WO2007058323A1 - 核酸ホモポリマー結合機能性核酸医薬品の製造法 - Google Patents

核酸ホモポリマー結合機能性核酸医薬品の製造法 Download PDF

Info

Publication number
WO2007058323A1
WO2007058323A1 PCT/JP2006/323016 JP2006323016W WO2007058323A1 WO 2007058323 A1 WO2007058323 A1 WO 2007058323A1 JP 2006323016 W JP2006323016 W JP 2006323016W WO 2007058323 A1 WO2007058323 A1 WO 2007058323A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
homopolymer
functional nucleic
acid homopolymer
binding functional
Prior art date
Application number
PCT/JP2006/323016
Other languages
English (en)
French (fr)
Inventor
Kazuo Sakurai
Original Assignee
Napa Jenomics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Napa Jenomics Co., Ltd. filed Critical Napa Jenomics Co., Ltd.
Priority to JP2007545324A priority Critical patent/JPWO2007058323A1/ja
Publication of WO2007058323A1 publication Critical patent/WO2007058323A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Definitions

  • the present invention relates to a technique for improving the stability of a nucleic acid in a living body or in a similar environment.
  • the present invention relates to a method for producing a nucleic acid stabilizer that binds a nucleic acid homopolymer to at least one of the 3, end, or 5, end of a bioactive nucleic acid, oligodeoxyribonucleotide or oligoribonucleotide. .
  • nucleic acid drugs A technique for manipulating biological functions using short artificial nucleic acids (nucleic acid drugs) with physiological activity has been proposed as one method of applying this result.
  • phosphate-type DNA and RNA which are natural nucleic acids, are inactivated in a very short time in the living body due to nonspecific adsorption with degrading enzymes and proteins. For this reason, natural nucleic acid drugs have a significant effect in human clinical research!
  • nucleic acid analogs have succeeded in greatly extending the short deactivation time, which was a natural problem. This is because the nucleolytic enzyme cannot recognize the nucleic acid analog. However, it is non-naturally occurring such as nonspecific adsorption to proteins in the body, causing unexpected physiological activity and causing serious liver damage. Because of this, toxicity is a problem.
  • PEI polyethyleneimine
  • Japanese Patent Application Laid-Open No. 2005-204612 discloses linear plasmid DNA 5 or 3 A nucleic acid polysaccharide complex in which a sugar chain is allowed to act on a nucleic acid obtained by binding a poly (dA) chain at the end is disclosed.
  • the poly (dA) chain constituting the complex functions as a scaffold for allowing a polysaccharide to act on a nucleic acid.
  • an antisense nucleic acid is subjected to poly (dA) and is used as a base point.
  • poly (dA) is used as a simple linking moiety between a polysaccharide, which is an essential component for gene carrier use, and a nucleic acid.
  • US Patent Publication No. US2006Z994172 discloses a method for obtaining a target analyte having the same medium force by using a carrier having a capture probe and a nanoparticle probe capable of detecting aptamers.
  • a method for detecting the presence or absence of a complex in which a carrier and a probe are bound to an analyte is disclosed.
  • poly (dA) used as a detection abutmenter has a function of forming a bond via a binding site of the target analyte and detecting it as a complex.
  • the conventional nucleic acid homopolymer is a force nucleic acid homopolymer used alone as a structure constituting a linking portion between functional nucleic acids or a binding portion with a target analyte. It has not been known that the stability of functional nucleic acids such as one can be improved.
  • Non-Patent Document 1 Protein ⁇ Nucleic acid ⁇ Enzyme, 48, 1616 (2003)
  • Non-Patent Document 2 Biotherapy 3, 87-95 (1991)
  • Non-Patent Document 3 Mol. Cell. Biol., 5, 1183-93 (1985)
  • Non-Patent Document 4 Bioconjugate Chem., 4, 372-379 (1993)
  • Non-Patent Document 5 Hum. Gene Ther., 7, 2123-2133 (1996)
  • Non-Patent Document 6 Gene therapy, 2, 710-722 (1995)
  • Non-Patent Document 7 Bioconjugate Chem., 5, 382-389 (1994)
  • Non-Patent Document 8 Gene Therapy 3, 1074-1080 (1996)
  • Non-Patent Document 9 Hum. Gene Ther., 7, 1947-1954 (1996)
  • Non-Patent Document 10 Edited by Japan Pharmaceutical Additives Association, Yakuji Nippo Patent Document 1: Japanese Patent Laid-Open No. 2005-204612
  • Patent Document 2 International Publication WO01 / 34207 Pamphlet
  • Patent Document 3 International Publication WO01 / 34207 Pamphlet
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-107272
  • Patent Document 5 US Patent Publication US2006Z994172
  • An object of the present invention is to provide a nucleic acid homopolymer-binding functional nucleic acid that can easily impart a stability improving effect to a nucleic acid having physiological activity, and a method for producing the same.
  • Another object of the present invention is to provide a nucleic acid homopolymer-binding functional nucleic acid capable of maintaining the activity of a nucleic acid for a long period of time in a living body or in a similar environment, and having excellent strength and safety. It is intended to provide a homopolymer-binding functional nucleic acid drug and a probe.
  • Still another object of the present invention is to provide a nucleic acid homopolymer-binding functional nucleic acid that can be safely administered in vivo, a method for producing the same, a nucleic acid homopolymer-binding functional nucleic acid pharmaceutical product, and a probe, in addition to the above properties. It is in.
  • the inventors of the present invention have made extensive studies to achieve the above-mentioned object, and by adding a nucleic acid homopolymer to a biologically active oligodeoxyribonucleotide, oligoribonucleotide or the like, in vivo. It was found that the stability of the nucleic acid was drastically increased and the biological activity of the nucleic acid was drastically increased, and the present invention was derived.
  • the present invention is a method for producing a nucleic acid homopolymer-binding functional nucleic acid that is composed of a functional nucleic acid and a nucleic acid homopolymer and is used as a stabilized functional nucleic acid.
  • a method for producing a nucleic acid homopolymer-binding functional nucleic acid by adding a nucleic acid homopolymer to obtain a nucleic acid homopolymer-binding functional nucleic acid.
  • the homopolymer includes homopolymers such as deoxyadenylic acid and / or deoxythymidylic acid.
  • the length of the nucleic acid homopolymer is, for example, about 3 mer to 50 mer.
  • the functional nucleic acid includes siRNA, antisense, miRNA, aptamer and the like.
  • the method for producing a nucleic acid homopolymer-binding functional nucleic acid of the present invention may be a method of adding a nucleic acid homopolymer to the 3 'end and / or the 5' end of a functional nucleic acid! /.
  • the present invention also provides a nucleic acid homopolymer-binding functional nuclear acid obtained by the production method of the present invention.
  • the present invention provides a nucleic acid homopolymer-binding functional nucleic acid pharmaceutical comprising the nucleic acid homopolymer-binding functional nucleic acid of the present invention as an active ingredient.
  • the nucleic acid homopolymer-binding functional nucleic acid drug may be one in which the stability of the functional nucleic acid is improved in vivo and in a Z-like or in-vivo-like environment, and is also used for gene therapy. There may be.
  • the present invention also provides a probe comprising the nucleic acid homopolymer-binding functional nucleic acid of the present invention.
  • polymer polymer in which two or more monomers are bonded, and is used to mean including an oligomer.
  • Nucleic acid is meant to include nucleic acid analogs unless specifically limited, and “base”, “nucleoside”, and “nucleotide” are used to mean including these modified structures.
  • the stability of a functional nucleic acid having various physiological activities can be dramatically improved by a simple method, and the original activity of the functional nucleic acid can be exhibited continuously over a long period of time.
  • the nucleic acid homopolymer-binding functional nucleic acid of the present invention has no or very low immunogenicity and is excellent in safety because it uses a nucleic acid homopolymer. Can sufficiently maintain the stability of the functional nucleic acid. For this reason, it is extremely useful for pharmaceutical applications administered in vivo, particularly for gene therapy.
  • the nucleic acid homopolymer-binding functional nucleic acid of the present invention can also be used in a wide range of fields as a probe used for screening, nucleic acid functional analysis, etc. performed in a similar environment in vivo.
  • FIG. 1 is a graph showing the relationship between wavelength and transmittance according to elapsed time when fibrinogen and thrombin aptamer (TBA) coexist in the example.
  • FIG. 2 is a graph showing the relationship between wavelength and transmittance when fibrinogen and TBAA20 coexist in the examples according to elapsed time.
  • FIG. 3 is a graph showing the relationship between elapsed time and relative transmittance TtZTO in the coexistence of fibrinogen and oligo DNA in Examples.
  • FIG. 4 is a graph showing the relationship between the concentration of oligo DNA added to plasma and the clotting time in Examples.
  • FIG. 5 is an electrophoretogram of the oligo DNA after being held in serum for a certain period of time in the examples.
  • FIG. 6 is a graph showing the change with time of the transmittance at a wavelength of 450 nm when fibrinogen and oligo DNA coexist in the example.
  • FIG. 7 (A) is a graph showing the relationship between the length of the nucleic acid homopolymer and the induction time in the example
  • FIG. 7 (B) shows the relationship between the length of the nucleic acid homopolymer and the half-life in the example. It is a graph showing the relationship.
  • FIG. 8 is an electrophoretic photograph of oligo DNA after being held in urchin plasma for a certain period of time in Example, (A) is TBA, (B) is TBAA20, (C) is TBAT20. It is an electrophoretic photograph.
  • FIG. 9 is an electrophoretogram of the oligo DNA after being held in human serum for a certain period of time in Example 15.
  • FIG. 10 is an electrophoresis photograph of oligo DNA after being held in human serum for a certain period of time in Example 17.
  • FIG. 11 is an electrophoresis photograph of oligo DNA after being held in human serum for a certain period of time in Example 19 and Comparative Example 3, wherein (A) is TBA and (B) is TBAA20 electrophoresis. It is a photograph.
  • FIG. 12 is a graph showing the change over time of the remaining amount of each oligo DNA obtained by analyzing the gel after electrophoresis in Example 19 and Comparative Example 3 with a densitometer.
  • FIG. 13 is an electrophoresis photograph of an oligo DNA after being held in human serum for a certain period of time in Example 20 and Comparative Example 9.
  • FIG. 14 shows densitometers of gels after electrophoresis in Example 20 and Comparative Example 9. 2 is a graph showing the change over time of the remaining amount of each oligo DNA, obtained by analysis in (1).
  • FIG. 15 is an electrophoretogram of the oligo DNA after being held in human serum for a certain period of time in Example 21 and Comparative Example 10.
  • FIG. 16 is a graph showing the change over time of the remaining amount of each oligo DNA obtained by analyzing the gel after electrophoresis in Example 21 and Comparative Example 10 with a densitometer.
  • Fig. 17 is an electrophoresis photograph of oligo DNA after being held in human serum for a certain period of time in Example 22 and Comparative Example 11, wherein (A) is TBA and (B) is TBAA20 electrophoresis. It is a photograph.
  • FIG. 18 is a graph showing the change over time of the remaining amount of each oligo DNA obtained by analyzing the gel after electrophoresis in Example 22 and Comparative Example 11 with a densitometer.
  • FIG. 19 is a graph showing suppression of IL-6 expression from THP-1 cells using IFN y aptamer in Example 24.
  • FIG. 20 is a graph showing an evaluation of the therapeutic effect of arthritis model mice administered with oligo DNA in Example 25.
  • the method for producing a nucleic acid homopolymer-binding functional nucleic acid of the present invention produces a nucleic acid homopolymer-binding functional nucleic acid composed of a functional nucleic acid and a nucleic acid homopolymer and used as a stabilized functional nucleic acid.
  • a nucleic acid homopolymer is added to a functional nucleic acid to obtain a nucleic acid homopolymer-binding functional nucleic acid.
  • the nucleic acid homopolymer-binding functional nucleic acid in the present invention is composed of a functional nucleic acid and a nucleic acid homopolymer, and also has a function of a nucleic acid or nucleic acid analog that functions as a stabilized functional nucleic acid.
  • “stabilized functional nucleic acid” means a structure that can retain the same function as a functional nucleic acid for a long time as a result of improved stability of the functional nucleic acid! /, The for the stability of nucleic acid in the present invention, for example, nucleic acid or the half-life of physiological activity possessed by nucleic acid can be used as an indicator.
  • the stabilized functional nucleic acid includes those that exhibit the effect of improving the physiological activity inherent in the functional nucleic acid.
  • the nucleic acid analog means a nucleic acid in which a nucleoside (base site, sugar site) and Z or internucleoside binding site are modified.
  • the functional nucleic acid and nucleic acid homopolymer in the present invention are Including nucleic acid analogs of the above meaning.
  • Modified nucleoside constituting a nucleic acid analog includes, for example, abasic nucleoside; arabino nucleoside, 2'-deoxy xyluidine, ⁇ -de xy ribonucleoside, ⁇ L Examples include oxyribonucleosides, nucleosides having other sugar modifications; peptide nucleic acids ( ⁇ ), peptide nucleic acids ( ⁇ ) to which phosphate groups are bound, locked nuclear acids (LNA), morpholino nucleic acids, and the like.
  • nucleoside having a sugar modification examples include 2,1 ⁇ -methylribose, 2, -deoxy-2, monofluororibose, 3'- ⁇ -methylribose, etc .; 1,2,1,1-deoxyribose; arabinose; Arabinose sugars; including nucleosides with hexose and alpha monomeric sugar modifications.
  • These nucleosides may be modified bases with modified base sites.
  • modified bases include, for example, pyrimidines such as 5-hydroxycytosine, 5-fluorouracil, 4-thiouracil; purines such as 6-methyladenine, 6-thioguanosine; and other heterocyclic bases.
  • Modified internucleoside linkage constituting a nucleic acid analog includes, for example, alkyl linker, glyceryl linker, amino linker, poly (ethylene glycol) linkage, methyl phosphonate internucleoside linkage; methyl phosphonothioate , Phosphotriester, phosphotriesterate, phosphorothioate, phosphorodithioate, triestenoreprodrug, sulfone, sulfonamide, sulfamate, formacetal, ⁇ ⁇ ⁇ -methylhydroxylamine, carbonate, force rubamate, morpholine Non-natural internucleoside linkages such as boranophosphonates and phosphoramidates.
  • the length of the nucleic acid homopolymer-binding functional nucleic acid (nucleic acid or nucleic acid analog) of the present invention can be appropriately selected depending on the application, and is, for example, 3 to 50 mer, preferably 5 to 40 mer. If the nucleic acid and the nucleic acid analog are too short, it is difficult to obtain the effect of improving stability if it is too long to perform the desired function, and the deviation is also preferable.
  • Nucleic acid homopolymers in the present invention include nucleic acids and nucleic acid analogs such as DNA and RNA composed of a single nucleoside polymer. That is, the nucleic acid homopolymer 1 may be a nucleic acid analog composed of the modified nucleoside exemplified above and a modified internucleoside bond.
