WO2007069489A1 - 安全走行支援装置 - Google Patents

安全走行支援装置 Download PDF

Info

Publication number
WO2007069489A1
WO2007069489A1 PCT/JP2006/324169 JP2006324169W WO2007069489A1 WO 2007069489 A1 WO2007069489 A1 WO 2007069489A1 JP 2006324169 W JP2006324169 W JP 2006324169W WO 2007069489 A1 WO2007069489 A1 WO 2007069489A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
driver
gaze
safety
visual recognition
Prior art date
Application number
PCT/JP2006/324169
Other languages
English (en)
French (fr)
Inventor
Hirofumi Nishimura
Hisashi Kurokawa
Makoto Mochizuki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/096,673 priority Critical patent/US7884705B2/en
Priority to CN2006800506680A priority patent/CN101356078B/zh
Priority to EP06823574.6A priority patent/EP1961622B1/en
Priority to JP2007550133A priority patent/JP4879189B2/ja
Publication of WO2007069489A1 publication Critical patent/WO2007069489A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers

Definitions

  • the present invention relates to a safe driving support device for guiding a driver who drives a vehicle such as an automobile as to whether there is a danger such as a collision, rear-end collision, or contact with a pedestrian.
  • a device for guiding a driver of a vehicle whether the vehicle is in a dangerous state or a safe state for example, it is determined whether or not the driver recognizes the traffic environment and recognizes it. Depending on the degree, there was a guide to dangerous factors.
  • FIG. 11 is a conceptual diagram of a conventional safe driving support device.
  • this safe driving support device the direction of the object that the driver must watch is determined as the required gaze direction, and the frequency at which the driver viewed the required gaze direction is obtained as the gaze frequency, and the driver is used using this frequency. Determines whether or not it is aware of the traffic environment (for example, see Patent Document 1)
  • FIG. 12 is a conceptual diagram of another conventional safe driving support device.
  • a gaze point is determined from the driver's line of sight, the vicinity is defined as a gaze area based on the gaze point, and the driver determines whether there is road equipment in the gaze area. It is determined whether or not the state of the facility is recognized (for example, see Patent Document 2).
  • Patent Document 1 JP-A-7-167668 (Page 7, Figure 1)
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-182307 (Page 13, Figure 4)
  • the size of the traffic light is about 30 cm in height, so the line of sight overlaps the target.
  • the detection accuracy of the line-of-sight direction is 0.17 degrees or less!
  • an accurate determination cannot be made at the frequency at which the line-of-sight directions overlap.
  • a gaze area is set based on the gaze point, and the object is in the gaze area. It is impossible to determine which object is being viewed by the method of determining whether or not the object is being viewed.
  • the present invention was made in order to solve the conventional problem, and does the driver recognize an object that the driver should be aware of even if the detection accuracy of the eye-gaze direction is around 1 degree? please ⁇
  • An object of the present invention is to provide a safe driving support device that can determine the above. Means for solving the problem
  • the safe driving support device of the present invention includes a traffic environment detection unit that detects the presence or state of a set object, and a gaze target that the driver should pay attention to for safe driving from the object.
  • gaze target determination means for determining the gaze direction
  • gaze direction detection means for detecting the gaze direction of one or both eyes of the driver, and a gaze direction movement pattern detected by the gaze target and the gaze direction detection means
  • a visual determination means for determining whether the driver is viewing the gaze target
  • a safety non-confirmation determination means for determining whether the driver is unconfirmed from the visual determination result determined by the visual determination means
  • And a providing means for guiding the contents of the safety unconfirmed according to the result of the safety unconfirmed determination determined by the safety unconfirmed determining means.
  • the present invention even if the accuracy of gaze direction detection is around 1 degree by determining whether or not the gaze target is visually recognized based on the movement pattern in the gaze direction of the driver. It can be determined whether or not the transferee is aware of the object to be noted.
  • FIG. 1 is a block diagram of a safe driving support device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of an object detected by the safe driving support apparatus in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a setting example of a two-dimensional space for visual recognition determination of the safe driving support device according to the first embodiment of the present invention.
  • FIG. 4 shows a visual judgment method of the safe driving support device in the first embodiment of the present invention.
  • FIG. 5 is a graph showing an example of changes in line of sight and objects of the safe driving support device in the first exemplary embodiment of the present invention.
  • FIG. 7 shows a visual recognition determination method for a safe driving support apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a movement pattern in the line-of-sight direction when a road sign of the safe driving support device in the third embodiment of the present invention is visually recognized.
  • FIG. 9 is a diagram illustrating an example of a movement pattern in the line of sight when a traffic light of the safe driving support device in the third embodiment of the present invention is visually recognized.
  • FIG. 10 is a diagram illustrating an example of a movement pattern in the line-of-sight direction when a plurality of gaze targets are close to each other in the safe driving support device according to the third embodiment of the present invention.
  • FIG. 11 Conceptual diagram of a conventional safe driving support device
  • FIG. 13 is a diagram for explaining gaze detection accuracy required in a conventional safe driving support device.
  • FIG. 14 is a diagram showing an example of a case where visual recognition cannot be determined in a conventional safe driving support device.
  • FIG. 1 is a diagram showing a safe driving support apparatus according to a first embodiment of the present invention.
  • the safe driving support device detects a traffic environment that detects the presence or state of a moving object such as a target vehicle or a pedestrian and a road sign or a traffic light.
  • Mean 11 and the objects that the driver should pay attention to for safe driving are selected from the objects detected by traffic environment detection means 11 or the degree to which attention is to be determined Gaze target determination means 12, gaze direction detection means 13 for detecting the gaze direction of one or both eyes of the driver, gaze target determined by the gaze target determination means 12 and gaze direction detected by the gaze direction detection means 13
  • Gaze target determination means 12 for detecting the gaze direction of one or both eyes of the driver, gaze target determined by the gaze target determination means 12 and gaze direction detected by the gaze direction detection means 13
  • Directional movement pattern force Determining whether or not the driver is looking at the object, or the degree of visual recognition, and the degree of visibility of the driver from the visual recognition determination result determined by the visual recognition determination means 14
  • Safety unconfirmation determination means 15 for obtaining the safety unconfirmation determination means 15 and presentation means 16 for guiding the
  • the traffic environment detection means 11 is composed of, for example, a camera that captures an image in front of the vehicle and a sensor composed of a computing unit.
  • the traffic signal for the vehicle and the signal for the pedestrian as shown in FIG. And pedestrians are detected.
  • the target objects are pedestrian traffic lights Ml and M2, a vehicle traffic signal M4 and pedestrians M3, M5 and M6.
  • a display painted on a road such as a temporary stop line, a pedestrian crossing, or a white line may be included in the object.
  • two cameras are arranged in the passenger compartment so as to capture an image in front of the vehicle and used as a stereo camera, so that an image in front of the vehicle is always taken.
  • the arithmetic unit performs processing for each frame for each of the images taken by the two cameras.
  • the object to which the driver should pay attention is detected by pattern matching between the edge extraction result obtained from the camera and the image of the object that has been prepared in advance.
  • the disparity between the two images is calculated, and the object with a large disparity is in the vicinity.
  • An object with a small parallax is an object in the distance.
  • the relative positional relationship between the vehicle and the three-dimensional object may be calculated using triangulation.
  • the position, speed, and advancing direction are detected. Specifically, the relative positional relationship of the object for each frame of the captured image is recorded. The speed of the moving body and the moving direction are calculated as the differential force between frames. Relative position coordinates are set as two-dimensional coordinates with the vehicle position as the origin, the direction the vehicle is facing as the positive direction of the y-axis, and the right side of the vehicle as the positive direction of the X-axis. Examples of the moving body detected by the traffic environment detection means 11 include pedestrians, noises and bicycles in addition to vehicles.
  • the gaze target determining means 12 selects the objects that the driver should pay attention from among the objects detected by the traffic environment detecting means 11.
  • the object that the driver should pay attention to is the traffic signal M4 for the host vehicle.
  • the pedestrian M6 is predicted to move forward by the traffic environment detection means 11, the pedestrian M6 may also be included in the object that the driver should pay attention to.
  • the objects that the driver should pay attention to when making a right turn are the vehicle traffic signal M4 and the pedestrians M3 and M5.
  • the pedestrians on the right side in front of the host vehicle are to be paid attention.
  • the method for determining the right side ahead of the host vehicle is a pedestrian with a positive X coordinate using the above-mentioned two-dimensional coordinates.
  • Judgment as to whether or not the host vehicle is going to make a right turn is performed by detecting a blinker signal.
  • the characteristics of accelerator operation, brake operation, and steering wheel operation are memorized when the vehicle goes straight and when it turns right, and when the driver forgets to turn the blinker, the straight or right turn force is predicted from this information. It is also possible to make it.
  • past driving data is accumulated to predict the driving trajectory during a right turn, and it is determined whether a right turn can be made with a sufficient interval for pedestrian M5, and it is determined that there is a sufficient interval. If it can, the pedestrian M5 may be removed as an object that the driver should pay attention to.
  • the gaze target determination means 12 has been described as a means different from the traffic environment detection means 11 here, the driver should pay attention to the gaze target determined by the gaze target determination means 12. It is also possible to reduce the calculation processing of the traffic environment detection means 11 by simplifying the area, for example, the front right side, etc. and implementing it in the traffic environment detection means 11, and this embodiment is There is no restriction on the relationship between the configuration of the traffic environment detection means 11 and the gaze target determination means 12.
  • the line-of-sight detection means 13 detects the driver's line-of-sight direction.
  • a gaze detection method using a pupil cornea reflection method using a near-infrared camera will be described.
  • a near-infrared camera is arranged at a position where the driver's eyes can be photographed.
  • the dashboard is placed at the position of the room mirror.
  • an LED Light Emitting Diode
  • an LED for irradiating near-infrared rays is installed at the same time as the optical axis of the camera.
  • this LED When the driver's eyes are photographed, this LED is irradiated.
  • the captured image power also detects the center position of the pupil. For the detection of the pupil, for example, after detecting the position of the eye, a portion appearing black and circular at the center may be detected and used as a pupil.
  • edge extraction is performed, and a curved line extending while drawing an arc on the left and right is detected as an upper eyelid and a lower eyelid.
  • a reflected image of the LED irradiated when photographing the eye is detected. Since the reflected image of the LED is a bright spot on the eyeball, the simplest detection method is to detect the part with the highest luminance in the eye.
  • the direction of the driver's line of sight is detected from the positional relationship between the center of the pupil and the reflected image of the LED. That is, when the pupil and the reflected image overlap, the camera direction has the line-of-sight direction, and when the pupil is shifted, it is assumed that the line-of-sight direction is in that direction by the amount of the shift.
  • the eye direction may be obtained for each eye force. At this time, the line-of-sight direction of both eyes is obtained, and the distance between the objects that are visually recognizing the difference of the angles may be obtained and used for the determination by the visual recognition means 14.
