WO2007071130A1 - Film de type hydrotalcite a orientation verticale presentant une structure composite et son procede de preparation - Google Patents
Film de type hydrotalcite a orientation verticale presentant une structure composite et son procede de preparation Download PDFInfo
- Publication number
- WO2007071130A1 WO2007071130A1 PCT/CN2006/001002 CN2006001002W WO2007071130A1 WO 2007071130 A1 WO2007071130 A1 WO 2007071130A1 CN 2006001002 W CN2006001002 W CN 2006001002W WO 2007071130 A1 WO2007071130 A1 WO 2007071130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- ldhs
- substrate
- hydrotalcite
- aluminum
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/20—Electrolytic after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/007—Mixed salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/232—Carbonates
- B01J27/236—Hydroxy carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0225—Coating of metal substrates
- B01J37/0226—Oxidation of the substrate, e.g. anodisation
Definitions
- Nano-composite structure vertical orientation type hydrotalcite film and preparation method thereof are nano-composite structure vertical orientation type hydrotalcite film and preparation method thereof.
- the present invention relates to a vertically oriented ice talc film having a nano-micro composite structure and a preparation method thereof, and particularly to a method for synthesizing a hydrotalcite-like film grown on a surface anodized aluminum substrate. Background technique
- Hydrotalcite-like (also known as layered bishydroxy-compound metal oxides, LDHs for short) is a class of anionic layered functional materials consisting of parallel and positively charged laminates with balanced anions and water molecules. Composition. Its chemical composition is: [M 2 "V X M 3 (OHQ 2 f" ( A 11 ) - mH 2 0 3 where M 2+ and M 3+ are respectively divalent and trivalent metals on the laminate Ions, ⁇ ⁇ ⁇ represents interlayer anions. Due to their unique crystal structure and physicochemical properties, these materials are used in many fields such as ion exchange, adsorption, catalysis, polymer modification, optical materials, magnetic materials, and electrical materials. A very broad application prospect.
- the hydrotalcite-like film is formed into a film to realize the deviceization of the multifunctional LDHs material, its industrial application will be greatly expanded.
- a hydrotalcite-like film is used as a catalyst, not only The utility model can improve the use efficiency by increasing the surface area, and can solve the problems of separation of the catalyst and the reactants, loss of the catalyst, recovery, etc.
- the electrode performance can be improved satisfactorily.
- a hydrotalcite-like structured catalyst based on aluminum is prepared by hydrolyzing urea into a hydrotalcite synthesis system to provide hydrazine and co 3 2 , but the prepared Mg-Al is prepared.
- the hydrotalcite film has no orientation, that is, the orientation of the water-sliding crystal grains on the substrate is random, and the preparation time required for the preparation method is long, generally at least 7 days, so it is difficult to control the density of the film.
- the object of the present invention is to provide a method for in situ synthesis of a vertically oriented hydrotalcite film having a nano-micro composite structure on an aluminum sheet after surface anodization, and a method for preparing the same, which solves the problem that the orientation of the LDHs in the previously prepared LDHs film is poor and easy to Problems such as falling off on the substrate and poor thermal stability of the substrate.
- the hydrotalcite-like film with nano-composite structure and vertical orientation provided by the invention is an LDHs film grown on an anodized aluminum substrate, and the chemical formula of the film LDHs is: [ ⁇ 2 ⁇ ( ⁇ ) 2 ⁇ (.0 3 /2 ⁇ yR 2 0 ,
- M 2+ represents any one of divalent metal ions Mg 2+ , Zn 2+ , Ni 2+ , Fe 2+ > Mn 2+ , preferably Ni 2+ , Zn 2+ or Mg 2+ ; 0.2 ⁇ x ⁇ 0.4, 0 ⁇ j ⁇ 2.
- the LDHs film has a nano-micro composite structure and is vertically oriented ((00/) crystal plane is perpendicular to the substrate table Surface), the thickness of the film is 1 ⁇ 2.5 ⁇ .
- the invention adopts an in-situ synthesis technique to provide an Al 3+ source required for the growth of hydrotalcite by using anodized aluminum on the surface of the substrate, and adjusts the pH of the reaction solution by adding ammonia water.
- the value of the divalent metal ion ⁇ 2+ and nitric acid in the solution is generated under certain conditions to achieve the purpose of controlling the slow release of the divalent metal ion ⁇ 2+ , thereby successfully controlling the nucleation rate of the LDHs on the substrate.
- a hydrotalcite-like film having a nano-composite structure and a vertical orientation (ie, a (00/) crystal plane perpendicular to the surface of the substrate) is grown.
- the plate or stainless steel plate is used as the cathode
- the electrolyte is 0.5 ⁇ 3.0mol 'I 1 sulfuric acid solution
- the oxidation current is 1 ⁇ 5A
- the aluminum piece is anodized for 30 ⁇ 100min, then taken out, and the electrolyte is rinsed off with deionized water to obtain the anode.
- M 2+ is any one of Mg 2+ , Zn 2+ , Ni 2+ , Fe 2+ , Mn 2+ , preferably Ni 2+ , Zn 2+ or Mg 2+ , Y Any one of C0 3 —, N ⁇ 3 —, S0 4 2- , Cl—, F—, Br—, preferably C0 3 —, N ⁇ 3 or CI—; preferred pH of the reaction solution The range of values is 5.5 ⁇ 8.5.
- the preferred reaction conditions for step C are 3 to 60 hours at 50 to 150 ° C.
- the better reaction conditions are 5 to 20 hours at 50 to 130 ° C.
- the preparation method is characterized in that: an Al 3+ source is provided for the growth of hydrotalcite on the surface of the substrate, and the metal ions and ammonium nitrate are produced under a certain pH condition by adjusting the pH value of the solution.
- the metal is formed into a metal ion to achieve the purpose of controlling the slow release of the divalent metal ion M 2+ , thereby successfully controlling the nucleation rate of the LDHs on the substrate, growing the dense and controllable, having a nano-micro composite structure and vertical orientation (( 00Z) a hydrotalcite-like film having a crystal plane perpendicular to the surface of the substrate.