  • the one kind of nucleoside polymer is a nucleus. It suffices if all the base sites constituting the acid homopolymer are the same or similar (substituents and isomers, etc.). Used to mean to be included in the polymer.
  • the nucleic acid homopolymer may be either a natural type or a modified nucleotide, but is preferably adenylic acid (A), cytidylic acid (C), guanylic acid (G), uracilic acid (Polnucleotides such as U), thymidylic acid (T), and inosinic acid (I); and deoxydelic acid (dA), deoxycytidylic acid (dC), deoxyuracil acid (dU), deoxythymidylic acid (dT), and deoxyinosinic acid (dl) and other polydeoxynucleotides such as the 2′-position deoxy form of the polynucleotide.
  • A adenylic acid
  • C cytidylic acid
  • G guanylic acid
  • uracilic acid Polynucleotides such as U), thymidylic acid (T), and inosinic acid (I)
  • homopolymers of deoxyadenylic acid (dA) are preferred, particularly homopolymers of deoxyadenylic acid (dA), deoxycytidylic acid (dC), deoxyuracilic acid (dU), and deoxythymidylic acid (dT). Used. These nucleic acid homopolymers (homonucleic acid tills) can be used alone or in combination of two or more.
  • the length of the nucleic acid homopolymer in the present invention varies depending on the purpose of use, the type of nucleic acid to be constructed, etc., and is usually 3mer to 100mer, preferably 3mer to 50mer, more preferably 5mer to 50mer. In particular, it is often used in the range of about 5 to 30 mer for nucleic acid pharmaceutical applications. If the length ratio (nucleotide unit) of the nucleic acid homopolymer and functional nucleic acid is abnormally large, the physiological activity effect of the nucleic acid is reduced. Furthermore, when the length is 3 mer or less, the nucleic acid homopolymer is less effective.
  • the length of the nucleic acid homopolymer can be appropriately selected according to the type of nucleic acid.
  • the homopolymer [poly (dA)] composed of deoxyadenylic acid
  • the homopolymer [poly (dT)] composed of, for example, 5 to 40mer, preferably about 5 to 30mer, deoxythymidylic acid. In this case, for example, it is about 5 to 50 mer, preferably about 6 to 40 mer.
  • the functional nucleic acid in the present invention is not particularly limited as long as it has a specific function, and it can be either a synthetic or natural type and can express its function alone, although it is expressed by interaction with nuclear acid or protein, it may be shifted.
  • a functional nucleic acid known or commonly used nucleic acids and nucleic acid analogs can be used.
  • physiological activities such as inhibitory activity, receptor activity, antagonism, immunosuppressive activity, and expression control activity can be used.
  • the nucleic acid which has property can be used.
  • the functional nucleic acid for example, short interfering RNA (siRNA), antisense DNA, decoy, aptamer, ribozyme, miRNA and CpG DNA are preferred, and in particular aptamer, antisense and siRNA are preferably used. I can. These functional nucleic acids may be used alone or in combination.
  • the length of the functional nucleic acid is not particularly limited and may be appropriately selected depending on the application. For example, it is 3 to: LOOmer, preferably 5 to 50 mer.
  • the length of the functional nucleic acid is appropriately set with the lower limit being a length capable of exhibiting a desired function and the upper limit being a length at which the effect of imparting stability by the polynucleic acid till is obtained.
  • the production method of the present invention includes a step of adding a nucleic acid homopolymer to a functional nucleic acid to obtain a nucleic acid homopolymer-binding functional nucleic acid.
  • a nucleic acid homopolymer-binding functional nucleic acid can be used as a stabilized functional nucleic acid is not necessarily clear.
  • the functional nucleic acid is less susceptible to degradation by a nuclease present in a living body, This is presumably because of the effect of making it difficult to form non-specific bonds at the ends.
  • the step includes, for example, a method of adding a nucleic acid homopolymer prepared in advance to a desired length to one or both ends of a functional nucleic acid; a nucleic acid monomer or oligomer that serves as a raw material of the nucleic acid homopolymer to the functional nucleic acid
  • a method of forming a nucleic acid homopolymer having a desired length by a nucleic acid chain elongation reaction after addition of can be used.
  • the nucleic acid monomer and oligomer for example, monomers or oligomers such as nucleotides and deoxynucleotides constituting the nucleic acid homopolymers exemplified above can be used.
  • a known method is preferably used in which a monomer or oligomer of a nuclear acid is used as a substrate.
  • a mode of binding (adding) a nucleic acid homopolymer to a functional nucleic acid a usual phosphate ester bond is used, and a modified internucleoside bond described later can also be used.
  • a phosphorothioate bond may be introduced in a timely manner.
  • nucleic acid homopolymers As a method for adding a nucleic acid homopolymer (or a raw material thereof) to a functional nucleic acid, a known method can be used as a polynucleotide synthesis reaction that also has phosphate ester binding strength.
  • the reaction conditions can be appropriately selected depending on the binding mode, the type and length of the functional nucleic acid, the type and length of the nucleic acid homopolymer, and the like within a range that does not impair the physiological activity of the functional nucleic acid.
  • the nucleic acid monomer or oligomer elongation reaction can be carried out under the same conditions as in the above homopolymer addition method.
  • Nucleic acid homopolymers can be attached to functional nucleic acids using techniques well known to those skilled in the art (eg, Molecular Cloning 3rd edition, old bpnng Harbor Laboratory (2001), etc.).
  • nucleic acid homopolymer-binding functional nucleic acid obtained by the above production method has a nucleic acid homopolymer bound to the 3 'end and the Z or 5' end of the functional nucleic acid. included.
  • Nucleic acid homopolymer-binding functional nucleic acid is a bi-directional linear structure having one nucleic acid homopolymer at the 3 'end or 5' end of the functional nucleic acid; two nucleic acids that are the same or different at the 3 'end and the 5' end It can take various shapes such as a unidirectional linear structure having a homopolymer; a circular structure in which both the 3 ′ end and the 5 ′ end are bound to the same nucleic acid homopolymer.
  • the nucleic acid homopolymer-binding functional nucleic acid having the above-described configuration can exhibit the same physiological activity as the functional nucleic acid except that stability is improved, and thus is used for the same purpose as the functional nucleic acid. can do. That is, the nucleic acid homopolymer-binding functional nucleic acid of the present invention can be used alone or in combination with other components as oligonucleic acid such as short interfering RNA (siRNA), antisense DNA, decoy, aptamer, miRNA, etc. Can do. Of these, it is preferably used as antisense, RNA, DNA aptamer, and siRNA.
  • siRNA short interfering RNA
  • the nucleic acid homopolymer-binding functional nucleic acid of the present invention may be subjected to appropriate chemical modification within a range that does not impair the properties of the functional nucleic acid.
  • the compound used for the chemical modification known forces can be appropriately selected.
  • it has a ⁇ -1,3-glucan structure such as schizophyllan, curdlan, parkan, darifolan, scleroglucan, lentinan and laminaran. Polysaccharides and the like can be used.
  • the polysaccharide-nucleic acid complex using schizophyllan has a synergistic effect on the functional nucleic acid, in addition to the stability effect due to the addition of the nucleic acid homopolymer, and the stability improvement by the combination with schizophyllan. An effect can be obtained.
  • the nucleic acid homopolymer-binding functional nucleic acid can also be used in combination with other components. [0039] As a method for evaluating that the nucleic acid homopolymer-binding functional nucleic acid is a stabilized functional nucleic acid, a known method force can be appropriately selected as a method for evaluating the stability of the nucleic acid.
  • the nucleic acid homopolymer-binding functional nucleic acid can exert the same physiological activity as the functional nucleic acid, and the half-life of the nucleic acid homopolymer-binding functional nucleic acid is longer than that of the functional nucleic acid.
  • the nucleic acid homopolymer-binding functional nucleic acid can be evaluated as a “stabilized functional nucleic acid”.
  • the above-mentioned “same type of physiological activity” means that the types of physiological activity are the same.
  • a nucleic acid homopolymer-binding functional nucleic acid has the same inhibitory activity, receptor action, and antagonism as a functional nucleic acid. It means having physical activity such as action, immunosuppressive activity, expression control activity.
  • the nucleic acid homopolymer-binding functional nucleic acid having a long half-life may be detected as a homopolymer-binding functional nucleic acid exhibiting high physiological activity depending on the type of physiological activity.
  • the method for evaluating the physiological activity as an index can be appropriately selected according to the type of physiological activity possessed by the functional nucleic acid.
  • the functional nucleic acid is thrombin abutama
  • Thrombin Abutama is a kind of functional nucleic acid that suppresses thrombin and its physiological activity can be evaluated using a method of measuring blood coagulation time. It is known that thrombin generates fibrin by virtue of its enzymatic activity, and then causes blood coagulation by fibrin becoming polymerized. Since thrombin aptamer binds to thrombin and inhibits its enzyme activity, it suppresses fibrin production and has the effect of coagulating blood. Therefore, the physiological activity of thrombin aptamer can be evaluated by the time until blood clots. That is, it can be evaluated that the longer the blood coagulation time, the more the biological activity of thrombin aptamer is improved.
  • the nucleic acid homopolymer-binding functional nucleic acid obtained by the above method can be used in a wide range of fields as a stabilized functional nucleic acid.
  • the nucleic acid homopolymer-binding functional nucleic acid of the present invention is not in vivo or in a similar environment because the nucleic acid homopolymer bound to the functional nucleic acid is not immunogenic or has extremely low safety.
  • the stability of the functional nucleic acid can be sufficiently maintained. For this reason, it can be used in vivo, especially for pharmaceuticals. It is extremely useful for gene therapy.
  • the nucleic acid homopolymer-binding functional nucleic acid of the present invention can also be used in a wide range of fields as a probe used for screening, nucleic acid functional analysis, etc. performed in an in vivo similar environment.
  • the nucleic acid homopolymer-binding functional nucleic acid pharmaceutical of the present invention (hereinafter sometimes simply referred to as "medicament") contains a nucleic acid homopolymer-binding functional nucleic acid as an active ingredient. Therefore, the pharmaceutical product can be used as a pharmaceutical product for use according to the physiological activity of the functional nucleic acid contained in the constituent components, and can be applied to a wide range of uses such as therapeutic drugs, prophylactic drugs, and test drugs.
  • the nucleic acid homopolymer-binding functional nucleic acid drug may include known nucleic acids added to the drug in addition to the nucleic acid homopolymer-binding functional nucleic acid obtained by the production method of the present invention.
  • the dosage form, administration method, and the like of the nucleic acid homopolymer-binding functional nucleic acid drug can be in the form known as a drug, and can be set as appropriate according to the type, use, and treatment location of the functional nucleic acid.
  • examples of such a nucleic acid homopolymer-binding functional nucleic acid drug include a liquid preparation in which a nucleic acid homopolymer-binding functional nucleic acid is dispersed in a phosphate buffer.
  • the nucleic acid homopolymer-binding functional nucleic acid pharmaceutical it is preferably used that the stability of the functional nucleic acid is improved in vivo and in a similar environment.
  • a medicine can maintain the original activity of a functional nucleic acid over a long period of time.
  • the in vivo similar environment include serum, physiological saline, buffer solution, cell culture solution, plasma, isotonic fluid, and the like at a temperature of about 37 ° C.
  • Such pharmaceuticals are also safe and stable in vivo, so that they can act more sustainably and exert high therapeutic effects compared to conventional nucleic acid drugs. As extremely useful.
  • nucleic acid homopolymer-binding functional nucleic acid drug of the present invention has the above-described configuration, it can exhibit the same activity as the physiological activity of the functional nucleic acid and is stably present in vivo. be able to.
  • Such pharmaceuticals are excellent in safety and can provide therapeutic and preventive effects over a long period in vivo after administration.
  • the nucleic acid homopolymer-binding functional nucleic acid of the present invention also has an in vivo or in vivo similar environment. It can be used in a wide range of fields as probes used for screening and nucleic acid functional analysis performed below.
  • the probe of the present invention only needs to contain at least a nucleic acid homopolymer-binding functional nucleic acid as a constituent component. Among them, the probe that is preferred by the probe having a configuration capable of detecting the physiological activity of the functional nucleic acid can be obtained by a known or conventional method.
  • a typical example of such a probe is one having a structure in which a labeling substance such as a fluorescent, radioactive substance or enzyme is linked to a nucleic acid homopolymer-binding functional nucleic acid. Since the probe of the present invention is excellent in stability under an environment similar to that in a living body, it can be effectively used as a probe particularly in a research field such as searching for a new gene or in a medical field such as treatment or examination. .
  • Examples 1 to 26 In the case of indicating a nucleic acid homopolymer, for example, a homopolymer in which n nucleosides consisting of a base X are bonded is denoted as “poly (X) n”. That is, a 30-mer deoxydelic acid (dA) homopolymer can be expressed as “poly (dA) 30j”.
  • Oligo DNAs having the nucleotide sequence shown in Table 1 were produced by the following method.
  • nucleic acid homopolymers deoxyde-norenoic acid homopolymers (in lengths of 5mer from 4mer and 5mer to 40mer), 20mer or 40mer deoxythymidylic acid homopolymer, 20mer deoxycytidylic acid homopolymer, 20mer deoxyguanyl acid homopolymer Each was synthesized separately.
  • TBA thrombin aptamer
  • TBA indicates thrombin aptamer
  • TBAA indicates a nucleic acid homopolymer-binding functional nucleic acid in which a nucleic acid homopolymer poly (dA) is bound to the end of TBA 3
  • the number at the end of TBAA indicates the length of poly (dA).
  • TBAA4 means having a sequence in which poly (dA) 4 is bound to the 3 ′ end of Ding 8.
  • A20TBA is TB This means that it has a sequence in which poly (dA) 20 is bound to the 5 ′ end of A.