  • the visual recognition determination unit 14 determines whether the movement pattern force in the line-of-sight direction is also a force visually recognizing the object. This principle will be described with reference to FIGS. First, as shown in FIG. 3, a two-dimensional space is set between the object and the driver, and the X axis and the Y axis are set. Set the Y-axis so that the top is positive in the vertical direction, and the X-axis is set so that the right is positive in the horizontal method. The origin can be set anywhere, but here the driver's face is explained as the origin.
  • the target of the gaze target determined by the gaze target determination unit 12 among the objects detected by the traffic environment detection unit 11 is represented in the above-described XY two-dimensional space.
  • the position of the driver's eyes and the object are mapped to a position that intersects the two-dimensional space of the line force -Y.
  • Figure 3 shows an example of mapping the range of the outer frame of the traffic light to an XY two-dimensional space, taking the traffic light as an example.
  • the line-of-sight direction detected by the line-of-sight direction detecting means 13 is mapped onto an XY two-dimensional space. By doing so, it is possible to compare the relationship between the object and the line-of-sight direction in a two-dimensional space.
  • FIG. 4 is a conceptual diagram of a method for determining whether or not the driver sees the object using the movement pattern in the line-of-sight direction.
  • Fig. 4 is an example of mapping in an XY two-dimensional space, taking a car as an object and moving from right to left as an example.
  • the driver is driving and the car is stopped.
  • This threshold value may be set to a value of 5 to 30 degrees, which is the effective visual field of a human being driving, or may be set using the maximum value of the detection error of the gaze direction detection.
  • a vector of the movement pattern of the remaining object as a candidate for the object for determining whether the object is visually recognized is obtained.
  • the movement of the target vehicle is detected, and the movement pattern of the vehicle is obtained and expressed as a vector VI.
  • This vector sets a certain period, expresses the car position at the start time and end time in the XY space, and obtains it as the difference between these positions. Yes.
  • the moving pattern is examined in the same fixed period as when the movement of the vehicle is detected. Since the gaze direction may have a large error due to the detection accuracy already explained, the total trajectory force in the gaze direction detected within a certain period of time is not obtained by calculating the difference between the position at the start time and the end time. The movement pattern is detected.
  • the position is mapped into an XY two-dimensional space, and the mapped position is set as each sample point.
  • the points marked with “X” correspond to each sample point.
  • a regression line of the sample points is obtained, and a new one-dimensional Z-axis is provided in the two-dimensional space of XY.
  • This definition of the positive and negative directions of the Z axis determines the relative positive force of the position where the sample point at the start time and end time is located.
  • the Z axis corresponds to the case where the direction of plus Z minus is reversed in parallel with the X coordinate in the two-dimensional space of XY.
  • the direction of the Z axis in the two-dimensional space of XY is the direction of the line of sight movement vector.
  • the maximum value and the minimum value are obtained for all the sample points, the absolute value of the difference between the maximum value and the minimum value is obtained, and the absolute value is a certain value of 1 or less. Multiply the ratio to get the magnitude of the eye movement vector.
  • FIG. 5 is a drawing showing the transition of the angle of the gaze direction in the horizontal direction and the frontal force of the object.
  • points OC and ⁇ where the angle of the line-of-sight direction is changing are extracted as changing points, and the vector of the line-of-sight movement is obtained in this section.
  • the vector of the movement pattern in the line-of-sight direction may simply be obtained as a vector of line-of-sight movement by obtaining a difference between the extracted change points in the two-dimensional space, or by obtaining a regression line and calculating a solid line.
  • the direction of the vector and the magnitude of the vector may be the distance between the line-of-sight directions at the extracted change point in the two-dimensional space of X- ⁇ .
  • the vector of the movement pattern of the object may be obtained as a vector for the movement between the extracted change points.
  • the inner product of the movement vector VI of the object and the movement vector V2 of the line of sight is calculated, and the object is obtained when the magnitude is a certain ratio or more with respect to the magnitude of the movement vector VI of the object. Determine that you are looking at an object.
  • FIG. 6 is a conceptual diagram of a method for determining whether or not the driver looks at the target object using the movement pattern in the line-of-sight direction when the host vehicle is moving.
  • the basic concept is the same as that described with reference to Fig. 4, and is therefore omitted.
  • a traffic light will be described as an example.
  • Road equipment such as traffic lights and road signs is not a moving body, but it can be handled as a moving body relatively because the vehicle is moving, and the same processing as described in Fig. 4 is performed. It is possible to use.
  • the safety unconfirmation determination means 15 determines whether or not safety is unconfirmed based on whether the visual recognition determination means 14 has made a visual recognition determination with respect to the gaze target determined by the gaze target determination means 12. To do.
  • the start timing of the safety confirmation determination period may be a certain time before the intersection, a certain time before the intersection, or a certain time before the current time. Good.
  • the end timing of the safety confirmation determination period may be the timing when the distance to the target of the gaze target determined by the gaze target determination means 1 or 2 is closer than a certain distance, or the movement trajectory of the own vehicle is determined by the vehicle speed, acceleration, steering Predicting from corners, etc., the time until the time to reach the target may be shorter than a certain time, or a specific passing point can be confirmed safely with the center position of the intersection or stop line as the reference position It may be set as the determination end position, and may be the timing of passing the safety confirmation determination end position. And If it is determined that the safety is not confirmed, information such as the type of the object and the direction of the object regarding the object whose visibility is insufficient is output to the presentation means 16.
  • the presentation means 16 may display a video using a monitor !, or may provide guidance by voice using a speaker, or guide using both a monitor and a speaker. You may do it.
  • a method for guiding the danger content by voice using a speaker will be described.
  • voice data capable of recognizing each target is prepared and stored as electronic data. This is because, for example, the sound used when recognizing the vehicle is “car”, and the sound of the vehicle is used, and the sound that can imagine the vehicle, such as the sound effect that the vehicle is running, is used. Also good. All of these are prepared for each object that can be detected by the traffic environment detection means 11 such as a traffic light, a pedestrian, a noise, and a bicycle, and stored as electronic data.
  • the safety unconfirmation determination means 15 determines that the safety confirmation for the object determined by the gaze target determination means 12 is neglected, the sound data corresponding to the object is D It is converted to analog with a / A (Digital to Analog) converter, and the gain is amplified using a power amplifier and output from the speaker.
  • the description has been made using the two-dimensional space when comparing the object and the line-of-sight direction.
  • the comparison may be performed using the actual three-dimensional space as it is.
  • the visual recognition determination unit 14 determines that the visual recognition has been performed when there is a relationship between the movement pattern of the gaze target and the movement pattern in the line-of-sight direction in a predetermined period, and therefore, the operation for following the gaze target with the eyes Therefore, it is possible to determine whether or not the user has visually recognized even without a high-precision line-of-sight detection device.
  • the visual recognition determination unit 14 extracts a predetermined change point in the line-of-sight direction, and determines the relationship between the movement pattern of the gaze target and the movement pattern in the line-of-sight direction in the period between the extracted change points. Therefore, it is possible to appropriately determine the period for determining whether the force is visually recognized.
  • the visual recognition determination unit 14 of the safe driving support device determines whether or not the force visually recognizes the object based on the global movement pattern in the line-of-sight direction.
  • FIG. 7 is a conceptual diagram of the visual recognition determination method of the safe driving support device of the present embodiment, and represents the XY two-dimensional space described in the first embodiment.
  • the detected gaze direction is the portion indicated by “X”
  • E 1 is a conceptual diagram showing the movement of the driver in the gaze direction.
  • the case where the object M8 is viewed after the object M7 is viewed is taken as an example.
  • the case of the object M7 will be described as an example. Since there are sample points in the line-of-sight direction near the object M7, for example, if the coordinates of the sample points in the line-of-sight direction during the period up to the right side of the object M8 are averaged, the average coordinates are set from the object M7. The distance is less than
  • a regression line from the starting sample point to the reference sample point is obtained, and the magnitude of the regression line is obtained in the same manner as in the first embodiment. .
  • the global movement direction V6 is similarly determined.
  • the angles of the vectors V5 and V6 in the global movement direction are calculated. If the angle is large, it is determined that the image is viewed with a certain value as a threshold value. At this time, instead of directly calculating the vector angle, the inner product of the two vectors is calculated, an index obtained by dividing the inner product by the magnitude of the two vectors is obtained, and the force that has been viewed using this index is calculated. The same can be done by determining whether or not.
  • the visual recognition means 14 has a line-of-sight direction in the vicinity of the gaze target, and the movement pattern in the line-of-sight direction in the vicinity of the gaze target changes from the set amount of the direction approaching the gaze target and the direction of moving away from it. In this case, it is determined that the driver has visually recognized the object, so it is possible to determine whether or not the driver has visually recognized even a small object at a distance with a detection accuracy of about 1 degree.
  • the visual recognition means 14 of the safe driving support device is characterized by the movement pattern in the line-of-sight direction near the target object when the target object is visually recognized for each type of target object set in advance. Based on the movement pattern in the gaze direction near the actual object, the object was visually recognized. It is determined whether or not the force of visually recognizing the object depends on whether or not the movement pattern in the line-of-sight direction applies.
  • FIG. 8 and FIG. 9 are conceptual diagrams of the visual recognition determination method of the safe driving support device of the present embodiment, and represent the XY two-dimensional space described in the first embodiment.
  • the detected line-of-sight direction is the portion indicated by “X”
  • E2 and E3 are conceptual diagrams showing movement in the line-of-sight direction of the driver.
  • the movement pattern E2 in the line-of-sight direction shown in FIG. 8 can fit a polynomial approximation curve with a low order. Using this, the visual recognition for each object is determined.
  • sample points in the visual line direction in the vicinity are obtained. This may be the same as the method described in the first embodiment. Next, we apply a low-order polynomial approximation to this sample point.
  • the visual recognition determination means 14 has a movement pattern in the line-of-sight direction when the object is visually recognized for each type of object, and when it is visually recognized as a movement pattern in the line-of-sight direction in the vicinity of the object as the gaze target. Since the force is visually recognized based on the degree of coincidence of the movement patterns in the line of sight, even if the object to be viewed by the driver appears to overlap, either of the overlapping objects is seen. Can be determined.
  • the movement pattern in the line-of-sight direction is classified for the object itself, but it is classified according to the size of the object in two-dimensional space, the luminance of the object, and the like.
  • the movement pattern it is possible to determine the visual recognition by detecting the size of the object to be visually recognized in the X-Y two-dimensional space, the luminance of the object, etc. Good.
  • the safe driving support device determines whether or not the driver is aware of an object to be noted even if the detection accuracy is around 1 degree. If it can be judged, it has a habit effect and is useful as a safe driving support device for guiding the driver of the vehicle whether there is a danger such as a collision, rear-end collision, contact with a pedestrian, etc. It is.