- This preparation method has a fast reaction speed, and generally obtains a 1 ⁇ m thick hydrotalcite film in 3 to 4 hours, and the time is extended to 60 hours, and the film thickness is up to 2.5 ⁇ m.
- the samples were qualitatively analyzed using a Shimadzu RL-6000A X-ray diffractometer (D) and a German Braker Vectoi_22 type Fourier transform infrared light.
- the curve a in Fig. 1 is an XRD pattern of the surface anodized aluminum sheet obtained in the step A of Example 1, which is assigned to the (110), (200), and (220) diffraction peaks of the aluminum substrate, respectively.
- the curve b in Fig. 1 is the XRD spectrum of the film sample obtained in the step C of Example 1, and it can be clearly seen that, besides the three diffraction peaks of the aluminum substrate, other diffraction peaks can be assigned to (012), (110) of the LDHs.
- the curve c in Fig. 1 is an XRD pattern of the powder scraped off from the film sample obtained in Example 1, and it is apparent that the diffraction peaks of the respective crystal faces of the LDHs appear.
- the (00Z) diffraction peak of the XRD spectrum of the film sample disappears, which indicates that the nickel-aluminum carbonate LDHs film prepared by the invention has a vertical orientation, that is, the (00/) crystal plane is perpendicular to the substrate. Surface growth.
- the powder sample obtained in Example 1 was characterized by Fourier transform infrared ray (FT-IR). As shown in Fig. 2, the strong absorption peak at 1355 cm- 1 can be attributed to the characteristic symmetric stretching of the anion CO between the layers of nickel aluminum carbonate LDHs. Vibration absorption peak.
- FIG. 4 is a surface SEM photograph and a selected area EDS spectrum of the film sample prepared in Example 1.
- Figure 5 is a cross-sectional SEM photograph of the sample prepared in Example 1, and it can be clearly seen from the figure that a very dense sheet-like substance, i.e., a LDHs film layer formed on the surface of the anodized aluminum, and LDHs (00)
- the crystal face or the ab face
- the thickness of the LDHs layer is on the order of microns.
- the atomic content (%) of the main elements Ni and A1 measured by the EDS spectrum of the selected area is as follows: Element Ni Al
- a hydrotalcite-like film having a different degree of density can be obtained, thereby modulating the nano-micro composite structure of the film.
- the hydrotalcite-like film prepared by the method has a vertical orientation, and the (00/) diffraction peak disappeared in the X i map of the obtained film sample, and the vertical orientation thereof is obtained, that is, the LDHs (00/) crystal plane is vertical. It grows on the surface of the substrate, and the LDHs grains are bent during the growth process due to stress (see Figure 4). Compared with a non-curved hydrotalcite, it can be used as an additive in polymer materials to improve the material. Flexibility. DRAWINGS
- Example 1 is an XRD pattern of an aluminum anodized substrate, a nickel aluminum carbonate LDHs film, and a corresponding powder after surface anodization of Example 1;
- Example 2 is an IR spectrum of the nickel aluminum carbonate LDHs powder obtained in Example 1;
- FIG. 3 is a SEM photograph of the surface of the aluminum sheet after surface anodization obtained in Example 1.
- FIG. 4 is a SEM photograph and a selected EDS spectrum of the front side of the nickel aluminum carbonate LDHs film obtained in Example 1.
- Figure 5 is a SEM photograph of a cross section of a nickel aluminum carbonate LDHs film obtained in Example 1;
- Figure 6 is a SEM photograph of the front side of the nickel aluminum carbonate LDHs film obtained in Example 3, wherein the picture a is the SEM photograph of the front side of the nickel aluminum carbonate LDHs film obtained in the reaction of Example 3 for 6 hours, and the picture b is the reaction of Example 3 for 12 hours. SEM photograph of the front side of the obtained nickel aluminum carbonate LDHs film, picture c is the SEM photograph of the front side of the nickel aluminum carbonate LDHs film obtained in the reaction of Example 3 for 18 hours, and the picture d is the nickel aluminum carbonate LDHs film front surface obtained by the reaction of Example 3 for 24 hours. SEM photo. detailed description
- Embodiment 1 Embodiment 1
- the aluminum sheet with a thickness of 0.1 mm (purity of 99.5%) was ultrasonically cleaned with ethanol for 5 min, then ultrasonically cleaned with water for 5 min to remove surface oil, then anodized on an anodizing device for 50 min, and the aluminum piece was taken out and rinsed off with deionized water.
- the electrolyte was used to obtain an anodized aluminum sheet for use.
- the anodizing device adopts a lead plate or a stainless steel plate as a cathode, and the electrolyte is a 10 g ⁇ I; 1 sulfuric acid solution, and the oxidation current is 2 A.
- the surface anodized aluminum substrate is suspended in a solution, and after sealing the container, the reaction is kept at a constant temperature of 120 ° C for 6 hours. After the reaction is completed, the aluminum substrate is taken out and rinsed with deionized water at 40 ° C. Drying, the LDHs film is obtained.
- the XRD spectrum of the obtained LDHs film is shown in Fig. 1, the FT-IR spectrum is shown in Fig. 2, and the SEM photograph is shown in Fig. 4 and Fig. 5, indicating that a nickel-aluminum carbonate LDHs film layer is formed on the surface of the aluminum substrate.
- the Ni/Al molar ratio in the LDHs layer is 3.82 and the thickness is about 2.5 ⁇ m.
- Example 2
- the aluminum sheet with a thickness of 0.05 mm (purity of 99%) was ultrasonically cleaned with ethanol for 10 min, then ultrasonically washed with water for 10 minutes to remove surface oil, and then anodized 30 ⁇ on an anodizing device, and the aluminum piece was taken out, and the electrolysis was washed away with deionized water. Liquid, an anodized aluminum sheet was obtained for use.
- the anodizing device adopts a lead plate or a stainless steel plate as a cathode, and the electrolyte is a sulfuric acid solution of 10 mol 'L- 1 , and the oxidation current is 2 Torr. ,
- the obtained nickel-aluminum carbonate film layer had a Ni/Al molar ratio of 2.56 and a thickness of about 2.3 ⁇ m.
