さらには 7%以上であるのがより好ましい。
[0074] A層の空隙率が 35%を超えると、フィルムの機械的強度が低下してフィルム製造中 にフィルムが破断したり、使用時に耐熱性等の耐久性が不足することがある。
[0075] < 層>
B層は、脂肪族ポリエステル系榭脂或いはポリオレフイン系榭脂、或いはこれらの混 合榭脂 (これらをまとめて「B層のベース榭脂」 t ヽぅ)と、微粉状充填剤とを主成分とし て含有してなる榭脂組成物 B力 なる層であり、反射フィルムとして使用する際に反 射使用面側の最外層を構成する層である。
[0076] 反射フィルム中に 2層以上の B層を有してもよいが、少なくともそのうちの 1層は反射 使用面側の最外層である必要がある。
[0077] (B層のベース榭脂)
B層のベース樹脂は、 A層のベース樹脂として説明した樹脂と同様の樹脂を用いる ことができ、中でも A層同様に同様の乳酸系重合体を用いるのが特に好ま 、。
[0078] (B層の微粉状充填剤)
B層における微粉状充填剤の含有量は、 B層を構成する榭脂組成物 Bに対して 0. 1質量%より大きく且つ 5質量%未満であることが重要であり、好ましくは 0. 1質量% より大きく且つ 3質量%未満、中でも特に好ましくは 0. 1質量%より大きく且つ 1質量 %未満である。
[0079] 反射フィルムを液晶表示装置等に組み込んだ場合、 B層における微粉状充填剤の 含有割合が 5質量%よりも大きくなると、輝度が顕著に低下する傾向が認められる一 方、微粉状充填剤を全く含まない場合 (0質量%)は輝度は向上しない。微粉状充填 剤を或る程度の量、具体的には 0. 1質量%より大きく且つ 5質量%未満、特に 0. 1 質量%より大きく且つ 3質量%未満、中でも特に 0. 1質量%より大きく且つ 1質量% 未満の範囲の場合に輝度が高くなることが分った。この理由を推測すると、垂直入射 に比べ、或る程度の入射角をもって輝度向上シートに光が入射した方が、輝度向上 シートの光透過率が高くなり損失が少なくなつて輝度が向上するため、 B層中の微粉 状充填剤によって光を拡散させることが好ましい反面、 B層中の微粉状充填剤の含 有量が多過ぎると、光沢度が低下し、これに伴って輝度が低下するため、 B層中に或 る程度の量、すなわち 0. 1質量%より大きく且つ 5質量%未満の微粉状充填剤が含 有されている場合に輝度が向上するものと推測することができる。
[0080] また、反射フィルムの最外層としての B層中に微粉状充填剤が含まれて 、な 、と、 フィルム表面が平滑過ぎて、製造時或!、は運搬時等にフィルム同士が擦れて所謂卷 きズレによって傷付き易くなるため、この点からも B層中には 0. 1質量%より大きく且 つ 5質量%未満の割合で微粉状充填剤が含まれて 、るのが好ま 、。
[0081] さらにまた、反射フィルムの最外層としての B層中に微粉状充填剤が含まれていな いと、 A層、 B層間が剥離し易くなるため、この点からも B層中には 0. 1質量%ょり大 きく且つ 5質量%未満の割合で微粉状充填剤が含まれて 、るのが好ま 、。
[0082] B層における微粉状充填剤としては、 A層における微粉状充填剤と同様のものを用 いることがでさる。
但し、 B層における微粉状充填剤は、その平均粒径が 0. 3 μ m〜15 mであるも のが好ましぐ 0. 5 /ζ πι〜10 /ζ πιであるものがより好ましい。
[0083] 微粉状充填剤の粒径が 0. 3 μ m以上であれば、フィルムの粗表面化に伴 、光散 乱反射を生じるので、フィルムの反射指向性を小さくすることができる。また、微粉状 充填剤の粒径が 15 m以下であれば、 B層のベース榭脂と微粉状充填剤との界面 力 り緻密に形成されるので、反射フィルムにより一層優れた光反射性を付与するこ とがでさる。
[0084] (他の成分)
榭脂組成物 A及び榭脂組成物 Bは、ベース榭脂及び微粉状充填剤の機能を妨げ ない範囲で他の榭脂ゃ他の添加物を含んでいてもよい。例えば、加水分解防止剤、 酸化防止剤、光安定剤、熱安定剤、滑剤、分散剤、紫外線吸収剤、白色顔料、蛍光 増白剤、および、その他の添加剤を添加することができる。
中でも、耐久性を付与する目的で、加水分解防止剤を添加することが好ましいので 、以下詳述する。
[0085] 近年、液晶表示装置はパソコン用ディスプレイの他、自動車用カーナビゲーシヨン システムや車載用小型テレビ等にも使用されるようになり、高温度、高湿度に耐えるも のが必要となってきている。そのため、脂肪族ポリエステル系榭脂を含む反射フィル ムには、耐久性を付与する目的で、加水分解防止剤を添加することが好ましい。
[0086] 加水分解防止剤の好ま 、一例としてカルポジイミド化合物を挙げることができる。
カルポジイミド化合物としては、例えば、下記一般式の基本構造を有するものを好 ましいものとして挙げることができる。
— (N=C=N-R-)n—
式中、 nは 1以上の整数を示し、 Rは有機系結合単位を示す。例えば、 Rは脂肪族、 脂環族、芳香族のいずれかであることができる。また、 nは、通常、 1〜50の間で適当 な整数が選択される。
[0087] カルボジイミド化合物の具体例としては、ビス(ジプロピルフエ-ル)カルボジイミド、 ポリ(4, 4'—ジフエ-ルメタンカルボジイミド)、ポリ(p—フエ-レンカルボジイミド)、ポ リ(m—フエ-レンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルフ ェ-レンカルボジイミド)、ポリ(メチルージイソプロピルフエ-レンカルボジイミド)、ポリ
(トリイソプロピルフエ-レンカルボジイミド)等、および、これらの単量体が、カルボジィ ミドィ匕合物として挙げられる。これらのカルポジイミドィ匕合物は、単独で使用しても、あ るいは、 2種以上組み合わせて使用してもよい。