Abstract

【課題】視線方向検出の精度が1度前後の検出精度であっても、運転者が注意すべき対象物を認知しているかどうかを判定することができる安全走行支援装置を提供すること。 【解決手段】交通環境検出手段11が、車や歩行者や道路標識や信号機などの対象物を検出し、注視目標決定手段12が、検出された対象物から運転者が注意を払うべき注視目標を決定し、視線方向検出手段13が、運転者の視線方向を検出し、視認判定手段14が、注視目標と視線方向の移動パタンから運転者が注視目標を視認しているかを判定し、安全不確認判定手段15が、視認判定手段14の判定結果から運転者が安全不確認かどうかを判定し、提示手段16が、安全不確認判定手段15の判定結果に従い安全不確認の内容を案内する。

Description

安全走行支援装置
技術分野
[0001] 本発明は、自動車などの車両を運転する運転者に対して衝突や追突、歩行者との 接触などの危険があるかどうかを案内するための安全走行支援装置に関するもので ある。
背景技術
[0002] 従来、車両の運転者に対して、危険な状態または安全な状態であるかを案内する 装置としては、例えば、運転者が交通環境を認識しているかどうかを判定して、その 認識の度合に応じて危険な要因を案内するものがあった。
[0003] 図 11は、従来の安全走行支援装置の概念図である。この安全走行支援装置では 、運転者が注視しなければならない対象の方向を必要注視方向として決定し、運転 者がその必要注視方向を見た頻度を注視頻度として求め、この頻度を用いて運転者 が交通環境について認識しているかどうかを判定している(例えば、特許文献 1参照
) o
[0004] 図 12は、他の従来の安全走行支援装置の概念図である。この安全走行支援装置 では、運転者の視線方向から注視点を決定し、その注視点を基準にその近傍を注視 エリアとして定義し、注視エリア内に道路設備があるかどうかで、運転者が道路設備 の状態を認識しているかどうかを判定している(例えば、特許文献 2参照)。
[0005] 車両の運転者に対して、衝突や追突、歩行者との接触などの危険があるかどうかを 案内する場合、運転者にとって必要なときだけ警告することが望ましい。すなわち、 運転者が既に危険な状態であることを認知している場合には警報を出力する必要は なぐ運転者にとって余計な警報が報知されると、力えって煩わしさが増加してしまう。
[0006] 例えば、交差点などで運転者が見落とすと危険な状態になる可能性がある対象物 を検知し、運転者がその認知すべき対象物を見落としている場合にのみ、その見落 とした内容を警告すれば安全走行に対する支援を効率的に行うことが可能になる。 特許文献 1 :特開平 7— 167668号公報 (第 7頁、図 1) 特許文献 2:特開 2005— 182307号公報 (第 13頁、図 4)
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、運転者が注意を払うべき対象物の大きさは大小さまざまであるととも に、走行中の運転者は遠方にある小さな対象物に対しても十分注意を払う必要があ る。
[0008] 例えば、図 13に示すように、 100m先にある信号機を視認したかどうかを判定する 場合、信号機の大きさは高さが約 30cm程度であるので、対象物に視線方向が重な る頻度を用いて視認の判定を行う場合には、視線方向の検出精度は 0. 17度以下で な!、と正確に対象物と重なって 、るかは分力 な 、ため、対象物に対して視線方向 が重なる頻度では正確な判定ができな 、。
[0009] 一方で、視線方向を検出する技術としては近赤外によるカメラを用いた瞳孔角膜反 射法などがあり、検出精度は現状で 0. 3〜0. 4度程度であり(参考文献:「眼球形状 モデルに基づく視線測定法」、第 8回画像センシングシンポジウム PP.307-312,2002.
)、検出精度が不十分である。
[0010] また、今後、カメラの解像度などが改善され 0. 17度以下の精度が実現されたとして も、高精度の視線検出装置が必要になりコストアップにつながってしまう。
[0011] さらに、視線方向そのものの定義としても人間の眼の構造を考慮すると困難になる 。つまり、人間は眼の中の黄斑と呼ばれる眼球の後極の外側にある直径 2mmの部分 が色の識別や視力が良ぐさらにこの中の中心窩と呼ばれる部分に写った写像で詳 細な視界情報を認知しており、認知できる網膜にある程度の面積が存在する事を考 慮すると、この黄斑や中心窩のどの部分が視線方向としての基準位置になるのかの 定義が困難になる。
[0012] また、図 14に示すように、視認の判定を行うべき対象物が運転者から重なって見え る場合には、注視点を基準に注視エリアを設定し注視エリア内に対象物があるかどう かを判定する方法ではどちらの対象物を見ているのか判定することは不可能である。
[0013] 本発明は、従来の問題を解決するためになされたもので、視線方向検出の精度が 1度前後の検出精度であっても、運転者が注意すべき対象物を認知しているかどうか を判定することができる安全走行支援装置を提供することを目的とする。 課題を解決するための手段
[0014] 本発明の安全走行支援装置は、設定された対象物の存在または状態を検出する 交通環境検出手段と、前記対象物の中から運転者が安全運転のために注意を払う べき注視目標を決定する注視目標決定手段と、運転者の片眼あるいは両眼の視線 方向を検知する視線方向検出手段と、前記注視目標と前記視線方向検出手段で検 出した視線方向の移動パタンとの相関力 運転者が前記注視目標を視認しているか どうかを判定する視認判定手段と、前記視認判定手段で判定した視認判定結果から 運転者が安全不確認かどうかを判定する安全不確認判定手段と、前記安全不確認 判定手段で決定した安全不確認判定結果に従い安全不確認の内容を案内する提 示手段とを備える構成を有して 、る。
[0015] この構成により、運転者の視線方向の移動パタンにより注視目標を視認しているか が判定され、高精度な視線検出装置が不要となり、コストを抑えることができる。 発明の効果
[0016] 本発明によれば、運転者の視線方向の移動パタンにより注視目標を視認している かを判定することにより、視線方向検出の精度が 1度前後の検出精度であっても、運 転者が注意すべき対象物を認知しているかどうかを判定することができる。
図面の簡単な説明
[0017] [図 1]本発明の第 1の実施の形態における安全走行支援装置のブロック図
[図 2]本発明の第 1の実施の形態における安全走行支援装置の検出する対象物の 例 を示す図
[図 3]本発明の第 1の実施の形態における安全走行支援装置の視認判定のための 二 次元空間の設定例を示す図
[図 4]本発明の第 1の実施の形態における安全走行支援装置の視認判定方法を示 す 図
[図 5]本発明の第 1の実施の形態における安全走行支援装置の視線と対象物の推移 の例を示すグラフ
[図 6]本発明の第 1の実施の形態における安全走行支援装置の視認判定方法の他 の 例を示す図
[図 7]本発明の第 2の実施の形態における安全走行支援装置の視認判定方法を示 す 図
[図 8]本発明の第 3の実施の形態における安全走行支援装置の道路標識を視認した ときの視線方向の移動パタンの例を示す図
[図 9]本発明の第 3の実施の形態における安全走行支援装置の信号機を視認したと きの視線方向の移動パタンの例を示す図
[図 10]本発明の第 3の実施の形態における安全走行支援装置の複数の注視目標が 近 くにあるときの視線方向の移動パタンの例を示す図
[図 11]従来の安全走行支援装置の概念図
[図 12]他の従来の安全走行支援装置の概念図
[図 13]従来の安全走行支援装置において必要な視線検出精度を説明する図
[図 14]従来の安全走行支援装置において視認判定不可能な場合の例を示す図 符号の説明
[0018] 11 交通環境検出手段
12 注視目標決定手段
13 視線方向検出手段
14 視認判定手段
15 安全不確認判定手段
16 提示手段
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態について、図面を参照して説明する。
[0020] (第 1の実施の形態)
図 1は本発明の第 1の実施の形態の安全走行支援装置を示す図である。
[0021] 図 1において、本実施の形態の安全走行支援装置は、対象物となる車や歩行者な どの移動体と道路標識や信号機などの道路設備の存在あるいは状態を検出する交 通環境検出手段 11と、運転者が安全運転のために注意を払うべき対象物を交通環 境検出手段 11で検出した対象物の中から選別あるいは注意すべき度合を決定する 注視目標決定手段 12と、運転者の片眼あるいは両眼の視線方向を検知する視線方 向検出手段 13と、注視目標決定手段 12で決定した注視目標と視線方向検出手段 1 3で検出した視線方向の移動パタン力 運転者が対象物を見ているかどうかを判定 あるいは視認の度合を判定する視認判定手段 14と、視認判定手段 14で判定した視 認判定結果から運転者の安全不確認の度合を求める安全不確認判定手段 15と、安 全不確認判定手段 15で決定した安全不確認判定結果に従い安全不確認の内容を 案内する提示手段 16とを備えている。
[0022] 交通環境検出手段 11は、例えば、車両前方の映像を撮影するカメラと、演算機で 構成したセンサーから構成され、図 2に示すような、車両用の信号機と歩行者用の信 号機を検出するとともに、歩行者を検出する。図 2において対象物は歩行者用信号 機 Ml、 M2と、自車両用信号機 M4と歩行者 M3、 M5、 M6である。このとき、一時停 止線や横断歩道や白線などの道路にペイントされた表示も対象物に含めてもよい。
[0023] 具体的には、カメラを車両前方の映像を写すように二個車室内に配置してステレオ カメラとして用い、車両前方の映像を常に撮影するようにする。演算機は、この二個の カメラで撮影した映像それぞれに対してフレーム毎に処理を行う。
[0024] まず、映像のノイズを取り除くために移動平均を用いて平滑化を行い、デジタルフィ ルタを用いて映像の高周波成分を抽出することによりエッジ抽出を行う。
[0025] 一方で、車両や歩行者や信号機などの運転者が注意を払うべき対象物の画像を 複数用意し、これらの画像に対してエッジ抽出をしておく。
[0026] そして、カメラより得られたエッジ抽出結果と予め用意してあるエッジ抽出を行った 対象物の画像とのパターンマッチングにより運転者が注意を払うべき対象物の検出 を行う。
[0027] さらに、抽出した対象物に対して、二個のカメラ力 得られた映像の差分を計算す ることにより、二つの映像の視差を計算し、視差が大きいものは近くに存在する対象 物とし、視差が小さいものは遠くにある対象物とする。この時、自車と立体物との相対 位置関係は三角測量を用いて計算すればよい。
[0028] 車両や歩行者などの移動体の場合には、その位置や速度や進んでいる方向を検 知する。具体的には、撮影した画像のフレーム毎の対象物の相対位置関係を記録し ておき、移動体の速度や移動方向をフレーム間の差分力 計算する。相対位置の座 標は自車位置を原点とし、自車が向いている方向を y軸の正方向とし、自車両右側を X軸の正方向として二次元座標を設定する。交通環境検出手段 11が検出する移動 体としては、車両のほか、歩行者、ノイク、自転車などが含まれる。
[0029] 注視目標決定手段 12は、運転者が注意を払うべき対象物を交通環境検出手段 11 が検出した対象物の中から選別する。
[0030] 例えば、直進する場合、運転者が注意を払うべき対象物は自車両用信号機 M4と する。このとき、歩行者 M6が交通環境検出手段 11によって自車両前方に移動してく ると予測されれば、歩行者 M6も運転者が注意を払うべき対象物に含めるようにしても よい。