- the electrolyte was used to obtain an anodized aluminum sheet for use.
- the anodizing device uses a lead plate or a stainless steel plate as a cathode, and the electrolyte is a 1.0 mol ' ⁇ / 1 sulfuric acid solution, and the oxidation current is 2 ⁇ . .
- the SEM photograph of the obtained LDHs film is shown in Fig. 6, wherein the picture is a SEM photograph of the front side of the nickel-aluminum carbonate LDHs film obtained in 6 hours, and the picture b is the SEM photograph of the front side of the nickel-aluminum carbonate LDHs film obtained by the reaction for 12 hours, and the picture c is the reaction + SEM photograph of the front side of the nickel-aluminum carbonate LDHs film obtained in 18 hours, the SEM photograph of the front side of the nickel-aluminum carbonate LDHs film obtained in 24 hours; it is apparent from the SEM photograph that a thin layer of LDHs is formed on the surface of the aluminum substrate.
- the obtained nickel-aluminum carbonate thin film layer M/A1 molar ratio was 1.5, 1.8, 2.1, 2.5, respectively.
- Example 4
- the aluminum sheet with a thickness of 0.05 mm (purity of 99%) was ultrasonically washed with ethanol for 10 min, then ultrasonically washed with water for 10 min to remove surface oil, and then anodized on an anodizing device for 30 min, and the aluminum piece was taken out, and the electrolysis was washed away with deionized water. Liquid, an anodized aluminum sheet was obtained for use.
- the anodizing device uses a lead plate or a stainless steel plate as a cathode, and the electrolyte is 2.0 mol ⁇ I; 1 sulfuric acid solution, and the oxidized electric enthalpy is 2 ⁇ .
- the surface anodized aluminum substrate is suspended in a solution, and after sealing the container, the reaction is carried out at a constant temperature of 80 ° C for 60 hours. After the reaction is completed, the aluminum substrate is taken out and rinsed with deionized water at 40 ° C. Drying, the LDHs film is obtained.
- the obtained nickel aluminum carbonate film layer had a Zn/Al molar ratio of 2.5 and a thickness of about 1.85 ⁇ m.
- the aluminum sheet with a thickness of 0.05 mm (purity of 99%) was ultrasonically washed with ethanol for 10 min, then ultrasonically washed with water for 10 min to remove surface oil, and then anodized on an anodizing device for 30 min, and the aluminum piece was taken out, and the electrolysis was washed away with deionized water. Liquid, an anodized aluminum sheet was obtained for use.
- the anodizing device adopts a lead plate or a stainless steel plate as a cathode, and the electrolyte is a 2.0 mol - I 1 sulfuric acid solution, which is oxidized; ⁇ is 2A.
- the surface anodized aluminum substrate was suspended in a solution, and after sealing the container, the reaction was kept at a constant temperature of 60 ° C for 18 hours. After the reaction was completed, the aluminum substrate was taken out and rinsed with deionized water at 40 ° C. Drying, the LDHs film is obtained.
- the obtained nickel aluminum carbonate film layer had a Zn/Al molar ratio of 1.74 and a thickness of about 1.63 ⁇ m.
- the aluminum sheet with a thickness of 0.1 nun (purity of 99.5%) was ultrasonically cleaned with ethanol for 5 min, then ultrasonically cleaned for 5 min to remove surface oil, and then anodized on an anodizing device for 50 min .
- the aluminum piece was taken out and rinsed off with deionized water.
- the electrolyte was used to obtain an anodized aluminum sheet for use.
- the anodizing device adopts a lead plate or a stainless steel plate as a cathode, and the electrolyte is 10 mol ⁇ I; 1 sulfuric acid solution, and the oxidation current is 2 A.
- the surface anodized aluminum substrate was suspended in a solution, and after sealing the container, the reaction was carried out at a constant temperature of 90 ° C for 21 hours. After the reaction was completed, the aluminum substrate was taken out, rinsed with deionized water, and dried at 40 V to obtain an LDHs film.
- the obtained nickel-aluminum carbonate film layer had a Mg / Al molar ratio of 1.6 and a thickness of about 1.56 ⁇ m.
- the aluminum sheet with a thickness of 0.05 mm (purity of 99%) was ultrasonically washed with ethanol for 10 min, then ultrasonically washed with water for 10 min to remove surface oil, and then anodized on an anodizing device for 30 min, and the aluminum piece was taken out, and the electrolysis was washed away with deionized water. Liquid, an anodized aluminum sheet was obtained for use.
- the anodizing device uses a lead plate or a stainless steel plate as a cathode, and the electrolyte solution is a 2.0 mol. sulfuric acid solution, and the oxidation current is 2 A.
- the surface anodized aluminum substrate was suspended in a solution, and after sealing the container, the reaction was carried out at a constant temperature of 5 CTC for 35 hours. After the reaction was completed, the aluminum substrate was taken out, rinsed with deionized water, and dried at 40 ° C to obtain an LDHs film.