[0088] カルポジイミド化合物は、榭脂組成物 A又は Bを構成する脂肪族ポリエステル系榭 脂 100質量部に対して 0. 1〜3. 0質量部の割合で添加することが好ましい。
[0089] カルボジイミド化合物の添加量が 0. 1質量部以上であれば、得られるフィルムに耐 加水分解性の改良効果が十分に発現される。また、カルポジイミドィ匕合物の添加量 が 3. 0質量部以下であれば、得られるフィルムの着色が少なぐ高い光反射性を得る ことができる。
[0090] なお、本反射フィルムにお 、て、 A層は、榭脂組成物 Aの機能を妨げな 、範囲で榭 脂組成物 A以外の成分を含んでいてもよい。また、 B層は、榭脂組成物 Bの機能を妨 げな 、範囲で榭脂組成物 B以外の成分を含んで 、てもよ 、。
[0091] (積層構成)
本反射フィルムは、榭脂組成物 Aからなる A層と、榭脂組成物 B力もなる B層とを備 え、該 B層は少なくとも A層の一方の側に位置し、かつ反射フィルムとして使用する際 に反射使用面側の最外層となるように構成されるものであればよい。したがって、反 射使用面側から、 B層 ZA層の 2層構成、 B層 ZA層 ZB層の 3層構成、又は B層 Z A層 Z · ·の 4層或いはそれ以上の積層構成力もなるものであってもよ ヽ(前記「 · ·」は 任意の層を示す)。
[0092] A層と B層の各層毎の厚み比率は 20 : 1〜1 : 1であるのが好ましい。 A層と B層の厚 みの比率が 20 : 1よりも B層の厚みの比率が小さくなると、光沢度が低くなるため良好 な光反射特性を得られ難くなる。逆に 20 : 1よりも B層の厚みの比率が大きいと反射 率の低下が起こるようになる。
[0093] 本反射フィルムの裏面側の面、すなわち反射使用面とは反対側の面に、金属薄膜 層及び保護層をこの順に積層するようにしてもょ ヽ。
[0094] この金属薄膜層は、金属を蒸着することにより形成することができる。例えば、真空 蒸着法、イオン化蒸着法、スパッタリング法、イオンプレーティング法等によって形成 することができる。
[0095] 蒸着する金属としては、反射率が高い材料であれば特に制限されることなく使用す ることができ、一般的には銀、アルミニウム等が好ましぐ中でも銀が特に好ましい。
[0096] 金属薄膜層は、合成樹脂フィルム(「中間層」ともいう)に金属薄膜層を形成して金 属薄膜層フィルムを予め作製しておき、この金属薄膜層フィルムを本反射フィルムに 積層するよう〖こして形成してもよ 、。
[0097] この際、金属薄膜層フィルムの金属薄膜層と本反射フィルムとを重ねてもよいし、ま た、金属薄膜層フィルムの中間層と本反射フィルムとを重ねてもよぐ重ね合わせ面 を部分的若しくは全面的に接着するようにして積層すればょ 、。
[0098] 接着方法としては、各種接着剤を用いる公知の接着方法、接着剤を用いな!/ヽ公知 の熱接着方法を挙げることができる。中でも、熱のかからない接着方法や 210°C以下 の温度で熱接着する方法は、本反射フィルム内の空隙を保持することができ、高い 反射率を維持することができる点で好まし 、。
[0099] 金属薄膜層は、金属の単層品や積層品、あるいは、金属酸化物の単層品や積層 品でも、金属の単層品と金属酸化物の単層品との 2層以上の積層体でもよい。
[0100] 金属薄膜層の厚みは、層を形成する材料や層形成法等によって調整するのが好ま しぐ通常は 10nm〜300nmの範囲内とするのが好ましぐ中でも 20nm〜200nm の範囲内でするのがさらに好ましい。金属薄膜層の厚みが lOnm以上であれば、充 分な反射率が得られる。一方、金属薄膜層の厚みが 300nm以下であれば、生産効 率がよく好ましい。
[0101] 金属薄膜層を積層する場合の層構成を例示すると、本反射フィルム Z (必要に応じ て、アンカーコート層) Z金属薄膜層 Z保護層、或いは、本反射フィルム Z中間層 Z (必要に応じて、アンカーコート層) Z金属薄膜層 Z保護層の層構成等が挙げられる
[0102] なお、本反射フィルムを光が照射される側に配置する必要があり、そうであれば、上 記各層の間に他の層を有してもよいし、また、本反射フィルム、金属薄膜層などの各 層が複数の層から構成されて 、てもよ 、。
[0103] (フィルムの厚み)
本反射フィルムの厚みは、特に限定するものではないが、通常は 30 m〜500 mであり、実用面における取り扱 、性を考慮すると 50 μ m〜500 μ m程度の範囲内 であるのが好ましい。特に、小型、薄型の反射板用途の反射フィルムとしては、厚み 力 S30 μ m以上 100 μ m未満であるのが好ましい。力かる厚みの反射フィルムを用い れば、例えばノート型パソコンや携帯電話等の小型、薄型の液晶ディスプレイ等にも 使用することができる。
[0104] (反射率)
本反射フィルムは、波長が 550nmの光に対する表面の反射率が 95%以上である ことが好ましぐ 97%以上であることが更に好ましい。かかる反射率が 95%以上であ れば、良好な反射特性を示し、液晶ディスプレイ等の画面に充分な明るさを与えるこ とができる。なお、ここでの反射率は、光を照射する側 (反射使用面側)の表面の反 射率を意味する。
[0105] 本反射フィルムは、紫外線に晒された後でも、上記のような優れた反射率を保持す ることができる。上述のように本反射フィルムは、ベース榭脂として分子鎖中に芳香環 を含まない脂肪族ポリエステル系榭脂を用いることができるので、紫外線によってフィ ルムが劣化せず、優れた反射性を保持することができる。
[0106] (生分解性)