[0031] 一方、右折する場合の運転者が注意を払うべき対象物は自車両用信号機 M4、歩 行者 M3と M5とする。その選別する方法としては、自車前方の右側にいる歩行者を 注意を払うべき対象物とする。
[0032] 自車前方の右側と判断する方法は、上述の二次元座標を用いて、 X座標がプラス の歩行者とする。
[0033] 自車両が直進する力右折するかの判定はウィンカーの信号を検出することにより行 う。また、アクセル操作、ブレーキ操作、ハンドル操作の特徴を直進の場合と右折の 場合で記憶しておき、運転者がウィンカーを出し忘れた場合には、これらの情報から 直進か右折力を予測するようにすることも可能である。
[0034] さらに、過去の走行データを蓄積しておき右折時の走行軌跡を予測し、歩行者 M5 に対して十分な間隔を保って右折できるかどうかを判断し、十分な間隔があると判断 できた場合には運転者が注意を払うべき対象物として歩行者 M5を外すようにしても よい。
[0035] このときの十分な間隔を保てるかどうかの判定は、自車を原点とした二次元座標を 用いて、ある一定時間まで、予測した走行軌跡の自車と各歩行者との間のユーグリツ ト距離を計算し、ある一定以下の距離にならない事で判断するようにする。
[0036] なお、ここでは注視目標決定手段 12は交通環境検出手段 11とは別の手段として 説明したが、注視目標決定手段 12が決定する注視目標を運転者が注意を払うべき 領域、例えば、前方右側などと簡易化し、交通環境検出手段 11の中に含めて実装 することで交通環境検出手段 11の演算処理を軽減することなども可能であり、本実 施の形態は、交通環境検出手段 11と注視目標決定手段 12の構成の関係に対して 制約をカ卩えるものではな 、。
[0037] 以降の説明では、運転者が注意を払うべき対象物として、直進時は自車両用信号 機 M4のみで、右折時は自車両用信号機 M4と歩行者 M3、 M5として説明する。
[0038] 視線方向検出手段 13は、運転者の視線方向を検出する。具体的な実現方法の一 例として、近赤外線カメラを用いた瞳孔角膜反射法による視線検出方法を説明する。
[0039] 近赤外線のカメラを運転者の眼が撮影できる位置に配置する。例えば、ダッシュボ 一ド上ゃルームミラーの位置に配置する。このとき、カメラの光軸とほぼ同 Cf立置に近 赤外線を照射するための LED (Light Emitting Diode)を同時に設置しておく。
[0040] そして、運転者の眼を撮影する場合にはこの LEDを照射するようにする。撮影され た画像力も瞳孔の中心位置を検出する。瞳孔の検出は、例えば、眼の位置を検出し た後に、その中心に最も黒く円形に写っている部分を検出し瞳孔とすればよい。
[0041] 眼の位置の検出には、例えば、エッジ抽出を行い、左右に弧を描きながら延びる曲 線を上まぶたと下まぶたとして検出する。
[0042] また、眼を撮影する際に照射した LEDの反射像を検出する。 LEDの反射像は眼球 上に明るく写っている点であるので、最も簡単な検出方法の例としては、眼の中で一 番輝度が高 ヽ部分を検出すればょ ヽ。
[0043] そして、瞳孔の中心と LEDの反射像の位置関係から運転者の視線方向を検出す る。つまり、瞳孔と反射像が重なっている場合にはカメラ方向に視線方向があることに なり、ずれて 、る場合にはそのずれた分だけその方向に視線方向があるとする。
[0044] 上述の説明では特に言及しな力つた力 片目だけ力も視線方向を検出してもよいし
、両目力 それぞれ視線方向を求めてもよい。このとき、両目の視線方向をそれぞれ 求め、その角度の差力も視認している対象物の距離を求めて、視認判定手段 14の 判定時に利用するようにしてもょ 、。
[0045] 視認判定手段 14は、視線方向の移動パタン力も対象物を視認した力どうかの判定 を行う。この原理を図 3から図 6を用いて説明する。 [0046] まず、図 3に示すように、対象物と運転者の間に二次元空間を設定し X軸と Y軸を 設定する。 Y軸は垂直方向で上がプラスとなるように設定し、 X軸は水平方法で右が プラスとなるように設定する。原点は何処に設定してもよいが、ここでは運転者の顔正 面を原点において説明する。
[0047] 交通環境検出手段 11で検出した対象物の中から注視目標決定手段 12で決定し た注視目標の対象物を上述の X— Yの二次元空間上に表す。このとき、運転者の眼 の位置と対象物とを結んだ線力 —Yの二次元空間と交わる位置に写像するように する。図 3では信号機を例にして、信号機の外枠の範囲を X—Yの二次元空間に写 像する例を示している。
[0048] 一方、視線方向検出手段 13で検出した視線方向を X— Yの二次元空間上に写像 する。このようにすることにより、二次元空間上で対象物と視線方向の関係を比較す ることが可能となる。
[0049] 図 4は、視線方向の移動パタンを用いて運転者が対象物を見て 、るかどうかを判定 する方法の概念図である。
[0050] 図 4は、 X— Yの二次元空間に写像した場合の例で、車を対象物とし、右から左へ 移動している場合を例にしている。ここでは、説明を簡単にするために、運転者が運 転して 、る車は停止して 、るものとして説明する。
[0051] 運転者が車を見ているかどうかを判定する場合に、まず、視認しているかを判定す る対象物を絞り込むため、明らかに視認していない対象物の除外を行う。例えば、視 線方向に対して、ある一定角度の閾値を設け、検出された視線方向の上下左右方向 にこの閾値を加算した範囲よりも外側にある対象物を明らかに視認していない対象 物として視認しているかを判定する対象物カゝら除外する。
[0052] この閾値は、運転中の人間の有効視野である 5度から 30度の値を設定してもよいし 、視線方向検出の検出誤差の最大値を用いて設定してもよい。
[0053] 次に、視認しているかを判定する対象物の候補として残った対象物の移動パタンの ベクトルを求める。図 4の例では、対象物である車の移動を検出し、車の移動パタン を求めベクトル VIとして表す。このベクトルはある一定期間を設定し、開始時刻と終 了時刻における車の位置を X— Y空間で表現し、この位置の差分として求めればよ い。
[0054] ここでは、視認しているかを判定する対象物の候補を絞って力 対象物の移動パタ ンのベクトルを求める場合について説明した力 検出できる対象物全てに対して移動 ノ タンのベクトルを求め、その後明らかに視認していない対象物を候補から除外する ようにしてもよい。この場合には、対象物の移動パタンのベクトルを求める際に設定し た一定期間にお 、て、視線方向から明らかに視認して 、な 、対象物であるかを判定 し、この一定期間の間に一度でも明らかに視認していない対象物であると判定された 対象物を除外するようにしてもょ ヽ。
[0055] 一方、視線の移動方向についても、車の移動を検出したのと同じ一定期間におい て移動パタンを調べる。視線方向は既に説明した検出精度の関係上、誤差が大きい ことがあるので、開始時刻と終了時刻での位置での差分を求めるのではなぐ一定期 間内に検出された視線方向の軌跡全体力 移動パタンを検出するようにする。
[0056] 具体的には、眼を撮影した動画像のフレーム毎に検出された視線方向毎に、その 位置を X—Yの二次元空間に写像し、写像した位置を各サンプル点とする。図 4では 「 X」で示した点が各サンプル点に相当する。
[0057] そしてこのサンプル点の回帰直線を求め、 X— Yの二次元空間上に新たな一次元 の Z軸を設ける。この Z軸のプラス方向とマイナス方向の定義は、開始時刻と終了時 刻のサンプル点がある位置の相対関係力 そのプラス Zマイナスの方向を決定する 。図 4では、 Z軸は X— Yの二次元空間における X座標と並行でプラス Zマイナスの方 向が逆の場合に相当する。そして、 X—Yの二次元空間における Z軸の方向を視線 移動のベクトルの方向とする。
[0058] さらに、この Z軸を用いて、全てのサンプル点に対して最大値と最小値を求め、最大 値と最小値の差の絶対値を求め、この絶対値に 1以下のある一定の割合を乗算する ことにより、視線移動のベクトルの大きさとする。
[0059] また、視線移動のベクトルは、視線方向の局所的な変化点を抽出し、変化点の間 の区間毎にベクトルを求めるようにしてもよい。視線方向の局所的な変化点は、ある 閾値を設定し、前フレームとの視線方向の検出結果の差が、この閾値以上の場合、 局所的な変化点であると検出すればよい。 [0060] 図 5は水平方向における視線方向と対象物の正面力 の角度の推移を示したダラ フである。この例では、視線方向の角度が変化している点 OC、 βが変化点として抽出 され、この区間で視線移動のベクトルを求めることになる。
[0061] この時、視線方向の移動パタンのベクトルは、単純に二次元空間上の抽出された 変化点間の差を求めて視線移動のベクトルとしてもよいし、回帰直線を求めてベタト ルの方向とし、ベクトルの大きさは X— Υの二次元空間上の抽出された変化点での視 線方向の間の距離としてもよい。
[0062] また、対象物の移動パタンのベクトルは、抽出された変化点間での移動についてベ タトルを求めればよい。
[0063] また、変化点は最初の部分のみを検出し、ある一定期間を過ぎても後続する変化 点が抽出できない場合には、この一定期間経過後の点を変化点としてベクトルを求 めるようにしてもよい。
[0064] そして、対象物の移動ベクトル VIと視線の移動ベクトル V2の内積を計算し、その 大きさが対象物の移動ベクトル VIの大きさに対して、ある一定値以上の割合の場合 に対象物を見ていると判定する。
[0065] このようにして対象物と視線の移動のパタンを用いて見て 、るかどうかの視認判定 を行えば、視線方向の検出精度が不十分で、検出した視線方向が対象物と重ならな い場合においても、対象物を見ているかどうかの判定が可能になる。また、前記の判 定方法に加えて、 Ζ軸力も対象物までの距離を考慮すれば、さらに視認の判定精度 を向上させることも期待できる。
[0066] 図 6は、自車両が移動している場合における視線方向の移動パタンを用いて運転 者が対象物を見て!/、るかどうかの判定する方法の概念図である。基本的な考え方は 図 4を用いて説明した場合と同じであるので省略する。
[0067] 図 6では信号機を例に説明する。信号機や道路標識のような道路設備は移動体で はないが、自車両が動いている事で相対的には移動体として扱うことが可能であり、 図 4で説明した場合と同様な処理を用いることが可能である。
[0068] つまり、ある一定期間を設定し、信号機の位置力 ¾—Υの二次元空間上でどのよう に動いて見えるのかをベクトル V3として求める。そして、視線方向の移動についても 同様に視線方向のサンプル点から回帰直線を求めることにより、 X— Yの二次元空間 上に Ζ軸を設定し、図 4の場合の説明と同様の方法にて視線の移動のベクトル V4を 求める。
[0069] そして、これらのベクトル V3とベクトル V4の内積を求め、この内積の大きさがベタト ル V3の絶対値に対してある一定以上の大きさがある場合に、この対象物を見て!/、る と判定する。
[0070] なお、対象物の移動と視線方向の移動を表すベクトルの比較として、ここでは内積 と対象物のベクトルの大きさを用いた説明を行った力 視線方向の移動ベクトルの大 きさとも比較すれば更に精度の高い視認の判定を行うことが可能である。
[0071] 安全不確認判定手段 15は、注視目標決定手段 12で決定した注視目標に対して 視認判定手段 14で視認の判定が下されたカゝどうかで安全不確認であるかどうかを判 断する。
