WO2007058156A1 - テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法 - Google Patents

テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法 Download PDF

Info

Publication number
WO2007058156A1
WO2007058156A1 PCT/JP2006/322614 JP2006322614W WO2007058156A1 WO 2007058156 A1 WO2007058156 A1 WO 2007058156A1 JP 2006322614 W JP2006322614 W JP 2006322614W WO 2007058156 A1 WO2007058156 A1 WO 2007058156A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide
reaction
general formula
acid
Prior art date
Application number
PCT/JP2006/322614
Other languages
English (en)
French (fr)
Inventor
Haruhiko Kusaka
Yuji Ohgomori
Masashi Yamanashi
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US12/093,685 priority Critical patent/US7795370B2/en
Priority to CN200680042702XA priority patent/CN101309950B/zh
Publication of WO2007058156A1 publication Critical patent/WO2007058156A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • the present invention relates to a novel tetracarboxylic acid compound containing a bicycloalkane structure such as norbornane, that is, tetracarboxylic acid, its monoanhydride, or dianhydride, and a method for producing this novel tetracarboxylic acid compound. .
  • the present invention also provides a novel acid halide as an intermediate in the production of the novel tetracarboxylic acid compound, a polymer produced by using the novel tetracarboxylic acid compound as at least a part of raw material monomers, and the production thereof. Regarding the method.
  • Polyimide resin obtained by polymerizing tetracarboxylic dianhydride and diamine has been used in various applications in order to exhibit excellent heat resistance, chemical resistance, mechanical strength, and electrical properties.
  • a fully aromatic polyimide generally has a structure having a long and continuous conjugated system of aromatic rings to imide groups, and therefore absorbs light in the visible region, and rosin is colored from yellow to brown. For this reason, there is a limit to use in applications that require colorless transparency, for example, optical material applications.
  • Polymethylmethacrylate and polycarbonate have been conventionally used as a resin for optical materials, but these have excellent transparency, and all of them are used at high temperatures with low heat resistance. It was a force that could not be applied for use. Polycarbonate has a slightly higher heat resistance than polymethyl methacrylate, but it has been a problem for application to an optical device with high birefringence and high accuracy.
  • Polyimide resin has also been used for printed wiring boards and interlayer insulating films.
  • Polyimide resins used for these applications are aromatic, and typically, the dielectric constant of these aromatic polyimides is 3.0 to 4.0 (see the following non-patent documents). Reference 1).
  • polyimide resin has low solubility in a solvent. For this reason, it is usually applied as a solution in the state of its precursor polyamic acid, and converted to polyimide by heat treatment at a high temperature. For this reason, there is a limitation in workability, and in particular, there is a problem that it cannot be used when the part where the polyimide is to be disposed is easily damaged by heat. Moreover, shrinkage is usually accompanied when cooling after high-temperature treatment, and it is often accompanied by serious problems such as film peeling and cracking due to thermal stress.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-96070
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-168800
  • Non-Patent Document 1 54th (2005) Polymer Discussion Meeting Preliminary 2Pc095
  • Non-Patent Document 2 Macromolecules, 27, 5964 (1994).
  • Non-Patent Document 3 Polymer, 36, 2685 (1995).
  • the present invention can have excellent characteristics such as high transparency, low dielectric property, low water absorption, low thermal expansion, solvent solubility, and etching characteristics while maintaining high heat resistance, and can be electrically insulated.
  • Resins for electronic materials such as membranes and flexible printed circuit boards, liquid crystal display substrates, organic-electrical luminescence (EL) display substrates, electronic paper substrates, solar cell substrates, light-emitting diode encapsulants
  • a novel tetracarboxylic acid compound useful as a raw material monomer for the production of the compound, a process for producing the same, and a raw material for producing the tetracarboxylic acid compound Te is intended to provide a useful novel acid Hara id.
  • a tetracarboxylic acid-based compound represented by the following general formula (1) or (2) As a result of intensive research to solve the above conventional problems, the present inventors have found a tetracarboxylic acid-based compound represented by the following general formula (1) or (2).
  • the present invention was completed by developing a method for easily producing a carboxylic acid compound and a novel polymer produced by using these as at least a part of raw material monomers. It was.
  • the resin according to the first aspect of the present invention has a glass transition temperature of 250 ° C. or higher, a light transmittance of 400 nm in a film with a film thickness of 30 ⁇ m of 70% or more, and a film thickness of 30
  • the water absorption after immersing a ⁇ m film in 25 ° C water for 24 hours is 2.0% or less.
  • the tetracarboxylic acid compound according to the second aspect of the present invention is represented by the following general formula (1) or (2).
  • A represents a divalent group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, or an amide group. However, these groups may further have a substituent. In the case of carbon-containing groups, the number of carbon atoms is 10 or less.
  • R 1 , R 2 , R 3 and R 4 are each independently a force representing a carboxyl group (—C (O) OH) or an acid anhydride formed by R 1 and R 2 and Z or R 3 and R 4 N representing a physical group (—C (O) OC (O) —) represents an integer of 1 or 2.
  • ring B represents a trivalent or higher cyclic group which may have a substituent.
  • X 4 , X 5 , and X 6 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, or an amide group. However, these groups may further have a substituent. In the case of carbon-containing groups, the number of carbon atoms is 10 or less. m represents an integer of 1 or 2.
  • a in the general formulas (2A), (2B), and (2C) may be represented by the following formula (3).
  • D represents a divalent group.
  • a in the general formulas (2A), (2B), and (2C) may be represented by the following formula (3A) or (3B).
  • D 1 and D 2 represent a divalent group.
  • X 1 , X 2 , X 3 , x X 5 , and X 6 are hydrogen atoms, and ⁇ has at least one cyclic structure It may be a divalent group.
  • the acid halide according to the third aspect of the present invention is represented by the following general formula (4).
  • X 1 , X 2 and X 3 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkyl group, an alkyl group, an alkoxy group, an amino group, Or represents an amide group. However, these groups may further have a substituent. For carbon-containing groups, the number of carbon atoms is 10 or less.
  • R 1 and R 2 are each independently a force representing a carboxyl group (—C (O) OH), or an acid anhydride group formed with R 1 and R 2 (one c (o) oc (o) — ).
  • n an integer of 1 or 2.
  • X represents a chlorine atom or a bromine atom.
  • the step of reacting the acid halide of the third aspect with a dihydric alcohol or amine or a monohydric alcohol or amine having a carboxylic anhydride group is provided.
  • the polymer according to the fifth aspect of the present invention is obtained by polymerizing or copolymerizing a raw material monomer containing at least part of the tetracarboxylic acid compound of the second aspect.
  • the polyimide precursor according to the sixth aspect of the present invention includes at least a part of a structural unit represented by the following general formula (5).
  • D 1 represents a divalent group.
  • Ring B has a substituent and may be a trivalent or higher cyclic group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, or an amide group.
  • Q represents a divalent aromatic group or aliphatic group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a silyl group.
  • n an integer of 1 or 2.
  • the polyimide precursor according to the seventh aspect of the present invention contains at least a part of a structural unit represented by the following general formula (6).
  • D 1 represents a divalent group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkyl group, an alkyl group, an alkoxy group, It represents an amino group or an amide group.
  • Q represents a divalent aromatic group or aliphatic group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a silyl group.
  • n and m each independently represents an integer of 1 or 2.
  • the polyimide according to the eighth aspect of the present invention includes at least a part of the structural unit represented by the general formula (7).
  • D 1 represents a divalent group.
  • Ring B has a substituent and may be a trivalent or higher cyclic group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkyl group, an alkoxy group, an amino group, or an amide group. .
  • Q represents a divalent aromatic group or aliphatic group.
  • n an integer of 1 or 2.
  • the polyimide according to the ninth aspect of the present invention includes at least a part of a structural unit represented by the following general formula (8).
  • D 1 represents a divalent group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkyl group, an alkyl group, an alkoxy group, It represents an amino group or an amide group.
  • Q represents a divalent aromatic group or aliphatic group.
  • n and m each independently represents an integer of 1 or 2.
  • the reaction is carried out by reacting with a cyclized imido group.
  • a ninth aspect of the polyimide is produced.
  • the polyimide of the eighth or ninth aspect is obtained by reacting the polyimide precursor of the sixth or seventh aspect with a cyclization imido reaction. Is manufactured.
  • This cyclized imido reaction force may be carried out by heating and using Z or a dehydrating reagent.
  • the film according to the twelfth aspect of the present invention is produced by a resin containing at least a part of the structural unit of the following general formula (7).
  • D 1 represents a divalent group.
  • Ring B has a substituent and may be a trivalent or higher cyclic group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkyl group, an alkoxy group, an amino group, or an amide group. .
  • Q represents a divalent aromatic group or aliphatic group.
  • n an integer of 1 or 2.
  • the film according to the thirteenth aspect of the present invention is produced by the resin of the first aspect.
  • the liquid crystal member according to the fourteenth aspect of the present invention uses the film of the twelfth or thirteenth aspect.
  • the acid anhydride group is condensed on the bicyclo [2.2.1] butane ring (norbornane ring) or bicyclo [2.2.2] octane ring.
  • a resin is produced using this tetracarboxylic acid compound as a raw material monomer, it has a ring structure. Due to this characteristic condensed ring structure, pi electron conjugation and intramolecular-intermolecular charge transfer interaction in the resulting resin Is suppressed, transparency is increased, and dielectric constant is decreased.
  • resin is produced using tetracarboxylic dianhydride with octane ring bonded by ester group as raw material monomer, transparency is improved while maintaining the high and heat resistance of polyimide. Flexibility is imparted to the resin and the solubility in the solvent is further improved.
  • a polymer functional group having photopolymerizability is introduced when producing such resin by polymerizing such compounds. In this case, it is possible to provide a function that enables fine processing such as pattern formation.
  • FIG. 1 is a diagram showing a 1 H-NMR spectrum (CDC1, 400 MHz) of 5-exo black-formyl norbornane 2-exo, 3-exo dicarboxylic anhydride prepared in Example 2.
  • FIG. 2 is a diagram showing a 13 C-NMR ⁇ vector (CDC1) of 5-exo black-formyl norbornane 2-exo, 3-exo dicarboxylic anhydride prepared in Example 2.
  • FIG. 3 is a diagram showing an IR ⁇ vector (KBr) of 5-exo black-formyl norbornane 2-exo, 3-exo dicarboxylic anhydride produced in Example 2.
  • FIG. 4 is a diagram showing a mass spectrum of 5-exo black-formyl norbornane 2-exo, 3-exo dicarboxylic anhydride produced in Example 2.
  • FIG. 5 1,4 bis produced in Example 3 (4, 1,3,5,1 dioxotricyclo [5.2.1.0 2 ' 6 ] -decane-1,8 ylcarboxy) it is a diagram showing the 1 H- NMR ⁇ vector benzene (DMS Od, 400MHz).
  • FIG. 6 1,4 bis produced in Example 3 (4, 1,3,5,1 dioxotricyclo [5.2.1.0 2 ' 6 ] -decane-1,8 ylcarboxy) It is a figure which shows the 13 C-NMR ⁇ vector (DMSOd) of benzene.
  • FIG. 8 Mass of 1,4 bis (4,1oxa3,5,1dioxotricyclo [5.2.1.0 2 ' 6 ] decane 8, ylcarboxy) benzene produced in Example 3 It is a figure showing a spectrum The
  • FIG. 9 is a view showing an IR ⁇ vector of the polyimide film produced in Example 4.
  • FIG. 10 is a view showing an IR ⁇ vector of the polyimide film produced in Example 5.
  • the present invention provides a resin having both high heat resistance, high transparency, low dielectric property, low water absorption, organic solvent solubility and alkali etching characteristics.
  • 200 ° C or higher preferably 230 ° C or higher, more preferably 250 ° C or higher, particularly preferably 270 ° C or higher.
  • the glass transition temperature (Tg) is determined by a tensile measurement at a temperature increase rate of 10 ° C. by using a thermomechanical analyzer (TMA4000) manufactured by Bruker Ax, as described in the Examples section below. The ability to change the amount of elongation can also be determined.
  • it is 70% or more, preferably 75% or more, more preferably 80% or more, and particularly preferably 85% or more.
  • UV-3100S ultraviolet-visible spectrophotometer
  • the lower limit is usually 0.01% by weight or more, preferably 0.1% by weight or more. If this absorption rate is too high, problems such as changes in conductivity and changes in dimensions due to the amount of water in the surrounding area arise. If it is too low, problems such as the inability to eliminate moisture in certain applications arise.
  • this water absorption rate is obtained by vacuum-drying a film formed to a film thickness of 30 m at 80 ° C for 3 hours and then immersing it in water at 25 ° C for 24 hours. Next, pull up the film and squeeze it into dry paper (100% pulp), leave it for 1 minute, soak up the moisture adhering to the film surface, and then replace the paper twice. After repeating the above operation, the weight can be measured and the component force of weight increase before and after immersion can be obtained.
  • a polycondensation polymer preferably an resin having an amide group or an imide group, more preferably an resin having an imide group, particularly preferably an imide group and an ester group.
  • examples include rosin.
  • the tetracarboxylic acid compound of the present invention has at least one bicyclo [2.2.1] heptane ring or bicyclo [2.2.2] in the molecule represented by the following general formula (1) or (2). It has a structure having an octane ring and both ends being a dicarboxylic acid or an acid anhydride thereof.
  • A represents a divalent group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, or an amide group. However, these groups may further have a substituent. In the case of carbon-containing groups, the number of carbon atoms is 10 or less.
  • R 1 , R 2 , R 3 and R 4 are each independently a force representing a carboxyl group (—C (O) OH) or an acid anhydride formed by R 1 and R 2 and Z or R 3 and R 4 N representing a physical group (—C (O) OC (O) —) represents an integer of 1 or 2.
  • ring B represents a trivalent or higher cyclic group which may have a substituent.
  • the general formula (1) is more specifically represented by the following general formulas (la), (lb), (lc), and the general formula (2) is more specifically represented by the following general formula (2a ), (2b), (2c).
  • X 1 , X 2 , X 3 , A, B, n are as defined in general formulas (1) and (2).
  • an acid anhydride is fused to a norbornane ring or a bicyclo [2.2.2] octane ring, This is characterized by the fact that it is bonded to other acid anhydrides via a divalent group A.
  • this structure is a polymer
  • c 0 high transparency, high heat resistance, low absorption This is due to the fact that it has both physical properties and high dimensional stability.
  • the structure of A is an arbitrary divalent group, the physical properties of the tetracarboxylic acid CO-based MM compound of the present invention tend not to be greatly affected. Any divalent group is not particularly limited.
  • A is a divalent group, preferably A has the structure of the following general formula (3).
  • D is a structure that includes at least one cyclic structure capable of taking any divalent group, and the heat resistance of the resin manufactured using the tetracarboxylic acid compound of the present invention as a raw material monomer increases. It is more preferable.
  • D represents a divalent group.
  • D 1 and D 2 represent a divalent group.
  • DD 2 is an arbitrary divalent group.
  • D When D is represented by the general formula (3A) or (3B), it is represented by the general formula (1) or (2).
  • an acid anhydride is condensed to a norbornane ring or a bicyclo [2.2.2] octane ring, and this can be performed via a group represented by (3A) or (3B). It is characterized by the fact that it is bonded to acid anhydrides, and when this structure is made into a polymer, it has high transparency and high heat resistance, low absorption, high dimensional stability, high toughness, and high solubility. This is due to having both physical properties such as solvent solubility.
  • the structure of D 1 or D 2 is an arbitrary divalent group, the physical properties of the tetracarboxylic acid compound of the present invention tend not to be greatly affected.
  • the structure of 1 or D 2 is not particularly limited as long as it is an arbitrary divalent group.
  • D 2 has a structure containing at least one cyclic structure
  • the heat resistance and dimensional stability of the resin manufactured using at least a part of the tetracarboxylic acid compound of the present invention as a raw material monomer are further improved. preferable.
  • the divalent cyclic structure may be either an aromatic cyclic structure or an aliphatic cyclic structure.
  • Specific examples of the structure containing a divalent aromatic ring structure include a group having a structure in which an aromatic ring is single or a plurality of aromatic rings are condensed, such as a phenylene group or a naphthylene group, a biphenylene group ( 1 Ph—Ph—: Ph represents a phenylene group (the same shall apply hereinafter) etc., a group having a structure in which a plurality of aromatic rings are directly connected, a diphenyl ether group (one Ph—O—Ph—) , Diphenylsulfone group (one Ph—SO—Ph—), methane diphenol
  • Ph- 9, 9-fluorene group, fluorene-9, 9-diphenol group, (-Ph- Fl- Ph 1: F1 is 9, 9 fluorene group), 3, 3 ', 5, 5,
  • the aromatic ring having these structures may contain an arbitrary substituent.
  • a divalent aliphatic cyclic structure examples include monocyclic alicyclic groups such as a cyclohexylene group, a cyclopentylene group, a cycloheptylene group, a cyclohexanedimethylene group, and the like.
  • a cyclic group having a hetero atom in the ring such as a divalent group, a tetrahydrofuranyl group, a tetrahydrothiol group, a cyclohexanedimethyl group (one CH—Ch
  • Ch represents a cyclohexylene group
  • Chlohexyl group (— Ch— C (CH) — Ch—), dicyclohexyl sulfone group (— Ch—)
  • the "arbitrary divalent linking group" for linking an aromatic group! / And an aliphatic group in the above description includes a methylene group (including those exemplified as specific examples) 1CH—), 2, 2-propylene
  • Examples include S—), 9, 9-fluorenylidene group.
  • the substitution position is not particularly limited.
  • substitution at the 1- and 4-positions results in a straight structure for the —D—, —D 1 —, and —D 2 — structures, improving heat resistance and reducing the linear expansion coefficient.
  • the substitution at the 1,3-position in the phenylene group is preferable because the structure of this portion is bent, so that improvement in solubility in a solvent is expected. Therefore, for the substitution position, it is preferable to select the D 2 of the appropriate tuft and exercised structure in accordance with the physical properties required.
  • This is particularly preferable because it has a more rigid structure.
  • the ring B represents an arbitrary trivalent or higher cyclic group which may have a substituent.
  • the upper limit of the valence of the cyclic group of ring B is not particularly limited, but is usually 20 or less, preferably 10 or less, more preferably 5 or less, and particularly preferably 3.
  • ring structure of ring B examples include aromatic rings such as benzene ring and naphthalene ring, cyclohexane ring, cyclopentane ring, norbornane ring (bicyclo [2.2.1] heptane ring), bicyclo [2.2.2] Aliphatic rings such as octane ring.
  • substituents x 4 to x 6 described later examples include specific examples of the substituents x 4 to x 6 described later. Among them, those represented by the following general formulas (2A), (2B), and (2C) are preferable.
  • X 4 , X 5 and X 6 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group or an amide group. However, these groups may further have a substituent. In the case of carbon-containing groups, the number of carbon atoms is 10 or less.
  • n an integer of 1 or 2.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independent.
  • these groups may have an arbitrary substituent when they can further have a substituent.
  • the carbon number is 10 or less.
  • alkyl group represented by X 1 to X 6 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group.
  • alkenyl group examples include a vinyl group, a propenyl group, and a butyr group.
  • alkyl group examples include an ethur group, a propylene group, and a butur group.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and an n-butoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • nitrile group examples include a cyano group, a acetonitrile group, and a propio-tolyl group.
  • amide group examples include a formamide group and a acetoamide group.
  • substituents include an alkyl group, an alkenyl group, an alkyl group, an alkoxy group, a halogen atom, a nitrile group, an amide group, and the like.
  • a hydrogen atom and a halogen atom are preferable from the viewpoint of easy availability of raw materials.
  • the acid and ride of the present invention are represented by the following general formula (4).
  • X 1 , X 2 and X 3 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkyl group, an alkyl group, an alkoxy group, an amino group, Or represents an amide group. However, these groups may further have a substituent. For carbon-containing groups, the number of carbon atoms is 10 or less.
  • R 1 and R 2 are each independently a force representing a carboxyl group (—C (O) OH), or an acid anhydride group formed with R 1 and R 2 (one c (o) oc (o) — ).
  • n an integer of 1 or 2.
  • X represents a chlorine atom or a bromine atom.
  • the polymer obtained by polymerizing or copolymerizing the raw material monomer containing at least a part of the tetracarboxylic acid compound of the present invention as described above includes a polyimide precursor obtained by polymerizing the raw material monomer and this precursor. It includes both polyimides obtained by dehydrating the body or directly dehydrating raw material monomers.
  • the polyimide precursor and polyimide of the present invention refer to a polyimide precursor represented by the following general formula (5) and a polyimide represented by the following general formula (7).
  • D 1 represents a divalent group.
  • Ring B has a substituent and may be a trivalent or higher cyclic group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, or an amide group.
  • Q represents a divalent aromatic group or aliphatic group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a silyl group.
  • n an integer of 1 or 2.
  • D 1 represents a divalent group.
  • Ring B has a substituent and may be a trivalent or higher cyclic group.
  • X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkenyl group, an alkyl group, an alkoxy group, an amino group, or an amide group. .
  • Q represents a divalent aromatic group or aliphatic group.
  • n an integer of 1 or 2.
  • the polyimide precursor represented by the general formula (5) is preferably represented by the following general formula (6).
  • the polyimide represented by the general formula (7) is preferably represented by the following general formula ( It is preferable to be represented by 8).
  • D 1 represents a divalent group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkyl group, an alkyl group, an alkoxy group, It represents an amino group or an amide group.
  • Q represents a divalent aromatic group or aliphatic group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a silyl group.
  • n and m each independently represents an integer of 1 or 2.
  • D 1 represents a divalent group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group, an alkyl group, an alkyl group, an alkoxy group, It represents an amino group or an amide group.
  • Q represents a divalent aromatic group or aliphatic group.
  • n and m each independently represents an integer of 1 or 2.
  • X 5 and X 6 are the same as those described in the section of the tetracarboxylic acid compound.
  • the CONH group and -COOR group bonded to each norbornane ring or bicyclo [2.2.2] octane ring in the general formula (5) may be exchanged with each other.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a silyl group.
  • Q in the general formulas (5) and (7) may be any divalent group!
  • the polyimide (7) of the present invention represented by the general formula (7) is characterized by a partial structure in which an imide group is condensed to a norbornane ring or a bicyclo [2.2.2] octane ring. ) —0 — D 1 — O— C (O) — Combined with Q via B to form a polymer. And when this partial structure that the imide group is condensed to the norpolnan ring or bicyclo [2.2.2] octane ring is a polymer, it is said to have high transparency, high heat resistance, and high dimensional stability. Physical properties It contributes to having it together. In other words, even if the structure of Q is an arbitrary divalent group, these physical properties of the present compound tend not to have a significant effect, so the structure of Q is an arbitrary divalent group. If it is, it will not be restrict
  • Q is preferable as a structure! /, Which is a group having a cyclic structure.
  • the structure having a cyclic structure means a structure containing an aromatic group in Q and a structure containing an alicyclic structure. If Q has a ring structure, it will improve the heat resistance and dimensional stability of polyimide resin. In addition, when the alicyclic structure is included, it is possible to obtain a feature that light absorption in the ultraviolet region can be reduced while maintaining heat resistance.
  • the aromatic groups of Q are all divalent groups such as a fac-lene group, a naphthylene group, a biphenylene group, a diphenyl ether group, a diphenyl sul group.
  • Hong group 4, 4, 1 (9, 9 fluoridene) diphenyl group, methylene diphenyl group, isopropylidene diphenyl group, 3, 3, -dimethyl- 1, 1, -biphenyl Group, 3, 3, 5, 5, 5'-tetramethyl-1, 1, -biphenyl group, 2, 2, monobis (trifluoromethyl) 1,1, biphenyl group, etc., and alicyclic structure
  • the group include a cyclohexylene group, a cyclohexanedimethylene group, a dicyclohexyl ether group, a methylenedicyclohexyl group, and a decanaphthylene group.
  • linking group includes a methylene group (one CH—), an ether group ( ⁇ 0—), an ester group (one C (O)
  • keto group one c (o) —
  • sulfonyl group one SO—
  • sulfinyl group one so—
  • Examples thereof include a sulfur group (one S—) and a 9, 9 fluorenylidene group.
  • the position of substitution is not particularly limited.
  • substitution at positions 1 and 4 is preferable because the structure of Q becomes a straight line, so that heat resistance is improved and a linear expansion coefficient is expected to be small.
  • substitution at the 1,3-position in the phenylene group is preferable because the -Q- structure is bent and the solubility in a solvent is expected to be improved. Therefore, regarding the substitution position, it is preferable to select the Q of the structure as appropriate according to the required physical properties.
  • Q is a group containing an aromatic group. If an aromatic group is contained in Q, the heat resistance and dimensional stability of polyimide resin will be further improved. An improvement in the rate of folding is also achieved.
  • the aromatic group of Q those described above can be applied, and among them, a phenyl group, a biphenylene group, a diphenyl ether group, a diphenyl sulfone group, 4, 4, 4, The — (9,9-fluore-lidene) diphenyl group, 3, 3 ′, 5, 5, —tetramethyl-1, 1′-biphenyl group and the like are particularly preferable in that they have a more rigid structure.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a silyl group.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group
  • examples of the silyl group that can be used include a trimethylsilyl group, a triethylsilyl group, and a dimethyl-t-butylsilyl group. Of these, a trimethylsilyl group and a dimethyl-t-butylsilyl group are preferable because of their high elimination ability.
  • R 11 and R 12 may be the same or different, but are preferably the same.
  • B and Q are groups each having a cyclic structure
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are each independently a halogen atom or hydrogen atom
  • n is 1
  • R 11 and R 12 are hydrogen atom, methyl group, ethyl group, trimethylsilyl group, dimethyl-tert-butylsilyl It consists of one of the groups.
  • Q is a structure having a cyclic structure
  • B is a norbornane ring
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are all hydrogen atoms
  • n is 1
  • R 11 and R 12 are hydrogen atoms.
  • the tetracarboxylic acid-based compound of the present invention can be produced using, for example, a commercially available 5-norbornene-2,3-dicarboxylic acid anhydride as a raw material. That is, a carboxyl group is introduced into the olefin portion of 5-norbornene-2,3-dicarboxylic acid anhydride, and a divalent alcohol or amine or a monovalent alcohol having a dicarboxylic acid anhydride or
  • the tetracarboxylic acid anhydride represented by the general formula (1) or (2) can be synthesized by reacting with amin and esterifying or amidating.
  • a force indicating the production of tetracarboxylic anhydride using 5-norbornene-2,3-dicarboxylic anhydride as a starting material is a tetracarboxylic anhydride having a bicyclo [2.2.2] octane ring.
  • Dicyclo [2.2.2] octane-5-en-2,3-dicarboxylic anhydride which is a Diels' Alder reaction product, can be produced in the same manner.
  • the carboxyl group can also be introduced by hydroesterification of 5-norbornene 2,3 dicarboxylic anhydride to olefin and subsequent hydrolysis of the ester group.
  • the method described in US Pat. No. 3,413,317 can be employed. This uses Ni (CO) as the carbonyl source in a nitrogen atmosphere.
  • a method of reacting pressurized carbon monoxide and alcohol in the presence of a Pd, Ni or Co catalyst can be employed.