各層のベース榭脂として脂肪族ポリエステル系榭脂を用いた場合、本反射フィルム は、埋め立て処理した場合に微生物等による分解が可能で、廃棄に伴う種々の問題 を生じないという特徴を備えることになる。脂肪族ポリエステル系榭脂は、そのエステ ル結合部が土壌中で加水分解して分子量が 1 , 000程度に低下し、その後土壌中の 微生物等により生分解される。
[0107] この一方、芳香族ポリエステル系榭脂は分子内の結合安定性が高ぐエステル結 合部の加水分解が起こりにくい。したがって、芳香族ポリエステル系榭脂及びポリプ ロピレン系榭脂を埋め立て処理しても、分子量は低下せず、微生物等による生分解 も起こらない。その結果、長期にわたって土壌中に残存し、廃棄物埋め立て処理用 地の短命化を促進したり、自然の景観や野生動植物の生活環境を損なう等の問題を 引き起こすこと〖こなる。
[0108] (製造方法)
以下に、本反射フィルムの製造方法の一例について説明するが、下記製造法に何 等限定されるものではない。特に下記においては、 A層及び B層のベース榭脂として 脂肪族ポリエステル系榭脂を用いる場合の製造方法について説明するが、 A層及び B層のベース榭脂としてポリオレフイン系榭脂、或いは脂肪族ポリエステル系榭脂とポ リオレフイン系榭脂の混合榭脂を用いる場合も、同様に製造することができる。
[0109] 先ず、脂肪族ポリエステル系榭脂に、微粉状充填剤、さらに必要に応じて加水分解 防止剤、その他の添加剤等をそれぞれ所定量配合して榭脂組成物 A, Bをそれぞれ 作製する。
[0110] 具体的には、脂肪族ポリエステル系榭脂に微粉状充填剤、さらに必要に応じて加水 分解防止剤、その他の添加剤等を加えて、リボンプレンダー、タンブラ一或いはヘン シェルミキサー等で混合した後、バンバリ一ミキサー、 1軸または 2軸押出機等を用い て、脂肪族ポリエステル系榭脂の融点以上の温度 (例えば乳酸系重合体の場合には 170°C〜230°C)で混練することにより、榭脂組成物 A, Bをそれぞれ作製する。
[0111] この際、脂肪族ポリエステル系榭脂、微粉状充填剤、加水分解防止剤等を別々の フィーダ一等により所定量を添加することにより榭脂組成物 A, Bをそれぞれ作製する ようにしてもよいし、また、予め、微粉状充填剤、加水分解防止剤等を脂肪族ポリエス テル系榭脂に高濃度に配合した、いわゆるマスターバッチを作っておき、このマスタ 一パッチと脂肪族ポリエステル系榭脂とを混合して所望の濃度の榭脂組成物 A, Bを それぞれ作製してもよい。
[0112] 次に、以上のようにして得られた榭脂組成物 A, Bをそれぞれの押出機で溶融し、 シート状に押出して積層する。
例えば、榭脂組成物 A及び榭脂組成物 Bをそれぞれ乾燥させた後、それぞれ押出 機に供給し、榭脂の融点以上の温度に加熱して溶融する。この際、榭脂組成物 A及 び榭脂組成物 Bを乾燥させずにそれぞれ押出機に供給しても良いが、乾燥させない 場合には溶融押出する際に真空ベントを用いるのが好ま 、。
[0113] 押出温度等の条件は、分解によって分子量が低下すること等を考慮して設定する のが好ましぐ例えば、押出し温度は乳酸系重合体の場合であれば 170°C〜230°C の範囲内で設定するのが好ましい。
押出し後は、例えば、溶融した榭脂組成物 A及び榭脂組成物 Bを Tダイのスリット状 の吐出ロカ それぞれ押し出して積層し、この積層体を冷却口—ルに密着固化させ てキャストシートを形成すればょ 、。
[0114] 本反射フィルムにお ヽては、上記のように榭脂組成物 A及び榭脂組成物 Bを溶融 製膜して積層した後、この積層体を少なくとも 1軸方向に 1. 1倍以上延伸するのが好 ましい。
[0115] フィルム内部に空隙を形成して反射率を高めるという観点からも延伸は重要である 。つまり、脂肪族ポリエステル系榭脂に適した延伸温度で延伸を行うと、マトリックスと なる脂肪族ポリエステル系榭脂は延伸されるが、微粉状充填剤はそのままの状態で とどまろうとし、このように延伸時における脂肪族ポリエステル系榭脂と微粉状充填剤 の延伸挙動が異なるため、脂肪峠ポリエステル系榭脂と微粉状充填剤との界面が剥 離して、空隙が形成され、さらに反射率を高めることができる。
[0116] フィルム内に空隙を形成する場合には、得られたキャストシートを面積倍率におい て 5倍以上に延伸することが好ましぐ 7倍以上に延伸することが更に好ましい。面積 倍率において 5倍以上に延伸することにより 5%以上の空隙率を実現することができ 、 7倍以上に延伸することにより 20%以上の空隙率を実現することができ、 7. 5倍以 上に延伸することにより、 30%以上の空隙率も実現することができる。
[0117] さらに、本反射フィルムは、 2軸方向に延伸するのが好ましい。 2軸延伸することによ り、より高い空隙率を得ることができるようになり、フィルムの反射率をさらに向上させ ることができる。また、フィルムを 1軸延伸したのみでは、形成される空隙が一方向に 伸びた繊維状形態にし力ならないが、 2軸延伸することにより、その空隙は縦横両方 向に伸ばされた円盤状形態になる。つまり、 2軸延伸することによって、榭脂と微粉状 充填剤との界面の剥離面積が増大し、フィルムの白化が進行し、その結果、フィルム の光反射性をより一層高めることができる。しかも 2軸延伸すると、フィルムの収縮方 向に異方性がなくなるので、反射フィルムの耐熱性を向上させることができ、さらには 機械的強度を増加させることもできる。
[0118] なお、 2軸延伸の延伸順序は特に制限するものではなぐ例えば、同時 2軸延伸で も逐次延伸でも構わない。延伸設備を用いて、溶融製膜した後、ロール延伸によって MD (フィルムの引取り方向)に延伸した後、テンター延伸によって TD (前記 MDに直 角な方向)に延伸しても良いし、チューブラー延伸等によって 2軸延伸を行ってもよい
