CN107913723B - 含铬三维镍铝类水滑石薄膜及其制备方法与应用 - Google Patents

含铬三维镍铝类水滑石薄膜及其制备方法与应用 Download PDF

Info

Publication number
CN107913723B
CN107913723B CN201711297899.8A CN201711297899A CN107913723B CN 107913723 B CN107913723 B CN 107913723B CN 201711297899 A CN201711297899 A CN 201711297899A CN 107913723 B CN107913723 B CN 107913723B
Authority
CN
China
Prior art keywords
chromium
nickel
thin film
aluminum hydrotalcite
hydrotalcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711297899.8A
Other languages
English (en)
Other versions
CN107913723A (zh
Inventor
成英之
薛莉
孙秀玉
吕志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201711297899.8A priority Critical patent/CN107913723B/zh
Publication of CN107913723A publication Critical patent/CN107913723A/zh
Application granted granted Critical
Publication of CN107913723B publication Critical patent/CN107913723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明属于无机功能材料技术领域,具体涉及一种含铬三维镍铝类水滑石薄膜及其制备方法与应用。所述的含铬三维镍铝类水滑石薄膜是在强酸性条件和铬离子的存在下,多孔阳极氧化铝模板的内外表面均生长出镍铝类水滑石晶体得到的。本发明制备条件温和、工艺过程简单、成功率高,制备得到三维薄膜上的类水滑石晶体与基底结合紧密,不易脱落。本发明得到的含铬三维镍铝类水滑石薄膜在紫外光催化降解有机污染物反应中,表现出优异的光催化活性,有效避免流失、团聚现象,易于分离和重复使用,在催化、吸附、分离等方面具有重要的应用价值。

