WO2011135140A1 - Método para la administración de oligonucleótidos - Google Patents

Método para la administración de oligonucleótidos Download PDF

Info

Publication number
WO2011135140A1
WO2011135140A1 PCT/ES2011/070295 ES2011070295W WO2011135140A1 WO 2011135140 A1 WO2011135140 A1 WO 2011135140A1 ES 2011070295 W ES2011070295 W ES 2011070295W WO 2011135140 A1 WO2011135140 A1 WO 2011135140A1
Authority
WO
WIPO (PCT)
Prior art keywords
prna
process according
seq
plasma components
plasma
Prior art date
Application number
PCT/ES2011/070295
Other languages
English (en)
French (fr)
Inventor
Ramón ERITJA CASADELLÁ
Sandra Milena Ocampo
Francesc Xavier Blasco Sole
José Carlos PERALES LOSA
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad De Barcelona filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP11774452.4A priority Critical patent/EP2565278A4/en
Publication of WO2011135140A1 publication Critical patent/WO2011135140A1/es
Priority to US13/661,081 priority patent/US20130108686A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a method for the manufacture of compositions comprising pRNA associated with plasma components. Therefore it belongs to the field of biotechnology technique.
  • RNA interference is an important mechanism of gene regulation that can be used for specific gene silencing.
  • the process is initiated by double-stranded RNAs that are called pRNAs, small interfering RNAs (siRNAs).
  • pRNAs double-stranded RNAs
  • siRNAs small interfering RNAs
  • RISC protein complex
  • the complex formed by the union of the antisense or guide chain with RISC catalyzes the efficient degradation of a specific messenger RNA, causing a decrease in the Diana protein.
  • numerous studies have been carried out in order to use this phenomenon of natural gene regulation as the basis for a new therapy aimed at the specific reduction of a previously determined protein.
  • RNAi therapeutics a potential new class of pharmaceutical drugs. Nature Chemical Biology 2 (2006), pages 71 1-719; A. de Fougerolles et al. RNA interference in vivo: toward synthetic small inhibitor RNA-based therapeutics Methods in Enzymology 392 (2005), pages 278-296; C. Chakraborty Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Current Drug Targets 8 (2007) pages. 469-482].
  • siRNA small interfering RNAs
  • RNA interference In vivo cellular administration of pRNAs is perhaps one of the most important problems for the development of an efficient therapeutic drug based on RNA interference.
  • RNAi therapeutics a potential new class of pharmaceutical drugs. Nature Chemical Biology 2 (2006), pages 71 1-719; A. de Fougerolles et al. RNA interference ⁇ n vivo: toward synthetic small inhibitory RNA-based therapeutics Methods in Enzymology 392 (2005), pages 278-296; C. Chakraborty Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Current Drug Targets 8 (2007) pages. 469-482].
  • siRNA small interfering RNAs
  • the pRNAs which are negatively charged hydrophilic molecules, do not, by themselves, have the ability to distribute themselves in the blood and internalize, or penetrate into the cell interior, through the cell membrane that is hydrophobic.
  • several strategies such as the use of nanoparticles or the use of liposomes have been described [J. Soutschek et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, (2004) pages 173-178; DH Kim et al. Strategies for silencing human disease using RNA interference. Nature Reviews 8 (2007), pages 173-184].
  • These vehicles can have a double function: to be cellular permeabilizing agents and, in turn, to be protective agents of pRNAs, since naked pRNAs are rapidly degraded by serum RNases. For this reason, a large number of modified pRNAs have been designed and synthesized to take advantage of the binding of modified pRNAs to specific serum components (such as albumin, HDL and LDL) and, thus, assist in the distribution of pRNA molecules in the body.
  • serum components such as albumin, HDL and LDL
  • the present invention is about a method for obtaining formulations that improve the binding capacity of the pRNAs to the plasma components, which favor the transport of the pRNA in the blood, which increase the passage of the pRNA through the cell membrane , and thus, increase the inhibitory activity of pRNAs.
  • the formulations obtained by the process of the invention clearly improve the entry of pRNA into cell cultures and the biodistribution of pRNA into tissues. This action is produced by binding of the pRNAs to plasma components, such as saturable sites. of plasma proteins such as albumin, or glycerides such as HDL or LDL, that allow pRNA to reach different tissues, remain and be detected even after 4 hours of intravenous administration of pRNA in mice.
  • a first aspect of the invention is a process for obtaining a formulation comprising pRNA associated with plasma components, characterized in that the process comprises a stage in which the plasma components are dispersed in aqueous medium.
  • a second aspect of the present invention is the pharmaceutical compositions of pRNA associated with the plasma components obtainable by any of the processes defined in the first aspect or in any of its particular embodiments.
  • a final aspect of the present invention is the use of pharmaceutical compositions according to any of the compositions of the second aspect for the preparation of a medicament.
  • plasma components especially plasma proteins and plasma lipids
  • plasma components are capable of associating with pRNA, forming compounds, or complexes, that protect pRNA from the degradation of RNAases.
  • these plasma components are dispersed, or disaggregated.
  • ultrasound either by applying the ultrasonic source directly in the solution or using a bath equipped with a ultrasound source.
  • the ratio between pRNA and plasma components can vary between 1: 100 and 1: 50,000 p / p, but preferably varies between 1: 500 and 1: 10,000.
  • the proportions that vary between 1: 3000 and 1: 5000 are preferred, because high concentrations of pRNA are obtained, showing a good stability.
  • each of the pRNA duplex chains comprises between 15 and 40 nucleotides, referred to the nucleotide pairs since it is a double stranded RNA to get into the cell and more preferably between 19 and 25 nucleotides.
  • the dispersion can be carried out at different temperature ranges, but the optimum temperatures would be between 0 and 85 9 C, more preferably between 5 and 50-C, and even more preferably between 10 and 35 Q C.
  • Regarding the duration of The dispersion step depends on the effectiveness of the method used, but usually, and especially when dispersed by ultrasound, it lasts at least 1 second, more preferably at least 15 seconds, even more preferably between 30 seconds and 2 hours, and still more preferably between 60 seconds and 30 min.
  • Dispersion can be performed prior to mixing the plasma components with pRNA.
  • Another alternative which in turn is preferred, is the realization of the dispersion of the plasma components in the presence of pRNA, so that the association is made just after they have dispersed, so that o / and reduces plasma components to be added again.
  • dispersed plasma components are the ones that improve product stability.
  • These plasma components can be obtained from different methods known in the art, such as lyophilization of blood plasma or by ultrafiltration of this, although it can be used as a source of plasma, plasma and / or serum components, directly without any previous treatment.
  • the process of the invention can be used for the manufacture of various types of formulations, but good absorption and biodistribution results have been demonstrated when they are injectable.
  • Another advantage of the present process is that the improvement in absorption and biodistribution is not limited to some type of specific pRNA.
  • pRNA pRNA
  • the stability of pRNA can also be improved when it is derived in its 3 'or 5' position with lipids, peptides or carbohydrates, or another organic molecule that retards the degradation of pRNA by nucleases, in any of its chains, I already know the guide or the companion.
  • the antisense or sense chain can incorporate certain compounds to improve the entry of the molecule into the cell, such as the introduction of lipophilic compounds such as cholesterol, fatty acids or etc.
  • the pRNA duplex may comprise derivatization such as, for example, substitutions selected from 2'-O-methyl-ribonucleotide or 2'-deoxyribonucleotide or 2'-methoxyethyl-ribonucleotide or 2'-fluoro-deoxyribonucleotide, or 2'-fluoro-arabinonucleotide, nucleosides of restricted conformation (as those known in English with the acronym LNA or HNA), RNA with phosphorothioate bonds, or abbasic residues or ribitols or nucleosides containing modified bases such as 5-methylcytosine, 5- methyluracil, 4-alkynylcytosine, 5-alkynyluracil, 5-halogenocytosine, 5- halogenouracil, or other modified pyrimidines, 7-deazaadenine, 7- deazaguanine, hypoxanthine or other modified purines.
  • the pRNA duplex (Y) can inhibit and / or silence, being this inhibition / silencing totally or partially with respect to a control, various genes of pharmacological interest such as tumor necrosis factor alpha (TNFa), endothelial and vascular growth factor (VEGF), VEGF receptor (VEGF R1 / 2), granulocyte colony suppressor factor (GM-CSF-1) and macrophage (M-CSF-1), angiopoietin (ANGPT), apolipoprotein (ApoB), vascular neovascularization ( CNV), carboxy kinase phosphoenol pyruvate (PEPCK), human epidermal growth factor receptor (HER2), macrophage inflammatory protein (MIP2), N-methyl-D aspartate (NMDA) receptor, keratocyte-derived cytokine (KC), delta opium receptor (DOR), Discoidine domain receptor (DDR1), PIV phosphoprotein gene (PIV-P), heme oxygena
  • TNFa tumor necrosis factor alpha
  • VEGF endothelial and vascular growth factor
  • VEGF receptor VEGF R1 / 2
  • GM-CSF-1 granulocyte colony suppressor factor
  • M-CSF-1 macrophages
  • the pRNA sequence is: 1) anti-TNFa antisense or guide 5'-GAG GCU GAG ACA UAG GCA C-dT-dT-3 '(SEQ ID NO: 1) and 2) anti-TNFa sense or companion: 5'-GUG CCU AUG UCU CAG CCU C-dT-dT-3 '(SEQ ID NO: 2).
  • the RNA monomers are indicated, dT represent thymidine residues.
  • compositions of the second aspect of the invention comprise a preferred embodiment of at least one pharmaceutically acceptable excipient or vehicle.
  • Excipients include any inert or non-active material used in the preparation of a pharmaceutical dosage form.
  • tablet excipients include, but are not limited to: calcium phosphate, cellulose, starch or lactose.
  • Liquid dosage forms also include oral liquids for example in the form of liquors or suspensions, as well as injectable solutions.
  • the pharmaceutical composition can be formulated for transdermal administration in patch form.
  • compositions may optionally contain one or more of each of the following excipients: vehicles, diluents, colorants, flavoring agents, lubricants, solubilizing agents, disintegrants, binders and preservatives.
  • transfection agents are selected from one or mixtures of the following compounds lipofectin, liptopofectamine, oligofectamine, effectene, cellfectin, DOTAP, DOPE, fugene, polyethylene glycol, cholesterol, polyethyleneimide (PEI), Jet-polyethyleneimide, cell penetration peptides, peptides Trojans, TAT peptide, penetratin, oligoarginine, poly-lysine, rabies virus glycoprotein, gold nanoparticles, dendrimers, carbon nanotubes, cationic lipids and liposomes.
  • compositions described herein may have several uses, but the preferred ones are for the treatment of cancer, inflammation, colitis, ulcerative colitis, Crohn's disease and / or rheumatoid arthritis.
  • compositions of the present invention are useful for the preparation of medicaments for gene silencing.
  • compositions for the present invention are presented in a form adapted to oral or parenteral administration, preferably parenteral.
  • the administration of the compounds of this invention can be carried out by any method that releases the compound, preferably to the desired tissue.
  • These procedures include oral, intravenous, intramuscular, subcutaneous or intramedullary, intraduodenal, etc.
  • the pharmaceutical composition of the present invention can be administered locally by injection in an area near the region of interest (intramuscularly, subcutaneously, intradermally), injection in an area near the region of interest or intravenous injection.
  • parenteral administration they can be used as well as sterile aqueous solutions. If necessary, such aqueous solutions can be adequately buffered, and the liquid diluent first became Isotonic with sufficient saline or glucose.
  • aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal injection purposes.
  • all sterile aqueous media employed can be easily obtained by standard techniques well known to those skilled in the art.
  • Blood plasma is the yellowish liquid component of blood, in which blood cells should normally be suspended. It represents 55% of the total blood volume. The highest proportion is water (90% of the volume) and it contains dissolved proteins, glucose, coagulation factors, mineral ions, hormones and carbon dioxide ⁇ plasma being the main means of transporting excreted products) and other components.
  • Blood plasma is prepared by centrifuging a tube of fresh blood, until the cells precipitate at the bottom of the tube.
  • the blood plasma has an approximate density of 1025 kg / m 3 or 1.025 kg / L.
  • Blood serum is blood plasma without fibrinogen or other coagulation factors.
  • Plasma contains a wide variety of proteins including albumin, immunoglobulins and coagulation proteins such as fibrinogen.
  • Albumin constitutes about 60% of the total plasma proteins and is present in concentrations between 35 and 55 mg / ml. Plasma is the main contributor to osmotic blood pressure and functions as a transport molecule for other molecules with low aqueous solubility such as lipid soluble hormones, enzymes, fatty acids, metal ions, pharmaceutical compounds.
  • Albumin is structurally stable due to its 17 disulfide bridges and is the only one that has high water solubility and has the lowest isoelectric potential (pi) of plasma proteins. Because of his Structural integrity remains stable under conditions in which other proteins would be denatured.
  • the plasma is composed of 82.5% water, in addition to numerous inorganic and organic substances (plasma solutes), distributed as follows: Plasma proteins (70%): fibrinogen (7%), immunoglobulins (38%) , albumins (54%), other proteins (1%): VLDL, LDL, HDL, prothrombin, transferrin.
  • Organic (non-electrolytic) metabolites and waste compounds (20%) phospholipids (280 mg / dL), cholesterol (150 mg / dL), triacylglycerols (125 mg / dL), glucose (100 mg / dL), urea (15 mg / dL), lactic acid (10 mg / dL), uric acid (3 mg / dL), creatinine (1.5 mg / dL), bilirubin (0.5 mg / dL) and bile salts (traces).
  • pRNA is understood as small fragments of double-stranded interfering RNA of synthetic or natural origin complementary to the sequence of the genes that are used for the specific inhibition of the genes of which they are complementary.
  • the pRNAs are formed by two RNA chains that are called a guide chain (in English “guide strand” or “antisense strand") and an accompanying chain (in English “passenger strand” or “sense strand”).
  • the pRNA guideline binds to a protein complex called the RNA interference interference silencer complex (abbreviated as "RISC”) and the resulting complex is responsible for cellular degradation of messenger RNA complementary to the guide chain.
  • RISC RNA interference interference silencer complex
  • pRNA associated with plasma components is understood as the different complexes formed between the pRNAs and the molecules naturally present in the plasma formed after a process of disintegration or dispersion of the plasma components. In the association process they take part in a majority Electrostatic interactions and hydrophobic interactions with plasma components that are mostly blood proteins (albumins, fibrinogen, immunoglobulins, HDL, VLDL, LDL, prothrombin, transferrin etc.) and secondly lipids present in the plasma naturally (triglycerides, cholesterol, phospholipids, bile acids, etc.).
  • blood proteins albumins, fibrinogen, immunoglobulins, HDL, VLDL, LDL, prothrombin, transferrin etc.
  • secondly lipids present in the plasma naturally triglycerides, cholesterol, phospholipids, bile acids, etc.
  • Plasma components are understood as molecules that are dissolved in the plasma naturally, and especially the mixture of proteins and lipids present in the plasma. Due to the plasma composition, this mixture can contain fibrinogen, immunoglobulins, albumins, and other proteins such as VLDL, LDL, HDL, prothrombin, transferine, etc., together with triglycerides, cholesterol, phospholipids, bile acids and etc.
  • the proportions between plasma components for use in the present invention, and especially of proteins and lipids can vary and can be adjusted as needed. These components can basically consist of: either plasma proteins; or plasma lipids; although they can also be found in the form of a mixture of protein vs. proportions. lipids between 1: 1000 and 1000: 1. In a preferred embodiment the ratio of proteins to plasma lipids is around the ratio in which it is found in the plasma.
  • dispersing the plasma components in an aqueous medium is understood in the context of the present invention as the application of a physical force such as that produced by the action of ultrasound, to the solution comprising the plasma components, such as the plasma itself. , which results in the separation of molecular aggregates to give more or less isolated molecules exposing hydrophobic pockets and charged parts that were occluded by the aggregation process to the components of the aqueous solution, resulting in an increase in capacity of formation of electrostatic interactions and hydrophobic interactions with pRNAs.
  • the degree of dispersion of plasma components could be estimated by various techniques that are based on the phenomenon of light scattering by the biomolecules and that allow to estimate the hydrodynamic size of the biomolecules.
  • gene expression means the cellular production of a specific protein encoded by the corresponding gene.
  • the gene found in the chromosomes present in the nucleus of the cells is transcribed generating a messenger RNA molecule that is released in the cytoplasm. There the messenger RNA sequence directs the synthesis of the protein.
  • the result of this process which is known as gene expression, is the synthesis of a protein whose sequence is encoded by the corresponding gene.
  • FIGURE 1 shows the inhibitory activity in vivo of lipid conjugated siRNAs several Cu and C E against TNF- ⁇ mouse, using the protocols A and B in HeLa cells.
  • FIGURE 2 shows the in vivo inhibitory activity of pRNA anti-TNF-a conjugated with acridine or quindoline, using protocols A and B in the HeLa cells.
  • Statistical analysis was performed using the ANOVA method with the Bonferroni treatment.
  • FIGURE 3 shows the effects of the formulation of the invention on the inhibitory activity in vivo of various anti-TNF ⁇ siRNA conjugated with lipid C and C E in 4T1 cells.
  • FIGURE 4 shows the effect of the formulation object of the invention on the in vivo inhibitory activity of pRNA anti TNF- ⁇ conjugated with acridine or quindoline, using protocols A and B in HeLa cells.
  • FIGURE 5 shows the effects of the formulation object of the invention on the in vivo inhibitory activity of pRNA against PEPCK in FAO cells.
  • the description of the A, B and 14 sequences of the pRNAs is detailed in Table 1 and the chemical structure of the modifications is presented in Schemes 1 and 2.
  • the amounts of mRNA produced by the cells were determined after 48 hours of treatment. with the pRNAs.
  • Statistical analysis was performed using the ANOVA method with the Bonferroni treatment.
  • FIGURE 6 shows the measurement of fluorescence of siRNA pRNA in 4T1 cells by flow cytometry.
  • FIGURE 7 shows the biodistribution of a fluorescent pRNA.
  • FIGURE 8 shows a process diagram for the formulation of the dispersion of the pRNA and the serum components through the use of sonication.
  • the oligoribonucleotides were prepared using a synthesizer from the Applied Biosystems model 3400 commercial house using 2- cyanoethyl phosphoramidites and tert-butyldimethylsilyl (TBDMS) type protectors for the protection of the 2 'position hydroxyl group.
  • the polymeric supports obtained were treated with a concentrated solution of ammonia-ethanol (3: 1) for 1 h at 55 ° C. The supports were washed with ethanol and the resulting solutions were combined and evaporated to dryness. The resulting products were treated with 0.15 ml of triethylaminetris (hydrofluoride) / triethylamine / N-methylpyrrolidone (4: 3: 6) for 2.5 h at 65 Q C in order to eliminate TBDMS groups. The reactions were stopped by the addition of 0.3 ml of isopropoxytrimethylsilane and 0.75 ml of ether. The resulting mixtures were stirred and cooled to 4 Q C.
  • MALDI-TOF spectra were performed on a Perseptive Voyager DETMRP mass spectrometer, equipped with a 337 nm nitrogen laser using a pulse of 3ns.
  • the matrix used contained 2,4,6-trihydroxyacetophenone (THAP, 10 mg / ml in ACN / water 1: 1) and ammonium citrate (50 mg / ml in water). Oligonucleotides.
  • RNA sequences were obtained from commercial sources (Sigma-Proligo, Dharmacon): companion chain negative control 5'-CAG UCG CGU UUG CGA CUG G-dT-dT-3 '(SEQ ID NO: 3), control guide chain negative 5'-CCA GUC GCA AAC GCG ACU G-dT-dT-3 '(SEQ ID NO: 4), anti-TNFa guide chain: SEQ ID NO: 1 and anti-TNFa companion chain: SEQ ID NO: 2.
  • the RNA type monomers are detailed in capital letters, the abbreviation dT corresponds timidly.
  • TNF- ⁇ antisense chain with 3'-end cholesterol SEQ ID NO: 1 -cholesterol was prepared using the commercial support cholesterol-tetraethylene glycol (TEG) -3'-CPG (Glen Research). Cy3-labeled fluorescent pRNA was obtained from commercial sources (siGLO Thermo scientific, Dharmacon USA). The anti TNF- ⁇ pRNA sequences had been described in the literature to inhibit mouse TNF- ⁇ mRNA [D.R. Sorensen et al. Gene silencing by systemic delivery of synthet ⁇ c siRNA in adult miece. Journal of Molecular Biology 327 (2003) pages 761-766.].
  • HeLa cells were cultured under usual conditions: 37 e C, 5% CO2, modified Dulbecco Eagle medium, 10% fetal bovine serum, 2mM L-glutamine, supplemented with penicillin (100 U / ml) and streptomycin (100 mg / mL) . All experiments were done at a confluence of 40-60%. HeLa cells were transfected with 250 ng of the plasmid expressing the mouse TNF- ⁇ gene using lipofectin (Invitrogen) and following the manufacturer's instructions. 4T1 mouse cells were cultured under usual conditions.
  • TNF-a tumor necrosis factor
  • anti-TNFa guide chain SEQ ID NO: 1 anti-TNFa guide chain SEQ ID NO: 1
  • anti-TNFa companion chain SEQ ID NO: 2 anti-TNFa companion chain SEQ ID NO: 2.
  • This duplex of pRNA (anti TNF-a) had already been previously described for efficiently regulating the mouse TNF- ⁇ mRNA (S DR Sorensen et al. Gene silencing by systemic delivery of synthetic siRNA in adult mice. Journal of Molecular Biology 327 (2003 ) pages 761-766.). 12 duplexes with various hydrophobic compounds have been prepared at the ends either in the guide chain or in the accompanying chain (Table 1).
  • oligonucleotides conjugated with acridine or quindoline at the 3 'end were prepared (table 1): Two accompanying chains conjugated with acridine 3 or quindoline 4 respectively and two guide chains conjugated with acridine 6 or quindoline 5.
  • the cholesterol-conjugated guide chain at 3 'end was prepared using commercial reagents. The synthesis of RNA sequences has been developed by the inventors of the patent.
  • G Guide chain / A: companion chain.
  • the nucleotide sequences of said chains are 5 'to 3'.
  • mC and mU represent the position of 2'-0-methyl-C and 2'-0-methyl-U derivatives respectively.
  • PROTOCOL A HeLa cells were transfected with 250 ng of pCAm TNF- ⁇ mouse plasmid using lipofectin. An hour later the cells were treated with the pRNA (100nM) without using any transfection reagent, but were incubated with fetal bovine serum and treated with ultrasound before the transfection process. After 48 hours the amount of TNF- ⁇ produced by the cells was analyzed by ELISA.
  • PROTOCOL B HeLa cells were transfected with 250 ng of the mouse plasmid pCAm TNF- ⁇ using lipoofectin as described in section A. One hour later the cells were treated with the pRNA duplex (100nM) in the absence of serum. After 48 hours the amount of TNF- ⁇ produced by the cells was analyzed by ELISA
  • Figure 2 indicates that the acridine or quindoline conjugated pRNAs pretreated with serum and ultrasound produced a 30-50% inhibition in TNF- ⁇ production compared to the random pRNA used as a negative control. No inhibition was observed in the absence of the formulation object of the invention. Only quindoline at the 3 'end of the sense chain increased the inhibition of TNF- ⁇ expression.
  • the inhibitory properties of pRNAs in 4T1 mouse cells were then studied. These cells produce mouse TNF- ⁇ endogenously. In these experiments the cells were treated with the pRNA duplex (100 nM) without the use of any transfection reagent. The pRNAs were incubated with serum and ultrasound or simply added to the cells without prior treatment. At 24 hours the amount of TNF- ⁇ produced by the cells was analyzed by ELISA.
  • the guide and companion sequences complementary to PEPCK were hybridized and the resulting duplex was used to inhibit the expression of the PEPCK-C gene.
  • the properties of pRNA in FAO cells (rat hepatoma) with and without the formulation object of the invention were studied. These cells express the PEPCK-C gene endogenously (pckl) therefore it was not necessary to carry out cotransfection with the corresponding plasmid.
  • the following protocols were used: A) FAO cells were treated with the pRNA duplex (100nM) in the absence of serum. After 48 hours the amount of pepCK-C mRNA produced by the cells was analyzed by qRT-PCR. B) FAO cells were treated with the pRNA duplex (100nM) incubated with fetal bovine serum and ultrasound. After 48 hours the amount of PEPCK-C mRNA produced by the cells was analyzed by qRT-PCR.
  • mice of the ICR strain of 8 weeks of age were used (Har ⁇ an, Interfauna Iberian Spain). The animals were housed in standard environmental conditions, temperature 22 S C, relative humidity of 70-80% and with a lighting cycle of 12 hours a day, until the time of testing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La presente invención trata sobre un método para obtener formulaciones que mejoran la capacidad de unión de los pARNí a los componentes plasmáticos, que favorecen el transporte del pARNi en la sangre, que incrementan el paso del pARNí a través de la membrana celular, y así, aumentan la actividad inhibitoria de los pARNi. La invención describe un proceso para la obtención de una formulación que comprende pARNi asociado a los componentes plasmáticos, caracterizado porque el proceso comprende una etapa en la que se dispersan los componentes plasmáticos en medio acuoso.