[0119] キャストシートを延伸する際の延伸温度は、例えば A層のベース榭脂が脂肪族ポリ エステルの場合には、ガラス転移温度 (Tg)程度以上力ゝら該 Tg + 50°C以下の範囲と するのが好ましぐ乳酸系重合体の場合には 50〜90°Cとするのが好ましい。延伸温 度が 50°C以上であれば、延伸時にフィルムが破断することがなぐ 90°C以下であれ ば延伸配向が高くなり、その結果、空隙率が大きくなるので高い反射率を得ることが できる。
[0120] また、本反射フィルムにお 、ては、フィルムに耐熱性および寸法安定性を付与する ために、延伸後に熱固定を行うことが好ましい。
[0121] フィルムを熱固定するための処理温度は 90〜160°Cであることが好ましぐ 110〜1
40°Cであることが更に好ましい。熱固定に要する処理時間は、好ましくは 1秒〜 5分 である。また、延伸設備等については特に限定はないが、延伸後に熱固定処理を行 うことができるテンター延伸を行うことが好ましい。
[0122] (用途)
本反射フィルムは、光反射性が高ぐ反射使用面側における光沢度及び輝度が高 いという特徴を備えている。したがって、ノ ソコンゃテレビなどのディスプレイ、照明器 具、照明看板等の反射板等に用いられる反射フィルムとして好適であるばかりか、薄 型化が要求される用途の反射フィルムとして特に好適である。
[0123] 近年、軽量、小型ノートブック型コンピュータ、車載用小型テレビ等の需要が増えて おり、これに対応するような薄型液晶パネルが求められている。そのため、反射フィル ムとしても薄型化が要求されており、本反射フィルムはこの需要にも対応することがで き、総厚み 100 m未満の反射フィルムを実現することができる。
[0124] 具体的には、本反射フィルムを用いて液晶ディスプレイ等に用いられる反射板を形 成することができる。例えば、本反射フィルムを金属板もしくは榭脂板に積層して反射 板を形成することができ、この反射板は、液晶表示装置、照明器具、照明看板等に 用 ヽられる反射板として有用である。
[0125] 以下に、このような反射板の製造方法の一例について説明する。
本反射フィルムを金属板もしくは榭脂板に被覆する方法としては、接着剤を使用す る方法、接着剤を使用せずに熱融着する方法、接着性シートを介して接着する方法 、押出しコーティングする方法等があり、特に限定するものではない。 [0126] 例えば、金属板もしくは榭脂板の反射フィルムを貼り合わせる側の面に、ポリエステ ル系、ポリウレタン系、エポキシ系等の接着剤を塗布し、本反射フィルムを貼り合わせ ることができる。この方法においては、リバースロールコーター、キスロールコーター 等の一般的に使用されるコーティング設備を使用し、反射フィルムを貼り合わせる金 属板等の表面に乾燥後の接着剤膜厚が 2 m〜4 m程度となるように接着剤を塗 布する。次いで、赤外線ヒーター及び熱風加熱炉により塗布面の乾燥及び加熱を行 い、板の表面を所定の温度に保持しつつ、直にロールラミネーターを用いて、反射フ イルムを被覆、冷却することにより、反射板を得ることできる。
[0127] この場合、金属板等の表面を 210°C以下に保持すると、反射板の光反射性を高く 維持できて好ましい。
金属板等の表面温度は 160°C以上であるのが好ましい。
実施例
[0128] 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれらに限定 されるものではなぐ本発明の技術的思想を逸脱しない範囲内で種々の応用が可能 である。
なお、実施例に示す測定値および評価は以下に示すようにして行った。ここで、フィ ルムの引取り(流れ)方向を MD、その直交方向を TDと表示する。
[0129] (測定および評価方法)
(1)平均粒径
(株)島津製作所製の型式「SS— 100」の粉体比表面測定器 (透過法)を用いた。 断面積 2cm2、高さ lcmの試料筒に試料 3gを充填して、 500mm水柱で 20ccの空気 透過の時間を測定し、これより平均粒径を算出した。
[0130] (2)反射率 (%)
分光光度計(「U— 4000」、(株)日立製作所製)に積分球を取付け、波長 550nm の光に対する反射率を測定した。この際、反射使用面側、すなわち反射フィルム面 側から光を照射した。なお、測定前に、アルミナ白板の反射率が 100%となるように 光度計を設定した。
[0131] (3)光沢度 JIS Z— 8741に準じて、入射角、受光角を 60° に合わせて、フィルムの光沢度を 測定した。但し、反射使用面側 (すなわち、反射フィルムの B層側)に光の照射して光 沢度を測定した。
光沢度の測定には、デジタル変角光沢計 UGV— 5DP型 (スガ試験機社製)を使 用した。
[0132] (4)輝度
26インチ液晶バックライトユニット(SAMSUNG社製: LTA260W— 02)の中に作 製した反射フィルムを組込み、 CCFL、拡散板、拡散シート及び DBEF— Dの順に重 ね合わせて、輝度計(トプコンエンジニアリング (株)社製: BM— 7)を用いて中心輝 度の測定を行った。
[0133] (5)酸ィ匕チタン中のニオブ濃度 (ppm)
JIS M— 8321「チタン鉱石 ニオブ定量方法」に基づいてニオブ含有量を測定し た。すなわち、試料 (酸ィ匕チタン)を 0. 5g秤とり、この試料を、融解合剤 [水酸化ナトリ ゥム:過酸ィ匕ナトリウム = 1: 2 (質量比) ] 5gが入れられたニッケル製るつぼに移し入れ 、かき混ぜた後、その試料の表面を約 2gの無水炭酸ナトリウムで覆い、るつぼ内で試 料を加熱融解して融成物を形成した。この融成物を、るつぼ内に入れたままの状態 で放冷した後、融成物に温水 100ml及び塩酸 50mlを少量ずつ加えて溶解させて、 さらに水をカ卩えて 250mlにメスアップした。この溶液を、 ICP発光分光装置で測定し、 ニオブ含有量を求めた。ただし、測定波長は 309. 42nmとした。