Description

含铬三维镍铝类水滑石薄膜及其制备方法与应用
技术领域
本发明属于无机功能材料技术领域,具体涉及一种含铬三维镍铝类水滑石薄膜及其制备方法与应用。
背景技术
环境污染治理和新能源开发一直是人类发展过程中所必须面对的重大课题。近四十年来,半导体光催化技术在太阳能转化和环境治理等方面显示出广阔的应用前景。一直以来,所用光催化剂主要是复合半导体、离子掺杂或染料敏化半导体等。从原理上来讲,欲提高光催化剂的催化性能且利于实际应用则必须降低光生电子-空穴对的复合几率,增加量子效率,改变催化剂的能带结构,拓展光谱响应范围,提高可重复利用性。
层状双金属氢氧化物,简写为LDHs,是一种具有水滑石层状晶体结构的混合金属氢氧化物,由带正电荷的金属氢氧化物层和层间电荷平衡阴离子构成,其主体成份一般是由两种金属的氢氧化物构成的,可用通式表示为[M2+ 1-xM3+ x(OH)2]x+(An-)x/n·mH2O,其中M2+是二价金属阳离子,如Fe2+、Co2+、Cu2+、Zn2+、Mn2+、Ni2+、Mg2+;M3+是三价金属阳离子,如Fe3+、Cr3+、Al3+、Sc3+、In3+,An-为无机、有机阴离子以及同多或杂多阴离子。
粉体LDHs容易制备,成本低廉,具有独特的层状结构,层板阳离子和层间阴离子都可调配交换,其层状结构经低温焙烧后在水溶液中仍能够部分恢复。此外,LDHs吸附能力强,且对酸碱均有一定适应性,目前已经广泛应用于吸附、离子交换、合成材料、日用化工、催化和污染治理等领域。自二十世纪九十年代起,LDHs在光催化方面的应用研究逐渐开始引人注目。例如,2009年Jaime S.Valente等在Appl.Catal.B:Environ.,2009,90:330-338中报道:研究2,4-二氯苯氧乙酸的光催化降解时发现,Zn2+含量的增加会降低ZnMgAl-LDHs禁带宽度,使吸收光谱发生红移,从而提高可见光利用率。同年,C.G.Silva等在J.Am.Chem.Soc.,2009,131:13833-13839中报道:不同Zn/Cr比例的ZnCr-LDHs中,组成为Zn/Cr=2/1的ZnCr-LDHs催化剂表现出最高的光解水活性。2011年韩国的研究小组在J.Am.Chem.Soc.,2011,133:14998-15007中报道:对ZnCr-LDHs进行了钛酸盐复合研究,发现该催化剂光解水反应中的O2生成速率可达到未复合前的ZnCr-LDHs催化剂的2倍。2012年,我国研究者在Appl.Catal.B:Environ.,2012,111-112:389-396中报道:LDHs材料与半导体复合后,能够形成异质结微结构,并推测该结构的存在提高了光生电子-空穴的分离效率,进而使其光催化性能得到大幅提升。
但是,粉体LDHs在实际应用时存在以下问题:(1)在催化剂与液相反应系统的分离过程中会造成催化剂的损失,气固相反应中光利用率低及催化剂后处理中可能的流失问题;(2)催化剂粒度较小,表面具有活性基团-OH,易形成氢键产生团聚。这些问题的存在均可能造成其催化性能不同程度的下降和实际应用成本的增加。显然,具有光催化活性的LDHs的固定化即制备类水滑石薄膜是解决上述问题较为可行的方法。例如,L.Tian等在Chem.Eng.J.2012,184:261-267.中报道:采用电泳沉积法在Cu基底上制备了CuCr-LDHs薄膜,发现孔径分布广的多孔LDHs薄膜在光催化降解有机污染物的反应中活性高于相应的LDHs粉体,而且具有较好的可循环利用性。与沉积法相比,原位生长法制备的类水滑石薄膜与基底的结合更紧密,不易脱落。Xue等在Chem.Commun.,2014,50:2301-2303中报道采用原位生长法在强酸性反应溶液中制备的镍铝类水滑石薄膜在紫外光下表现出了优异的催化降解甲基橙的活性。
采用原位化学生长法制备类水滑石薄膜时通常选择一定材料为基底,在反应溶液中加入沉淀剂或缓冲体系将溶液调节至合适的pH值,即弱酸性到碱性,使得类水滑石晶体沉积或者直接在基底上原位化学生长,形成相应的类水滑石薄膜。Chen等先后在Adv.Mater.2006,18(23):3089-3093和Angew.Chem.Int.Ed.2008,47:2466-2469中报道以阳极氧化铝/铝为基底,采用硝酸铵-氨水缓冲体系控制含有Ni2+或Zn2+的反应溶液的pH值为6.5,通过原位化学生长法制备了二维镍铝及锌铝类水滑石薄膜。