[0072] 例えば、直進する場合には図 2の信号機 Μ4に対して視認が行われた力どうかを判 断すればよぐ右折の場合には図 2の信号機 Μ4と歩行者 Μ3と歩行者 Μ5の全てに 対して視認が行われたかを判断すればよい。つまり、どれか一つでも視認と判定でき なければ運転者は安全不確認と判断する。
[0073] また、運転者が各対象物に対して安全確認を行ったかどうかの判断は、ある一定期 間を設定して安全確認判定期間とし、この安全確認判定期間内に 1回以上視認した t ヽぅ判定が視認判定手段 14でされた場合に、その対象物を安全確認したと判断す るようにしてちょい。
[0074] 安全確認判定期間の開始タイミングは交差点手前のある一定距離の通過時刻とし てもよいし、交差点進入までのある一定時間前としてもよいし、現在時刻よりもある一 定時間前としてもよい。安全確認判定期間の終了タイミングは、注視目標決定手段 1 2で決定した注視目標の対象物までの距離が一定距離より近くなつたタイミングとして もよいし、自車の移動軌跡を車速、加速度、舵角などから予測し、対象物に到達する 時刻までの時間がある一定時間よりも短くなるタイミングとしてもよいし、交差点の中 央位置や停止線などを基準位置として、特定の通過ポイントを安全確認判定終了位 置として設定し、安全確認判定終了位置を通過するタイミングとしてもよい。そして、 安全不確認と判断した場合には、その視認が不十分な対象物に関する対象物の種 別や対象物の方向などの情報を提示手段 16に出力する。
[0075] 提示手段 16は、モニタを用いて映像を表示するようにしてもよ!、し、スピーカを用い て音声で案内するようにしてもよいし、モニタとスピーカの両方を用いて案内するよう にしてもよい。ここでは、一例として、スピーカを用いて音声で危険内容を案内する方 法を説明する。
[0076] まず、交通環境検出手段 11が検出できる対象物毎に、それぞれの対象物を認識 できる音声データを用意し、これを電子データとして格納しておく。これは、例えば車 両を認知させる場合の音としては「車」と発声して 、る音声を用いてもょ 、し、車両が 走っている効果音のような車両をイメージできる音を用いてもよい。これを、信号機、 歩行者、ノイク、自転車というように交通環境検出手段 11が検出できる対象物毎に すべて用意しておき、電子データとして格納しておく。
[0077] そして、安全不確認判定手段 15が注視目標決定手段 12で決定された対象物に対 して安全確認を怠っていると判断した場合には、その対象物に対応する音データを D/A (Digital to Analog)コンバータでアナログに変換し、パワーアンプを用いてゲイ ンを増幅してスピーカから出力するようにする。
[0078] このとき、スピーカを複数設置すると共に、運転者が安全確認として怠っている対象 物の相対的な方向を計算し、その方向に一番近い位置に設置したスピーカから音が 聞こえてくるようにして、運転者が確認すべき対象物の方向をも運転者が確認できる ようにしてもよい。さらに、スピーカの数を減らすと同時に音像定位技術を用いて同様 の効果が得られるようにしてもょ 、。
[0079] また、本実施の形態では、対象物と視線方向の比較をする際に二次元空間を用い て説明したが、現実の三次元空間をそのまま用いて比較するようにしてもよい。この 場合には、両眼の視線方向を別々に検出し、その角度の差力 運転者が視認してい る対象物までの距離を算出して、これを視認の判定に用いることも可能である。
[0080] 以上のように、本実施の形態によれば、視線方向の移動のパタンを利用することに より、視線方向の検出精度が視認を判定しょうとする対象物と重ならないレベルの精 度であっても、見て 、るかどうかの視認の判定を行う事が可能となる。 [0081] また、視認判定手段 14は、所定期間における注視目標の移動パタンと視線方向の 移動パタンとに関連性がある場合、視認をしたと判定するので、注視目標を目で追う ような動作により視認したと判定され、高精度な視線検出装置が無くても視認したか どうかを判定することができる。
[0082] また、視認判定手段 14は、視線方向の所定の変化点を抽出し、抽出された変化点 の間の期間において注視目標の移動パタンと視線方向の移動パタンとの関連性を 判断するので、視認した力どうかを判定するための期間を適切に決めることができる
[0083] (第 2の実施の形態)
次に、本発明の第 2の実施の形態の安全走行支援装置について説明する。なお、 本実施の形態は、上述の第 1の実施の形態と略同様に構成されているので、図 1を 流用して特徴部分のみ説明する。
[0084] 本実施の形態の安全走行支援装置の視認判定手段 14は、視線方向の大局的な 移動パタンに基づいて対象物を視認した力どうかを判定する。
[0085] 図 7は、本実施の形態の安全走行支援装置の視認判定方法の概念図であり、第 1 の実施の形態で説明した X— Yの二次元空間を表している。図 7において、検出した 視線方向は「 X」で示した部分であり、 E 1は運転者の視線方向の移動を示した概念 図である。ここでは、対象物 M7を見た後に対象物 M8を見た場合を例にしている。
[0086] 視認を判定する際に、まず、対象物の近辺の視線方向について大局的な移動のパ タンを求める。
[0087] 対象物の近辺に視線方向があるかどうかは、ある一定期間の視線方向のサンプル 点につ ヽて X— Yの二次元空間上での座標を平均し、その平均座標が視認を判定 する対象物とある一定距離以下であるかどうかにより判定する。
[0088] ここでは対象物 M7の場合を例にとり説明する。対象物 M7の近辺には視線方向の サンプル点があるので、例えば、 E1の開始力 対象物 M8の右側までの期間の視線 方向のサンプル点の座標を平均すると、平均座標は対象物 M7から設定された距離 以下となる。
[0089] そして、対象物の近辺であるかどうかを判定するための平均を計算した期間の中央 の時刻でのサンプル点を基準に、平均をとつた開始のサンプル点から、基準のサン プル点までの視線方向の大局的な移動方向 V5を求める。
[0090] 具体的には、開始のサンプル点から、基準のサンプル点までの回帰直線を求め、 その大きさは第 1の実施の形態で説明した場合と同様にしてベクトルの大きさを求め る。同様に、基準のサンプル点から平均を計算した最後のサンプル点までのサンプ ル点を用いて、同様に大局的な移動方向 V6を求める。
[0091] 次に、この大局的な移動方向のベクトル V5と V6の角度を計算し、角度が大きい場 合には、ある一定値を閾値として視認したと判定する。このとき、ベクトルの角度を直 接計算せずに、二つのベクトルの内積を計算し、この内積を二つのベクトルの大きさ で割った指標を求め、この指標を用いて視認が行われた力どうかの判定を行っても 同様に判断することができる。
[0092] このようにすると、対象物 M7の場合は二つのベクトルのなす角度が大きいので視 認したと判定する。一方、対象物 M9の場合はベクトルとして V7と V8が求められるが 、この二つのベクトルのなす角度が小さ 、ため視認したと判定しな 、ようになる。
[0093] このように視線方向の大局的な移動パタンを用いることにより、視線検出の精度に 関わりなく対象物を見た力どうかを判定する事が可能になる。
[0094] また、視認判定手段 14は、視線方向が注視目標近傍にあり、注視目標近傍の視 線方向の移動パタンの、注視目標に近づく方向と遠ざ力る方向が設定された量より 変化して 、る場合に視認をしたと判定するので、遠くにある小さな対象物であっても 運転者が視認したかどうかを、視線検出精度が 1度程度の検出精度で判定すること ができる。
[0095] (第 3の実施の形態)
次に、本発明の第 3の実施の形態の安全走行支援装置について説明する。なお、 本実施の形態は、上述の第 1の実施の形態と略同様に構成されているので、図 1を 流用して特徴部分のみ説明する。
[0096] 本実施の形態の安全走行支援装置の視認判定手段 14は、予め設定された対象 物の種類毎の該対象物を視認したときの対象物近辺の視線方向の移動パタンの特 徴に基づき、実際の対象物近辺の視線方向の移動パタンが当該対象物を視認した ときの視線方向の移動パタンの特徴にあてはまるかにより対象物を視認した力どうか を判定する。
[0097] 図 8および図 9は、本実施の形態の安全走行支援装置の視認判定方法の概念図 であり、第 1の実施の形態で説明した X— Yの二次元空間を表している。図 8および 図 9において、検出した視線方向は「X」で示した部分であり、 E2、 E3は運転者の視 線方向の移動を示した概念図である。
[0098] ここでは、説明を簡略ィ匕するために、例えば、図 8に示すように道路標識の場合に は容易にその内容を認識でき、視線方向の移動パタンは滑らかになるとともに、図 9 に示すように信号機の場合には多くの注意を必要とし、視線方向の移動パタンは複 雑な形状になるものとして説明する。
[0099] このとき、図 8の示す視線方向の移動パタン E2は低い次数での多項式近似曲線を 当てはめることができる。これを利用して、対象物毎の視認の判定を行う。
[0100] つまり、図 10に示すように、視認を判定する対象物が X— Yの二次元空間上で近く にある場合に、道路標識と信号機のどちらを見ているかを、視線方向の移動パタンを 用いて判別を行う。
[0101] まず、この近辺の視線方向のサンプル点を求める。これは、第 1の実施の形態で説 明した方法と同様にすればよい。次に、このサンプル点に対して、低次の多項式近 似式を当てはめてみる。
[0102] このとき、近似式の当てはまりが良ければ標識を見ていると判定し、当てはまりが悪 ければ信号機を見ていると判定する。当てはまりの度合 (一致度合)は、近似式を計 算する際に行う重回帰分析において、重回帰係数がある一定値以上の場合は当て はまりが良 、と判定すればょ 、。
[0103] このようにすれば、運転者の視線方向に視認すべき対象物が複数あり重なって見 える場合にも、どの対象物を視認しているかの判定を行う事が可能となる。
[0104] また、視認判定手段 14は、対象物の種類毎に視認した場合の視線方向の移動パ タンを有し、注視目標となった対象物近辺の視線方向の移動パタンと視認した場合 の視線方向の移動パタンの一致度合によって視認した力判定を行うので、運転者か ら視認すべき対象物が重なって見える場合にも、重なった対象物のどちらを見ている かを判定することができる。
[0105] なお、本実施の形態においては、視線方向の移動パタンを区別する方法として、近 似曲線を用いる方法を説明したが、各移動パタンに対して、実際に運転者が視認し たかどうかの正解なデータを用意し、この移動パタンを-ユーラルネットワークなどの 非線形モデルを用いて判定するようにすることも可能である。
[0106] また、対象物そのものについて視線方向の移動パタンを分類するようにして説明し たが、対象物の X—Yの二次元空間上での大きさや、対象物の輝度などで分類して 移動パタンを求めるようにして、視認の判定を行う対象物の X— Yの二次元空間上で の大きさや、対象物の輝度などを検出してカゝら視認の判定を行うようにしてもよい。 産業上の利用可能性
[0107] 以上のように、本発明にかかる安全走行支援装置は、視線方向検出の精度が 1度 前後の検出精度であっても、運転者が注意すべき対象物を認知しているかどうかを 判定することができると ヽぅ効果を有し、車両を運転する運転者に対して衝突や追突 、歩行者との接触などの危険があるかどうかを案内するための安全走行支援装置等 として有用である。

Claims

請求の範囲
[1] 設定された対象物の存在または状態を検出する交通環境検出手段と、前記対象物 の中から運転者が安全運転のために注意を払うべき注視目標を決定する注視目標 決定手段と、運転者の片眼あるいは両眼の視線方向を検知する視線方向検出手段 と、前記注視目標と前記視線方向検出手段で検出した視線方向の移動パタンとの相 関から運転者が前記注視目標を視認して ヽるかどうかを判定する視認判定手段と、 前記視認判定手段で判定した視認判定結果から運転者が安全不確認かどうかを判 定する安全不確認判定手段と、前記安全不確認判定手段で決定した安全不確認判 定結果に従い安全不確認の内容を案内する提示手段とを備えることを特徴とする安 全走行支援装置。
[2] 前記視認判定手段は、所定期間における前記注視目標の移動パタンと前記視線方 向の移動パタンとに関連性がある場合、視認をしたと判定することを特徴とする請求 項 1に記載の安全走行支援装置。
[3] 前記視認判定手段は、前記視線方向の所定の変化点を抽出し、抽出された変化点 の間の期間において前記注視目標の移動パタンと前記視線方向の移動パタンとの 関連性を判断することを特徴とする請求項 2に記載の安全走行支援装置。
[4] 前記視認判定手段は、前記視線方向が前記注視目標近傍にあり、前記注視目標近 傍の前記視線方向の移動パタンの前記注視目標に近づく方向と遠ざかる方向の移 動量が設定された量より変化している場合に視認をしたと判定することを特徴とする 請求項 1に記載の安全走行支援装置。
[5] 前記視認判定手段は、前記対象物の種類毎に視認した場合の視線方向の移動バタ ンを有し、前記注視目標となった対象物近辺の視線方向の移動パタンと前記視認し た場合の視線方向の移動パタンの一致度合によって視認した力判定を行うことを特 徴とする請求項 1に記載の安全走行支援装置。
PCT/JP2006/324169 2005-12-12 2006-12-04 安全走行支援装置 WO2007069489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/096,673 US7884705B2 (en) 2005-12-12 2006-12-04 Safety-drive assistance device
CN2006800506680A CN101356078B (zh) 2005-12-12 2006-12-04 安全行驶辅助装置
EP06823574.6A EP1961622B1 (en) 2005-12-12 2006-12-04 Safety-travel assistance device
JP2007550133A JP4879189B2 (ja) 2005-12-12 2006-12-04 安全走行支援装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005357710 2005-12-12
JP2005-357710 2005-12-12