[0134] (6)酸化チタン中のバナジウム含有量 (ppm)
試料 (酸ィ匕チタン)を 0. 6g秤とり、硝酸 10mlを加えてマイクロウェーブ試料分解装 置内で溶解し、得られた溶液を 25mlにメスアップして、 ICP発光分光装置を用いて 定量分析を行った。
マイクロウエーブ試料分解装置には、アステック社製の MDS— 2000型を用いて、 分解操作は下記表 1のステップに従って行った。また、測定波長は 311. 07nmとし た。
[0135] [表 1] ステップ 疋 分解時間 容器内上限圧力
1 6 0 O W X 3 0 % 1 0分 4 0 p s i
2 6 0 O W 3 0 % 1 o分 1 0 0 p s i
3 6 0 O WX 3 0 % 2 0分 1 4 0 p s i
4 6 0 O W X 3 0 % 2 0分 1 7 0 p s i
5 6 0 O WX 3 0 % 2 0分 2 0 0 p s i
[0136] (7)屈折率
榭脂の屈折率は、 JIS K— 7142の A法に基づ 、て測定した。
[0137] (8) A層内部の空隙率(%)
延伸前のフィルムの密度(「未延伸フィルム密度」と表記する)と、延伸後のフィルム の密度(「延伸フィルム密度」と表記する)とを測定し、下記式に代入してフィルムの空 隙率を求めた。
[0138] 空隙率 (%) = { (未延伸フィルム密度一延伸フィルム密度) Z未延伸フィルム密度 }
X 100
[0139] [実施例 1]
(A層用の樹脂組成物 Aの作製)
重量平均分子量 20万の乳酸系重合体(カーギルダウポリマー社製 NW4032D、 D 体: L体 = 1. 5 : 98. 5、ガラス転移温度 65°C)のペレットと、平均粒径 0.21 mの酸 化チタン (ニオブ濃度 150ppm;アルミナ、シリカによる表面処理あり)とを、 50 : 50の 質量割合で混合して混合物を得た。この混合物 100質量部に対して、加水分解防止 剤としてカルポジイミド変性イソシァネート(日清紡績 (株)製カルポジライト LA— 1) 2 . 5質量部を加えて混合した後、二軸押出機を用いてペレツトイ匕して、いわゆるマスタ 一バッチを作製した。そして、このマスターバッチと前記乳酸系重合体とを 60 :40の 質量割合で混合して榭脂組成物 Aを作製した。
[0140] (B層用の榭脂組成物 Bの作製)
重量平均分子量 20万の乳酸系重合体(カーギルダウポリマー社製 NW4032D、 D 体: L体 = 1. 5 : 98. 5、ガラス転移温度 65°C)のペレットに、平均粒径 2 mのシリカ を添加し、さらに加水分解防止剤(ビス (ジプロピルフエニル)カルポジイミド) 2. 5質 量部を添加して混合した後、二軸押出機を用いてペレツトイ匕して、いわゆるマスター バッチを作製した。そして、このマスターバッチと前記乳酸系重合体とを 60 :40の質 量割合で混合して榭脂組成物 Bを作製した。
なお、榭脂糸且成物 B中の上記シリカの量は 0. 2質量%であった。
[0141] (フィルムの作製)
榭脂組成物 A、 Bをそれぞれ 220°Cに加熱された押出機 Aおよび Bに供給し、押出 機 Aおよび Bから、溶融状態の榭脂組成物 Aおよび Bをそれぞれ Tダイを用いて B層 ZA層/ B層の 3層構成となるように 220°Cでシート状に押出し、冷却固化してフィル ムを形成した。得られたフィルムを、温度 65°Cで、 MDに 2. 5倍、 TDに 2. 8倍に同 時二軸延伸した後、 140°Cで熱処理し、厚さ 250 m (A層: 210 m、 B層: 20 m )の反射フィルムを得た。
[0142] 得られた反射フィルムにつ 、て、光沢度、反射率および輝度の測定を行った。その 結果を表 2に示す。
[0143] [実施例 2]
表 2に示すように、 B層用の榭脂組成物 Bの作製において、シリカを榭脂組成物 Bの 2質量%となるように添加したした以外は、実施例 1と同様にして、厚さ 250 /ζ πι(Α層 : 210 m、 Β層: 20 m)の反射フィルムを得た。得られた反射フィルムにつ 、て、光 沢度、反射率および輝度の測定を行い、その結果を表 2に示す。
[0144] [実施例 3]
表 2に示すように、実施例 1において、 B層用の榭脂組成物 Bに関して、シリカの代 わりに、平均粒径 0.25 mの酸化チタン(ニオブ濃度 430ppm;アルミナ、シリカおよ びジルコユアによる表面処理あり)を 0. 2質量%の割合で添カ卩してマスターバッチを 作製した以外は、実施例 1と同様にして、厚さ 250 μ m (A層: 210 m、 B層: 20 m )の反射フィルムを得た。得られた反射フィルムについて、光沢度、反射率および輝 度の測定を行い、その結果を表 2に示す。
[0145] [比較例 1]
表 2に示すように、 B層用の榭脂組成物 Bの作製において、シリカを榭脂組成物 Bの 0. 1質量%となるように添加したした以外は、実施例 1と同様にして、厚さ 250 /ζ πι ( Α層: 210 m、: B層: 20 m)の反射フィルムを得た。得られた反射フィルムにつ!/ヽ て、光沢度、反射率および輝度の測定を行い、その結果を表 2に示す。
[0146] [比較例 2]
表 2に示すように、 B層用の榭脂組成物 Bの作製において、シリカを榭脂組成物 Bの 20質量%となるように添加したした以外は、実施例 1と同様にして、厚さ 250 ;z m (A 層: 210 m、 B層: 20 m)の反射フィルムを得た。得られた反射フィルムにつレ、て、 光沢度、反射率および輝度の測定を行い、その結果を表 2に示す。
[0147] [表 2]