  • the oligo DNA of SEQ ID NO: 17 is a sample for negative control having the same length as the thrombin aptamer but consisting of a random base sequence.
  • TAA + poly (dA) 20j indicates that thrombin aptamer and deoxydelic acid homopolymer were individually added without binding.
  • Sample No. 10 shows the results of measuring the transmittance (in the absence of thrombin inhibitor) without adding an oligo DNA sequence sample.
  • Fig. 1 shows that fibrin aggregation starts after 200 seconds when TBA is used as oligo DNA
  • Fig. 2 shows that fibrin aggregation starts after 700 seconds when TBAA20 is used. It is shown that.
  • the numbers in the squares indicate the elapsed time from the end of mixing of oligo DNA.
  • the integrated value T of the measured transmittance is obtained, and the relative transmittance T ZT [%] is calculated from the integrated value T of time 0 seconds and the integrated value T of time T seconds. Elapsed time
  • Table 2 shows the average half-life obtained by repeating the above measurement four times for each NA. Perform the above measurement with the ability to add TBA and TBAA20 as an oligo DNA sample, do not add oligo DNA! /, And the relative transmittance ⁇ / ⁇ [%] against elapsed time [seconds].
  • the plotted graph is t 0
  • TBAA10, TBAA20, TBAA30, TBAA40 with poly (dA) 10, poly (dA) 20, poly (dA) 30, poly (dA) 40 at the 3 'end It has a much longer half-life than TBA and increases TBA activity. From the above, it can be said that addition of poly (dA) n to the thrombin aptamer does not reduce the activity of the thrombin aptamer main body.
  • (2) is an example in which thrombin abutama was used as a functional nucleic acid to inhibit the production of fibrin polymer.
  • the blood coagulation mechanism is because fibrin protein produced by the action of fibrinogen and thrombin, an enzyme, spontaneously initiates polymerization to produce a fibrin polymer. Therefore, in order to inhibit the production of fibrin polymer, it is necessary to suppress the degradation process of fibrinogen by thrombin.
  • GGT TGG TGT G GT TGG sequence is known to function as a thrombin aptamer (Analytical biochemistry 294, 126-131, (2001)). Inhibits the degradation of a single source.
  • (2) a quantitative method for measuring fibrinogen clotting time is shown. With the obtained half-life, the activity decreases even when poly (dA) n is added to (i) thrombin abutama. In addition, (ii) the length of n (the length of the nucleic acid homopolymer) indicates that the activity of thrombin abutama is enhanced (ie, the half-life is increased due to inhibition of coagulation).
  • FIG. 4 shows a graph plotting clotting time against oligo DNA concentration when using DNA20, ⁇ 30, ⁇ 40, and ⁇ prepared in (1) above as oligo DNA (see Table 1).
  • oligo DNA 1: 2 (molar ratio)
  • the coagulation time is prolonged. It was. 20 M and 25 M (1: 5) did not have poly (dA) til !, TBA was the weakest, TBAA30 was the strongest and showed activity.
  • 50 M (1:10) all oligo DNAs showed a significant inhibitory effect and did not coagulate by 3 minutes after the start of the reaction.
  • TBAA20, TBAA30, TBAA40, and TBA prepared in (1) above to human serum at concentrations of 200 ⁇ g / ml, 20 ⁇ g / ml, and 2 ⁇ g / ml, respectively. Incubated at 37 ° C for 0, 1, 3, 6, 12 and 24 hours and then stored frozen. The internal standard marker DNA (65 and 75base) was added to these reaction solutions, and the nucleic acid was extracted with phenol and ethanol precipitated in the presence of sodium acetate.
  • TBAA20, TBAA30, and TBAA40 were relatively stable at 200 ⁇ g / ml, but TBA was not detected after 6 hours and was faster in serum than oligo DNA added with poly (dA) till. It was shown to decompose. On the other hand, at 20 g / ml and 2 g / ml, TBA was not detected even at 0 hours, suggesting that it decomposes very rapidly at low concentrations. The same 20 g / ml and 2 ⁇ g / ml with poly (dA) attached.20, TBAA30 and TBAA40 were observed to decrease in molecular weight over time. There was no significant difference.
  • the thrombin inhibitor activity of thrombin aptamer was measured by measuring the transmittance at a wavelength of 450 nm continuously.
  • the transmittance of wavelength 450 is measured over time. The change is shown in the graph of Fig. 6.
  • the time when initial coagulation does not occur at all is the induction time, and the coefficient of time when the decrease curve is approximated logarithmically when coagulation starts and the transmittance decreases is the half-life. .
  • Figure 6 depicts the following equation: The longer the permeability induction time and the longer the half-life, the more coagulation is inhibited.
  • poly (dA) bound to TBA is composed of 5 mer to 40 mer with lengths of mer units.
  • Fig. 7 (A) shows the relationship between the length of (dA) and the induction time, and the relationship between the length of (dA) and the half-life. 7 (B). From this it can be seen that the effective (d A) till length is preferably between 5 and 40 mer.
  • Table 4 shows the results of measuring the induction time and half-life by the same method as in (5) above using some oligo DNAs shown in the Examples and Comparative Examples in Table 1.
  • TCA Tenescin-C-aptamer
  • Oligo DNAs having the nucleotide sequence shown in Table 4 were produced by the following method.
  • a nucleic acid homopolymer a 20mer-long deoxydelic acid homopolymer [poly (dA) 20] was synthesized.
  • the nucleic acid homopolymer binding functional nucleic acids shown in Table 4 were obtained by linking poly (dA) 20 to tennessin C aptamer (TCA) having the base sequence ability shown in Table 4.
  • RNA thrombin aptamer TBRA
  • Oligo DNAs having the nucleotide sequence shown in Table 5 were produced by the following method. Nucleic acid homopolymers are 20-mer long cytidylic acid homopolymer [poly (C) 20], adenylic acid homopolymer [poly (A) 20], uracilic acid homopolymer [poly (U) 20], deoxydeel An acid homopolymer [poly (dA) 20] was synthesized. Each nucleic acid homopolymer was linked to an RNA thrombin aptamer (TBRA) having the base sequence shown in Table 5 to obtain a nucleic acid homopolymer single-binding functional nucleic acid shown in Table 5.
  • TBRA RNA thrombin aptamer
  • Thrombin RNA aptamer 54.0 ⁇ 1 stock solution 4.0 ⁇ M, final 105.2nM
  • thrombin 2.0 ⁇ 1 stock solution 100 NIH units / ml, final 0.1 NIH units / ml
  • Table 5 shows that Thrombin RNA aptamer 54.0 ⁇ 1 (stock solution 4.0 ⁇ M, final 105.2nM) and thrombin 2.0 ⁇ 1 (stock solution 100 NIH units / ml, final 0.1 NIH units / ml) shown in Table 5 at 37 ° Incubate for 15 minutes at C and add 2.0 ml of fibrinogen solution at 37 ° C [2.9 X 10 M, 50 mM Tris-HCl (pH 7.4), 5 mM CaCl
  • Oligo DNA having the nucleotide sequence shown in Table 7 was produced by the following method.
  • a nucleic acid homopolymer a 30-mer long deoxydelic acid homopolymer [poly (dA) 30] was synthesized.
  • Poly (dA) 30 was ligated to TNFa antisense DNA having the base sequence shown in Table 7 to obtain nucleic acid homopolymer-binding functional nucleic acids shown in Table 7.
  • oligo DNAs shown in Table 7 were incubated at 37 ° C in human-derived serum and then subjected to gel electrophoresis on a urea-polyacrylamide gel. The results are shown in Fig. 10. TNF a -A30 remains after 24 hours! /, But poly (dA) 30 is bound!, ...!, TNF a-(dA) 3 0 disappears after 3 hours, The
  • Example 18 Comparative Example 7 Modification of nucleic acid homopolymer-linked thrombin aptamers
  • a complex of TBAA20 and schizophyllan shown in Table 1 was produced according to the method described in WO / 2002/072152 pamphlet and JP-A-2004-107272. At this time, schizophyllan (molecular weight 150,000) was used in such a manner that the main chain glucose would be 3 mol per 1 mol of TBAA20 base.
  • the TBAA20 / schizophyllan complex complexed with schizophyllan has a longer coagulation time than TBAA20. This is thought to be due to a synergistic increase in stability due to complexation with the polysaccharide.
  • a 96-well plate was stocked with 40 ⁇ 1 of a solution of 500 ng of thrombin DNA aptamer (TBA: SEQ ID NO: 15) or TBA poly (dA) 20 (TBAA20: SEQ ID NO: 3) and 20 ⁇ 1 of human serum. . After incubation at 37 ° C, add 50 mM Tris-HCl (pH 7.4), 5 mM CaCl
  • TCA Tenescin-C-aptamer
  • Oligo DNA having the nucleotide sequence shown in Table 10 was produced by the following method.
  • a nucleic acid homopolymer a 20-mer long deoxydelic acid homopolymer [poly (dA) 20] was synthesized.
  • Table 10 Tennessine-C-aptamer (TCA: Proc. Natl. Ac ad. Sci. US A. 100 (26), 15416-15421 (2003)) (SEQ ID NO: 28) consisting of the base sequence shown in the upper part of Table 10 ) 20 and the nucleic acid homopolymer-binding functional nucleic acid TCAA20 (SEQ ID NO: 29) shown in the lower part of Table 10 )
  • LSA L-selectin aptamer
  • Oligo DNAs having the nucleotide sequence shown in Table 11 were produced by the following method.
  • a nucleic acid homopolymer a 20-mer long deoxydelic acid homopolymer [poly (dA) 20] was synthesized.
  • L-selectin aptamer (LSA: J Clin Invest., 98 (12), 2688-2692 (1996)) (SEQ ID NO: 30) consisting of the base sequence shown in the upper part of Table 11 is linked to poly (dA) 20.
  • the nucleic acid homopolymer-binding functional nucleic acid LSAA20 SEQ ID NO: 31 shown in the lower part of Table 11 was obtained.
  • Aptamer DNA was recovered by ethanol precipitation. The recovered DNA was suspended in 50% formamide. After heating at 100 ° C for 2 minutes, 1/6 of the total was analyzed by 12.5% urea polyacrylamide gel electrophoresis (Figure 15). Next, the gel after electrophoresis was collected, and the change over time in the remaining amount of oligo DNA was measured using a densitometer and graphed (FIG. 16) to determine the half-life. As a result, the half-life of LSA to which no nucleic acid homopolymer was bound was 1.5 hours, whereas the half-life of LSAA20 to which (dA) was imparted was 4.5 hours. That is, by adding a nucleic acid homopolymer to L-selectin aptamer, a stability improvement effect of about 3 times in human serum was obtained.
  • IFA IFN y aptamer
  • Oligo DNA having the nucleotide sequence shown in Table 12 was produced by the following method.
  • a nucleic acid homopolymer a 20-mer long deoxydelic acid homopolymer [poly (dA) 20] was synthesized.
  • Poly (dA) 20 was ligated to IFN y aptamer (IFA: J Biol Chem. 1994 Oct 7; 269 (40): 24564_74) (SEQ ID NO: 32) consisting of the base sequence shown in the upper part of Table 12, and the lower part of Table 12
  • IFA J Biol Chem. 1994 Oct 7; 269 (40): 24564_74
  • SEQ ID NO: 32 The nucleic acid homopolymer-binding functional nucleic acid (IFAA20) (SEQ ID NO: 33) shown in FIG.
  • OmM NaCl] was added at 60 ⁇ l, protein was removed by phenol extraction, and aptamer DNA was recovered by ethanol precipitation. The recovered DNA was suspended in 50% formamide. After heating at 100 ° C for 2 minutes, 1/6 of the total was analyzed by 12.5% urea polyacrylamide gel electrophoresis (Figure 17). Next, the gel after electrophoresis was collected, and the change over time of the remaining amount of oligo DNA was measured using a densitometer and graphed (FIG. 18) to determine the half-life. As a result, the half-life of IFA20 to which (dA) was imparted was 5 hours, compared to 1.5 hours for IFA to which no nucleic acid homopolymer was bound. That is, by adding a nucleic acid homopolymer to an IFA aptamer, a stability improvement effect of about 3.3 times in human serum was obtained.
  • Oligo DNA having the nucleotide sequence shown in Table 13 was produced by the following method.
  • a nucleic acid homopolymer a 20-mer long deoxydelic acid homopolymer [poly (dA) 20] was synthesized.
  • Poly (dA) 20 was ligated to MIF antisense DNA (SEQ ID NO: 34) consisting of the base sequence shown in the upper part of Table 13, and nucleic acid homopolymer-binding functional nucleic acid (MIFA20) (SEQ ID NO: 35) shown in the lower part of Table 13 )
  • IFN y force LPS-stimulated THP-1 cells are known to increase the production of IL-6 and IL-12, both of which are pre-inflammatory site forces, through suppression of IL-10 production! / (Infect Immun., 70 (4): 1881-8 (2002)). Therefore, IFN y activity inhibitory effect between IFN ⁇ aptamer (IFA: SEQ ID NO: 32) and IFAA20 (SEQ ID NO: 33) was compared by the following method using IL-6 expression inhibitory action as an index. It was.
  • THP-1 cells were cultured in a medium containing vitamin D3 in a final concentration of 250 nM for 48 hours, and then the cells were collected and transferred to a 96-well plate at a concentration of 200 / zl / well. Thereto, IFA or IFAA20 was added at 24 pmol / well and cultured at 37 ° C. for 1 hour, and Sarako LPS was added at a final concentration of 2 ⁇ g / ml and IFNy was added at 24 pmol / well. After 24 hours, the cell culture medium was collected and centrifuged at 400 g for 10 minutes. For the collected supernatant, the expression level of IL-6 was measured using ELISA kit (for details, see Infect Immun. 70 (4), 1881-8 (2002)). Figure 19 shows the result.
  • IFAA20 nucleic acid homopolymer to IFA Abutaman
  • the TNF a antisense DNA (SEQ ID NO: 26) of Comparative Example 6 and the TNF a-(dA) 30 (SEQ ID NO: 27) of Example 17 were used to suppress the TNF a expression suppression effect as follows. Compared. By administering the above oligo DNA to mice that have induced arthritis The therapeutic effect of arthritis obtained by inhibiting the production of TNFa in the periphery of arthritis through suppression of TNFa expression was examined by the following method.
  • TNF a antisense DNA SEQ ID NO: 26
  • TNF a-( dA) 30 SEQ ID NO: 27
  • This treatment is expected to inhibit the production of TNFa in the vicinity of arthritis through suppression of TNFa expression, prevent the development of arthritis, and suppress or treat the progression of symptoms.
  • the mice were visually inspected for swelling and redness of the front and back paws of the mice on day 7 (day 7) and day 10 (daylO) after administration of oligo DNA.
  • TNF a-(dA) 30, to which a nucleic acid homopolymer has been added is more effective than TNF ⁇ -antisense DNA because TNF deterrence lasts for a longer period of time, reducing the symptoms of arthritis. Or it was shown to tend to be cured.
  • MIF macrophage migration inhibitory factor
  • MIFA20 MIF Antisense DNA or MIFA20 was administered into the tail vein by 5 g (201) in two ways. One method was administered once on “day -2”, and the other method was administered on “day -2, 0, 2, 4, 6” for a total of 5 times. In order to induce enteritis, 3% DSS was drunk 4 times on “day 0, 2, 4, 6”. After that, the mice were dissected on the 7th day, and changes in body weight and colon length were measured, and weight loss and stool hardness were evaluated according to the criteria shown in Table 14. The total score was calculated as DAI (Disease Activity Index). These results are shown in Table 15.
  • MIFA20 to which (dA) homopolymer was added inhibited the onset of various symptoms associated with enteritis through the action of suppressing the expression of MIF, an inflammatory factor, over a long period of time. It was shown to exert a therapeutic effect to suppress progression.
  • the method for producing a nucleic acid homopolymer-binding functional nucleic acid of the present invention comprises a nucleic acid having physiological activity.
  • it is useful as a method that can easily impart the stability improvement effect.
  • a nucleic acid homopolymer-binding functional nucleic acid that can maintain the activity of a nucleic acid for a long period of time in a living body or in a similar environment and has excellent safety can be obtained. It can be widely used as a test probe or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 生理活性を有する核酸に対し、安定性向上効果を簡便に付与できる核酸ホモポリマー結合機能性核酸とその製造法を提供する。 【解決手段】 本発明の核酸ホモポリマー結合機能性核酸の製造法は、機能性核酸と核酸ホモポリマーとで構成され、安定化された機能性核酸として用いられる核酸ホsモポリマー結合機能性核酸を製造する方法であって、機能性核酸に核酸ホモポリマーを付加させて核酸ホモポリマー結合機能性核酸を得ることを特徴としている。前記核酸ホモポリマーとしては、デオキシアデニル酸及び/又はデオキシチミジル酸のホモポリマーが好ましい。前記核酸ホモポリマーの長さは、例えば3mer~50mer程度である。前記機能性核酸としては、例えばsiRNA、アンチセンス、miRNA 及びアプタマー等が挙げられる。

Description

明 細 書
核酸ホモポリマー結合機能性核酸医薬品の製造法
技術分野
[0001] 本発明は、生体内又はその類似環境下での核酸の安定性を向上する技術に関し
、詳述すれば、生理活性のある核酸であるオリゴデォキシリボヌクレオチド若しくはォ リゴリボヌクレオチドの 3,端もしくは 5,端の少なくとも一方に核酸ホモポリマーを結合 させる核酸安定化剤の製造法に関する。
背景技術
[0002] ヒトゲノムの解読が 21世紀初頭に一応の終了を迎えると言われている。また、現在 は各種のタンパク質の活性メカニズムとその相互作用の解明が進んでいる。さらに、 最近はタンパク質をコードして 、な 、RNAが遺伝子の転写や翻訳を制御して 、るこ とが分力つてきた。この成果を応用するひとつの方法に、生理活性のある短い人工的 核酸 (核酸医薬)を用いて生体機能の操作する技術が提唱されている。しかし、天然 型の核酸であるリン酸エステル型 DNAや RNAは生体中では、分解酵素やタンパク 質との非特異的吸着によって極めて短時間で失活する。このため、天然型の核酸医 薬品は、ヒトの臨床研究ではなんら有意な効果をもたらして!/、な 、。
[0003] 上述した天然型の核酸の問題点、すなわち、生体環境内や培養液中において短 時間で失活するとの問題点を解決するために、天然型の核酸を化学的に修飾した化 学修飾核酸、天然の核酸によく似た類似核酸が多く提案されている。前者の例では 、例えば、今西ら (タンパク質'核酸'酵素、 48、 1616 (2003) )が提案した、リボースの 2'と 4'をィ匕学的に脱水縮合した LNAと呼ばれる化学修飾核酸や、 Sオリゴと呼ばれる 、天然型のリン酸エステルの酸素原子をィォゥ原子で置き換えたィ匕合物が知られて いる。また、後者では、核酸の主鎖にアミド結合を導入した PNAと呼ばれる化合物が 知られている。これらを総称して核酸アナログと呼ぶ。核酸アナログは天然型の問題 であった、短い失活時間を大幅に伸ばす事に成功した。これは、核酸分解酵素が核 酸アナログを認識できないためである。しかし、生体内でタンパク質と非特異的に吸 着し予期せぬ生理活性を引き起こしたり、重篤な肝障害を引き起こすなど、非天然で あるが故の毒性が問題になっている。
[0004] 天然型の核酸を生体適合性のある化合物に内包して送り届ける技術も提案されて いる。高分子を用いたものを、ポリフエクシヨン (polyfection)、カチオン脂質を用いる" リポフエクシヨン(lipofection) "と呼ぶ。ポリ L リシン(PLL) (Wuおよび Wu, Biother apy 3 87-95 (1991))。 DEAE デキストラン(Gopal : Mol : Cell : Biol, 5 1183-93 ( 1985))。アンドリマ ~~ (dendrimers) (Haenslerおよび Szoka, Bioconjugateし hem., 4, 3 72-379 (1993))またはカチオン性メタクリル酸誘導体 (Wolfertら、 Hum. Gene Ther., 7
2123-2133 (1996) )等の水溶性カチオンポリマーに基づくポリフエクシヨンが提案さ れている。また、リポフエクシヨンとしては、アミノ基をもちいた場合(Gaoおよび Huang, Gene therapy, 2, 710-722 (1995) )および両親媒性物質(Behr, Bioconjugate Chem., 5 382-389 (1994))を用いた資質などが案出された。カチオンポリマーを用いる"ポリ フエクシヨン (polyfection) "の決定的有利性は、ポリマーの物理化学的および生物学 的特性に影響し得る構造的変形の可能性が無限にあることであり、さらに、核酸医薬 とポリマー複合体を形成し得ることにある。
[0005] 現在、最も検討されて!、るのはポリエチレンィミン (PEI)である。多種類の付着細胞 および浮遊細胞では、 3次元的分岐構造のカチオンポリマーである PEIは、ある場合 には平均以上のトランスフエクシヨン率を引き起こす結果になった(Boussil¾、 Gene T herapy, 3, 1074-1080 (1996))。例えば 3T3繊維芽細胞の 95%形質転換が in vitro で達成された。 in vivoでの遺伝子のマウス脳中への PEI仲介伝達では、ニューロン およびグリア細胞中のリポーター遺伝子および Bcl2遺伝子の長期発現が起きる結果 になり、アデノウイルスによる遺伝子伝達の場合と同じ程度のものであった (Abdallah ら、 Hum. Gene Ther., 7 1947-1954 (1996))。し力し、ポリェチルイミンなどのカチォ ン性高分子の安全性は確認されていない。カチオン性を有するには、ァミノ基の存在 が不可欠であるが、アミノ基は生理活性が高ぐ体内毒性等の危険がある。事実、今 まで検討されたいかなるカチオン性ポリマーも未だ実用に供されておらず、事実、「 医薬品添加物辞典」(日本医薬品添加剤協会編集、薬事日報社)に記載されて!、な い。
[0006] 一方、特開 2005— 204612号公報には、線状にしたプラスミド DNAの 5,もしくは 3 '端に poly(dA)鎖を結合して得られる核酸に、糖鎖を作用させた核酸 多糖複合体 が開示されている。前記複合体を構成する poly(dA)鎖は、核酸に多糖を作用させる 足場として機能している。
[0007] また、国際公開 WO01/34207号パンフレット、国際公開 WO02/072152号パンフレツ ト、及び特開 2004— 107272号公報には、アンチセンス核酸に poly(dA)を付カロし、 それを基点として多糖 β 1,3グルカン類とアンチセンス鎖とで形成される複合体が開 示され、当該複合体が遺伝子キャリアとして利用できることが開示されている。これら の文献における poly(dA)は、遺伝子キャリア用途として必須の構成成分である多糖と 核酸の単なる連結部分として利用されている。
[0008] 米国特許公開 US2006Z994172号公報は、捕獲用プローブを有する担体と、検 出用ァプタマ一力もなるナノ粒子プローブを用いて、サンプル中力も一の標的分析 物を得る方法にぉ 、て、標的分析物に担体とプローブとが結合した複合体の存在の 有無を検出する方法が開示されている。ここで、検出用アブタマ一として用いられる p oly(dA)は、標的分析物が有する結合部位を介して結合を形成して複合体として検出 される機能を付与している。
[0009] 上記のように、従来の核酸ホモポリマーは、機能性核酸同士の連結部や、標的分 析物との結合部を構成する構造体として用いられている力 核酸ホモポリマー単独で 、アブタマ一などの機能性核酸の安定性を向上しうることは知られていな力つた。
[0010] 非特許文献 1 :タンパク質 ·核酸 ·酵素、 48、 1616 (2003)
非特許文献 2 : Biotherapy 3, 87-95 (1991))
非特許文献 3 : Mol. Cell. Biol., 5, 1183-93 (1985)
非特許文献 4 : Bioconjugate Chem., 4, 372-379 (1993)
非特許文献 5 : Hum. Gene Ther., 7, 2123-2133 (1996)
非特許文献 6 : Gene therapy, 2, 710-722 (1995)
非特許文献 7 : Bioconjugate Chem., 5, 382-389 (1994)
非特許文献 8: Gene Therapy 3, 1074-1080 (1996)
非特許文献 9 : Hum. Gene Ther., 7, 1947-1954 (1996)
非特許文献 10 :日本医薬品添加剤協会編集、薬事日報社 特許文献 1:特開 2005— 204612号公報
特許文献 2:国際公開 WO01/34207号パンフレット
特許文献 3:国際公開 WO01/34207号パンフレット
特許文献 4:特開 2004— 107272号公報
特許文献 5 :米国特許公開 US2006Z994172号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明の目的は、生理活性を有する核酸に対し、安定性向上効果を簡便に付与 できる核酸ホモポリマー結合機能性核酸とその製造法を提供する。
本発明の他の目的は、生体内又はその類似環境下で長期に亘り核酸の活性を維 持することができ、し力も安全性に優れる核酸ホモポリマー結合機能性核酸、その製 造法、核酸ホモポリマー結合機能性核酸医薬品、及びプローブを提供することにあ る。
本発明のさらに他の目的は、上記特性に加えて、生体内に安全に投与できる核酸 ホモポリマー結合機能性核酸、その製造法、核酸ホモポリマー結合機能性核酸医薬 品、及びプローブを提供することにある。
課題を解決するための手段
[0012] 本発明者らは、上記の目的を達成するため鋭意研究を行 ヽ、生理活性のあるオリ ゴデォキシリボヌクレオチドやオリゴリボヌクレオチド等に核酸ホモポリマーを付加する ことにより、生体内における核酸の安定性を飛躍的に増カロさせ、且つ、当該核酸の生 理活性を飛躍的に増カロさせることを見出し、本発明を導き出した。
[0013] すなわち、本発明は、機能性核酸と核酸ホモポリマーとで構成され、安定化された 機能性核酸として用いられる核酸ホモポリマー結合機能性核酸を製造する方法であ つて、機能性核酸に核酸ホモポリマーを付加させて核酸ホモポリマー結合機能性核 酸を得る核酸ホモポリマー結合機能性核酸の製造法を提供する。前記ホモポリマー には、デォキシアデニル酸及び/又はデォキシチミジル酸等のホモポリマーが含ま れる。前記核酸ホモポリマーの長さは例えば 3mer〜50mer程度である。前記機能性 核酸には、 siRNA、アンチセンス、 miRNA、及びァプタマ一等が含まれる。 [0014] 本発明の核酸ホモポリマー結合機能性核酸の製造法は、機能性核酸の 3'端及び /又は 5 '端に核酸ホモポリマーを付加させる方法であってもよ!/、。
[0015] また、本発明は、上記本発明の製造法で得られる核酸ホモポリマー結合機能性核 酸を提供する。
[0016] さらに、本発明は、上記本発明の核酸ホモポリマー結合機能性核酸を有効成分に 含む核酸ホモポリマー結合機能性核酸医薬品を提供する。前記核酸ホモポリマー結 合機能性核酸医薬品は、生体内及び Z又は生体内類似環境下における機能性核 酸の安定性が向上されたものであってもよぐまた、遺伝子治療に用いられるもので あってもよい。
[0017] 本発明は、また、上記本発明の核酸ホモポリマー結合機能性核酸を含むプローブ を提供する。
[0018] 本願明細書中、「ポリマー(重合体)」とは、 2以上の単量体が結合した重合体であ つて、オリゴマーをも含む意味に用いる。「核酸」とは、特に限定しない限り、核酸アナ ログを含む意味であり、「塩基」、「ヌクレオシド」、及び「ヌクレオチド」はそれぞれこれ らの修飾された構成をも含む意味に用いる。
発明の効果
[0019] 本発明の製造法によれば、多様な生理活性を有する機能性核酸の安定性を簡便 な方法で飛躍的に向上でき、機能性核酸本来の活性を長期にわたり持続的に発揮 させることが可能である。しカゝも、本発明の核酸ホモポリマー結合機能性核酸は、免 疫原性がな 、か極めて低 、核酸ホモポリマーを用いるため安全性に優れ、生体内又 はその類似環境下であっても機能性核酸の安定性を十分に維持できる。このため、 生体内に投与される医薬品用途、特に遺伝子治療用途などとして極めて有用である 。本発明の核酸ホモポリマー結合機能性核酸は、また、生体内類似環境下で行われ るスクリーニングや核酸の機能解析等に用いられるプローブ等として広範な分野で利 用できる。
図面の簡単な説明
[0020] [図 1]図 1は、実施例において、フイブリノ一ゲンとトロンビンァプタマ一(TBA)を共存 させたときの、波長と透過率との関係を経過時間別に示すグラフである。 [図 2]図 2は、実施例において、フイブリノ一ゲンと TBAA20を共存させたときの、波長 と透過率との関係を経過時間別に示すグラフである。
[図 3]図 3は、実施例におけるフイブリノ一ゲンとオリゴ DNAとの共存下における経過 時間と相対透過率 TtZTOとの関係を示すグラフである。
[図 4]図 4は、実施例における血漿中に添加したオリゴ DNAの濃度と凝固時間の関 係を示すグラフである。
[図 5]図 5は、実施例における血清中に一定時間保持した後のオリゴ DNAの電気泳 動写真である。
[図 6]図 6は、実施例におけるフイブリノ一ゲンとオリゴ DNAとを共存させたときの、波 長 450nmの透過率の経時変化を示すグラフである。
[図 7]図 7 (A)は、実施例における核酸ホモポリマーの長さと誘導時間との関係を示 すグラフであり、(B)は、実施例における核酸ホモポリマーの長さと半減期との関係を 示すグラフである。
[図 8]図 8は、実施例におけるゥシ血漿中に一定時間保持した後のオリゴ DNAの電 気泳動写真であり、(A)は TBA、(B)は TBAA20、(C)は TBAT20の電気泳動写真で ある。
[図 9]図 9は、実施例 15におけるヒト血清中に一定時間保持した後のオリゴ DNAの電 気泳動写真である。
[図 10]図 10は、実施例 17におけるヒト血清中に一定時間保持した後のオリゴ DNA の電気泳動写真である。
[図 11]図 11は、実施例 19及び比較例 3におけるヒト血清中に一定時間保持した後の オリゴ DNAの電気泳動写真であって、(A)は TBA、 (B)は TBAA20の電気泳動写真 である。
[図 12]図 12は、実施例 19及び比較例 3における電気泳動後のゲルをデンシトメータ で解析して得られた、各オリゴ DNAの残存量の経時変化を示すグラフである。
[図 13]図 13は、実施例 20及び比較例 9におけるヒト血清中に一定時間保持した後の オリゴ DNAの電気泳動写真である。
[図 14]図 14は、実施例 20及び比較例 9における電気泳動後のゲルをデンシトメータ で解析して得られた、各オリゴ DNAの残存量の経時変化を示すグラフである。
[図 15]図 15は、実施例 21及び比較例 10におけるヒト血清中に一定時間保持した後 のオリゴ DNAの電気泳動写真である。
[図 16]図 16は、実施例 21及び比較例 10における電気泳動後のゲルをデンシトメ一 タで解析して得られた、各オリゴ DNAの残存量の経時変化を示すグラフである。
[図 17]図 17は、実施例 22及び比較例 11におけるヒト血清中に一定時間保持した後 のオリゴ DNAの電気泳動写真であって、(A)は TBA、 (B)は TBAA20の電気泳動写 真である。
[図 18]図 18は、実施例 22及び比較例 11における電気泳動後のゲルをデンシトメ一 タで解析して得られた、各オリゴ DNAの残存量の経時変化を示すグラフである。
[図 19]図 19は、実施例 24における、 IFN yァプタマ一を用いて、 THP-1細胞から IL- 6の発現抑制を示したグラフである。
[図 20]図 20は、実施例 25における、オリゴ DNAを投与した関節炎モデルマウスの治 療効果を評価したグラフである。
発明を実施するための最良の形態
[0021] 本発明の核酸ホモポリマー結合機能性核酸の製造法は、機能性核酸と核酸ホモポ リマーとで構成され、安定化された機能性核酸として用いられる核酸ホモポリマー結 合機能性核酸を製造する方法であって、機能性核酸に核酸ホモポリマーを付加させ て核酸ホモポリマー結合機能性核酸を得る方法である。
[0022] 本発明における核酸ホモポリマー結合機能性核酸は、機能性核酸と核酸ホモポリ マーとで構成され、安定化された機能性核酸として機能する核酸又は核酸アナログ 力もなる。ここで、「安定化された機能性核酸」とは、機能性核酸の安定性が向上され た結果、機能性核酸と同様の機能を長時間保持可能となった構成を意味して!/、る。 本発明における核酸の安定ィ匕は、例えば、核酸又は核酸の有する生理活性の半減 期を指標に用いることができる。安定化された機能性核酸の中には、機能性核酸が 本来有する生理活性の向上効果が発揮されるものも含まれる。ここで、核酸アナログ とは、ヌクレオシド (塩基部位、糖部位)及び Z又はヌクレオシド間結合部位に修飾が 施された核酸を意味して ヽる。本発明における機能性核酸及び核酸ホモポリマーは 上記の意味の核酸アナログを含んで 、る。
[0023] 核酸アナログを構成する「修飾されたヌクレオシド」としては、例えば、無塩基 (abasi c)ヌクレオシド;ァラビノヌクレオシド、 2'—デ才キシゥリジン、 α—デ才キシリボヌクレ オシド、 β Lーデォキシリボヌクレオシド、その他の糖修飾を有するヌクレオシド;ぺ プチド核酸(ΡΝΑ)、ホスフェート基が結合したペプチド核酸(ΡΗΟΝΑ)、ロックド核 酸 (LNA)、モルホリノ核酸等が挙げられる。前記糖修飾を有するヌクレオシドには、 2,一 Ο—メチルリボース、 2,ーデォキシ 2,一フルォロリボース、 3'— Ο—メチルリ ボース等の置換五単糖; 1,, 2,一デォキシリボース;ァラビノース;置換ァラビノース 糖;六単糖およびアルファ一ァノマーの糖修飾を有するヌクレオシドが含まれる。これ らのヌクレオシドは塩基部位が修飾された修飾塩基であってもよ ヽ。このような修飾塩 基には、例えば、 5—ヒドロキシシトシン、 5—フルォロウラシル、 4—チォゥラシル等の ピリミジン; 6—メチルアデニン、 6—チォグアノシン等のプリン;及び他の複素環塩基 等が挙げられる。
[0024] 核酸アナログを構成する「修飾されたヌクレオシド間結合」としては、例えば、アルキ ルリンカ一、グリセリルリンカ一、ァミノリンカ一、ポリ(エチレングリコール)結合、メチル ホスホネートヌクレオシド間結合;メチルホスホノチォエート、ホスホトリエステル、ホス ホチォトリエステノレ、ホスホロチォエート、ホスホロジチォエート、トリエステノレプロドラッ グ、スルホン、スルホンアミド、サルファメート、ホルムァセタール、 Ν—メチルヒドロキ シルァミン、カルボネート、力ルバメート、モルホリ入ボラノホスホネート、ホスホルアミ デートなどの非天然ヌクレオシド間結合が挙げられる。
[0025] 本発明の核酸ホモポリマー結合機能性核酸 (核酸又は核酸アナログ)の長さは、用 途に応じて適宜選択でき、例えば 3〜50mer、好ましくは 5〜40merである。核酸およ び核酸アナログが短すぎると所望の機能を発揮しにくぐ長すぎると安定性向上効果 が十分に得られにくく 、ずれも好ましくな 、。
[0026] 本発明における核酸ホモポリマーには、一種類のヌクレオシドの重合体からなる D NA及び RNA等の核酸および核酸アナログが含まれる。すなわち、核酸ホモポリマ 一は、上記に例示の修飾されたヌクレオシドと修飾されたヌクレオシド間結合とで構 成される核酸アナログであってもよい。前記一種類のヌクレオシドの重合体とは、核 酸ホモポリマーを構成する全ての塩基部位が同一又は類似 (置換体や異性体等)で あればよぐ例えば、アデニンと 6—メチルアデニンとを共に分子内に含むポリヌクレ ォチドも本発明の核酸ホモポリマーに含む意味に用いる。
[0027] 核酸ホモポリマーとしては、天然型及び修飾されたヌクレオチドのいずれであっても ょ 、が、好ましくは、アデニル酸 (A)、シチジル酸 (C)、 グァニル酸 (G)、ゥラシル酸( U)、チミジル酸 (T)、及びイノシン酸(I)等のポリヌクレオチド;及びデォキシアデ-ル 酸(dA)、デォキシシチジル酸(dC)、デォキシゥラシル酸(dU)、デォキシチミジル酸( dT)、及びデォキシイノシン酸 (dl)等の前記ポリヌクレオチドの 2 '位のデォキシ体等 のポリデォキシヌクレオチド等が含まれる。なかでも、デォキシアデニル酸(dA)、デォ キシシチジル酸 (dC)、デォキシゥラシル酸(dU)、及びデォキシチミジル酸(dT)のホ モポリマーが好ましぐ特に、デォキシアデ-ル酸(dA)のホモポリマーが好ましく用い られる。これらの核酸ホモポリマー(ホモ核酸ティル)は、単独で又は 2以上を組み合 わせて用いることができる。
[0028] 本発明における核酸ホモポリマーの長さは、使用する目的や構成される核酸の種 類等によって異なる力 通常 3mer〜100mer、好ましくは 3mer〜50mer、より好ましく は 5mer〜50merである。特に、核酸医薬用途としては 5〜30mer程度の範囲で用い られる場合が多 、。核酸ホモポリマーと機能性核酸の長さの比率 (ヌクレオチド単位) に比べて異常に大きい場合は、核酸の生理活性効果が低下する。さらに、 3mer以下 の場合は、核酸ホモポリマーの効果が少ない。
[0029] 核酸ホモポリマーの長さは、また、核酸の種類に応じて適宜選択することができる。
具体的には、デォキシアデニル酸で構成されるホモポリマー [poly(dA) ]の場合は、 例えば 5〜40mer、好ましくは 5〜30mer程度、デォキシチミジル酸で構成されるホモ ポリマー [poly(dT) ]の場合は、例えば 5〜50mer、好ましくは 6〜40mer程度である。
[0030] 本発明における機能性核酸としては、特定の機能を有して 、れば特に限定されず 、合成及び天然型のいずれであってもよぐそれ単体で機能を発現するもの、他の核 酸やタンパク質等との相互作用により発現するものの 、ずれであってもよ 、。このよう な機能性核酸としては、公知乃至慣用の核酸および核酸アナログを利用でき、例え ば、阻害活性、受容体作用、拮抗作用、免疫抑制活性、発現制御活性等の生理活 性を有する核酸を用いることができる。機能性核酸として、例えば、短い干渉 RNA(s iRNA)、アンチセンス DNA、デコイ、ァプタマ一、リボザィム、 miRNA及び CpG D NA等のオリゴ核酸が好ましぐ特にァプタマ一、アンチセンス、 siRNAが好ましく用 いられる。これらの機能性核酸は、単独でまたは複数個組み合わせて用いてもよい。
[0031] 機能性核酸の長さは、特に限定されず、用途に応じて適宜選択することができるが 、例えば 3〜: LOOmer、好ましくは 5〜50merである。機能性核酸の長さは、所望の機 能を発揮することができる長さを下限とし、ポリ核酸ティルによる安定性の付与効果が 得られる長さを上限として適宜設定される。
[0032] 本発明の製造法は、機能性核酸に核酸ホモポリマーを付加させて核酸ホモポリマ 一結合機能性核酸を得る工程を含んで 、る。核酸ホモポリマー結合機能性核酸が 安定化された機能性核酸として用いることができる理由は、必ずしも明確ではないが 、例えば、生体内に存在するヌクレーァゼによる分解作用を受けにくくしたり、機能性 核酸の末端へ非特異的な結合を形成しにくくするなどの効果を奏するためと推察さ れる。
[0033] 前記工程は、例えば、予め所望の長さに調製された核酸ホモポリマーを機能性核 酸の一端又は両端へ付加させる方法;機能性核酸に核酸ホモポリマーの原料となる 核酸モノマー又はオリゴマーを付加させた後、核酸鎖の伸長反応により所望の長さ の核酸ホモポリマーを形成させる方法等を利用できる。前記核酸モノマー及びオリゴ マーとしては、例えば、上記に例示の核酸ホモポリマーを構成するヌクレオチド及び デォキシヌクレオチド等のモノマー又はオリゴマーを用いることができる。重合は、核 酸のモノマーやオリゴマーを基質として、公知の方法で重合する方法が好ましく用い られる。
[0034] 核酸ホモポリマーを機能性核酸に結合 (付加)する様式は、通例のリン酸エステル 結合が用いられ、さらに、後述する修飾されたヌクレオシド間結合を用いることも可能 である。核酸ホモポリマー (ティル部分)の結合を強くするために、適時ホスホロチォ エート結合を導入してもよ ヽ。
[0035] 機能性核酸へ核酸ホモポリマー(又はその原料)を付加する方法は、リン酸エステ ル結合力もなるポリヌクレオチド合成反応として公知の方法を利用することができ、反 応条件は、結合様式、機能性核酸の種類と長さ、核酸ホモポリマーの種類と長さ等 に応じて、機機能性核酸の生理活性を損なわない範囲で適宜選択できる。また、核 酸ホモポリマーの原料を用いる方法にぉ 、て、核酸モノマー又はオリゴマーの伸長 反応は、上記ホモポリマーの付加方法と同様の条件を用いることができる。機能性核 酸への核酸ホモポリマーの付カ卩は、当業者に周知の技術を用いて行うことができる( 例 ば、 Molecular Cloning 3rd edition,し old bpnng Harbor Laboratory(2001)等)。
[0036] 上記製造法により得られる核酸ホモポリマー結合機能性核酸 (核酸又は核酸アナ ログ)には、機能性核酸の 3 '端及び Z又は 5 '端に核酸ホモポリマーが結合されてい るものが含まれる。核酸ホモポリマー結合機能性核酸は、機能性核酸の 3 '端又は 5 ' 端に一つの核酸ホモポリマーを有する双方向直鎖状構造;同 3 '端及び 5 '端に同一 又は異なる 2つの核酸ホモポリマーを有する一方向直鎖状構造;同 3 '端及び 5 '端が 共に同じ核酸ホモポリマーに結合している環状構造等の各種形状を取ることが可能 である。
[0037] 上記構成の核酸ホモポリマー結合機能性核酸は、安定性が向上されている点以外 は機能性核酸と同様の生理活性を発揮することができるため、機能性核酸と同様の 用途で利用することができる。すなわち、本発明における核酸ホモポリマー結合機能 性核酸は、これ単独で又は他の成分と組み合わせて、短い干渉 RNA (siRNA)、ァ ンチセンス DNA、デコイ、ァプタマ一、 miRNA等のオリゴ核酸として利用すること ができる。なかでも、アンチセンス、 RNAや DNAァプタマ一、 siRNAとして好ましく 用いられる。
[0038] 本発明の核酸ホモポリマー結合機能性核酸は、機能性核酸の特性を損なわな ヽ 範囲で、適宜な化学修飾が施されていても良い。化学修飾に用いられる化合物とし ては、公知のもの力も適宜選択でき、例えば、シゾフィラン、カードラン、パーキマン、 ダリホラン、スクレログルカン、レンチナン、及びラミナラン等の β— 1, 3—グルカン構 造を有する多糖類等を利用できる。なかでも、シゾフィランを用いた多糖 Ζ核酸複合 体は、機能性核酸に対し、核酸ホモポリマーの付カ卩による安定ィ匕効果に加え、シゾフ イランとの複合ィ匕による安定性向上という相乗的な効果を得ることができる。核酸ホモ ポリマー結合機能性核酸は、また、他の成分と組み合わせて用いることができる。 [0039] 核酸ホモポリマー結合機能性核酸が安定化された機能性核酸であることを評価す る方法としては、核酸の安定性を評価する方法として公知の方法力も適宜選択でき、 例えば、半減期、生理活性等を指標として評価する方法等を用いることができる。本 発明にお 、ては、核酸ホモポリマー結合機能性核酸が機能性核酸と同種の生理活 性を発揮することができ、し力も機能性核酸より核酸ホモポリマー結合機能性核酸の 半減期が長い場合に、当該核酸ホモポリマー結合機能性核酸を「安定化された機能 性核酸」と評価することができる。前記「同種の生理活性」とは、生理活性の種類が同 一であることを意味しており、例えば、核酸ホモポリマー結合機能性核酸が機能性核 酸と同じ阻害活性、受容体作用、拮抗作用、免疫抑制活性、発現制御活性等の生 理活性を有することを意味している。また、半減期が長い核酸ホモポリマー結合機能 性核酸は、生理活性の種類によっては、高い生理活性が発揮されるホモポリマー結 合機能性核酸として検出されるものであってもよい。
[0040] 前記生理活性を指標として評価する方法は、機能性核酸が有する生理活性の種 類に応じて適宜選択することができる。以下に、機能性核酸がトロンビンアブタマ一 である例を挙げて具体的に説明する。トロンビンアブタマ一は、トロンビンに対して抑 制性に作用する機能性核酸の一種であり、その生理活性は、血液凝固時間を測定 する方法を用いて評価することができる。トロンビンは、その酵素活性によりフイブリノ 一ゲンカもフイブリンを生成し、次いでフイブリンが高分子化することにより血液凝固 を引き起こすことが知られている。トロンビンァプタマ一は、トロンビンに結合してその 酵素活性を阻害するため、フイブリンの生成を抑制して、血液を凝固しにする作用が ある。従って、トロンビンァプタマ一の生理活性は、血液が凝固するまでの時間で評 価することができる。すなわち、血液凝固時間が長いほど、トロンビンァプタマ一の生 理活性が向上されて ヽると評価できる。
[0041] 上記方法により得られる核酸ホモポリマー結合機能性核酸は、安定化された機能 性核酸として、広範な分野で利用することができる。本発明の核酸ホモポリマー結合 機能性核酸は、機能性核酸に結合される核酸ホモポリマーの免疫原性がな 、か極 めて低ぐ安全性に優れるため、生体内又はその類似環境下であっても機能性核酸 の安定性を十分に維持できる。このため、生体内に投与される医薬品用途、特に遺 伝子治療用途などとして極めて有用である。本発明の核酸ホモポリマー結合機能性 核酸は、また、生体内類似環境下で行われるスクリーニングや核酸の機能解析等に 用いられるプローブ等として広範な分野で利用できる。
[0042] 本発明の核酸ホモポリマー結合機能性核酸医薬品(以下、単に「医薬品」と称する 場合がある)は、核酸ホモポリマー結合機能性核酸を有効成分として含んでいる。そ のため、前記医薬品は、構成成分に含まれる機能性核酸の生理活性に応じた用途 の医薬として利用することができ、治療薬、予防薬、検査薬等の広範な用途に適用 できる。核酸ホモポリマー結合機能性核酸医薬品は、上記本発明の製造法で得られ た核酸ホモポリマー結合機能性核酸以外に、医薬品に添加される公知のものが含ま れていてもよい。また、核酸ホモポリマー結合機能性核酸医薬品の剤形、投与方法 等は、医薬品として公知の形態を適用可能であり、機能性核酸の種類や用途、治療 場所に応じて適宜設定することができる。このような核酸ホモポリマー結合機能性核 酸医薬品としては、例えば、核酸ホモポリマー結合機能性核酸をリン酸バッファーに 分散させた液体製剤等が挙げられる。このような医薬品は、例えば静脈注射等により 投与することにより、生体内において、機能性核酸のみを投与したときと同様の生理 活性を、より長期間発揮することができる。
[0043] なかでも、核酸ホモポリマー結合機能性核酸医薬品としては、生体内及びその類 似環境下における機能性核酸の安定性が向上されていることが好ましく用いられる。 このような医薬品は、長期に亘り機能性核酸本来の活性を維持することができる。生 体内類似環境とは、例えば、 37°C程度の温度下の血清、生理食塩水、緩衝液、細 胞培養液、血漿、等膨液等が挙げられる。このような医薬品は、また、安全性に優れ ると共に生体内で安定であるため、従来の核酸医薬と比較してより持続的に作用して 高い治療効果を発揮することができ、遺伝子治療用途として極めて有用である。
[0044] 本発明の核酸ホモポリマー結合機能性核酸医薬品は、上記構成を有するため、機 能性核酸が有する生理活性と同様の活性を発揮することができ、しかも生体内で安 定に存在することができる。このような医薬品は、安全性に優れ、投与後の生体内に おいて長期にわたり治療、予防効果を得ることができる。
[0045] 本発明の核酸ホモポリマー結合機能性核酸は、また、生体内又は生体内類似環境 下で行われるスクリーニングや核酸の機能解析等に用いられるプローブ等として広範 な分野で利用できる。本発明のプローブは、少なくとも核酸ホモポリマー結合機能性 核酸を構成成分に含んでいればよい。なかでも、機能性核酸の生理活性を検知可 能な構成を有しているプローブが好ましぐ前記プローブは、公知乃至慣用の方法で 得ることができる。このようなプローブの代表的な例としては、例えば、核酸ホモポリマ 一結合機能性核酸に蛍光、放射性物質、酵素等の標識性物質が連結された構成を 有しているものが挙げられる。本発明のプローブは、生体内と類似の環境下の安定 性に優れるため、特に新規遺伝子の探索等の研究分野や、治療、検査等の医療分 野におけるプローブとして効果的に利用することができる。
実施例
[0046] 以下、実施例 1から 26にて本発明を具体的に説明する。なお、核酸ホモポリマーを 示す場合、例えば、塩基 Xからなるヌクレオシドが n個結合したホモポリマーを「poly(X )n」と表記する。すなわち、 30merのデォキシアデ-ル酸(dA)ホモポリマーは、「poly( dA)30jと表記することができる。
[0047] 実施例 1〜14、比較例 1〜3
トロンビンァプタマ一の安定化
(1)核酸ホモポリマー結合機能性核酸の調製
表 1に示される塩基配列力 なるオリゴ DNAを次の方法で製造した。核酸ホモポリ マーとして、デォキシアデ-ノレ酸ホモポリマー(長さ 4mer及び 5mer〜40merより 5mer 刻み)、 20mer若しくは 40merのデォキシチミジル酸ホモポリマー、 20merのデォキシシ チジル酸ホモポリマー、 20merのデォキシグァ -ル酸ホモポリマーをそれぞれ別途合 成した。前記 、ずれかの核酸ホモポリマーを市販のトロンビンァプタマ一 (TBA)に連 結させて、 TBAに核酸ホモポリマーが付加された表 1の実施例 1〜14に示される核 酸ホモポリマー結合機能性核酸を得た。
[0048] 表 1中、 TBAはトロンビンァプタマ一を示し、 TBAAは、 TB Aの 3,末端に核酸ホモポ リマー poly(dA)が結合された核酸ホモポリマー結合機能性核酸を示しており、 TBAA の末尾の数字は、 poly(dA)の長さを示している。例えば、「TBAA4」は、丁8 の3 '末端 に poly(dA)4が結合された配列を有することを意味している。また、「A20TBA」は、 TB Aの 5 '末端に poly(dA)20が結合された配列を有することを意味して 、る。配列番号 1 7のオリゴ DNAは、トロンビンァプタマ一と長さは同じであるがランダムな塩基配列か らなるネガティブコントロール用のサンプルである。
[表 1] 表 1
Figure imgf000016_0001
[0050] (2)フイブリノ一ゲン存在下における半減期の測定
フイブリノ一ゲンの 2.9 X 10— 6Mの 50mMTris- HCKpH 7.4)、 5mM CaCl
2、 lOOmM NaCl 溶液を調製し、 10.0mmの UVセルの中に入れ、 37°Cに温度調整した。つぎに、同じく 37°Cに温度調整し、表 2に示されるオリゴ DNAサンプル (各サンプルの総量 6.0 nM) とトロンビン (0.1 NIHユニット、 1.8nM)の混合溶液 54 1カ卩えた。攪拌したのちに、 0〜1 000秒まで 100秒毎に波長 350〜500nm(/2nm)の透過率を測定した。表 2中、オリゴ D NAの表記方法、対応する塩基配列は表 1に示すものと同様である。なお、「TBA+po ly(dA)20jとは、トロンビンァプタマ一とデォキシアデ-ル酸ホモポリマーとを結合させ ることなく、個別に添カ卩したことを示している。表 2中、サンプル No.10は、オリゴ DNA の配列サンプルを添加しな 、で(トロンビン阻害剤の非存在下で)透過率を測定した 結果を示している。
[0051] 各オリゴ DNAサンプルについて、上記測定された透過率の変化を波長に対するグ ラフとして経過時間別に重ねてプロットし、波長 320nmで透過率が 80%を超えるグ ラフの中で、最も早い経過時間のグラフに対応させて、フイブリンの凝集開始時間と 判断した。例えば、図 1は、オリゴ DNAとして TBAを用いた場合には、 200秒後にフィ ブリンの凝集が開始され、図 2は、 TBAA20を用いた場合には、 700秒後にフイブリン の凝集が開始されることを示している。図 1及び図 2中、四角内の数字は、オリゴ DN Aの混合終了時からの経過時間を示す。
[0052] さらに、各オリゴ DNAサンプルについて、上記測定された透過率の積分値 Tを求 め、時間 0秒の積分値 Tと時間 T秒の積分値 Tより相対透過率 T ZT [%]を経過時
0 t t o
間 [秒]に対してグラフ化し、 T ZTが 50%となる時間を半減期として得た。オリゴ D t 0
NAごとに上記測定を 4回繰り返して得られた半減期の平均値を表 2に示した。オリゴ DNAサンプルとして TBAと TBAA20を添カ卩する力、オリゴ DNAを添カ卩しな!/、で上記 測定を行 ヽ、相対透過率 Τ /Ύ [%]を経過時間 [秒]に対してプロットしたグラフを t 0
図 3に示した。
[0053] [表 2] 表 2
Figure imgf000017_0001
表 2の結果から明らかなように、 poly(dA)10、 poly(dA)20、 poly(dA)30、 poly(dA)40を 3 '端に有する TBAA10、 TBAA20、 TBAA30、 TBAA40は、比較対象の TBAよりはるか に半減期が大きく TBAの活性を上げている。以上より、 poly(dA)nをトロンビンァプタマ 一に付加することによって、トロンビンアブタマ一本体の活性が落ちることはないと言 える。 [0055] すなわち、(2)は、機能性核酸としてトロンビンアブタマ一を用いて、フイブリン高分 子の生成阻害を行った例である。血液の凝固メカニズムは、フイブリノ一ゲンに酵素 であるトロンビンが作用して生成したフイブリン蛋白が自発的に重合を開始してフイブ リン高分子が生まれるためである。従って、フイブリン高分子の生成を阻害するには、 フイブリノ一ゲンのトロンビンによる分解過程を抑える必要がある。 GGT TGG TGT G GT TGGの配列はトロンビンァプタマ一として機能することが知られており(Analytical biochemistry 294, 126-131 , (2001))、当該配列を有する核酸は、トロンビンに結合し てフイブリノ一ゲンの分解を阻害する。(2)では、定量的なフイブリノ一ゲン凝固時間 の測定方法を示し、得られた半減期の長さで、(i)トロンビンアブタマ一に poly(dA)nを 付加しても活性が落ちないこと、さらに (ii) nの長さ (核酸ホモポリマーの長さ)によつ てはトロンビンアブタマ一の活性増強 (すなわち、凝固阻害による半減期の増加)が 見られることを示す。
[0056] (3)ヒト血漿を用いた凝固阻害試験
ヒト血漿は終濃度 0.32%クェン酸ナトリウム法で調製し、使用時まで- 80°Cで保存した 。精製ヒトトロンビン 5 μ Μに対し、オリゴ DNAをモル比 1 :2から 1 : 10にて 5分間室温で あら力じめ反応させ (全量で 5 1) 37°Cの水浴中に置いた。同様に保温しておいたヒト 血漿 20 μ 1を加えて (計時開始)ピペッティングにより撹拌し、 目視で凝固が確認され るまでの時間(3分間まで)を測定した。図 4は、オリゴ DNAとして、前記(1)で調製さ れた ΤΒΑΑ20、 ΤΒΑΑ30、 ΤΒΑΑ40、 ΤΒΑ (表 1参照)を用いたときのオリゴ DNA濃度 に対する凝固時間をプロットしたグラフを示している。
[0057] オリゴ DNAが 10 μ Μ (トロンビン:オリゴ DNA=1 :2 (モル比))ではいずれも凝固阻害 効果はないが、 20 M (同 1 :4)以上で凝固時間の延長が認められた。 20 M, 25 M (同 1 :5)では poly(dA)ティルを持たな!、TBAが一番弱ぐ TBAA30がー番強 、活性を 示した。 50 M (同 1 : 10)ではどのオリゴ DNAも著しい阻害効果を示し、反応開始後 3 分間までには凝固に至らなかった。
[0058] すなわち、(3)においては、フイブリノ一ゲンしか存在しない単純系(1)と異なり、様 々なタンパク質等が含まれる人の血液が用いた場合であっても、トロンビンアブタマ 一に poly(dA)nを付カ卩しても活性が落ちないこと、さらに (ii) nの長さによってはトロンビ ンァプタマ一の活性増強 (すなわち、凝固阻害による半減期の増カロ)が見られること が示されている。
[0059] (4)ヒト血清中の安定性試験
ヒト血清に、前記(1)で調製された TBAA20、 TBAA30、 TBAA40、 TBA (表 1参照)を 、それぞれ 200 μ g/ml、 20 μ g/ml、 2 μ g/mlの各濃度で加え、 37°Cで 0, 1, 3, 6, 12お よび 24時間保温し、その後凍結して保存した。これら反応液に内部標準マーカー D NA(65および 75base)を加え、核酸をフエノール抽出、酢酸ナトリウム存在下でエタ ノール沈殿させた。この沈殿を 50%ホルムアミド溶液に溶かし、沸騰水中で 1分加熱後 氷上に置き、 TBEで希釈、各オリゴ DNAlOng相当(当初用いた量)をゥレア-ポリアク リルアミドゲル電気泳動に力けた。ゲルを CYBR-Gold (Invitrogen社)溶液に浸漬した のち写真撮影した。電気泳動写真を図 5に示す。
[0060] TBAA20, TBAA30および TBAA40は 200 μ g/mlで比較的安定に存在したが、 TBA は 6時間後には検出されず、 poly(dA)ティルを付加したオリゴ DNAに比べて血清中 では早く分解することが示された。一方、 20 g/mlと 2 g/mlで TBAは 0時間でも検出 されず、低濃度ではきわめて速やかに分解されることが示唆された。同じ 20 g/mlと 2 μ g/mlで poly(dA)を付カ卩した ΤΒΑΑ20, TBAA30および TBAA40は経時的に低分子化 が観察された力 分解速度に関しては poly(dA)ティルの長さによる大きな違いは認め られなかった。また 20 μ g/ml、 2 μ g/mlと低濃度になるにつれ ΤΒΑΑ20, TBAA30およ び TBAA40のいずれもがより早く消滅すること力もオリゴ DNAはヌクレアーゼによる酵 素反応によって分解されると考えられた。以上のようにオリゴ DNAの 3,末端に poly(d A)ティルを付加することにより血清中でのヌクレアーゼによる消化に対する抵抗性が 増大した。 Poly(dA)ティルはオリゴ DNAの血清中での安定性に大きく寄与することが 明らかになった。
[0061] (4)では、人の血液中での安定性を、 poly(dA)n結合トロンビンァプタマ一とトロンビ ンァプタマ一単体とで比較した。血液中にはヌクレアーゼが存在し、また、核酸と非 特異的吸着するタンパク質が多く存在する。 3'末端に poly(dA)ティルを付加すること により血清中での抵抗性が増大することが示された。すなわち、 poly(dA)ティルはオリ ゴ DNAの血清中での安定性に大きく寄与することが明らかになった。 [0062] (5)フイブリノ一ゲン存在下の凝固阻害試験
表 1に示すオリゴ DNA54.0 μ 1 (ストック溶液 1.5 μ M、 final 40.0nM)とトロンビン 2.0 μ 1 (ストック溶液 100 NIH units/ml, final 0.1 NIH units/ml)の混合溶液を 37°Cで 15 分間インキュベートして、 37°Cのフイブリノ一ゲン溶液 2.0ml{2.9 X 10— 6M、 50mMTris- HCl(pH7.4)、 5mM CaCl 、 lOOmM NaCl}に 50.0 μ 1加えた。 UV spectrometerを用い
2
て波長 450nmの透過率を連続時間測定することで、トロンビンァプタマ一のトロンビン 阻害活性を測定した。代表例として、オリゴ DNA力TBA、 TBAA10、 TBAA20、 TBAA 30、 TBAA40 (表 1参照)のいずれかである場合、及びオリゴ DNAを添カ卩しなかった 場合について、波長 450應の透過率の経時変化を図 6のグラフに示す。図 6中、初期 のまったく凝固が起こらない時間を誘導時間、凝固が起こり始めて透過率が減少して いくときの、減少曲線を対数で近似したときの時間 (time)の係数を半減期とした。す なわち、図 6は下記式を描写している。透過率誘導時間が長いほど、半減期が大き いほど、凝固が阻害されている。
透過率 (transition [%]) =Exp (— timeZ半減期)
[0063] 表 1に示すオリゴ DNAのうち、 TBAに結合される poly(dA)が 5mer〜40merを merきざ みの長さで構成されている TBAAと TBAを用いて、上記測定結果に基づき図 6と同様 のグラフを作成して誘導時間及び半減期を求め、(dA)の長さと誘導時間との関係を 図 7 (A)に示し、(dA)の長さと半減期との関係を図 7 (B)に示した。これより、有効な (d A)ティルの長さは、好ましくは 5〜40merであることが分力る。
[0064] (6)核酸ホモポリマーを構成する核酸の種類と凝固阻害活性の関係
表 1中の実施例及び比較例に示される一部のオリゴ DNAを用いて、前記(5)と同 様の方法で誘導時間と半減期を測定した結果を表 4に示す。
[0065] [表 3] 表 3
Figure imgf000020_0001
表 3により、 5'端に (dA)ティルが付くと TBAより阻害活性が低下していること、 3'端 に Gや Cを付けてもまったく活性がないこと、 3'端に (dT)をつけた場合は、(dA)ティル と同様の阻害活性があることが判明した。
[0067] (7)ゥシ血漿中の安定性試験
300 μ 1のゥシ血漿に DNA質量力 μ gになるように加えて 40 μ 1ずつ小分けして、 それぞれ 0、 0.25h、 0.5、 0.75、 1、 1.5、 2、 3、 5h後にフエノール抽出を行い、 DNA残 量を電気泳動により調べた。 15%ゥレア-ポリアクリルアミドゲルを用いて、 100V、 400m A、 lhの条件で泳動を行い、 CYBR- Gold (invitrogen社)を用いて検出した。サンプル として表 1の TBA、 TBAA20, TBAT20を用いたゲル電気泳動の結果を、それぞれ図 8 の (A)、 (B)、 (C)に示す。
[0068] 図 8 (A)〜(C)のゲル電気泳動の結果より、 TBAA20と TBAT20ではまず、ティル部 分が徐々に切れていき、 TBAA20では 3-5時間後に、 TBAT20では 1時間後に TBAと 同じ長さになることが分かる。 3'端力 切れていくことを考慮すると、これらの時間後 にティルが消失して TBAが現れることが分かる。理由は不明であるが、ティルの分解 速度は TBAより遅ぐ TBAが現れた瞬間に全体が分解される。
[0069] 実施例 15、比較例 4
テネシン C ァプタマ一(tenescin- C- aptamer:TCA)
(1)核酸ホモポリマー結合機能性核酸の調製
表 4に示される塩基配列力 なるオリゴ DNAを次の方法で製造した。核酸ホモポリ マーとして、長さ 20merのデォキシアデ-ル酸ホモポリマー [poly(dA)20]を合成した。 表 4に示す塩基配列力 なるテネシン C ァプタマ一 (TCA)に poly(dA)20を連結さ せて、表 4に示される核酸ホモポリマー結合機能性核酸を得た。
[0070] [表 4] 表 4
Figure imgf000021_0001
(2)ヒト血清中の安定性試験
96 well plateにヒトの血清とオリゴ DNAを混合した溶液を入れ、攪拌しながら、 37°C で一定時間おいた。サンプルは一度凍結保存したのち、フエノール抽出、エタノール 沈殿 (20 gグリコーゲン、 3M酢酸ナトリウム存在下)を行った後にホルムアミド処理を 行い、ゥレア-ポリアクリルアミドゲルを用いて電気泳動を行った。結果を図 9に示す。 図 9をイメージアナライザーで解析することにより、核酸ホモポリマーが結合されてい ない TCAの半減期は 6時間だが、(dA)が付与されることにより、半減期は 12時間とな ることが判明した。
[0072] 実施例 16、比較例 5
RNAトロンビンァプタマ一 (TBRA)
(1)核酸ホモポリマー結合機能性核酸の調製
表 5に示される塩基配列力 なるオリゴ DNAを次の方法で製造した。核酸ホモポリ マーとして、長さ 20merのシチジル酸ホモポリマー [poly(C)20]、アデ-ル酸ホモポリ マー [poly(A)20]、ゥラシル酸ホモポリマー [poly(U)20]、デォキシアデ-ル酸ホモポリ マー [poly(dA)20]、を合成した。表 5に示す塩基配列からなる RNAトロンビンァプタ マー (TBRA)に上記各核酸ホモポリマーを連結させて、表 5に示される核酸ホモポリマ 一結合機能性核酸を得た。
[0073] [表 5]
表 5
Figure imgf000022_0001
(2)フイブリノ一ゲン存在下の凝固阻害試験
表 5に示すトロンビン RNAァプタマ一 54.0 μ 1 (ストック溶液 4.0 μ M、 final 105.2nM) とトロンビン 2.0 μ 1 (ストック溶液 100 NIH units/ml, final 0.1 NIH units/ml)の混合溶 液を 37°Cで 15分間インキュベートして、 37°Cのフイブリノ一ゲン溶液 2.0ml [2.9 X 10 M、 50mMTris-HCl(pH 7.4)、 5mM CaCl
2、 lOOmM NaCl]に 50.0 μ 1加えた。 UV spect rometerを用いて波長 450nmの透過率を連続時間測定することで RNAトロンビンァプ タマ一、及びこれに核酸ホモポリマーが結合された核酸のトロンビン阻害活性を測定 した。得られた測定結果を用いて、実施例 1〜14の(5)及び (6)と同様の方法を用い て誘導時間と半減期を求め、表 6に示した。表 6より、 DNAアブタマ一と同様に 3 '端 に (dA)ティルを付加したものが最も凝固阻害をしていることが分かる。
[0075] [表 6] 表 6
Figure imgf000023_0001
[0076] 実施例 17、比較例 6
TNF aアンチセンス DNA
(1)核酸ホモポリマー結合機能性核酸の調製
表 7に示される塩基配列力もなるオリゴ DNAを次の方法で製造した。核酸ホモポリ マーとして、長さ 30merのデォキシアデ-ル酸ホモポリマー [poly(dA)30]を合成した。 表 7に示す塩基配列からなる TNF aアンチセンス DNAに poly(dA)30を連結させて、 表 7に示される核酸ホモポリマー結合機能性核酸を得た。
[0077] [表 7]
表 7
Figure imgf000023_0002
[0078] (2)血清中の安定性試験
表 7に示すオリゴ DNAを、ヒト由来の血清中、 37°Cでインキュベートした後にウレァ -ポリアクリルアミドゲルにてゲル電気泳動を行った。その結果を図 10に示す。 TNF a -A30は 24時間後でも残存して!/、るが、 poly(dA)30が結合されて!、な!/、TNF a -(dA)3 0は 3時間後で消滅して 、る。
[0079] 実施例 18、比較例 7 核酸ホモポリマー結合トロンビンァプタマ一の修飾
(1) TBAA20Zシゾフィラン複合体の製造
表 1に示される TBAA20とシゾフィランとの複合体を、国際公開第 WO/2002/072152 号パンフレット、及び特開 2004-107272に記載の方法に従って製造した。この際、 TB AA20の塩基数 1モルに対し、シゾフィラン(分子量 15万)を主鎖のグルコースが 3モ ルとなるように用 、た量を用 、た。
(2)血液凝固試験
TBA、 TBAA20,前記(1)で得た TBAA20Zシゾフィラン複合体、及び複合体を形成 して ヽな 、TBAA20とシゾフィランとを用いて表 8中の (0〜(: iv)に記載の濃度の液体製 剤を調製し、マウス当たり 50 1の投与量で各群 3匹のマウスへ尾静脈投与した。投 与直後及び 15分後に心臓力 全血液を回収してガラス試験管に移し、 37°Cで保温、 約 15秒間隔で凝固を目視にて検定した。投与直後の結果を表 8に、投与後 15分の 結果を表 9にそれぞれ示す。
[0080] [表 8] 表 8
Figure imgf000024_0001
[0081] [表 9]
表 9
Figure imgf000024_0002
表 8及び表 9中、(i)と(iii)は DNAのモル数では同じになる。(dA)ティルがあるため 重量濃度が異なる。また、(ii)と (iv)はそれぞれ、(i)と (iii)の 3倍量投与となる。そこ で、(i)と(iii)、 (ii)と(iv)の組み合わせで TBAと TBA20、とを比べると、核酸ホモポリマ 一が付加されている TBAA20は、明らかに凝固時間が長くなつている。これは、 TBAと 比較して TBAA20の血中での安定性と活性向上の双方が上がっているためであると いえる。また、シゾフィランとの複合化をした TBAA20/シゾフィラン複合体では、 TBAA 20より凝固時間が延びている。これは、多糖との複合ィ匕により安定性が相乗的に高ま つたためと考えられる。
[0083] 実施例 19、比較例 8
トロンビンァプタマ一の血清中での安定性試験
96 well plateに、トロンビン DNAァプタマ一(TBA:配列番号 15)又は TBA poly(dA) 20 (TBAA20:配列番号 3)を 500 ng溶解した溶液 40 μ 1と、ヒト血清 20 μ 1をカ卩えた。 37 °Cでインキュベーション後、サンプルに 50mMTris-HCl(pH 7.4),5mM CaCl
2、 lOOmM
NaCl]を 60 1加え、フエノール抽出によりタンパク質を除去した後、エタノール沈殿 によりァプタマ一 DNAを回収した。回収した DNAを 50%ホルムアミドに懸濁した。 10 0°Cで 2分加熱後、全体の 1/6量を 12.5%のゥレア-ポリアクリルアミドで電気泳動にて解 祈した(図 11)。次いで、泳動後のゲルを回収し、デンシトメータを用いてオリゴ DNA の残存量の経時変化を測定してグラフ化し(図 12)、半減期を求めた。その結果、核 酸ホモポリマーが結合されていない TBAの半減期は 3時間だったのに対し、(dA)が付 与された TBAA20の半減期は 15時間であった。すなわち、 TBAにァプタマ一を付カロ することにより、ヒト血清中で約 5倍の安定性向上効果が得られた。
[0084] 実施例 20、比較例 9
テネシン C ァプタマ一(tenescin- C- aptamer:TCA)
(1)核酸ホモポリマー結合機能性核酸の調製
表 10に示される塩基配列力もなるオリゴ DNAを次の方法で製造した。核酸ホモポ リマーとして、長さ 20merのデォキシアデ-ル酸ホモポリマー [poly(dA)20]を合成した 。表 10上段に示す塩基配列からなるテネシン—Cーァプタマ一 (TCA: Proc. Natl. Ac ad. Sci. U S A. 100(26), 15416?15421(2003)) (配列番号 28)に poly(dA)20を連結さ せて、表 10下段に示される核酸ホモポリマー結合機能性核酸 TCAA20(配列番号 29 )を得た。
[0085] [表 10]
表 1 0
Figure imgf000026_0001
[0086] (2)ヒト血清中の安定性試験
96 well plateに、上記(1)で得たテネシン CDNAァプタマ一(TCA:配列番号 28 )又は TCA poly(dA)20 (TCAA20:配列番号 29)を 500 ng溶解した溶液 40 μ 1と、ヒト血 清 20 1を加えた。 37°Cでインキュベーション後、サンプルに 50mMTris-HCl(pH 7.4), 5mM CaCl
2、 lOOmM NaCl]を 60 1加え、フエノール抽出によりタンパク質を除去し た後、エタノール沈殿によりァプタマ一 DNAを回収した。回収した DNAを 50%ホルム アミドに懸濁した。 100°Cで 2分加熱後、全体の 1/6量を 12.5%のウレアポリアクリルアミ ドゲル電気泳動にて解析した(図 13)。次いで、泳動後のゲルを回収し、デンシトメ一 タを用いてオリゴ DNAの残存量の経時変化を測定してグラフ化し(図 14)、半減期を 求めた。その結果、核酸ホモポリマーが結合されていない TCAの半減期は 1. 5時間 だったのに対し、(dA)が付与された TCAA20の半減期は 4. 5時間であった。すなわち 、テネシン C アブタマ一に核酸ホモポリマーを付加することにより、ヒト血清中で 約 3倍の安定性向上効果が得られた。
[0087] 実施例 21、比較例 10
Lーセレクチンァプタマ一(L- selectin aptamer:LSA)
(1)核酸ホモポリマー結合機能性核酸の調製
表 11に示される塩基配列力 なるオリゴ DNAを次の方法で製造した。核酸ホモポ リマーとして、長さ 20merのデォキシアデ-ル酸ホモポリマー [poly(dA)20]を合成した 。表 11上段に示す塩基配列からなる Lーセレクチンァプタマ一 (LSA: J Clin Invest., 98(12), 2688-2692(1996)) (配列番号 30)に poly(dA)20を連結させて、表 11下段に示 される核酸ホモポリマー結合機能性核酸 LSAA20 (配列番号 31)を得た。
[0088] [表 11] 表 1 1
Figure imgf000027_0001
[0089] (2)ヒト血清中の安定性試験
96 well plateに、上記(1)で得た Lーセレクチンァプタマ一(LSA:配列番号 30)又は LSA poly(dA)20 (LSAA20:配列番号 31)を 500 ng溶解した溶液 40 μ 1と、ヒト血清 20 μ 1を加えた。 37°Cでインキュベーション後、サンプルに 50mMTris-HCl(pH 7.4), 5mM CaCl、 lOOmM NaCl]を 60 1加え、フエノール抽出によりタンパク質を除去した後、
2
エタノール沈殿によりァプタマ一 DNAを回収した。回収した DNAを 50%ホルムアミド に懸濁した。 100°Cで 2分加熱後、全体の 1/6量を 12.5%のウレアポリアクリルアミドゲル 電気泳動にて解析した(図 15)。次いで、泳動後のゲルを回収し、デンシトメータを用 いてオリゴ DNAの残存量の経時変化を測定してグラフ化し(図 16)、半減期を求め た。その結果、核酸ホモポリマーが結合されていない LSAの半減期は 1. 5時間だつ たのに対し、(dA)が付与された LSAA20の半減期は 4. 5時間であった。すなわち、 L ーセレクチンァプタマ一に核酸ホモポリマーを付加することにより、ヒト血清中で約 3 倍の安定性向上効果が得られた。
[0090] 実施例 22、比較例 11
IFN y ァプタマ一(IFN y aptamer:IFA)
( 1)核酸ホモポリマー結合機能性核酸の調製
表 12に示される塩基配列力もなるオリゴ DNAを次の方法で製造した。核酸ホモポ リマーとして、長さ 20merのデォキシアデ-ル酸ホモポリマー [poly(dA)20]を合成した 。表 12上段に示す塩基配列からなる IFN yァプタマ一 (IFA: J Biol Chem. 1994 Oct 7;269(40):24564_74)(配列番号 32)に poly(dA)20を連結させて、表 12下段に示される 核酸ホモポリマー結合機能性核酸 (IFAA20) (配列番号 33)を得た。
[0091] [表 12] 表 1 2
Figure imgf000028_0001
[0092] (2)ヒト血清中の安定性試験
96 well plateに、上記(1)で得た IFN yァプタマ一(IFA:配列番号 32)又は IFA poly (dA)20 (IFAA20:配列番号 33)を 500 ng溶解した溶液 40 μ 1と、ヒト血清 20 μ 1を加えた 。 37°Cでインキュベーション後、サンプルに 50mMTris-HCl(pH 7.4) 5mM CaCl
2、 10
OmM NaCl]を 60 μ 1加え、フエノール抽出によりタンパク質を除去した後、エタノール 沈殿によりァプタマ一 DNAを回収した。回収した DNAを 50%ホルムアミドに懸濁した 。 100°Cで 2分加熱後、全体の 1/6量を 12.5%のウレアポリアクリルアミドゲル電気泳動 にて解析した(図 17)。次いで、泳動後のゲルを回収し、デンシトメータを用いてオリ ゴ DNAの残存量の経時変化を測定してグラフ化し(図 18)、半減期を求めた。その 結果、核酸ホモポリマーが結合されていない IFAの半減期は 1. 5時間だったのに対 し、(dA)が付与された IFAA20の半減期は 5時間であった。すなわち、 IFAァプタマ一 に核酸ホモポリマーを付加することにより、ヒト血清中で約 3. 3倍の安定性向上効果 が得られた。
[0093] 実施例 23、比較例 12
MIFアンチセンス DNAの核酸ホモポリマー結合機能性核酸の調製
表 13に示される塩基配列力もなるオリゴ DNAを次の方法で製造した。核酸ホモポ リマーとして、長さ 20merのデォキシアデ-ル酸ホモポリマー [poly(dA)20]を合成した 。表 13上段に示す塩基配列からなる MIFアンチセンス DNA (配列番号 34)に poly(d A)20を連結させて、表 13下段に示される核酸ホモポリマー結合機能性核酸 (MIFA20 ) (配列番号 35)を得た。
[0094] [表 13] 表 1 3
Figure imgf000029_0001
[0095] 実施例 24
IFN yの活性抑制を介した IL-6の発現抑制活性の増強効果
IFN y力 LPS刺激を受けた THP—1細胞による IL— 10産生抑制を介して、前炎 症性サイト力インである IL-6と IL-12の産生を増加させるメカニズムが知られて!/、る (Inf ect Immun., 70(4): 1881- 8(2002))。そこで、 IFN γァプタマ一(IFA :配列番号 32)と、 IFAA20 (配列番号 33)との IFN yの活性抑制効果を、 IL-6の発現抑制作用を指標と して以下の方法で比較を行った。
THP— 1細胞を、ビタミン D3を最終濃度が 250nMとなる量をカ卩えた培地で 48時間 培養した後、当該細胞を回収し、 96well plateに 200 /z l/wellの濃度で移した。そこへ I FA又は IFAA20を 24pmol/wellカ卩え、 37°Cで 1時間培養し、さら〖こ LPSを最終濃度 2 μ g/ml、 IFN yを 24pmol/wellカ卩えた。 24時間後、細胞培養液を回収し、 400gの条 件で 10分間遠心処理を施した。回収した上清について、 ELISA kitを用いて IL-6の 発現量を測定した(詳細は Infect Immun. 70(4), 1881-8(2002)を参照)。その結果を 図 19に示す。
図 19に示されるように、核酸ホモポリマーが結合されていない IFAと比較して、 IFA アブタマ一に核酸ホモポリマーを付加することにより (IFAA20)、培養後 24時間経過し ても、より強く IL-6の発現を抑制することができた。従って、 IFAA20は、生体内におけ る安定性が改善され、炎症抑制作用を奏する医薬品の有効成分として好適である。
[0096] 実施例 25
関節炎モデルマウスにおける炎症抑制活性の増強効果
関節炎モデルマウスを用いて、比較例 6の TNF aアンチセンス DNA (配列番号 26 )と、実施例 17の TNF a -(dA)30 (配列番号 27)による TNF aの発現抑制効果を以下 の方法で比較した。関節炎を誘導したマウスに上記オリゴ DNAを投与することにより 、 TNF aの発現抑制を介して、関節炎周辺部における TNF aの産生を阻害すること により得られる関節炎の治療効果を以下の方法で調べた。
J.Pharm 128, 5-12(1999)によれば、抗 II型コラーゲン抗体接種後のマウスに LPSを 投与することで、短期間に関節炎が誘導される。そこで、同文献に記載の方法に従 い、マウス(BALB/c, 6週齢,孚, 5匹 Z群)腹腔内に 2mgの抗 II型コラーゲン抗体を 投与し (day_3)、その 3日後、 50 gの LPSを腹腔内に投与することで関節炎を誘導 した (day0)。こうして得られた関節炎モデルマウスに対し、関節炎周辺に集まったマ クロファージカも産出される TNF aを抑制し、関節炎を抑える目的で、 TNF aアンチ センス DNA (配列番号 26)、又は TNF a -(dA)30 (配列番号 27)を、 LPS投与と同日( dayO)に、それぞれ 5 g (20 1)ずつ尾静脈内に投与した。この処置により、 TNF a の発現抑制を介して、関節炎周辺部における TNF aの産生が阻害され、関節炎の発 症を予防し、また症状の進行を抑制したり治療する効果が期待される。その後、オリ ゴ DNAを投与して 7日目(day7)、及び 10日目(daylO)のマウスの前足、後ろ足の腫 脹'発赤を目視検査し、(0 :無変化、 1 :紅斑'浮腫、 2 :関節破壊の確認、 3 :関節の強 直 ·屈曲)の 5段階スコアにより評価を行った(詳細は、 J. Pharmacol. Exp. Thr., 304(1 )411(2003)参照)。検査 7日目と 10日目に 5匹分のマウスのスコアを合計してグラフを 作成し、図 20に示した。
その結果、 TNF αアンチセンス DNAに比較して、核酸ホモポリマーが付与されて いる TNF a -(dA)30は、 TNFの抑止効果がより長期に亘つているため力、関節炎の症 状が緩和又は治癒される傾向にあることが示された。
実施例 26
腸炎モデルマウスにおける炎症抑制活性の増強効果
DSS (Dextran Sodium Sulfate)をマウスに飲水投与することによって誘起される腸炎 モデルマウス(J.Biol.Chem., 279, (20), 21406- 21414(2004))を用いて、比較例 12の MIFアンチセンス DNA (配列番号 34)と、実施例 23の MIFA20 (配列番号 35)との Ml Fの発現抑制効果を以下の方法で比較した。
MIF (macrophage migration inhibitory factor)は炎症性因子であり、腸炎の重要なメ ディエーターと考えられている。そこで、腸炎による下血や炎症を抑える目的で、 MIF アンチセンス DNA又は MIFA20を、 5 g (20 1)ずつ尾静脈内に 2種類の方法にて 投与した。一の方法は、「day -2」に 1回のみ投与し、そして他の方法は、「day -2, 0, 2, 4, 6」の計 5回投与する方法を用いた。また、腸炎を誘起するために、 3% DSSを、 「day 0, 2, 4, 6」の 4回、飲水させた。その後、 7日目にマウスを解剖し、体重変化及 び結腸の長さの変化を計測すると共に、表 14に示す基準に従って体重減少,便の硬 さ '直腸からの下血を評価し、それらのスコアの合計を DAI (Disease Activity Index)と して導き出した。これらの結果を、表 15に示す。
その結果、(dA)ホモポリマーを付与された MIFA20は、炎症性因子である MIFの発 現を長期に亘つて抑制する作用を介して、腸炎に伴う諸症状の発症を阻害し、また 症状の進行を抑制する治療効果を発揮することが示された。
[0098] [表 14]
表 1 4
Figure imgf000031_0001
[0099] [表 15]
表 1 5
Figure imgf000031_0002
♦Disease activity index
p<0.05 against saline administrated group 産業上の利用可能性
[0100] 本発明の核酸ホモポリマー結合機能性核酸の製造法は、生理活性を有する核酸 に対し、安定性向上効果を簡便に付与できる方法として有用である。この方法によれ ば、生体内又はその類似環境下で長期に亘り核酸の活性を維持することができ、し 力も安全性に優れる核酸ホモポリマー結合機能性核酸を得ることができるため、核酸 医薬品や試験用プローブ等として広く利用することができる。

Claims

請求の範囲
[1] 機能性核酸と核酸ホモポリマーとで構成され、安定化された機能性核酸として用い られる核酸ホモポリマー結合機能性核酸を製造する方法であって、機能性核酸に核 酸ホモポリマーを付加させて核酸ホモポリマー結合機能性核酸を得る核酸ホモポリ マー結合機能性核酸の製造法。
[2] 核酸ホモポリマーが、デォキシアデ-ル酸及び Z又はデォキシチミジル酸のホモポ リマーである請求項 1記載の核酸ホモポリマー結合機能性核酸の製造法。
[3] 核酸ホモポリマーの長さが 3mer〜50merである請求の範囲第 1項又は第 2項記載 の核酸ホモポリマー結合機能性核酸の製造法。
[4] 機能性核酸の 3'端及び Z又は 5'端に核酸ホモポリマーを付加させる請求の範囲 第 1項〜第 3項の何れかの項に記載の核酸ホモポリマー結合機能性核酸の製造法。
[5] 機能性核酸が、 siRNA、アンチセンス、 miRNA及びァプタマ一からなる群力ゝら選 択される少なくとも一つのオリゴ核酸である請求の範囲第 1項〜第 4項の何れかの項 に記載の核酸ホモポリマー結合機能性核酸の製造法。
[6] 請求の範囲第 1項〜第 5項の何れかの項に記載の製造法で得られる核酸ホモポリ マー結合機能性核酸。
[7] 請求の範囲第 6項記載の核酸ホモポリマー結合機能性核酸を有効成分として含む 核酸ホモポリマー結合機能性核酸医薬品。
[8] 生体内及び Z又は生体内類似環境下における機能性核酸の安定性が向上された 請求の範囲第 7項記載の核酸ホモポリマー結合機能性核酸医薬品。
[9] 遺伝子治療に用いられる請求の範囲第 7項又は第 8項記載の核酸ホモポリマー結 合機能性核酸医薬品。
[10] 請求の範囲第 6項記載の核酸ホモポリマー結合機能性核酸を含むプローブ。
PCT/JP2006/323016 2005-11-17 2006-11-17 核酸ホモポリマー結合機能性核酸医薬品の製造法 WO2007058323A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545324A JPWO2007058323A1 (ja) 2005-11-17 2006-11-17 核酸ホモポリマー結合機能性核酸医薬品の製造法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US73738605P 2005-11-17 2005-11-17
US60/737,386 2005-11-17
JP2006228499 2006-08-25
JP2006-228499 2006-08-25

Publications (1)

Publication Number Publication Date
WO2007058323A1 true WO2007058323A1 (ja) 2007-05-24

Family

ID=38048706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323016 WO2007058323A1 (ja) 2005-11-17 2006-11-17 核酸ホモポリマー結合機能性核酸医薬品の製造法

Country Status (1)

Country Link
WO (1) WO2007058323A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008465A1 (ja) 2010-07-16 2012-01-19 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体
WO2012020795A1 (ja) * 2010-08-10 2012-02-16 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体
WO2012117855A1 (ja) * 2011-02-28 2012-09-07 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体
WO2013191223A1 (ja) * 2012-06-20 2013-12-27 独立行政法人科学技術振興機構 核酸複合体および核酸多糖複合体
EP2742944A1 (en) * 2011-08-10 2014-06-18 Napajen Pharma, Inc. Immune tolerance inducer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690758A (ja) * 1992-02-06 1994-04-05 Max Planck Ges Foerderung Wissenschaft Ev ウイルス耐性を得るためのrnaおよびdna分子
JPH08238093A (ja) * 1995-01-31 1996-09-17 Hoechst Ag Gキャプ安定化したオリゴヌクレオチド
JPH09503651A (ja) * 1993-07-27 1997-04-15 ハイブライドン インコーポレイテッド 血管内皮細胞増殖因子発現のアンチセンスオリゴヌクレオチド阻害
WO2001034207A1 (fr) * 1999-11-10 2001-05-17 Japan Science And Technology Corporation Supports de genes
JP2004107272A (ja) * 2002-09-19 2004-04-08 Japan Science & Technology Corp 遺伝子治療剤
JP2005204612A (ja) * 2004-01-26 2005-08-04 Japan Science & Technology Agency 新規な遺伝子導入法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690758A (ja) * 1992-02-06 1994-04-05 Max Planck Ges Foerderung Wissenschaft Ev ウイルス耐性を得るためのrnaおよびdna分子
JPH09503651A (ja) * 1993-07-27 1997-04-15 ハイブライドン インコーポレイテッド 血管内皮細胞増殖因子発現のアンチセンスオリゴヌクレオチド阻害
JPH08238093A (ja) * 1995-01-31 1996-09-17 Hoechst Ag Gキャプ安定化したオリゴヌクレオチド
WO2001034207A1 (fr) * 1999-11-10 2001-05-17 Japan Science And Technology Corporation Supports de genes
JP2004107272A (ja) * 2002-09-19 2004-04-08 Japan Science & Technology Corp 遺伝子治療剤
JP2005204612A (ja) * 2004-01-26 2005-08-04 Japan Science & Technology Agency 新規な遺伝子導入法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOMOTO K. ET AL.: "Antisense Chiryo e Muketa Tatokei Idenshi Carrier (Exploitation of Nonviral Gene Carriers Utilizing Natural polysaccharides toward Efficient Antisense Therapy", BIO INDUSTRY, vol. 20, no. 10, 2003, pages 30 - 37, XP003009084 *
TAMURA T. ET AL.: "Bunshi Seibutsugaku Illustrated", vol. 2ND ED., 2003, pages: 30, XP003009083 *
TANG J.Y. ET AL.: "Self-stabilized antisense oligodeoxynucleotide phosphorothioates: properties and anti-HIV activity", NUCLEIC ACIDS RES., vol. 21, no. 11, 1993, pages 2729 - 2735, XP002123468 *
WANG Z. ET AL.: "The poly(A)-binding protein and an mRNA stability protein jointly regulate an endoribonuclase activity", MOL. CELL BIOL., vol. 20, no. 17, 2000, pages 6334 - 6341, XP002233154 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008465A1 (ja) 2010-07-16 2012-01-19 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体
WO2012020795A1 (ja) * 2010-08-10 2012-02-16 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体
JPWO2012020795A1 (ja) * 2010-08-10 2013-10-28 ナパジェン ファーマ, インコーポレテッドNapaJen Pharma, Inc. 核酸多糖複合体
US9713636B2 (en) 2011-02-28 2017-07-25 Napajen Pharma, Inc. Nucleic acid/polysaccharide complex
WO2012117855A1 (ja) * 2011-02-28 2012-09-07 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体
US9801929B2 (en) 2011-02-28 2017-10-31 Napajen Pharma, Inc. Immune tolerance inducer
EP2682462A1 (en) * 2011-02-28 2014-01-08 Napajen Pharma, Inc. (nucleic acid)-polysaccharide complex
EP2682462A4 (en) * 2011-02-28 2014-11-05 Napajen Pharma Inc (Nucleic acid) polysaccharide COMPLEX
EP2742944A1 (en) * 2011-08-10 2014-06-18 Napajen Pharma, Inc. Immune tolerance inducer
EP2742944A4 (en) * 2011-08-10 2015-01-21 Napajen Pharma Inc immunotolerance
CN104471063A (zh) * 2012-06-20 2015-03-25 独立行政法人科学技术振兴机构 核酸复合物及核酸多糖复合物
JPWO2013191223A1 (ja) * 2012-06-20 2016-05-26 国立研究開発法人科学技術振興機構 核酸複合体および核酸多糖複合体
WO2013191223A1 (ja) * 2012-06-20 2013-12-27 独立行政法人科学技術振興機構 核酸複合体および核酸多糖複合体
TWI606058B (zh) * 2012-06-20 2017-11-21 Japan Science & Tech Agency Nucleic acid complex and nucleic acid polysaccharide complex

Similar Documents

Publication Publication Date Title
TWI784934B (zh) 抑制lpa之基因表現之組合物及方法
JP5242918B2 (ja) 補体関連障害の治療に有用なアプタマー治療法
JP4718541B2 (ja) 改良された凝固因子調節剤
CN106459969B (zh) 用于调节生长激素受体表达的组合物和方法
US6605713B1 (en) Mirror-symmetrical selection and evolution of nucleic acids
AU777043B2 (en) Nucleic acid ligands to CD40ligand
JP5015923B2 (ja) 完全な2’改変核酸転写物を生成するための材料および方法
RU2489167C2 (ru) Модифицированная липидом двухцепочечная рнк, обладающая эффектом рнк-интерференции
JP2020188771A (ja) 二本鎖RNAによるα−1アンチトリプシンの特異的阻害のための方法及び組成物
CN106255755A (zh) 用于调节血管生成素样蛋白3表达的组合物和方法
KR20070101227A (ko) 폰 빌레브란트 인자에 대한 앱타머 및 이의 혈전증치료제로서의 용도
AU2020200247A1 (en) Organic compositions to treat KRAS-related diseases
PT2596807E (pt) Aptâmeros de ligação ao complemento e agentes anti-c5 úteis no tratamento de distúrbios oculares
CN113293163A (zh) 用于调节载脂蛋白c-iii表达的组合物和方法
KR20070101226A (ko) 앱타머의 약화학
TW201249991A (en) Modulation of TIMP1 and TIMP2 expression
BRPI0607002B1 (pt) Conjugado aptâmero/polietileno glico terapêutico útil no tratamento de desordens relacionadas a complemento, composição e uso do referido conjugado
US20180282728A1 (en) Organic compositions to treat beta-catenin-related diseases
JPWO2005030960A1 (ja) ステイプル型オリゴヌクレオチドおよびそれからなる医薬
WO2007058323A1 (ja) 核酸ホモポリマー結合機能性核酸医薬品の製造法
WO2014066142A1 (en) Nucleic acid regulation of growth arrest-specific protein 6 (gas6)
WO2011135140A1 (es) Método para la administración de oligonucleótidos
JPWO2007058323A1 (ja) 核酸ホモポリマー結合機能性核酸医薬品の製造法
JP5730508B2 (ja) 炎症性腸疾患の治療又は予防剤
RU2819689C2 (ru) Нуклеиновая кислота, фармацевтическая композиция, конъюгат, способ получения и применение

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007545324

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832894

Country of ref document: EP

Kind code of ref document: A1