中国专利CN1986419A公开一种纳微复合结构垂直取向类水滑石薄膜及其制备方法、中国专利CN1923363A公开一种用于醇氧化反应合成水滑石薄膜催化剂的制备方法,上述两个专利以阳极氧化铝/铝为基底,采用硝酸铵-氨水缓冲体系控制含有二价金属离子溶液的pH值分别为4.5~10和6.3~7.3,并在此溶液中进行后续的薄膜原位化学生长反应。Xue等在Chem.Commun.,2014,50:2301-2303.中报道创新性地在强酸性条件下(反应溶液初始pH值低至2),在铝基底上成功制备了镍铝类水滑石薄膜,并发现在酸性条件下类水滑石生长相对缓慢,其结晶的尺寸较小,与基底结合紧密,不易脱落,其光催化活性与制备条件密切相关。
多孔阳极氧化铝模板是一种白色半透明、具有规则三维孔道结构的材料,其本身基本不具有光催化降解有机污染物的能力。如果以多孔阳极氧化铝模板作为基底,在其内外表面制备具有光催化活性的类水滑石薄膜,则不但可以克服粉体在固液相反应系统中易团聚、易流失、难分离的缺点,还能因其特殊的三维结构提高类水滑石催化剂的利用率,表现出比二维薄膜更高的光催化活性。类水滑石晶体的成核和晶化通常在碱性情况下更为有利,这是大多数原位化学生长法制备类水滑石薄膜都需要加入沉淀剂的原因。当以多孔阳极氧化铝模板为基底时,碱性环境中类水滑石晶体的快速生长会造成其外表面孔道口的堵塞,使其孔道中难以生长类水滑石晶体。为解决该问题,Ding等在Mater.Lett.2012,77:1-3中报道用恒流泵将碱性反应溶液通过分子筛过滤后循环流经多孔阳极氧化铝模板,即利用仪器辅助扩散,可以制备得到在多孔阳极氧化铝内外表面密集生长的镍铝类水滑石薄膜。到目前为止,还未见以其它更简便的方法实现三维类水滑石薄膜制备的报道。
发明内容
本发明的目的是提供一种含铬三维镍铝类水滑石薄膜,其多孔阳极氧化铝模板的内外表面均生长出镍铝类水滑石晶体,具有优异的光催化降解有机污染物的能力;本发明同时提供其制备方法与应用,反应条件温和、工艺过程简单、成功率高;应用过程中还可以有效避免流失,易于分离和重复使用。
本发明所述的含铬三维镍铝类水滑石薄膜:强酸性条件和铬离子的存在下,多孔阳极氧化铝模板的内外表面均生长出镍铝类水滑石晶体,得到含铬三维镍铝类水滑石薄膜。
其中:
所述强酸性条件是pH值为2.6~3。
所述类水滑石由带正电荷的层板与层间阴离子有序排列而成,其化学通式为[Ni1-xAlx(OH)2]x+(NO3 -)x·mH2O,铬作为助剂掺杂在其中,0.2≤x≤0.4,0≤m≤2。
本发明所述的含铬三维镍铝类水滑石薄膜的制备方法为将硝酸铬溶于硝酸镍的水溶液中,形成混合溶液,加入多孔阳极氧化铝模板,反应,得到含铬三维镍铝类水滑石薄膜。
其中:
所述混合溶液中,铬离子的摩尔浓度为0.005~0.015mol/L,优选0.01mol/L。
所述混合溶液中,镍离子的摩尔浓度为0.5~1.0mol/L,优选0.8~1.0mol/L。
所述反应温度为60~90℃,优选70~85℃;反应时间为6~48h,优选6~24h。
本发明所述的含铬三维镍铝类水滑石薄膜的应用为:将含铬三维镍铝类水滑石薄膜置于有机污染物中,于暗处吸附饱和后,再于紫外高压汞灯下照射,进行光催化降解反应。
本发明的有益效果如下:
本发明无需仪器辅助离子扩散,也无需添加任何沉淀剂,既可以避开碱性环境下孔道堵塞,又使得多孔阳极氧化铝模板的内外表面均生长出类水滑石晶体;铬的加入对阳极氧化铝模板基底有轻微的腐蚀作用,有利于铝离子的溶出,同时其本身也具有光催化助剂的作用。因此采用本发明方法制备的含铬三维镍铝水滑石薄膜在紫外光催化降解有机污染物反应中,表现出优异的光催化活性。