Figure imgf000028_0001
[0148] 実施例 1、 2及び比較例 1、 2は、 B層中の微粉状充填剤の含有量のみが異なるも のであるから、これらの微粉状充填剤含有量と光沢度および輝度との関係を検討す る。
[0149] 表 2の結果より、光沢度に関しては、 B層における微粉状充填剤の含有量が多くなる につれて低下しているが、輝度に関しては、 0. 1質量%に比べて 0. 2質量0 /0の方が 高くなり、 2質量%になると若干低下するが好ましい範囲を維持し、さらに 5質量%より も大きい 20質量%になると顕著に低下しており、 0. 1質量0 /0より大きく且つ 5質量0 /0 未満、特に 0. 1質量%より大きく且つ 3質量%未満、中でも特に 0. 1質量%より大き く且つ 1質量%未満の範囲に好ましい範囲があるものと考えられる。
[0150] [実施例 4]
(酸化チタンの作製)
ノ、ロゲン化チタンを気相酸ィ匕するために行なわれる、いわゆる塩素法プロセスによ り得られたルチル型酸化チタン(平均粒径: 0. 28 m、ニオブ含有量: 390ppm、バ ナジゥム含有量: 4ppm)の表面に、処理後の酸化チタン全体に対してアルミナ、シリ 力、ジルコユアがそれぞれ 1質量%、 0. 5質量%、 0. 5質量%含まれるように不活性 無機酸化物層を形成し、さらに、処理後の酸ィ匕チタン全体に対してトリメチロールエタ ンが 0. 3質量%含まれるように有機化合物層を形成した。
[0151] (A層用の榭脂組成物 Aの作製)
エチレン プロピレンランダム共重合体(屈折率: 1. 50)のペレットと、上記酸化チ タンとを 30: 70の質量割合で混合して混合物を得た。この混合物を二軸押出機を用
V、てペレット化して、 、わゆるマスターバッチを作製した。
このマスターバッチと前記エチレン プロピレンランダム共重合体のペレットとを 90 : 10の質量割合で混合し、榭脂組成物 Aを作製した。
[0152] (B層用の榭脂組成物 Bの作製)
エチレン プロピレンランダム共重合体(屈折率: 1. 50)のペレットと、上記酸化チ タンとを 30: 70の質量割合で混合して混合物を得た。この混合物を二軸押出機を用
V、てペレット化して、 、わゆるマスターバッチを作製した。
このマスターバッチと前記エチレン プロピレンランダム共重合体のペレットとを 1: 9
9の質量割合で混合し、榭脂組成物 Bを作製した。
[0153] (フィルムの作製)
榭脂組成物 A、 Bをそれぞれ 200°Cに加熱された押出機 Aおよび Bに供給し、押出 機 Aおよび Bから、溶融状態の榭脂組成物 Aおよび Bをそれぞれ Tダイを用いて B層
ZA層の 2層構成となるようにシート状に押出し、冷却固化してフィルムを形成した。
[0154] 得られたフィルムを、温度 135°Cで、 MDに 5倍、 TDに 5倍に同時二軸延伸して、 厚さ 75 m (A層: 70 m、 B層: 5 m)の反射フィルムを得た。得られた反射フィル ムについて、光沢度、反射率および輝度の測定を行った。その結果を表 3に示す。
[0155] なお、 A層内部の空隙率については、榭脂組成物 Aを押出機 Aに供給して、上記 の操作に従って、 A層のみの単層フィルム(厚さ 70 m)を得、単層フィルムについて 測定を行った。その結果を表 3に示す。
[0156] [実施例 5]
B層用の榭脂組成物 Bを次のように作製した点を除いて、実施例 4と同様に反射フ イルムを得た。得られた反射フィルムについて、実施例 4と同様の評価を行った。その 結果を表 3に示す。
[0157] (B層用の榭脂組成物 Bの作製) エチレン プロピレンランダム共重合体(屈折率: 1. 50)のペレットと、シリカ (平均 粒径: 2 m)とを 99. 7 : 0. 3の質量割合で混合して混合物を得、この混合物を二軸 押出機を用 、てペレツトイ匕した。
[0158] [実施例 6]
実施例 4の酸化チタンの作製にぉ 、て、トリメチロールェタンの代わりにイソプチルト リエトキシシランを用いた以外は、実施例 4と同様に反射フィルムを得た。得られた反 射フィルムについて、実施例 4と同様の評価を行った。その結果を表 3に示す。
[0159] [比較例 3]
B層用の榭脂組成物 Bを次のように作製した点を除いて、実施例 4と同様に反射フ イルムを得た。得られた反射フィルムについて、実施例 4と同様の評価を行った。その 結果を表 3に示す。
[0160] (B層用の榭脂組成物 Bの作製)
エチレン プロピレンランダム共重合体(屈折率: 1. 50)のペレットと、シリカ (平均 粒径: 2 m)とを 90: 10の質量割合で混合して混合物を得、この混合物を二軸押出 機を用いてペレツトイ匕した。
[0161] [比較例 4]
B層用の榭脂組成物 Bとして、エチレン プロピレンランダム共重合体 (屈折率: 1. 50)のペレットをそのまま用いた点を除いて、実施例 4と同様に反射フィルムを得た。 得られた反射フィルムについて、実施例 4と同様の評価を行った。その結果を表 3に 示す。
[0162] [表 3]
Figure imgf000030_0001
表 3から明らかなように、実施例 4〜6の反射フィルムは、光沢度は 50以上、反射率 は 97%以上であり、輝度も含めた光反射性に関し優れた光反射性を有していること がわかった。
[0164] 他方、比較例 3の反射フィルムは、光沢度は 50未満で、反射率も 97%未満であり、 輝度も含めた光反射性の点では、実施例 4〜6の反射フィルムに劣ることがわ力つた
[0165] また、比較例 4の反射フィルムは、光沢度は 70以上である力 反射率が 97%未満 であり、輝度も含めた光反射性の点で、実施例 4〜6の反射フィルムに劣ることがわか つた o