Publications (1)

Publication Number Publication Date
WO2007069489A1 true WO2007069489A1 (ja) 2007-06-21

Family

ID=38162799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324169 WO2007069489A1 (ja) 2005-12-12 2006-12-04 安全走行支援装置

Country Status (5)

Country Link
US (1) US7884705B2 (ja)
EP (1) EP1961622B1 (ja)
JP (1) JP4879189B2 (ja)
CN (1) CN101356078B (ja)
WO (1) WO2007069489A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069885A (ja) * 2007-09-10 2009-04-02 Denso Corp 状態判定装置およびプログラム
JP2010078416A (ja) * 2008-09-25 2010-04-08 Bridgestone Corp タイヤ接地部の摩擦エネルギーの測定方法
JP2010170189A (ja) * 2009-01-20 2010-08-05 Denso Corp 車両用警告システム
WO2010143377A1 (ja) * 2009-06-08 2010-12-16 パナソニック株式会社 注視対象判定装置及び注視対象判定方法
JP2014054486A (ja) * 2012-09-14 2014-03-27 Fujitsu Ltd 注視位置検出装置及び注視位置検出方法
JP2015138308A (ja) * 2014-01-21 2015-07-30 アルパイン株式会社 運転支援装置、運転支援方法及び運転支援プログラム
WO2015133141A1 (ja) * 2014-03-06 2015-09-11 株式会社デンソー 表示物情報表示装置
JP2016018304A (ja) * 2014-07-07 2016-02-01 株式会社デンソーアイティーラボラトリ 安全確認判定装置、及び運転支援装置
KR20160050277A (ko) * 2014-10-29 2016-05-11 고려대학교 산학협력단 주행 정보 처리 방법 및 장치
JP2017505733A (ja) * 2014-01-15 2017-02-23 国防科学技術大学 運転者の安全運転状態を検知する方法及び装置
JP7176398B2 (ja) 2018-12-21 2022-11-22 トヨタ自動車株式会社 制御装置、車両、画像表示システム、及び画像表示方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2486516A4 (en) * 2009-10-07 2018-03-28 iOnRoad Technologies Ltd. Automatic content analysis method and system
WO2011053304A1 (en) * 2009-10-30 2011-05-05 Ford Global Technologies, Llc Vehicle with identification system
US8633810B2 (en) 2009-11-19 2014-01-21 Robert Bosch Gmbh Rear-view multi-functional camera system
US8384534B2 (en) * 2010-01-14 2013-02-26 Toyota Motor Engineering & Manufacturing North America, Inc. Combining driver and environment sensing for vehicular safety systems
US9406212B2 (en) 2010-04-01 2016-08-02 Sealed Air Corporation (Us) Automated monitoring and control of contamination activity in a production area
US9189949B2 (en) 2010-12-09 2015-11-17 Sealed Air Corporation (Us) Automated monitoring and control of contamination in a production area
US9143843B2 (en) 2010-12-09 2015-09-22 Sealed Air Corporation Automated monitoring and control of safety in a production area
JP5177327B2 (ja) * 2010-05-17 2013-04-03 トヨタ自動車株式会社 運転支援装置
US9013325B2 (en) * 2010-08-02 2015-04-21 Siemens Industry, Inc. System and method for traffic-control phase change warnings
US9011607B2 (en) 2010-10-07 2015-04-21 Sealed Air Corporation (Us) Automated monitoring and control of cleaning in a production area
KR101231510B1 (ko) * 2010-10-11 2013-02-07 현대자동차주식회사 운전자 주시방향 연동 전방충돌 위험경보 시스템, 그 방법 및 그를 이용한 차량
EP2705664A2 (en) 2011-05-03 2014-03-12 Atsmon, Alon Automatic image content analysis method and system
JP5786539B2 (ja) * 2011-08-09 2015-09-30 富士通株式会社 目視対象物判定装置、目視対象物判定方法および目視対象物判定プログラム
EP2564766B1 (en) * 2011-09-02 2018-03-21 Volvo Car Corporation Visual input of vehicle operator
DE102011084367A1 (de) * 2011-10-12 2013-04-18 Bayerische Motoren Werke Aktiengesellschaft Feststellen der fahrerseitigen Wahrnehmung eines in der Umgebung eines Kraftfahrzeugs befindlichen Objektes
US9424255B2 (en) * 2011-11-04 2016-08-23 Microsoft Technology Licensing, Llc Server-assisted object recognition and tracking for mobile devices
KR101372023B1 (ko) * 2012-05-31 2014-03-07 현대자동차주식회사 차량 주변의 이동체 감지 장치 및 방법
JP5664603B2 (ja) * 2012-07-19 2015-02-04 株式会社デンソー 車載音響装置及びプログラム
DE102012214852B4 (de) 2012-08-21 2024-01-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Selektieren von Objekten in einem Umfeld eines Fahrzeugs
JP6106402B2 (ja) * 2012-10-23 2017-03-29 矢崎エナジーシステム株式会社 車載装置
CN103927670B (zh) * 2013-01-10 2017-11-28 上海通用汽车有限公司 量化对象的区域关注度的方法
US8847771B2 (en) 2013-01-25 2014-09-30 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for early detection of dynamic attentive states for providing an inattentive warning
JP6002833B2 (ja) * 2013-03-28 2016-10-05 本田技研工業株式会社 報知システム、電子装置、報知方法、およびプログラム
US8823552B1 (en) * 2013-04-04 2014-09-02 GM Global Technology Operations LLC Vehicle with apparatus for generating and displaying a predefined light pattern
JP2014206932A (ja) * 2013-04-15 2014-10-30 オムロン株式会社 認証装置、認証方法、制御プログラムおよび記録媒体
DE102013010019B3 (de) * 2013-06-14 2014-10-23 Audi Ag Verfahren zum Betreiben eines Verkehrsschilderfassungssystems eines Kraftwagens und Kraftwagen mit einem Verkehrsschilderfassungssystem
CN103530623B (zh) 2013-09-16 2017-08-01 北京智谷睿拓技术服务有限公司 信息观察方法及信息观察装置
JP5842110B2 (ja) * 2013-10-10 2016-01-13 パナソニックIpマネジメント株式会社 表示制御装置、表示制御プログラム、および記録媒体
US10315516B2 (en) * 2013-11-12 2019-06-11 Mitsubishi Electric Corporation Driving-support-image generation device, driving-support-image display device, driving-support-image display system, and driving-support-image generation program
CN105723432B (zh) * 2013-11-12 2019-06-18 三菱电机株式会社 驾驶辅助图像生成装置及方法、驾驶辅助图像显示装置及系统
CN103594003B (zh) * 2013-11-13 2015-11-25 安徽三联交通应用技术股份有限公司 一种用于驾驶人的远程监控与异常预警的方法
JP5932858B2 (ja) * 2014-01-30 2016-06-08 京セラドキュメントソリューションズ株式会社 電子機器及び操作画面表示プログラム
US9756319B2 (en) * 2014-02-27 2017-09-05 Harman International Industries, Incorporated Virtual see-through instrument cluster with live video
US9481295B2 (en) 2014-03-22 2016-11-01 Ford Global Technologies, Llc Emergency vehicle maneuver communications
DE102014105374B4 (de) * 2014-04-15 2017-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fahrerassistenzsystem
WO2015178303A1 (ja) 2014-05-21 2015-11-26 矢崎総業株式会社 安全確認支援装置
DE102014225383A1 (de) * 2014-12-10 2016-06-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs, Kraftfahrzeug
GB2536474B (en) * 2015-03-18 2019-09-04 Jaguar Land Rover Ltd Situational awareness monitoring method and apparatus
US9505413B2 (en) * 2015-03-20 2016-11-29 Harman International Industries, Incorporated Systems and methods for prioritized driver alerts
JP6488922B2 (ja) * 2015-07-06 2019-03-27 株式会社デンソー 運転者異常検出装置
US10618521B2 (en) * 2015-09-21 2020-04-14 Ford Global Technologies, Llc Wearable in-vehicle eye gaze detection
US20170088165A1 (en) * 2015-09-29 2017-03-30 GM Global Technology Operations LLC Driver monitoring
US9841813B2 (en) * 2015-12-22 2017-12-12 Delphi Technologies, Inc. Automated vehicle human-machine interface system based on glance-direction
JP6654544B2 (ja) * 2016-10-21 2020-02-26 株式会社Soken センサ制御装置
KR101896790B1 (ko) * 2016-11-08 2018-10-18 현대자동차주식회사 운전자 집중도 판정 장치, 그를 포함한 시스템 및 그 방법
DE102017202194A1 (de) * 2017-02-13 2018-08-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln einer visuellen Ablenkung eines Fahrers eines Fahrzeugs
CN106898118B (zh) * 2017-04-26 2019-04-16 华迅金安(北京)科技有限公司 防止疲劳驾驶的智能系统及方法
JP6638701B2 (ja) * 2017-06-08 2020-01-29 トヨタ自動車株式会社 運転意識推定装置
US10031526B1 (en) * 2017-07-03 2018-07-24 Baidu Usa Llc Vision-based driving scenario generator for autonomous driving simulation
DE102017119834A1 (de) * 2017-08-29 2019-02-28 SMR Patents S.à.r.l. Verfahren zum Unterstützen eines Fahrers eines Kraftfahrzeugs bei einem Abbiegevorgang, Fahrerassistenzsystem und Kraftfahrzeug
JP6852656B2 (ja) * 2017-11-15 2021-03-31 オムロン株式会社 警報制御装置、警報制御方法、および警報制御のためのプログラム
JP6777060B2 (ja) * 2017-11-15 2020-10-28 オムロン株式会社 脇見判定装置、運転支援システム、脇見判定方法及び脇見判定のためのプログラム
JP7263734B2 (ja) * 2018-10-29 2023-04-25 株式会社アイシン 視認対象判定装置
CN109801489A (zh) * 2018-11-29 2019-05-24 深圳市元征科技股份有限公司 一种辅助驾驶的方法及服务器
US10882398B2 (en) * 2019-02-13 2021-01-05 Xevo Inc. System and method for correlating user attention direction and outside view
JP6711982B1 (ja) * 2019-04-23 2020-06-17 Quon Technology株式会社 交通安全支援装置、携帯情報端末、及びプログラム
JP2019117668A (ja) * 2019-05-07 2019-07-18 株式会社デンソー 車載周辺物体報知システム、物体報知システム、報知制御装置
JP7272338B2 (ja) * 2020-09-24 2023-05-12 トヨタ自動車株式会社 自動運転システム
JP7415892B2 (ja) * 2020-11-25 2024-01-17 トヨタ自動車株式会社 歩行支援システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796768A (ja) * 1993-09-27 1995-04-11 Nissan Motor Co Ltd 前方注視度検知装置
JPH07167668A (ja) 1993-12-14 1995-07-04 Nissan Motor Co Ltd 走行情報提供装置
JP2001357498A (ja) * 2000-06-15 2001-12-26 Mazda Motor Corp 車両用情報提供装置
JP2004009833A (ja) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd 運転状況記録装置
JP2004259069A (ja) * 2003-02-26 2004-09-16 Aisin Seiki Co Ltd 車両危険度に応じた警報信号を出力する警報装置
JP2005004414A (ja) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd 車両用運転支援装置
JP2005182307A (ja) 2003-12-17 2005-07-07 Denso Corp 車両運転支援装置
JP2005251111A (ja) * 2004-03-08 2005-09-15 Denso Corp 物体監視装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039795C2 (de) * 2000-08-16 2003-03-27 Bosch Gmbh Robert Verfahren zur Warnung eines Fahrers eines Fahrzeugs
JP3848078B2 (ja) * 2000-11-29 2006-11-22 株式会社エヌ・ティ・ティ・ドコモ 方向提示方法及び携帯端末
US6906619B2 (en) * 2003-02-27 2005-06-14 Motorola, Inc. Visual attention influenced condition indicia apparatus and method
US6989754B2 (en) * 2003-06-02 2006-01-24 Delphi Technologies, Inc. Target awareness determination system and method
JP4206928B2 (ja) * 2004-01-19 2009-01-14 株式会社デンソー 衝突可能性判定装置
DE102004016981A1 (de) * 2004-04-07 2005-10-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Warnung des Fahrers eines Kraftfahrzeuges
JP4466299B2 (ja) * 2004-09-28 2010-05-26 日本電気株式会社 車両用警報装置、車両用警報方法及び車両用警報発生プログラム
JP4926437B2 (ja) * 2005-09-28 2012-05-09 富士重工業株式会社 車両の運転支援装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796768A (ja) * 1993-09-27 1995-04-11 Nissan Motor Co Ltd 前方注視度検知装置
JPH07167668A (ja) 1993-12-14 1995-07-04 Nissan Motor Co Ltd 走行情報提供装置
JP2001357498A (ja) * 2000-06-15 2001-12-26 Mazda Motor Corp 車両用情報提供装置
JP2004009833A (ja) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd 運転状況記録装置
JP2004259069A (ja) * 2003-02-26 2004-09-16 Aisin Seiki Co Ltd 車両危険度に応じた警報信号を出力する警報装置
JP2005004414A (ja) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd 車両用運転支援装置
JP2005182307A (ja) 2003-12-17 2005-07-07 Denso Corp 車両運転支援装置
JP2005251111A (ja) * 2004-03-08 2005-09-15 Denso Corp 物体監視装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069885A (ja) * 2007-09-10 2009-04-02 Denso Corp 状態判定装置およびプログラム
JP2010078416A (ja) * 2008-09-25 2010-04-08 Bridgestone Corp タイヤ接地部の摩擦エネルギーの測定方法
JP2010170189A (ja) * 2009-01-20 2010-08-05 Denso Corp 車両用警告システム
WO2010143377A1 (ja) * 2009-06-08 2010-12-16 パナソニック株式会社 注視対象判定装置及び注視対象判定方法
JPWO2010143377A1 (ja) * 2009-06-08 2012-11-22 パナソニック株式会社 注視対象判定装置及び注視対象判定方法
US8678589B2 (en) 2009-06-08 2014-03-25 Panasonic Corporation Gaze target determination device and gaze target determination method
JP5460691B2 (ja) * 2009-06-08 2014-04-02 パナソニック株式会社 注視対象判定装置及び注視対象判定方法
US9245171B2 (en) 2012-09-14 2016-01-26 Fujitsu Limited Gaze point detection device and gaze point detection method
JP2014054486A (ja) * 2012-09-14 2014-03-27 Fujitsu Ltd 注視位置検出装置及び注視位置検出方法
JP2017505733A (ja) * 2014-01-15 2017-02-23 国防科学技術大学 運転者の安全運転状態を検知する方法及び装置
JP2015138308A (ja) * 2014-01-21 2015-07-30 アルパイン株式会社 運転支援装置、運転支援方法及び運転支援プログラム
JP2015170113A (ja) * 2014-03-06 2015-09-28 株式会社デンソー 表示物情報表示装置
WO2015133141A1 (ja) * 2014-03-06 2015-09-11 株式会社デンソー 表示物情報表示装置
JP2016018304A (ja) * 2014-07-07 2016-02-01 株式会社デンソーアイティーラボラトリ 安全確認判定装置、及び運転支援装置
KR20160050277A (ko) * 2014-10-29 2016-05-11 고려대학교 산학협력단 주행 정보 처리 방법 및 장치
KR101655867B1 (ko) * 2014-10-29 2016-09-08 고려대학교 산학협력단 주행 정보 처리 방법 및 장치
JP7176398B2 (ja) 2018-12-21 2022-11-22 トヨタ自動車株式会社 制御装置、車両、画像表示システム、及び画像表示方法