- the obtained nickel-aluminum carbonate film layer had a Mg / A1 molar ratio of 2.8 and a thickness of about 2.37 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
纳微复合结构垂直取向类水滑石薄膜及其制备方法 技术领域
本发明涉及一种具有纳微复合结构且垂直取向类氷滑石薄膜及其制备 方法, 具体涉及一种生长在表面阳极氧化的铝基体上的类水滑石薄膜的原 位合成方法。 背景技术
类水滑石 (又称层状双羟基复合金属氧化物, 简称 LDHs ), 是一类阴 离子型层状结构功能材料, 由相互平行且带正电荷的层板组成, 层间由平 衡阴离子及水分子构成。 其化学组成通式为: [M2"VX M3 (OHQ2f" ( A11 ) - mH203 其中 M2+、 M3+分别是位于层板上的二价和三价金属离子, Αη·代表层间阴离子。 这类材料由于其独特的晶体结构和物化特性使其在离 子交换、 吸附、 催化、 高分子改性、 光学材料、 磁学材料、 电学材料等许 多领域展现出极为广阔的应用前景。 如果将类水滑石制成薄膜, 以实现多 功能 LDHs材料的器件化, 将大大拓宽其在工业上的应用。 例如: 把类水 滑石薄膜用作催化剂时, 不仅可以因提高表面积而提高其使用效率, 而且 可以解决催化剂与反应物的分离、 催化剂流失、 回收等问题。 当用作电极 改性材料时, 能够艮好地提高电极性能。
许多无机材料被制作成取向性薄膜后, 其功能性在很大程度上得到加 强。如果获得取向性 LDHs薄膜,显然可以使 LDHs的上述功能得到增强并 拓宽该类材料的应用领域。 然而, 与其它层状材料不同的是, LDHs不易制 成薄膜, 更难控制其晶粒在薄膜中的取向性, 因而阻碍了 LDHs材料的一 些应用开发以及器件化。 目前, 有关类水滑石薄膜的制备方法也有一些文 献报道。 如^ M Thin Solid Films, 2 255 中, Akihiko等人采用 LB膜技 术制备得到了 Ni-Al水滑石与含釘金属配合物的杂化薄膜。文献 /v. Mater.,
2001, 13(16): 1263中, Ε. Gandner等人将 LDHs的胶体溶液沉积在玻璃上获 得了烷氧基插层的 4美铝 LDHs膜。此外,在文献 Chem. Mater. 2004, 16, 3774 中, Jung等人利用超声的方法将 Mg-Al水滑石胶体粒子铺展在单晶^:表面, 然后经干燥处理得到单层排布的 Mg- A1水滑石薄膜。 文献 Chem. Commun., 2003: 2740和 Langmuir, 1998, 14(10): 2890中, J. H. Lee和 Κ· Yao等人分别 将水溶液中的 LDHs晶体沉积在高取向的热裂解石墨和硅(100 ) 晶片上, 虽然具有一定的取向性, 但是 LDHs 不连续, 致密度低, 而且与基体结合 不紧密, 实用性不高。 以上方法制备的水滑石薄膜都存在 LDHs 晶粒排列 无序、 致密度不高、 与基体的结合力弱, 易从基体上脱落, 制备方法复杂 等缺陷, 导致其应用范围受到艮大限制。 在申请号为 200410090816.4的中 国专利申请中, 利用尿素低温分解为水滑石合成体系提供 ΟΚΓ和 co3 2一, 制备得到了以铝为基体的类水滑石结构化催化剂, 但是制备得到的 Mg-Al 水滑石薄膜没有取向性, 即水滑晶粒在基体上排布取向是随机的, 且这种 制备方法所需的反应时间较长, 一般至少需要 7 天, 因此很难控制薄膜的 疏密程度。 发明内容
本发明的目的是提供一种在表面阳极氧化后的铝片上原位合成具有纳 微复合结构且垂直取向类水滑石薄膜及其制备方法,解决以往制备的 LDHs 薄膜中 LDHs晶体取向性差且容易从基板上脱落、 基体热稳定性差等问题。
本发明提供的具有纳微复合结构且垂直取向的类水滑石薄膜, 是生长 在表面经阳极氧化后的铝基片上的 LDHs膜, 膜层 LDHs的化学通式是: [Μ2Κ (ΟΗ)2Γ(。03 /2 · yR20 ,
其中 M2+代表二价金属离子 Mg2+、 Zn2+、 Ni2+、 Fe2+> Mn2+中的任何一 种, 较佳的为 Ni2+、 Zn2+或 Mg2+; 0.2 < x < 0.4, 0 <j < 2。
该 LDHs膜具有纳微复合结构且垂直取向 ((00/ ) 晶面垂直于基体表
面), 膜的厚度在 1~2.5μηι。
本发明采用原位合成技术, 以经过表面阳极氧化后的铝片为基体, 利 用基片表面上的阳极氧化铝提供水滑石生长所需的 Al3+源, 通过滴加氨水 调节反应溶液的 ρΗ值, 使溶液中二价金属离子 Μ2+与硝酸按在一定 ρΗ条 件下生成金属 离子, 达到控制二价金属离子 Μ2+緩慢释放的目的,从而 成功的控制 LDHs在基体上的成核速度, 生长出疏密可控, 具有纳微复合 结构且垂直取向 (即 (00/) 晶面垂直于基体表面) 的类水滑石薄膜。
具体合成步骤如下:
A: 将纯度大于 80%, 厚度在 0.01mm~lmm的铝片先用乙醇超声清洗 5~10min3 再用水超声清洗 5 - lOmin P佘去表面油污, 然后在阳极氧化装置 上作阳极, 用铅板或不锈钢板作阴极, 电解液为 0.5~3.0mol 'I 1的硫酸溶 液, 氧化电流为 1~5A, 将铝片阳极氧化 30~100min后取出, 用去离子水 冲洗掉电解液, 得到阳极氧化铝片备用;
B: 将硝酸铵和可溶性二价无机盐 Μ2+Υ按 3 ~ 30的摩尔比溶解于去离 子水中, Μ2+金属离子浓度控制在 0.01 ~0.5moi/L, 用稀氨水调节反应溶液 的 pH值为 4.5 - 10, 得到反应合成液;
C: 把表面阳极氧化的铝基片悬置于反应溶液中, 在 25~180°C下反应 0.5 ~ 96小时, 取出铝基片, 在 25- 90°C下千燥, 即得到类水滑石 (LDHs) 薄膜。
步骤 B中 M2+为 Mg2+、 Zn2+、 Ni2+、 Fe2+、 Mn2+中的任何一种, 较佳的. 为 Ni2+、 Zn2+或 Mg2+, Y为 C03—、 N〇3—、 S04 2-、 Cl—、 F―、 Br—中的任何 一种,较佳的为 C03—、N〇3 或 CI—;反应溶液较佳的 pH值范围是 5.5 ~ 8.5。
步骤 C较佳的反应条件是在 50 ~ 150°C下反应 3 ~ 60小时, 更好的反 应条件是在 50~130°C下反应 5~20小时。
本制备方法的特点是: 以基片表面上的阳极氧化铝为水滑石生长提供 Al3+源, 通过调节溶液的 pH值, 使金属离子与硝酸銨在一定 pH奈件下生