Claims

請求の範囲
[1] 脂肪族ポリエステル系榭脂或いはポリオレフイン系榭脂、及び微粉状充填剤を含有 してなる榭脂組成物 Aを含み、榭脂組成物 Aにおける該微粉状充填剤の含有割合 が 10〜80質量%である A層を備えると共に、
脂肪族ポリエステル系榭脂或いはポリオレフイン系榭脂、及び微粉状充填剤を含有 してなる榭脂組成物 Bを含み、榭脂組成物 Bにおける該微粉状充填剤の含有割合が 0. 1質量%より大きく且つ 5質量%未満である B層を反射使用面側の最外層として備 えた反射フィルムであって、
反射使用面側における 60° での光沢度が 50〜90であることを特徴とする反射フィ ノレム。
[2] 榭脂組成物 Aは、脂肪族ポリエステル系榭脂及び微粉状充填剤を含有してなり、 榭脂組成物 Aにおける該微粉状充填剤の含有割合が 10〜60質量%である請求項 1に記載の反射フィルム。
[3] 榭脂組成物 Aのポリオレフイン系榭脂力 ポリプロピレン及びエチレン プロピレン 共重合体の 、ずれか或いはこれらの混合榭脂である請求項 1に記載の反射フィルム
[4] A層が含有する微粉状充填剤は酸化チタンであり、榭脂組成物 Aにおける該酸ィ匕 チタンの含有割合が 10〜60質量%であることを特徴とする請求項 1乃至 3のいずれ かに記載の反射フィルム。
[5] B層が含有する微粉状充填剤は、酸化チタン、炭酸カルシウム、硫酸バリウム、酸 化亜鉛及びシリカカゝらなる群カゝら選ばれる少なくとも 1種類であることを特徴とする請 求項 1乃至 4の 、ずれかに記載の反射フィルム。
[6] A層と B層との各層毎の厚み比率が 20 : 1〜1: 1であることを特徴とする請求項 1乃 至 5の!、ずれかに記載の反射フィルム。
[7] A層が含有する微粉状充填剤としての酸化チタンは、ニオブ含有量が 500ppm以 下の酸ィ匕チタンであることを特徴とする請求項 4乃至 6のいずれかに記載の反射フィ ノレム。
[8] A層が含有する微粉状充填剤としての酸化チタンは、その表面が、シリカ、アルミナ 及びジルコユアカゝらなる群カゝら選ばれる少なくとも 1種類の不活性無機酸ィ匕物で被覆 された酸ィ匕チタンであることを特徴とする請求項 4乃至 7のいずれかに記載の反射フ イノレム。
[9] A層が含有する微粉状充填剤としての酸化チタンは、その表面が、シリカとシリカ以 外の不活性無機酸ィ匕物とを組合わせて併用して被覆された酸ィ匕チタンであることを 特徴とする請求項 4乃至 7のいずれかに記載の反射フィルム。
[10] 榭脂組成物 A及び榭脂組成物 Bの脂肪族ポリエステル系榭脂はいずれも乳酸系 重合体であることを特徴とする請求項 1乃至 9のいずれかに記載の反射フィルム。
[11] 請求項 1乃至 10のいずれかに記載の反射フィルムを備えた反射板。
PCT/JP2006/324967 2005-12-22 2006-12-14 反射フィルム WO2007072737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007533301A JP4041160B2 (ja) 2005-12-22 2006-12-14 反射フィルム
EP20060834721 EP1964669B1 (en) 2005-12-22 2006-12-14 Reflective film
US12/158,829 US20100279091A1 (en) 2005-12-22 2006-12-14 Reflective film
CN2006800486742A CN101346227B (zh) 2005-12-22 2006-12-14 反射膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-369697 2005-12-22
JP2005369697 2005-12-22

Publications (1)

Publication Number Publication Date
WO2007072737A1 true WO2007072737A1 (ja) 2007-06-28

Family

ID=38188518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324967 WO2007072737A1 (ja) 2005-12-22 2006-12-14 反射フィルム

Country Status (7)

Country Link
US (1) US20100279091A1 (ja)
EP (1) EP1964669B1 (ja)
JP (1) JP4041160B2 (ja)
KR (1) KR100881269B1 (ja)
CN (1) CN101346227B (ja)
TW (2) TWI506303B (ja)
WO (1) WO2007072737A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155427A (ja) * 2007-12-26 2009-07-16 Teijin Dupont Films Japan Ltd 光ダクト用白色フィルム
JP2009262512A (ja) * 2008-04-30 2009-11-12 Teijin Dupont Films Japan Ltd 積層フィルム
JP2010066512A (ja) * 2008-09-10 2010-03-25 Sekisui Plastics Co Ltd 光反射板及び光反射積層板
JP2012058730A (ja) * 2010-08-12 2012-03-22 Yupo Corp 光反射体、照明器具、電飾看板及び面光源装置
KR101772015B1 (ko) * 2010-03-23 2017-08-28 도레이 카부시키가이샤 백색 폴리에스테르 필름, 그것을 사용한 광반사판 및 액정 디스플레이용 백라이트