本发明制备条件温和、工艺过程简单、成功率高。制备得到三维薄膜上的类水滑石晶体在多孔阳极氧化铝模板的内外表面均生长,这些晶体与基底结合紧密,不易脱落。本发明得到的含铬三维镍铝类水滑石薄膜在使用过程中可以有效避免流失、团聚现象,易于分离和重复使用,在催化、吸附、分离等方面具有重要的应用价值。
附图说明
图1是实施例1制备的含铬三维镍铝类水滑石薄膜的X射线衍射(XRD)图;
图2是实施例1制备的含铬三维镍铝类水滑石薄膜的扫描电子显微镜(SEM)图;
图3是对比例1制备的多孔阳极氧化铝模板的SEM图;
图4是实施例1~2中含铬三维镍铝类水滑石薄膜、对比例1中多孔阳极氧化铝模板与对比例2中薄膜的光催化活性对比图;
其中:a、对比例1制备的多孔阳极氧化铝模板;b、对比例2制备的薄膜;c、实施例2制备的薄膜;d、实施例1制备的薄膜;c/c0为模拟有机污染物甲基橙的剩余率。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例1
将8.90g Ni(NO3)2·6H2O加入30ml去离子水中,超声使其充分溶解;称取0.12gCr(NO3)3·9H2O加入溶液中,溶液的pH值约为2.6,再将直径为2cm的多孔阳极氧化铝模板浸入该溶液中,并将溶液升温至80℃,恒温反应12h,取出多孔阳极氧化铝模板,并用去离子水清洗,室温干燥,得到含铬三维镍铝类水滑石薄膜。对薄膜进行XRD检测和SEM检测,结果如图1、图2所示。
所述的含铬三维镍铝类水滑石薄膜的应用如下:以甲基橙为模拟有机污染物,将直径约为2cm的含铬三维镍铝类水滑石薄膜置于100ml浓度为30mg/L的甲基橙溶液中,放在暗处约30min达到吸附饱和后,再于125W紫外高压汞灯下照射,进行光催化降解反应。对薄膜进行光催化活性评价,结果如图4中的d所示。
实施例2
将8.90g Ni(NO3)2·6H2O加入30ml去离子水中,超声使其充分溶解;称取0.06gCr(NO3)3·9H2O加入溶液中,溶液的pH值约为2.8,再将直径为2cm的多孔阳极氧化铝模板浸入该溶液中,并将溶液升温至80℃,恒温反应12h,取出多孔阳极氧化铝模板,并用去离子水清洗,室温干燥,得到含铬三维镍铝类水滑石薄膜。
所述的含铬三维镍铝类水滑石薄膜的应用与实施例1相同,对薄膜进行光催化活性评价,结果如图4中的c所示。
对比例1
高纯铝片在磷酸溶液中采用阳极氧化法制备直径为2cm的多孔阳极氧化铝模板,对模板进行SEM检测,结果如图3所示;对模板进行光催化活性评价,结果如图4中的a所示。
对比例2
参照文献Chem.Commun.,2014,50:2301-2303制备NiAl-LDH/Al。
将0.45g Ni(NO3)2·6H2O溶于15ml去离子水中,调节溶液的pH值约为2。将2×3cm铝片置于该溶液中,并将溶液升温至80℃,恒温24h,取出铝片,并用去离子水清洗,室温干燥,得到二维镍铝类水滑石薄膜,对薄膜进行光催化活性评价,结果如图4中的b所示。
将实施例1得到的含铬三维镍铝类水滑石薄膜进行了X射线衍射分析,如图1所示。由图中XRD数据可以看出,类水滑石晶体的(003)(2θ=10°),(006)(2θ=20°),(015)(2θ=38°),(113)(2θ=63°)衍射峰均出现,该结果说明采用本发明的制备方法可以成功制备出类水滑石晶体。
图2和图3分别是实施例1的含铬三维镍铝类水滑石薄膜和对比例1的多孔阳极氧化铝模板的SEM图像。由图3可以看到,阳极氧化铝模板具有典型的多孔结构,孔道均匀,孔径约为270~310nm。图2的右侧为含铬三维镍铝类水滑石薄膜的截面中部的SEM图像,左侧两张插图为含铬三维镍铝类水滑石薄膜表面的SEM图像,可以看出其孔道中均生长着类水滑石片;由于Cr对氧化铝有轻微的腐蚀作用,其表面存在两种形貌。
图4是实施例1~2中含铬三维镍铝类水滑石薄膜、对比例1中多孔阳极氧化铝模板与对比例2中薄膜的光催化活性对比图,从中可以看出,相对于多孔阳极氧化铝模板和文献Chem.Commun.,2014,50:2301-2303中具有较高光催化活性的NiAl-LDH/Al二维薄膜,实施例1~2中的含铬三维镍铝类水滑石薄膜表现出更高的光催化活性,其特殊的形貌和三维结构及铬助剂的添加均对提高材料的光催化活性起到重要作用。