Description

Método para la administración de oiiqonucleótidos
La presente invención se refiere a un método para la manufacturación de composiciones que comprenden pARNi asociado a los componentes plasmáticos. Por lo tanto pertenece al campo de la técnica de la biotecnología.
ESTADO DE LA TÉCNICA ANTERIOR
El ARN de interferencia (ARNi) es un importante mecanismo de regulación génica que puede ser utilizado para el silenciamiento específico de genes. El proceso es iniciado por ARNs de doble cadena que se denominan pARNi, pequeños ARN de interferencia (small interfering RNAs, siRNAs). Los pARNi, complementarios a un ARN mensajero determinado, se unen a un complejo proteico conocido como RISC. El complejo formado por la unión de la cadena antisense o guía con RISC cataliza la degradación eficiente de un ARN mensajero específico, provocando un descenso de la proteína Diana. Durante los últimos años, se han realizado numerosos estudios con el fin de utilizar este fenómeno de regulación génica natural como base para una nueva terapia encaminada hacia la reducción específica de una proteína determinada previamente. Así, dicha terapia podría ser utilizada para el tratamiento de enfermedades en las que se conoce que son causadas por la sobreexpresión de genes tales como el cáncer o enfermedades inflamatorias [D. Brumcot y col. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology 2 (2006), páginas 71 1 -719; A. de Fougerolles y col. RNA ínterference in vivo: toward synthetic small inhíbítory RNA-based therapeutics Methods in Enzymology 392 (2005), páginas 278-296; C. Chakraborty Potentiality of small interfering RNAs (síRNA) as recent therapeutic targets for gene-silencing. Current Drug Targets 8 (2007) páginas. 469-482]. La administración celular in vivo de los pARNi, es quizás uno de los problemas más importante para el desarrollo de un fármaco terapéutico eficiente basado en ARN de interferencia. [D. Brumcot y col. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology 2 (2006), páginas 71 1 - 719; A. de Fougerolles y col. RNA interference ¡n vivo: toward synthetic small inhibitory RNA-based therapeutics Methods in Enzymology 392 (2005), páginas 278-296; C. Chakraborty Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Current Drug Targets 8 (2007) páginas. 469-482]. Los pARNi, que son moléculas hidrofílicas cargadas negativamente, no tienen la capacidad, por si solos, de distribuirse en la sangre e internalizarse, o penetrar al interior celular, a través de la membrana celular que es hidrofóbica. Para solucionar este problema se han descrito varias estrategias tales como la utilización de nanopartículas o la utilización de liposomas [J. Soutschek y col. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, (2004) páginas 173- 178; D.H. Kim y col. Strategíes for silencing human disease using RNA interference. Nature Reviews 8 (2007), páginas 173-184]. Estos vehículos pueden tener una doble función: ser agentes permeabilizadores celulares y, a su vez, ser agentes protectores de los pARNi, ya que los pARNi desnudos son rápidamente degradados por las ARNasas del suero. Por esta razón, se han diseñado y sintetizado un número elevado de pARNi modificados para aprovechar la ventaja de la unión los pARNi modificados a componentes específicos del suero (como albúmina, HDL y LDL) y, de esta manera, ayudar a la distribución de las moléculas de pARNi en el organismo.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención trata sobre un método para obtener formulaciones que mejoran la capacidad de unión de los pARNi a los componentes plasmáticos, que favorecen el transporte del pARNi en la sangre, que incrementan el paso del pARNi a través de la membrana celular, y así, aumentan la actividad inhibitoria de los pARNi. Las formulaciones obtenidas por el proceso de la invención mejoran de forma clara la entrada de los pARNi en cultivos celulares y la biodistribución del pARNi en los tejidos. Esta acción se produce por unión de los pARNi a los componentes plasmáticos, tales como los sitios saturables de las proteínas plasmáticas como la albúmina, o los glicéridos tales como HDL o LDL, que le permiten al pARNi llegar a los diferentes tejidos, permanecer y ser detectados incluso después de 4 horas de la administración intravenosa del pARNi en ratones.
Por ello un primer aspecto de la invención es un proceso para la obtención de una formulación que comprende pARNi asociado a los componentes plasmáticos, caracterizado porque el proceso comprende una etapa en la que se dispersan los componentes plasmáticos en medio acuoso.
Un segundo aspecto de la presente invención son las composiciones farmacéuticas de pARNi asociado a los componentes plasmáticos obtenibles por cualquiera de los procesos definidos en el primer aspecto o en cualquiera de sus realizaciones particulares.
Un último aspecto de la presente invención es el uso de las composiciones farmacéuticas según cualquiera de las composiciones del segundo aspecto para la preparación de un medicamento. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Los presentes inventores han descubierto que, sorprendentemente, los componentes plasmáticos, en especial las proteínas plasmáticas y los lípidos plasmáticos son capaces de asociarse con pARNi, formando compuestos, o complejos, que protegen al pARNi de la degradación de las ARNasas. Para ello es vital que estos componentes plasmáticos estén dispersos, o disgregados. Hay diferentes técnicas conocidas en la técnica para hacer esta disociación, pero una de las usadas, por su versatilidad, economía y facilidad es mediante la utilización de ultrasonidos, ya sea aplicando la fuente de ultrasonidos directamente en la solución o utilizando un baño equipado con una fuente de ultrasonidos. [Japanese Journal of Applied Physícs, 47, 2008 páginas 2000- 2004]. La proporción entre pARNi y los componentes plasmáticos puede variar entre 1 :100 y 1 :50000 p/p, pero preferiblemente varía entre 1 :500 y 1 :10000. Las proporciones que varían entre 1 :3000 y 1 :5000 son preferidas, porque se obtienen elevadas concentraciones de pARNi, mostrando éste una buena estabilidad.
Preferiblemente cada una de las cadenas del dúplex de pARNi comprende entre 15 y 40 nucleótidos, referidos a los pares de nucleótidos ya que se trata de un ARN bicatenario para conseguir entrar en la célula y más preferiblemente entre 19 y 25 nucleótidos.
La dispersión se puede llevar a cabo a diferentes intervalos de temperatura, pero las temperaturas óptimas serían entre 0 y 859C, más preferiblemente entre 5 y 50-C, y aun más preferiblemente entre 10 y 35QC. Respecto a la duración de la etapa de dispersión depende de la eficacia del método utilizado, pero normalmente, y en especial cuando se dispersa mediante ultrasonidos, este dura al menos 1 segundo, más preferiblemente al menos 15 segundos, aun más preferiblemente entre 30 segundos y 2 horas, y todavía mas preferiblemente entre 60 segundos y 30 min.
La dispersión, o disgregación, se puede realizar con anterioridad a la mezcla de los componentes plasmáticos con pARNi. Otra alternativa, que a su vez es la preferida, es la realización de la dispersión de los componentes plasmáticos en presencia de pARNi, por lo que la asociación se realiza justo después de que estos se hayan dispersado, por lo que se evita o/y reduce que los componentes plasmáticos se vuelvan a agregar.
Como ya se ha comentado la asociación entre los componentes plasmáticos dispersados y el pARNi son los que mejoran la estabilidad del producto. Estos componentes plasmáticos se puede obtener de diferentes métodos conocidos en la técnica, como por ejemplo la liofilización del plasma sanguíneo o por ultrafiltración de éste, aunque se puede utilizar como fuente de los componentes plasmáticos, plasma y/o suero, directamente sin ningún tratamiento previo. Esto es sorprendente porque el pARNi es inestable en el plasma per se, pero este pARNi muestra un comportamiento totalmente diferente si el plasma se ha dispersado. Esto es útil porque facilita el proceso de manufacturación, al no ser necesario el aislamiento de los componentes plasmáticos.
El proceso de la invención se puede utilizar para la manufacturación de diversos tipos de formulaciones, pero se han demostrado buenos resultados de absorción y biodistribución cuando éstas son inyectables.
Otra ventaja del presente proceso es que la mejora en la absorción y biodistribución no está limitada a algún tipo de pARNi en concreto. Por ejemplo, se ha conseguido formar los asociados con pARNi sin la necesidad de que esté derívatizado en algunas de sus posiciones terminales 3' ó 5', como por ejemplo en el pARNi sin modificar sintetizado por métodos químicos o sintetizado a partir de un ADN molde mediante la utilización de ARN polimerasa. Aunque se ha observado que también se puede mejorar la estabilidad de pARNi cuando está derívatizado en su posición 3' ó 5' con lípidos, péptidos o carbohidratos, u otra molécula orgánica que retarde la degradación del pARNi por nucleasas, en cualquiera de sus cadena, ya se la guía o la acompañante. Además la cadena antisentido o sentido pueden incorporar determinados compuestos para la mejora de la entrada de la molécula en la célula, como puede ser la introducción de compuestos lípófílos como colesterol, ácidos grasos o etc.
El dúplex de pARNi puede comprender derivatización como por ejemplo sustituciones seleccionadas entre 2'-O-metilo-ribonucleótido o 2'- desoxirribonucleótido o 2'-metoxietil-ribonucleótido o 2'-fluoro- desoxirribonucleótido, o 2'-fluoro-arabinonucleótido, nucleósídos de conformación restringida (como los conocidos en inglés con las siglas LNA o HNA), ARN con enlaces fosforotioato, o residuos abásicos o ribitoles o nucleósidos que contienen bases modificadas tales como 5-metílcitosina, 5- metiluracilo, 4-alquinilcitosina, 5-alquiniluracilo, 5-halogenocitosina, 5- halogenouracilo, u otras pirimidinas modificadas, 7-deazaadenina, 7- deazaguanina, hipoxantina u otras purinas modificadas. La derivatización puede incorporar a cualquiera de las dos cadenas, aunque la cadena acompañante ya que es mas permisiva a los cambios.
El dúplex de pARNí (Y) puede inhibir y/o silenciar, siendo esta inhibición/silenciamiento total o parcialmente respecto de un control, diversos genes de interés farmacológico como el factor de necrosis tumoral alfa (TNFa), factor de crecimiento endotelial y vascular (VEGF), receptor de VEGF (VEGF R1/2), factor supresor de colonias de granulocítos (GM-CSF-1 ) y de macrófagos (M-CSF-1 ), angiopoyetina (ANGPT), apolipoproteína (ApoB), neovascularización vascular (CNV), carboxiquinasa fosfoenol piruvato (PEPCK), receptor del factor de crecimiento epidérmico humano (HER2), proteína inflamatoria de macrófagos (MIP2), receptor de N-metil-D aspartato (NMDA), citoquina derivadas de los keratocitos (KC), receptor opio de delta (DOR), receptor del dominio de Discoidina (DDR1 ), gen de la fosfoproteína PIV (PIV-P), oxigenasa hemo (HMOX1 ), caveloína, transportador de dopamina, proteína fluorescente verde y/o proteína del sarcoma de Swing (EWS-FL/1 ). Los genes preferidos para silenciar/inhibir son el factor de necrosis tumoral alfa (TNFa), factor de crecimiento endotelial y vascular (VEGF), receptor de VEGF (VEGF R1/2), factor supresor de colonias de granulocítos (GM-CSF-1 ) y de macrófagos (M-CSF-1 ). TNF-α es un mediador importante de la apoptosis tanto en inflamación como en la respuesta inmunitaria. Además, la sobreexpresión de TNF-α está confirmada en el desencadenamiento de la patogénesis de muchas enfermedades humanas. Por todo ello la inhibición de esta citoquina es relevante desde el punto de vista biomédico. PEPCK es una proteína importante en el proceso de gluconeogénesis y se encuentra sobreexpresada en la diabetes. Es la responsable de un aumento en la producción de glucosa hepática en pacientes diabéticos y en modelos animales. Como ejemplos de la presente invención la secuencia de pARNi es: 1 ) anti- TNFa antisense o guía 5'-GAG GCU GAG ACA UAG GCA C-dT-dT-3' (SEQ ID NO: 1 ) y 2) anti-TNFa sense o acompañante: 5'-GUG CCU AUG UCU CAG CCU C-dT-dT-3' (SEQ ID NO: 2). En letras mayúsculas se indican los monómeros de ARN, dT representan residuos de timidina. Este dúplex de pARNi (anti TNF-α) ya había sido descrito previamente por regular eficientemente el mARN de TNF-α de ratón (D.R. Sorensen y col. Gene silencing by systemíc delivery of synthetic síRNA in adult mice. Journal of Molecular Biology 327 (2003) páginas 761 -766.). Se han preparado 12 duplexes con diversos compuestos hídrofóbicos en los extremos ya sea en la cadena guía o en la cadena acompañante (Tabla 1 ). También 3) cadena antisense o guía anti-PEPCK-C: 5'-UUACAUCUGGCUGAUUCUC-dT-dT-3' (SEQ ID NO: 5) y 4) cadena sense o acompañante anti-PEPCK-C: 5'- GAGAAUCAGCCAGAUGUAA-dT-dT-3' (SEQ ID NO: 6). En letras mayúsculas se indican los monómeros de ARN, dT representan residuos de timidina.
Las composiciones farmacéuticas del segundo aspecto de la invención comprenden una realización preferida de al menos un excipiente o vehículo farmacéuticamente aceptable. Los excipientes incluyen cualquier material inerte o no activo usado en la preparación de una forma de dosificación farmacéutica. Por ejemplo, los excipientes de comprimido incluyen, pero no se limitan a: fosfato de calcio, celulosa, almidón o lactosa. Las formas de dosificación líquidas también incluyen líquidos orales por ejemplo en forma de licores o suspensiones, así como disoluciones inyectables. Se puede formular la composición farmacéutica para la administración transdérmica en forma de parche. Todas las composiciones anteriormente descritas pueden contener opcionalmente uno o más de cada uno de los siguientes excipientes: vehículos, diluyentes, colorantes, agentes aromatizantes, lubricantes, agentes solubilizantes, desintegrantes, ligantes y conservantes.
Aunque una de las ventajas de la presente invención es que se puede formular pARNi sin ia necesidad de un agente de transfección, éste se puede adicionar a la composición farmacéutica para mejorar aun si cabe las propiedades de ésta, o para vectorizarla. Los agente de transfección preferidos se seleccionan entre uno o mezclas de los siguientes compuestos lipofectina, liptofectamina, oligofectamina, effectene, cellfectina, DOTAP, DOPE, fugene, polietílenglicol, colesterol, polietilenimida (PEI), Jet-polietilenimida, péptidos de penetración celular, péptidos troyanos, péptido TAT, penetratina, oligoarginina, polí-lisina, glicoproteína del virus de la rabia, nanopartículas de oro, dendrímeros, nanotubos de carbono, lípidos catiónicos y liposomas.
Las composiciones farmacéuticas descritas en la presente memoria pueden tener varios usos, pero los preferidos son para el tratamiento del cáncer, inflamación, colitis, colitis ulcerativa, enfermedad de Crohn y/o artritis reumatoides. En general, las composiciones de la presente invención son útiles para la preparación de medicamentos para el silenciamiento génico.
La composición farmacéutica preferidas son para la presente invención se presenta en una forma adaptada a la administración oral o parenteral, preferiblemente parenteral.
La administración de los compuestos de esta invención se puede realizar a través de cualquier procedimiento que libere el compuesto, preferentemente al tejido deseado. Estos procedimientos incluyen las vías oral, intravenosa, intramuscular, subcutánea o intramedular, intraduodenal, etc. Preferiblemente la composición farmacéutica de la presente invención puede administrarse localmente mediante inyección en una zona cercana a la región de interés (intramuscularmente, subcutáneamente, intradérmícamente), inyección en una zona cercana a la región de interés o inyección intravenosa. Con el propósito de la administración parenteral, se pueden usar así como soluciones acuosas estériles. Si es necesario, tales soluciones acuosas pueden tamponarse de forma adecuada, y el diluyente líquido se convirtió primero en isotónico con el suficiente suero salino o glucosa. Estas soluciones acuosas son especialmente adecuadas para propósitos de inyección intravenosa, intramuscular, subcutánea e intraperitoneal. A este respecto, todos los medios acuosos estériles empleados se pueden obtener con facilidad mediante técnicas estándar bien conocidas por aquéllos expertos en la técnica.
Definiciones
El plasma sanguíneo es el componente líquido amarillento de la sangre, en el cual las células sanguíneas deberían estar normalmente suspendidas. Representa el 55% del volumen total sanguíneo. La mayor proporción es agua (90% del volumen) y contiene proteínas disueltas, glucosa, factores de coagulación, iones minerales, hormonas y dióxido de carbono {siendo el plasma el principal medio para el transporte de productos excretados) y otros componentes.
El plasma sanguíneo es preparado centrifugando un tubo de sangre fresca, hasta que las células se precipiten en el fondo del tubo. El plasma sanguíneo tiene una densidad aproximada de 1025 kg/m3 o 1 ,025 kg/L. El suero sanguíneo es plasma sanguíneo sin fíbrinógeno u otros factores de coagulación.
El plasma contiene una gran variedad de proteínas incluyendo albúmina, inmunoglobulinas y proteínas de coagulación como fíbrinógeno. La albúmina constituye cerca del 60% del total de las proteínas del plasma y esta presente en unas concentraciones entre 35 y 55 mg/ml. El plasma es el principal contribuyente de la presión osmótica de la sangre y funciona como molécula transportadora de otras moléculas con baja solubilidad acuosa tales como hormonas solubles en lípídos, enzimas, ácidos grasos, iones metálicos, compuestos farmacéuticos. La albúmina es estructuralmente estable debido a sus 17 puentes disulfuro y es la única que tiene alta solubilidad en agua y tiene el más bajo potencial isoeléctrico (pi) de las proteínas plasmáticas. Debido a su integridad estructural permanece estable bajo condiciones en las cuales otras proteínas se desnaturalizarían.
El plasma está compuesto por un 82,5% de agua, además de numerosas sustancias inorgánicas y orgánicas (solutos del plasma), distribuidas de la siguiente forma: Proteínas plasmáticas (70%): fibrinógeno (7%), inmunoglobulinas (38%), albúminas (54%), otras proteínas (1 %): VLDL, LDL, HDL, protrombina, transferrina. Metabolitos orgánicos (no electrolíticos) y compuestos de desecho (20%) fosfolípidos (280 mg/dL), colesterol (150 mg/dL), triacilgliceroles (125 mg/dL), glucosa (100 mg/dL), urea (15 mg/dL), ácido láctico (10 mg/dL), ácido úrico (3 mg/dL), creatinína (1 ,5 mg/dL), bilirrubina (0,5 mg/dL) y sales biliares (trazas).
Por pARNi se entiende en el contexto de la presente invención como pequeños fragmentos de ARN de interferencia de doble cadena de origen sintético o natural complementarios a la secuencia de los genes que se utilizan para la inhibición específica de los genes de los que son complementarios. Los pARNi están formados por dos cadenas de ARN que se denominan cadena guía (en inglés "guide strand" o "antisense strand") y cadena acompañante (en inglés "passenger strand" o "sense strand"). La cadena guía del pARNi se une a un complejo de proteínas denominado complejo silenciador del RNA de interferencia (en inglés "RNA-interference silencing complex", abreviado como "RISC") y el complejo resultante es el responsable de la degradación celular del RNA mensajero complementario a la cadena guía. Para la unión de la cadena guía al complejo RISC es necesario administrar el ARN de doble cadena o pARNi ya que la cadena guía por si sola no puede unirse al complejo RISC.
Por pARNi asociado a los componentes plasmáticos se entiende en el contexto de la presente invención como los diferentes complejos formados entre los pARNi y las moléculas presentes de forma natural en el plasma formados después de un proceso de disgregación o dispersión de los componentes del plasma. En el proceso de asociación intervienen de forma mayoritaria interacciones electroestáticas e interacciones hidrofóbicas con los componentes del plasma que mayoritariamente son proteínas sanguíneas (albúminas, fibrinógeno, inmunoglobulinas, HDL, VLDL, LDL, protrombina, transferrina etc..) y en segundo lugar lípidos presentes en el plasma de forma natural (triglicéridos, colesterol, fosfolípidos, ácidos biliares, etc.).
Por componentes plasmáticos se entiende las moléculas que están disueltas en el plasma de forma natural, y en especial la mezcla de proteínas y lípidos presentes en el plasma. Por la composición del plasma esta mezcla puede contener fibrinógeno, inmunoglobulinas, albúminas, y otras proteínas como son las VLDL, LDL, HDL, protrombina, transferína, etc., junto con triglicéridos, colesterol, fosfolípidos, ácidos biliares y etc. Las proporciones entre los componentes plasmáticos para su uso en la presente invención, y en especial de las proteínas y de los lípidos puede variar y se puede ajustar según necesidad. Estos componentes pueden consistir básicamente en: o bien proteínas plasmáticas; o bien lípidos plasmáticos; aunque también se pueden encontrar en forma de mezcla de proporciones de proteína vs. lípidos de entre 1 :1000 y 1000:1. En una realización preferida la proporción de proteínas a lípidos plasmáticos está alrededor de la relación en la que se encuentra en el plasma.
Por dispersar los componentes plasmáticos en medio acuoso se entiende en el contexto de la presente invención como la aplicación de una fuerza física tal, como la producida por acción de los ultrasonidos, a la solución que comprende los componentes plasmáticos, como por ejemplo el mismo plasma, que resulta en la separación de los agregados moleculares para dar moléculas mas o menos aisladas exponiendo los bolsillos hidrofóbicos y las partes cargadas que estaban ocluidas por el proceso de agregación a los componentes de la solución acuosa, lo que resulta en un aumento de la capacidad de formación de interacciones electroestáticas e interacciones hidrofóbicas con los pARNi. El grado de dispersión de los componentes plasmáticos se podría estimar por diversas técnicas que se basan en el fenómeno de la dispersión de la luz por las biomoléculas y que permiten estimar el tamaño hidrodinámico de las biomoléculas.
Por el término "expresión génica" se entiende por la producción celular de una proteína determinada codificada por el gen correspondiente. De forma general el gen que se encuentra en los cromosomas presentes en el núcleo de las células se transcribe generando una molécula de ARN mensajero que se libera en el citoplasma. Allí la secuencia del ARN mensajero dirige la síntesis de la proteína. El resultado de este proceso, que se conoce como expresión génica, es le síntesis de una proteína cuya secuencia esta codificada por el gen correspondiente.
DESCRIPCIÓN DE LAS FIGURAS FIGURA 1 muestra la actividad inhibitoria in vivo de varios pARNi conjugados con lípidos Cu y Cíe contra TNF-α de ratón, usando los protocolos A y B en células HeLa. 1. pARNi sin modificar, 2. pARNi conjugado con colesterol en el extremo 3' de la cadena acompañante, 7. pARNi conjugado con un lípído Cu en el extremo 3' de la cadena acompañante, 8. pARNi conjugado con un lípido Cis en el extremo 3' de la cadena acompañante, 1 1 . pARNi conjugado con un lípido C en el extremo 3' de la cadena acompañante y unidades 2'OMe, 12. pARNi conjugado con Ci4N en el extremo 5' de la cadena acompañante, 14. pARNi de secuencia aleatoria usado como secuencia control negativa. La descripción de las secuencias 1 , 2, 7, 8, 1 1 , 12 y 14 de los pARNi se detalla en la Tabla 1 y la estructura química de las modificaciones se presenta los esquemas 1 y 2, Los datos representan las medias ±ES, n=3 y son comparados con la secuencia aleatoria. ***p<0,001 , *p<0,05. El análisis estadístico se realizó usando el método ANOVA con el tratamiento de Bonferroni.
FIGURA 2 muestra la actividad inhibitoria ín vivo de pARNi anti-TNF-a conjugados con acridina o quindolina, usando los protocolos A y B en las células HeLa. 1. pARNi sin modificar, 3. pARNi conjugado con acridina en el extremo 3' de la cadena sentido, 4. pARNí conjugado con quindolina en el extremo 3' de la cadena sentido, 14. pARNi de secuencia aleatoria usada como control negativo. La descripción de las secuencias 1 , 3, 4 y 14 de los pARNi se detalla en la Tabla 1 y la estructura química de las modificaciones se presenta los esquemas 1 y 2, Los datos representan las medias ±ES, n=3 y son comparados con una secuencia aleatoria. **p<0,01 , *p<0,05. El análisis estadístico se realizó usando el método ANOVA con el tratamiento de Bonferroni.
FIGURA 3 muestra los efectos de la formulación objeto de la invención sobre la actividad inhibitoria in vivo de varios pARNi anti TNF-α conjugados con lípidos C y Cíe en células 4T1. 1. pARNi sin modificar, 2. pARNi conjugado con colesterol en el extremo 3' de la cadena acompañante, 7. pARNi conjugado con un lípido C en el extremo 3' de la cadena acompañante, 8. pARNi conjugado con un lípido Cíe en el extremo 3' de la cadena acompañante, 9. pARNi conjugado con lípido Cu en el extremo 3' de la cadena guía, 10. pARNi conjugado con lípido ds en el extremo 3' de la cadena guía, 11. pARNi conjugado con un lípido C en el extremo 3' de la cadena acompañante y unidades 2'-OMe, 12. pARNi conjugado con C N en el extremo 5' de la cadena acompañante, 14. pARNi de secuencia aleatoria usado como secuencia control. La descripción de las secuencias 1 , 2, 7, 8, 9, 10, 11 , 12 y 14 de los pARNi se detalla en la Tabla 1 y la estructura química de las modificaciones se presenta los esquemas 1 y 2, Los datos representan las medias ±ES, n=3 y son comparados con una secuencia aleatoria. **p<0,001 , **p<0,01. El análisis estadístico se realizó usando el método ANOVA con el tratamiento de con el tratamiento de Bonferroni.
FIGURA 4 muestra el efecto de la formulación objeto de la invención sobre la actividad inhibitoria in vivo de pARNi anti TNF-α conjugados con acridina o quindolina, usando los protocolos A y B en las células HeLa. 1. pARNi sin modificar, 3. pARNi conjugado con acridina en el extremo 3' de la cadena acompañante, 6. pARNi conjugado con acridina en el extremo 3' de la cadena guía, 4. pARNi conjugado con quindolína en el extremo 3' de la cadena acompañante, 5. pARNi conjugado con quindolína en el extremo 3' de la cadena guía, 14. pARNi de secuencia aleatoria usada como control negativo. La descripción de las secuencias 1 , 3, 6, 4, 5 y 14 de los pARNi se detalla en la Tabla 1 y la estructura química de las modificaciones se presenta los esquemas 1 y 2, Los datos representan las medias ±ES, n=3 y son comparados con la secuencia aleatoria. **p<0,01 , *p<0,05. El análisis estadístico se realizó usando el método ANOVA con el tratamiento de Bonferroni.
FIGURA 5 muestra los efectos de la formulación objeto de la invención sobre la actividad inhibitoria ín vivo de pARNi contra PEPCK en células FAO. A. pARNi sin modificar, B. pARNi conjugado con colesterol en el extremo 3' de la cadena acompañante, 14. pARNi de secuencia aleatoria usada como control negativo. La descripción de las secuencias A, B y 14 de los pARNi se detalla en la Tabla 1 y la estructura química de las modificaciones se presenta los esquemas 1 y 2, Se determinaron las cantidades de ARNm producidas por las células después de 48 horas del tratamiento con los pARNi. Los datos representan las medias ±ES, n=3 y son comparados con una secuencia aleatoria. **p<0,01 , *p<0,05. El análisis estadístico se realizó usando el método ANOVA con el tratamiento de Bonferroni.
FIGURA 6 muestra la medida de la fluorescencia del pARNi siGLO en células 4T1 por Citometría de flujo. Células 4T1 fueron transfectadas con 100 nM de pARNi siGLO (Cy3) incubado con diferentes cantidades de suero fetal bovino (0 ί a 25 μί) usando ultrasonidos con el protocolo que hemos denominado la formulación objeto de la invención. Después de 24 horas de incubación, las células fueron analizadas en un cítómetro de flujo. La entrada celular del pARNi marcado con Cy3 fue cuantificado por la medida de la señal de fluorescencia relativa en el canal Cy3. Las células sin pARNi fueron usadas como control de fluorescencia. Los datos representan las medias ±ES, n=3 y son comparados con células transfectadas con el pARNi sin FBS. ***p<0,001 , **p<0,01 . Test ANOVA, post-test Bonferroni.
FIGURA 7 muestra la biodistribución de un pARNi fluorescente.
Se usaron 5 ratones de la cepa ICR de 8 semanas de edad. 2 ratones fueron inyectados vía i.v. con 10 g de pARNi siGLO de acuerdo con la formulación objeto de la invención con 450 μ!_ de suero de ratón, otros 2 ratones recibieron por vía i.v. el pARNi siGLO disuelto directamente en 450 μΙ_ de suero fisiológico y 1 ratón que no fue inyectado, fue usado como control de fluorescencia. Después de 4 horas, los animales fueron sacrificados y los órganos perfundídos en PFA al 4% para luego hacer cortes de los tejidos y observarlos bajo el microscopio confocal. Los datos representan las medias ±ES, n=3 stacks de fotos de cada tejido y se compara la formulación objeto de la invención con el pARNi siGLO disuelto directamente en el suero, entre cada uno de los tejidos. ***p<0,001 , **p<0,01 , *p<0,05 Test ANOVA, post-test Bonferroni.
FIGURA 8 muestra un diagrama del proceso para la formulación de la dispersión del pARNi y los componentes del suero mediante el uso de sonicación.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. EJEMPLOS Síntesis de oligonucleótidos.
Los oligoribonucleótidos se prepararon utilizando un sintetizador de la casa comercial Applied Biosystems modelo 3400 utilizando fosforamiditos de 2- cianoetilo y los protectores de tipo tert-butildímetilsilil (TBDMS) para la protección del grupo hidroxilo en la posición 2'. Se utilizaron las siguientes soluciones: 0,4 M H-tetrazol en ACN (catalizador); 3% ácido tricloroacético en DCM (destritilación), anhídrido acético / piridina /tetrahidrofurano (1 : 1 : 8) {capping A), 10 % N-metilimídazol in tetrahidrofurano (capping B), 0,01 M iodo en tetrahidrofurano/ piridina /agua (7: 2: 1 ) (oxidación). En las secuencias de ARN, se eliminó el último DMT ya que el grupo DMT no es totalmente estable al tratamiento de fluoruro. El rendimiento medio por etapa de adición de un nucleótidos fue alrededor del 97-98% para los monómeros de ARN. Los soportes poliméricos obtenidos se trataron con una solución concentrada de amoníaco- etanol (3:1 ) durante 1 h a 55 QC. Los soportes se lavaron con etanol y las soluciones resultantes se combinaron y se evaporaron a sequedad. Los productos resultantes se trataron con 0,15 mi de trietilaminatris(hidrofluoruro) / trietílamina / N-metilpirrolidona (4:3:6) durante 2,5 h a 65 QC con el fin de eliminar los grupos TBDMS. Las reacciones se detuvieron por adición de 0,3 mi of isopropoxitrimetilsilano y 0,75 mi de éter. Las mezclas resultantes se agitaron y se enfriaron a 4 QC. Se formó un precipitado que fue centrifugado a 7000 rpm durante 5 mín a 4 SC. Los precipitados se lavaron con éter y se centrifugaron de nuevo. Los residuos se disolvieron en agua y los conjugados se purificaron por HPLC. Columna: Nucleosil 120-10 C18 (250x4 mm); se utilizó un gradiente lineal de 20 min desde 0% a 50% B; con un flujo de 3 ml/min. Las composición de las soluciones utilizadas en el HPLC fueron: solución A: 5% acetonitrilo (ACN) en 100 mM acetato de trietilamonio (pH 6,5) y solución B: 70% ACN en 100 mM acetato de trietilamonio pH 6,5. Los productos purificados se analizaron por espectrometría de masas MALDI-TOF.
Los espectros de MALDI-TOF se realizaron en un espectrómetro de masas Perseptive Voyager DETMRP, equipado con un láser de nitrógeno de 337 nm utilizando un pulso de 3ns. La matriz utilizada contenía 2,4,6- trihidroxíacetophenone (THAP, 10 mg/ml en ACN/ agua 1 :1 ) y citrato amónico (50 mg/ mi en agua). Oligoribonucleótidos.
Las siguientes secuencias de ARN se obtuvieron de fuentes comerciales (Sigma-Proligo, Dharmacon): cadena acompañante control negativo 5'-CAG UCG CGU UUG CGA CUG G-dT-dT-3' (SEQ ID NO: 3), cadena guía control negativo 5'-CCA GUC GCA AAC GCG ACU G-dT-dT-3' (SEQ ID NO: 4), cadena guía antí-TNFa: SEQ ID NO: 1 y cadena acompañante anti-TNFa: SEQ ID NO: 2. Los monómeros de tipo ARN se detallan en letras mayúsculas, la abreviación dT corresponde tímidina. La cadena sentido antí TNF-α con colesterol en el extremo 3': SEQ ID NO: 1 -colesterol fue preparada usando el soporte comercial colesterol-tetraetilenglicol (TEG)-3'-CPG (Glen Research). El pARNi fluorescente marcado con Cy3 fue obtenido de fuentes comerciales (siGLO Thermo scientific, Dharmacon USA). Las secuencias de pARNi anti TNF-α habían sido descritas pARNi en la bibliografía para inhibir el mARN de TNF-α de ratón [D.R. Sorensen y col. Gene silencing by systemic delivery of synthetíc siRNA in adult míce. Journal of Molecular Biology 327 (2003) páginas 761 -766.].
Cultivos celulares, transfección y ensayos celulares. Células HeLa se cultivaron en condiciones habituales: 37eC, 5% CO2, medio de Dulbecco Eagle modificado, 10% suero fetal bovino, 2mM L-glutamina, suplementado con penicilina (100 U/ml) y estreptomicina (100 mg/mL). Todos los experimentos se hicieron a una confluencia del 40-60%. Las células HeLa se transfectaron con 250 ng del plásmido que expresa el gen de TNF-α de ratón utilizando lipofectina (Invitrogen) y siguiendo las instrucciones del fabricante. Células 4T1 de ratón se cultivaron en condiciones habituales. 100 nM de cada uno de los dúplex de pARNi se incubaron con 10% suero fetal bovino (FBS) antes de su adición a las células 4T1 . Al cabo de 24 h la cantidad de TNF-a producida por las células se analizó por el ensayo de ELISA.
Ejemplo práctico del método objeto de la invención. i) Los pARNi con formula general (N19TT/N19TT) se añadieron al suero fetal bovino en una proporción 0,33Mg ρΑΒΝί/25μΙ de suero. ii) El complejo pARNi/suero fue colocado en un baño de ultrasonidos durante 5-10 minutos. iii) El complejo pARNi/suero tratado con ultrasonidos fue añadido al cultivo celular en presencia de medio de cultivo celular fresco.
1 ) Síntesis de olígoribonucleótidos que contienen moléculas hidrofóbicas para su utilización en ensayo de ARN de interferencia.
Se escogieron como genes diana, los siguientes genes que codifican el factor de necrosis tumoral (TNF-a): 1 ) antí-TNFa cadena guía SEQ ID NO: 1 y 2) anti- TNFa cadena acompañante SEQ ID NO: 2. Este dúplex de pARNi (anti TNF-a) ya había sido descrito previamente por regular eficientemente el mARN de TNF-α de ratón (S D.R. Sorensen y col. Gene silencing by systemic delivery of synthetic siRNA in adult mice. Journal of Molecular Biology 327 (2003) páginas 761 -766.). Se han preparado 12 duplexes con diversos compuestos hidrofóbicos en los extremos ya sea en la cadena guía o en la cadena acompañante (Tabla 1 ).
Se seleccionaron las siguientes secuencias como genes que codifican el PEPCK-C. 1 ) cadena antisense o guía anti-PEPCK-C: SEQ ID NO: 5 y 2) cadena sense o acompañante antí-PEPCK-C: SEQ ID NO: 6. Estas secuencias no se han descrito previamente. Se han preparado siete secuencias de oligonucleótidos conjugadas con derivados de C y Ci8: Dos cadenas de tipo guía y cinco de tipo acompañante, conjugadas con Cu y Cía en el extremo 3' (ver esquema 1 y Tabla 1 ).
Figure imgf000021_0001
OLIGONUCLEOTIDO
Esquema 1. Estructura química de los lípidos (Ci4, Cíe y CuN) unidos a ios pARNi. Los oligonucleótidos correspondientes a la cadena acompañante 7 y 8 tienen derivados Cu y Cíe en el extremo 3' respectivamente. El oligonucleótido 12 tiene un derivado de d4N en el extremo 5' (tabla 1 ). El oligonucleótido 1 tiene un derivado Cu en el extremo 3' y varías unidades 2'-0-metil a lo largo de la cadena acompañante menos en las dos últimas timidinas. Se ha descrito que las unidades 2'-0-metil estabilizan las cadenas de ARN de la degradación por nucleasas. La posición de las unidades 2'-OMe (mC= 2'-0-metil-C and mU= 2'- O-metil-U) en el oligonucleótido 11 es 5'-GUG C (mC) U AUG (mU) (mC) U (mC) AG (mC) C (mU) CTT-3' (SEQ ID NO: 7)-C . Finalmente, se prepararon cuatro oligonucleótidos conjugados con acridina o quindolína en el extremo 3' (tabla 1 ): Dos cadenas acompañantes conjugadas con acridina 3 o quindolina 4 respectivamente y dos cadenas guía conjugadas con acridina 6 o quindolina 5. La cadena guía conjugada con colesterol en el extremo 3' fue preparada usando reactivos comerciales. La síntesis de las secuencias de ARN ha sido desarrollada por los inventores de la patente.
Tabla 1. Secuencia de los pARNi que contienen moléculas hidrofóbicas.
Código Modificación Secuencia (TNFa)
1 anti-TNFa sin G GAGGCUGAGACAUAGGCACTT (SEQ ID NO: 1 ) modificar
A GUGCCUAUGUCUCAGCCUCTT (SEQ ID NO: 2)
2 acompañante G SEQ ID NO: 1
3'-coíesterol
A SEQ ID NO: 2 - colesteroí
3 acompañante G SEQ ID NO: 1
3 -acridina
A SEQ ID NO: 2 - acridina
4 acompañante G SEQ ID NO: 1
3'-quindolina
A SEQ ID NO: 2 - quindolina
5 guía 3'- G SEQ ID NO: 1 - quindolina
quíndolina
A SEQ ID NO: 2
6 guía 3'- G SEQ ID NO: 1 - acridina
acridína
A SEQ ID NO: 2
7 acompañante G SEQ ID NO: 1
lípido C14, 3'
A SEQ ID NO: 2 - C14
8 acompañante G SEQ ID NO: 1
lípido C18, 3' A SEQ ID NO: 2 - C18
9 guía lípido G SEQ ID NO: 1 - C14
C14, 3'
A SEQ ID NO: 2
10 guía lípido G SEQ ID NO: 1 - C18/
C18, 3'
A SEQ ID NO: 2
11 acompañante G SEQ ID NO: 1 lípído C14 + A GUGC(mC)UAUG(mU)(mC)U(mC)AG(mC)C(mU)CT OMe, 3* T (SEQ ID NO: 7) - C14
12 acompañante G SEQ ID NO: 1
lípido C14N
A C14N - SEQ ID NO: 2
5'
14 Control G CAGUCGCGUUUGCGACUGGTT (SEQ ID NO: 3) aleatorio sin
modificar A CCAGUCGCAAACGCGACUGTT (SEQ ID NO: 4)
Código Modificación Secuencia (PEPCK-C)
A Sin modificar G UUACAUCUGGCUGAUUCUCTT (SEQ ID NO: 5)
PEPCK-C
A GAGAAUCAGCCAGAUGUAATT (SEQ ID NO: 6)
B acompañante G SEQ ID NO: 5
coiesterol 3'
A SEQ ID NO: 6 - coiesterol
G: Cadena guía / A: cadena acompañante. Las secuencias nucleotídicas de dichas cadenas se presentan de 5' a 3'. mC y mU representan la posición de derivados 2'-0-metil-C y 2'-0-metil-U respectivamente.
ACRIDINA
QUINDOLiNA
Figure imgf000023_0001
Esquema 2. Estructura química de las modificaciones acridina y quindolína incluidas en una de las posiciones 3'-terminales de los pARNi.
2) Inhibición de TNF-α. Las cadenas guía y acompañante fueron hibridadas y el resultado fue un dúplex o pARNi que se utilizó para inhibir la expresión del gen de TNF-α. Primero se evaluó las propiedades inhibitorias del pARNi en células HeLa con y sin la formulación objeto de la invención. Estas células no expresan el gen TNF-α de ratón por lo tanto, se realizó una cotransfeccion con el plásmido pCAm que contiene el gen de TNF-α de ratón. Se estudiaron dos protocolos diferentes.
PROTOCOLO A) Las células HeLa fueron transfectadas con 250 ng de plásmido de ratón pCAm TNF-α usando lípofectina. Una hora más tarde las células fueron tratadas con los pARNi (100nM) sin usar ningún reactivo de transfección, pero fueron incubadas con suero fetal bovino y tratadas con ultrasonidos antes del proceso de transfección. Después de 48 horas la cantidad de TNF-α producida por las células se analizó por ELISA.
PROTOCOLO B) Las células HeLa fueron transfectadas con 250 ng del plásmido de ratón pCAm TNF-α usando lípofectina como se describió en el apartado A. Una hora más tarde las células fueron tratadas con el dúplex de pARNi (100nM) en ausencia de suero. Después de 48 horas la cantidad de TNF-α producida por las células se analizó por ELISA
Los resultados de este experimento muestran que la cantidad de TNF-a producido después de 48 horas de la adición de los dúplex de pARNi modificados incubados con un 10% de suero y ultrasonidos (A) o después de la adición sin la incubación (B), son claramente diferentes. Se observó una inhibición entre un 40 y 50% en la producción de la proteína TNF-α comparada con el pARNi de secuencia aleatoria, solamente cuando el pARNi fue transfectado usando la formulación objeto de la invención. La presencia de las unidades de lípidos en los extremos 3' y 5' de la cadena sentido incrementaron la inhibición de la expresión de TNF-a.
La figura 2 indica que los pARNi conjugados con acridína o quindolina pretratados con suero y ultrasonidos produjeron una inhibición entre el 30 y 50% en la producción de TNF-α comparando con el pARNi aleatorio usado como control negativo. No se observó inhibición en ausencia de la formulación objeto de la invención. Solamente la quindolina en el extremo 3' de la cadena sentido incrementó la inhibición de la expresión de TNF-a. A continuación se estudiaron las propiedades inhibitorias de los pARNi en células de ratón 4T1. Estas células producen TNF-α de ratón de forma endógena. En estos experimentos las células se trataron con el dúplex de pARNi (100 nM) sin la utilización de ningún reactivo de transfección. Los pARNi fueron incubados con suero y ultrasonidos o simplemente añadidos a las células sin tratamiento previo. A las 24 horas la cantidad de TNF-α producida por las células se analizó por ELISA.
Los resultados de la inhibición de TNF-α por los pARNi conjugados con lípidos se muestran en la figura 3. Como se describió para las células HeLa, se puede observar una fuerte inhibición en la producción de TNF-α sólo cuando se utilizó la formulación objeto de la invención. La inhibición más elevada (80%) se observó cuando se utilizó el dúplex de pARNi conjugado con el lípido C en el extremo 3' de la cadena acompañante (7).
Los resultados de la inhibición de TNF-α por los pARNi conjugados con acridina o quindolina se muestran en la figura 4. Las cadenas guía y acompañante se modificaron en el extremo 3' (3 y 6). Tal como se puede observar, se encontró una fuerte inhibición en la producción de TNF-α usando la formulación objeto de la invención. La inhibición más elevada (60%) se observó con el pARNi conjugado con quindolina en el extremo 3' de la cadena acompañante (4).
3) Inhibición de PEPCK-C.
Las secuencias guía y acompañante complementarias a PEPCK fueron hibridadas y el dúplex resultante se usó para inhibir la expresión del gen PEPCK-C. Se estudiaron las propiedades del pARNi en células FAO (hepatoma de rata) con y sin la formulación objeto de la invención. Estas células expresan el gen PEPCK-C endógenamente (pckl ) por lo tanto no fue necesario realizar cotransfección con el plásmido correspondiente. Se utilizaron los siguientes protocolos: A) Las células FAO fueron tratadas con el dúplex de pARNi (100nM) en ausencia de suero. Después de 48 horas la cantidad de ARNm de pepCK-C producido por las células se analizó por qRT-PCR. B) Las células FAO fueron tratadas con el dúplex de pARNi (100nM) incubado con suero fetal bovino y ultrasonidos. Después de 48 horas la cantidad de ARNm de PEPCK-C producido por las células se analizó por qRT-PCR.
Los resultados de este experimento demuestran que el pARNi incubado con suero y ultrasonidos mejora significativamente el silenciamiento génico del gen diana Pck1 en las células FAO. Es interesante destacar que la mejoría de la entrada del pARNi por acción de la formulación objeto de la invención, no requiere de modificaciones en el pARNi para ayudar a incrementar la eficiencia. Usando esta metodología el pARNi sin modificar es un buen inhibidor del ARNm de PEPCK-C.
4) Entrada celular de un pARNi marcado con una molécula fluorescente (Cy3) usando la formulación objeto de la invención". Se optimizó el método, suponiendo que la eficiencia del método dependía de la interacción del pARNi con los componentes plasmáticos, determinando la mejor proporción de pARNi/suero. Para ello, se transfectaron células de ratón 4T1 con un pARNi fluorescente marcado con Cy3 incubado previamente con diferentes volúmenes de suero fetal bovino y ultrasonidos {de 0 μί a 25 μί), y medimos la entrada del pARNi en las células por citometría de flujo {DakoCytomation, modelo MoFlo) a una velocidad de 1000 células por segundo.
Las imágenes obtenidas usando el citómetro de flujo, muestran que cuando el pARNi siGLO fue transfectado directamente sobre las células con medio suplementado con suero, es decir sin la formulación objeto de la invención, solo el 20% de las células del campo, estaban transfectadas, mientras que en el caso de la formulación objeto de la invención del pARNi siGLO con 15 μΙ de FBS, el 50% de las células, presentaban una gran fluorescencia (Figura 6). Según estos datos, la proporción más eficiente para asegurar una mejor entrada del pARNi en las células es 0,33 pg pARNi/15 μΙ_ suero que será la concentración utilizada en los ensayos in vivo.
Se observó también que al aumentar el volumen de suero, la eficiencia de entrada del pARNi en las células disminuye, esto puede ser debido a una posible saturación de los sitios de unión que tienen las proteínas presentes en el suero.
Pruebas in vivo.
5) Administración in vivo del pARNi siGLO en ratones.
Se usaron 5 ratones de la cepa ICR de 8 semanas de edad (Harían, Interfauna Ibérica España). Los anímales estuvieron estabulados en condiciones ambientales estándar, temperatura 22SC, humedad relativa del 70-80% y con un ciclo de iluminación de 12 horas diarias, hasta el momento de realizar los ensayos.
Todos los protocolos usados fueron aprobados previamente por el comité ético de la Universidad de Barcelona y la manipulación de los animales se rigió por la normativa de la Comunidad Europea. El ensayo consistió en administrar por inyección en la vena de la cola de ratones, 450 μΙ_ de una solución del pARNi fluorescente Cy3, incubado con ultrasonidos o no con suero de ratón conservando una proporción de 0.33 μg de pARNi: 15 μΙ_ de suero. Después de 4 horas, los animales fueron sacrificados con éter y los tejidos fueron perfundidos con PFA al 4%. Luego los tejidos se cortaron en un Criostat (Leica) con un tamaño de 30 pm para ser montados en portaobjetos y observados bajo el microscopio confocal (Leica modelo. TCS NT). Se tomaron 3 fotos de cortes longitudinales de cada uno de los órganos, conservando los mismos parámetros de adquisición entre los órganos. La fluorescencia observada en las fotos, fue cuantifícada usando un programa de ordenador, el MacBiophotonics ImageJ que permite obtener valores cuantitativos de la fluorescencia de los tejidos.
Como se muestra en la figura 7, después de 4 horas de la administración por vía i.v., los niveles de fluorescencia del síGLO sin la formulación objeto de la invención fueron más bajos en todos los órganos, mientras que se detectaron niveles significativos entre un 20 y un 50% más de pARNi en pulmón, corazón, hígado, bazo y tejido adiposo cuando fue preincubado con suero de ratón. Indicando ésto que la formulación objeto de la invención mejora las propiedades de biodistribución de los pARNi.

Claims

REIVINDICACIONES
1. - Un proceso para la obtención de una formulación que comprende pARNi asociado a los componentes plasmáticos, caracterizado porque el proceso comprende una etapa en la que se dispersan los componentes plasmáticos en medio acuoso.
2. - El proceso según la reivindicación anterior, caracterizado porque la dispersión de los componentes plasmáticos se realiza mediante ultrasonidos.
3. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque la proporción entre pARNi y los componentes plasmáticos varía entre 1 :100 y 1 :50000.
4.- El proceso según la reivindicación anterior, caracterizado porque la proporción entre pARNi y los componentes plasmáticos varía entre 1 :500 y 1 :10000.
5. - El proceso según la reivindicación anterior, caracterizado porque la proporción entre pARNi y los componentes plasmáticos varía entre 1 :3000 y
1 :5000.
6. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque como fuente de los componentes plasmáticos se utiliza plasma y/o suero sanguíneo.
7. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque la formulación es inyectable.
8.- El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el pARNi no está derivatizado en su extremo 3' ó 5' en cualquiera de sus cadenas.
9.- El proceso según la reivindicación anterior, caracterizado porque el pARNi es de fuente natural (aislado de células), o obtenido por proceso de copia enzímática de un molde de ADN mediante la utilización de ARN polimerasa o sintetizado a partir de un ADN molde mediante la utilización de ARN polimerasa.
10. - El proceso según cualquiera de las reivindicación 1 a 7, caracterizado porque el pARNi está derivatizado en su posición 3' ó 5' con al menos un lípido, al menos un péptído, al menos un carbohidrato o cualquiera de sus combinaciones.
11. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el pARNi comprende entre 15 y 40 nucleótidos.
12. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el pARNi comprende entre 19 y 25 nucleótidos.
13. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque la dispersión se lleva a cabo a una temperatura entre 0 y 85SC.
14. - El proceso según la reivindicación anterior caracterizado porque la dispersión se lleva a cabo a una temperatura entre 5 y 50eC.
15. - El proceso según la reivindicación anterior, caracterizado porque la dispersión se lleva a cabo a una temperatura entre 10 y 35eC.
16.- El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque la dispersión se lleva a cabo al menos durante 1 segundo.
17.- El proceso según la reivindicación anterior, caracterizado porque la dispersión se lleva a cabo al menos durante 15 segundos.
18. - El proceso según la reivindicación anterior, caracterizado porque la dispersión se lleva a cabo al menos entre 30 segundos y 2 horas.
19. - El proceso según la reivindicación anterior, caracterizado porque la dispersión se lleva a cabo al menos entre 60 segundos y 30 min.
20. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque dúplex de pARNi comprende al menos una sustitución seleccionada entre 2'-0-metilo-ribonucleótido; 2,-desoxirríbonucleótido; 2'- metoxietil-ribonucleótido; 2'-fluoro-desoxirribonucleótido; 2'-fluoro- arabínonucleótido; nucleosidos de conformación restringida; ARN con enlaces fosforotioato; residuos abásicos o ribitoles; o nucleosidos que contienen bases modificadas tales como 5-metilcitosína, 5-metiluracilo, 4-alquínilcitosina, 5- alquiniluracilo, 5-halogenocitosina, 5-halogenouracilo, 7-deazaadenina, 7- deazaguanina o hípoxantina.
21 . - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el dúplex de pARNi inhibe/silencia parcial o totalmente la expresión de al menos uno de los siguientes genes: factor de necrosis tumoral alfa (TNFa), factor de crecimiento endotelial y vascular (VEGF), receptor de VEGF (VEGF R1/2), factor supresor de colonias de granulocitos (GM-CSF-1 ) y de macrófagos (M-CSF-1 ), angíopoietina (ANGPT), apolipoproteína (ApoB), neovascularización vascular (CNV), carboxiquinasa fosfoenol piruvato (PEPCK), receptor del factor de crecimiento epidérmico humano (HER2), proteína inflamatoria de macrófagos (MIP2), receptor de N-metil-D aspartato (NMDA), citoquina derivadas de ios keratocitos (KC), receptor opio de delta (DOR), receptor del dominio de Discoidina (DDR1 ), gen de la fosfoproteína PIV (PIV-P), oxigenasa hemo (HMOX1 ), caveloina, transportador de dopamina, proteína fluorescente verde y proteína del sarcoma de Swing (EWS-FL/1 ).
22. - El proceso según la reivindicación anterior, caracterizado porque el dúplex de pARNi (Y) inhibe/silencia, total o parcialmente, la expresión de al menos uno de los siguientes genes: factor de necrosis tumoral alfa (TNFa), factor de crecimiento endotelial y vascular (VEGF), receptor de VEGF {VEGF R1/2), factor supresor de colonias de granulocitos (GM-CSF-1 ) y de macrófagos (M- CSF-1 ).
23. - El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque la secuencia de pARNi se seleccionan entre: anti-TNFa antisense o guía 5'SEQ ID NO: 1 ; anti-TNFa sense o acompañante: SEQ ID NO: 2; cadena antisense o guía anti-PEPCK-C: SEQ ID NO: 5; SEQ ID NO: 6.
24. - Una composición farmacéutica de pARNi asociado a los componentes plasmáticos obtenible por cualquiera de los procesos definidos en las reivindicaciones anteriores.
25. - La composición farmacéutica según la reivindicación anterior, caracterizada porque comprende al menos un excipiente o un vehículo farmacéuticamente aceptable.
26. - La composición farmacéutica según la reivindicación anterior, caracterizada porque comprende al menos un agente de transfeccion.
27. - La composición farmacéutica según la reivindicación anterior, caracterizada porque el agente de transfeccion se selecciona de la lista que comprende los siguientes compuestos: lipofectina, liptofectamina, oligofectamina, effectene, cellfectina, DOTAP, DOPE, fugene, polietilenglicol, colesterol, polietilenimida (PEI), Jet-polietilenimida, péptidos de penetración celular, péptidos troyanos, péptído TAT, penetratina, oligoarginina, poli-lisina, glicoproteína del virus de la rabia, nanopartículas de oro, dendrímeros, nanotubos de carbono, lípidos catiónicos y liposomas.
28.- La composición farmacéutica según cualquiera de las reivindicaciones 24 a 27, donde se presenta en una forma adaptada a la administración oral o parenteral, preferiblemente parenteral.
29.- El uso de las composiciones farmacéuticas según cualquiera de las cinco reivindicaciones anteriores para la preparación de un medicamento.
30. - El uso según la reivindicación anterior para la preparación de un medicamento para el silenciamiento génico.
31. - El uso según cualquiera de las dos reivindicaciones anteriores para la preparación de un medicamento para el tratamiento del cáncer, inflamación, colitis, colitis ulcerativa, enfermedad de Crohn o artritis reumatoides.
PCT/ES2011/070295 2010-04-28 2011-04-26 Método para la administración de oligonucleótidos WO2011135140A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11774452.4A EP2565278A4 (en) 2010-04-28 2011-04-26 METHOD FOR THE DELIVERY OF OLIGONUCLEOTIDES
US13/661,081 US20130108686A1 (en) 2010-04-28 2012-10-26 Method for the delivery of oligonucleotides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030629A ES2368298B1 (es) 2010-04-28 2010-04-28 Método para la administración de oligonucleótidos.
ESP201030629 2010-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/661,081 Continuation US20130108686A1 (en) 2010-04-28 2012-10-26 Method for the delivery of oligonucleotides

Publications (1)

Publication Number Publication Date
WO2011135140A1 true WO2011135140A1 (es) 2011-11-03

Family

ID=44860916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070295 WO2011135140A1 (es) 2010-04-28 2011-04-26 Método para la administración de oligonucleótidos

Country Status (4)

Country Link
US (1) US20130108686A1 (es)
EP (1) EP2565278A4 (es)
ES (1) ES2368298B1 (es)
WO (1) WO2011135140A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102887948A (zh) * 2012-08-24 2013-01-23 复旦大学附属儿科医院 一种抗菌及免疫调节多肽类药物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016187578A1 (en) * 2015-05-20 2016-11-24 Indiana University Research And Technology Corporation Inhibition of lncrna hotair and related materials and methods
US10801024B2 (en) 2015-05-20 2020-10-13 Indiana University Research And Technology Corporation Inhibition of lncRNA HOTAIR and related materials and methods
WO2018185253A1 (en) * 2017-04-05 2018-10-11 Silence Therapeutics Gmbh Ligand modified double-stranded nucleic acids
CN110384806B (zh) * 2019-08-26 2021-09-24 西南大学 载药聚多巴胺/树状大分子-金纳米颗粒的制备及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286851A1 (en) * 2008-04-29 2009-11-19 Akin Akinc Compositions and Methods for Delivering RNAI Using Lipoproteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286851A1 (en) * 2008-04-29 2009-11-19 Akin Akinc Compositions and Methods for Delivering RNAI Using Lipoproteins

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A. DE FOUGEROLLES ET AL.: "RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics", METHODS IN ENZYMOLOGY, vol. 392, 2005, pages 278 - 296
AVINO A. ET AL.: "Stepwise synthesis of RNA conjugates carrying peptide sequences for RNA interference studies.", MOL DIVERS, vol. 13, 2009, pages 287 - 293, XP019732279 *
C. CHAKRABORTY: "Potentiality of small RNA interference (siRNA) as recent therapeutic targets for gene-silencing", CURRENT DRUG TARGETS, vol. 8, 2007, pages 469 - 482
D. BRUMCOT ET AL.: "RNAi therapeutics: a potential new class of pharmaceutical drugs", NATURE CHEMICAL BIOLOGY, vol. 2, 2006, pages 711 - 719, XP055023494, DOI: doi:10.1038/nchembio839
D.H. KIM ET AL.: "Strategies for silencing human disease using RNA interference", NATURE REVIEWS, vol. 8, 2007, pages 173 - 184, XP002520391, DOI: doi:10.1038/NRG2006
D.R. SORENSEN ET AL.: "Gene silencing by systemic delivery of synthetic siRNA in adult mice", JOURNAL OF MOLECULAR BIOLOGY, vol. 327, 2003, pages 761 - 766
J. SOUTSCHEK ET AL.: "Therapeutic silencing of an endogenous gene by systemic delivery of modified siRNAs", NATURE, vol. 432, 2004, pages 173 - 178
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 47, 2008, pages 2000 - 2004
KINOSHITA M. ET AL: "A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 335, 2005, pages 393 - 399, XP027230186 *
See also references of EP2565278A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102887948A (zh) * 2012-08-24 2013-01-23 复旦大学附属儿科医院 一种抗菌及免疫调节多肽类药物
CN102887948B (zh) * 2012-08-24 2014-06-11 复旦大学附属儿科医院 一种抗菌及免疫调节多肽类药物

Also Published As

Publication number Publication date
ES2368298B1 (es) 2013-05-10
US20130108686A1 (en) 2013-05-02
EP2565278A1 (en) 2013-03-06
ES2368298A1 (es) 2011-11-16
EP2565278A4 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
ES2901455T3 (es) Compuestos oligonucleotídicos para el tratamiento de preeclampsia y otros trastornos angiogénicos
JP2022036954A (ja) GST-π遺伝子を調節するためのRNA干渉剤
ES2873350T3 (es) Composiciones de ARN interferente asimétrico y usos de las mismas
JP5685267B2 (ja) Hsp47発現の調節
KR102002771B1 (ko) Hsp47 발현의 조절을 촉진하기 위한 레티노이드-리포좀
ES2605618T3 (es) ARN de doble cadena, modificado con lípidos con elevado efecto de interferencia por ARN
CN107849567A (zh) 一种siRNA、含有该siRNA的药物组合物和缀合物及它们的应用
JP2016028605A (ja) Rna干渉効果が高い脂質修飾2本鎖rna
CA2917299C (en) Improved nanoparticle type oligonucleotide structure having high efficiency and method for preparing same
KR20180051678A (ko) 아포지질단백질 c-iii 발현을 조절하는 조성물 및 방법
AU2006311912A1 (en) Peptide-dicer substrate RNA conjugates as delivery vehicles for siRNA
JP2008514647A (ja) 二本鎖リボ核酸によって炎症性疾患を治療する方法
TWI752927B (zh) 具高活性及減低脫靶之siRNA構造
BR112014016562B1 (pt) Estrutura de oligo-rna de dupla hélice, nanopartícula e método de preparação
JP2021525508A (ja) 核酸治療薬のための調節可能な共カップリングポリペプチドナノ粒子送達系の組成物および方法
ES2368298B1 (es) Método para la administración de oligonucleótidos.
JP2022551269A (ja) 最小フッ素含有量を用いた低分子干渉rnaの化学修飾
TW202200163A (zh) 用於抑制angptl3表現之組合物及方法
Fröhlich et al. Peptide-and polymer-based delivery of therapeutic RNA
WO2018221649A1 (ja) Apcsの発現を抑制する核酸
Yin et al. Asymmetric siRNA targeting the bcl‑2 gene inhibits the proliferation of cancer cells in vitro and in vivo
JP6978561B2 (ja) GST−π遺伝子を調節するためのRNA干渉剤
JP7208911B2 (ja) 核酸分子発現の調節
Wang Poly (ethylene) Glycol-Based Bottlebrush Polymers as Nanocarriers for Oligonucleotide Therapeutics: Design, Synthesis, and Applications
Cortinhas Molecular Bioengineering of siRNA Nanoarchitectures: Towards Neurotargeted siRNA Nanocages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774452

Country of ref document: EP