  • the Pd catalyst used at that time can be added to the reaction system as a Pd phosphine complex, or an inorganic salt of Pd or a Pd metal supported on a simple substance and an alkylphosphine can be added separately.
  • Pd-phosphine complex There are two ways to add Pd-phosphine complex in the system.
  • Pd compounds when added to the system as the former Pd-phosphine complex include alkylphosphine palladium complexes such as tetrakis (triphenylphosphine) palladium (0), dichlorobis (trimethylphosphine) palladium (II), etc. Examples include halogenated alkylphosphine palladium complexes, carboalkylphosphine complexes such as carbo-trithris (triphenylphosphine) palladium (0), radium complexes, and bis (bis-acetonitrile) palladium (II).
  • a palladium inorganic acid or organic acid salt such as palladium chloride or palladium acetate is preferably used.
  • Ni catalysts include nickel carbo- valent complexes such as tetracarbol-uckel (0), nickel carboalkylalkylphosphine complexes such as dicarbolbis (triphosphine) nickel (0), Examples include nickel alkylphosphine complexes such as tetrakis (triphenylphosphine) nickel (0).
  • Co catalyst examples include cobalt carbo complexes such as cobalt carbo.
  • the hydroesterification reaction is usually carried out in the presence of an alcohol solvent.
  • the alcohol solvent not only functions as a solubilizer for the substrate and catalyst, but also serves as a reaction reagent that constitutes the ester moiety that is produced.
  • Examples of alcohol solvents that can be used in this reaction include lower alcohols having 6 or less carbon atoms such as methanol, ethanol, isopropanol, n-propanol, and n-butanol.
  • the hydroesterification reaction in this case is performed in the presence of carbon monoxide.
  • the pressure of carbon monoxide to be used does not matter even at normal pressure, but may be performed under pressure to increase the reaction rate.
  • the lower limit of the pressure used is 0. IMPa or more, preferably 0.5 MPa or more, and more preferably 1. OMPa or more.
  • the upper limit is not particularly limited, the problem of facilities is usually 30 MPa or less, preferably 20 MPa or less, more preferably 15 MPa or less.
  • the reaction temperature employed is usually under heating, and the lower limit is 20 ° C or higher, preferably 50 ° C or higher, more preferably 70 ° C or higher.
  • the upper limit is usually 300 ° C or higher due to device limitations.
  • the temperature is preferably 250 ° C or lower, more preferably 200 ° C or lower.
  • the reaction time usually has a lower limit of 10 minutes or more, preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit is usually 100 hours or less, preferably 50 hours or less, and more preferably 25 hours or less.
  • the reaction may be performed by adding a copper salt or a tin salt as a co-catalyst during the reaction.
  • the copper salts used in this process include the salt strength and strength of copper inorganic acids such as copper chloride (CuCl) and copper acetate.
  • tin halides such as tin chloride (SnCl) and tin bromide (SnBr) are preferred.
  • the reaction can be carried out by adding an acid.
  • the acids that can be used in this case are p-toluenesulfonic acid and organic sulfonic acids such as methanesulfonic acid.
  • Inorganic acids such as hydrochloric acid and sulfuric acid.
  • the yield of hydroesterification reaction of the olefin portion of 5-norbornene-2,3 dicarboxylic anhydride depends on the type of alcohol used. Typically, 40% or more
  • it is 50% or more, more preferably 60% or more.
  • the purity of the target hydroester is usually 50% by weight or more, preferably 60% by weight or more, and more preferably 70% by weight or more.
  • the newly introduced carboalkoxy group (position 5) is usually an exo main product.
  • the proportion of the 5-position carboalkoxy group in the total product is usually 60% or more, preferably 70% or more, and more preferably 80% or more.
  • the hydroester obtained by hydroesterification ie, norbornane diester carboxylic acid or norbornane triester, is hydrolyzed to norbornane tricarboxylic acid. In that case, both alkaline and acidic conditions can be adopted.
  • hydrolysis when hydrolysis is performed under alkaline conditions, it is carried out in the presence of water and an alkaline component.
  • alkali components that can be used include sodium hydroxide, hydroxide power sodium, alkali metal hydroxides such as calcium hydroxide, calcium hydroxide, sodium carbonate, carbonate, It is an aqueous solution of alkali metal such as sodium or carbonate of alkaline earth metal.
  • the reaction may be performed using only an aqueous solution of these alkali compounds, or may be performed by adding an organic solvent.
  • the solvent There are no particular restrictions on the solvent that can be used in this case, but lower alcohols such as methanol and ethanol, ether solvents such as tetrahydrofuran and dimethoxyethane, and -tolyl solvents such as acetonitrile are compatible with aqueous solvents. Therefore, it is preferable.
  • Solvents that are incompatible with water for example, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as heptane, hexane, and cyclohexane, and halogen solvents such as dichloromethane and 1,2-dichloroethane. Etc. may be used to carry out the reaction in a two-phase system.
  • aromatic hydrocarbons such as toluene and xylene
  • aliphatic hydrocarbons such as heptane, hexane, and cyclohexane
  • halogen solvents such as dichloromethane and 1,2-dichloroethane.
  • Etc. may be used to carry out the reaction in a two-phase system.
  • the reaction temperature during the hydrolysis is not particularly limited, but the lower limit is 10 ° C or higher, preferably 0 ° C or higher, more preferably 10 ° C or higher, and the upper limit is 150 ° C or lower, preferably The reaction is performed at 100 ° C or lower, more preferably at 80 ° C or lower.
  • the reaction time usually has a lower limit of 10 minutes or more, preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit is not particularly limited, it is usually 100 hours or shorter, preferably 50 hours or shorter, more preferably 25 hours or shorter.
  • the product after the reaction is a metal salt of 2, 3, 5 norbornanetricarboxylic acid, and this is taken out as a carboxylic acid with an acid.
  • the metal salt of a carboxylic acid is converted to a carboxylic acid by adding an acid to a solution of a 2, 3, 5 norbornane tricarboxylic acid metal salt.
  • acids that can be used in this case include aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
  • the reaction when the reaction is performed under acidic conditions, the reaction may be performed in the presence of water and an acid component.
  • an acid component for this method, a known method can be employed as it is.
  • acid components include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and organic acids such as p-toluenesulfonic acid and methanesulfonic acid.
  • the lower limit is 5% by weight, preferably 10% by weight
  • the upper limit is not particularly limited, but is 200% by weight, preferably with respect to the weight of the hydroester as the substrate 100% by weight.
  • a solvent may not be used in the reaction.
  • the solvent that can be used is not particularly limited, but lower alcohols such as methanol and ethanol, ether solvents such as tetrahydrofuran and dimethoxyethane, -tolyl solvents such as acetonitrile, sulfolane, dimethyl sulfoxide and the like. Sulfur-containing atomic solvents are preferred because they are compatible with aqueous solvents.
  • solvents that are incompatible with water such as aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as heptane, hexane, and cyclohexane, and halogen solvents such as dichloromethane and 1,2-dichloroethane. It may be used to carry out the reaction in a two-phase system.
  • the amount of the solvent used at that time has a lower limit as the weight concentration of the hydroester compound as the substrate.
  • the amount of water used in the reaction charge is the weight of the hydroester whose lower limit is the substrate.
  • the reaction temperature during the hydrolysis is not particularly limited, but the lower limit is 20 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher, and the upper limit is 200 ° C or lower, preferably 150 °.
  • the reaction is conducted at C or lower, more preferably 120 ° C or lower.
  • the reaction time usually has a lower limit of 10 minutes or longer, preferably 30 minutes or longer, more preferably 1 hour or longer.
  • the upper limit is not particularly limited, it is usually 100 hours or less, preferably 5
  • the yield of norbornane 2, 3, 5 tricarboxylic acid thus obtained is usually 60% or more.
  • it is 70% or more, more preferably 80% or more.
  • the main product is a product having the following structure.
  • the norbornane 2, 3, 5 tricarboxylic acid thus obtained can be used as it is in the subsequent esterification step, but it cannot be used even if it is refined to increase its purity and use power.
  • the purification method is not particularly limited, and any conventional method such as a sublimation method, recrystallization method, column chromatography, and extraction purification can be arbitrarily employed. Of these, the recrystallization method is preferable because it is simple and inexpensive.
  • the solvent for recrystallization can be used without particular limitation as long as it is a solvent in which norbornane-2,3,5 tricarboxylic acid is dissolved.
  • tetrahydrofuran, dimetho Ether solvents such as xishane and dioxane
  • -tolyl solvents such as acetonitrile
  • aprotic polar solvents such as sulfolane, dimethyl sulfoxide and N-methylpyrrolidone
  • halogen solvents such as dichloromethane and 1,2-dichloroethane
  • Ester solvents such as ethyl acetate and butylacetate can be used.
  • a poor solvent such as an aromatic hydrocarbon such as toluene or xylene, or an aliphatic hydrocarbon such as heptane, hexane or cyclohexane.
  • a poor solvent such as an aromatic hydrocarbon such as toluene or xylene, or an aliphatic hydrocarbon such as heptane, hexane or cyclohexane.
  • the purity of norbornane-2,3,5-tricarboxylic acid thus purified is usually 80% or more, preferably 90% or more, and more preferably 95% or more.
  • 2,3,5-norbornanetricarboxylic acid is obtained by, for example, dehydrating the 2-position and 3-position carboxyl groups and then converting the 5-position carboxyl group to a divalent alcohol or amine, or a dicarboxylic acid. By condensing with an alcohol or amine having an anhydride group, it can be derived into the tetracarboxylic acid compound of the present invention.
  • the employed temperature is a lower limit of 50 ° C or higher, preferably 120 ° C or higher, and an upper limit of 250 ° C or lower, preferably 200 ° C or lower.
  • the upper limit of the lower limit of the degree of decompression is 0. IMPa or less, preferably 0.05 MPa or less.
  • organic acid anhydrides used in the treatment with organic acid anhydrides include acetic anhydride, propionic anhydride, maleic anhydride, and phthalic anhydride.
  • Acetic anhydride is preferably used because of its easy removal.
  • the temperature employed in the treatment has a lower limit of 30 ° C or higher, preferably 50 ° C or higher, and an upper limit of 200 ° C or lower, preferably 150 ° C or lower.
  • the carboxyl group at the 5-position of the thus obtained 5 carboxynorbornane 2,3 dicarboxylic acid anhydride is divalent alcohol or amine, or! Or alcohol or amine having a dicarboxylic acid anhydride group. Allow to condense.
  • a reaction generally known as an organic synthetic esterification reaction or amidation reaction can be arbitrarily employed.
  • a dehydrating reagent such as a method of directly dehydrating and condensing carboxylic acid, alcohol and amine, dicyclohexyl carbodiimide (abbreviated as DCC), or a combination of jetylazodicarboxylate Z triphenylphosphine
  • a carboxylic acid is converted to a more reactive (highly electrophilic) acid, a halide or an acid anhydride and then reacted with an alcohol diamine in the presence of a base.
  • a method for synthesizing an ester a method of transesterification such as a carboxylic acid and an alcohol ester ester of a carboxylic acid can be used.
  • the method of direct dehydration the method of transesterification, and the method of conversion to acid halide are preferred in terms of economy and reactivity.
  • the following describes a method for producing a norbornane structure-containing tetracarboxylic acid anhydride via an acid chloride.
  • the 5-carboxylbornane 2,3 dicarboxylic anhydride 5-position force carboxyl group is converted to an acid chloride, which is divalent alcohol or amine, or a monovalent carboxylic acid anhydride group having a dicarboxylic anhydride group. React with alcohol or amine to esterify or amidich.
  • the 5-position carboxyl group was converted to acid chloride to form 5-chloroformylnorbornane-2,3 di
  • a general organic synthesis method for synthesizing a corresponding acid chloride from a carboxylic acid can be used.
  • Specific examples include a method using chloro chloride, a method using oxalyl chloride, a method using phosphorus trichloride, a method using other acid chlorides such as benzoic acid chloride, and the like.
  • the method of using salt ⁇ thionyl is preferred, because of excessive evaporation of the reagent used.
  • a catalyst such as N, N-dimethylformamide or pyridine can be used, but the reaction can proceed without using them. There may be no major obstacles. Rather, the chlorinated product obtained by the presence of the catalyst may be rather colored. Therefore, in applications where the transparency of the polyimide film is important, care must be taken in coloring the product. It is preferable to produce it without using it.
  • the amount of the chlorination reagent used is the same as that of the substrate, or an excess amount, but usually the lower limit is 1 molar equivalent or more, preferably 5 molar equivalent or more, more preferably 10 molar or the like. More than the amount.
  • the upper limit is not particularly limited, an amount of 100 mole equivalent or less, preferably 50 mole equivalent or less is used from an economical viewpoint.
  • the acid chloride reaction using a chlorinating agent may be carried out using a solvent.
  • the solvent that can be used in this case is not limited as long as it is a solvent in which the chlorinating agent to be used and the product, acid anhydride chloride, dissolve and the chlorinating agent does not react.
  • examples of usable solvents include aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as hexane and heptane, ethers such as jetyl ether, tetrahydrofuran, monoethylene glycol dimethyl ether, and diethylene glycol dimethyl ether.
  • Solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ester solvents such as ethyl acetate, butyl acetate, and gamma butyrolataton, amide forms such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone Solvent and the like.
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • ester solvents such as ethyl acetate, butyl acetate, and gamma butyrolataton
  • amide forms such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone Solvent and the like.
  • toluene, heptane, and tetrahydrofuran are preferable from the viewpoint of solubility and stability.
  • These solvents can be used alone or in combination. I don't know
  • reaction can be carried out at room temperature, it is usually carried out by heating.
  • the lower temperature is 30 ° C or higher, preferably 50 ° C or higher, and the upper limit is the reflux temperature of the chlorination reagent used.
  • the excessively used chlorination reagent is removed.
  • the removal method is not particularly limited, and distillation, extraction and the like can be applied.
  • a solvent that forms an azeotropic composition with the chlorination reagent may be added and distilled off in order to increase efficiency.
  • thionyl chloride it can be distilled off azeotropically by adding benzene or toluene.
  • the obtained acid chlorinated product can be further purified by recrystallization using a non-polar solvent such as hexane or cyclohexane. However, without performing such purification operation, It can be used in the reaction process.
  • a non-polar solvent such as hexane or cyclohexane.
  • nonpolar solvent for recrystallization of the obtained acid chlorinated product include ether solvents such as tetrahydrofuran, dimethoxyethane and dioxane, nitrile solvents such as acetonitrile, sulfolane, Non-protic polar solvents such as dimethyl sulfoxide and N-methylpyrrolidone, halogen solvents such as dichloromethane and 1,2-dichloroethane, and ester solvents such as ethyl acetate and butyl acetate can be used.
  • ether solvents such as tetrahydrofuran, dimethoxyethane and dioxane
  • nitrile solvents such as acetonitrile
  • sulfolane Non-protic polar solvents such as dimethyl sulfoxide and N-methylpyrrolidone
  • halogen solvents such as dichloromethane and 1,2-dichloroethane
  • ester solvents
  • poor solvents such as aromatic hydrocarbons such as toluene and xylene, and aliphatic hydrocarbons such as heptane, hexane, and cyclohexane may not be used.
  • aromatic hydrocarbons such as toluene and xylene
  • aliphatic hydrocarbons such as heptane, hexane, and cyclohexane
  • the purity of 2,3 dicarboxylic acid anhydride is usually 90% or more, preferably 95% or more, more preferably 98% or more.
  • the main impurities include diacid chlorides, triacid chlorides (including stereoisomers), and catalysts that are generated when acid carboxylate groups are opened by the multiple carboxyl groups of tricarboxylic acid with an acid anhydride ring opened.
  • dimethylformamide is used as a dimethylformamide, it is preferable to use this decomposed product or dimethylamide of 2,3,5 norbornanetricarboxylic acid. More preferably 3 weights % Or less, more preferably 1% by weight or less.
  • tricarboxylic acid power is first converted into acid anhydride and then acid chloride is processed stepwise.
  • tricarboxylic acid is treated directly with the above chlorinating agent. By doing so, it is possible to convert it to 5-chloroformylnorbornane 2,3 dicarboxylic anhydride at once.
  • the lower limit of the amount of the chlorinating agent used is usually 2 molar equivalents or more, preferably 5 molar equivalents or more, more preferably 10 molar equivalents or more.
  • the upper limit is not particularly limited, an amount of 100 mole equivalent or less, preferably 50 mole equivalent or less is used from an economic viewpoint.
  • the above conditions can be employed as they are for the type of chlorinating agent, reaction temperature, and reaction purification technique.
  • the 5-chloroformylnorbornane 2,3 dicarboxylic acid anhydride which is the acid halide of the present invention thus obtained is a divalent alcohol or amine, or a monovalent alcohol having a dicarboxylic acid anhydride group.
  • a norbornane structure-containing tetracarboxylic acid anhydride which is a compound of the present invention represented by the general formula (1) or (2), can be synthesized by reacting with amines to esterify or amide. .
  • An alcohol or amine and a base are dissolved in a solvent, and 5-chloroformylnorbornane 2,3 dicarboxylic acid dissolved in the same solvent is dissolved therein.
  • Sarako can adopt a method of dropping a base into a mixed solution of 5-chloroformylnorbornane 2,3 dicarboxylic acid anhydride and alcohols or amines.
  • a diol that can be used in the synthesis of the tetracarboxylic acid-based compound of the present invention Is not particularly limited, but usually a mononuclear aromatic ring having two hydroxyl groups, an alicyclic skeleton having two hydroxyl groups, a biphenyl skeleton having one hydroxyl group on each nucleus, 2 1 phenol residue or cycloaliphatic alcohol residue
  • Those having a structure bonded by a functional group such as a loryleneidene group, those having two hydroxyl groups in the naphthalene skeleton, and those having two hydroxyl groups in the chain skeleton are used.
  • Specific examples include those having two hydroxyl groups on a mononuclear aromatic ring, such as hydroquinone, 2-methylhydroquinone, resorcinol, catechol, 2-phenol hydroquinone, etc.
  • Examples of structures with one hydroxyl group in both nuclei are 4, 4, bibienore, 3, 4, bibienore, 2, 2, bibienore, 3, 3 ', 5, 5'-tetramethyl- 4,
  • Examples of 4'-biphenol or the like in which the aromatic nucleus is bonded with a divalent functional group include 4,4'-dihydroxybiphenyl ether, 4,4'-dihydroxydiphenyl-norethnolephone, 9, 9-bis (4-Hydroxyphenyl) funoleolene, 9,9-bis (hydroxymethyl) fluorene, 9,9bis (2hydroxyethyl) fluorene, etc., which have two hydroxyl groups in the naphthalene skeleton 2, 6 naphthalene diol, 1, 4-naphthalene diol, 1, 5 naphthalene diol, 1, 8 naphthalene diol, etc.
  • Examples of those having two hydroxyl groups in the cyclic skeleton are 1, 4- Dihydroxycyclohexane, 1,3 dihydroxycyclohexane, 1,2 dihydroxycyclohexane, 1,3 adamantanediol, dicyclopentadiene dihydrate, etc.
  • Examples of those having a hydroxyl group include cyclohexane dimethanol tricyclo [5.2.1.0 2 ' 6 ] decandimethanol isotonic
  • Examples of those having a hydroxyl group in a ring having a hetero atom include 2,3 dihydroxy Tetrahydrofuran, isosorbide, etc.
  • Examples of those having two hydroxyl groups in the chain skeleton include ethylene glycol and propylene glycol.
  • diols having a cyclic skeleton More preferred are diols having a cyclic skeleton, and from the viewpoint of the required properties as a polymer, hydroquinone, 4,4, -biphenol, 1,4-dihydroxycyclohexane, 9,9-bis (4-hydroxy) (Fuel) fluorene, 9, 9-bis (hydroxymethyl) fluorene, 9, 9 bis (2 hydroxyethyl) fluorene are particularly preferred. Yes. Two or more of these diols can be used in combination.
  • the tetracarboxylic acid-based compound of the present invention can also be produced by reacting 5-chloroformylnorbornane 2,3-dicarboxylic acid anhydride with a dicarboxylic acid anhydride containing a hydroxy group.
  • the dicarboxylic acid anhydride containing a hydroxy group used in this case includes 3-hydroxysuccinic acid anhydride, 3-hydroxymethyl succinic acid anhydride, 5-hydroxynorbornane-2,3-dicarboxylic acid anhydride, 4
  • An example is hydroxyphthalic acid anhydrous.
  • the diamine used for producing the tetracarboxylic acid-based compound of the present invention basically, a force that can be freely selected.
  • a specifically usable diamine for example, an aromatic diamine, 3, 5 Gaminobenzotrifluoride, 2, 5 Gaminobenzotrifluore Lido, 3, 3 '-bistrifnore rometinore 4, 4'-Diaminobifenenore, 3, 3' -Bistrifluormethyl- 5, 5 , -Diaminobiphenyl, bis (trifluoromethyl) 4,4, -diaminodiphenyl, bis (fluorinated alkyl) 4,4,1 diaminodiphenyl, dichloro-1,4'-diaminodiphenyl, dib mouth Mo 4,4'-diaminodiphenyl, bis (fluorinated alkoxy) 4,4'-diaminodiphenyl, diphenyl 4,4'-diamin
  • Examples of the aliphatic diamine include 4,4,1-methylenebis (cyclohexylamine), isophoronediamine, trans 1,4-diaminocyclohexane, cis 1,4-diaminocyclohexane, 1,4-cyclohexanebis (methylamine) 2,5 bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6 bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8 bis (aminomethyl) ⁇ cyclo [5.
  • decane 1,3 diaminoadamantane, 2,2 bis (4-aminocyclohexyl) propane, 2,2 bis (4-aminocyclohexyl) hexafluoropropane, 1,3 propanediamine, 1 , 4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6 hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-otatamethylenediamine, 1, 9
  • Nonamethylenediamine and the like can be mentioned, and two or more of these can be used in combination, or can be used in combination with the aromatic diamine described above.
  • aromatic diamines include o-, m-, and p-dirangeamine monophenyl compounds, 4, 4'-diaminodiphenyl, 4, 4'-diaminodiphenyl sulfone, 4, 4 ' Diaminodiphenyl compounds such as diaminodiphenylmethane and 4,4'-diaminodiphenyl ether are preferred.
  • p-dirangeamine is easily available and has good physical properties.
  • 4,4′-diaminodiphenyl ether, and 4,4′-diaminodiphenol are more preferred.
  • Aliphatic diamines such as 4,4 'methylenebis (cyclohexylamine) and trans 1,4-diaminocyclohexane are preferred because they have a ring structure and are easily available. Four -It is more preferable since the physical properties of the rosin from which diaminocyclohexane is obtained are good.
  • the amount of these diols or diamines used is usually 0.6 equivalents or less, preferably 0.5 equivalents or less, with respect to 5-chloroformylnorbornane 2,3 dicarboxylic acid anhydride. . If more than this is used, only one of the diol or diamine is esterified, and it is preferable because a lot of new fest or half amide is formed!
  • the lower limit is 0.3 equivalent or more, preferably 0.45 equivalent or more. If it is less than this, 5 chloroformyl norbornane 2,3 dicarboxylic anhydride is left in the system, which is not preferable.
  • the diol or diamine is used in an amount of about 0.5 equivalents with respect to the 5-chloroformylnorbornane 2,3 dicarboxylic acid anhydride.
  • Solvent that can be used when synthesizing the norbornane structure-containing tetracarboxylic acid anhydride by reacting 5-chloroformylnorbornane 2,3 dicarboxylic acid anhydride with alcohols and amines is not particularly limited.
  • Ketone solvents aromatic hydrocarbon solvents such as toluene and xylene, halogen-containing solvents such as dichloromethane, chloroform, 1,2-dichloroethane, N-methyl-2-pyrrolidone, N, N dimethylacetate
  • Amide solvents such as amides, N, N dimethylacetamide, N, N dimethylform amide, etc.
  • Phosphorus-containing solvents such as imide, io- solvents such as dimethyl sulfoxide, ⁇ ⁇ ⁇ ⁇ ester solvents such as butyrolatatatone, ethyl acetate, and butyl acetate, 1,3 dimethyl-2-imidazolidinone, etc.
  • Aromatic solvents having a hydroxyl group such as nitrogen-containing solvent, phenol, ⁇ cresol, m-cresol, p cresol, o black mouth phenol, m black mouth phenol, p black mouth phenol and the like. These solvents may be used alone or in combination of two or more.
  • the concentration of the solute in the reaction solution in the reaction for obtaining the tetracarboxylic acid compound of the present invention has a lower limit of 1 wt% or more, preferably 10 wt% or more, and an upper limit of 50 wt% or less, preferably 40 wt%. It is done in the following. Taking into account the control of side reactions and the filtration process of precipitation, it is more preferable to carry out in the range of 10 wt% to 40 wt%.
  • the lower limit of the reaction temperature employed is 10 ° C or higher, preferably 5 ° C or higher, more preferably 0 ° C or higher, and the upper limit is 30 ° C or lower. Preferably, it is carried out at 20 ° C or lower, more preferably at 10 ° C or lower. If the reaction temperature is higher than 30 ° C, a side reaction may occur and the yield may be lowered.
  • the reaction is usually carried out at normal pressure.
  • the reaction can be carried out under pressure or under reduced pressure as necessary.
  • reaction atmosphere is normally performed under nitrogen.
  • the reaction vessel may be either a closed type reaction vessel or an open type reaction vessel, but in order to keep the reaction system in an inert atmosphere, an open type vessel that can be sealed with an inert gas is used.
  • the base used is used to neutralize hydrogen chloride generated as the reaction proceeds.
  • the type of base used in this case is not particularly limited, but it is possible to use organic tertiary amines such as pyridine, triethylamine, N, N dimethylaline, and inorganic bases such as potassium carbonate and sodium hydroxide. it can.
  • the precipitate produced by the above reaction is a mixture of the target product and hydrochloride.
  • hydrochloride In order to separate and remove the hydrochloride, it is possible to extract and dissolve the precipitate with chloroform or ethyl acetate, and then wash the organic layer with a separatory funnel. Only the hydrochloride can be completely removed. Determination of the removal of hydrochloride is performed by adding an aqueous silver nitrate solution to the cleaning solution and confirming the formation of a white precipitate of silver chloride.
  • the tetracarboxylic anhydride is partially hydrolyzed and converted to tetracarboxylic acids, which can be easily treated by heat treatment under reduced pressure. Can be reverted to dianhydride.
  • the temperature employed at that time has a lower limit of 50 ° C or higher, preferably 120 ° C or higher, and an upper limit of 250 ° C or lower, preferably 200 ° C or lower.
  • the upper limit of the degree of decompression used for the ring closure process is 0. IMPa or less, preferably 0.05 MPa or less.
  • a method of treating with an acid anhydride of an organic acid is also employed as a method of re-ring closure when tetracarboxylic acid is obtained by hydrolysis.
  • Acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride, etc. can be cited as acid anhydrides of organic acids used at that time.
  • Acetic anhydride is preferred because of its easy removal when used in excess. Preferably used.
  • the tetracarboxylic anhydride of the present invention thus obtained can be further purified.
  • a purification method in that case, recrystallization, sublimation, washing, activated carbon treatment, column chromatography and the like can be arbitrarily performed. These purification methods can be repeated or combined.
  • the solvent that can be used for recrystallization is not particularly limited as long as it is a solvent in which tetracarboxylic anhydride is dissolved.