Claims (5)

1.一种含铬三维镍铝类水滑石薄膜,其特征在于:强酸性条件和铬离子的存在下,多孔阳极氧化铝模板的内外表面均生长出镍铝类水滑石晶体,得到含铬三维镍铝类水滑石薄膜;
含铬三维镍铝类水滑石薄膜的制备方法,将硝酸铬溶于硝酸镍的水溶液中,形成混合溶液,加入多孔阳极氧化铝模板,反应,得到含铬三维镍铝类水滑石薄膜;
所述强酸性条件是pH值为2.6~3;
所述混合溶液中,铬离子的摩尔浓度为0.005~0.015mol/L;
所述混合溶液中,镍离子的摩尔浓度为0.5~1.0mol/L;
所述反应温度为60~90℃,反应时间为6~48h。
2.根据权利要求1所述的含铬三维镍铝类水滑石薄膜,其特征在于:所述类水滑石由带正电荷的层板与层间阴离子有序排列而成,其化学通式为[Ni1-xAlx(OH)2]x+(NO3 -)x•mH2O,铬作为助剂掺杂在其中。
3.根据权利要求1所述的含铬三维镍铝类水滑石薄膜的制备方法,其特征在于:所述混合溶液中,镍离子的摩尔浓度为0.8~1.0mol/L。
4.根据权利要求1所述的含铬三维镍铝类水滑石薄膜的制备方法,其特征在于:所述反应温度为70~85℃,反应时间为6~24h。
5.一种权利要求1所述的含铬三维镍铝类水滑石薄膜的应用,其特征在于:将含铬三维镍铝类水滑石薄膜置于有机污染物中,于暗处吸附饱和后,再于紫外高压汞灯下照射,进行光催化降解反应。
CN201711297899.8A 2017-12-08 2017-12-08 含铬三维镍铝类水滑石薄膜及其制备方法与应用 Active CN107913723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711297899.8A CN107913723B (zh) 2017-12-08 2017-12-08 含铬三维镍铝类水滑石薄膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711297899.8A CN107913723B (zh) 2017-12-08 2017-12-08 含铬三维镍铝类水滑石薄膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107913723A CN107913723A (zh) 2018-04-17
CN107913723B true CN107913723B (zh) 2020-06-23

Family

ID=61892966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711297899.8A Active CN107913723B (zh) 2017-12-08 2017-12-08 含铬三维镍铝类水滑石薄膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107913723B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363282B (zh) * 2020-03-16 2022-06-28 厦门理工学院 一种表面改性镍铝水滑石/聚乙烯醇纳米复合薄膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986419A (zh) * 2005-12-19 2007-06-27 北京化工大学 纳微复合结构垂直取向类水滑石薄膜及其制备方法
CN101054194A (zh) * 2006-04-12 2007-10-17 北京化工大学 超疏水层状双羟基复合金属氧化物薄膜及其制备方法
CN101323953A (zh) * 2008-07-11 2008-12-17 北京化工大学 垂直基底生长的环糊精插层水滑石薄膜及其制备方法
CN101766992A (zh) * 2010-01-22 2010-07-07 北京化工大学 一种类水滑石/蛋壳膜复合薄膜及其制备方法
CN102343283A (zh) * 2011-07-21 2012-02-08 北京化工大学 一种垂直取向类水滑石薄膜及其在结构化催化方面的应用
CN103157432A (zh) * 2013-03-25 2013-06-19 山东理工大学 一种高效阴阳离子粘土复合体吸附剂的制备方法
CN105749903A (zh) * 2016-02-04 2016-07-13 湖南大学 MgZnCr-TiO2类水滑石可见光催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986419A (zh) * 2005-12-19 2007-06-27 北京化工大学 纳微复合结构垂直取向类水滑石薄膜及其制备方法
CN101054194A (zh) * 2006-04-12 2007-10-17 北京化工大学 超疏水层状双羟基复合金属氧化物薄膜及其制备方法
CN101323953A (zh) * 2008-07-11 2008-12-17 北京化工大学 垂直基底生长的环糊精插层水滑石薄膜及其制备方法
CN101766992A (zh) * 2010-01-22 2010-07-07 北京化工大学 一种类水滑石/蛋壳膜复合薄膜及其制备方法
CN102343283A (zh) * 2011-07-21 2012-02-08 北京化工大学 一种垂直取向类水滑石薄膜及其在结构化催化方面的应用
CN103157432A (zh) * 2013-03-25 2013-06-19 山东理工大学 一种高效阴阳离子粘土复合体吸附剂的制备方法
CN105749903A (zh) * 2016-02-04 2016-07-13 湖南大学 MgZnCr-TiO2类水滑石可见光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
In situ growth of layered double hydroxide films under dynamic processes: Influence of metal cations;Peng Ding等;《Materials Letters》;20120305;第77卷;第1-3页 *
The formation mechanism and photocatalytic activity of hierarchical NiAl–LDH films on an Al substrate prepared under acidic conditions;Li Xue等;《Chem. Commun.》;20141231;第50卷;第2301-2303页 *