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156966A (ja) * 2008-12-04 2010-07-15 Yupo Corp 光反射体及びそれを用いた面光源装置
JP2011060819A (ja) * 2009-09-07 2011-03-24 Nitto Denko Corp 光半導体素子収納用実装パッケージ用樹脂組成物およびそれを用いて得られる光半導体発光装置
JP5805951B2 (ja) * 2010-07-16 2015-11-10 三菱樹脂株式会社 反射材
CN102606980A (zh) * 2012-03-05 2012-07-25 昆山市诚泰电气股份有限公司 反射板
US9434870B2 (en) 2012-09-19 2016-09-06 Momentive Performance Materials Inc. Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
US8946333B2 (en) 2012-09-19 2015-02-03 Momentive Performance Materials Inc. Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
JP2014199285A (ja) * 2013-03-29 2014-10-23 積水化成品工業株式会社 光反射板
CN103869393A (zh) * 2013-12-13 2014-06-18 合肥乐凯科技产业有限公司 一种液晶显示器用反射膜
CN103777261B (zh) * 2014-02-10 2016-03-02 张家港康得新光电材料有限公司 一种反射膜
JP2019105694A (ja) * 2017-12-11 2019-06-27 株式会社ダイセル 防眩フィルム並びにその製造方法及び用途
CN110305415B (zh) * 2019-07-24 2021-04-20 金旸(厦门)新材料科技有限公司 一种隔热聚丙烯复合材料及其制备原料和制备方法以及应用
CN110927848A (zh) * 2019-12-27 2020-03-27 浙江启诚新材料科技有限公司 一种反射膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239540A (ja) 1991-01-22 1992-08-27 Toray Ind Inc 液晶ディスプレイ反射板用白色ポリエステルフイルム
JPH10193494A (ja) 1997-01-16 1998-07-28 Oike Ind Co Ltd 拡散反射フィルム
JP2002122717A (ja) 2000-10-18 2002-04-26 Oike Ind Co Ltd 耐久性反射フイルム
JP2002138150A (ja) 2000-11-02 2002-05-14 Teijin Ltd 白色ポリエステルフィルム
JP2003139926A (ja) * 2001-10-31 2003-05-14 Toray Ind Inc 光反射フィルムおよびそれを用いた画像表示用バックライト装置
JP2004301967A (ja) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc 反射体、それを用いた照明装置および表示装置
JP2004330727A (ja) 2003-05-12 2004-11-25 Teijin Dupont Films Japan Ltd 積層ポリエステルフィルム
WO2004104077A1 (ja) * 2003-05-20 2004-12-02 Mitsubishi Plastics, Inc. 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP3617535B2 (ja) 1993-12-21 2005-02-09 三井化学株式会社 液晶表示装置のバックライトユニット用光反射体
WO2005045482A1 (ja) * 2003-10-17 2005-05-19 Mitsubishi Plastics, Inc. 反射フィルム
JP3755905B2 (ja) 1994-04-15 2006-03-15 三井化学株式会社 液晶表示装置バックライトユニット部の光反射シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251505B1 (en) * 1999-04-01 2001-06-26 E. I. Du Pont De Nemours And Company Backlit display composite film
US6306518B1 (en) * 1999-05-19 2001-10-23 Montell Technology Company Bv High surface gloss, co-extruded sheets from propylene polymer materials
JP4516165B2 (ja) * 1999-08-04 2010-08-04 株式会社ユポ・コーポレーション 多層樹脂延伸フィルム
KR100553655B1 (ko) * 2003-03-12 2006-02-24 도레이새한 주식회사 미세기공 함유 폴리에스테르 필름
JP3946183B2 (ja) * 2003-10-27 2007-07-18 帝人デュポンフィルム株式会社 白色ポリエステルフィルム
KR100818907B1 (ko) * 2004-11-16 2008-04-07 미쓰비시 쥬시 가부시끼가이샤 반사 필름 및 반사판

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239540A (ja) 1991-01-22 1992-08-27 Toray Ind Inc 液晶ディスプレイ反射板用白色ポリエステルフイルム
JP3617535B2 (ja) 1993-12-21 2005-02-09 三井化学株式会社 液晶表示装置のバックライトユニット用光反射体
JP3755905B2 (ja) 1994-04-15 2006-03-15 三井化学株式会社 液晶表示装置バックライトユニット部の光反射シート
JPH10193494A (ja) 1997-01-16 1998-07-28 Oike Ind Co Ltd 拡散反射フィルム
JP2002122717A (ja) 2000-10-18 2002-04-26 Oike Ind Co Ltd 耐久性反射フイルム
JP2002138150A (ja) 2000-11-02 2002-05-14 Teijin Ltd 白色ポリエステルフィルム
JP2003139926A (ja) * 2001-10-31 2003-05-14 Toray Ind Inc 光反射フィルムおよびそれを用いた画像表示用バックライト装置
JP2004301967A (ja) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc 反射体、それを用いた照明装置および表示装置
JP2004330727A (ja) 2003-05-12 2004-11-25 Teijin Dupont Films Japan Ltd 積層ポリエステルフィルム
WO2004104077A1 (ja) * 2003-05-20 2004-12-02 Mitsubishi Plastics, Inc. 脂肪族ポリエステル系樹脂反射フィルム及び反射板
WO2005045482A1 (ja) * 2003-10-17 2005-05-19 Mitsubishi Plastics, Inc. 反射フィルム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155427A (ja) * 2007-12-26 2009-07-16 Teijin Dupont Films Japan Ltd 光ダクト用白色フィルム
JP2009262512A (ja) * 2008-04-30 2009-11-12 Teijin Dupont Films Japan Ltd 積層フィルム
JP2010066512A (ja) * 2008-09-10 2010-03-25 Sekisui Plastics Co Ltd 光反射板及び光反射積層板
KR101772015B1 (ko) * 2010-03-23 2017-08-28 도레이 카부시키가이샤 백색 폴리에스테르 필름, 그것을 사용한 광반사판 및 액정 디스플레이용 백라이트
JP2012058730A (ja) * 2010-08-12 2012-03-22 Yupo Corp 光反射体、照明器具、電飾看板及び面光源装置

Also Published As

Publication number Publication date
KR20080063834A (ko) 2008-07-07
TW201418792A (zh) 2014-05-16
US20100279091A1 (en) 2010-11-04
KR100881269B1 (ko) 2009-02-05
TWI424201B (zh) 2014-01-21
EP1964669A1 (en) 2008-09-03
JP4041160B2 (ja) 2008-01-30
EP1964669B1 (en) 2012-09-26
CN101346227A (zh) 2009-01-14
JPWO2007072737A1 (ja) 2009-05-28
TW200728778A (en) 2007-08-01
CN101346227B (zh) 2011-03-16
TWI506303B (zh) 2015-11-01
EP1964669A4 (en) 2010-05-05

Similar Documents

Publication Publication Date Title
JP4041160B2 (ja) 反射フィルム
KR101421766B1 (ko) 지방족 폴리에스테르계 필름
WO2006054505A1 (ja) 反射フィルム及び反射板
KR100851517B1 (ko) 지방족 폴리에스테르계 수지 반사 필름 및 반사판
KR100730855B1 (ko) 반사 필름
JP2010085585A (ja) 反射フィルム
JP2007030284A (ja) 脂肪族ポリエステル系樹脂反射フィルム
JP2007033738A (ja) 脂肪族ポリエステル系樹脂反射フィルム
JP2008233290A (ja) 反射フィルム及び反射板
JP2007021952A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP2006145568A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP4630642B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP4804741B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP4607553B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
KR101675350B1 (ko) 백색 다공성 폴리에스테르 필름
JP2007023185A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP5054888B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP2007177002A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び該反射フィルムを備えた反射板
JP2006142644A (ja) 脂肪族ポリエステル系樹脂反射フィルム及びその製造方法
JP2006145916A (ja) 反射フィルム
JP2010086725A (ja) 反射体
JP2008225323A (ja) 反射フィルムおよび反射板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048674.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007533301

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087011370

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12158829

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834721

Country of ref document: EP