  • ether solvents such as Jiokisan
  • sulfolane such as dimethyl O dimethylsulfoxide, N- methylpyrrolidone, I Buchirorataton
  • dimethylformamide such as dimethyl ⁇ Seth amide
  • Non-polar polar solvents halogen solvents such as dichloromethane and 1,2-dichloroethane
  • ester solvents such as ethyl acetate and butyl acetate
  • the recovery rate of the target product can be increased.
  • poor solvents such as aromatic hydrocarbons such as toluene and xylene, and aliphatic hydrocarbons such as heptane, hexane, and cyclohexane.
  • a dehydrating agent may be allowed to coexist in order to prevent the acid anhydride ring from opening.
  • dehydrating agents that can be used in this case include acetic anhydride, propionic anhydride, maleic anhydride and the like.
  • the purity of the tetracarboxylic acid anhydride of the present invention thus obtained is usually 90% or more, preferably 95%, as an area ratio of peaks obtained by analysis such as liquid high-performance chromatography with a differential refractive index detector. More preferably, it is 98% or more.
  • the impurities there are monoesters in which only one of the diols is esterified, and in the case of using an acid anhydride such as acetic anhydride as a ring-closing agent during purification, this ring-closing agent, etc. . Since these impurities contain one acid anhydride structure in the molecule, these impurities function as a polymerization terminator when polymerized with diamine, and are therefore preferably removed from the tetracarboxylic acid anhydride. It is necessary to keep.
  • an acid anhydride such as acetic anhydride
  • Tetracarboxylic anhydride The content of acid anhydrides such as acetic anhydride contained in the product is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 2 mol% or less. If these impurities are present more than this, the degree of polymerization may not be increased during polymerization with diamine.
  • the synthesis yield of the ester group-containing alicyclic tetracarboxylic acid anhydride of the present invention using the above-mentioned 5-chloroformylnorbornane 2,3 dicarboxylic acid anhydride and diol ester was determined after purification. In general, it is 10 mol% or more, preferably 20 mol% or more, more preferably 30 mol% or more, more preferably 50 mol% or more.
  • the tetracarboxylic dianhydride be stored at a low temperature avoiding high humidity in order to prevent the acid anhydride ring from opening due to hydrolysis. Specifically, it can withstand long-term storage if stored in a refrigerator in a container with good sealing properties.
  • the tetracarboxylic acid of the present invention can be stored for a long period of time at room temperature without the need to control the humidity.
  • the method for producing the polyimide precursor of the present invention represented by the general formulas (5) and (6) is not particularly limited, and a known method can be applied.
  • a polyimide precursor can be easily produced by reacting substantially equimolar diamines with the tetracarboxylic acid compound of the present invention in a polymerization solvent.
  • the tetracarboxylic dianhydride is represented by the general formula (1), (2) (R 1 and R 2 and R 3 and R 4 are acid anhydride groups (C (O) OC (O))
  • R 1 and R 2 and R 3 and R 4 are acid anhydride groups (C (O) OC (O))
  • different acid dianhydrides represented by the general formula (1) or (2) may be mixed and used.
  • a compound represented by any one of the following general formulas (9) to (12) derived from the above general formula (1), and derived from the above general formula (2) A compound represented by any one of the following general formulas (13) to (16) can also be used.
  • R 11 and R 1 are each independently an alkyl group having 1 to 12 carbon atoms
  • x a and x b are each independently a hydroxyl group or a halogen atom (fluorine , Chlorine, bromine or iodine).
  • B and X 1 , X 2 , X 3 , and n are as defined in the general formulas (1) and (2).
  • D 1 is a group having a cyclic structure
  • is a cyclic structure having a bridge structure
  • X a and X b are chlorine atoms or bromine atoms
  • R 11 and R 12 are alkyl groups having 6 or less carbon atoms
  • n is 1
  • X 1 , X 2 , and X 3 are Each is independently composed of a halogen atom or a hydrogen atom.
  • D 1 is a group having a cyclic structure
  • B is a norbornane ring
  • X a and X b are chlorine atoms
  • R 11 and R 12 are methyl groups
  • n is 1, X 1 , X 2 , and X 3 are all It is composed of hydrogen atoms.
  • the diamine used for producing the polyimide precursor according to the present invention can be freely selected within a range that does not significantly impair the polymerization reactivity in the production of the precursor and the required characteristics of the resulting polyimide. is there.
  • Specific examples of diamines that can be used include aromatic diamines, 3,5-diaminoben: / trifnore rid, 2,5-diaminoben: / trifnore rid, 3, 3, monobistrifluor.
  • 1,4,4,1-diaminobiphenyl 3,3,1-bistrifluoromethyl-5,5-diaminobiphenyl, bis (trifluoromethyl) —4,4′-diaminobiphenyl, bis (fluorinated) Alkyl) —4,4, —Diaminodiphenyl, dichloro-4,4, —Diaminodiphenyl, Dibu-Mole 4,4, —Diaminodiphenyl, bis (fluorinated alkoxy) 4,4′-diaminodiphenyl , Diphenyl, 4'-diaminodiphenyl, 4,4'bis (4 aminotetrafluorophenoxy) tetrafluorobenzene, 4,4 'bis (4 aminotetrafluorophenyl) octafluorobi Ferrule, 4, 4'— Naphthylamine, ⁇ —, m—, ⁇ — Phenylylenediamine, 2,4 diaminot
  • aliphatic diamine examples include 4,4′-methylenebis (cyclohexylamine), isophorone diamine, trans 1,4-diaminocyclohexane, cis 1,4-diaminocyclohexane, 1,4-cyclohexane bis (methylamine), 2, 5 Bis (aminomethyl) bicyclo [2.2.1] heptane, 2, 6 Bis (aminomethyl) bicyclo [2.2.1] heptane, 3, 8 Bis (aminomethyl) ⁇ cyclo [5.2.1 0] decane, 1,3 diaminoadamantane, 2,2 bis (4-aminocyclohexyl) propane, 2,2 bis (4-aminocyclohexyl) hexafluoropropane, 1,3 propanediamine, 1,4 Tetramethylene diamine, 1,5-pentamethylene diamine, 1,6 hexamethylene diamine, 1,7-heptamethylene diamine, 1,8-otatam
  • diamines containing siloxane groups such as 1,3 bis (3aminopropyl) 1,1,3,3-tetramethinoresisiloxane can also be used.
  • aromatic diamines include o-, m-, and p-phenylenediamine compounds such as mononuclear phenylenediamine, 4, 4, diaminodiphenyl, 4, 4, dianamino diphenylsulfone, Even though diaminodiphenyl-loupe compounds such as 4,4'-diaminodiphenylmethane and 4,4'-diaminodiphenyl ether are preferred, they are easily available and the properties of the resulting resin are good. p-Phenylenediamine, 4,4′-diaminodiphenyl ether, and 4,4′-diaminodiphenyl are more preferable.
  • aliphatic diamines such as 4,4'-methylenebis (cyclohexylamine), trans 1,4-diaminocyclohexane, and isophorone diamine are preferred because they have a ring structure and are easily available.
  • Trans 1,4-diaminocyclohexane is more preferable because it has good physical properties.
  • These diamines may be purified before being subjected to the reaction.
  • purification method recrystallization, sublimation, activated carbon treatment, distillation and the like can be arbitrarily performed. These purification methods can be repeated or combined.
  • diamines preferably have a high purity because of increased polymerization reactivity, and the purity of diamins usually used is 95% or more, preferably 97% or more, and more preferably 99% or more. .
  • the polyimide precursor of the present invention can be obtained by polymerizing the tetracarboxylic dianhydride represented by the general formula (1) or (2) with substantially equimolar diamine. More specifically, it can be obtained by the following method.
  • reaction is performed by mixing diamine and the tetracarboxylic dianhydride of the general formula (1) or (2) in the presence of a solvent.
  • the ratio of tetracarboxylic dianhydride and diamine used is preferably 1: 0.8 to 1.2 in terms of molar ratio. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1: 1, the higher the molecular weight of the polyamic acid obtained.
  • the method for charging these diamine and acid anhydride into the reactor can be arbitrarily selected.
  • diamine is dissolved in a solvent, and this is added to the tetracark of general formula (1) or (2).
  • a method of gradually adding boric acid dianhydride powder conversely, a method of gradually adding diamine to a solution of tetracarboxylic acid dianhydride, and further adding diamine and tetracarboxylic acid dianhydride powder to a solvent in advance. It is possible to adopt a method of adding to the charged reactor at the same time.
  • a method in which diamine is dissolved in a solvent and tetracarboxylic dianhydride powder is gradually added is advantageously employed because of the solubility of the reagent in the solvent.
  • reaction temperature is too low, the solubility of the reagent is lowered and a sufficient reaction rate cannot be obtained. If the reaction temperature is too high, the progress of the reaction is controlled.
  • the lower limit is -20 ° C, preferably -10 ° C, more preferably 0 ° C, and the upper limit is 150 ° C, preferably 100 ° C, more preferably 60 ° C.
  • the reaction time can be adopted without any particular limitation, but in order to achieve a sufficient reagent conversion rate, the lower limit is 10 minutes, preferably 30 minutes, more preferably 1 hour.
  • the upper limit is not particularly limited, but it is not necessary to extend the reaction time more than necessary once the reaction is completed. For example, 100 hours, preferably 50 hours, more preferably 30 hours are employed.
  • the polymerization reaction is carried out using a solvent.
  • the solvent used may be any solvent as long as the starting monomer diamine and the tetracarboxylic dianhydride of the general formula (1) or (2) do not react with the solvent, and these starting materials dissolve.
  • the structure is not particularly limited.
  • amide solvents such as
  • aprotic solvents such as N, N dimethylformamide, N, N dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and y butyrolataton are preferred because of the high solubility of the raw materials.
  • the solvent is preferably used in such an amount that the total concentration of tetracarboxylic dianhydride and diamine as raw materials falls within the following range. That is, the lower limit of this concentration is 0.1% by weight, preferably 1% by weight, and more preferably 5% by weight. Although the upper limit is not particularly limited, 80% by weight, preferably 50% by weight, and more preferably 30% by weight is employed from the viewpoint of solubility of tetracarboxylic dianhydride. By performing the polymerization in such a concentration range, a uniform and high degree of polyimide precursor solution can be obtained.
  • the degree of polymerization of the polyimide precursor is as high as possible.
  • the polymerization is performed at a concentration lower than the above concentration range, the polyimide precursor is obtained. This is not preferable because a sufficient degree of polymerization cannot be obtained, and the finally obtained polyimide film may become brittle.
  • a higher polymerization time requires a long polymerization time until the formed salt dissolves and disappears, which may lead to a decrease in productivity.
  • inorganic salts may be used as a catalyst.
  • examples of inorganic salts used here include alkali metal halides such as LiCl, NaCl, and LiBr, alkaline earth metal halides such as CaCl, and metal halides such as ZnCl.
  • metal chlorides such as LiCl, CaCl, and ZnCl are particularly preferred.
  • the reaction is preferably carried out with stirring during the course of the reaction.
  • the weight average molecular weight of the polyimide precursor of the present invention thus obtained has a lower limit of 3000, preferably ⁇ 5,000, and an upper limit of 150,000, preferably ⁇ 100,000.
  • Molecular weight for example, gel It can be measured by permeation chromatography (GPC).
  • the logarithmic viscosity of the polyimide precursor to be obtained is not particularly limited, but the preferred logarithmic viscosity has a lower limit of 0.3 dLZg, preferably 0.5 dLZg, more preferably 0. 7dLZg. On the other hand, the upper limit is 5. OdLZg, preferably 3. OdLZg, more preferably 2. OdLZg.
  • the logarithmic viscosity can be measured using, for example, an Ostwald viscometer.
  • the amount of foreign matter in the polyimide precursor obtained in the present invention is usually 5 to 20 m in the projected area equivalent circle diameter.
  • the number of insoluble fine particles is 5,000 or less per lg of precursor, preferably 3000 or less, more preferably 1000 or less.
  • the number of foreign substances can be counted, for example, by a microscopy method that measures the size and number of insoluble fine particles on a microscope image. Specifically, it can be easily measured by using a particle size image processing device such as XV 1000 manufactured by Keyence Corporation.
  • tetracarboxylic acid derivatives (9) to (16) Preparation of these diamine and the tetracarboxylic acid derivative represented by the general formulas (9) to (16) (hereinafter referred to as “tetracarboxylic acid derivatives (9) to (16)") into the reactor.
  • the method can be chosen arbitrarily. For example, a method in which diamine is dissolved in a solvent and a tetracarboxylic acid derivative is gradually added thereto, conversely, a method in which diamine is gradually added to a solution of the tetracarboxylic acid derivative, and further, diamine and tetracarboxylic acid are further added. For example, it is possible to employ a method in which the derivatives are added together and added simultaneously to the reactor charged with the solvent.
  • the method of dissolving the diamine in a solvent and gradually adding the tetracarboxylic acid derivative is advantageously employed because of the ease of reaction control.
  • the reaction temperature is too low, the solubility of the reagent is lowered and a sufficient reaction rate cannot be obtained. If the reaction temperature is too high, the progress of the reaction is controlled.
  • the lower limit of the reaction temperature is 20 ° C, preferably 10 ° C, more preferably 0 ° C, and the upper limit is 150 ° C, preferably 100 ° C, more preferably 80 ° C.
  • the reaction time can be adopted without any particular limitation, but the lower limit is 10 minutes, preferably 30 minutes, more preferably 1 hour, and the upper limit is not particularly limited, but is 150 hours, preferably 100 hours, more preferably 50 hours are adopted.
  • This polymerization reaction is carried out using a solvent.
  • a solvent used a solvent used in the reaction of the above-described diamine and tetracarboxylic dianhydride can be used.
  • the solvent is preferably used in such an amount that the weight concentration of the total amount of the tetracarboxylic acid derivatives (9) to (16) and diamine as raw materials falls within the following range. That is, the lower limit of this concentration is 0.1% by weight, preferably 1% by weight, more preferably 5% by weight, and the upper limit is not particularly limited, but from the viewpoint of solubility of the tetracarboxylic acid derivative, 80% by weight, Preferably 50% by weight, more preferably 30% by weight is employed.
  • a basic substance may be used.
  • usable basic substances are tertiary amines and inorganic basic substances.
  • specific examples include inorganic tertiary substances such as aromatic tertiary amines such as pyridine, aliphatic tertiary amines such as triethylamine, N-methylbiperidine, potassium carbonate, sodium carbonate, sodium phosphate and sodium hydrogen salt. It can be used. Of these, pyridine or triethylamine is preferred because of its availability and operability.
  • These basic substances are preferably added in advance dissolved in a solvent used in the reaction.
  • the amount of the basic substance used can be arbitrarily changed depending on the amount of acid contained in the tetracarboxylic acid derivatives (9) to (16). Of course, if there is no acid generated by the reaction in the tetracarboxylic acid derivative, it is possible not to use these basic substances.
  • the amount of the basic substance used is 2 times mol, preferably 3 times mol, the upper limit force S 10 times mol, preferably the mol number of the tetracarboxylic acid derivative used for polymerization. Is 5 times mole.
  • the reaction is preferably carried out with stirring during the course of the reaction.
  • the polymerization reaction of this diamine with the tetracarboxylic acid derivatives (9) to (16) is performed by an interfacial polycondensation method. Can also be done.
  • the interfacial polycondensation method is characterized by the solvent used. That is, diamine is dissolved in an aqueous solution in which a basic substance such as tertiary amine is dissolved.
  • the nonpolar organic solvent used is an aromatic solvent such as toluene or xylene, or an aliphatic hydrocarbon solvent such as cyclohexane, hexane or heptane.
  • diamine and equimolar triphenyl phosphite can be used as a condensing agent, and direct polycondensation can be performed in the presence of pyridine.
  • N, N-dicyclohexyl carpositimide is used as another condensing agent, direct polycondensation is possible in the same manner.
  • an aromatic acid dianhydride having one benzene ring such as pyromellitic acid, 3, 3 ′, 4, 4′-biphenyl Lacarboxylic acid dianhydride (BPDA), 2, 3 ', 3, 4'-biphenyltetracarboxylic acid dianhydride (a-BPDA), 3, 3, 4, 4, 4, diphenylsulfone tetracarboxylic acid Dianhydride (DSDA), 3, 3 ', 4, 4, -benzophenone tetracarboxylic dianhydride (BTDA), 2, 2, 3, 3, 3, 3, monobenzophenone tetracarboxylic dianhydride 3, 3 ', 4, 4'-oxydiphthalic anhydride (OD PA), bis (2,3-dicarboxyphenol) ether dianhydride (a- ODPA), bis (3,4-dicarboxy) (Phenol) ether dianhydride, bis (3,4-dicarboxyphenol) ) Methanedi
  • examples of alicyclic acid anhydrides that can be used additionally include chain aliphatic tetrates such as 1, 2, 3, 4 butanetetracarboxylic dianhydride and ethylenetetracarboxylic dianhydride.
  • the ratio of use of these acid dianhydrides and the tetracarboxylic acid compound of the present invention can be arbitrarily set depending on the physical properties of the resin to be obtained, but the use of the tetracarboxylic acid compound of the present invention is not limited.
  • the amount is preferably 5 mol% or more, and more preferably 10 mol% or more.
  • a polyimide precursor in a solution state can be isolated if necessary.
  • the polyimide precursor solution is covered with a poor solvent such as water, methanol or acetone.
  • the polyimide precursor can be isolated as a powder by precipitating the polyimide precursor and removing the solid solvent obtained by filtration or the like by drying. If necessary, this powder can be dissolved in the above-described reaction solvent to obtain a solution again, and the polyimide precursor of the present invention can be purified by repeating this operation.
  • Examples of the method for synthesizing a polymer containing at least a part of the structure represented by the general formula (7) include (i) a method for obtaining a polyimide precursor strength and (ii) a method for obtaining without using a polyimide precursor. .
  • As a method for obtaining (i) polyimide precursor strength there are a heating imidization method and a chemical imidization method.
  • the production method of the polymer of the present invention is not particularly limited to the production method described below.
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) can be produced by subjecting the polyimide precursor of the present invention obtained by the above method to cyclization imido reaction.
  • the forms capable of producing the polymer containing at least a part of the structure represented by the general formula (7) are a film, a powder, a molded body, and a solution.
  • a polymer film containing at least a part of the structure of the general formula (7) can be produced, for example, as follows.
  • the polyimide precursor polymerization solution (varnish) is cast and applied onto a substrate such as glass, copper, aluminum, silicon, a quartz plate, a stainless plate, or a Kapton film.
  • a coating method the polyimide solution obtained as described above is dropped onto the above-mentioned substrate and applied to a uniform height by stretching the solution on a support having a fixed height. A method is mentioned. At this time, using a device such as a doctor blade will not work.
  • any method that can apply a solution with a predetermined thickness such as a spin coating method, a printing method, and an ink jet method, can be used without limitation.
  • the viscosity is adjusted to be suitable for application.
  • the lower limit of the viscosity is 1 poise, preferably 5 poise, and the upper limit is 100 poise, preferably 80 poise.
  • the lower limit of the drying temperature employed at this time is usually 20 ° C, preferably 40 ° C, more preferably 60 ° C.
  • the upper limit is usually 200 ° C, preferably 150 ° C, more preferably 100 ° C.
  • the drying time can be used without particular limitation as long as the solvent is removed to some extent, but the lower limit is usually 10 minutes, preferably 30 minutes, more preferably 1 hour, and the upper limit is not particularly limited, but usually 50 Time, preferably 30 hours, more preferably 10 hours is employed.
  • Drying may be performed under reduced pressure.
  • the degree of decompression employed at that time is usually 0.05 MPa or less, preferably 0. OlMPa or less, and more preferably 0.0OOMPa or less.
  • the residual amount of the solvent after drying is usually 70% by weight or less, preferably 50% by weight or less, and more preferably 30% by weight or less.
  • the dried polyimide precursor film thus obtained is imidized on a substrate in a vacuum, in an inert gas such as nitrogen, or in air at a high temperature. This method is called heated imidi.
  • the lower limit of the temperature employed at this time is usually 180 ° C, preferably 200 ° C, more preferably 250 ° C.
  • the upper limit is usually 500 ° C, preferably 400 ° C, more preferably 350 ° C. If the heating temperature is 180 ° C. or less, the cyclization reaction of the cyclization imidation reaction may be incomplete, and if it is too high, the resulting polyimide film may be colored.
  • the imidization is preferably performed in a vacuum or in an inert gas, but may be performed in air if the temperature of the imidization reaction is not too high.
  • the degree of vacuum employed when the heated imidization is performed under reduced pressure is usually 0.05 MPa or less, preferably 0. OlMPa or less, more preferably 0.0OOMPa or less.
  • the heating time a time during which cyclization imidization sufficiently proceeds is adopted, but usually the lower limit is 5 minutes, preferably 10 minutes, more preferably 20 minutes, and the upper limit is not particularly limited, but usually 20 Time, preferably 10 hours, more preferably 5 hours is employed.
  • a chemical imidization reaction by immersing a polyimide precursor film in a solution containing a dehydrating reagent. This reaction is preferably carried out in the presence of a tertiary amine. It is preferable to carry out the reaction.
  • tertiary amines that can be used at this time include aromatic tertiary amines such as pyridine, and aliphatic tertiary amines such as triethylamine and N-methylbiperidine. Of these, pyridine and triethylamine are preferable in terms of easy availability and good reactivity.
  • the amount of tertiary amine used is usually 0.1 mol times the amic acid group contained in the polyimide precursor, preferably 0.5 mol times, more preferably 1.0 mol times, and the lower limit. Is usually 30 mole times, preferably 20 mole times, more preferably 10 mole times.
  • Examples of the dehydrating reagent that can be used include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoromethanesulfonic acid anhydride, and rubodiimides such as N, N-dicyclohexylcarbodiimide.
  • acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoromethanesulfonic acid anhydride
  • rubodiimides such as N, N-dicyclohexylcarbodiimide.
  • Carbodiimides such as acetic anhydride, trifluoromethanesulfonic anhydride, N, N-dicyclohexylcarbodiimide are preferred, and acetic anhydride is more preferred in terms of availability and economy.
  • the amount of the dehydrating reagent used is usually 1.0 mole times, preferably 2.0 mole times, more preferably 4 times the mole number of amic acid groups contained in the polyimide precursor.
  • the upper limit is not particularly limited, but is usually 50 mole times, preferably 30 mole times, and more preferably 20 mole times.
  • the treatment with these dehydrating reagents may be performed at room temperature, or when the reaction proceeds slowly, it may be used by heating.
  • the polymerization solution of the polyimide precursor of the present invention may be heated as it is or after being appropriately diluted with the same solvent and then heated in the solution.
  • a solution (varnish) of the polymer of the present invention containing at least a part of the structure can be easily produced.
  • the concentration of the solution during the heating imidization is not particularly limited, but the lower limit is usually 1% by weight of the polyimide precursor of the present invention, preferably 5% by weight, more preferably 10% by weight.
  • the upper limit is usually 80% by weight, preferably 60% by weight, and more preferably 50% by weight.
  • the lower limit of the heating temperature at this time is usually 100 ° C, preferably 120 ° C, more preferably Is 150 ° C.
  • the upper limit can be freely set as long as the coloration of the target product does not occur, but it is usually 300 ° C, preferably 250 ° C, more preferably 200 ° C.
  • an azeotropic solvent such as toluene and xylene was added, and the reaction was performed while distilling off the water produced with these solvents. It ’s okay to go.
  • the reaction may be performed by adding a basic substance as a catalyst for the cyclization imidation reaction!
  • a basic substance as a catalyst for the cyclization imidation reaction.
  • the base catalyst that can be used in the present invention include aromatic amines such as pyridine, ⁇ -picoline, and pyrazine.
  • Chemical imidization can also be carried out by adding a dehydrating reagent to the polyimide precursor solution. This reaction is usually performed in the presence of a dehydrating reagent and a basic substance.
  • the lower limit of the amount used is usually 1.0 mole times, preferably 2.0 mole times, more preferably 4.0 mole times, relative to the number of moles of amino acid groups contained in the polyimide precursor.
  • the upper limit is not particularly limited, but is usually 50 mol times, preferably 30 mol times, more preferably 20 mol times. If the amount of the dehydrating reagent is too small, the progress of the reaction is slow, and if it is too large, it remains in the object.
  • the types of basic substances that can be used are not particularly limited, but organic tertiary amines such as pyridine, triethylamine, tributylamine, ⁇ , ⁇ -dimethylamine, dimethylaminopyridine, It is possible to use inorganic basic substances such as potassium carbonate and sodium hydroxide. Of these, pyridine and triethylamine are preferred because they are available at low cost and are easy to operate because they are liquid and highly soluble.
  • the use amount of the basic substance is usually 0.1 mol times, preferably 0.5 mol times, more preferably 1.0 mol times, and the upper limit is usually 30 mols of the amic acid group of the polyimide precursor. Double, preferably 20 molar times, more preferably 10 molar times. If the amount of the basic substance is too small, the progress of the reaction is slow, and if the amount is too large, it remains in the target product.
  • the solvent used at the time of synthesizing the polyimide precursor described above may be used. it can.
  • the lower limit of the reaction temperature employed is usually 10 ° C, preferably 5 ° C, more preferably 0 ° C, and the upper limit is usually 80 ° C, preferably 60 ° C, more preferably 40 ° C. .
  • the lower limit of the reaction time is usually 5 minutes, preferably 10 minutes, and the upper limit is not particularly limited, but is usually 100 hours, preferably 24 hours.
  • the reaction is usually carried out at normal pressure, but it can be carried out under pressure or under reduced pressure as necessary.
  • the reaction atmosphere is usually a nitrogen atmosphere.
  • the imidization rate by this imidation reaction can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • a polymer containing at least a part of the structure of the general formula (7) obtained by the above method is used as a solution, or a reagent such as benzoyl chloride, acetic anhydride and pyridine is added to the solution obtained by the reaction.
  • a reagent such as benzoyl chloride, acetic anhydride and pyridine is added to the solution obtained by the reaction.
  • the terminal amino group can be protected as an amide group. This is preferable because coloring of the polyimide is prevented and stability is improved.
  • polyisomide which is an isomer of polyimide
  • the mixing ratio of polyisomide is usually 50% or more, preferably 80% or more.
  • the polyisimide mixed with this polyisomide can be made into a polyimide by making it into powder or by heating it again in a solvent and applying it to a substrate to form a film, followed by heating.
  • the lower limit of the temperature at this time is usually 100 ° C, preferably 200 ° C, more preferably 300 ° C.
  • the upper limit is usually 500 ° C, preferably 400 ° C, more preferably 350 ° C.
  • the lower limit of the reaction time at that time is usually 5 minutes, preferably 10 minutes, and the upper limit is not particularly limited, but is usually 100 hours, preferably 24 hours.
  • the tetracarboxylic acid compound represented by the above general formula (1) or (2) is used as a raw material, and this is reacted with a diamine to form a direct cyclization imidization reaction.
  • a method for producing the polymer of the present invention is a method in which the intermediate polyimide precursor is directly isolated to cyclization imidization without isolation in the middle, and the reaction conditions at that time include the polyimide precursor force of the general formula (7) described above. Conditions for heat imidization for producing a polymer containing at least a part of the structure can be appropriately employed.
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) obtained as described above is dissolved in a solvent to form a solution (varnish), the polymer is changed in various forms. Can be easily manufactured.
  • a polymer containing at least a part of the structure of the general formula (7) can be isolated as a powder.
  • a poor solvent which can be used in this case, Water, methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, etc. are mentioned. be able to.
  • the specific polymer introduced into a poor solvent and precipitated is collected by filtration, and then can be powdered by drying at normal temperature or under reduced pressure at normal temperature or under reduced pressure.
  • the powdered polymer obtained in this way can be dissolved in a solvent again to form a solution (varnish).
  • the solvent used in the synthesis of the polyimide precursor can be used.
  • a solvent having a low surface tension such as lactic acid n butyl ester and lactyl isoamyl ester can be used.
  • the mixing amount of the solvent for the purpose of these coatings uniformity improvement preferably 10 to 80 wt 0/0 of the total Solvent, more preferably 20 to 60 wt%.
  • the lower limit of the concentration of the polymer is usually 1% by weight, preferably 5% by weight, more preferably 10% by weight, and the upper limit is usually 80% by weight, preferably 60% by weight, more preferably 50% by weight. %.
  • the polyimide solution (varnish) thus obtained can be used as a coating material for various materials for film formation and coating.
  • the amount of foreign matter in a polymer containing at least a part of the structure of the general formula (7) obtained by the present invention usually has a projected area equivalent circle diameter of 5 to
  • the number of insoluble fine particles of 20 m is 5000 or less per lg of precursor, preferably 3000 or less, and more preferably 1000 or less.
  • the method for measuring the amount of insoluble fine particles is as described above.
  • a molded product of the desired shape By molding the powder of the polymer of the present invention containing at least a part of the structure of the general formula (7), a molded product of the desired shape can be obtained.
  • the lower limit of the heating temperature is usually 150 ° C, preferably 200 ° C, more preferably 250 ° C, while the upper limit is usually 450 ° C, preferably 400 ° C, more preferably 350 ° C. ° C.
  • the polymer powder once isolated is redissolved in, for example, the solvent used in the polymerization, it can be returned to the polymer varnish containing at least a part of the structure of the general formula (7).
  • the coating method in this case is not particularly limited, but for example, a polymer solution is dropped onto an optical substrate such as a quartz plate, a stainless plate, or a Kapton film, and the height is fixed on a support.
  • stretching a sledge solution is mentioned. At this time, using a device such as a doctor blade is not a problem.
  • the spray printing method dip coating method, spin coating method, printing method, ink jet method, etc. are used. From the viewpoint of productivity, the transfer printing method is widely used industrially.
  • the present invention is also preferably used.
  • the polymer containing at least a part of the structure of the general formula (7) applied in this manner still contains a large amount of solvent. Therefore, the solvent is removed by heating.
  • the lower limit is usually 70 ° C, preferably 100 ° C, more preferably 150 ° C
  • the upper limit is usually 350 ° C, preferably 300 ° C, more preferably 250 ° C. Heating may be done in stages or even if the temperature is raised continuously.
  • These steps may be performed under reduced pressure or in an inert atmosphere.
  • the degree of decompression employed when the reaction is performed under reduced pressure is usually 0.05 MPa or less, preferably 0.01 MPa or less, and more preferably 0.0OOlMPa or less.
  • the film obtained in this manner can be patterned by a method such as wet etching, dry etching, or laser ablation, if necessary, to obtain an optical component formed into a predetermined shape. .
  • Optical elements such as films and optical parts using the polymer of the present invention containing at least a part of the structure of the general formula (7) thus obtained have a small birefringence and are colorless and transparent. Even if it is a film
  • the thickness of the film of the polymer of the present invention containing at least a part of the structure of the general formula (7) can be controlled by changing the thickness of the solution to be applied, and the lower limit is usually 0. 1 m, preferably 1 ⁇ m, more preferably 5 ⁇ m, upper limit is usually 1000 ⁇ m, preferably 700 ⁇ m, more preferably 500 ⁇ m.
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) is excellent in solvent solubility, its solution strength can be freely adjusted depending on the application, such as sheets and fibers. Can be crafted.
  • the film can be used not as a single layer but as a multilayer.
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) and a precursor thereof include If necessary, additives such as acid stabilizers, inorganic and Z or organic fillers, silane coupling agents, photosensitizers, photopolymerization initiators, flame retardants and sensitizers can be added.
  • additives such as acid stabilizers, inorganic and Z or organic fillers, silane coupling agents, photosensitizers, photopolymerization initiators, flame retardants and sensitizers can be added.
  • the resin used at that time is not particularly limited as long as it can be uniformly mixed with the polymer of the present invention containing at least a part of the structure of the general formula (7).
  • examples thereof include ether imides, polyester imides having other compositions, polyether sulfone, triacetyl cellulose, polycarbonate, polyester, poly (meth) acrylate, and polycycloolefin.
  • the specific physical properties of the polymer of the present invention including at least a part of the structure of the general formula (7) are shown below among the above-described rosins having excellent physical properties such as heat resistance, permeability and absorbency. .
  • the glass transition temperature Tg (° C) of this polymer is usually 200 ° C, preferably 250 ° C, and the upper limit is usually 500 ° C, preferably 450 ° C, more preferably 400 ° C. Within the range of C, it has high heat resistance.
  • the 5% weight loss temperature as another indicator of heat resistance is usually 350 ° C or higher in an inert gas atmosphere, preferably 400 ° C or higher, more preferably 420 ° C or higher, and in an air atmosphere.
  • the temperature is usually 350 ° C or higher, preferably 380 ° C or higher, more preferably 400 ° C or higher.
  • the polymer of the present invention containing at least part of the structure of the general formula (7) has a feature of high transparency. Its transparency is measured with a 30 / zm-thick polyimide film, and the average transmittance in the wavelength range of 250 to 800 nm is usually 50% or more in the UV / visible absorption spectrum graph. Preferably, it is 60% or more, more preferably 70% or more. Further, the transmittance of monochromatic light at 400 nm is usually 70% or more, preferably 75% or more, more preferably 80% or more, and particularly preferably 85% or more. The cutoff wavelength is usually 350 nm or less, preferably 330 nm or less, and more preferably 310 nm or less.
  • the lower limit of the cutoff wavelength is usually 220 nm, preferably 250 nm.
  • the cut-off wavelength was measured using a UV-visible spectrophotometer (UV-3100S) manufactured by Shimadzu Corporation as described in the Examples section below. It can be determined by measuring the visible light transmittance of wavelengths from 200 nm to 800 nm and examining the wavelength (cutoff wavelength) at which the transmittance is 0.5% or less.
  • UV-3100S UV-visible spectrophotometer
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) is excellent in optical isotropy, and has the characteristics of birefringence and small size.
  • the birefringence is 0.05 or less, preferably 0.01 or less, and more preferably 0.005 or less.
  • the pencil hardness CFIS-K540 of the polymer of the present invention containing at least a part of the structure of the general formula (7) is usually in the range of B to 7H, preferably in the range of H to 4H. is there.
  • the upper limit of the refractive index of the polymer of the present invention containing at least part of the structure of the general formula (7) is usually 1.75, preferably ⁇ to 1.70, more preferably ⁇ to 1.68, lower limit.
  • the force is 1.50, preferably ⁇ to 1.53, more preferably 1.55. It is well known that the refractive index decreases when fluorine atoms are introduced into the resin, but when fluorine atoms are introduced into the polymer of the present invention, the refractive index decreases.
  • the upper limit is usually 1.65, preferably 1.63, more preferably 1.60, and the lower limit is usually 1.45, preferably 1.48, more preferably 1.50.
  • the dielectric constant at 1 MHz of the polymer of the present invention containing at least part of the structure of the general formula (7) is usually 3.2 or less, preferably 3.0 or less, more preferably 2.9 or less. is there.
  • the dielectric constant is lowered.
  • the frequency dependence of the dielectric loss tangent is also low in the range of 1 to 20 GHz. If it shows a substantially constant value in the range of 0.005 to 0.020, it also has the characteristics of extremely high frequency characteristics. have.
  • the amount of foreign particles contained in the polymer of the present invention containing at least a part of the structure of the general formula (7) is usually an insoluble fine particle having a projected area equivalent circle diameter of 5 to 20 / ⁇ ⁇ . Is 5000 or less per lg of the polymer as described above, preferably 3000 or less, more preferably 1 000 or less.
  • the water absorption when the polymer of the present invention containing at least a part of the structure of the general formula (7) is immersed in water at 25 ° C for 24 hours is usually 2.0% by weight or less, preferably 1. 5% by weight or less, more preferably 1.0% by weight or less.
  • this water absorption rate is obtained by vacuum-drying a film formed to a film thickness of 30 m at 80 ° C for 3 hours and then immersing it in water at 25 ° C for 24 hours. Next, pull up the film and squeeze it into dry paper (100% pulp), leave it for 1 minute, soak up the moisture adhering to the film surface, and then replace the paper twice. After repeating the above operation, the weight can be measured and the component force of weight increase before and after immersion can be obtained.
  • the linear thermal expansion coefficient of the polymer of the present invention containing at least a part of the structure of the general formula (7) is usually lOOppmZK or less, preferably 50ppmZK or less, more preferably 30ppmZK or less.
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) exhibits high solubility in a solvent. In particular, it dissolves well in the solvent used when synthesizing the polyimide precursor described above and can be easily made into a solution.
  • the polymer of the present invention containing at least a part of the structure of the general formula (7) can be bent flexibly when used as the above-described film, and returns to a flat film when restored. It has a characteristic that can be restored.
  • the polymer film of the present invention containing at least a part of the structure of the general formula (7) can also be produced as an excellent flexible material that does not crack even if it is bent at 180 °. .
  • the tensile strength when the polymer of the present invention containing at least a part of the structure of the general formula (7) is used as a film is usually lOMPa or more, preferably 30 MPa or more, more preferably 50 MPa or more.
  • the tensile elastic modulus when the polymer of the present invention containing at least a part of the structure of the general formula (7) is used as a film is usually 0.1 GPa or more, preferably 0.5 GPa or more, more preferably 1. Over OGPa.
  • the tensile elongation when the film of the polymer of the present invention containing at least a part of the structure of the general formula (7) is usually 0.1%, preferably 0.5%, more preferably Is 1.0%, upper limit Is usually 100% or less, preferably 50% or less, more preferably 30% or less.
  • the polymer of the present invention satisfies high glass transition temperature, low birefringence, colorless transparency, low water absorption, and low dielectric properties at the same time, and takes advantage of these excellent balanced properties. It can be used as a material in the semiconductor field, optical material field, optical communication field, display device field, electrical and electronic equipment field, transportation equipment field, aerospace field and the like.
  • precision optical components such as lenses and diffraction gratings, disk substrates such as holograms, CDs, MDs, DVDs, and optical disks, optical adhesives, and display devices are used for LCD substrates and polarizing plates.
  • Support film transparent resin sheet, retardation film, light diffusion film, prism sheet, LCD adhesive, LCD spacer, LCD electrode substrate, color filter transparent protective film, color filter, transparent protective film, etc.
  • display materials other than LCD screens for projectors, substrates for plasma displays, optical filters, coating materials for organic EL, etc.
  • optical fibers In the fields of optical communication and optical elements, optical fibers, optical waveguides, Optical splitter, optical multiplexer, optical switching element, optical modulator, optical filter, wavelength divider, optical amplifier, optical attenuator, optical wavelength converter, In the field of electronic devices, insulating tape, various laminates, flexible printed circuit boards, adhesive films for multilayer printed circuit boards, cover films for printed circuit boards, surface protective films for semiconductor integrated circuit elements, coatings for electric wires, etc.
  • Flash memory CCD, PD, LD, etc.
  • optical semiconductor encapsulant in the semiconductor field, buffer coating film, passivation film, interlayer insulation film, etc., photopolymer base polymer semiconductor coating agent, underfill agent, aerospace
  • solar cell coating materials such as solar cells and thermal control systems.
  • the polymer of the present invention When the polymer of the present invention is applied to these uses, it can be applied within the scope of knowledge of those skilled in the relevant technical field. Specifically, coating of various materials, use in the form of single-layer and multilayer films, sheets, fibers, molded products, and oxidation stabilizers, fillers, silane coupling agents, photosensitizers, and photopolymerization initiation for these. Agents, flame retardants and sensitizers, and mixing with other resins. [0280] Among them, the polymer of the present invention is soluble in a solvent, can be formed into a film at a low temperature by coating, and is optically transparent, has a high light transmittance, and has a very low birefringence.
  • liquid crystal display members such as an alignment film, an adhesive, a polarizing plate, a color filter, a resin black matrix material, and a viewing angle compensation film.
  • An infrared absorption spectrum of the polyimide thin film was measured by a transmission method using a Fourier transform infrared spectrophotometer (FT-IR8000 manufactured by JASCO Corporation).
  • FT-IR8000 Fourier transform infrared spectrophotometer
  • a 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ubbelohde viscometer.
  • thermomechanical analyzer (TMA4000) manufactured by Bruker AX
  • the glass transition temperature of the polyimide film was also determined by measuring the tensile force and the changing force of the tensile elongation at a rate of temperature increase of 10 ° CZ.
  • UV-visible spectrophotometer manufactured by Shimadzu Corporation
  • a visible-ray ultraviolet transmittance of 200 nm to 800 nm of a polyimide film having a film thickness of 30 ⁇ m was measured.
  • the wavelength (cutoff wavelength) at which the transmittance was 0.5% or less was used as an index of transparency. The shorter the cutoff wavelength, the better the transparency of the polyimide film.
  • thermomechanical analyzer (TMA4000) manufactured by Bruker Ax Co., Ltd., by thermomechanical analysis, 100 to 200 ° from the elongation of the specimen at a load of 0.5 gZ film thickness l / m and a heating rate of 10 ° CZ.
  • the linear thermal expansion coefficient of the polyimide film was determined as an average value in the C range.
  • Norbornane 2-exo, 3-exo, 5-exo tricarboxylic acid trimethyl ester which is a raw material for the synthesis of this product, can be synthesized by the method described in Japanese Patent No. 3342938.
  • tetrahydrofuran Z acetate Extraction was performed with a mixed solvent of chill (lZl) (volume ratio) (200 mL ⁇ 2 times, lOOmL ⁇ 1 time). The obtained tetrahydrofuran Z ethyl acetate layer was washed with saturated saline (lOOmL ⁇ 1 time). Thereafter, the tetrahydrofuran Z ethyl acetate layer was concentrated to a total amount of 57 g, 40 mL of toluene was added, and the precipitated crystals were filtered.
  • lZl volume ratio
  • the produced white precipitate was filtered off, suspended in 15 OmL of water and filtered, and further thoroughly washed with water to completely remove the hydrochloride.
  • the resulting product was vacuum dried at 150 ° C. for 20 hours to obtain 11. lg (yield 85%) of white powder.
  • a polyimide having the structure shown below was manufactured and formed into a film.
  • reaction solution was applied to a glass substrate, and a polyimide film was prepared by a heated imidizing method. This was dried at 60 ° C for 0.5 hours in a nitrogen atmosphere, then heat-treated at 80 ° C for 1 hour and then at 300 ° C for 1 hour under reduced pressure of OOlMPa. A 30 ⁇ m transparent film was obtained.
  • the film properties of the obtained polyimide film were relatively high heat resistance at a glass transition temperature of 295 ° C (TMA measured value), and light transmittance at a cutoff wavelength of 283 nm and 400 nm 8 5 It showed extremely high transparency of 4%. Furthermore, the linear thermal expansion coefficient (CTE) of this product from 100 ° C to 200 ° C was 45.3 ppm / K, and the water absorption was 0.5%. The film was also strong enough to be broken even if it was folded 180 °.
  • TMA measured value glass transition temperature of 295 ° C
  • CTE linear thermal expansion coefficient
  • Figure 9 shows the IR ⁇ vector of the resulting polyimide thin film.
  • a polyimide having the structure shown below was manufactured and formed into a film.
  • the film properties of the obtained polyimide film are relatively high heat resistance at a glass transition temperature of 266 ° C (TMA measured value), and have a light transmittance of 85 at a cutoff wavelength of 299 nm and 400 nm. It showed an extremely high transparency of 8%. Furthermore, the coefficient of linear thermal expansion (CTE) at 100 ° C to 200 ° C was 58.9ppmZK. The film was not broken even when it was bent 180 °.
  • TMA measured value glass transition temperature of 266 ° C
  • CTE coefficient of linear thermal expansion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 高い耐熱性を保ちつつ、高透明性、低誘電性、低吸水性、低熱膨張性、溶媒溶解性およびエッチング特性等の優れた特性を併せ持つポリエステルイミドもしくはポリアミドイミドの製造用原料モノマーとして有用な新規テトラカルボン酸系化合物が提供される。下記一般式(1)または(2)で表されるテトラカルボン酸系化合物。  Aは2価の基。X1,X2,X3は水素原子等。R1,R2,R3,R4はカルボキシル基、或いは、酸無水物基。nは1または2。環Bは環状基。

Description

明 細 書
テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法 発明の分野
[0001] 本発明は、ノルボルナン等のビシクロアルカン構造を含む新規テトラカルボン酸系 化合物、即ちテトラカルボン酸、その一無水物、もしくは二無水物と、この新規テトラ カルボン酸系化合物を製造する方法に関する。
本発明はまた、この新規テトラカルボン酸系化合物の製造における中間体としての 新規酸ハライドと、この新規テトラカルボン酸系化合物を原料モノマーの少なくとも一 部に用いて製造された重合物、ならびにその製造方法に関する。
発明の背景
[0002] テトラカルボン酸二無水物とジァミンとを重合させて得られるポリイミド榭脂は、優れ た耐熱性、耐薬品性、機械強度、電気特性を示すために、様々な用途に使用されて きた。しかしながら、全芳香族系のポリイミドは、一般に芳香環〜イミド基の連続した 長い共役系を有する構造のため、可視領域の光の吸収があり、榭脂が黄色から茶色 に着色していた。このため、特に無色透明性が要求される用途、例えば光学材料系 用途に使用するには限界があった。
[0003] 光学材料用の榭脂としては、ポリメタクリル酸メチルやポリカーボネートが従来より用 いられてきたが、これらは優れた透明性を有するもののいずれも耐熱性が低ぐ高い 温度で使用される用途には応用することができな力 た。また、ポリカーボネートは、 ポリメタクリル酸メチルよりやや高い耐熱性を有するが、複屈折が高ぐ精度の高い光 学用素子に適用するには問題であった。
[0004] また、従来よりプリント配線基板や層間絶縁膜などにもポリイミド榭脂が用いられてき た。これらの用途に用いられてきたポリイミド榭脂は芳香族系であり、典型的な場合、 これら芳香族系のポリイミドの誘電率は 3. 0〜4. 0であるとされている(下記非特許 文献 1参照)。
[0005] し力しながら、近年、大規模集積回路 (LSI)の開発においては、演算速度の高速 ィ匕から配線が微細化しており、これら用途に用いる層間絶縁膜では一段と高い絶縁 性が求められているにもかかわらず、従来のポリイミド榭脂では誘電率が高く適用す ることができなかった。
[0006] そこで、ポリイミド榭脂の耐熱性を維持しつつ、誘電率の低下を図る検討がなされて きた。その 1つはモル分極率の小さな原子の導入であり、典型的にはフッ素原子を導 入するという方法である(下記非特許文献 2参照)。し力しながら、工業的にフッ素原 子の導入されたポリイミド榭脂を製造するには、原料の入手性やコストの面で問題が めつに。
[0007] また、ポリイミド榭脂に微細な空孔を構築して低誘電ィ匕を図るという検討もなされて いる。ただし、このような構造を構築するためには、ポリイミド榭脂中に熱分解性の材 料で造られたテンプレート (铸型)を均一に分散させておき、製膜後にテンプレートを 熱分解させるという製造上の工程が必要となり、製造工程が複雑になるという根本的 な問題を有して ヽる(下記非特許文献 3参照)。
[0008] また、一般にポリイミド榭脂は溶媒に対する溶解性が低い。このため、通常、その前 駆体であるポリアミック酸の状態で溶液として塗布しておき、高温に加熱処理すること によりポリイミドに変換している。このため、加工性に制限があり特に、ポリイミドを配し たい部分が熱により不可逆な損傷を受けやすい場合には使用できないなどの問題が あった。また、高温処理した後に冷却する際に収縮を伴うことが通常であり、この際生 ずる熱応力による膜の剥離や割れ等の深刻な問題を伴うことが多力つた。
[0009] このような状況から耐熱性を維持しつつ無色透明、低誘電性で溶媒に可溶なポリイ ミド榭脂の提案力 ^、くつ力なされている。その一つの方法として、芳香環ではなく脂 肪族基を有するテトラカルボン酸二無水物な 、しジァミンを用いてポリイミド榭脂を製 造するものがある。例えば、脂環骨格が連続して縮環した構造を有するテトラカルボ ン酸ニ無水物を原料としたポリイミド榭脂が提案されている(下記特許文献 1)。しかし ながら、このポリイミド榭脂の複屈折は必ずしも十分ではなぐまた原料の合成も多段 におよび複雑で工業的な製造には問題がある。
[0010] また、薄膜トランジスタ用の基板材料として 1, 2, 4, 5—シクロへキサンテトラカルボ ン酸ニ無水物を原料としたポリイミド榭脂が提案されている(下記特許文献 2)。しかし ながら、ここに記載された実施例によれば、得られたポリイミド榭脂の透明性は高いも のの、薄い茶色に着色しているとあり、高い無色透明性を要求される用途には使用 できない。
[0011] また、一般的に脂肪族基を導入することは、透明性を高め、誘電性を低下させるこ とには寄与するものの、その一方で耐熱性が低下し、本来ポリイミド榭脂が有する高 い熱安定性という特徴を失ってしまうという問題があった。さらに、イミド基そのものは 吸水性が高ぐ一般のポリイミド榭脂の吸水性は 3重量%乃至それ以上あるとされて いる。この高い吸湿性は、イミド基に由来するため単に脂肪族基を導入するだけでは 解決されない。
特許文献 1:特開 2003— 96070号公報
特許文献 2 :特開 2003— 168800号公報
非特許文献 1 :第 54回(2005年)高分子討論会 予稿 2Pc095
非特許文献 2 : Macromolecules, 27, 5964(1994).
非特許文献 3 : Polymer, 36, 2685(1995).