Also Published As

Publication number Publication date
CN107913723A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
Chen et al. Layered photocatalytic nanomaterials for environmental applications
Yang et al. Ternary hetero-structured BiOBr/Bi2MoO6@ MXene composite membrane: Construction and enhanced removal of antibiotics and dyes from water
CN110665483A (zh) 一种碳纤维水滑石复合材料及其制备方法和应用
CN1986419A (zh) 纳微复合结构垂直取向类水滑石薄膜及其制备方法
Gao et al. Facile synthesis of monodisperse meso-microporous Ta 3 N 5 hollow spheres and their visible light-driven photocatalytic activity
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
CN111604053A (zh) 三元水滑石光催化剂及其制备方法与应用
Cui et al. Fabrication of novel heterojunction of (1D) Nb2O5 nanorod/(0D) CdS nanoparticles for efficient removal of U (VI) from water
CN111013543B (zh) 一种多孔级的CuBTC配体组装合成方法
Zhu et al. Fabrication of CdS/ZnCr-LDH heterojunctions with enhanced of tetracycline hydrochloride photocatalytic degradation under visible light
CN112316903A (zh) 一种碳纤维@MAl水滑石复合薄膜的一步溶剂热法制备及其应用
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
Kang et al. Functionalized MIL-53 and its derivatives modified Bi2WO6 as effective piezocatalysts and membranes for adsorption and decomposition of organic pollutants
Lu et al. The collaborative incentive effect in adsorption-photocatalysis: A special perspective on phosphorus recovery and reuse
CN107913723B (zh) 含铬三维镍铝类水滑石薄膜及其制备方法与应用
CN113649039B (zh) 一种红磷/碳酸氧铋s型异质结光催化剂及其制备方法
Zhu et al. Synthesis of high crystallinity g-C3N4 hollow spheres for efficient photocatalytic removal of U (VI) under visible light
Liang et al. Highly efficient Cr (VI) photoreduction by C/N vacancies and hydroxyl co-modified g-C3N4: The new insight into the key role of citric acid
Li et al. Fabricating MOF@ COF core-shell catalyst with remarkable CO2 adsorption capacity and charge carrier dynamic for efficient CO2 conversion
Kumar et al. From lab to field: Prussian blue frameworks as sustainable cathode materials
Kalaiselvi et al. Accordion-like multilayer Ti3C2Tx MXene sheets decorated 1D Mn2O3 nanorods-based nanocomposites: An efficient catalyst for swift removal of single and mixed dyes
CN111151238B (zh) 一种钒酸铋异质结BiVO4/Bi25VO40材料及其制备方法和应用
Wang et al. Boosting photocatalytic activity via interfacial interaction and BiOCl0. 2Br0. 8/g-C3N4 Z-scheme heterojunction with nitrogen-oxygen vacancy
CN114471620B (zh) 一种α-SnWO4/In2S3复合光催化剂
CN110624532B (zh) 一种TiO2-BiVO4-石墨烯三元复合光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant