WO2013191223A1 - 核酸複合体および核酸多糖複合体 - Google Patents

核酸複合体および核酸多糖複合体 Download PDF

Info

Publication number
WO2013191223A1
WO2013191223A1 PCT/JP2013/066887 JP2013066887W WO2013191223A1 WO 2013191223 A1 WO2013191223 A1 WO 2013191223A1 JP 2013066887 W JP2013066887 W JP 2013066887W WO 2013191223 A1 WO2013191223 A1 WO 2013191223A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
group
ribonucleotide
acid complex
stranded dna
Prior art date
Application number
PCT/JP2013/066887
Other languages
English (en)
French (fr)
Inventor
櫻井 和朗
慎一 望月
田中 素子
貞春 樋口
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to JP2014521495A priority Critical patent/JPWO2013191223A1/ja
Priority to CN201380032032.3A priority patent/CN104471063A/zh
Priority to US14/408,577 priority patent/US20150148529A1/en
Priority to EP13806525.5A priority patent/EP2865759B1/en
Publication of WO2013191223A1 publication Critical patent/WO2013191223A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Definitions

  • the present invention relates to a technique for improving the stability of a nucleic acid complex composed of DNA and RNA in serum.
  • siRNA Small interfering RNA
  • RNAi RNA interference
  • mRNA messenger RNA
  • phosphate-type RNA which is a natural nucleic acid
  • phosphate-type RNA which is a natural nucleic acid
  • nucleolytic enzymes and proteins for this reason, natural nucleic acid pharmaceuticals have not had a significant effect in human clinical research.
  • many chemically modified nucleic acids obtained by chemically modifying natural nucleic acids have been proposed.
  • the hydroxyl group at the 2′-position of ribose is a methoxy group (2′-O-methyl) (see Non-Patent Document 2), fluorine (F) (see Non-Patent Document 3), locked nucleic acid (LNA) (non-Patent Document 3).
  • Those chemically modified in Patent Document 4) are particularly known. It has also been reported that such chemical modification improves the binding affinity between siRNA and target mRNA.
  • nucleic acid analogs Such chemically modified nucleic acids are called nucleic acid analogs.
  • Nucleic acid analogs have succeeded in greatly extending the inactivation time compared to natural nucleic acids. This is because the nucleolytic enzyme cannot recognize the nucleic acid analog.
  • non-naturally occurring toxicity such as nonspecific adsorption to proteins in vivo and causing unexpected physiological activity and severe liver damage, has become a problem.
  • a technique has also been proposed in which a natural nucleic acid is encapsulated in a biocompatible compound, the membrane permeability is improved while protecting the nucleic acid from degradation, and the nucleic acid is introduced into the cell.
  • Retroviruses see non-patent document 5
  • adenoviruses see non-patent document 6
  • retroviruses gave extremely promising results in vitro as gene carriers, but the inflammatory and immunogenicity of these naturally-derived viruses
  • the nature and risk of mutagenesis and integration into the cellular genome has been pointed out and their use in vivo is limited.
  • Non-Patent Document 7 polyethylene glycol-modified polycations (see Non-Patent Document 8), polyethyleneimines (see Non-Patent Document 9), and cationic polymer block copolymers (Non-Patent Document 10) have been used as non-viral artificial nucleic acid carriers. And dendrimers (see Non-Patent Document 11) have been developed. However, the safety of such cationic polymers has not been confirmed. In order to have a cationic property, the presence of an amino group is indispensable, but the amino group has a high physiological activity and has a risk of toxicity in the body.
  • ⁇ -1,3-glucan as a gene carrier, and ⁇ -1,3-glucan forms a new type of complex with a nucleic acid drug (antisense DNA, CpG DNA).
  • a nucleic acid drug antisense DNA, CpG DNA.
  • ⁇ -1,3-glucan that exists in triplicate in nature is dissolved in an aprotic polar organic solvent such as dimethyl sulfoxide (DMSO) or an alkaline solution of 0.1 N or more to be dissociated into a single strand.
  • DMSO dimethyl sulfoxide
  • alkaline solution of 0.1 N or more alkaline solution of 0.1 N or more
  • the nucleic acid to be complexed with ⁇ -1,3-glucan is a single-stranded nucleic acid, and in particular, polydeoxyadenine (poly dA) and polycytosine (poly C) are ⁇ , including schizophyllan (SPG). It has been reported to have a strong affinity with 1,3-glucan.
  • ⁇ -1,3-glucan as a siRNA carrier to RNAi is also being studied.
  • siRNA is a double-stranded nucleic acid, it cannot form a complex with ⁇ -1,3-glucan as it is. Therefore, a DNA-RNA heteronucleic acid in which poly (dA) is added to the siRNA sense strand to be complexed with ⁇ -1,3-glucan such as SPG is prepared, and the siRNA antisense strand is annealed with it.
  • Poly (dA) -siRNA is produced. Thereafter, the poly (dA) portion is used to make a composite with SPG.
  • siRNAs applications in functional genomics and potential as therapeutics.
  • Potent gene-specific inhibitor properties of mixed-backbone antisense oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinose and 2'-deoxyribose nucleotides.
  • RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.M. Grzelinski, B. Urban-Klein, T.Martens, K. F. Czubayko and A. Aigner, Hum. Gene. Ther., 17, 751-766 (2006) Monomolecular Assembly of siRNA and Poly (ethylene glycol) -Peptide Copolymers. J. DeRouchey, C. Schmidt, G.F. Walker, C. Koch, C. Plank, E. Wagner and J. O.
  • DNA-siRNA nucleic acid complex is unstable with respect to ribonucleases widely present in the living body, there is a problem that it is susceptible to rapid degradation in the living body like RNA.
  • changes in molecular weight were confirmed using acrylamide gel electrophoresis. A band cleaved at the binding site of was confirmed.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a nucleic acid complex that is not decomposed at a binding portion between DNA and RNA even in a living body.
  • the 3 ′ position of the deoxyribonucleotide residue at the 3 ′ end of the single-stranded DNA and the ribonucleotide residue at the 5 ′ end of one ribonucleotide strand of the double-stranded RNA A nucleic acid complex bound at the 5′-position, wherein the 2′-position hydroxyl group in the 5′-end nucleotide of the ribonucleotide chain bound to the single-stranded DNA is substituted with an alkoxy group or a halogen atom.
  • the 3 ′ position of the deoxyribonucleotide residue at the 3 ′ end of the single-stranded DNA and the ribonucleotide residue at the 5 ′ end of one ribonucleotide strand of the double-stranded RNA A nucleic acid complex having a 5′-position bound thereto, wherein a phosphorothioate is a phosphorothioate group between the 3′-position of the first ribonucleotide bound to the single-stranded DNA and the 5′-position of the adjacent ribonucleotide.
  • the present invention solves the above problems by providing a nucleic acid complex substituted with either -O-) or a trithiophosphoric acid diester group (-O-PS (S) -S-).
  • the number of nucleotides of the single-stranded DNA may be 10 or more.
  • the single-stranded DNA may be polydeoxyadenine.
  • At least a part of the phosphoric acid diester group of the single-stranded DNA may be substituted with any of a phosphorothioate group, a dithiophosphoric acid diester group, and a trithiophosphoric acid diester group.
  • at least 50% or more of the phosphoric acid diester group of the single-stranded DNA may be substituted with any of a phosphorothioate group, a dithiophosphoric acid diester group, and a trithiophosphoric acid diester group.
  • the double-stranded RNA may be siRNA.
  • the siRNA may be a 21-mer type or a 27-mer type.
  • the siRNA target gene may be a gene expressed in a Dectin-1 expressing cell.
  • the above-mentioned problems are solved by providing a nucleic acid polysaccharide complex that forms a triple helical structure.
  • the polysaccharide having a ⁇ -1,3-glucan skeleton is preferably schizophyllan.
  • the fourth aspect of the present invention solves the above problem by providing a pharmaceutical composition comprising the nucleic acid polysaccharide complex according to the third aspect of the present invention.
  • the 3 ′ position of the deoxyribonucleotide residue at the 3 ′ end of the single-stranded DNA and the ribonucleotide residue at the 5 ′ end of one ribonucleotide strand of the double-stranded RNA A method for increasing the stability of a nucleic acid complex bound at the 5 ′ position to an RNase, comprising a hydroxyl group at the 2 ′ position in the 5 ′ terminal nucleotide of the ribonucleotide chain bound to the single-stranded DNA.
  • the sixth aspect of the present invention includes the 3 ′ position of the deoxyribonucleotide residue at the 3 ′ end of the single-stranded DNA and the ribonucleotide residue at the 5 ′ end of one ribonucleotide strand of the double-stranded RNA.
  • a method for increasing the stability of a nucleic acid complex bound to a 5 ′ position to an RNase comprising the 3 ′ position of the first ribonucleotide bound to the single-stranded DNA and the 5 ′ position of a ribonucleotide adjacent thereto.
  • the present invention solves the above-mentioned problems by providing a method for stabilizing a nucleic acid complex in which the phosphoric acid diester group between the two positions is substituted with any of a phosphorothioate group, a dithiophosphoric acid diester group, and a trithiophosphoric acid diester group.
  • DNA-RNA in which the 3 ′ position of the deoxyribonucleotide residue at the 3 ′ end of single-stranded DNA and the 5 ′ position of the ribonucleotide residue at the 5 ′ end of one ribonucleotide strand of double-stranded RNA are bound In the nucleic acid complex, the hydroxyl group at the 2 ′ position in the 5 ′ terminal nucleotide of the ribonucleotide strand bound to the single-stranded DNA is replaced with an alkoxy group or a halogen atom, or the first ribonucleotide bound to the single-stranded DNA
  • replacing the phosphodiester group between the 3 ′ position of the ribonucleotide and the 5 ′ position of the adjacent ribonucleotide By replacing the phosphodiester group between the 3 ′ position of the ribonucleotide and the 5 ′ position of the adjacent ribonucleotide with one of
  • nucleic acid complex of the present invention can maintain its original function without being rapidly degraded in vivo and losing its function.
  • a nucleic acid complex in which a polydeoxynucleotide that forms a stable complex with ⁇ -1,3-glucan (such as schizophyllan) such as poly (dA) is bound to the 5 ′ end of siRNA and ⁇ -1
  • a nucleic acid complex of the present invention is applied to a nucleic acid polysaccharide complex formed from 1,3-glucan, siRNA can be reliably delivered to the cell nucleus without being degraded in the cytoplasm, and RNA interference can be prevented. It is expected to increase the usefulness and therapeutic effect of nucleic acid drugs that suppress the expression of genes that cause diseases.
  • Example 2 is a gel fluorescence image showing the results of a dA40-siRNA degradation experiment in serum (Example 1). It is a gel fluorescence image which shows the result of the identification experiment (Example 2) of the degradation product in the serum of the fluorescence modification dA10-siRNA prepared using the antisense strand which added FITC to the 5 'terminal. It is a gel fluorescence image which shows the result of the identification experiment (Example 2) of the degradation product in the serum of fluorescence modification dA10-siRNA prepared using the antisense strand which added FITC to the 3 'terminal. It is an image figure which shows decomposition
  • 2 is a gel fluorescence image showing the effect of 2'-O-methyl modification on RNA degradation (Example 3).
  • 2 is a gel fluorescence image showing the effect of 2'-O-methyl modification on the degradation of single-stranded RNA (Example 4).
  • FIG. 6 is a gel fluorescence image showing the effect of 2′-O-methyl modification positions on the degradation of nucleic acid complexes in serum (Example 5).
  • FIG. It is a gel fluorescence image which shows the influence (Examples 6 and 7) of the kind of base exerted on DNA degradation.
  • It is a gel fluorescence image which shows the effect (Example 8) of phosphorothioate modification on degradation of RNA.
  • It is a gel fluorescence image which shows the influence (Example 9) when DNA has joined to the 3 'terminal of RNA.
  • the nucleic acid complex according to the first embodiment of the present invention includes a 3′-position of a deoxyribonucleotide residue at the 3′-end of a single-stranded DNA and a 5′-side of one ribonucleotide strand of a double-stranded RNA.
  • the nucleic acid complex according to the present embodiment corresponds to the case where R 2 is an alkoxy group or a halogen atom in the following general formula (I).
  • R 1 is any one of adenine (A), guanine (G), uracil (U) and cytosine (C), and R 3 and R 5 are phosphate ester groups (—PO 2 -O-).
  • R 3 and R 5 are phosphate ester groups (—PO 2 -O-).
  • the alkoxy group include linear or branched alkoxy groups having 1 to 5 carbon atoms, arylalkyl groups having 5 to 15 carbon atoms, and alkenylalkyl groups such as O-allyl groups.
  • halogen atom include a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br), and an iodine atom (I), with a fluorine atom being particularly preferred.
  • a polyribonucleotide portion bonded to a polydeoxynucleotide portion may form a double strand with RNA having a complementary base sequence to constitute siRNA.
  • siRNA is a short double-stranded RNA that participates in a phenomenon called RNA interference (RNAi), destroys mRNA containing a complementary base sequence, and has a function of suppressing gene expression in a sequence-specific manner. .
  • RNAi RNA interference
  • the siRNA may be a 21-mer type that is widely used, but may be a 27-mer type in which the specificity for dicer is further improved.
  • SiRNA base sequence design can be carried out by any known method. If a sequence complementary to a sequence highly conserved among multiple genes is selected, it may be difficult to suppress gene-specific expression. For example, a sequence complementary to a sequence specific to the target gene is selected.
  • siRNA can be obtained using any known method based on the known sequence data obtained from databases such as GenBank, EMBL, PDB, and DDBJ. Can be designed.
  • the single-stranded DNA (polydeoxynucleotide) part in the nucleic acid complex may itself have a unique function, and is intended to improve the stability of the double-stranded RNA (polyribonucleotide) part.
  • a specific base for improving the complex-forming ability when a complex (nucleic acid polysaccharide complex) of a nucleic acid complex and ⁇ -1,3-glucan is formed. It may have a sequence (including repetitive sequences).
  • the number of nucleotides of single-stranded DNA is not particularly limited, but is preferably 10 or more.
  • a phosphodiester group (also referred to as phosphodiester bond, phosphodiester bond, etc.) in single-stranded DNA and a part of R 5 in the above general formula (I) More preferably, 50% or more is a phosphorothioate group (thiophosphoric acid ester group: —O—PO (S) —O—: a structure in which P ⁇ O 2 of the phosphoric acid group is substituted with P ⁇ S), dithiophosphoric acid diester It may be substituted with either a group (—O—PS (S) —O—) or a trithiophosphoric acid diester group (—O—PS (S) —S—).
  • thiophosphoric acid ester group —O—PO (S) —O—: a structure in which P ⁇ O 2 of the phosphoric acid group is substituted with P ⁇ S
  • dithiophosphoric acid diester It may be substituted with either a group (—O—PS (S) —O—) or a
  • the polynucleotide having the base sequence as described above can be synthesized using any known method such as a chemical synthesis method or a genetic engineering method.
  • the nucleic acid complex according to the second embodiment of the present invention includes the 3 ′ position of the deoxyribonucleotide residue at the 3 ′ end of the single-stranded DNA and the 5 ′ side of one ribonucleotide strand of the double-stranded RNA.
  • the phosphoric acid diester group is substituted with any of a phosphorothioate group, a dithiophosphoric acid diester group and a trithiophosphoric acid diester group. That is, the nucleic acid complex according to the present embodiment corresponds to the case where R 3 is any one of a phosphorothioate group, a dithiophosphate diester group, and a trithiophosphate diester group in the following general formula (I).
  • R 1 is any one of adenine (A), guanine (G), uracil (U) and cytosine (C)
  • R 2 is a hydroxyl group
  • R 5 is a phosphate ester.
  • R 2 may be an alkoxy group or a halogen atom
  • R 5 may be any one of a phosphorothioate group, a dithiophosphoric acid diester group, and a trithiophosphoric acid diester group.
  • the nucleic acid complex obtained as described above is allowed to interact with ⁇ -1,3-glucan, a single-stranded DNA site of one molecule of the nucleic acid complex, and two polysaccharide molecules having a ⁇ -1,3-glucan skeleton. Forms a nucleic acid polysaccharide complex forming a triple helical structure.
  • the polynucleotide can be protected from hydrolysis, and the half-life in blood and body fluid can be greatly increased (for example, about 10 times). Therefore, for example, a nucleic acid complex containing siRNA can be reliably delivered to a target cell.
  • a polysaccharide whose main chain is composed of ⁇ -1,3-glucan and ⁇ -1,3-xylan has a helix parameter that approximates a nucleic acid such as poly (C) (for example, Takahashi, Kominato, Suzuki, Prog Polym.Phys.Jpn.27, p.767, and “Conformation of Carbohydrates”, Sharwood academic publisher, 1998), which has a hydroxyl group capable of hydrogen bonding with a nucleobase, and thus interacts with a nucleic acid. It is known to form a stable complex having a triple helical structure.
  • C poly
  • ⁇ -1,3-glucan examples include schizophyllan, curdlan, lentinan, parkan, glyphoran, scleroglucan and the like. These are natural polysaccharides whose main chains are linked by ⁇ -linkages ( ⁇ -D-linkages) and have different side chain frequencies. These ⁇ -1,3-glucans may be used as they are without undergoing treatment such as chemical modification, but their solubility can be reduced by thinning out their side chains appropriately using a normal periodate oxidation method. It can also be controlled.
  • the molecular weight of ⁇ -1,3-glucan is appropriately adjusted according to the base length of the polynucleotide used for the preparation of the therapeutic agent for inflammatory bowel disease, the base length of the repetitive sequence, and the like. However, when the molecular weight is small, the so-called cluster effect (polymeric cooperative phenomenon) is difficult to be exhibited, which is not preferable.
  • the weight average molecular weight of ⁇ -1,3-glucan capable of forming a complex with a nucleic acid varies depending on the type of nucleobase and the higher order structure, but is preferably 2000 or more, more preferably 4000 or more, and more preferably Is 6000 or more.
  • the number of hydroxyl groups that form hydrogen bonds with nucleobases on the polynucleotide is usually 5 or more, preferably 8 or more, and more preferably 10 or more.
  • the weight average molecular weight of ⁇ -1,3-glucan can be determined by using any known method such as a light scattering method, a sedimentation velocity method (ultracentrifugation method) or the like.
  • ⁇ -1,3-glucan is generally produced by fungi and eubacteria, after culturing these microorganisms, the cells are homogenized, and impurities such as cell elution and insoluble residues are used to obtain ultracentrifugation and other methods. It can be obtained by isolation.
  • ⁇ -1,3-glucan obtained in this way has a high molecular weight (weight average molecular weight of several hundreds of thousands) and a triple helical structure. However, it may be used as it is, and it may be reduced in molecular weight as necessary. It may be used.
  • the molecular weight reduction is performed by appropriately selecting appropriate methods and conditions from any methods and conditions such as enzymatic degradation and acid hydrolysis according to the type of ⁇ -1,3-glucan and the desired molecular weight.
  • any methods and conditions such as enzymatic degradation and acid hydrolysis according to the type of ⁇ -1,3-glucan and the desired molecular weight.
  • schizophyllan single-chain schizophyllan having various molecular weights can be obtained by hydrolysis with 80% DMSO-sulfuric acid.
  • ⁇ -1,3-glucan such as schizophyllan usually has a triple helical structure in water. Therefore, in order to form a complex with the polynucleotide, it is dissolved in a solvent such as DMSO (dimethyl sulfoxide) to dissolve the association state due to intermolecular hydrogen bonding and hydrophobic interaction to form a single strand.
  • a solvent such as DMSO (dimethyl sulfoxide)
  • a solvent such as DMSO (dimethyl sulfoxide)
  • the association of the polynucleotide and the polysaccharide is formed within and between the molecules while associating and taking up the molecular chain of the polynucleotide.
  • a complex having a triple helix structure composed of one molecule of polynucleotide and two molecules of ⁇ -1,3-glucan molecule is formed.
  • the formation of the complex can be confirmed by examining the conformational change, for example, by measuring a CD (circular dichroism) spectrum.
  • the resulting complex is generally water soluble and dissociates and recombines with temperature and pH changes. Furthermore, the complex is resistant to nucleolytic enzymes and the polynucleotide is not destroyed.
  • the single-stranded DNA portion of the nucleic acid complex is either a poly (dA) sequence or a poly (dT) sequence. It preferably has such a repeating sequence.
  • the types of bases and nucleotides constituting the repetitive sequence and the number of bases are appropriately determined according to the length of the ribonucleotide portion, the type and molecular weight of ⁇ -1,3-glucan used.
  • the polydeoxynucleotide portion preferably has a poly (dA) sequence as a repeating sequence.
  • the length of the repeating sequence is, for example, The length is preferably 10 bases or more, and more preferably 10 to 80 bases in length.
  • any known method can be used without particular limitation.
  • FBS fetal bovine serum
  • 10 Prepare RPMI1640 medium to contain% FBS, add DNA-siRNA nucleic acid complex to it, incubate at 37 ° C for 1 hour, stain the nucleic acid with SYBR Gold after 12% acrylamide gel electrophoresis, and observe with gel imaging device The method of doing is mentioned.
  • the nucleic acid polysaccharide complex can be used as an active ingredient in the production of a pharmaceutical composition for gene therapy including RNAi.
  • a pharmaceutical composition for gene therapy including RNAi.
  • any known ingredients any carrier, excipient and additive acceptable for pharmaceutical use
  • formulation methods can be used.
  • therapeutic agents for inflammatory bowel disease can take the form of tablets, suppositories, capsules, syrups, microcapsules such as nanogels, sterile solutions, suspensions, and the like.
  • the pharmaceutical composition can be administered to humans or warm-blooded animals (mouse, rat, rabbit, sheep, pig, cow, horse, chicken, cat, dog, monkey, etc.) by either oral or parenteral routes.
  • parenteral administration routes include subcutaneous and intramuscular injection, intraperitoneal administration, rectal administration, enteral administration using an endoscope and the like.
  • the dose of the complex of the active ingredient nucleic acid complex and ⁇ -1,3-glucan molecule is determined depending on the activity, the disease to be treated, the type of animal to be administered, the body weight, sex, age, and severity of the disease. It varies depending on the degree and administration method. Taking an adult with a body weight of 60 kg as an example, in the case of oral administration, the daily dose is usually about 0.1 to about 100 mg, preferably about 1.0 to about 50 mg, more preferably about 1.0 to about 20 mg. In the case of parenteral administration, the daily dose is usually about 0.01 to about 30 mg, preferably about 0.1 to about 20 mg, more preferably about 0.1 to about 10 mg. When administered to other animals, the dose obtained by converting the above dose to a dose per unit body weight and multiplying by the body weight of the animal to be administered is used.
  • the base sequence of the nucleic acid complex is appropriately selected depending on the disease to be treated and the type of target gene, but is expressed in Dectin-1 expressing cells. It is preferable that siRNA targeting the gene to be targeted is included.
  • Dectin-1 is a membrane protein belonging to the C-type lectin expressed in dendritic cells and macrophages, and has the property of binding to ⁇ -glucan, and therefore is suitable for specifically introducing a nucleic acid polysaccharide complex.
  • the nucleic acid complex (including those according to the first and second embodiments described above) that can be used for the production of the nucleic acid polysaccharide complex has a partial base sequence represented by the following formula (A). ing.
  • the nucleic acid complex may consist of only the base sequence represented by the formula (A), or may have the base sequence as a partial base sequence.
  • dRN represents deoxyribonucleotide
  • AN represents a ribonucleotide derivative or peptide obtained by chemically modifying one or both of the 2′-position hydroxy group and the 5′-position phosphate group of ribonucleotide.
  • RN represents ribonucleotide
  • x and z are each independently an integer of 1 or more
  • y is an integer of 1-10.
  • the polydeoxynucleotide part (dRN) x located on the 5 ′ end side in the base sequence represented by the formula (A) is represented by the following formula (III), wherein the base B 1 is adenine (A ), Guanine (G), thymine (T) or cytosine (C).
  • the 3 ′ terminal polyribonucleotide moiety (RN) z in the base sequence represented by the formula (I) is represented by the following formula (IV), in which the base B 2 is adenine (A ), Guanine (G), uracil (U) or cytosine (C).
  • each base sequence of the polydeoxynucleotide part (dRN) x and the polyribonucleotide part (RN) z may be a gene encoding some biological function or a part thereof, or a primer sequence. Those having no biological function, such as one in which a certain number of bases are arranged and one in which a plurality of bases are regularly arranged, may be used.
  • repeating unit constituting (AN) y located between the polydeoxynucleotide part and the polyribonucleotide part in the base sequence represented by the formula (I) are represented by the following general formula (II):
  • PNA peptide nucleic acid
  • V glycol nucleic acid
  • VI locked nucleic acid
  • VIII threose nucleic acid
  • IX morpholino nucleic acid represented by the following formula (IX), and the like.
  • R 1 in the formula (II) and B 3 to B 7 in the formulas (V) to (IX) are adenine (A), guanine (G), cytosine (C), uracil (U) and an unnatural base ( Thymine, 8-oxoguanine, 2-amino-6-dimethylaminopurine, 2-amino-6-thienylpurine, pyridin-2-one, 4-acetylcytidine, 5- (carboxyhydroxymethyl) uridine, 2′-O -Methylcytidine, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, dihydrouridine, 2'-O-methyl pseudouridine, ⁇ -D-galactosyl cueosine, 2'-O- Methyl guanosine, inosine, N6-isopentenyl adenosine, 1-methyl adenosine, 1-methyl pseudo
  • R 2 is a hydrogen atom (H), a halogen atom (F, Cl, Br, I), a hydroxyl group, a linear or branched alkoxy group having 1 to 5 carbon atoms, a carbon number of 5 to Any one of 15 arylalkyl groups, O-allyl groups and the like
  • R 5 is any one of a phosphoric diester group, a phosphorothioate group (thiophosphoric diester group), a dithiophosphoric diester group, and a trithiophosphoric diester group (Except when R 2 is a hydroxyl group and R 5 is a phosphate group).
  • repeating units of the y moiety particularly preferred are those in the formula (II) where R 2 is an O-methyl group and R 5 is a phosphate group, and R 2 is a hydroxyl group and R 5 is a phosphorothioate. This is the case.
  • the base sequence of the y portion may constitute a part of the base sequence encoding a gene having a biological function, continuously with the base sequence of the polydeoxyribonucleotide portion and / or the polyribonucleotide portion, It may have a base sequence having some function independently, and may be a regular or random base sequence having no particular function.
  • y is an integer of 1 or more and 10 or less, preferably 1 or more and 4 or less, particularly preferably 1.
  • Example 1 Confirmation of degradation of (dA) 40 -siRNA in serum siRNA sense strand (5′-CAAAGACAACCAACUAGUGGU-3 ′: SEQ ID NO: 1.
  • RNA DNA-RNA nucleic acid complex in which deoxyadenine (hereinafter sometimes abbreviated as “dA”) 40-mer (dA40) is added to the 5 ′ end of the strand and the antisense strand of siRNA (5 '-ACCACUAGUUGGUUGUCUUUG-3': SEQ ID NO: 2) is annealed to add a DNA-siRNA nucleic acid complex (dA40-siRNA.
  • x-mer of deoxyadenine x is a natural number
  • the DNA-siRNA nucleic acid complex obtained by annealing the DNA-RNA nucleic acid complex and the antisense strand was abbreviated as “dAx-siRNA”). All the nucleic acids used were purchased from Hokkaido System Science Co., Ltd.
  • DNA-siRNA nucleic acid complex was added to RPMI1640 medium containing 10% FBS, incubated at 37 ° C. for 1 hour, and subjected to 12% acrylamide gel electrophoresis (100 V, 1 hour). The gel was stained with SYBR Gold (Life Technologies, California, USA), and a fluorescent image of the gel was taken with a fluorescent imager.
  • the obtained gel fluorescence image is shown in FIG.
  • the band of the dA40-siRNA nucleic acid complex before the incubation is detected on the higher molecular side than the band of the control dA40 and siRNA (21 bp).
  • two bands are observed on the low molecular side. From the position of the band, it is considered that the DNA-siRNA nucleic acid complex was cleaved into DNA and siRNA by the action of the enzyme contained in FBS. Similar results were obtained when similar experiments were performed using RPMI 1640 medium containing mouse serum (MS) instead of FBS.
  • Example 2 Examination of cleavage site of DNA-siRNA nucleic acid complex It was examined how a DNA-siRNA nucleic acid complex was cleaved by an enzyme in serum using a fluorescence-modified nucleic acid.
  • Each of the antisense strands prepared by FITC modification on the 5 ′ end side or 3 ′ end side is prepared, and deoxyadenine decamer (on the 5 ′ end side of the sense strand having the base sequence represented by SEQ ID NO: 1)
  • the DNA-RNA nucleic acid complex to which dA10) was added and the sense strand to which dA10 was not added were each annealed. Both were incubated in serum, followed by fluorescence observation with FITC after gel electrophoresis, followed by SYBR Gold staining and fluorescence observation in the same manner.
  • FIGS. 2A and 2B The obtained fluorescence images are shown in FIGS. 2A and 2B.
  • siRNA obtained by annealing a sense strand to which dA10 is not added and an antisense strand whose FITC is modified on the 5 ′ end side
  • both fluorescence bands are completely observed in the fluorescence image after FITC and SYBR Gold staining. You can see that they match.
  • RNA double strand hardly decomposes in serum (FIG. 2A, lanes 1 and 2).
  • siRNA in which the 3 ′ end of the antisense strand is FITC-modified the position of the fluorescent band derived from FITC and SYBR Gold staining is the same as in the case where the 5 ′ end of the antisense strand is FITC-modified. It does not change before and after incubation of FITC and FBS (FIG. 2B, lanes 1 and 2). This indicates that siRNA is not degraded by incubation in serum regardless of the FITC introduction site (5′-end side and 3′-end side), whereas dA10-siRNA does not significantly degrade after incubation with FBS. In FIG. 2, a fluorescent band is observed on the low molecule side (FIG.
  • RNA duplex was shorter than 21 bp, and not only the sense strand but also the antisense strand was cleaved by the enzyme protein in FBS.
  • dA10-siRNA is recognized in the vicinity of RNA at the junction with DNA in serum and undergoes degradation. After the degradation, it is considered that the double-stranded RNA shorter than 21 bp, the single strand obtained by adding the quantifier RNA to dA, and the complementary strand of the RNA are separated (FIG. 2C shows a schematic diagram). ).
  • Example 3 Avoidance of DNA-siRNA nucleic acid complex degradation by 2'-O-methylation of RNA residues in siRNA From the results of Example 2, it is considered that the DNA and siRNA are degraded in the vicinity of the junction. Therefore, the first one, two, three, and four RNA residues counted from the 5 ′ end of the siRNA (sense strand) joined to the 3 ′ end of the DNA (dA40) are each 2 A '-O-methylated dA40-siRNA nucleic acid complex was prepared, and the stability in serum (FBS) was evaluated using gel electrophoresis of the sample before and after incubation as in Example 2. .
  • FBS stability in serum
  • the obtained gel fluorescence image is shown in FIG.
  • the previously unmethylated DNA-siRNA was cleaved after incubation with serum for 1 hour, but it was confirmed that the position of the band did not change even after 20 hours when methylated. It was also found that degradation could be sufficiently prevented by only 2'-O-methylating only the first RNA (5'-end side) RNA site to join DNA.
  • Example 4 Comparison of DNA-siRNA Nucleic Acid Complex and DNA-RNA Nucleic Acid Complex From the previous experiment, the degradation of the DNA-siRNA nucleic acid complex by incubation in serum showed that In order to investigate whether this degradation is a phenomenon specific to RNA duplex, it is considered that this occurs at the point of attachment, but siRNA (sense strand) joined to the 3 ′ end of DNA (dA40) Using dA40-RNA (single stranded) nucleic acid complex in which the first 1, 2, 3, 4 RNA residues counted from the 5 ′ end are 2′-O-methylated, respectively. The same experiment as in Example 3 was performed.
  • RNA-siRNA nucleic acid complexes In the case of double-stranded RNA, degradation is sufficient if the first RNA residue counted from the 5 ′ end of the RNA sense strand joined to the 3 ′ end of DNA is 2′-O-methylated. Although it could be avoided, in the case of single-stranded RNA, 2'-O-methylation of the RNA residue in the RNA joined to the 3 'end of DNA may cause degradation of other RNA moieties. all right. In other words, avoiding degradation by 2′-O-methylation of RNA residues adjacent to the 3 ′ end of DNA is effective for DNA-siRNA nucleic acid complexes but not for DNA-RNA nucleic acid complexes. It was confirmed not to have.
  • Example 5 Examination of 2'-O-methylation site of RNA residue effective for avoiding degradation of DNA-siRNA nucleic acid complex From the result of Example 3, in order to prevent degradation of DNA-siRNA nucleic acid complex It was found that one RNA residue is sufficient for 2′-O-methylation, but the sense strand where the 2′-O-methylation site is joined to the 3 ′ end side of the DNA In order to confirm whether it is necessary to be the first RNA counted from the 5 ′ end side, a similar experiment was performed by changing the location of the RNA residue to be 2′-O-methylated. 2′-O-methylation was performed on the RNA residue at the 5 ′ end or the second RNA from the 5 ′ end. In the above-described embodiment, the length of dA is made into a 40-mer considering that it is combined with SPG. However, whether the same phenomenon is observed even if the length of dA is shortened. The same was confirmed.
  • Example 6 Examination of stability of DNA-dsDNA nucleic acid complex in serum
  • FBS degradation in serum
  • siRNA sequences both sense strand and antisense strand
  • Example 7 Relationship between DNA base sequence in DNA-siRNA nucleic acid complex and stability of DNA-siRNA nucleic acid complex
  • the DNA portion was dA10 or dA40.
  • deoxycytosine (dC) deoxyguanine (dG)
  • deoxythymidine A nucleic acid complex with siRNA was prepared using a 10-mer of (dT), and the same experiment was performed.
  • the obtained gel fluorescence image is shown in FIG.
  • dT10-siRNA and dC10-siRNA as with dA10-siRNA, a decrease in molecular weight (fluorescence band corresponding to the same molecular weight as that of siRNA) was observed after incubation with FBS. It is thought that it has been cut. Since dG10-siRNA has the property of aggregating at the dG10 portion, a fluorescence band is seen on the higher molecular weight side of the sample before incubation than other DNA-siRNA nucleic acid complexes, but after incubation with FBS. From the fact that a fluorescent band is observed at the same position as siRNA, it was found that dG10-siRNA was also subjected to the same degradation.
  • Example 8 Avoiding degradation of the DNA-siRNA nucleic acid complex by chemical modification other than 2'-O-methylation
  • the first ribonucleotide that joins the DNA is 2' It was found that -O-methyl modification (replacement of the hydroxyl group at the 2 'position of ribose with a methoxy group) can avoid degradation in serum, but there are other initial ribozymes that join the 3' end of DNA.
  • a similar experiment was carried out by preparing a phosphorothioate group in which the phosphodiester group between the 3 ′ position of the nucleotide and the 5 ′ position of the second ribonucleotide was substituted.
  • the obtained gel fluorescence image is shown in FIG.
  • the phosphorothioate compound is obtained by replacing one of the oxygen atoms bonded to the phosphate group in the phosphodiester skeleton with a sulfur atom, and is obtained as a racemic mixture. Therefore, from the fact that half is decomposed and half remains without being decomposed, it is considered that only one of the S-form or R-form is a substrate for a degrading enzyme in serum.
  • Example 9 When DNA is joined to the 3 ′ end of RNA DNA has been joined to the 5 ′ end of the sense strand of siRNA so far, but DNA is joined to the 3 ′ end of the sense strand. In the same way, in order to examine whether the first RNA that is joined to DNA undergoes degradation, the previous sequence was reversed (on the 3 ′ end side of the oligoribonucleotide represented by SEQ ID NO: 1). An experiment was conducted by preparing a nucleic acid complex to which poly (dA) was bound.
  • the obtained gel fluorescence image is shown in FIG. No change in molecular weight was observed in serum even when DNA was joined to the 3 'end of the siRNA sense strand (Fig. 8, lanes 3 and 4). From this, it is considered that the degrading enzyme accurately recognizes DNA extending from the 5 'end of the DNA to the 3' end or from the 5 'end of the double-stranded RNA to the 3' end.
  • the hydroxyl group at the 2 ′ position of the first RNA that joins DNA (the second and subsequent RNA residues that join DNA do not have an effect) is replaced with an alkoxy such as a methoxy group.
  • a phosphorothioate group or a phosphodiester group between the 3 ′ position of the first ribonucleotide and the 5 ′ position of the second ribonucleotide joined to the 3 ′ end of DNA It is necessary to substitute with one of a group, a dithiophosphoric acid diester group and a trithiophosphoric acid diester group.
  • Example 10 Preparation of complex of polynucleotide and schizophyllan (1) Preparation of triple helix schizophyllan (A.C.S.38 (1), 253 (1997), Carbohydrate Research, 89, 121-135 (1981) )) A triple helix Schizophyllan was prepared according to the standard method described. That is, using a minimal medium, Schizophyllum commune., Obtained from ATCC (American Type Culture Collection). After culturing Fries (ATCC 44200) for 7 days, the supernatant obtained by centrifuging cell components and insoluble residues was sonicated, and this was subjected to ultrafiltration to replace the solution with water and frozen. It was dried to obtain a triple helix schizophyllan having a molecular weight of 450,000.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

 生体内においても、DNAとRNAの連結部で分解されない核酸複合体を提供するという課題を解決する手段として、一本鎖DNAの3'側末端のデオキシリボヌクレオチド残基の3'位と、二本鎖RNAの一方のリボヌクレオチド鎖の5'側末端のリボヌクレオチド残基の5'位が結合した核酸複合体であって、一本鎖DNAと結合したリボヌクレオチド鎖の5'側末端ヌクレオチドにおける2'位のヒドロキシル基がアルコキシ基またはハロゲン基で置換されており、かつ/または一本鎖DNAと結合した最初のリボヌクレオチドの3'位と、それに隣接するリボヌクレオチドの5'位との間のリン酸ジエステル基がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されている核酸複合体を提供する。

Description

核酸複合体および核酸多糖複合体
 本発明は、DNAとRNAから成る核酸複合体の血清中での安定性を向上させる技術に関する。
 ヒトゲノムの解読が、1953年のDNA二重らせん構造の発見から50年となる2003年に完了した。現在は各種のタンパク質の活性メカニズムとその相互作用の解明が進められている。さらに、最近はタンパク質をコードしていないRNAが遺伝子の転写や翻訳を制御していることが分かってきた。こうした成果を応用するひとつの方法に、生理活性のある短い人工的核酸(核酸医薬)を用いて生体機能を操作する技術が提唱されている。
 small interfering RNA(siRNA)は21~23塩基対からなる低分子二本鎖RNAである。siRNAはRNA干渉(RNAi)と呼ばれる現象に関与しており(非特許文献1参照)、メッセンジャーRNA(mRNA)を配列特異的に阻害し、タンパクの発現を抑制する。この現象はウイルス感染などに対する生体防御機構の一環として進化してきたと考えられている。遺伝子配列の情報のみから設計が可能であるため、従来の低分子医薬のような大規模スクリーニングが不要であり、また特定の遺伝子を特異的に阻害できることから副作用は低いと考えられ、次世代の治療薬として期待されている。
 しかし、天然型の核酸であるリン酸エステル型RNAは、生体内において核酸分解酵素やタンパク質との非特異的吸着によって極めて短時間で失活する。このため、天然型の核酸医薬品は、ヒトの臨床研究では有意な効果をもたらしていない。生体環境内や培養液中において短時間で失活するという天然型の核酸の問題点を解決するために、天然型の核酸を化学的に修飾した化学修飾核酸が多く提案されている。例えば、リボースの2’-位のヒドロキシル基をメトキシ基(2’-O-メチル)(非特許文献2参照)やフッ素(F)(非特許文献3参照)、locked nucleic acid(LNA)(非特許文献4参照)で化学修飾したものが特に知られている。また、こうした化学修飾により、siRNAと標的mRNAとの結合親和性が向上することも報告されている。
 こうした化学修飾した核酸を核酸アナログと呼ぶ。核酸アナログは、天然型の核酸に比べ失活時間を大幅に伸ばす事に成功した。これは、核酸分解酵素が核酸アナログを認識できないためである。しかし、生体内でタンパク質と非特異的に吸着し、予期せぬ生理活性、重篤な肝障害を引き起こすなど、非天然であるが故の毒性が問題になっている。
 生体適合性を有する化合物に天然型の核酸を内包して、核酸を分解から保護しつつ膜透過性を向上させ、核酸を細胞内に導入する技術も提案されてきた。レトロウイルス(非特許文献5参照)またはアデノウイルス(非特許文献6参照)等は、遺伝子キャリアとしてin vitroでは極めて見込みのある結果を与えたが、これら天然由来のウイルスの炎症性、免疫原的性質、ならびに突然変異誘発および細胞ゲノム中への組み込みの危険性が指摘されており、これらのin vivoにおける使用は制限されている。
 そこで、天然由来の遺伝子キャリアの代替物として、ウイルス系よりも取り扱いが簡単であるのみならず、細胞へDNAを確実に効率良く集中させることが可能な人工材料の非ウイルスキャリヤーの使用が提示された(非特許文献7参照)。これまでに、非ウイルス性の人工核酸キャリアとして、ポリエチレングリコール修飾したポリカチオン(非特許文献8参照)、ポリエチレンイミン(非特許文献9参照)、カチオン性ポリマーのブロック共重合体(非特許文献10参照)、デンドリマー(非特許文献11参照)などが開発されてきた。しかし、こうしたカチオン性高分子の安全性は確認されていない。カチオン性を有するには、アミノ基の存在が不可欠であるが、アミノ基は生理活性が高く、体内毒性等の危険がある。
 本発明者らはこれまでに遺伝子キャリアとしてβ-1,3-グルカンに着目し、β-1,3-グルカンが核酸医薬(アンチセンスDNA、CpG DNA)と新しいタイプの複合体を形成することを見出してきた(特許文献1、2、非特許文献12、13、14参照)。
 天然では3重らせんで存在するβ-1,3-グルカンを、ジメチルスルホキシド(DMSO)等の非プロトン性極性有機溶媒、あるいは0.1N以上のアルカリ溶液に溶解して1本鎖に解離させた後に、1本鎖の核酸を加え、溶媒を水あるいは中性に戻すことによって、核酸1分子と多糖2分子とからなる3重らせん複合体が形成されることを見出した。この場合、3重らせん複合体における多糖分子と核酸分子とは、主として水素結合と疎水性相互作用により分子間結合を形成しているものと考えられている(非特許文献15参照)。
 上記のように、β-1,3-グルカンと複合化する核酸は1本鎖核酸であり、とりわけポリデオキシアデニン(poly dA)やポリシトシン(poly C)が、シゾフィラン(SPG)をはじめとするβ-1,3-グルカンと強い親和性を示すことが報告されている。
 β-1,3-グルカンをsiRNAのキャリアとして、RNAiに応用することについても検討されている。ただし、siRNAは二本鎖核酸であるため、そのままではβ-1,3-グルカンと複合体を形成できない。そこで、SPG等のβ-1,3-グルカンと複合化させるためにsiRNAのセンス鎖にpoly(dA)を付加させたDNA-RNAヘテロ核酸を用意し、それとsiRNAのアンチセンス鎖をアニーリングさせ、poly(dA)-siRNAを作製する。その後poly(dA)部分を利用してSPGとの複合化を行う。
国際公開第01/34207号パンフレット 国際公開第02/072152号パンフレット
siRNAs: applications in functional genomics and potential as therapeutics. Y. Dorsett, T. Tuschl, Nat. Rev. Drug Discovery 3 (2004) 318-329. Evaluation of 29-modified oligonucleotides containing 29-deoxy gaps as antisense inhibitors of gene expression. B. Monia, E. Lesnick, C. Gonzalez, W. Lima, D. McGee, C. Guinosso, A. Kawasaki, P. Cook, S. Freier, J. Biol. Chem. 268 (1993) 14514-14522. Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinose and 2'-deoxyribose nucleotides. C.N. Lok, E. Viazovkine, K. L. Min, C. J. Wilds, M. J. Damha, M. A. Parniak, Biochemistry 41 (2002) 3457-3467. 2'-O,4'-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. K. Morita, C. Hasegawa, M. Kaneko, S. Tsutsumi, J. Sone, T. Ishikawa, T. Imanishi and M. Koizumi, Med. Chem. Lett., 12, 73-76 (2002) Human gene therapy comes of age. A.D. Miller, Nature, 357, 455-460 (1992) The basic science of gene therapy. R.C. Mulligan, Science, 14, 926-932 (1993) Controllable gene therapy pharmaceutics of non-viral gene delivery systems. E. Tomlinson and A. P. Rolland, J. Control Release, 39, 357-372 (1996) Breathing Life into Polycations: Functionalization with pH-Responsive Endosomolytic Peptides and Polyethylene Glycol Enables siRNA Delivery. M.Meyer, A. Philipp, R. Oskuee, C. Schmidt and E. Wagner, J. Am. Chem. Soc., 130, 3272-3273 (2008) RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. M. Grzelinski, B. Urban-Klein, T. Martens, K. Lamszus, U. Bakowsky, S. Hobel, F. Czubayko and A. Aigner, Hum. Gene. Ther., 17, 751-766 (2006) Monomolecular Assembly of siRNA and Poly(ethylene glycol)-Peptide Copolymers. J. DeRouchey, C.Schmidt, G. F. Walker, C. Koch, C. Plank, E. Wagner and J. O. Raedler, Biomacromolecules, 9, 724-732 (2008) Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. H. Kang, R. DeLong, M.H. Fisher and R.L. Juliano, Pharm. Res., 22, 2099-2106 (2005) Molecular Recognition of Adenine, Cytosine, and Uracil in a Single-Stranded RNA by a Natural Polysaccharide: Schizophyllan. K. Sakurai and S. Shinkai, J. Am. Chem. Soc., 122, 4520-4521 (2000) Polysaccharide-Polynucleotide Complexes. 2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA. K. Sakurai, M. Mizu and S. Shinkai, Biomacromolecules, 2, 641-650 (2001) Dectin-1 targeting delivery of TNF-α antisense ODNs complexed with β-1,3-glucan protects mice from LPS-induced hepatitis. S. Mochizuki, K. Sakurai, J. Control. Release, 151, (2011) 155-161. Structural Analysis of the Curdlan/Poly (cytidylic acid) Complex with Semiempirical Molecular Orbital Calculations. K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Biomacromolecules, 6, 1540-1546 (2005)
 しかしながら、DNA-siRNA核酸複合体は、生体内に広く存在するリボヌクレアーゼに対し不安定であるため、RNAと同様に、生体内で速やかに分解を受けやすいという問題がある。事実、DNA-siRNA核酸複合体の血清中での安定性を評価するため、核酸複合体を10%血清中でインキュベート後、アクリルアミドゲル電気泳動を用いて分子量の変化を確認したところ、DNAとsiRNAの結合部分で切断されたバンドが確認された。これはβ-1,3-グルカンと複合化させた核酸複合体においても観察され、複合体を生体内に投与しても速やかにDNAとRNAに切断されてしまい、DNA-siRNA核酸複合体の細胞導入効率の低下や、標的遺伝子のサイレンシング活性の低下等を招くと考えられる。
 本発明は、上記課題に鑑みてなされたものであり、生体内においても、DNAとRNAの結合部で分解されない核酸複合体を提供することにある。
 本発明の第1の態様は、一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体であって、前記一本鎖DNAと結合した前記リボヌクレオチド鎖の5’側末端ヌクレオチドにおける2’位のヒドロキシル基がアルコキシ基またはハロゲン原子で置換されている核酸複合体を提供することにより上記課題を解決するものである。
 本発明の第2の態様は、一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体であって、前記一本鎖DNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するリボヌクレオチドの5’位との間のリン酸ジエステル基がホスホロチオエート基(チオリン酸エステル基:-O-PO(S)-O-:リン酸基のP=O をP=Sに置換した構造を有する。)、ジチオリン酸ジエステル基(-O-PS(S)-O-)およびトリチオリン酸ジエステル基(-O-PS(S)-S-)のいずれかで置換されている核酸複合体を提供することにより上記課題を解決するものである。
 本発明の第1および第2の態様において、前記一本鎖DNAのヌクレオチド数が10以上であってもよい。また、本発明の第1および第2の態様において、前記一本鎖DNAがポリデオキシアデニンであってもよい。
 本発明の第1および第2の態様において、前記一本鎖DNAのリン酸ジエステル基のうち少なくとも一部がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されていてもよい。また、この場合において、前記一本鎖DNAのリン酸ジエステル基のうち少なくとも50%以上がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されていてもよい。
 本発明の第1および第2の態様において、前記二本鎖RNAがsiRNAであってもよい。また、この場合において、前記siRNAが21mer型または27mer型であってもよい。さらに、前記siRNAの標的遺伝子が、Dectin-1発現細胞において発現している遺伝子であってもよい。
 本発明の第3の態様は、本発明の第1および第2の態様に係る核酸複合体1分子の一本鎖DNA部位と、β-1,3-グルカン骨格を有する多糖2分子とが、3重らせん構造を形成している核酸多糖複合体を提供することにより上記課題を解決するものである。
 本発明の第3の態様において、前記β-1,3-グルカン骨格を有する多糖がシゾフィランであることが好ましい。
 本発明の第4の態様は、本発明の第3の態様に係る核酸多糖複合体を含む医薬組成物を提供することにより上記課題を解決するものである。
 本発明の第5の態様は、一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体のRNA分解酵素に対する安定性を増大させる方法であって、前記一本鎖DNAと結合した前記リボヌクレオチド鎖の5’側末端ヌクレオチドにおける2’位のヒドロキシル基をアルコキシ基またはハロゲン原子で置換する核酸複合体の安定化方法を提供することにより上記課題を解決するものである。
 本発明の第6の態様は、一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体のRNA分解酵素に対する安定性を増大させる方法であって、前記一本鎖DNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するリボヌクレオチドの5’位との間のリン酸ジエステル基をホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換する核酸複合体の安定化方法を提供することにより上記課題を解決するものである。
 一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合したDNA-RNA核酸複合体において、一本鎖DNAと結合したリボヌクレオチド鎖の5’側末端ヌクレオチドにおける2’位のヒドロキシル基をアルコキシ基またはハロゲン原子で置換し、あるいは一本鎖DNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するリボヌクレオチドの5’位との間のリン酸ジエステル基をホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換することにより、ポリデオキシリボヌクレオチドとポリリボヌクレオチドとの結合部の安定性を向上させ、生体内においても加水分解を受けにくくなる。したがって、本発明の核酸複合体は、生体内において速やかに分解を受けて機能を喪失することなく、本来の機能を維持することができる。例えば、siRNAの5’側末端側にpoly(dA)等の、β-1,3-グルカン(シゾフィラン等)と安定な複合体を形成するポリデオキシヌクレオチドを結合させた核酸複合体とβ-1,3-グルカンとから形成される核酸多糖複合体に本発明の核酸複合体を適用すると、細胞質内で分解を受けることなく、確実にsiRNAを細胞核に送達することが可能になり、RNA干渉を利用して疾患の原因となる遺伝子の発現を抑制する核酸医薬の有用性および治療効果を増大させることが期待される。
dA40-siRNAの血清中での分解実験(実施例1)の結果を示すゲル蛍光画像である。 5’側末端にFITCを付加させたアンチセンス鎖を用いて調製した蛍光修飾dA10-siRNAの血清中での分解物の同定実験(実施例2)の結果を示すゲル蛍光画像である。 3’側末端にFITCを付加させたアンチセンス鎖を用いて調製した蛍光修飾dA10-siRNAの血清中での分解物の同定実験(実施例2)の結果を示すゲル蛍光画像である。 dA-siRNAの分解反応を示すイメージ図である。 RNAの分解に及ぼす2’-O-メチル修飾の効果(実施例3)を示すゲル蛍光画像である。 一本鎖RNAの分解に及ぼす2’-O-メチル修飾の効果(実施例4)を示すゲル蛍光画像である。 血清中での核酸複合体の分解に及ぼす2’-O-メチル修飾位置の効果(実施例5)を示すゲル蛍光画像である。 DNAの分解に及ぼす塩基の種類の影響(実施例6、7)を示すゲル蛍光画像である。 RNAの分解に及ぼすホスホロチオエート修飾の効果(実施例8)を示すゲル蛍光画像である。 RNAの3’側末端にDNAが接合している時の影響(実施例9)を示すゲル蛍光画像である。
 以下、本発明を具体化するための実施の形態について説明する。
 本発明の第一の実施の形態に係る核酸複合体は、一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体であって、一本鎖DNAと結合したリボヌクレオチド鎖の5’側末端ヌクレオチドにおける2’位のヒドロキシル基がアルコキシ基またはハロゲン原子で置換されている。すなわち、本実施の形態に係る核酸複合体は、下記の一般式(I)において、R2がアルコキシ基またはハロゲン原子である場合に相当する。なお、式(I)において、R1はアデニン(A)、グアニン(G)、ウラシル(U)およびシトシン(C)のいずれかであり、R3およびR5はリン酸エステル基(-PO2-O-)である。なお、アルコキシ基の具体例としては、炭素数1~5の直鎖または分岐鎖アルコキシ基、炭素数5~15のアリールアルキル基、O-アリル(allyl)基等のアルケニルアルキル基等が挙げられ、好ましくは炭素数1~3のアルコキシ基、特に好ましくはメトキシ基である。また、ハロゲン原子の具体例としては、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)およびヨウ素原子(I)が挙げられ、特に好ましくはフッ素原子である。
Figure JPOXMLDOC01-appb-C000001
 例えば、核酸複合体において、ポリデオキシヌクレオチド部分と結合したポリリボヌクレオチド部分は、相補的な塩基配列を有するRNAと二本鎖を形成し、siRNAを構成していてもよい。siRNAとは、RNA干渉(RNAi)と呼ばれる現象に関与し、相補的な塩基配列を含むmRNAを破壊し、遺伝子の発現を配列特異的に抑制する機能を有する短鎖の二本鎖RNAである。
 siRNAの塩基数は、20~27塩基(対)である。ヒトの場合、塩基数が17以上であれば、得られるポリヌクレオチドの総数(417=1.7×1010)がヒトの遺伝子総数(6×10)を上回るため、特定遺伝子のみの発現の阻害が統計的には可能になる。siRNAは、広く用いられている21mer型であってもよいが、dicerに対する特異性がより向上している27mer型であってもよい。
 siRNAの塩基配列のデザインは、任意の公知の方法により行うことができる。複数遺伝子間で保存性の高い配列に相補的な配列を選択すると、遺伝子特異的な発現抑制が困難になる場合があるので、例えば、標的遺伝子に特異的な配列に相補的な配列が選択される。標的塩基配列または遺伝子産物の対応するアミノ酸配列が既知の場合には、GenBank、EMBL、PDB、DDBJ等のデータベースから得られる当該既知の配列データを元に、任意の公知の方法を用いてsiRNAを設計することができる。
 核酸複合体における一本鎖DNA(ポリデオキシヌクレオチド)部分は、それ自体が独自の機能を有するものであってもよく、二本鎖RNA(ポリリボヌクレオチド)部分の安定性を向上させるためのものであってもよく、後述するように、核酸複合体とβ-1,3-グルカンとの複合体(核酸多糖複合体)を形成させる場合における、複合体形成能を向上させるための特定の塩基配列(繰り返し配列を含む。)を有するものであってもよい。一本鎖DNAのヌクレオチド数は特に制限されないが、10以上であることが好ましい。核酸分解酵素に対する安定性を向上させるために、一本鎖DNA中のリン酸ジエステル基(リン酸ジエステル結合、ホスホジエステル結合等ともいう。)および上記一般式(I)中のRの一部、より好ましくは50%以上がホスホロチオエート基(チオリン酸エステル基:-O-PO(S)-O-:リン酸基のP=O をP=Sに置換した構造を有する。)、ジチオリン酸ジエステル基(-O-PS(S)-O-)およびトリチオリン酸ジエステル基(-O-PS(S)-S-)のいずれかで置換されていてもよい。
 上記のような塩基配列を有するポリヌクレオチドは、化学合成法、遺伝子工学的手法等の任意の公知の方法を用いて合成することができる。
 本発明の第二の実施の形態に係る核酸複合体は、一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体であって、一本鎖DNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するリボヌクレオチドの5’位との間のリン酸ジエステル基がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されている。すなわち、本実施の形態に係る核酸複合体は、下記の一般式(I)において、Rがホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかである場合に相当する。なお、式(I)において、R1はアデニン(A)、グアニン(G)、ウラシル(U)およびシトシン(C)のいずれかであり、R2はヒドロキシル基であり、R5はリン酸エステル基(-PO2-O-)である。
Figure JPOXMLDOC01-appb-C000002
 なお、上記の一般式(I)において、R2がアルコキシ基またはハロゲン原子であり、かつ、R5がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかであってもよい。
 上記のようにして得られる核酸複合体をβ-1,3-グルカンと相互作用させ、核酸複合体1分子の一本鎖DNA部位と、β-1,3-グルカン骨格を有する多糖2分子とが、3重らせん構造を形成している核酸多糖複合体を形成させる。β-1,3-グルカンと複合体を形成させることにより、ポリヌクレオチドを加水分解から保護し、血液および体液中における半減期を大幅に(例えば10倍程度)に増大させることができる。そのため、例えば、siRNAを含む核酸複合体を標的細胞により確実にデリバリーすることが可能になる。
 主鎖がβ-1,3-グルカンおよびβ-1,3-キシランからなる多糖は、poly(C)等の核酸と近似するヘリックスパラメータを有しており(例えば、高橋、小畠、鈴木、Prog.Polym.Phys.Jpn.27巻、767ページ、および「Conformation of Carbohydrates」、Sharwood academic publisher、1998年を参照)、核酸塩基と水素結合可能な水酸基を有しているため、核酸と相互作用し、三重らせん構造を有する安定な複合体を形成することが知られている。β-1,3-グルカンの具体例としては、シゾフィラン、カードラン、レンチナン、パーキマン、グリホラン、スクレログルカン等が挙げられる。これらは、主鎖がβ-結合(β-D-結合)により結合したグルカンで、側鎖の頻度が異なる天然の多糖である。これらのβ-1,3-グルカンは、化学修飾等の処理を行うことなくそのまま用いてもよいが、通常の過ヨウ素酸化法を用いてその側鎖を適当に間引くことにより、その溶解性を制御することもできる。
 β-1,3-グルカンの分子量は、炎症性腸疾患の治療剤の調製に用いられるポリヌクレオチドの塩基長、繰り返し配列の塩基長等に応じて適宜調節される。しかし、分子量が小さいと、いわゆるクラスター効果(高分子系の協同現象)が発現し難くなり好ましくない。通常は、核酸と複合体を形成しうるβ-1,3-グルカンの重量平均分子量としては、核酸塩基の種類や高次構造によって異なるが、好ましくは2000以上、さらに好ましくは4000以上、より好ましくは6000以上である。また、ポリヌクレオチド上の核酸塩基と水素結合を形成する水酸基の数は、通常は、5個以上、好ましくは、8個以上、さらに好ましくは、10個以上必要である。
 なお、β-1,3-グルカンの重量平均分子量は、光散乱法、沈降速度法(超遠心法)等の任意の公知の方法を用いて決定することができる。
 β-1,3-グルカンは、一般に菌類や真性細菌によって産生されるため、これらの微生物を培養後、菌体をホモゲナイズし、細胞溶出分や不溶性残渣等の不純物から超遠心法等の方法により単離することにより得ることができる。一般に、このようにして得られるβ-1,3-グルカンは高分子量(重量平均分子量が数十万程度)で三重らせん構造を取るが、そのまま用いてもよく、必要に応じて低分子化して用いてもよい。低分子化は、β-1,3-グルカンの種類や所望の分子量に応じて、酵素分解、酸加水分解等の任意の方法および条件から適宜適当な方法および条件を選択して行う。例えば、シゾフィランの場合には、80%DMSO-硫酸による加水分解等により、種々の分子量を有する一本鎖シゾフィランを得ることができる。
 シゾフィラン等のβ-1,3-グルカンは、通常、水中で三重らせん構造を呈している。したがって、ポリヌクレオチドと複合体を形成するためには、DMSO(ジメチルスルホオキシド)のような溶媒に溶解して分子間水素結合および疎水性相互作用による会合状態を解いて一本鎖にする。これにポリヌクレオチドを含有する水溶液(またはアルコール等の極性溶媒の溶液)を添加してゆくと、溶媒の極性の増大に伴い、疎水性相互作用によりポリヌクレオチドとβ-1,3-グルカンとが会合し、ポリヌクレオチドの分子鎖を取り込みながら分子内および分子間でポリヌクレオチドと多糖との会合体が形成される。その結果、1分子のポリヌクレオチドと2分子のβ-1,3-グルカン分子とからなる三重らせん構造を有する複合体が形成される。複合体の形成は、例えば、CD(円偏光二色性)スペクトルを測定することにより、コンホメーション変化を調べることによって確認することができる。得られる複合体は、一般に水溶性であり、温度変化やpHの変化によって解離および再結合する。更に、複合体は核酸分解酵素に対する耐性を有し、ポリヌクレオチドが破壊されることもない。
 上述のような核酸多糖複合体を形成させる場合には、複合体形成能を向上させるために、核酸複合体の一本鎖DNA部分は、poly(dA)配列、およびpoly(dT)配列のいずれかの繰り返し配列を有していることが好ましい。好ましい繰り返し配列を構成する塩基およびヌクレオチドの種類並びに塩基数は、リボヌクレオチド部分の長さ、用いられるβ-1,3-グルカンの種類および分子量等に応じて適宜決定される。例えば、β-1,3-グルカンとしてシゾフィランが用いられる場合には、ポリデオキシヌクレオチド部分が、繰り返し配列としてpoly(dA)配列を有していることが好ましく、繰り返し配列の長さは、例えば、10塩基長以上であることが好ましく、10~80塩基長であることがより好ましい。
 核酸複合体の血清中での安定性を評価するためには、任意の公知の方法を特に制限なく用いることができるが、一例として、使用する血清としてウシ胎児血清(FBS)を選択し、10%FBSを含むようにRPMI1640培地を調製し、そこへDNA-siRNA核酸複合体を添加し1時間37℃でインキュベーションし、12%アクリルアミドゲル電気泳動後にSYBR Goldで核酸を染色しゲル撮影装置で観察する方法が挙げられる。
 核酸多糖複合体は、RNAiを始めとする遺伝子治療用の医薬組成物の製造に有効成分として用いることができる。医薬組成物の製造には、任意の公知の成分(医薬用途に許容される任意の担体、賦形剤及び添加物)および製剤方法を用いることができる。例えば、炎症性腸疾患の治療剤は、錠剤、座剤、カプセル剤、シロップ剤、ナノゲル等のマイクロカプセル剤、滅菌液剤、懸濁液剤等の形態を取ることができる。
 医薬組成物は、ヒトまたは温血動物(マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ニワトリ、ネコ、イヌ、サル等)に対し、経口及び非経口経路のいずれによっても投与可能である。非経口投与経路としては、皮下及び筋中注射、腹腔内投与、直腸投与、内視鏡等による腸内投与等が挙げられる。
 活性成分である核酸複合体とβ-1,3-グルカン分子との複合体の用量は、活性、治療対象となる疾患、投与対象となる動物の種類、体重、性別、年齢、疾患の重篤度、投与方法等に応じて異なる。体重60kgの成人を例に取ると、経口投与の場合、1日当たりの用量は通常約0.1~約100mg、好ましくは約1.0~約50mg、より好ましくは約1.0~約20mgであり、非経口投与の場合、1日当たりの用量は通常約0.01~約30mg、好ましくは約0.1~約20mg、より好ましくは約0.1~約10mgである。他の動物に投与する場合には、上記用量を単位体重当たりの用量に換算後、投与対象となる動物の体重を乗じて得られた用量を用いる。
 医薬組成物の有効成分として核酸多糖複合体を用いる場合において、核酸複合体の塩基配列は、治療対象となる疾患や標的遺伝子の種類に応じて適宜選択されるが、Dectin-1発現細胞において発現する遺伝子を標的とするsiRNAを含んでいることが好ましい。Dectin-1は樹状細胞やマクロファージに発現するC型レクチンに属する膜タンパク質であり、β-グルカンに結合する性質を有するため、核酸多糖複合体を特異的に導入する上で好適である。
 核酸多糖複合体の製造に用いることができる核酸複合体(上述の第1および第2の実施の形態に係るものを含む)は、下記の式(A)で表される部分塩基配列を有している。なお、核酸複合体は、式(A)で表される塩基配列のみからなるものであってもよく、当該塩基配列を部分塩基配列として有するものであってもよい。
Figure JPOXMLDOC01-appb-C000003
 なお、式(A)において、dRNはデオキシリボヌクレオチドを表し、ANはリボヌクレオチドの2’-位のヒドロキシ基および5’-位のリン酸エステル基の一方または双方を化学修飾したリボヌクレオチド誘導体、ペプチド核酸(PNA)、グリコール核酸(GNA)、ロックド核酸(LNA)、トレオース核酸(TNA)ならびにモルホリノ核酸のいずれかを表し、RNはリボヌクレオチドを表し、xおよびzはそれぞれ独立して1以上の整数であり、yは1以上10以下の整数である。
 式(A)で示される塩基配列中の5’側末端側に位置するポリデオキシヌクレオチド部分(dRN)x は、下記の式(III)で表され、式中、塩基B1 は、アデニン(A)、グアニン(G)、チミン(T)またはシトシン(C)である。また、式(I)で示される塩基配列中の3’側末端側のポリリボヌクレオチド部分(RN)zは、下記の式(IV)で表され、式中、塩基B2 は、アデニン(A)、グアニン(G)、ウラシル(U)またはシトシン(C)である。
Figure JPOXMLDOC01-appb-C000004
 ポリデオキシヌクレオチド部分(dRN)x およびポリリボヌクレオチド部分(RN)z の両者において、構成塩基数xおよびzについて特に制限はない。また、ポリデオキシヌクレオチド部分(dRN)x およびポリリボヌクレオチド部分(RN)z のそれぞれの塩基配列は、何らかの生体機能を有する遺伝子またはその一部をコードするものやプライマー配列であってもよく、単一の塩基が一定数配列したもの、複数の塩基が規則的に配列したもの等の生体機能を有しないものであってもよい。
 式(I)で示される塩基配列中のポリデオキシヌクレオチド部分とポリリボヌクレオチド部分の間に位置する(AN)y を構成する繰り返し単位の具体例としては、下記の一般式(II)で表される置換リボヌクレオチド、下記の式(V)で表されるペプチド核酸(PNA)、下記の式(VI)で表されるグリコール核酸(GNA)、下記の式(VII)で表されるロックド核酸(LNA)、下記の式(VIII)で表されるトレオース核酸(TNA)、下記の式(IX)で表されるモルホリノ核酸等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 なお、式(II)におけるR、式(V)~(IX)におけるB3 ~ B7 は、アデニン(A)、グアニン(G)、シトシン(C)、ウラシル(U)および非天然塩基(チミン、8-オキソグアニン、2-アミノ-6-ジメチルアミノプリン、2-アミノ-6-チエニルプリン、ピリジン-2-オン、4-アセチルシチジン、5-(カルボキシヒドロキシメチル)ウリジン、2’-O-メチルシチジン、5-カルボキシメチルアミノメチル-2-チオウリジン、5-カルボキシメチルアミノメチルウリジン、ジヒドロウリジン、2’-O-メチルプソイドウリジン、β-D-ガラクトシルキュェオシン、2’-O-メチルグアノシン、イノシン、N6-イソペンテニルアデノシン、1-メチルアデノシン、1-メチルプソイドウリジン、1-メチルグアノシン、1-メチルイノシン、2,2-ジメチルグアノシン、2-メチルアデノシン、2-メチルグアノシン、3-メチルシチジン、5-メチルシチジン、N6-メチルアデノシン、7-メチルグアノシン、5-メチルアミノメチルウリジン、5-メトキシアミノメチル-2-チオウリジン、β-D-マンノシルキュェオシン、5-メトキシカルボニルメチル-2-チオウリジン、5-メトキシカルボニルメチルウリジン、5-メトキシウリジン、2-メチルチオ-N6-イソペンテニルアデノシン、N-((9-β-D-リボフラノシル-2-メチルチオプリン-6-イル)カルバモイル)トレオニン、N-((9-β-D-リボフラノシルプリン-6-イル)N-メチルカルバモイル)トレオニン、ウリジン-5-オキシ酢酸-メチルエステル、ウリジン-5-オキシ酢酸、ワイブトキソシン、プソイドウリジン、キュェオシン、2-チオシチジン、5-メチル-2-チオウリジン、2-チオウリジン、4-チオウリジン、5-メチルウリジン、N-((9-β-D-リボフラノシルプリン-6-イル)カルバモイル)トレオニン、2’-O-メチル-5-メチルウリジン、2’-O-メチルウリジン、ワイブトシン、3-(3-アミノ-3-カルボキシプロピル)ウリジン等が挙げられる)のいずれかである。
 また、式(II)において、Rは水素原子(H)、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、炭素数1~5の直鎖または分岐鎖アルコキシ基、炭素数5~15のアリールアルキル基、O-アリル基等のアルケニルアルキル基のいずれかであり、Rはリン酸ジエステル基、ホスホロチオエート基(チオリン酸ジエステル基)、ジチオリン酸ジエステル基、およびトリチオリン酸ジエステル基のいずれかである(ただし、Rがヒドロキシル基であり、且つRがリン酸エステル基である場合を除く)。
 (AN)y 部分の繰り返し単位のうち、特に好ましいのは、式(II)において、R2 がO-メチル基でR5 がリン酸基の場合、およびR2 がヒドロキシル基でR5 がホスホロチオエート基である場合である。
 (AN)y 部分の塩基配列は、ポリデオキシリボヌクレオチド部分および/またはポリリボヌクレオチド部分の塩基配列と連続して、生体機能を有する遺伝子をコードする塩基配列の一部を構成していてもよく、独立して何らかの機能を有する塩基配列を有していてもよく、特に機能を有しない規則的またはランダムな塩基配列であってもよい。yは1以上10以下の整数であるが、好ましくは1以上4以下、特に好ましくは1である。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:(dA)40 -siRNAの血清中での分解の確認
 siRNAのセンス鎖(5’-CAAAGACAACCAACUAGUGGU-3’:配列番号1。以下、「siRNA」、「siRNAのセンス鎖」または「センス鎖」という。)の5’側末端にデオキシアデニン(以下「dA」と略称する場合がある。)40量体(dA40)を付加させたDNA-RNA核酸複合体とsiRNAのアンチセンス鎖(5’-ACCACUAGUUGGUUGUCUUUG-3’:配列番号2)をアニーリングさせ、DNA-siRNA核酸複合体(dA40-siRNA。以下、デオキシアデニンのx(xは自然数)量体をセンス鎖の5’末端側に付加させたDNA-RNA核酸複合体とアンチセンス鎖をアニーリングさせて得られるDNA-siRNA核酸複合体を「dAx-siRNA」と略称する。)を得た。
 使用した核酸は全て北海道システムサイエンス株式会社より購入した。
 10%FBSを含むRPMI1640培地にDNA-siRNA核酸複合体を添加し、37℃で1時間インキュベーションし、12%アクリルアミドゲル電気泳動(100V、1時間)を行った。ゲルをSYBR Gold(ライフテクノロジーズ社:米国カリフォルニア州)染色し、蛍光イメージャーでゲルの蛍光画像の撮影を行った。
 得られたゲル蛍光画像を図1に示す。インキュベーション前のdA40-siRNA核酸複合体のバンドは、コントロールのdA40とsiRNA(21bp)のバンドよりも高分子側に検出される。しかし、FBS含有培地中でのインキュベーション後では、低分子側に2本のバンドが観察される。バンドの位置から、DNA-siRNA核酸複合体が、FBS中に含まれる酵素の作用により、DNAとsiRNAに切断されたのではないかと考えられる。なお、FBSの代わりにマウス血清(MS)を含むRPMI1640培地を用いて同様の実験を行った場合にも、同様の結果が得られた。
実施例2:DNA-siRNA核酸複合体の切断部位に関する検討
 DNA-siRNA核酸複合体が血清中の酵素によりどのように切断されているか蛍光修飾核酸を用いて検討した。アンチセンス鎖の5’側末端側あるいは3’側末端側にFITC修飾したものをそれぞれ用意し、配列番号1で表される塩基配列を有するセンス鎖の5’末端側にデオキシアデニン10量体(dA10)を付加させたDNA-RNA核酸複合体およびdA10を付加させていないセンス鎖と、それぞれアニーリングさせた。両者について、血清中でインキュベーションさせた後、ゲル電気泳動後にFITCで蛍光観察を行い、次いでSYBR Gold染色し、同様に蛍光観察を行った。
 得られた蛍光画像を図2Aおよび図2Bに示す。dA10を付加させていないセンス鎖と5’側末端側をFITC修飾したアンチセンス鎖とをアニーリングさせて得られるsiRNAの場合、FITCとSYBR Gold染色後の蛍光画像において、両者の蛍光バンドが完全に一致していることがわかる。また、インキュベーションの前後で蛍光バンドの位置に変化がないことから、RNA二本鎖では血清中での分解はほとんど起きていないことがわかる(図2A、レーン1、2)。一方、dA10-siRNAの場合、インキュベーション前後のSYBR Gold染色後の蛍光バンドの位置の比較から、FBSとのインキュベーション後に分子量が減少していること、インキュベーション後の試料について、SYBR Gold由来の蛍光バンドがFITC由来の蛍光バンドとオーバーラップすることが確認された(図2A、レーン3、4)。さらに、これらの蛍光バンドは、コントロールsiRNAの蛍光バンドの位置とほぼ重なることから、血清とのインキュベート後に見られる蛍光バンドは、21塩基対からなるsiRNAに近い塩基対数を有する分解性生物に由来するものであることがわかる。
 アンチセンス鎖の3’側末端側をFITC修飾したsiRNAの場合、上述のアンチセンス鎖の5’末端側をFITC修飾した場合と同様に、FITCおよびSYBR Gold染色に由来する蛍光バンドの位置が、FITCとFBSとのインキュベーションの前後で変わらない(図2B、レーン1、2)。このことから、FITCの導入部位(5’末端側および3’末端側)に関係なく、siRNAは血清中でのインキュベーションにより分解されないことがわかる一方、dA10-siRNAでは、FBSとのインキュベーション後に、非常に低分子側に蛍光バンドが見られる(図2B、レーン3、4)。また、SYBR Gold染色後の蛍光画像では、上述の場合と同様に、siRNA21 bpに近い位置にバンドが見られた。このことから、得られたRNA二本鎖は21 bpよりも短くなっており、FBS中の酵素タンパクにより、センス鎖だけでなくアンチセンス鎖も切断を受けていることがわかった。
 上記の結果よりdA10-siRNAは血清中でDNAとの接合点のRNA付近が認識され、分解を受けていると考えられる。分解後は21 bpよりも短い二本鎖RNAとdAに数量体のRNAが付加した一本鎖とそのRNAの相補鎖に分かれてしまっていると考えられる(図2Cに、模式図を示す。)。
実施例3:siRNA中のRNA残基の2’-O-メチル化によるDNA-siRNA核酸複合体の分解の回避
 実施例2の結果より、DNAとsiRNAの連結部付近で分解されていると考えられるため、DNA(dA40)の3’末端側と接合するsiRNA(センス鎖)の、5’末端側から数えて最初の1つ、2つ、3つ、4つのRNA残基を、それぞれ、2’-O-メチル化させたdA40-siRNA核酸複合体を用意し、実施例2と同様に、血清(FBS)中での安定性を、インキュベーション前後の試料のゲル電気泳動法を用いて評価した。
 得られたゲル蛍光画像を図3に示す。先のメチル化していないDNA-siRNAは血清と1時間インキュベーションすると切断されてしまったが、メチル化するとバンドの位置は20時間経っても変化がないことが確認された。また、DNAと接合する最初の(5’末端側の)RNA1箇所のみを2’-O-メチル化するだけで、十分に分解を防げることがわかった。
実施例4:DNA-siRNA核酸複合体とDNA-RNA核酸複合体との比較
 先の実験より、血清中でのインキュベーションによるDNA-siRNA核酸複合体の分解が、DNAとRNA二本鎖部分との結合点で起きていると考えられるが、この分解がRNA二本鎖に特異的な現象であるかを検討するために、DNA(dA40)の3’末端側と接合するsiRNA(センス鎖)の、5’末端側から数えて最初の1つ、2つ、3つ、4つのRNA残基を、それぞれ、2’-O-メチル化させたdA40-RNA(1本鎖)核酸複合体を用いて、実施例3と同様の実験を行った。
 得られたゲル蛍光画像を図4に示す。メチル化されたRNA残基の数にかかわらず、すべての試料において、FBSとのインキュベーション後に分子量が減少しているのがわかる。一方、dA40部分は1時間ではほとんど分解を受けないため、一本鎖RNA部分(メチル化されていない部分)が分解されたことにより、分子量が減少したと考えられる。
 二本鎖RNAの場合には、DNAの3’末端側と接合するRNAセンス鎖の、5’末端側から数えて最初のRNA残基を2’-O-メチル化していれば分解を十分に回避できたが、一本鎖RNAの場合は、DNAの3’末端側と接合するRNA中のRNA残基を2’-O-メチル化しても、その他のRNA部分は分解されてしまうことがわかった。つまり、DNAの3’末端に隣接するRNA残基の2’-O-メチル化による分解の回避は、DNA-siRNA核酸複合体については有効であるが、DNA-RNA核酸複合体については効果を有しないことが確認された。
実施例5:DNA-siRNA核酸複合体の分解の回避に有効なRNA残基の2’-O-メチル化部位の検討
 実施例3の結果より、DNA-siRNA核酸複合体の分解を阻止するためには、2’-O-メチル化するRNA残基数は1つで十分であることがわかったが、2’-O-メチル化する箇所が、DNAの3’末端側と接合するセンス鎖の、5’末端側から数えて最初のRNAである必要があるかを確認するために、2’-O-メチル化するRNA残基の場所を変えて同様の実験を行った。2’-O-メチル化は、5’末端のRNA残基または5’末端から2番目のRNAについて行った。また、上述の実施例では、SPGと複合化させることを考慮し、dAの長さを40量体にしていたが、dAの長さを短くしても同様の現象が観察されるかについても同様に確認した。
 得られたゲル蛍光画像を図5に示す。dAの長さを10量体に短くしても、FBSとのインキュベーション後に短いバンド(siRNAと同程度)が観察された(図5、レーン3)。また、2’-O-メチル化するRNA残基の場所を変えた場合、5’末端側から2番目のRNAをメチル化しても血清中での分解を回避できないことがわかった(図5、レーン7)。
 上述の結果より、DNA-siRNA核酸複合体の分解を阻止するためには、DNAと接合する最初のRNA残基を2’-O-メチル化する必要があることがわかる。
実施例6:DNA-dsDNA核酸複合体の血清中での安定性の検討
 上述の実施例において、血清(FBS)中での分解が確認されたのは、DNA-二本鎖RNAの核酸複合体であるが、DNA-二本鎖DNA(dsDNA)核酸複合体の場合でも同様の分解が観測されるか検討するために、siRNAの配列(センス鎖およびアンチセンス鎖の両者)を全てDNAに置き換えたものを用意し、同様の実験を行った。
 得られたゲル蛍光画像を図6に示す。DNA-dsDNA核酸複合体においては、血清とのインキュベーションの前後で分子量の変化がないことがわかる(図6、レーン1、2)。この結果より、分解を受けるのは核酸複合体中の二本鎖RNAのみであることがわかった。
実施例7:DNA-siRNA核酸複合体中のDNAの塩基配列とDNA-siRNA核酸複合体の安定性との関連
 これまでの実験では、SPGとの複合化を考慮し、DNA部分はdA10またはdA40に統一していたが、DNA部分の塩基配列がDNA-siRNA核酸複合体の安定性に及ぼす影響を検討するために、dA10の代わりに、デオキシシトシン(dC)、デオキシグアニン(dG)、デオキシチミジン(dT)の10量体を用いてsiRNAとの核酸複合体を調製し、同様の実験を行った。
 得られたゲル蛍光画像を図6に示す。dT10-siRNA、dC10-siRNAについては、dA10-siRNAと同様に、FBSとのインキュベーション後に分子量の低下(siRNAのみと同程度の分子量に相当する蛍光バンド)が見られたことから、やはりsiRNA部分で切断されていると考えられる。dG10-siRNAに関しては、dG10部分で凝集してしまう性質があるため、インキュベーション前の試料について、他のDNA-siRNA核酸複合体よりも高分子量側に蛍光バンドが見られるが、FBSとのインキュベーション後に、siRNAと同程度の位置に蛍光バンドが観察されることから、dG10-siRNAでも、同様の分解を受けていることがわかった。
実施例8:2’-O-メチル化以外の化学修飾によるDNA-siRNA核酸複合体の分解の回避
 DNAと接合する最初のリボヌクレオチド(DNAの3’末端側に隣接するリボヌクレオチド)を2’-O-メチル修飾(リボースの2’位のヒドロキシル基をメトキシ基に置換)することで血清中での分解を回避できることがわかったが、その他にもDNAの3’末端と接合する最初のリボヌクレオチドの3’位と2番目のリボヌクレオチドの5’位との間のリン酸ジエステル基をホスホロチオエート基に置換したものを用意して同様の実験を行った。
 得られたゲル蛍光画像を図7に示す。ホスホロチオエート置換した配列の場合、約半分が分解を受けずに残っているが残りの約半分は分解されていた。ホスホロチオエート体とはリン酸ジエステル骨格中のリン酸基に結合する酸素原子の一つを硫黄原子に置換したものでラセミ混合物として得られる。よって、半分が分解され、半分が分解を受けずに残るという事実から、そのS体あるいはR体の一方のみが血清中の分解酵素の基質になっているのではないかと考えられる。
実施例9:DNAがRNAの3’側末端に接合している場合
 これまでDNAはsiRNAのセンス鎖の5’側末端に接合させていたが、センス鎖の3’側末端にDNAが接合した場合も同様にDNAと接合する最初のRNAのところで分解を受けるかを検討するために、これまでの配列を逆にしたもの(配列番号1で表されるオリゴリボヌクレオチドの3’側末端側にポリ(dA)が結合した核酸複合体)を用意して実験を行った。
 得られたゲル蛍光画像を図8に示す。siRNAセンス鎖の3’側末端にDNAを接合しても血清中での分子量変化は観察されなかった(図8レーン3,4)。これより分解酵素がDNAの5’側末端から3’側末端へ、あるいは二本鎖RNAの5’側末端から3’側末端へ伸びるDNAを的確に認識していることが考えられる。
 以上の結果より、DNA-RNA核酸複合体が血清中で位置特異的に分解を受けるにはDNAの配列は任意で、RNAは二本鎖である必要があることがわかった。
 この分解を回避するには、DNAと接合する最初のRNA(DNAと接合する2つ目以降のRNA残基では効果は見られない)の2’位のヒドロキシル基を、をメトキシ基等のアルコキシ基、またはフッ素原子等のハロゲン原子で置換し、あるいはDNAの3’末端と接合する最初のリボヌクレオチドの3’位と2番目のリボヌクレオチドの5’位との間のリン酸ジエステル基をホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換する必要がある。
実施例10:ポリヌクレオチドとシゾフィランとの複合体の調製
(1)三重らせんシゾフィランの調製
 文献(A.C.S.38(1),253(1997)、Carbohydrate Research,89,121-135(1981))記載の定法にしたがい、三重らせんシゾフィランを調製した。すなわち、最少培地を用いて、ATCC(American Type Culture Collection)から入手したSchizophyllum commune.Fries(ATCC 44200)を7日間振盪培養した後、細胞成分および不溶残渣を遠心分離して得られた上清を超音波処理して、これを限外ろ過にて溶液を水に置換し、凍結乾燥させ、分子量45万の三重らせんシゾフィランを得た。
(2)複合体の調製
 上記のようにして得られたシゾフィランを、濃度が15g/dLとなるように0.25NのNaOH水溶液に溶解した。この溶液10μLに、リン酸緩衝液(pH=4.5)10μLと、3g/dLのポリヌクレオチド溶液30μLを混合し、複合体の水溶液を調製した。得られた溶液は透明で均一であった。
 特定の実施形態および実施例に基づき、本発明について詳細に説明したが、これらは例示に過ぎず、本発明の範囲は、これらの実施形態や実施例に限定されることはない。本発明の広義の精神と範囲を逸脱することなく、様々な変形が可能であることは、当業者にとって明らかである。
 本出願は、2012年6月20日に出願された日本国特許出願2012-139250号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。

Claims (14)

  1.  一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体であって、前記一本鎖DNAと結合した前記リボヌクレオチド鎖の5’側末端ヌクレオチドにおける2’位のヒドロキシル基がアルコキシ基またはハロゲン原子で置換されている核酸複合体。
  2.  一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体であって、前記一本鎖DNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するリボヌクレオチドの5’位との間のリン酸ジエステル基がホスホロチオエート基、ジチオリン酸ジエステル基ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されている核酸複合体。
  3.  前記一本鎖DNAのヌクレオチド数が10以上である請求項1または2に記載の核酸複合体。
  4.  前記一本鎖DNAがポリデオキシアデニンである請求項1から3のいずれか1項に記載の核酸複合体。
  5.  前記一本鎖DNAのリン酸ジエステル基のうち少なくとも一部がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されている、請求項1から4のいずれか1項に記載の核酸複合体。
  6.  前記一本鎖DNAのリン酸ジエステル基のうち少なくとも50%以上がホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換されている請求項5に記載の核酸複合体。
  7.  前記二本鎖RNAがsiRNAである請求項1から6のいずれか1項に記載の核酸複合体。
  8.  前記siRNAが21mer型または27mer型である、請求項7に記載の核酸複合体。
  9.  前記siRNAの標的遺伝子が、Dectin-1発現細胞において発現している遺伝子である請求項7または8に記載の核酸複合体。
  10.  請求項1から9のいずれか1項に記載の核酸複合体1分子の一本鎖DNA部位と、β-1,3-グルカン骨格を有する多糖2分子とが、3重らせん構造を形成している核酸多糖複合体。
  11.  前記β-1,3-グルカン骨格を有する多糖が、シゾフィランである請求項10に記載の核酸多糖複合体。
  12.  請求項10または11に記載の核酸多糖複合体を含む医薬組成物。
  13.  一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体のRNA分解酵素に対する安定性を増大させる方法であって、前記一本鎖DNAと結合した前記リボヌクレオチド鎖の5’側末端ヌクレオチドにおける2’位のヒドロキシル基をアルコキシ基またはハロゲン原子で置換する核酸複合体の安定化方法。
  14.  一本鎖DNAの3’側末端のデオキシリボヌクレオチド残基の3’位と、二本鎖RNAの一方のリボヌクレオチド鎖の5’側末端のリボヌクレオチド残基の5’位が結合した核酸複合体のRNA分解酵素に対する安定性を増大させる方法であって、前記一本鎖DNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するリボヌクレオチドの5’位との間のリン酸ジエステル基をホスホロチオエート基、ジチオリン酸ジエステル基およびトリチオリン酸ジエステル基のいずれかで置換する核酸複合体の安定化方法。
PCT/JP2013/066887 2012-06-20 2013-06-19 核酸複合体および核酸多糖複合体 WO2013191223A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014521495A JPWO2013191223A1 (ja) 2012-06-20 2013-06-19 核酸複合体および核酸多糖複合体
CN201380032032.3A CN104471063A (zh) 2012-06-20 2013-06-19 核酸复合物及核酸多糖复合物
US14/408,577 US20150148529A1 (en) 2012-06-20 2013-06-19 Nucleic acid complex and nucleic acid-polysaccharide complex
EP13806525.5A EP2865759B1 (en) 2012-06-20 2013-06-19 Nucleic acid complex and nucleic acid-polysaccharide complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-139250 2012-06-20
JP2012139250 2012-06-20

Publications (1)

Publication Number Publication Date
WO2013191223A1 true WO2013191223A1 (ja) 2013-12-27

Family

ID=49768817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066887 WO2013191223A1 (ja) 2012-06-20 2013-06-19 核酸複合体および核酸多糖複合体

Country Status (6)

Country Link
US (1) US20150148529A1 (ja)
EP (1) EP2865759B1 (ja)
JP (1) JPWO2013191223A1 (ja)
CN (1) CN104471063A (ja)
TW (1) TWI606058B (ja)
WO (1) WO2013191223A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089820A (ja) * 2016-11-28 2019-06-13 ナパジェン ファーマ, インコーポレテッドNapaJen Pharma, Inc. 化学修飾siRNA
WO2019230898A1 (ja) * 2018-05-30 2019-12-05 ナパジェン ファーマ,インコーポレテッド 化学修飾siRNAとシゾフィランとの複合体を含む医薬組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940012B (zh) * 2014-02-06 2024-06-11 独立行政法人科学技术振兴机构 肽/β-1,3-葡聚糖复合体及其制造方法以及含有它的医药组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034207A1 (fr) 1999-11-10 2001-05-17 Japan Science And Technology Corporation Supports de genes
WO2002072152A1 (fr) 2001-03-13 2002-09-19 Japan Science And Technology Corporation Supports de gene mettant en oeuvre un polysaccharide et leur procede de production
JP2005204612A (ja) * 2004-01-26 2005-08-04 Japan Science & Technology Agency 新規な遺伝子導入法
WO2007058323A1 (ja) * 2005-11-17 2007-05-24 Napa Jenomics Co., Ltd. 核酸ホモポリマー結合機能性核酸医薬品の製造法
JP2009512673A (ja) * 2005-10-20 2009-03-26 シレンティス・エセ・ア・ウ Trpv発現レベルの制御
WO2009078470A1 (ja) * 2007-12-18 2009-06-25 National Institute Of Advanced Industrial Science And Technology 多糖/2本鎖rna複合体
WO2012020795A1 (ja) * 2010-08-10 2012-02-16 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147147B1 (ko) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Rna 간섭의 오프 타겟 효과 감소를 위한 변형된폴리뉴클레오타이드
GB0411537D0 (en) * 2004-05-24 2004-06-23 Midatech Ltd Nanoparticles comprising rna ligands
CN101148680B (zh) * 2007-10-23 2010-06-02 南京凯瑞尔纳米生物技术有限公司 由纳米粒子将含有基因治疗片段的质粒载体导入细胞的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034207A1 (fr) 1999-11-10 2001-05-17 Japan Science And Technology Corporation Supports de genes
WO2002072152A1 (fr) 2001-03-13 2002-09-19 Japan Science And Technology Corporation Supports de gene mettant en oeuvre un polysaccharide et leur procede de production
JP2005204612A (ja) * 2004-01-26 2005-08-04 Japan Science & Technology Agency 新規な遺伝子導入法
JP2009512673A (ja) * 2005-10-20 2009-03-26 シレンティス・エセ・ア・ウ Trpv発現レベルの制御
WO2007058323A1 (ja) * 2005-11-17 2007-05-24 Napa Jenomics Co., Ltd. 核酸ホモポリマー結合機能性核酸医薬品の製造法
WO2009078470A1 (ja) * 2007-12-18 2009-06-25 National Institute Of Advanced Industrial Science And Technology 多糖/2本鎖rna複合体
WO2012020795A1 (ja) * 2010-08-10 2012-02-16 ナパジェン ファーマ,インコーポレテッド 核酸多糖複合体

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Conformation of Carbohydrates", 1998, SHARWOOD ACADEMIC PUBLISHER
A. C. S., vol. 38, no. 1, 1997, pages 253
A.D. MILLER: "Human gene therapy comes of age", NATURE, vol. 357, 1992, pages 455 - 460, XP000919467, DOI: doi:10.1038/357455a0
B. MONIA; E. LESNICK; C. GONZALEZ; W. LIMA; D. MCGEE; C. GUINOSSO; A. KAWASAKI; P. COOK; S. FREIER: "Evaluation of 29-modified oligonucleotides containing 29-deoxy gaps as antisense inhibitors of gene expression", J. BIOL. CHEM., vol. 268, 1993, pages 14514 - 14522, XP000576145
C.N. LOK; E. VIAZOVKINE; K. L. MIN; C. J. WILDS; M. J. DAMHA; M. A. PARNIAK: "Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinose and 2'-deoxyribose nucleotides", BIOCHEMISTRY, vol. 41, 2002, pages 3457 - 3467, XP002441955, DOI: doi:10.1021/bi0115075
CARBOHYDRATE RESEARCH, vol. 89, 1981, pages 121 - 135
E. TOMLINSON; A. P. ROLLAND: "Controllable gene therapy pharmaceutics of non-viral gene delivery systems", J. CONTROL RELEASE, vol. 39, 1996, pages 357 - 372, XP004037341, DOI: doi:10.1016/0168-3659(95)00166-2
H. KANG; R. DELONG; M.H. FISHER; R.L. JULIANO: "Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides", PHARM. RES., vol. 22, 2005, pages 2099 - 2106, XP019370767, DOI: doi:10.1007/s11095-005-8330-5
J. DEROUCHEY; C.SCHMIDT; G. F. WALKER; C. KOCH; C. PLANK; E. WAGNER; J. O. RAEDLER: "Monomolecular Assembly of siRNA and Polyethylene glycol)-Peptide Copolymers", BIOMACROMOLECULES, vol. 9, 2008, pages 724 - 732, XP009106452, DOI: doi:10.1021/bm7011482
K. MIYOSHI; K. UEZU; K. SAKURAI; S. SHINKAI: "Structural Analysis of the Curdlan/Poly (cytidylic acid) Complex with Semiempirical Molecular Orbital Calculations", BIOMACROMOLECULES, vol. 6, 2005, pages 1540 - 1546
K. MORITA; C. HASEGAWA; M. KANEKO; S. TSUTSUMI; J. SONE; T. ISHIKAWA; T. IMANISHI; M. KOIZUMI: "2'-0,4'-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug", MED. CHEM. LETT., vol. 12, 2002, pages 73 - 76, XP055249515
K. SAKURAI; M. MIZU; S. SHINKAI: "Polysaccharide-Polynucleotide Complexes. 2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA", BIOMACROMOLECULES, vol. 2, 2001, pages 641 - 650, XP002504242, DOI: doi:10.1021/BM000121R
K. SAKURAI; S. SHINKAI: "Molecular Recognition of Adenine, Cytosine, and Uracil in a Single-Stranded RNA by a Natural Polysaccharide: Schizophyllan", J. AM. CHEM. SOC., vol. 122, 2000, pages 4520 - 4521, XP002936530, DOI: doi:10.1021/ja0000145
M. GRZELINSKI; B. URBAN-KLEIN; T. MARTENS; K. LAMSZUS; U. BAKOWSKY; S. HOBEL; F. CZUBAYKO; A. AIGNER: "RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts", HUM. GENE. THER., vol. 17, 2006, pages 751 - 766, XP002461813, DOI: doi:10.1089/hum.2006.17.751
M.MEYER; A. PHILIPP; R. OSKUEE; C. SCHMIDT; E. WAGNER: "Breathing Life into Polycations: Functionalization with pH-Responsive Endosomolytic Peptides and Polyethylene Glycol Enables siRNA Delivery", J. AM. CHEM. SOC., vol. 130, 2008, pages 3272 - 3273
R.C. MULLIGAN: "The basic science of gene therapy", SCIENCE, vol. 14, 1993, pages 926 - 932, XP002925334, DOI: doi:10.1126/science.8493530
S. MOCHIZUKI; K. SAKURAI: "Dectin-1 targeting delivery ofTNF-a antisense ODNs complexed with 0-1,3-glucan protects mice from LPS-induced hepatitis", J. CONTROL. RELEASE, vol. 151, 2011, pages 155 - 161, XP055197019, DOI: doi:10.1016/j.jconrel.2011.01.026
See also references of EP2865759A4
TAKAHASHI; OBATA; SUZUKI: "Prog. Polym. Phys. Jpn.", vol. 27, pages: 767
Y. DORSETT; T. TUSCHL: "siRNAs: applications in functional genomics and potential as therapeutics", NAT. REV. DRUG DISCOVERY, vol. 3, 2004, pages 318 - 329, XP009042544, DOI: doi:10.1038/nrd1345

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089820A (ja) * 2016-11-28 2019-06-13 ナパジェン ファーマ, インコーポレテッドNapaJen Pharma, Inc. 化学修飾siRNA
CN110121558A (zh) * 2016-11-28 2019-08-13 日商那帕洁制药股份有限公司 化学修饰siRNA
JP7100367B2 (ja) 2016-11-28 2022-07-13 ナパジェン ファーマ,インコーポレテッド 化学修飾siRNA
CN110121558B (zh) * 2016-11-28 2023-06-13 日商那帕洁制药股份有限公司 化学修饰siRNA
WO2019230898A1 (ja) * 2018-05-30 2019-12-05 ナパジェン ファーマ,インコーポレテッド 化学修飾siRNAとシゾフィランとの複合体を含む医薬組成物

Also Published As

Publication number Publication date
US20150148529A1 (en) 2015-05-28
TWI606058B (zh) 2017-11-21
CN104471063A (zh) 2015-03-25
TW201400496A (zh) 2014-01-01
EP2865759A4 (en) 2015-08-12
EP2865759A1 (en) 2015-04-29
EP2865759B1 (en) 2017-05-17
JPWO2013191223A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP7244922B2 (ja) 化学修飾された一本鎖rna編集オリゴヌクレオチド
EP2438168B1 (en) Polynucleotides for multivalent rna interference, compositions and methods of use thereof
JP7395483B2 (ja) mRNAの細胞内送達のためのペプチドおよびナノ粒子
US20220127609A1 (en) Antisense oligonucleotides for nucleic acid editing
CN109477103A (zh) 单链rna-编辑寡核苷酸
CN113544269A (zh) 环状多核糖核苷酸及其药物组合物
EP3847650A1 (en) Nucleic acid assemblies for use in targeted delivery
CN105658797A (zh) 用于调节rna的组合物和方法
US20180153919A1 (en) Organic compositions to treat kras-related diseases
CN116209762A (zh) Adar依赖性编辑组合物及其使用方法
Le et al. Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro
WO2019070762A1 (en) RNA GUIDE CPF1 MODIFIED
US20190323006A1 (en) Compounds and methods for modulation of smn2
TW201219569A (en) Treatment of Sialidase 4 (NEU4) related diseases by inhibition of natural antisense transcript to NEU4
TW201202418A (en) Treatment of Methionine Sulfoxide Reductase A (MSRA) related diseases by inhibition of natural antisense transcript to MSRA
KR20230023612A (ko) 조작된 올리고뉴클레오티드를 사용한 표적화된 억제
JP2024518546A (ja) 修飾されたmRNA、修飾された非コードRNA、およびその使用
WO2013191223A1 (ja) 核酸複合体および核酸多糖複合体
US9932585B2 (en) Manipulating microRNA for the management of neurological diseases or conditions and compositions related thereto
TW202241460A (zh) 微胞奈米粒子及其用途
EP4019088A1 (en) Rna action inhibitor and use thereof
Jian et al. RNA therapy: Are we using the right molecules?
Yang Development of Conditionally Activated (“Caged”) Oligonucleotides for Gene Expression Regulation and Transcriptome in Vivo Analysis (Tiva)
CN114829603A (zh) 用于抑制scn9a表达的增强寡核苷酸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408577

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014521495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013806525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013806525

Country of ref document: EP