発明の概要
[0012] 本発明は、高い耐熱性を保ちつつ、高透明性、低誘電性、低吸水性、低熱膨張性 、溶媒溶解性およびエッチング特性等の優れた特性を併せ持つことが可能で、電気 絶縁膜およびフレキシブルプリント配線基板などの電子材料用の榭脂や、液晶ディ スプレー用基板、有機エレクト口ルミネッセンス (EL)ディスプレー用基板、電子ぺー パー用基板、太陽電池用基板、発光ダイオード用封止剤、光導波路等の光学材料 用の榭脂として利用可能な榭脂であり、またこの樹脂の具体的な例としてのポリエス テルイミドもしくはポリアミドイミド構造を含む榭脂組成物であり、さらにこれらの榭脂を 製造するための原料モノマーとして有用な、新規テトラカルボン酸系化合物およびそ の製造方法と、このテトラカルボン酸系化合物の製造原料として有用な新規な酸ハラ イドを提供するものである。
[0013] 本発明者らは、上記従来の課題を解決すベぐ鋭意研究を積み重ねた結果、下記 一般式(1)または(2)で表されるテトラカルボン酸系化合物を見出し、またこのテトラ カルボン酸系化合物を簡便に製造する方法、ならびにこれらを原料モノマーの少なく とも一部に使用して製造される新規な重合物を開発して、本発明を完成するに至つ た。
[0014] 本発明の第 1のアスペクトに係る榭脂は、ガラス転移温度が 250°C以上であり、膜 厚 30 μ mのフィルムでの 400nmの光の透過率が 70%以上、膜厚 30 μ mのフィルム を 25°Cの水に 24時間浸漬させた後の吸水率が 2. 0%以下である。
[0015] 本発明の第 2のアスペクトに係るテトラカルボン酸系化合物は、下記一般式(1)また は(2)で表される。
[0016] [化 1]
X
Figure imgf000006_0001
式(1) , (2)中、 Aは 2価の基を示す。
X1, X2, X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル 基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。た だし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあっては、そ の炭素数は 10以下である。
R1, R2, R3, R4は各々独立にカルボキシル基(― C (O) OH)を表す力 或いは、 R1 と R2および Zまたは R3と R4とで形成された酸無水物基(-C (O) OC (O) -)を表す nは 1または 2の整数を表す。
式(2)中、環 Bは置換基を有していても良い 3価以上の環状基を表す。
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
式(2A), (2B) , (2C)中、 A, X1, X2, X3, nは、それぞれ一般式(2)におけると同 義である。
X4, X5, X6は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル 基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。た だし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあっては、そ の炭素数は 10以下である。 mは 1または 2の整数を表す。
[0019] 前記一般式(2A) , (2B) , (2C)における Aが下記式(3)で表されるものであっても よい。
[0020] [化 3] c 0=
Figure imgf000008_0001
式(3)中、 Dは 2価の基を表す。
[0021] 前記一般式(2A) , (2B) , (2C)における Aが下記式(3A)または(3B)で表される ものであってもよい。
[0022] [化 4] o o
II II
— C— 0— D1— 0— C— (3A) O H H O
II I I II
— C— — D2— N— C— (3B)
式(3A) , (3B)中、 D1, D2は 2価の基を表す。
[0023] 前記一般式(2A) , (2B) , (2C)における X1、 X2、 X3、 x X5、および X6が水素原 子であり、かつ Αが少なくとも 1つの環状構造を含む 2価の基であってもよい。
[0024] 本発明の第 3アスペクトに係る酸ハライドは、下記一般式 (4)で表される。
[0025] [化 5]
Figure imgf000008_0002
式 (4)中、 X1, X2, X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基 、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基 を表す。ただし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあ つては、その炭素数は 10以下である。
R1, R2は各々独立にカルボキシル基(― C (O) OH)を表す力、或いは、 R1と R2とで 形成された酸無水物基(一 c(o)oc(o)—)を表す。
nは 1または 2の整数を表す。
Xは塩素原子または臭素原子を表す。
[0026] 本発明の第 4アスペクトによれば、第 3アスペクトの酸ハライドを、 2価のアルコール またはァミン、或 、はカルボン酸無水物基を有する 1価のアルコールまたはァミンと反 応させる工程を有する第 2アスペクトのテトラカルボン酸系化合物の製造方法が提供 される。
[0027] また、本発明の第 5アスペクトに係る重合物は、第 2アスペクトのテトラカルボン酸系 化合物を少なくとも一部に含む原料モノマーを重合または共重合させて得られる。
[0028] また、本発明の第 6アスペクトに係るポリイミド前躯体は、下記一般式(5)で表される 構成単位を少なくとも一部に含む。
[化 6]
Figure imgf000009_0001
式(5)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は、各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、 アルキル基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を 表す。
Qは 2価の芳香族基または脂肪族基を表す。 R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。
nは 1または 2の整数を表す。
また、本発明の第 7アスペクトに係るポリイミド前駆体は、下記一般式 (6)で表される 構成単位を少なくとも一部に含む。
[化 7]
Figure imgf000010_0001
式(6)中、 D1は 2価の基を示す。
X1、 X2、 X3、 X4、 X5および X6はそれぞれ独立に水素原子、ハロゲン原子、二トリル 基、ニトロ基、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、ま たはアミド基を表す。
Qは 2価の芳香族基または脂肪族基を表す。
R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。
nおよび mは各々独立に 1または 2の整数を表す。
また、本発明の第 8アスペクトに係るポリイミドは、一般式 (7)で表される構成単位を 少なくとも一部に含む。
[化 8]
Figure imgf000010_0002
式(7)中、 D1は 2価の基を示す。 環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、ァ ルキル基、アルケニル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基を表 す。
Qは 2価の芳香族基または脂肪族基を表す。
nは 1または 2の整数を表す。
[0031] 本発明の第 9アスペクトに係るポリイミドは、下記一般式 (8)で表される構成単位を 少なくとも一部に含む。
[化 9]
Figure imgf000011_0001
(8) 式(8)中、 D1は 2価の基を示す。
X1、 X2、 X3、 X4、 X5および X6はそれぞれ独立に水素原子、ハロゲン原子、二トリル 基、ニトロ基、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、ま たはアミド基を表す。
Qは 2価の芳香族基または脂肪族基を表す。
nおよび mは各々独立に 1または 2の整数を表す。
[0032] 本発明の第 10アスペクトに係るポリイミドの製造方法によれば、第 2アスペクトのテト ラカルボン酸系化合物とジァミン類を反応させた後、環化イミドィ匕反応させることによ り第 8又は第 9アスペクトのポリイミドが製造される。
[0033] 本発明の第 11アスペクトに係るポリイミドの製造方法によれば、第 6又は第 7ァスぺ タトのポリイミド前駆体を環化イミドィ匕反応させることにより第 8又は第 9アスペクトのポ リイミドが製造される。 [0034] この環化イミドィ匕反応力 加熱および Zまたは脱水試薬を用いて行われてもよ 、。
[0035] 本発明の第 12アスペクトに係るフィルムは、下記一般式(7)の構成単位を少なくと も一部に含む榭脂により製造される。
[化 10]
Figure imgf000012_0001
式(7)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、ァ ルキル基、アルケニル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基を表 す。
Qは 2価の芳香族基または脂肪族基を表す。
nは 1または 2の整数を表す。
[0036] 本発明の第 13アスペクトに係るフィルムは、第 1アスペクトの榭脂により製造される。
[0037] 本発明の第 14アスペクトに係る液晶用部材は、第 12又は第 13アスペクトのフィル ムを用いている。
[0038] 本発明によれば、高 ヽ耐熱性、高透明性、低誘電性、低吸水性、有機溶媒溶解性 およびアルカリエッチング特性を併せ持つ榭脂を製造するための原料モノマーを提 供することができる。
[0039] 即ち、本発明のテトラカルボン酸系化合物は、酸無水物基がビシクロ [2. 2. 1]へ ブタン環 (ノルボルナン環)、もしくはビシクロ [2. 2. 2]オクタン環上に縮環した構造 を有するため、このテトラカルボン酸系化合物を原料モノマーとして榭脂を製造すると 、この特徴的な縮環構造により、得られる榭脂におけるパイ電子共役および分子内- 分子間電荷移動相互作用が抑制され、透明性が高まり、且つ誘電率が低下する。
[0040] 特に、酸無水物基が縮環した 2つのビシクロ [2. 2. 1]ヘプタン環もしくはビシクロ [ 2. 2. 2]オクタン環がエステル基で結合されたテトラカルボン酸二無水物を原料モノ マーとして榭脂を製造した場合には、ポイリミドの高 、耐熱性を維持しつつ透明性が 高まり、榭脂にしなや力さが付与され、さらに溶媒に対する溶解性が格段に向上する また、このような化合物を重合して榭脂を製造する際に、光重合性を有する重合官 能基を導入しておけば、パタンーン形成等の微細加工を可能にする機能も付与する ことができる。
図面の簡単な説明
[図 1]実施例 2で製造した 5— exo クロ口ホルミル ノルボルナン 2— exo, 3— ex o ジカルボン酸無水物の1 H— NMRスペクトル(CDC1 , 400MHz)を示す図であ
3
る。
[図 2]実施例 2で製造した 5— exo クロ口ホルミル ノルボルナン 2— exo, 3— ex o ジカルボン酸無水物の13 C— NMR ^ベクトル(CDC1 )を示す図である。
3
[図 3]実施例 2で製造した 5— exo クロ口ホルミル ノルボルナン 2— exo, 3— ex o ジカルボン酸無水物の IR ^ベクトル(KBr)を示す図である。
[図 4]実施例 2で製造した 5— exo クロ口ホルミル ノルボルナン 2— exo, 3— ex o ジカルボン酸無水物の Massスペクトルを示す図である。
[図 5]実施例 3で製造した 1, 4 ビス (4,一ォキサ 3,、 5,一ジォキソトリシクロ [5. 2 . 1. 02' 6]—デカン一 8,一ィルカルボキシ)ベンゼンの1 H— NMR ^ベクトル(DMS O-d , 400MHz)を示す図である。
6
[図 6]実施例 3で製造した 1, 4 ビス (4,一ォキサ 3,、 5,一ジォキソトリシクロ [5. 2 . 1. 02' 6]—デカン一 8,一ィルカルボキシ)ベンゼンの13 C— NMR ^ベクトル(DMS O-d )を示す図である。
6
[図 7]実施例 3で製造した 1, 4 ビス (4,一ォキサ 3,、 5,一ジォキソトリシクロ [5. 2 . 1. 02' 6]—デカン 8,ーィルカルボキシ)ベンゼンの IRスペクトル(KBr)を示す図 である。
[図 8]実施例 3で製造した 1, 4 ビス (4,一ォキサ 3,、 5,一ジォキソトリシクロ [5. 2 . 1. 02' 6] デカン 8,ーィルカルボキシ)ベンゼンの Massスペクトルを示す図であ る。
[図 9]実施例 4で製造したポリイミド膜の IR ^ベクトルを示す図である。
[図 10]実施例 5で製造したポリイミド膜の IR ^ベクトルを示す図である。
詳細な説明
[0042] 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要 件の説明は、本発明の実施態様の一例 (代表例)であり、本発明はその要旨を超え ない限り、これらの内容に特定されず、種々変形して実施することができる。
[0043] [優れた耐熱性、透過性、吸収性等の物性を併せ持つ榭脂]
本発明は、高い耐熱性、高透明性、低誘電性、低吸水性、有機溶媒溶解性および アルカリエッチング特性を併せ持つ榭脂を提供するものである。
具体的には、以下の条件を満たす榭脂である。
[0044] (1) ガラス転移温度について
通常、 200°C以上、好ましくは 230°C以上、より好ましくは 250°C以上、特に好ましく は 270°C以上である、
この温度が低すぎると、耐熱性が低下するため加工時のプロセス温度が制約を受 けることになり、採用できない工程が生じたりする。
なお、ガラス転移温度 (Tg)は、後述の実施例の項に記載するように、ブルカーエイ エックス社製熱機械分析装置 (TMA4000)を用い、引っ張り測定により、昇温速度 1 0°CZ分における引張り伸び量の変化力も求めることができる。
[0045] (2) 膜厚 30 mのフィルムでの 400nmの光の透過率について
通常、 70%以上、好ましくは 75%以上、より好ましくは 80%以上、特に好ましくは 8 5%以上である。
この透過率が低すぎると、光学用途での適用が大幅に制限される。
なお、波長 400nmの光の光透過率は、後述の実施例の項に記載するように、島津 製作所社製紫外可視分光光度計 (UV— 3100S)を用いて測定することができる。
[0046] (3) 24時間水に浸漬して測定した吸水率について
通常、 2. 0重量%以下、好ましくは 1. 5重量%以下、特に好ましくは 1. 0重量%以 下である。下限は通常 0. 01重量%以上、好ましくは 0. 1重量%以上である。 この吸収率が高すぎると、周囲の水分量によって導電性が変化したり、寸法が変化 する等の問題が生じる。低すぎると、特定の用途において水分の排除が出来なくなる 等の問題が生じる。
なお、この吸水率は、後述の実施例の項に記載するように、膜厚 30 mに形成し たフィルムを 80°Cで 3時間真空乾燥した後、 25°Cの水に 24時間浸漬し、次いでフィ ルムを引き上げて乾いた吸水性の良い紙 (パルプ 100%)にはさみこんで 1分間放置 し、フィルムの表面に付着した水分を紙にしみこませ、さらに紙を 2回交換し、同様の 操作を繰り返した後、重量を測定し、浸漬前後の重量増加分力 求めることができる
[0047] 上記特性を有する榭脂としては、重縮合系高分子、好ましくはアミド基またはイミド 基を有する榭脂、さらに好ましくはイミド基を有する榭脂、特に好ましくはイミド基及び エステル基を有する榭脂が挙げられる。
[0048] [テトラカルボン酸系化合物]
本発明のテトラカルボン酸系化合物は、下記一般式(1)または(2)で表される、分 子内に少なくとも 1つのビシクロ [2. 2. 1]ヘプタン環もしくはビシクロ [2. 2. 2]ォクタ ン環を有し、かつ両端がジカルボン酸またはその酸無水物である構造を有する。
[0049] [化 11]
Figure imgf000015_0001
式(1) , (2)中、 Aは 2価の基を示す。
X1, X2, X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル 基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。た だし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあっては、そ の炭素数は 10以下である。
R1, R2, R3, R4は各々独立にカルボキシル基(― C (O) OH)を表す力 或いは、 R1 と R2および Zまたは R3と R4とで形成された酸無水物基(-C (O) OC (O) -)を表す nは 1または 2の整数を表す。
式(2)中、環 Bは置換基を有していても良い 3価以上の環状基を表す。
[0050] なお、一般式(1)はより具体的には下記一般式(la) , (lb) , (lc)で表され、一般 式(2)はより具体的には下記一般式(2a) , (2b) , (2c)で表される。以下において、 X1, X2, X3, A, B, nは一般式(1) , (2)におけると同義である。
[0051] [化 12]
Figure imgf000017_0001
[0052] 前記一般式(1)または(2)で表される本発明のテトラカルボン酸系化合物は、ノル ボルナン環もしくはビシクロ [2. 2. 2]オクタン環に酸無水物が縮環し、これが 2価の 基 Aを介して他の酸無水物と結合している、という構造が特徴であり、この構造が重 合物とした時c 0=に高い透明性、高い耐熱性、低い吸収性、高い寸法安定性という物性 を併せ持つことに D起因している。つまり、 Aの構造が任意の 2価の基であっても、本発 明のテトラカルボン酸C O系MM化合物のこれらの物性に関しては大きくは影響を与えない傾 向にあるため、 Aの構造は任意の 2価の基であれば、特に制限されない。
[0053] 一般式(1) , (2)において、 Aは 2価の基である力 好ましくは Aは下記一般式(3) の構造をとる。ここで Dは、任意の 2価の基をとり得る力 少なくとも 1つの環状構造を 含む構造であると、本発明のテトラカルボン酸系化合物を原料モノマーとして用いて 製造した榭脂の耐熱性が上がるのでより好ましい。
[0054] [化 13]
3 式(3)中、 Dは 2価の基を表す。
[0055] 一般式(3)の構造の中でも好ましくは、下記一般式(3A) , (3B)の構造を持つもの である。
[化 14] o o
II II
— C— 0— D1— 0— C— (3A)
-C-N -D2-N-C- (3B) 式(3A) , (3B)中、 D1, D2は 2価の基を表す。
一般式(3A) , (3B)において、 D D2は任意の 2価の基である。
Dが一般式(3A)または(3B)で表される場合、前記一般式(1)または(2)で表され る本発明のテトラカルボン酸系化合物は、ノルボルナン環もしくはビシクロ [2. 2. 2] オクタン環に酸無水物が縮環し、これが(3A)または(3B)で表される基を介して他の 酸無水物と結合している、という構造が特徴であり、この構造が重合物とした時に高 い透明性と高い耐熱性、低い吸収性、高い寸法安定性、さらには高い靭性、高い溶 媒溶解性といった物性を併せ持つことに起因している。つまり、 D1または D2の構造が 任意の 2価の基であっても、本発明のテトラカルボン酸系化合物のこれらの物性に関 しては大きくは影響を与えない傾向にあるため、 D1または D2の構造は任意の 2価の 基であれば、特に制限されない。
[0057] ただし、
Figure imgf000019_0001
D2が少なくとも 1つの環状構造を含む構造であると、本発明のテ トラカルボン酸系化合物を少なくとも一部原料モノマーとして用いて製造した榭脂の 耐熱性、寸法安定性が一層向上するのでより好ましい。
[0058] 上記 2価の環状構造としては、芳香族環状構造を含むものでも、脂肪族環状構造 を含むものでもどちらでも取り得る。 2価の芳香族環状構造を含む構造の具体例とし ては、フエ二レン基、ナフチレン基などのように芳香環が単独もしくは複数の芳香環 が縮環した構造の基、ビフエ-レン基(一 Ph—Ph—: Phはフエ-レン基を表す。以 下同様)等のように複数の芳香環が直接連結された構造の基、ジフヱニルエーテル 基(一 Ph— O— Ph— )、ジフエ-ルスルホン基(一 Ph— SO—Ph—)、メタンジフエ
2
-ル基(― Ph— CH— Ph— )、プロパン— 2, 2—ジフエ-ル基(― Ph— C (CH ) -
2 3 2
Ph-) , 9, 9—フルオレン基、フルオレン— 9, 9—ジフエ-ル基、 (― Ph— Fl— Ph 一: F1は、 9, 9 フルオレン基)、 3, 3' , 5, 5,一テトラメチル一(1, 1,一ビフエ-ル) 基などのように複数の芳香族基が任意の 2価の連結基を介して連結された構造の基 などが挙げられる。なお、これら構造の芳香環には、任意の置換基が入っていてもか まわない。さらに、 2価の脂肪族環状構造を含む構造の具体例としては、シクロへキ シレン基、シクロペンチレン基、シクロへプチレン基、シクロへキサンジメチレン基、な どの単環の脂環式の 2価の基、テトラヒドロフラニル基、テトラヒドロチオフ-ル基など のように環内にヘテロ原子を有する環状基、シクロへキサンジメチル基(一 CH— Ch
2 CH—: Chはシクロへキシレン基を表す)等のように脂環式の基に置換した置換
2
基で結合する構造の基、デカヒドロナフチレン基、ノルボルナン基、ノルボルネン基、 ァダマンチル基などの多環の脂環式の基、ジシクロへキシルエーテル基(一 Ch o — Ch— )、メタンジシクロへキシル基(一 Ch— CH— Ch— )、プロパン一 2, 2—ジシ
2
クロへキシル基(― Ch— C (CH ) — Ch— )、ジシクロへキシルスルホン基(― Ch—
3 2
SO Ch—)などの複数の脂環式の基が任意の連結基により連結された構造の基
2
等が挙げられる。
[0059] なお、上記説明中の芳香族基な!/、し脂肪族基を連結する「任意の 2価の連結基」と しては、具体例として挙げたものも含めて、メチレン基(一CH—)、 2, 2—プロピレン
2
基(一 C (CH ) ―)、エーテル基(一 O )、エステル基(一 C (0) 0— )、ケト基(一 C
3 2
(o)—)、スルホニル基(一 so —)、スルフィニル基(一 so—)、スルフヱニル基(
2
S—)、 9, 9—フルォレニリデン基などが例として挙げられる。
[0060] なお、上記した 2価の D、
Figure imgf000020_0001
D2が環状構造を含む基である場合に関しては、特に その置換位置は問わない。例えばフエ-レン基であれば 1, 4一位で置換すると—D ―、― D1—、—D2—の構造が直線となるため、耐熱性が向上し、線膨張係数が小さ くなることが期待され、好ましい。一方、フエ-レン基において 1, 3—位で置換した場 合には、この部分の構造が屈曲するため、溶媒に対する溶解性の向上が期待される ので、好ましい。従って、置換位置については、必要とされる物性に応じて適宜ふさ わしい構造の D2を選択することが好ましい。
[0061] これらの D、
Figure imgf000020_0002
の中でも芳香族環状構造を含むものの中では少なくともフエ- レン基を含む構造のもの、脂肪族環状構造を含むものの中では少なくとも 6員環構造 もしくは 5員環構造を持つものがより好ましぐこの中でもさらに具体的には、フエ-レ ン基、ビフエ-レン基、ジフエ-ルエーテル基、ジフエ-ルスルホン基、プロパン— 2, 2 ジフエ-ル基、フルオレン— 9, 9 ジフエ-ル基、 3, 3' , 5, 5,—テトラメチル— (1, 1,ービフエ-ル)基、シクロへキシレン基、シクロへキサンジメチル基、プロパン 2, 2—ジシクロへキシル基、 2価のノルボルナン基等がより剛直な構造を持つ点で特 に好ましい。
[0062] また、 D、 D\ D2の構造に関しては、これらが相対的に大きな置換基となるほど、榭 脂とした時のイミド基の密度が低下するために吸水率が低くなる傾向がある。従って、 低吸水性を求める用途にはより大きな構造の D、
Figure imgf000020_0003
D2を選ぶのが好ましい。 [0063] 一般式(2)において、環 Bは置換基を有していても良い 3価以上の任意の環状基を 示す。環 Bの環状基の価数の上限は特に制限はないが、通常 20価以下、好ましくは 10価以下、より好ましくは 5価以下、特に好ましくは 3価である。
環 Bの環構造としては、具体的には、ベンゼン環、ナフタレン環などの芳香族環、シ クロへキサン環、シクロペンタン環、ノルボルナン環(ビシクロ [2. 2. 1]ヘプタン環)、 ビシクロ [2. 2. 2]オクタン環等の脂肪族環などが挙げられる。これらが置換基を有す る場合の置換基としては、後述する x4〜x6の置換基の具体例が挙げられる。中でも 下記一般式(2A) , (2B) , (2C)で表されるものが好ましい。
[0064] [化 15]
(2A)
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003
式(2A) , (2B) , (2C)中、 A, X1, X2, X3, ηは、それぞれ一般式(2)におけると同 義である。
X4, X5, X6は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル 基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。た だし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあっては、そ の炭素数は 10以下である。
mは 1または 2の整数を表す。
[0065] さらには、シクロへキサン環カ^チレン基で架橋された上記一般式(2A) , (2B) , ( 2C)において、 n=m= lで表されるノルボルナン環は、合成が比較的容易な上に、 榭脂としたときに透明性が高く耐熱性が向上するのでより好ましい。
[0066] 上述の如ぐ一般式(1) , (2) , (2A) , (2B) , (2C)中における X1、 X2、 X3、 X4、 X5 および X6は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル基、 ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。ただし
、これらの基は更に置換基を有し得る場合には任意の置換基を有していても良い。ま た、炭素含有基にあっては、その炭素数は 10以下である。
[0067] X1〜X6のアルキル基の具体例としては、メチル基、ェチル基、 n—プロピル基、 i— プロピル基、 n—ブチル基などが挙げられる。
[0068] ァルケ-ル基の具体例としては、ビニル基、プロぺニル基、ブテュル基などが挙げ られる。
[0069] アルキ-ル基の具体例としては、ェチュル基、プロピ-ル基、ブチュル基などが挙 げられる。
[0070] アルコキシ基の具体例としては、メトキシ基、エトキシ基、 n—プロポキシ基、 i—プロ ポキシ基、 n—ブトキシ基などが挙げられる。
[0071] ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子な どが挙げられる。
[0072] 二トリル基の具体例としては、シァノ基、ァセトニトリル基、プロピオ-トリル基などが 挙げられる。
[0073] アミド基の具体例としては、ホルムアミド基、ァセトアミド基などが挙げられる。 [0074] また、これらの基が更に置換基を有する場合の置換基としては、アルキル基、アル ケニル基、アルキ-ル基、アルコキシ基、ハロゲン原子、二トリル基、アミド基等が挙 げられる。
[0075] X1〜X6としては、これらの中でも水素原子、ハロゲン原子が原料の入手のし易さの 点で好ましい。
[0076] 一般式(2A) , (2B) , (2C)において、 Aと X1、 X2、 X3、 X4、 X5および X6、 n、 mの組 み合わせとして好ましい構造としては、 Aが環状構造を有する基であり、 X1、 X2、 X3、 X4、 X5および X6がそれぞれ独立にハロゲン原子もしくは水素原子で構成されるもの であり、 n=mで 1もしくは 2のものある。さらに好ましくは、 Aが環状構造を有する基で あり、 X1、 X2、 X3、 X4、 X5および X6がすべて水素原子で、 n=m= lで構成されるもの である。
[0077] [酸ハライド]
本発明の酸ノ、ライドは下記一般式 (4)で表されるものである。
[0078] [化 16]
Figure imgf000023_0001
式 (4)中、 X1, X2, X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基 、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基 を表す。ただし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあ つては、その炭素数は 10以下である。
R1, R2は各々独立にカルボキシル基(― C (O) OH)を表す力、或いは、 R1と R2とで 形成された酸無水物基(一 c(o)oc(o)—)を表す。
nは 1または 2の整数を表す。
Xは塩素原子または臭素原子を表す。 [0079] 上記一般式 (4)にお 、て、 X3の具体例および好適例は、それぞれ上記一般 式(1) , (2)における 〜 3の場合と同様である。
[0080] [テトラカルボン酸系化合物を少なくとも一部に含む原料モノマーを重合または共重 合させて得られる重合物]
上述のような本発明のテトラカルボン酸系化合物を少なくとも一部に含む原料モノ マーを重合または共重合させて得られる重合物には、該原料モノマーを重合して得 られるポイリミド前駆体とこの前駆体を脱水処理、もしくは原料モノマーを直接脱水処 理して得られるポリイミドの両方が含まれる。
[0081] [ポイリミド前駆体、ポリイミド]
本発明のポリイミド前駆体とポリイミドとは、下記一般式 (5)で表されるようなポリイミド 前駆体と下記一般式 (7)で表されるポリイミドを指す。
[0082] [化 17]
Figure imgf000024_0001
式(5)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は、各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、 アルキル基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を 表す。
Qは 2価の芳香族基または脂肪族基を表す。
R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。
nは 1または 2の整数を表す。
[0083] [化 18]
Figure imgf000025_0001
式(7)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、ァ ルキル基、アルケニル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基を表 す。
Qは 2価の芳香族基または脂肪族基を表す。
nは 1または 2の整数を表す。
[0084] 上記一般式(5)で表されるポリイミド前躯体は下記一般式 (6)で表されることが好ま しぐまた、上記一般式(7)で表されるポリイミドは下記一般式 (8)で表されることが好 ましい。
[0085] [化 19]
Figure imgf000025_0002
(6) 式(6)中、 D1は 2価の基を示す。
X1、 X2、 X3、 X4、 X5および X6はそれぞれ独立に水素原子、ハロゲン原子、二トリル 基、ニトロ基、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、ま たはアミド基を表す。
Qは 2価の芳香族基または脂肪族基を表す。
R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。
nおよび mは各々独立に 1または 2の整数を表す。
[化 20]
Figure imgf000026_0001
(8) 式(8)中、 D1は 2価の基を示す。
X1、 X2、 X3、 X4、 X5および X6はそれぞれ独立に水素原子、ハロゲン原子、二トリル 基、ニトロ基、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、ま たはアミド基を表す。
Qは 2価の芳香族基または脂肪族基を表す。
nおよび mは各々独立に 1または 2の整数を表す。
[0087] 上記一般式(5)ないし(8)における、
Figure imgf000026_0002
X5および X6は、テ トラカルボン酸系化合物の項で記載した内容と同様である。なお、一般式(5)中の各 ノルボルナン環もしくはビシクロ [2. 2. 2]オクタン環に結合している CONH 基と - COOR基は、相互にその結合位置が交換されて 、ても力まわな!/、。
R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。
[0088] 一般式(5)および(7)における Qは任意の 2価の基であればよ!、。
一般式(7)で表される本発明のポリイミド(7)は、ノルボルナン環もしくはビシクロ [2 . 2. 2]オクタン環にイミド基が縮環した部分構造に特徴があり、これが— C (0)—0 — D1— O— C (O)—と Bを介して Qと結合し、重合物を構成している。そして、このノ ルポルナン環もしくはビシクロ [2. 2. 2]オクタン環にイミド基が縮環していると言う部 分構造が重合物とした時に高い透明性、高い耐熱性、高い寸法安定性という物性を 併せ持つことに寄与している。つまり、 Qの構造が任意の 2価の基であっても、本ィ匕合 物のこれらの物性に関しては大きくは影響を与えない傾向にあるため、 Qの構造は任 意の 2価の基であれば、特に制限されない。
[0089] この 2価の基の中でも、 Qの構造として好まし!/、ものとしては、環状構造を有する基 である。環状構造を有する構造とは、 Qに芳香族基を含む構造および脂環構造を含 む構造をさす。 Qに環状構造があるとポリイミド榭脂とした時の耐熱性および、寸法安 定性の向上力あたらされる。また、脂環構造を含む場合には耐熱性を維持しつつ、 紫外領域の光吸収を低減させることができる、という特徴も得ることができる。
[0090] 具体的な構造として例を挙げると、 Qの芳香族基としてはいずれも 2価の基であるフ 工-レン基、ナフチレン基、ビフエ-レン基、ジフエ-ルエーテル基、ジフエ-ルスル ホン基、 4, 4,一 (9, 9 フルォレ -リデン)ジフエ-ル基、メチレンジフエ-ル基、イソ プロビジデンジフエ-ル基、 3, 3,—ジメチル— 1, 1,—ビフエ-ル基、 3, 3,, 5, 5' ーテトラメチルー 1, 1,ービフエ-ル基、 2, 2,一ビス(トリフルォロメチル) 1, 1,一 ビフエ-ル基などが挙げられ、脂環構造基としては、シクロへキシレン基、シクロへキ サンジメチレン基、ジシクロへキシルエーテル基、メチレンジシクロへキシル基、デカヒ ドロナフチレン基等が挙げられる。さらにこれらの基同士力 あるいは他の基と連結基 で複数結合された構造となっていても力まわない。ここで適用可能な連結基の具体 的な例としては、メチレン基(一 CH—)、エーテル基(ー0—)、エステル基(一C (O)
2
o—)、ケト基(一 c (o)—)、スルホニル基(一 SO—)、スルフィニル基(一 so—)、
2
スルフエ-ル基(一S—)、 9, 9 フルォレニリデン基などを挙げることができる。
[0091] なお、上記した 2価の環状構造を含む基に関しては、特にその置換位置は問わな い。例えばフエ-レン基であれば 1, 4一位で置換すると、 Q の構造が直線となる ため耐熱性が向上し、線膨張係数が小さくなることが期待され、好ましい。一方、フエ 二レン基において 1, 3—位で置換した場合には、—Q—構造が屈曲し、溶媒に対す る溶解性の向上が期待されるので、好ましい。従って、置換位置については、必要と される物性に応じて適宜ふさわ 、構造の Qを選択することが好ま 、。
[0092] 更に好ましい構造としては、 Qが芳香族基を含む基である。 Qに芳香族基が含有さ れるとポリイミド榭脂としたときの耐熱性および、寸法安定性が一層向上する上に屈 折率の向上も達成される。 Qの芳香族基の具体的なものとしては、上記したものが適 用可能であるが、中でもフエ二レン基、ビフエ二レン基、ジフエ-ルエーテル基、ジフ ェ-ルスルホン基、 4, 4,—(9, 9—フルォレ -リデン)ジフエ-ル基、 3, 3' , 5, 5,— テトラメチルー 1, 1 'ービフエニル基等がより剛直な構造を持つ点で特に好ましい。
[0093] R11, R12は各々独立に水素原子、炭素数 1から 12のアルキル基またはシリル基を 表す。アルキル基としては、例えばメチル基、ェチル基、 n—プロピル基、 i—プロピル 基、シリル基としては例えばトリメチルシリル基、トリェチルシリル基、ジメチル— t—ブ チルシリル基が使用可能な例として挙げられる。中でも、脱離能が高いことからトリメ チルシリル基、ジメチルー t—ブチルシリル基が好ましい。なお、 R11と R12とは同一で あっても異なるものであっても良いが、同一であることが好ましい。
[0094] B、 Q、尺11、 R12、 n、 x\ X5および X6の組み合わせとして好まし!/、構造 としては、 B、 Qがそれぞれ環状構造を有する基であり、 X1、 X2、 X3、 X4、 X5および X6 がそれぞれ独立にハロゲン原子もしくは水素原子、 nが 1、 R11, R12は水素原子、メチ ル基、ェチル基、トリメチルシリル基、ジメチルー tーブチルシリル基のいずれかで構 成されるものである。さらに好ましくは Qが環状構造を有する構造、 Bがノルボルナン 環、 X1、 X2、 X3、 X4、 X5および X6がすべて水素原子、 nが 1、 R11, R12が水素原子、メ チル基、トリメチルシリル基の 、ずれかであるものである。
[0095] [テトラカルボン酸系化合物の製造方法]
本発明のテトラカルボン酸系化合物は、例えば、市販されている 5—ノルボルネン - 2, 3—ジカルボン酸無水物を原料に製造することができる。すなわち、 5—ノルボ ルネン—2, 3—ジカルボン酸無水物のォレフィン部分にカルボキシル基を導入し、こ のカルボキシル基に 2価のアルコールまたはァミン、或いはジカルボン酸無水物を有 する 1価のアルコールまたはァミンと反応させてエステル化もしくはアミドィ匕し、一般式 (1)または(2)に示されるテトラカルボン酸無水物を合成することができる。
[0096] 以下、この方法に関して説明する。
なお、以下においては、 5—ノルボルネンー 2, 3—ジカルボン酸無水物を出発原料 としてテトラカルボン酸無水物を製造する場合を示す力 ビシクロ [2. 2. 2]オクタン 環を有するテトラカルボン酸無水物の場合は、シクロへキサジェンと、無水マレイン酸 のディールス 'アルダー反応生成物である、ビシクロ [2. 2. 2]オクタン— 5 ェン— 2 , 3—ジカルボン酸無水物を出発原料として同様に製造することができる。
[0097] 〈ノルボルナン 2, 3, 5 トリカルボン酸の製造方法〉
[1] 5 ノルボルネン 2, 3 ジカルボン酸無水物からノルボルナン 2, 3, 5 トリ カルボン酸(2, 3, 5 ノルボルナンカルボン酸)の合成
[化 21]
Figure imgf000029_0001
[0098] まず、 5 ノルボルネンー 2, 3 ジカルボン酸無水物のォレフィン部分をカルボキ シルイ匕して 2, 3, 5 ノルボルナントリカルボン酸を合成する。
5 ノルボルネン 2, 3 ジカルボン酸無水物のノルボルネン環のォレフィン部位 は活性が高ぐ各種の付加反応を容易に受ける。これを利用して、例えば HCNを付 加させると、 5 シァノノルボルナン 2, 3 ジカルボン酸無水物が得られ、このもの の-トリル基をカ卩水分解すればノルボルナントリカルボン酸が得られる。ノルボルネン 環のォレフィンへの HCNの付加反応、ならびに-トリル基の加水分解は、例えば特 開平 5— 58946号公報に記載の方法を応用することができる。
[0099] また、 5 ノルボルネン 2, 3 ジカルボン酸無水物のォレフインへのヒドロエステ ル化、引き続くエステル基の加水分解によってもカルボキシル基を導入することがで きる。この反応の条件としては、例えば米国特許 3, 413, 317号公報に記載の方法 を採用することができる。これは、窒素雰囲気下、カルボニル源として Ni (CO) を用
4 ヽて反応させる方法である。
[0100] 一方、ヒドロエステル化の他の方法として、加圧された一酸化炭素、アルコールを P d、 Niもしくは Co触媒存在下に反応させる方法を採用することも可能である。その際 使用される Pd触媒の添加方法としては、 Pd ホスフィン錯体として反応系に添加す る方法と、 Pdの無機塩や単体に担持された Pd金属とアルキルホスフィンを別途添カロ して系内で Pd—ホスフィン錯体を形成する 2通りの添加方法がある。前者 Pd—ホスフ イン錯体として系に添加する場合の Pdィ匕合物としては、テトラキス(トリフエニルホスフ イン)パラジウム(0)等のアルキルホスフィンパラジウム錯体、ジクロロビス(トリメチルホ スフイン)パラジウム(II)などのハロゲン化アルキルホスフィンパラジウム錯体、カルボ -ルトリス(トリフエ-ルホスフィン)パラジウム(0)等のカルボ-ルアルキルホスフィン ノ《ラジウム錯体などやジクロ口ビス (ァセトニトリル)パラジウム (II)などが例として挙げ られ、後者 Pdの無機塩として系に添加する場合の Pdィ匕合物としては、塩化パラジゥ ム、酢酸パラジウムなどのパラジウムの無機酸または有機酸の塩が好適に用いられる
[0101] 一方、 Ni触媒としては、テトラカルボ-ル-ッケル (0)などのニッケルカルボ-ル錯 体、ジカルボ-ルビス(トリフエ-ルホスフィン)ニッケル (0)などのニッケルカルボ-ル アルキルホスフィン錯体、テトラキス(トリフエ-ルホスフィン)ニッケル (0)等のニッケル アルキルホスフィン錯体などが例として挙げられる。
[0102] Co触媒の例としては、コバルトカルボ-ルなどのコバルトのカルボ-ル錯体が挙げ られる。
[0103] ヒドロエステルイ匕反応は通常アルコール溶媒の存在下に行う。アルコール溶媒は、 基質や触媒の溶解剤として機能するのみならず、生成するエステル部分を構成する 反応試剤としての役割も果たす。本反応で使用可能なアルコール溶媒としては、メタ ノール、エタノール、イソプロパノール、 n—プロパノール、 n—ブタノールなどの炭素 数 6以下の低級アルコールが挙げられる。
[0104] この場合のヒドロエステル化反応は、一酸化炭素の存在下で行う。使用する一酸化 炭素の圧力は常圧でも力まわないが、反応速度を高めるために加圧下で行ってもよ い。使用される圧力の下限は、 0. IMPa以上、好ましくは 0. 5MPa以上、さらに好ま しくは 1. OMPa以上である。上限は、特に制限はないものの設備上の問題力も通常 は 30MPa以下、好ましくは 20MPa以下、さらに好ましくは 15MPa以下が採用され る。
採用される反応温度は、通常加熱下であり、下限が 20°C以上、好ましくは 50°C以上 、さらに好ましくは 70°C以上である。上限は、装置上の制約もあるので通常 300°C以 下、好ましくは 250°C以下、さらに好ましくは 200°C以下である。
[0105] 反応時間は、通常は、下限が 10分以上、好ましくは 30分以上、さらに好ましくは 1 時間以上である。上限は、通常 100時間以下、好ましくは 50時間以下、さらに好まし くは 25時間以下である。
[0106] 反応の際に助触媒として銅塩やスズ塩を添加して反応を行ってもよい。その際に用 いられる銅塩としては、塩化銅(CuCl )、酢酸銅などの銅の無機酸の塩力 そしてス
2
ズ塩としては、塩化スズ(SnCl )や臭化スズ(SnBr )などのスズのハロゲン化物が好
2 2
ましい。
[0107] さらに反応を促進するために酸を添加して反応を行うこともできる。その際に用いる ことのできる酸は、 p—トルエンスルホン酸や、メタンスルホン酸などの有機スルホン酸
、塩酸、硫酸などの無機酸などである。
[0108] 5 ノルボルネン—2, 3 ジカルボン酸無水物のォレフィン部のヒドロエステル化反 応の収率は、使用するアルコールの種類にも依存する力 典型的な場合、 40%以上
、好ましくは 50%以上、さらに好ましくは 60%以上である。
また、 目的物であるヒドロエステル体の純度は、通常 50重量%以上、好ましくは 60 重量%以上、さらに好ましくは 70重量%以上である。
[0109] こうしてォレフィン部がヒドロエステル化されたノルボルナン酸無水物の酸無水物環 は、溶媒として使用したアルコールのハーフエステルもしくはジエステルに変換され ている。この時の具体的な生成物は、下記の通りである。
[0110] <エンド 5 ノルボルネンー 2, 3 ジカルボン酸無水物を原料とした場合 >
[化 22]
Figure imgf000032_0001
[0111] くェキソ 5 ノルボルネン 2, 3 ジカルボン酸無水物を原料とした場合 >
[化 23]
Figure imgf000032_0002
[0112] なお、これら生成物に加えて、さらにこれらの立体異性体 (一部または全部のノルボ ルナン環上の置換基のエンド—ェキソが反転したもの)が生成する。ただし、通常のヒ ドロエステルィヒ反応においては、上記した構造の化合物の生成が主であり、全生成 物中に含まれる上記生成物の合計の割合は、通常 50%以上、好ましくは 70%以上 、さらに好ましくは 80%以上である。
[0113] さらに、上記したィ匕合物の中でも新規に導入されるカルボアルコキシ基(5位)の立 体は、通常ェキソのものが主生成物となる。全生成物中に含まれる 5位のカルボアル コキシ基の立体がェキソの物の割合は、通常 60%以上、好ましくは 70%以上、さら に好ましくは 80%以上となる。 [0114] ヒドロエステル化により得られたヒドロエステル体、すなわちノルボルナンジエステル カルボン酸もしくはノルボルナントリエステルは、エステル基を加水分解してノルボル ナントリカルボン酸とする。その際には、アルカリ性、酸性いずれの条件も採用するこ とがでさる。
[0115] 例えばアルカリ条件で加水分解する場合には、水、アルカリ成分の存在下に行う。
この際、使用することのできるアルカリ成分としては、水酸化ナトリウム、水酸化力リウ ム、水酸ィ匕カルシウムなどのアルカリ金属やアルカリ土類金属の水酸ィ匕物、炭酸水 素ナトリウム、炭酸ナトリウムなどのアルカリ金属やアルカリ土類金属の炭酸塩などの 水溶液である。また、反応はこれらアルカリ化合物の水溶液のみを使用して行っても 良いが、有機溶媒を添加して行っても良い。その際に使用可能な溶媒には、特に制 限はないが特にメタノール、エタノールなどの低級アルコール、テトラヒドロフラン、ジ メトキシェタン等のエーテル系溶媒、ァセトニトリルなどの-トリル系溶媒などは、水系 溶媒と相溶するので好ましい。また、水と相溶しない溶媒、例えば、トルエンやキシレ ンなどの芳香族炭化水素、ヘプタン、へキサン、シクロへキサンなどの脂肪族炭化水 素、ジクロロメタン、 1, 2—ジクロロェタンなどのハロゲン系溶媒などを使用して二相 系で反応を行ってもよい。
[0116] 加水分解する際の反応温度は、特に制限されないが、下限が 10°C以上、好まし くは 0°C以上、さらに好ましくは 10°C以上、上限が 150°C以下、好ましくは 100°C以 下、さらに好ましくは 80°C以下で反応を行う。
[0117] 反応時間は、通常は、下限が 10分以上、好ましくは 30分以上、さらに好ましくは 1 時間以上である。上限は特に制限されないものの、通常 100時間以下、好ましくは 5 0時間以下、さらに好ましくは 25時間以下である。
[0118] 反応後の生成物は、 2, 3, 5 ノルボルナントリカルボン酸の金属塩となっているの でこれを酸によりカルボン酸として取り出す。このために 2, 3, 5 ノルボルナントリカ ルボン酸金属塩の溶液に酸を添カ卩してカルボン酸の金属塩をカルボン酸へと変換 する。その際に使用できる酸としては、塩酸、硫酸、硝酸、燐酸などの無機酸の水溶 液が挙げられる。
[0119] 一方、酸性条件で行う場合には、水と酸成分の存在下に反応を行えば良ぐ特に その方法にっ 、ては公知の方法をそのまま採用することができる。使用できる酸成分 としては、硫酸、塩酸、硝酸、りん酸などの無機酸、 p—トルエンスルホン酸、メタンス ルホン酸などの有機酸などが挙げられる。
[0120] 酸成分の使用量としては、基質であるヒドロエステル体の重量に対して、下限が 5重 量%、好ましくは 10重量%、上限は特に制限はないが、 200重量%、好ましくは 100 重量%である。
[0121] 反応の際には溶媒を使用しても力まわない。その際、採用可能な溶媒としては、特 に制限はないがメタノール、エタノールなどの低級アルコール、テトラヒドロフラン、ジ メトキシェタン等のエーテル系溶媒、ァセトニトリルなどの-トリル系溶媒、スルホラン 、ジメチルスルォキシドなどの含硫黄原子溶媒などは、水系溶媒と相溶するので好ま しい。また、水と相溶しない溶媒、例えば、トルエンゃキシレンなどの芳香族炭化水素 、ヘプタン、へキサン、シクロへキサンなどの脂肪族炭化水素、ジクロロメタン、 1, 2- ジクロロェタンなどのハロゲン系溶媒などを使用して二相系で反応を行ってもよい。
[0122] その際の溶媒の使用量は、基質であるヒドロエステル体の重量濃度として、下限が
、 1%、好ましくは 5%、さらに好ましくは 10%、上限が 80%、好ましくは 70%、さらに 好ましくは 60%となる量である。
[0123] 反応仕込みの際に使用する水の量は、下限が基質であるヒドロエステル体の重量
%ととして、 30%以上、好ましくは 50%以上、さらに好ましくは 100%以上、上限は特 に制限はないが、 300%以下、好ましくは 200%以下が採用される。
[0124] 加水分解する際の反応温度は、特に制限されないが、下限が 20°C以上、好ましく は 40°C以上、さらに好ましくは 60°C以上、上限が 200°C以下、好ましくは 150°C以 下、さらに好ましくは 120°C以下で反応を行う。
[0125] 反応時間は、通常は、下限が 10分以上、好ましくは 30分以上、さらに好ましくは 1 時間以上である。上限は特に制限されないものの、通常 100時間以下、好ましくは 5
0時間以下、さらに好ましくは 25時間以下である。
[0126] なお、反応の途中に、副生するエステル由来のアルコールを除去しながら反応を行 うと平衡が生成系(トリカルボン酸)側に移行するので好ましい。また、アルコールを除 去する際に反応試剤である水も除去されてしまう場合には、逐次水を補給しながら反 応を行うのが好ましい。
[0127] こうして得られるノルボルナン 2, 3, 5 トリカルボン酸の収率は、通常 60%以上
、好ましくは 70%以上、さらに好ましくは 80%以上である。
[0128] また、生成物は以下の構造を有するものが主成分となる。
<エンド 5 ノルボルネンー 2, 3 ジカルボン酸無水物のヒドロエステル化物を原 料とした場合〉
[化 24]
Figure imgf000035_0001
[0129] くェキソ 5 ノルボルネン 2, 3 ジカルボン酸無水物のヒドロエステル化物を原 料とした場合〉
[化 25]
Figure imgf000035_0002
[0130] 上記構造の化合物の他にさらにこれらの立体異性体 (一部または全部のノルボル ナン環上の置換基のエンド—ェキソが反転したもの)が混在する。ただし、通常上記 した構造の化合物の生成が主であり、全生成物中に含まれる上記生成物の合計の 割合は、通常 50%以上、好ましくは 70%以上、さらに好ましくは 80%以上である。
[0131] こうして得られたノルボルナン 2, 3, 5 トリカルボン酸は、次のエステル化工程 にそのまま使用することも可能であるが、精製して純度を高めて力も使用しても力まわ ない。精製の方法は、特に制限なく通常の方法、例えば、昇華法、再結晶法、カラム クロマトグラフィー、抽出精製などが任意に採用可能である。中でも再結晶法が簡便 かつコスト的に安価なため好ましい。
[0132] 再結晶を行う際の溶媒としては、ノルボルナン— 2, 3, 5 トリカルボン酸が溶解す る溶媒であれば特に制限なく使用可能である。具体的には、テトラヒドロフラン、ジメト キシェタン、ジォキサン等のエーテル系溶媒、ァセトニトリルなどの-トリル系溶媒、ス ルホラン、ジメチルスルォキシド、 N—メチルピロリドンなどの非プロトン性極性溶媒、 ジクロロメタン、 1, 2—ジクロロェタンなどのハロゲン系溶媒、酢酸ェチル、酢酸ブチ ルなどのエステル系溶媒などが使用可能である。さらには、これらの良溶媒に加えて トルエンゃキシレンなどの芳香族炭化水素、ヘプタン、へキサン、シクロへキサンなど の脂肪族炭化水素などの貧溶媒を添加して使用しても力まわない。貧溶媒を添加す ると目的物の回収率を高めることができる。
[0133] こうして精製されたノルボルナン— 2, 3, 5—トリカルボン酸の純度は通常 80%以 上、好ましくは 90%以上、さらに好ましくは 95%以上である。
[0134] [2] 2, 3, 5—ノルボルナントリカルボン酸から本発明のテトラカルボン酸系化合物の 合成
[化 26]
Figure imgf000036_0001
[0135] 2, 3, 5—ノルボルナントリカルボン酸は、例えば 2位と 3位のカルボキシル基を酸無 水物化した後に、 5位のカルボキシル基を 2価のアルコールまたはァミン、もしくはジ カルボン酸の酸無水物基を有するアルコールまたはァミンと縮合させることにより、本 発明のテトラカルボン酸系化合物へと誘導することができる。
[0136] 2, 3, 5—ノルボルナントリカルボン酸の 2位と 3位のカルボキシル基を酸無水物化 する方法としては、減圧下に加熱する方法、または有機酸の酸無水物と共に処理す る方法を採用することができる。 [0137] 減圧下に加熱処理をする場合、採用される温度は、下限が 50°C以上、好ましくは 1 20°C以上、上限が 250°C以下、好ましくは 200°C以下である。
また減圧度の下限の制限はなぐ上限は 0. IMPa以下、好ましくは 0. 05MPa以 下である。
[0138] 有機酸の無水物と処理する場合に使用される有機酸の酸無水物としては、無水酢 酸、無水プロピオン酸、無水マレイン酸、無水フタル酸などが挙げられる力 過剰に 使用した際の除去の容易さから無水酢酸が好適に用いられる。
[0139] その処理の際に採用される温度は、下限が 30°C以上、好ましくは 50°C以上、上限 が 200°C以下、好ましくは 150°C以下である。
[0140] 次いで、こうして得られた 5 カルボキシノルボルナン 2, 3 ジカルボン酸無水 物の 5位のカルボキシル基を 2価のアルコールまたはァミン、或!、はジカルボン酸の 酸無水物基を有するアルコールまたはァミンと縮合させる。その際の縮合反応は、通 常有機合成的なエステル化反応やアミド化反応として知られた反応を任意に採用で きる。例えば、カルボン酸とアルコールとァミンから直接脱水して縮合する方法、ジシ クロへキシルカルボジイミド(DCCと略される)や、ジェチルァゾジカルボキシレート Z トリフエニルホスフィンの組み合わせなどの脱水試薬を用いて脱水縮合させる方法な どがある。さらに、カルボン酸をより反応性の高い(求電子性の高い)酸ノ、ライドや酸 無水物に変換した後に塩基の存在下にアルコールゃァミンとを反応させる方法も採 用可能である。また、エステルを合成する方法としては、カルボン酸とカルボン酸のァ ルコールエステルカゝらエステル交換反応させる方法も利用することが可能である。
[0141] 上述の方法の中でも、直接脱水する方法とエステル交換法、酸ノヽライドに変換する 方法が、経済性、反応性の点で好ましい。以下は、酸クロリドを経由してノルボルナン 構造含有テトラカルボン酸無水物を製造する方法について述べる。
[0142] この場合は、 5 カルボキシノルボルナン 2, 3 ジカルボン酸無水物の 5位の力 ルボキシル基を酸クロリド化し、これと 2価のアルコールまたはァミン、或いはジカルボ ン酸無水物基を有する 1価のアルコールまたはァミンと反応させてエステル化、もしく はアミドィヒする。
[0143] 5位のカルボキシル基を酸クロリド化して 5 クロ口ホルミルノルボルナン—2, 3 ジ カルボン酸無水物を合成する方法としては、カルボン酸から対応する酸クロリドを合 成する通常の有機合成手法を用いることができる。具体的な例としては、塩化チォ- ルを用いる方法、ォキザリルクロリドを用いる方法、三塩化リンを用いる方法、安息香 酸クロリドなどの他の酸クロリドを使用する方法などが挙げられる。中でも過剰に使用 した試剤の留去のしゃすさの点力 塩ィ匕チォニルを用いる方法が好ま 、。
なお、酸プロミドを経由する場合は、臭化チォニル、ォキザリルプロミド、三臭化リン 、安息香酸プロミドなどを用いて、同様に実施することができる。
[0144] これら塩素化剤を用いて 5位のカルボン酸を塩素化する際に、 N, N—ジメチルホ ルムアミドゃピリジン等の触媒を用いることもできるが、これらを用いなくても反応の進 行に大きな支障はない場合もある。むしろ触媒の存在により得られた塩素化物がか えって著しく着色することもあるので、ポリイミド膜の透明性を重視する用途の場合は 生成物の着色に注意が必要で、その場合はこれら触媒を使用しないで製造するのが 好ましい。
[0145] 使用する塩素化試剤の量は、基質と等量、もしくは過剰量が採用されるが、通常下 限が 1モル等量以上、好ましくは 5モル等量以上、さらに好ましくは 10モル等量以上 である。一方、上限は特に制限はないものの、経済的な観点から 100モル等量以下 、好ましくは 50モル等量以下の量が使用される。
[0146] 塩素化剤を用いた酸クロリド化反応は、溶媒を用いて実施してもよい。その際使用 できる溶媒は、使用する塩素化剤および生成物である酸無水物クロリドが溶解し、塩 素化剤が反応しない溶媒であれば制限なく使用できる。使用可能な溶媒の例として は、トルエン、キシレンなどの芳香族炭化水素溶媒、へキサン、ヘプタンなどの脂肪 族炭化水素溶媒、ジェチルエーテル、テトラヒドロフラン、モノエチレングリコールジメ チルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル系溶媒、ァセ トン、メチルェチルケトン、メチルイソブチルケトンなどのケトン系溶媒、酢酸ェチル、 酢酸ブチル、ガンマブチロラタトンなどのエステル系溶媒、ジメチルホルムアミドゃジメ チルァセトアミド、 N—メチルピロリドンなどのアミド系溶媒、等があげられる。中でも、 溶解性、安定性の点からトルエンや、ヘプタン、テトラヒドロフランが好ましい。これら 溶媒は単独で用いても力まわないし、任意の複数の溶媒を混合して使用してもかま わない。溶媒の使用量は、基質である 5 カルボキシノルボルナン 2, 3 ジカルボ ン酸無水物の重量濃度として、通常下限が 5重量%、好ましくは 10重量%、上限が 5 0重量%、好ましくは 40重量%である。
[0147] 反応は室温でも行うことができるが、通常加熱して行う。採用される温度は、下限が 30°C以上、好ましくは 50°C以上、上限は使用する塩素化試剤の還流温度である。
[0148] 反応後は、過剰に使用した塩素化試剤を除去する。除去の方法は特に制限されず 、蒸留、抽出などが適用できる。蒸留により留去する場合には、より効率を上げるため に塩素化試剤と共沸組成物を形成する溶媒を添加して留去してもよい。例えば、塩 化チォニルを留去する場合には、ベンゼンやトルエンを添加して共沸留去させること ができる。
[0149] 得られた酸塩素化物はへキサンやシクロへキサン等の無極性溶媒を用いて再結晶 することでより純度を高めることができるが、そのような精製操作を行わず、そのまま次 の反応工程に使用しても何ら差し支えない。
[0150] 得られた酸塩素化物を再結晶する場合の無極性溶媒としては、具体的には、テトラ ヒドロフラン、ジメトキシェタン、ジォキサン等のエーテル系溶媒、ァセトニトリルなどの 二トリル系溶媒、スルホラン、ジメチルスルォキシド、 N メチルピロリドンなどの非プロ トン性極性溶媒、ジクロロメタン、 1, 2—ジクロロェタンなどのハロゲン系溶媒、酢酸ェ チル、酢酸ブチルなどのエステル系溶媒などが使用可能である。さらには、これらの 良溶媒に加えてトルエンゃキシレンなどの芳香族炭化水素、ヘプタン、へキサン、シ クロへキサンなどの脂肪族炭化水素などの貧溶媒を添加して使用しても力まわない。 貧溶媒を添加すると目的物の回収率を高めることができる。
[0151] このようにして必要に応じて精製を行って得られる 5 クロ口ホルミルノルボルナン
- 2, 3 ジカルボン酸無水物の純度は、通常 90%以上、好ましくは 95%以上、さら に好ましくは 98%以上である。主な不純物としては、酸無水環が開環したトリカルボ ン酸の複数のカルボキシル基が酸クロリドィ匕を受けて生成するジ酸クロリド体、トリ酸ク 口リド体(立体異性体を含む)、触媒としてジメチルホルムアミドを使用した場合はこの 分解物や、 2, 3, 5 ノルボルナントリカルボン酸のジメチルアミド体などがある力 こ れらの存在量は少ない方が好ましぐ通常は、 5重量%以下、さらに好ましくは 3重量 %以下、より好ましくは 1重量%以下である。
[0152] なお、上記説明にお 、ては、トリカルボン酸力 まず酸無水物化し、その後酸クロリ ド化を段階的に行う方法を述べてきたが、トリカルボン酸を上記した塩素化剤と直接 処理することによって 5 クロ口ホルミルノルボルナン 2, 3 ジカルボン酸無水物 へ一気に変換することも可能である。その際の塩素化剤の使用量は、通常下限が 2 モル等量以上、好ましくは 5モル等量以上、さらに好ましくは 10モル等量以上である 。一方、上限は特に制限はないものの、経済的な観点から 100モル等量以下、好ま しくは 50モル等量以下の量が使用される。塩素化剤の種類、反応温度ならびに反応 精製手法は上記の条件をそのまま採用できる。
[0153] このようにして得られた本発明の酸ハライドである 5 クロ口ホルミルノルボルナン 2, 3 ジカルボン酸無水物は、 2価のアルコールまたはァミン、もしくはジカルボン酸 無水物基を有する 1価のアルコールまたはァミンと反応させてエステル化、もしくはァ ミドィ匕することにより、一般式(1)または(2)に示される本発明の化合物であるノルボ ルナン構造含有テトラカルボン酸無水物を合成することができる。
これらアルコール類、ァミン類と酸クロリドとの反応は以下のようにして行う。
[0154] まず、反応試剤の反応容器への導入の方法であるが、アルコール類もしくはァミン 類と塩基を溶媒に溶解し、これに同一の溶媒に溶解した 5—クロ口ホルミルノルボル ナン 2, 3 ジカルボン酸無水物をゆっくりと滴下する方法、或いは、逆に必要に応 じて溶媒に溶解した 5 クロ口ホルミルノルボルナン 2, 3 ジカルボン酸無水物中 にアルコール類もしくはァミン類と塩基の混合溶液を滴下する方法、さら〖こは、 5—ク ロロホルミルノルボルナン 2, 3 ジカルボン酸無水物とアルコール類もしくはァミン 類の混合溶液の中へ塩基を滴下する方法、などが採用可能である。
[0155] 反応の進行とともに白色沈殿が生じる。これを濾過後、沈殿を水で十分洗浄して生 成した塩酸塩を除去し、ジエステルの沈殿を加温して真空乾燥することで、 目的のェ ステル基含有テトラカルボン酸二無水物の粗生成物を収率よく得ることができる。さら に必要に応じて適当な溶媒で再結晶を行うことにより、純度の高められたテトラカル ボン酸二無水物を得ることもできる。
[0156] 本発明のテトラカルボン酸系化合物を合成する場合に使用可能なジオールとして は特に限定されないが、通常、単核の芳香環に 2つの水酸基を有するもの、脂環式 骨格に 2つの水酸基を有するもの、ビフ ニル骨格の両方の核に水酸基を 1つずつ 持つもの、 2個のフエノール残基もしくは脂環式アルコール残基カ^チレン基(一 CH
2
-)、エーテル基(― o— )、エステル基(― c (o) o— )、ケト基(― c (o) -)、スルホ
-ル基(一 SO —)、スルフィエル基(一 SO )、スルフヱ-ル基(一 S—)、 9, 9ーフ
2
ルォレニリデン基などの官能基により結合された構造を持つもの、ナフタレン骨格に 2 つの水酸基を有するもの、鎖状骨格に水酸基を 2つ持つものなどが用いられる。 具体的な例を挙げると、例えば、単核の芳香環に 2つの水酸基を有するものの例と しては、ヒドロキノン、 2—メチルヒドロキノン、レゾルシノール、カテコール、 2—フエ- ルヒドロキノン等力 ビフヱ-ル構造の両方の核に水酸基を 1つずつ持つものの例と して ίま、 4, 4,ービフエノーノレ、 3, 4,ービフエノーノレ、 2, 2,ービフエノーノレ、 3, 3' , 5 , 5'ーテトラメチルー 4, 4'ービフエノール等が、芳香核が 2価の官能基で結合された ものの例としては、 4, 4'ージヒドロキシビフエ-ルエーテル、 4, 4'ージヒドロキシジフ ェ-ノレスノレホン、 9, 9—ビス(4—ヒドロキシフエ-ル)フノレオレン、 9, 9—ビス(ヒドロキ シメチル)フルオレン、 9, 9 ビス(2 ヒドロキシェチル)フルオレン等が、ナフタレン 骨格に 2つの水酸基を有するものの例としては 2, 6 ナフタレンジオール、 1, 4ーナ フタレンジオール、 1, 5 ナフタレンジオール、 1, 8 ナフタレンジオール等力 脂 環式骨格に 2つの水酸基を有するものの例としては、 1, 4ージヒドロキシシクロへキサ ン、 1, 3 ジヒドロキシシクロへキサン、 1, 2 ジヒドロキシシクロへキサン、 1, 3 ァ ダマンタンジオール、ジシクロペンタジェンの 2水和物等力 脂環式骨格に置換した 基に水酸基を有するものの例としては、シクロへキサンジメタノールゃトリシクロ [5. 2 . 1. 02' 6]デカンジメタノール等力 ヘテロ原子を有する環に水酸基を有するものの 例としては、 2, 3 ジヒドロキシテトラヒドロフランやイソソルバイド等力 鎖状骨格に水 酸基を 2つ持つものの例としてはエチレングリコール、プロピレングリコール等が挙げ られる。より好ましくは、環状骨格を有するジオールが挙げられ、さらにポリマーとして の要求特性の観点から考えると、ヒドロキノン、 4, 4,ービフエノール、 1, 4ージヒドロ キシシクロへキサン、 9, 9—ビス(4—ヒドロキシフエ-ル)フルオレン、 9, 9—ビス(ヒド 口キシメチル)フルオレン、 9, 9 ビス(2 ヒドロキシェチル)フルオレンが特に好まし い。また、これらのジオールは 2種類以上併用することもできる。
[0158] また、本発明のテトラカルボン酸系化合物は、 5 クロ口ホルミルノルボルナン 2, 3—ジカルボン酸無水物とヒドロキシ基を含有するジカルボン酸無水物とを反応させ ても製造することができる。その際に使用されるヒドロキシ基を含有するジカルボン酸 無水物としては、 3—ヒドロキシコハク酸無水物、 3—ヒドロキシメチルコハク酸無水物 、 5—ヒドロキシノルボルナン—2, 3—ジカルボン酸無水物、 4ーヒドロキシフタル酸無 水物などが例として挙げられる。
[0159] 本発明のテトラカルボン酸系化合物を製造するために使用されるジァミンとしては、 基本的には自由に選択可能である力 具体的に使用可能なジァミンとしては例えば 、芳香族ジァミンでは、 3, 5 ジァミノべンゾトリフルオリド、 2, 5 ジァミノべンゾトリフ ノレ才リド、 3, 3 '—ビストリフノレ才ロメチノレー 4, 4'—ジアミノビフエ二ノレ、 3, 3 '—ビスト リフルォロメチルー 5, 5,ージアミノビフエ-ル、ビス(トリフルォロメチル) 4, 4,ージ アミノジフエ-ル、ビス(フッ素化アルキル) 4, 4,一ジアミノジフエ-ル、ジクロロ一 4 , 4'ージアミノジフエニル、ジブ口モー 4, 4'ージアミノジフエニル、ビス(フッ素化アル コキシ) 4, 4'ージアミノジフエニル、ジフエ二ルー 4, 4'ージアミノジフエニル、 4, 4 ,ビス(4—アミノテトラフルオロフエノキシ)テトラフルォロベンゼン、 4, 4'—ビス(4— アミノテトラフルオロフエノキシ)ォクタフルォロビフエニル、 4, 4'ービナフチルァミン、 o—、 m—、 p フエ-レンジァミン、 2, 4 ジァミノトルエン、 2, 5 ジァミノトルエン、 2, 4ージアミノキシレン、 2, 4ージアミノジュレン、ジメチノレー 4, 4'ージアミノジフエ二 ル、ジアルキル 4, 4'ージアミノジフエニル、ジメトキシー 4, 4 'ージアミノジフエニル 、ジエトキシー 4, 4'ージアミノジフエニル、 4, 4'ージアミノジフエニルメタン、 4, 4' ジアミノジフエ二ルエーテル、 3, 4'ージアミノジフエニルエーテル、 4, 4'ージアミノジ フエ-ルスルフォン、 3, 3,一ジアミノジフエ-ルスルフォン、 4, 4'—ジァミノべンゾフ ェノン、 3, 3, 一ジァミノべンゾフエノン、 1, 3 ビス(3 アミノフエノキシ)ベンゼン、 1 , 3 ビス(4 アミノフエノキシ)ベンゼン、 1, 4 ビス(4 アミノフエノキシ)ベンゼン 、 4, 4,一ビス(4—アミノフエノキシ)ビフエ-ル、ビス(4— (3—アミノフエノキシ)フエ -ル)スルフォン、ビス(4— (4 アミノフエノキシ)フエ-ル)スルフォン、 2, 2 ビス(4 — (4 アミノフエノキシ)フエ-ル)プロパン、 2, 2 ビス(4— (4 アミノフエノキシ)フ ェ -ル)へキサフルォロプロパン、 2, 2 ビス(4— (3—アミノフエノキシ)フエ-ル)プ 口パン、 2, 2 ビス(4— (3—アミノフエノキシ)フエ-ル)へキサフルォロプロパン、 2, 2 -ビス(4— (4 アミノー 2 トリフルォロメチルフエノキシ)フエ-ル)へキサフルォロ プロパン、 2, 2 ビス(4— (3 アミノー 5 トリフルォロメチルフエノキシ)フエ-ル)へ キサフルォロプロパン、 2, 2 ビス(4 ァミノフエ-ル)へキサフルォロプロパン、 2, 2 ビス(3 ァミノフエ-ル)へキサフルォロプロパン、 2, 2 ビス(3 アミノー 4 ヒ ドロキシフエ-ル)へキサフルォロプロパン、 2, 2 ビス(3 アミノー 4—メチルフエ- ル)へキサフルォロプロパン、 4, 4,一ビス(4 アミノフエノキシ)ォクタフルォロビフエ -ル、 4, 4'ージァミノべンズァ -リド等が例示でき、これらの 2種以上併用することも できる。
[0160] 脂肪族ジァミンとしては例えば、 4, 4,一メチレンビス(シクロへキシルァミン)、イソホ ロンジァミン、トランス 1, 4ージアミノシクロへキサン、シス 1, 4ージアミノシクロへ キサン、 1, 4ーシクロへキサンビス(メチルァミン)、 2, 5 ビス(アミノメチル)ビシクロ〔 2. 2. 1〕ヘプタン、 2, 6 ビス(アミノメチル)ビシクロ〔2. 2. 1〕ヘプタン、 3, 8 ビス (アミノメチル)卜リシクロ〔5. 2. 1. 0〕デカン、 1, 3 ジアミノアダマンタン、 2, 2 ビス (4 -アミノシクロへキシル)プロパン、 2, 2 ビス(4 -アミノシクロへキシル)へキサフ ルォロプロパン、 1, 3 プロパンジァミン、 1, 4ーテトラメチレンジァミン、 1, 5 ペン タメチレンジァミン、 1, 6 へキサメチレンジァミン、 1, 7—ヘプタメチレンジァミン、 1 , 8—オタタメチレンジァミン、 1, 9 ノナメチレンジァミン等が挙げられ、これらの 2種 以上併用することもできるし、先に挙げた芳香族ジァミンと併用することもできる。
[0161] これらジァミンの中でも芳香族ジァミンとしては、 o—、 m—、 p フエ-レンジァミン などのモノフエ-ルジァミン化合物、 4, 4'ージアミノジフエ-ル、 4, 4'ージアミノジフ ェニルスルフォン、 4, 4 'ージアミノジフエニルメタン、 4, 4'ージアミノジフエニルエー テルなどのジァミノジフヱ二ルイ匕合物などが好ましく、中でも入手の容易性や得られる 榭脂の物性が良好なことから、 p フエ-レンジァミン、 4, 4'—ジアミノジフエ-ルェ 一テル、 4, 4'ージアミノジフエ-ルがより好ましい。脂肪族ジァミンとしては、 4, 4' メチレンビス (シクロへキシルァミン)、トランス 1, 4ージアミノシクロへキサンなどの脂 環式ジァミンが環構造を有し入手も容易なのでより好ましぐさらには、トランス 1, 4 —ジアミノシクロへキサンが得られる榭脂の物性が良好なことからより好ましい。
[0162] これらジオール、もしくはジァミンの使用量は、 5 クロ口ホルミルノルボルナン 2, 3 ジカルボン酸無水物に対して、通常上限は 0. 6等量以下、好ましくは、 0. 5等量 以下である。これより多く用いるとジオールまたはジァミンの 1つのみしかエステル化さ れて 、な 、ノヽ一フェステルもしくはハーフアミドが多く生成するので好ましくな!/、。ま た下限は、 0. 3等量以上、好ましくは 0. 45等量以上である。これより少ないと 5 ク ロロホルミルノルボルナン 2, 3 ジカルボン酸無水物が系内に余るので好ましくは ない。通常、ジオールもしくはジァミンは、 5 クロ口ホルミルノルボルナン 2, 3 ジ カルボン酸無水物に対して 0. 5等量程度使用される。
[0163] 5 クロ口ホルミルノルボルナン 2, 3 ジカルボン酸無水物とアルコール類、アミ ン類を反応させて該ノルボルナン構造含有テトラカルボン酸無水物を合成する際に 使用可能な溶媒としては、特に限定されないが、テトラヒドロフラン、 1, 4 ジォキサ ン、 1, 2—ジメトキシェタン-ビス(2—メトキシェチル)エーテル等のエーテル溶媒、ピ コリン、ピリジン等の芳香族ァミン溶媒、アセトン、メチルェチルケトン等のようなケトン 系溶媒、トルエン、キシレン等の様な芳香族炭化水素溶媒、ジクロロメタン、クロロホ ルム、 1, 2—ジクロロェタン等のような含ハロゲン溶媒、 N—メチル—2—ピロリドン、 N, N ジメチルァセトアミド、 N, N ジェチルァセトアミド、 N, N ジメチルホルム アミド等のようなアミド系溶媒、へキサメチルホスホンアミド等のような含リン溶媒、ジメ チルスルホォキシド等のような含ィォゥ溶媒、 Ύ ブチロラタトン、酢酸ェチル、酢酸 ブチル等のようなエステル系溶媒、 1, 3 ジメチルー 2 イミダゾリジノン等のような 含窒素溶媒、フエノール、 ο クレゾール、 m—クレゾール、 p クレゾール、 o クロ口 フエノール、 m クロ口フエノール、 p クロ口フエノール等の水酸基を有する芳香族 系溶媒等が挙げられる。これらの溶媒は 1種を単独で用いても、 2種類以上混合して 用いてもよい。
[0164] 本発明のテトラカルボン酸系化合物を得る反応における反応液中の溶質の濃度は 、下限が 1重量%以上、好ましくは 10重量%以上、上限が 50重量%以下、好ましく は 40重量%以下で行われる。副反応の制御、沈殿の濾過工程を考慮すると 10重量 %以上 40重量%以下の範囲で行われるのがより好まし 、。 [0165] 本発明のテトラカルボン酸系化合物の合成の際、採用される反応温度は下限が 10°C以上、好ましくは 5°C以上、より好ましくは 0°C以上、上限は 30°C以下、好まし くは 20°C以下、より好ましくは 10°C以下で行われる。反応温度が 30°Cよりも高いと一 部副反応が起こり、収率が低下する恐れがあり、好ましくない。
[0166] 反応は通常、常圧で行われる力 必要に応じて加圧下または減圧下でも実施でき る。また、通常、反応雰囲気は窒素下で行う。
[0167] 反応容器は密閉型反応容器でも開放型反応容器でも良いが、反応系を不活性雰 囲気に保っため、開放型の場合には不活性ガスでシールできるものを用いる。
[0168] 反応の際、使用する塩基は反応の進行とともに発生する塩化水素を中和するため に用いる。
この際使用される塩基の種類としては特に限定されないが、ピリジン、トリェチルアミ ン、 N, N ジメチルァ-リン等の有機 3級ァミン類、炭酸カリウム、水酸ィ匕ナトリウム等 の無機塩基を用いることができる。
[0169] [本発明のテトラカルボン酸系化合物の精製方法]
上述の反応により生成した沈殿物は目的物と塩酸塩の混合物である。塩酸塩を分 離除去するために、沈殿物をクロ口ホルムや酢酸ェチル等で抽出溶解し、分液ロート を用いて有機層を水洗する方法も可能であるが、沈殿物を単に十分水洗するだけで も、塩酸塩を完全に除去することができる。塩酸塩の除去の判定は洗浄液に硝酸銀 水溶液を添加し、塩化銀の白色沈殿の生成の有無を確認することで行う。
[0170] 水洗操作の際、テトラカルボン酸無水物は一部加水分解を受けて、テトラカルボン 酸類に変化するが、これは、減圧下加熱処理をすることにより、容易に本発明のテト ラカルボン酸二無水物に戻すことができる。
[0171] その際採用される温度は、下限が 50°C以上、好ましくは 120°C以上、上限が 250 °C以下、好ましくは 200°C以下である。
閉環処理に採用される減圧度は、下限の制限はなぐ上限は 0. IMPa以下、好ま しくは 0. 05MPa以下である。
[0172] また、加水分解によりテトラカルボン酸となった場合の再閉環の方法としては、上記 した減圧下に加熱する方法の他に、有機酸の酸無水物と処理する方法も採用するこ とができる。その際に使用される有機酸の酸無水物としては、無水酢酸、無水プロピ オン酸、無水マレイン酸、無水フタル酸などが挙げられる力 過剰に使用した際の除 去の容易さから無水酢酸が好適に用いられる。
[0173] こうして得られた本発明のテトラカルボン酸無水物をさらに精製することも可能であ る。その場合の精製方法としては、再結晶、昇華、洗浄、活性炭処理、カラムクロマト グラフィーなど任意に行うことができる。またこれら精製法を繰り返しても、組み合わせ て実施することも可能である。
[0174] 再結晶の際に用いることのできる溶媒としては、テトラカルボン酸無水物が溶解する 溶媒であれば特に制限なく使用することができる。
具体的には、テトラヒドロフラン、ジメトキシェタン、ジォキサン等のエーテル系溶媒 、ァセトニトリルなどの-トリル系溶媒、スルホラン、ジメチルスルォキシド、 N—メチル ピロリドン、 Ί ブチロラタトン、ジメチルホルムアミド、ジメチルァセトアミドなどの非プ 口トン性極性溶媒、ジクロロメタン、 1, 2—ジクロロェタンなどのハロゲン系溶媒、酢酸 ェチル、酢酸ブチルなどのエステル系溶媒などが使用可能である。さらには、これら の良溶媒にカ卩えてトルエンゃキシレンなどの芳香族炭化水素、ヘプタン、へキサン、 シクロへキサンなどの脂肪族炭化水素などの貧溶媒を添加して使用しても力まわな い。貧溶媒を添加すると目的物の回収率を高めることができる。
再結晶の際に、酸無水物環の開環を防ぐために脱水剤を共存させても良い。その 際に使用可能な脱水剤の例としては、無水酢酸、無水プロピオン酸、無水マレイン酸 などがあげられる。
[0175] こうして得られる本発明のテトラカルボン酸無水物の純度は例えば示差屈折系検出 器付液体高速クロマトグラフィーなどの分析で得られるピークの面積比として、通常 9 0%以上、好ましくは 95%以上、さらに好ましくは 98%以上である。
[0176] 不純物として含まれてくるものとしては、ジオールの片方のみがエステル化されたモ ノエステル体、精製時に閉環剤として無水酢酸などの酸無水物を使用した場合には この閉環剤などがある。これらの不純物は、酸無水物構造を 1つ分子内に含有してい ることから、これらのものは、ジァミンと重合する際に重合停止剤として機能するため、 なるべくテトラカルボン酸無水物から除去しておく必要がある。テトラカルボン酸無水 物中に含まれる無水酢酸などの酸無水物の含量は、好ましくは 10モル%以下、さら に好ましくは 5モル%以下、さらに好ましくは 2モル%以下である。これらの不純物が これ以上存在すると、ジァミンとの重合の際に重合度が上がらなくなる可能性がでて くる。
[0177] また、上記した 5 クロ口ホルミルノルボルナン 2, 3 ジカルボン酸無水物とジォ ールのエステルイ匕による本発明のエステル基含有脂環式テトラカルボン酸無水物の 合成収率は、精製後で通常 10モル%以上、好ましくは 20モル%以上、さらに好まし くは 30モル%以上、より好ましくは 50モル%以上である。
[0178] [保存方法]
本発明のテトラカルボン酸系化合物のうち、特にテトラカルボン酸二無水物の保存 は、加水分解による酸無水物環の開環を防ぐために高湿を避けた低温下で保存す ることが望ましい。具体的には、シール性の良い容器で冷蔵庫にて保管すれば長期 間の保存に耐える。
本発明のテトラカルボン酸は、特に湿度を管理する必要もなぐ室温で長期間保存 することができる。
[0179] [ポリイミド前駆体の製造方法]
前記一般式 (5) , (6)で表される本発明のポリイミド前駆体を製造する方法は特に 限定されず、公知の方法を適用することができる。通常、重合溶媒中で実質的に等 モルのジァミン類と本発明のテトラカルボン酸系化合物を反応させることで、ポリイミド 前駆体を容易に製造することができる。この際、テトラカルボン酸二無水物として前記 一般式( 1)な 、し (2) (R1と R2および R3と R4とは酸無水物基( C (O) OC (O) )を 形成)で表される化合物を用いることが好ましい。その際、異なる、一般式(1)または ( 2)で表される酸二無水物を混合して用いても良い。また、一般式(1)または(2)で表 される酸二無水物に、一般式(1)または(2)において n=0の酸二無水物を混合して 用いても良い。
[0180] また、テトラカルボン酸類として前記一般式(1)より誘導される下記一般式 (9)〜(1 2)のいずれかで表される化合物、ならびに前記一般式(2)より誘導される下記一般 式(13)〜(16)のいずれかで表される化合物を用いる事もできる。
Figure imgf000048_0001
[0182] [化 28]
Figure imgf000049_0001
Figure imgf000049_0002
[0183] 上記一般式(9)〜(16)中、 R11, R1は各々独立に炭素数 1〜12のアルキル基で あり、 xa, xbは各々独立に水酸基またはハロゲン原子 (フッ素、塩素、臭素、ヨウ素の いずれか)である。
Figure imgf000049_0003
Bおよび X1、 X2、 X3、 nは前記一般式(1) , (2)におけると 同義である。
[0184] B、 Xa、 Xb、尺11、 R12、 nと X1、 X2および X3の組み合わせとして好まし!/、構造とし ては、 D1が環状構造を有する基であり、 Βは架橋構造を有する環状構造、 Xa, Xbは 塩素原子または臭素原子、 R11, R12は炭素数 6以下のアルキル基、 nは 1、 X1、 X2、 および X3がそれぞれ独立にハロゲン原子もしくは水素原子で構成されるものである。 さらに好ましくは D1が環状構造を有する基、 Bはノルボルナン環、 Xa, Xbが塩素原子 、 R11, R12がメチル基、 nが 1、 X1、 X2、および X3がすべて水素原子で構成されるもの である。
[0185] 一般式 (9)〜(16)の化合物は、前記一般式(1)または(2)の化合物と予め脱水さ れたアルコール類を反応させて酸無水物環を開環することにより、ジカルボン酸ジァ ルキルエステルとして合成することができる(ただし、 Xa=Xb = OH)。この際、生成物 は通常、一般式(9)〜(12)、あるいは一般式(13)〜(16)で表される化合物の混合 物として得られる。さらに、酸無水物環が開いて生成したカルボン酸部位を塩ィ匕チォ -ル等の塩素化剤で塩素化すると酸塩ィ匕物を合成することができる (ただし、 Xa=Xb
= C1)。
本発明のポリイミド前駆体の重合には、これらの一般式 (9)〜(12)で表される化合 物、あるいは一般式(13)〜(16)で表される化合物の混合物を用いることができるが 、それぞれ単離されたィ匕合物を用いても差し支えない。また混合物の使用は、イミド 化後の物性には影響を与えな 、。