成金属 ^^离子,达到控制二价金属离子 M2+緩慢释放的目的,从而成功的 控制 LDHs在基体上的成核速度, 生长出疏密可控, 具有纳微复合结构且 垂直取向((00Z)晶面垂直于基体表面)的类水滑石薄膜。 这种制备方法具 有反应速度快, 一般 3 ~ 4小时就能得到 1 μ m厚的水滑石薄膜, 时间延长 到 60小时, 薄膜厚度可达 2.5 μ m。
采用日本岛津 RL-6000A型 X射线衍射仪( D )和德国 Braker公 司 Vectoi_22型傅立叶变换红外光 i普仪对样品进行定性分析。图 1中曲线 a是 实施例 1步驟 A所得表面阳极氧化后的铝片的 XRD图谱,这三个峰分别归 属为铝基片的(110 )、 (200 )、 (220 )衍射峰。 图 1中曲线 b是实施例 1步 骤 C所得薄膜样品的 XRD谱图,很明显可以看出, 除了铝基片的三个衍射 峰, 其它衍射峰可归属为 LDHs的 (012 )、 (110 )、 ( 113 )衍射峰。 图 1中 曲线 c是从实施例 1所得薄膜样品上刮下来的粉末的 XRD图谱, 明显看出 LDHs各晶面的衍射峰都出现了。图 1中曲线 b与 c相比,薄膜样品的 XRD 谱图的 (00Z )衍射峰消失了, 说明本发明制备的镍铝碳酸根 LDHs薄膜具 有垂直取向, 即 ( 00/) 晶面垂直于基体表面生长。 对实施例 1所得粉末样 品进行傅立叶变换红外光讲 ( FT-IR )表征如图 2所示, 1355 cm— 1处的强 吸收峰可以归属为镍铝碳酸根 LDHs层间阴离子 CO 的特征对称伸缩振动 吸收峰。
采用日本 HITACHI S-3500N型扫描电子显微镜 ( SEM )和观测薄膜表 面及其截面的形貌(为了相片更清晰所有 SEM样品都经喷金处理) 。 图 3 是实施例 1所得表面阳极氧化后的铝片表面的 SEM相片, 图 4是实施例 1 制备的薄膜样品的表面 SEM相片及选区 EDS谱图。 图 5是实施例 1制备 的样品的截面 SEM相片, 由图可以清楚地看到, 在阳极氧化铝表面上存在 一层十分致密的片状物质,即形成的 LDHs薄膜层,且 LDHs的 (00 )晶面 (;或 ab面)垂直于基体表面。 该 LDHs层的厚度在微米級。 由选区 EDS谱图测 得其中主要元素 Ni、 A1的原子含量(%)如下:
元素 Ni Al
Atomic% 79.27 20.73 计算得到 Ni/Al摩尔比为 3.82。
XRJD、 FT-IR, SEM和 EDS结果均表明在铝基体的阳极氧化表面形成 了致密的 LDHs薄膜层, 且 LDHs的 (00/)晶面(或 ab面)垂直于基体表面。
本发明具有如下显著效果:
通过控制反应温度和时间, 可以得到疏密程度不同的类水滑石薄膜, 从而调变薄膜的纳微复合结构。 采用本方法制备出的类水滑石薄膜具有垂 直取向, 所得薄膜样品的 X i普图中(00/ )衍射峰消失便能充^ 兌明其具 有垂直取向, 即 LDHs ( 00/) 晶面垂直于基体表面生长, 而且 LDHs晶粒 在生长过程中由于受到应力作用, 产生了弯曲 (见图 4 ), 与一 无弯曲的 水滑石相比, 其作为添加剂应用在高分子材料中能够提高材料的柔韧性。 附图说明
图 1是实施例 1表面阳极氧化后的铝片基体、 镍铝碳酸根 LDHs薄膜 和对应粉体的 XRD图谱;
图 2是实施例 1所得镍铝碳酸根 LDHs粉体的 IR 图谱;
图 3是实施例 1所得表面阳极氧化后的铝片表面的 SEM相片; 图 4是实施例 1所得镍铝碳酸根 LDHs膜正面的 SEM相片及选区 EDS 谱图;
图 5是实施例 1所得镍铝碳酸根 LDHs膜截面的 SEM相片;
图 6是实施例 3所得镍铝碳酸根 LDHs膜正面的 SEM组合相片, 其中 图片 a是实施例 3反应 6小时所得镍铝碳酸根 LDHs膜正面的 SEM相片, 图片 b是实施例 3反应 12小时所得镍铝碳酸根 LDHs膜正面的 SEM相片, 图片 c是实施例 3反应 18小时所得镍铝碳酸根 LDHs膜正面的 SEM相片 , 图片 d是实施例 3反应 24小时所得镍铝碳酸根 LDHs膜正面的 SEM相片。
具体实施方式
下面结合实施例对本发明作进一步的描述: 实施例 1:
将厚度为 0.1mm (纯度为 99.5% ) 的铝片先用乙醇超声清洗 5min, 再 用水超声清洗 5min除去表面油污,然后在阳极氧化装置上阳极氧化 50min, 取出铝片, 用去离子水冲洗掉电解液, 得到阳极氧化铝片备用。 阳极氧化 装置采用铅板或不锈钢板作阴极, 电解液为 l.O mol · I;1的硫酸溶液, 氧化 电流为 2A。
在 10L锥形瓶中, 将 lmol Ni(N03)2 · β¾0和 6mol NH4N03溶解在去 离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 pH为 7.5。
把表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 120°C温度下 恒温反应 6小时, 待反应结束后取出铝基片, 用去离子水冲洗干净, 在 40°C 下烘干, 即得到 LDHs薄膜。
所得 LDHs薄膜的 XRD谱图见图 1 , FT-IR谱图见图 2, SEM相片见 图 4和图 5, 表明铝基体表面形成了镍铝碳酸根 LDHs薄膜层。 LDHs层中 Ni/Al摩尔比为 3.82, 厚度约为 2.5 μ ιη。 实施例 2:
将厚度为 0.05mm (纯度为 99% ) 的铝片用乙醇超声清洗 10min, 再用 水超声清洗 lOmin除去表面油污, 然后在阳极氧化装置上阳极氧化 30πύη, 取出铝片, 用去离子水冲洗掉电解液, 得到阳极氧化铝片备用。 阳极氧化 装置采用铅板或不锈钢板作阴极, 电解液为 l.O mol ' L-1的硫酸溶液, 氧化 电流为 2Α。 ,
在 10L锥形瓶中, 将 lmol Ni(N03)2 · 6¾0和 3mol NH4N03溶解在去 离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 pH为 5.5。
把表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 75 °C温度下 恒温反应 36小时, 待反应结束后取出铝基片, 用去离子水冲洗干净, 在 40°C下烘干, 即得到 LDHs薄膜。
所得镍铝碳酸根薄膜层 Ni/Al摩尔比为 2.56, 厚度约为 2.3 μ πι。 实施例 3··
分别将 4片厚度为 0.1mm纯度为 99.5%的铝片用乙醇超声清洗 5min, 再用水超声清洗 5min 除去表面油污, 然后在阳极氧化装置上阳极氧化 50min, 取出铝片, 用去离子水冲洗掉电解液, 得到阳极氧化铝片备用。 阳 极氧化装置采用铅板或不锈钢板作阴极,电解液为 1.0 mol 'Ι/1的硫酸溶液, 氧化电流为 2Α。 .
在 10L锥形瓶中, 将 lmol Ni(N03)2 · 6¾0和 3mol NH4N03溶解在去 离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 pH为 7.0。
把 4片表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 100°C温 度下恒温反应, 分别于 6、 12、 18、 24 小时取出一片铝基片, 用去离子水 冲洗干净, 在 4(TC下烘干, 即得到 LDHs薄膜。
所得 LDHs薄膜的 SEM相片见图 6, 其中图片 a 6小时所得镍 铝碳酸根 LDHs膜正面的 SEM相片, 图片 b是反应 12小时所得镍铝碳酸 根 LDHs膜正面的 SEM相片,图片 c是反应 +18小时所得镍铝碳酸根 LDHs 膜正面的 SEM相片, 图片 应 24小时所得镍铝碳酸根 LDHs膜正面 的 SEM相片; 从这组 SEM相片上明显看出, 铝基体表面形成了 LDHs薄 层。 从反应 6小时的薄膜照片可以看出, 水滑石薄膜表面生长得较稀疏, 延长反应时间, 水滑石薄膜变得越来越致密, 当反应时间延长到 24小时, 水滑石生长成一层致密的薄膜。 这组图片可以充分说明, 通过控制反应时 间能够很好地控制水滑石薄膜的疏密程度。
所得镍铝碳酸根薄膜层 M/A1摩尔比分别为 1.5、 1.8、 2.1、 2.5。
实施例 4:
将厚度为 0.05mm (純度为 99% ) 的铝片用乙醇超声清洗 lOmin, 再用 水超声清洗 lOmin除去表面油污, 然后在阳极氧化装置上阳极氧化 30min, 取出铝片, 用去离子水冲洗掉电解液, 得到阳极氧化铝片备用。 阳极氧化 装置采用铅板或不锈钢板作阴极, 电解液为 2.0 mol · I;1的硫酸溶液, 氧化 电 ϋ为 2Α。
在 10L锥形瓶中, 将 lmol Zn(N03)2 · 6H20和 8mol NH4N03溶解在去 离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 pH为 8.5。
把表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 80 °C温度下 恒温反应 60小时, 待反应结束后取出铝基片, 用去离子水冲洗干净, 在 40°C下烘干, 即得到 LDHs薄膜。
所得镍铝碳酸根薄膜层 Zn/Al摩尔比为 2.5 , 厚度约 '为 1.85 μ πι。 实施例 5:
将厚度为 0.05mm (純度为 99% ) 的铝片用乙醇超声清洗 lOmin, 再用 水超声清洗 lOmin除去表面油污, 然后在阳极氧化装置上阳极氧化 30min, 取出铝片, 用去离子水冲洗掉电解液, 得到阳极氧化铝片备用。 阳极氧化 装置采用铅板或不锈钢板作阴极, 电解液为 2.0 mol - I 1的硫酸溶液, 氧化 电;^为 2A。
在 10L锥形瓶中, 将 lmol Zn(N03)2 · 6H20和 8mol ΝΉ4Ν03溶解在去 离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 pH为 5.5。
把表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 60 °C温度下 恒温反应 18小时, 待反应结束后取出铝基片, 用去离子水冲洗干净, 在 40°C下烘干, 即得到 LDHs薄膜。
所得镍铝碳酸根薄膜层 Zn/Al摩尔比为 1.74, 厚度约为 1.63 μ πι。
实施例 6:
将厚度为 O.lnun (纯度为 99.5% ) 的铝片用乙醇超声清洗 5min, 再用 超声清洗 5min除去表面油污, 然后在阳极氧化装置上阳极氧化 50min? 取出铝片, 用去离子水冲洗掉电解液, 得到阳极氧化铝片备用。 阳极氧化 装置采用铅板或不锈钢板作阴极, 电解液为 l.O mol■ I;1的硫酸溶液, 氧化 电流为 2A。
在 10L锥形瓶中, 将 Imol Mg( 03)2 ' 6H20和 12mol丽 4N03溶解在 去离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 pH为 6.5。
把表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 90°C温度下 恒温反应 21小时。 待反应结束后取出铝基片, 用去离子水冲洗干净, 在 40 V下烘干, 即得到 LDHs薄膜。
所得镍铝碳酸根薄膜层 Mg /Al摩尔比为 1.6 , 厚度约为 1.56 μ πι。 实施例 7:
将厚度为 0.05mm (纯度为 99% ) 的铝片用乙醇超声清洗 lOmin, 再用 水超声清洗 lOmin除去表面油污, 然后在阳极氧化装置上阳极氧化 30min, 取出铝片, 用去离子水沖洗掉电解液, 得到阳极氧化铝片备用。 阳极氧化 装置采用铅板或不锈钢板作阴极, 电解液为 2.0 mol . 的硫酸溶液, 氧化 电流为 2A。
在 10L雉形瓶中, 将 lmol Mg(N〇3)2 · 6¾0和 6moi NH4N03溶解在去 离子水中 (溶液至刻度线), 再用 1%的稀氨水调节溶液的 ρΗ·为 7.5。
把表面阳极氧化的铝基片悬置于溶液中, 密封容器后, 于 5CTC温度下 恒温反应 35小时。 待反应结束后取出铝基片, 用去离子水冲洗干净, 在 40°C下烘干, 即得到 LDHs薄膜。
所得镍铝碳酸根薄膜层 Mg /A1摩尔比为 2.8 , 厚度约为 2.37 μ m。
Claims
1. 一种纳微复合结构垂直取向类水滑石薄膜, 是一种生长在表面经阳 极氧化后的铝基片上的 LDHs膜, 膜层 LDHs的化学通式是:
[M2+;.,Al3+ x(OH)2 (C03 2- - ΛΟ ,
其中 M2+代表二价金属离子 Mg2+、 Zn2+、 Ni2+、 Fe2+、 Mn2+中的任何一 种;
0.2< <0.4, 0 3^ 2;
该 LDHs膜具有纳微复合结构且垂直取向, 即 (00/) 晶面垂直于基体 表面, 月 的厚度在 1~2.5μπι。
2. 根据权利要求 1所述的纳微复合结构垂直取向类水滑石薄膜, 其特 征是: 膜层 LDHs的化学通式中 Μ2+是 Μ2+、 Ζη2+或 Mg2+。
3. 一种纳微复合结构垂直取向类水滑石薄膜的制备方法, 具体步骤如 下:
A: 将纯度大于 80%, 厚度在 0.01mm~lmm的铝片先用乙醇超声清洗 5 - lOmin, 再用水超声清洗 5 ~ lOmin除去表面油污, 然后在阳极氧化装置 上作阳极, 用铅板或不锈钢板作阴极, 电解液为 0.5 3.0 mol '!;1的硫酸溶 液, 氧化电流为 1 5A, 将铝片阳极氧化 30 lOOmin后取出, 用去离子水 冲洗掉电解液, 得到阳极氧化铝片备用;
B: 将硝酸铵和可溶性二价无机盐 M2+Y按 3 ~ 30的摩尔比溶解于去离 子水中, M2+金属离子浓度控制在 0.01 ~ 0.5mol/L, 用稀氨水调节反应溶液 的 pH值为 4.5 ~ 10, 得到反应合成液; 其中 M2+为 Mg2+、 Zn2+、 Ni2+, Fe2+、 Mn2+中的任何一种, Y为 C03—、 N03—、 S04 2"\ Cl-、 F—、 Br—中的任何一种;