Also Published As

Publication number Publication date
CN101356078A (zh) 2009-01-28
US7884705B2 (en) 2011-02-08
US20090128311A1 (en) 2009-05-21
EP1961622A4 (en) 2015-04-01
JP4879189B2 (ja) 2012-02-22
JPWO2007069489A1 (ja) 2009-05-21
EP1961622B1 (en) 2018-06-13
CN101356078B (zh) 2012-07-18
EP1961622A1 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP4879189B2 (ja) 安全走行支援装置
JP4926437B2 (ja) 車両の運転支援装置
JP5718942B2 (ja) 輸送手段の安全な運転を補助する装置及び方法
US9073484B2 (en) Surrounding area monitoring apparatus for vehicle
EP2544449B1 (en) Vehicle perimeter monitoring device
CN108027422A (zh) 借助于汽车传感器自动检测危险偏离车辆
KR20180078986A (ko) 센서 융합 기반 보행자 탐지 및 보행자 충돌 방지 장치 및 방법
CN106043308A (zh) 用于对汽车驾驶员进行专注性识别的方法和设备
JP3785669B2 (ja) 視線方向計測装置
JP5600256B2 (ja) 情報表示装置
JP4647387B2 (ja) 車両の運転支援装置
JP4948996B2 (ja) 車両の運転支援装置
JP2007323578A (ja) 車両周辺監視装置
JP6213435B2 (ja) 注意過多状態判定装置及び注意過多状態判定プログラム
JP2012176656A (ja) 駐車支援装置
JP2017129973A (ja) 運転支援装置および運転支援方法
JP6496619B2 (ja) 車両用駐車支援装置
JP2009154775A (ja) 注意喚起装置
JP4715262B2 (ja) 車両用視線方向検出装置及び方法
JP2007133644A (ja) 歩行者認識装置
JP7014680B2 (ja) 注視対象物検知装置、注視対象物検知方法、およびプログラム
JP2022072972A (ja) 視線誘導装置
JP2011206072A (ja) 有効視野測定システムおよび有効視野測定方法
JP2005284473A (ja) 運転支援システム、自動車、および運転支援方法
JP2018200701A (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550133

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12096673

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006823574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680050668.0

Country of ref document: CN