C: 把表面阳极氧化的铝基片悬置于反应溶液中, 在 25~180°C下反应 0.5~%小时, 取出铝基片, 在 25~90°C下干燥, 即得到类水滑石 (LDHs) 薄膜。
4. 根据权利要求 3所述纳微复合结构垂直取向类水滑石薄膜的制备方 法, 其特征是: 步骤 B中 M2+是 Ni2+、 Zn2+或 Mg2+, Y是 CV、 N03—或 CI"; 反应溶液的 pH值范围是 5.5 ~ 8.5;
步骤 C的反应条件是在 50 ~ 150°C下反应 3-60小时。
5. 根据权利要求 3所述纳微复合结构垂直取向类水滑石薄膜的制备方 法, 其特征是: 步骤 C的反应条件是在 50~130°C下反应 5~20小时。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101347208A CN100406388C (zh) | 2005-12-19 | 2005-12-19 | 纳微复合结构垂直取向类水滑石薄膜及其制备方法 |
CN200510134720.8 | 2005-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007071130A1 true WO2007071130A1 (fr) | 2007-06-28 |
Family
ID=38183380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2006/001002 WO2007071130A1 (fr) | 2005-12-19 | 2006-05-17 | Film de type hydrotalcite a orientation verticale presentant une structure composite et son procede de preparation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100406388C (zh) |
WO (1) | WO2007071130A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735887A (zh) * | 2019-03-21 | 2019-05-10 | 福州大学 | 一种镁合金镁锰水滑石/微弧氧化耐蚀涂层的制备方法 |
CN116042293A (zh) * | 2023-02-11 | 2023-05-02 | 道骐科技有限公司 | 一种多功能润滑脂及其制备方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101816950B (zh) * | 2010-04-30 | 2012-05-30 | 北京化工大学 | 类水滑石结构化催化剂及其催化合成假紫罗兰酮的方法 |
CN102650065B (zh) * | 2012-05-08 | 2014-09-10 | 淄博职业学院 | 原位生长于铝基底上的杯芳烃插层水滑石薄膜及其制备方法 |
CN103240125B (zh) * | 2013-05-21 | 2014-08-20 | 北京化工大学 | 一种染料敏化金属硫化物半导体纳米材料的制备方法 |
CN104903240B (zh) * | 2013-12-27 | 2016-12-07 | 日本碍子株式会社 | 层状双氢氧化物取向膜及其制造方法 |
CN103952720B (zh) * | 2014-04-29 | 2016-03-30 | 北京化工大学 | 金属基底/含钴类水滑石纳米膜电极及其制备方法 |
CN107001061B (zh) * | 2014-12-17 | 2019-05-17 | 日本碍子株式会社 | 层状双氢氧化物膜及含有层状双氢氧化物的复合材料 |
CN105018999B (zh) * | 2015-07-09 | 2017-07-28 | 哈尔滨工程大学 | 铝合金微弧氧化膜原位生长层状双金属氢氧化物的方法 |
CN105502477B (zh) * | 2016-01-08 | 2017-03-22 | 西北大学 | 一种形貌可控的大面积纳米片状锌铝类水滑石的制备方法 |
CN106086992B (zh) * | 2016-06-07 | 2018-06-29 | 重庆大学 | 一种镁合金表面双羟基金属氧化物封闭膜层的制备方法 |
CN107913723B (zh) * | 2017-12-08 | 2020-06-23 | 山东理工大学 | 含铬三维镍铝类水滑石薄膜及其制备方法与应用 |
CN108097058B (zh) * | 2017-12-29 | 2019-11-22 | 北京化工大学 | 一种二氧化碳选择性渗透薄膜及其制备方法和应用 |
CN112354513A (zh) * | 2020-11-09 | 2021-02-12 | 榆林学院 | Zn2+-Al3+-CO32-LDHs@Al吸附材料及其循环利用吸附氟离子的应用 |
CN113663743B (zh) * | 2021-08-20 | 2022-10-18 | 浙江大学 | 一种基于LDHs的阴离子选择性膜的制备及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5399329A (en) * | 1993-07-06 | 1995-03-21 | Aristech Chemical Corporation | Hydrotalcite-like materials having a sheet-like morphology and process for production thereof |
CN1615312A (zh) * | 2002-01-11 | 2005-05-11 | 桑诺克公司(R&M) | 合成的水滑石、合成与应用 |
CN1792449A (zh) * | 2005-12-06 | 2006-06-28 | 北京化工大学 | 以铝为基体的类水滑石结构化催化剂及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4054144B2 (ja) * | 1998-12-01 | 2008-02-27 | 協和化学工業株式会社 | 層間のアニオンとしてその一部または全部が珪素系、燐系及び硼素系多量体酸素酸イオンの少なくとも一種のアニオンとそれ以外のアニオンとを保持したハイドロタルサイト系化合物、その製法、農業用フィルム用赤外線吸収剤及び該赤外線吸収剤を含有する農業用フィルム |
CN1507944A (zh) * | 2002-12-18 | 2004-06-30 | 北京化工大学 | 一种镁铝水滑石的清洁合成方法 |
-
2005
- 2005-12-19 CN CNB2005101347208A patent/CN100406388C/zh not_active Expired - Fee Related
-
2006
- 2006-05-17 WO PCT/CN2006/001002 patent/WO2007071130A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5399329A (en) * | 1993-07-06 | 1995-03-21 | Aristech Chemical Corporation | Hydrotalcite-like materials having a sheet-like morphology and process for production thereof |
CN1615312A (zh) * | 2002-01-11 | 2005-05-11 | 桑诺克公司(R&M) | 合成的水滑石、合成与应用 |
CN1792449A (zh) * | 2005-12-06 | 2006-06-28 | 北京化工大学 | 以铝为基体的类水滑石结构化催化剂及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735887A (zh) * | 2019-03-21 | 2019-05-10 | 福州大学 | 一种镁合金镁锰水滑石/微弧氧化耐蚀涂层的制备方法 |
CN116042293A (zh) * | 2023-02-11 | 2023-05-02 | 道骐科技有限公司 | 一种多功能润滑脂及其制备方法 |
CN116042293B (zh) * | 2023-02-11 | 2024-05-14 | 道骐科技有限公司 | 一种多功能润滑脂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN100406388C (zh) | 2008-07-30 |
CN1986419A (zh) | 2007-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007071130A1 (fr) | Film de type hydrotalcite a orientation verticale presentant une structure composite et son procede de preparation | |
Kakiuchi et al. | Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions | |
CN100572600C (zh) | 垂直基底生长的环糊精插层水滑石薄膜及其制备方法 | |
Sun et al. | Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route | |
Schlur et al. | Synthesis of Cu (OH) 2 and CuO nanotubes arrays on a silicon wafer | |
WO2006050648A1 (fr) | Film hautement oriente d'hydroxydes doubles lamellaires metalliques, et son procede de preparation | |
CN106861459B (zh) | 一种原位生长氨基酸@层状双金属氢氧化物纳滤膜的方法 | |
WO2009036660A1 (en) | A method for preparing film of layered double hydroxides | |
WO2018120601A1 (zh) | 一种制备石墨烯增强三维多孔碳自支撑薄膜的方法 | |
JP2008081363A (ja) | 酸化亜鉛粒子ならびに酸化亜鉛粒子膜及びそれらの作製方法 | |
JP4665175B2 (ja) | 高c軸配向高比表面積ZnO結晶自立膜及びその作製方法 | |
CN109012187B (zh) | 一种原位生长层状双金属氧化物纳滤膜的方法 | |
CN101113012A (zh) | 高粘附超疏水双功能插层结构类水滑石薄膜及其制备方法 | |
JP2004255684A (ja) | 高品位チタニアナノシート超薄膜とその製造方法 | |
WO2008151495A1 (fr) | Film mince d'hydroxydes bicouches, superhydrophobes, et son procédé de fabrication | |
JP2009046358A (ja) | 多孔質ZnO粒子結合自立膜及びその作製方法 | |
KR101837059B1 (ko) | 금속-세라믹 다공성 복합 나노구조체의 제조방법, 이의 방법으로 제조된 금속-세라믹 다공성 복합 나노구조체 및 이를 포함하는 전극 | |
JP2004149367A (ja) | 酸化亜鉛粒子又は膜製造用水溶液及び酸化亜鉛粒子又は膜の製造方法 | |
Oaki et al. | Selective synthesis and thin-film formation of α-cobalt hydroxide through an approach inspired by biomineralization | |
JP2010111522A (ja) | アルミニウム置換α型水酸化ニッケルの製造方法、およびこれを用いたアルカリ二次電池用正極活物質 | |
Imai et al. | Phosphate-mediated ZnO nanosheets with a mosaic structure | |
Uchiyama et al. | Preparation of nanostructured CeCO 3 OH particles from aqueous solutions and gels containing biological polymers and their thermal conversion to CeO 2 | |
Dinesh et al. | Solution synthesis of crystallized AMO 4 (A= Ba, Sr, Ca; M= W, Mo) film at room temperature | |
JP2011111346A (ja) | Zn(OH)2ナノシートとZnOナノウィスカー膜によるハイブリッドフィルム、ZnOナノシートとZnOナノウィスカー膜によるハイブリッドフィルム、およびそれらの作製方法 | |
CN108034988B (zh) | 以多孔阳极氧化铝模板为基底的三维类水滑石薄膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06741890 Country of ref document: EP Kind code of ref document: A1 |