[0186] 本発明に係るポリイミド前駆体を製造するために使用されるジァミンとしては、前駆 体製造の際の重合反応性、得られるポリイミドの要求特性を著しく損なわな 、範囲で 自由に選択可能である。具体的に使用可能なジァミン類としては例えば、芳香族ジ ァミンで ίま、 3, 5—ジァミノベン:/トリフノレ才リド、 2, 5—ジァミノベン:/トリフノレ才リド、 3 , 3, 一ビストリフルォロメチル一 4, 4, 一ジアミノビフエニル、 3, 3, 一ビストリフルォロメ チルー 5, 5,ージアミノビフエ-ル、ビス(トリフルォロメチル)—4, 4'ージアミノジフエ -ル、ビス(フッ素化アルキル)—4, 4,—ジアミノジフエ-ル、ジクロロー 4, 4,—ジァ ミノジフエ-ル、ジブ口モー 4, 4,—ジアミノジフエ-ル、ビス(フッ素化アルコキシ) 4, 4'ージアミノジフエニル、ジフエ二ルー, 4'ージアミノジフエニル、 4, 4'ビス(4 アミノテトラフルオロフエノキシ)テトラフルォロベンゼン、 4, 4' ビス(4 アミノテトラ フルオロフエキシ)ォクタフルォロビフエ-ル、 4, 4'—ビナフチルァミン、 ο—、 m—、 ρ —フエ二レンジァミン、 2, 4 ジァミノトルエン、 2, 5 ジァミノトルエン、 2, 4 ジアミ ノキシレン、 2, 4ージアミノジュレン、ジメチルー 4, 4'ージアミノジフエニル、ジアルキ ルー 4, 4'ージアミノジフエニル、ジメトキシ 4, 4'ージアミノジフエニル、ジエトキシ 4, 4'ージアミノジフエニル、 4, 4'ージアミノジフエニルメタン、 4, 4'ージアミノジフ ェニルエーテル、 3, 4'—ジアミノジフエニルエーテル、 4, 4'ージアミノジフエニルス ルフォン、 3, 3'—ジアミノジフエニルスルフォン、 4, 4'—ジァミノべンゾフエノン、 3, 3,一ジァミノべンゾフエノン、 1, 3 ビス(3 アミノフエノキシ)ベンゼン、 1, 3 ビス( 4 アミノフエノキシ)ベンゼン、 1, 4 ビス(4 アミノフエノキシ)ベンゼン、 4, 4'—ビ ス(4—アミノフエノキシ)ビフエ-ル、ビス(4— (3—アミノフエノキシ)フエ-ル)スルフ オン、ビス(4— (4 アミノフエノキシ)フエ-ル)スルフォン、 2, 2 ビス(4— (4 アミ ノフエノキシ)フエ-ル)プロパン、 2, 2 ビス(4— (4 アミノフエノキシ)フエ-ル)へ キサフルォロプロパン、 2, 2 ビス(4— (3—アミノフエノキジ)フエ-ル)プロパン、 2,
2 ビス(4— (3—アミノフエノキシ)フエ-ル)へキサフルォロプロパン、 2, 2 ビス(4 — (4 ァミノ 2 トリフルォロメチルフエノキシ)フエ-ル)へキサフルォロプロパン、 2, 2 ビス(4— (3 アミノー 5 トリフルォロメチルフエノキシ)フエ-ル)へキサフル ォロプロパン、 2, 2 ビス(4 ァミノフエ-ル〉へキサフルォロプロパン、 2, 2 ビス(
3 ァミノフエ-ル)へキサフルォロプロパン、 2, 2 ビス(3 アミノー 4 ヒドロキシフ ェ -ル)へキサフルォロプロパン、 2, 2 ビス(3 アミノー 4 メチルフエ-ル)へキサ フルォロプロパン、 4, 4'—ビス(4—アミノフエノキシ)ォクタフルォロビフエ-ル、 4, 4 '—ジァミノべンズァ -リド等が例示でき、これらを 2種以上併用することもできる。 脂肪族ジァミンとしては例えば、 4, 4'—メチレンビス (シクロへキシルァミン)、イソホ ロンジァミン、トランス 1, 4ージアミノシクロへキサン、シス 1, 4ージアミノシクロへ キサン、 1, 4ーシクロへキサンビス(メチルァミン)、 2, 5 ビス(アミノメチル)ビシクロ〔 2. 2. 1〕ヘプタン、 2, 6 ビス(アミノメチル)ビシクロ〔2. 2. 1〕ヘプタン、 3, 8 ビス (アミノメチル)卜リシクロ〔5. 2. 1. 0〕デカン、 1, 3 ジアミノアダマンタン、 2, 2 ビス (4 -アミノシクロへキシル)プロパン、 2, 2 ビス(4 -アミノシクロへキシル)へキサフ ルォロプロパン、 1, 3 プロパンジァミン、 1, 4ーテトラメチレンジァミン、 1, 5 ペン タメチレンジァミン、 1, 6 へキサメチレンジァミン、 1, 7—ヘプタメチレンジァミン、 1 , 8—オタタメチレンジァミン、 1, 9 ノナメチレンジァミン等が挙げられる。また、これ らを 2種類以上併用することもできるし、先に挙げた芳香族ジァミンと併用することもで きる。 さらには、 1, 3 ビス(3 ァミノプロピル) 1, 1, 3, 3—テトラメチノレジシロキサン などのシロキサン基含有のジァミンも使用することができる。
[0188] これらジァミンの中でも芳香族ジァミンとしては、 o—、 m—、 p フエ-レンジァミン などの単核のフエ-レンジァミン化合物、 4, 4,ージアミノジフエ-ル、 4, 4,ージァミノ ジフエニルスルフォン、 4, 4'ージアミノジフエニルメタン、 4, 4'ージアミノジフエニル エーテルなどのジアミノジフエ-ルイ匕合物が好ましぐ中でも入手の容易性や得られ る榭脂の物性が良好なことから、 p フエ-レンジァミン、 4, 4'—ジアミノジフエニル エーテル、 4, 4'ージアミノジフエ-ルがより好ましい。脂肪族ジァミンとしては、 4, 4' ーメチレンビス (シクロへキシルァミン)、トランス 1, 4ージアミノシクロへキサン、イソ ホロンジァミンなどの脂環式ジァミンが環構造を有し入手も容易なのでより好ましぐ さらには、トランス 1 , 4ージアミノシクロへキサンが得られる榭脂の物性が良好なこ とからより好ましい。
[0189] これらジァミンは、反応に供する前に精製を行っても良い。その精製方法としては、 再結晶、昇華、活性炭処理、蒸留など任意に行うことができる。またこれら精製法を 繰り返しても、組み合わせて実施することも可能である。
[0190] これらジァミンは、重合反応性が高まるので高純度であることが好ま 、、通常使用 されるジァミンの純度は、 95%以上、好ましくは、 97%以上、さらに好ましくは 99% 以上である。
[0191] 本発明のポリイミド前駆体は、前記一般式(1)または(2)で表されるテトラカルボン 酸二無水物と実質的に等モルのジァミンを重合することにより得ることができる。より 具体的には、以下の方法により得ることができる。
[0192] 反応はジァミンと一般式(1)または(2)のテトラカルボン酸二無水物を溶媒の存在 下に混合して行う。
この際、使用するテトラカルボン酸二無水物とジァミンの比率は、モル比で 1 : 0. 8 〜1. 2であることが好ましい。通常の重縮合反応と同様にこのモル比が 1 : 1に近いほ ど得られるポリアミド酸の分子量は大きくなる。
[0193] これらジァミンと酸無水物の反応器への仕込みの方法は任意に選択することができ る。例えば、ジァミンを溶媒に溶解しておき、これに一般式(1)または(2)のテトラカル ボン酸二無水物粉末を徐々に添加する方法、逆に、テトラカルボン酸二無水物の溶 液にジァミンを徐々に添加する方法、さらには、ジァミンとテトラカルボン酸二無水物 粉末をあらかじめ溶媒を仕込んだ反応器に同時に添加する方法などが採用可能で ある。中でもジァミンを溶媒に溶解しておきテトラカルボン酸二無水物粉末を徐々に 添加する方法が試剤の溶媒への溶解性から有利に採用される。
[0194] 反応温度は、あまり低すぎると試剤の溶解性が低下することと十分な反応速度が得 られないこと、高すぎると反応の進行をコントロールしに《なることから好ましくない。 下限が— 20°C、好ましくは— 10°C、さらに好ましくは 0°C、上限が 150°C、好ましくは 100°C、さらに好ましくは 60°Cが採用される。
[0195] 反応時間は特に制限なく採用できるが十分な試剤の変換率を達成するためには、 下限が 10分、好ましくは 30分、さらに好ましくは 1時間である。上限は特に制限はな いが反応が終了すれば必要以上に反応時間を延ばす必要はない。例えば、 100時 間、好ましくは 50時間、さらに好ましくは 30時間が採用される。
[0196] 重合反応は、溶媒を用いて行う。この際、使用される溶媒としては、原料モノマーで あるジァミンと一般式(1)または(2)のテトラカルボン酸二無水物が溶媒と反応せず、 且つこれら原料が溶解する溶媒であれば問題はなぐ特にその構造は限定されない 。具体的に例示するならば、 N, N ジメチルホルムアミド、 N, N ジメチルァセトアミ ド、 N—メチルピロリドン等のアミド溶媒、 γ—ブチ口ラタトン、 y—バレロラタトン、 δ バレロラタトン、 Ί一力プロラタトン、 ε—力プロラタトン、 aーメチルー yーブチロラ タトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等の力 ーボネート溶媒、力プロラタタム等のラタタム溶媒、ジォキサンなどのエーテル系溶媒 、トリエチレングリコール等のグリコール系溶媒、 m クレゾール、 p クレゾール、 3— クロロフエノ一ル、 4 クロロフエノ一ル、 4—メトキシフエノール、 2, 6 ジメチルフエノ ール等のフエノール系溶媒、ァセトフエノン、 1 , 3 ジメチルー 2—イミダゾリジノン、ス ルホラン、ジメチルスルホキシド、テトラメチルゥレアなどが好ましく採用される。さらに 、その他の一般的な有機溶剤、即ちフエノール、 o クレゾール、酢酸ブチル、酢酸 ェチノレ、酢酸イソブチノレ、プロピレングリコーノレメチノレアセテート、ェチノレセロソノレブ、 ブチノレセロソノレブ、 2—メチルセ口ソルブアセテート、ェチルセ口ソルブアセテート、ブ チルセ口ソルブアセテート、テトラヒドロフラン、ジメトキシェタン、ジエトキシェタン、ジ ブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、 ジイソプチルケトン、シクロへキサノン、メチルェチルケトン、アセトン、ブタノール、ェ タノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフ サ系溶媒なども添加して使用できる。中でも原料の溶解性が高いことから N, N ジメ チルホルムアミド、 N, N ジメチルァセトアミド、 N—メチル—2—ピロリドン、ジメチル スルホキシド、 y ブチロラタトン等の非プロトン性溶媒が好ましい。
[0197] 溶媒の使用量は、原料であるテトラカルボン酸二無水物とジァミンの総量の重量濃 度が以下の範囲に入るような量の溶媒が使用されるのが好ましい。すなわちこの濃度 は、下限として 0. 1重量%、好ましくは 1重量%、さらに好ましくは 5重量%である。上 限は特に制限はないものの、テトラカルボン酸二無水物の溶解性の観点から、 80重 量%、好ましくは 50重量%、さらに好ましくは 30重量%が採用される。このような濃度 範囲で重合を行うことにより、均一で高重合度のポリイミド前駆体溶液を得ることがで きる。
[0198] 目的とするポリイミドに膜靭性を付与するためには、ポリイミド前駆体の重合度はで きるだけ高いことが好ましぐ上記濃度範囲よりも低濃度で重合を行うと、ポリイミド前 駆体の十分な重合度が得られず、最終的に得られるポリイミド膜が脆弱になる恐れが あり好ましくない。特に、ジァミンとして脂環式ジァミンを用いた場合、より高濃度では 形成された塩が溶解、消失するまでに長い重合時間を必要とし、生産性の低下を招 く恐れがある。
[0199] この反応においては、必要に応じて無機塩類を触媒として用いても良い。この際に 用いられる無機塩類としては、例えば LiCl、 NaCl、 LiBrなどのハロゲン化アルカリ金 属塩、 CaClなどのハロゲン化アルカリ土類金属、 ZnClなどのハロゲン化金属類が
2 2
挙げられる。これらのうち、 LiCl、 CaCl、 ZnClなどの金属の塩化物が特に好ましい
2 2
[0200] また、反応は、進行中、攪拌しながら行うのが好ましい。
[0201] こうして得られる本発明のポリイミド前駆体の重量平均分子量は、下限が 3000、好 まし <は 5000、上限は 150000、好まし <は 100000である。分子量は例えば、ゲル パーミエーシヨンクロマトグラフィー(GPC)などで測定できる。
[0202] また、得られるポリイミド前駆体の対数粘度は、特に限定されるものではな 、が、好 ましい対数粘度としては、下限が 0. 3dLZg、好ましくは 0. 5dLZg、さらに好ましく は、 0. 7dLZgである。一方、上限は、 5. OdLZgであり、好ましく 3. OdLZgであり、 より好ましくは 2. OdLZgである。対数粘度は、例えばォストワルド粘度計などを用い て測定することができる。
[0203] 反応により得られたポリイミド前駆体の溶液を濾過することにより、溶液中に含まれる 異物粒子を取り除くことが可能である。異物粒子を取り除くことは特に得られる榭脂を 光学用途に利用する場合においては重要なことであり、本発明で得られるポリイミド 前駆体の異物量は通常、投影面積円相当径が 5〜20 mである不溶性微粒体が、 前駆体 lg当り 5000個以下であり、好ましくは 3000個以下、さらに好ましくは 1000個 以下である。異物の数は例えば、顕微鏡の画像上で不溶性微粒体の大きさと個数を 計測する顕微鏡法によりカウントすることができる。具体的には、キーエンス社製 XV 1000などの粒径画像処理装置などを利用すれば容易に計測できる。
[0204] また、本発明のポリイミド前駆体の合成は、対応するテトラカルボン酸のジアルキル エステルの二酸ノヽロゲンィ匕物とジァミンより公知の方法に従って低温溶液重縮合させ ることによつても可能である(例えば、 High Performance Polymers, 10, 11 (19 98)などに記載の方法)。具体的には、溶媒の存在下にジァミンと前記一般式 (9)〜 (16)で表されるテトラカルボン酸誘導体 (Xa=Xb=ハロゲン原子)を反応させること で行う。
[0205] これらジァミンと前記一般式(9)〜(16)で表されるテトラカルボン酸誘導体 (以下「 テトラカルボン酸誘導体(9)〜(16)」と称す。 )の反応器への仕込みの方法は任意に 選択することができる。例えば、ジァミンを溶媒に溶解しておき、これにテトラカルボン 酸誘導体を徐々に添加する方法、逆に、テトラカルボン酸誘導体の溶液にジァミンを 徐々に添加する方法、さらには、ジァミンとテトラカルボン酸誘導体をあら力じめ溶媒 を仕込んだ反応器にそれぞれ同時に添加する方法などが採用可能である。中でもジ アミンを溶媒に溶解しておきテトラカルボン酸誘導体を徐々に添加する方法が反応 制御の容易性から有利に採用される。 [0206] 反応温度は、あまり低すぎると試剤の溶解性が低下することと十分な反応速度が得 られないこと、高すぎると反応の進行をコントロールしに《なることから好ましくない。 反応温度は、下限として 20°C、好ましくは 10°C、さらに好ましくは 0°C、上限とし て 150°C、好ましくは 100°C、さらに好ましくは 80°Cが採用される。
[0207] 反応時間は特に制限なく採用できるが、下限が 10分、好ましくは 30分、さらに好ま しくは 1時間、上限は特に制限はないが、 150時間、好ましくは 100時間、さらに好ま しくは 50時間が採用される。
[0208] この重合反応は、溶媒を用いて行う。この際、使用される溶媒としては、上記したジ ァミンとテトラカルボン酸二無水物の反応で使用される溶媒を用いる事ができる。 溶媒の使用量は、原料であるテトラカルボン酸誘導体(9)〜(16)とジァミンの総量 の重量濃度が以下の範囲に入るような量の溶媒が使用されるのが好ましい。即ち、こ の濃度の下限は 0. 1重量%、好ましくは 1重量%、さらに好ましくは 5重量%、上限は 特に制限はないものの、テトラカルボン酸誘導体の溶解性の観点から、 80重量%、 好ましくは 50重量%、さらに好ましくは 30重量%が採用される。
[0209] この反応の際には、塩基性物質を使用してもよい。ここで、使用可能な塩基性物質 は、 3級のアミンゃ無機の塩基性物質である。具体的には、ピリジンなどの芳香族 3級 ァミン、トリェチルァミン、 N—メチルビペリジン等の脂肪族 3級ァミンや、炭酸カリウム 、炭酸ナトリウム、燐酸のナトリウム塩やナトリウム水素塩等の無機の塩基性物質が使 用可能である。中でも、入手の容易性や操作性力 ピリジンゃトリエチルァミンが好ま しい。これら塩基性物質は、予め反応の際に使用する溶媒に溶解して添加しておくこ とが好ましい。塩基性物質の使用量は、テトラカルボン酸誘導体(9)〜(16)中に含 まれる酸の量により任意に変えて使用することができる。もちろん、テトラカルボン酸 誘導体中に反応により発生する酸が全くないならば、これら塩基性物質を使用しない ことも可能である。酸が発生する場合の塩基性物質の使用量は、重合に使用するテ トラカルボン酸誘導体のモル数に対して、下限が 2倍モル、好ましくは 3倍モル、上限 力 S 10倍モル、好ましくは 5倍モルである。
[0210] また、反応は、進行中、攪拌しながら行うのが好ましい。
[0211] このジァミンとテトラカルボン酸誘導体(9)〜(16)との重合反応は界面重縮合法で も行うことが可能である。界面重縮合法においては、使用する溶媒に特徴がある。即 ち、ジァミンは、 3級ァミン等の塩基性物質を溶解した水溶液に溶解する。一方、テト ラカルボン酸誘導体 (9)〜(16) (Xa=Xb=塩素原子の場合)は、水に溶解しない無 極性有機溶媒に溶解する。この際、使用される無極性有機溶媒としては、トルエンや キシレンなどの芳香族系溶媒や、シクロへキサンやへキサン、ヘプタン等の脂肪族系 炭化水素溶媒が用いられる。
[0212] 界面重縮合法により重合反応を行う場合には、これら 2つの溶液を混合し、激しく撹 拌することでポリイミド前駆体を得ることが可能である。この際、ジァミンとテトラカルボ ン酸誘導体の仕込量は等モルでなくても支障はない。
[0213] さらに本発明のポリイミド前駆体は、テトラカルボン酸誘導体(9)〜(16) (Xa=Xb= 水酸基の場合)と等モルのジァミンを用いて、縮合剤の存在下に製造することができ る。例えば、縮合剤としてジァミンと等モルの亜リン酸トリフエニルを用い、ピリジンの 存在下に直接重縮合することも可能である。また、他の縮合剤として N, N—ジシクロ へキシルカルポジイミドを用いても同様に直接重縮合可能である。
[0214] また、本発明のポリイミド前駆体の製造は、公知の方法 (高分子討論会予稿集, 49 , 1917 (2000) )に従ってジァミンのジシリル化物と式(1)または(2)のテトラカルボン 酸二無水物あるいはテトラカルボン酸誘導体(9)〜(16) (Xa=Xb=塩素原子の場合 )を上記と同様に低温溶液重縮合することによつても可能である。
[0215] 本発明のポリイミドを得る際には、本発明のテトラカルボン酸系化合物に加えて他 の酸二無水物またはテトラカルボン酸を混合し、ジァミンと共重合させても良い。その 際、使用することができる酸二無水物は特に限定はされないが、例えばピロメリット酸 などの 1つのベンゼン環を有する芳香族酸二無水物、 3, 3' , 4, 4'ービフエ二ルテト ラカルボン酸二無水物(BPDA)、 2, 3' , 3, 4'ービフエ-ルテトラカルボン酸二無水 物 (a- BPDA)、 3, 3,,4, 4,-ジフエ-ルスルホンテトラカルボン酸二無水物(DSDA) 、 3, 3' , 4, 4,-ベンゾフエノンテトラカルボン酸二無水物 (BTDA)、 2, 2,, 3, 3,一べ ンゾフエノンテトラカルボン酸二無水物、 3, 3' , 4, 4'ーォキシジフタル酸無水物 (OD PA)、ビス(2, 3—ジカルボキシフエ-ル)エーテル二酸無水物 (a— ODPA)、ビス(3 , 4ージカルボキシフエ-ル)エーテル二酸無水物、ビス(3, 4—ジカルボキシフエ- ル)メタン二酸無水物、 2, 2,一ビス(3, 4 ジカルボキシフエ-ル)プロパン二無水 物 (BDCP)、 2, 2,一ビス(2, 3 ジカルボキシフエ-ル)プロパン二無水物、 2, 2,一 ビス(3,4 ジカルボキシフエ-ル)へキサフルォロプロパン二無水物 (BDCF)、 2, 2, ビス(2, 3 ジカルボキシフエ-ル)へキサフルォロプロパン二無水物等の 2つの ベンゼン環を有する芳香族酸二無水物、 2, 3, 6, 7 ナフタレンテトラカルボン酸二 無水物、 1, 2, 5, 6 ナフタレンテトラカルボン酸二無水物、 1, 4, 5, 8 ナフタレン テトラカルボン酸二無水物等のナフタレン骨格を有する芳香族酸二無水物、 2, 3, 6 , 7 アントラセンテトラカルボン酸二無水物、 1, 2, 5, 6 アントラセンテトラカルボ ン酸ニ無水物などのアントラセン骨格を有する芳香族酸二無水物が例として挙げら れる。
[0216] 一方、加えて使用できる脂環式の酸無水物の例としては、 1, 2, 3, 4 ブタンテトラ カルボン酸二無水物やエチレンテトラカルボン酸二無水物などの鎖状の脂肪族テト ラカルボン酸二無水物や、 1, 2, 3, 4 シクロブタンテトラカルボン酸二無水物、 1, 3 ジメチル— 1, 2, 3, 4 シクロブタンテトラカルボン酸二無水物、 1, 2, 4, 5 シ クロペンタンテトラカルボン酸二無水物、 1, 2, 3, 4 シクロペンタンテトラカルボン酸 二無水物、 1, 2, 4, 5 シクロへキサンテトラカルボン酸二無水物、ビシクロ [2. 2. 2 ]ォクター7 ェン 2, 3, 5, 6—テトラカルボン酸二無水物、ジシクロへキシルー 3, 4, 3' , 4'ーテトラカルボン酸二無水物(BPDA水添物)、 2, 3, 5 トリカルボキシシ クロペンチル酢酸二無水物、 3, 4 ジカルボキシ 1, 2, 3, 4ーテトラヒドロー 1ーナ フタレンコハク酸二無水物、ビシクロ [3, 3, 0]オクタン 2, 4, 6, 8—テトラカルボン 酸二無水物などの脂環構造を有するテトラカルボン酸の二無水物などを挙げること ができる。
[0217] これら酸二無水物と本発明のテトラカルボン酸系化合物との使用割合は得ようとす る榭脂の物性により任意に設定可能であるが、本発明のテトラカルボン酸系化合物 の使用量が 5モル%以上が好ましぐさらに 10モル%以上使用することがより好まし い。
[0218] なお、必要に応じて溶液状態のポリイミド前駆体を単離することもできる。例えば、 ポリイミド前駆体の溶液を、水や、メタノール、アセトン等の貧溶媒にカ卩えることにより ポリイミド前駆体を沈澱させ、濾過などにより得られた固体力 溶媒を乾燥などにより 除去すれば、ポリイミド前駆体を粉末として単離できる。なお、必要に応じてこの粉末 を上記した反応溶媒などに溶解させれば再び溶液とすることもでき、この操作を繰り 返すことにより本発明のポリイミド前駆体を精製することもできる。
[0219] [本発明の重合物の製造方法 (イミド化反応)]
前記一般式 (7)で表される構造を少なくとも一部に含む重合物を合成する方法は、 (i)ポリイミド前駆体力 得る方法、および (ii)ポリイミド前駆体を介さずに得る方法が 挙げられる。そして、(i)ポリイミド前駆体力も得る方法としては、加熱イミド化法および 化学イミドィ匕法がある。ただし、本発明の重合物の製造方法は、以下に記載される製 法に特に制限されることはない。
[0220] (i)ポリイミド前駆体力 得る方法
前記一般式 (7)の構造を少なくとも一部に含む本発明の重合物は、上記の方法で 得られた本発明のポリイミド前駆体を環化イミドィ匕反応させることで製造することがで きる。
[0221] この際、一般式 (7)で表される構造を少なくとも一部に含む重合物の製造可能な形 態は、フィルム、粉末、成型体および溶液である。
[0222] 前記一般式(7)の構造を少なくとも一部に含む重合物のフィルムは、例えば以下の 様にして製造することができる。
まず、前記ポリイミド前駆体の重合溶液 (ワニス)をガラス、銅、アルミニウム、シリコン 、石英板、ステンレス板、カプトンフィルム等の基板上に流延して塗布する。塗布の方 法としては、前述のようにして得られたポリイミド溶液を、上記した基板上に滴下し高さ を固定した支持体などの上をなぞり溶液を伸ばすことにより均一な高さに塗布する方 法が挙げられる。この際、ドクターブレードなどの機器を使用して行っても力まわない 。また、この他の塗布方法としては、スピンコート法、印刷法、インクジェット法など、溶 液を所定の厚みで塗布できる手法であれば制限なく採用できる。
[0223] ポリイミド前駆体を基板上に塗布する際には溶媒を用いるが、溶媒の使用量を調整 することにより、塗布に適した粘度に調整する。その際の粘度は、下限が、 1ポアズ、 好ましくは 5ポアズで、上限は、 100ポアズ、好ましくは 80ポアズである。 [0224] こうして塗布された塗膜には、溶媒が含まれているので、次に乾燥する。その際に 採用される乾燥の温度は、通常下限が 20°C、好ましくは 40°C、さら〖こ好ましくは、 60 °Cである。一方、上限は通常 200°C、好ましくは 150°C、さらに好ましくは 100°Cであ る。
[0225] 乾燥の時間は、溶媒がある程度除去されるならば特に制限なく採用できるが、下限 が通常 10分、好ましくは 30分、さらに好ましくは 1時間、上限は特に制限はないが、 通常 50時間、好ましくは 30時間、さらに好ましくは 10時間が採用される。
[0226] 乾燥は減圧下に行っても良い。その際に採用される減圧度は、通常 0. 05MPa以 下、好ましくは 0. OlMPa以下、さらに好ましくは 0. OOlMPa以下である。
[0227] 通常、乾燥後の溶媒の残存量は、通常 70重量%以下、好ましくは 50重量%以下、 さらに好ましくは 30重量%以下である。
[0228] こうして得られた乾燥されたポリイミド前駆体フィルムを基板上で真空中、窒素等の 不活性ガス中、あるいは空気中高温度加熱してイミド化する。この方法を加熱イミドィ匕 と言つ。
[0229] この時採用される温度は、下限が通常 180°C、好ましくは 200°C、さらに好ましくは 250°Cである。一方、上限は通常 500°C、好ましくは 400°C、さらに好ましくは 350°C で加熱する。加熱温度は 180°C以下であると環化イミド化反応の環化反応が不完全 であったりするため好ましくなぐまた高すぎると生成したポリイミドフィルムが着色した りする可能性があるため好ましくない。
また、イミドィ匕は真空中あるいは不活性ガス中で行うことが望ましいが、イミド化反応 の温度が高すぎなければ空気中で行っても差し支えはない。
加熱イミドィ匕を減圧下に行う場合に採用される減圧度は、通常 0. 05MPa以下、好 ましくは 0. OlMPa以下、さらに好ましくは 0. OOlMPa以下である。
[0230] 加熱時間は環化イミド化が十分に進行する時間が採用されるが、通常、下限が 5分 、好ましくは 10分、さらに好ましくは 20分、上限は特に制限はないが、通常 20時間、 好ましくは 10時間、さらに好ましくは 5時間が採用される。
[0231] また、ポリイミド前駆体のフィルムを、脱水試薬を含有する溶液に浸漬することによつ て化学イミドィ匕反応を行うことも可能である。この反応は、好ましくは 3級ァミン存在下 で反応を行うことが好ましい。この時使用できる 3級ァミンは、ピリジンなどの芳香族 3 級ァミン、トリェチルァミン、 N—メチルビペリジン等の脂肪族 3級ァミンが挙げられる。 この中でもピリジン、およびトリェチルァミン力 入手の容易性、良好な反応性が得ら れる点で好ましい。
[0232] 使用する 3級ァミンの使用量は、通常下限がポリイミド前躯体に含まれるアミド酸基 の 0. 1モル倍、好ましくは 0. 5モル倍、さらに好ましくは 1. 0モル倍、下限は通常 30 モル倍、好ましくは 20モル倍、さらに好ましくは 10モル倍である。
[0233] また、使用可能な脱水試薬としては、無水酢酸、無水プロピオン酸、トリフルォロメタ ンスルホン酸無水物等の酸無水物、 N, N—ジシクロへキシルカルボジイミド等の力 ルボジイミド類が挙げられ、この中でも無水酢酸、トリフルォロメタンスルホン酸無水物 、 N, N—ジシクロへキシルカルボジイミド等のカルボジイミド類が好ましぐさらには、 無水酢酸が入手の容易性、経済性の点でより好まし 、。
[0234] その際、使用される脱水試薬の量はポリイミド前駆体に含まれるアミド酸基のモル数 に対して通常下限が 1. 0モル倍、好ましくは 2. 0モル倍、さらに好ましくは 4. 0モル 倍であり、上限は特に制限はないが、通常は 50モル倍、好ましくは 30モル倍、さらに 好ましくは 20モル倍である。これらの脱水試薬との処理は常温で行っても良いし、反 応の進行が遅い場合には加熱して使用しても良い。
[0235] このように環化イミド化反応では、加熱や脱水試薬を用いることが好ま 、が、加熱 と脱水試薬を併用して反応を行う事もできる。
[0236] また、加熱イミドィ匕の別な形態として、本発明のポリイミド前駆体の重合溶液をその ままあるいは同一の溶媒で適度に希釈した後溶液中で加熱することでも、前記一般 式 (7)の構造を少なくとも一部に含む本発明の重合物の溶液 (ワニス)を容易に製造 することができる。
[0237] この加熱イミドィ匕する際の溶液の濃度には特に制限はないが、通常下限が本発明 のポリイミド前駆体の重量%で 1重量%、好ましくは 5重量%、さらに好ましくは 10重 量%であり、上限は通常 80重量%、好ましくは 60重量%、さらに好ましくは 50重量 %である。
[0238] また、この際の加熱温度は、下限が通常 100°C、好ましくは 120°C、さらに好ましく は、 150°Cである。一方、上限は目的物の着色が起こらない温度であれば自由に設 定可能であるが、通常 300°C、好ましくは 250°C、さらに好ましくは 200°Cである。 この際、環化イミド化反応の副生成物である水等を共沸留去するために、トルエン ゃキシレン等の共沸溶媒を添加し、これら溶媒とともに生成する水を留去しながら反 応を行っても差し支えな 、。
[0239] 環化イミド化反応の触媒として塩基性物質を添加して反応を行ってもよ!ヽ。本発明 において使用可能な塩基触媒の例としては、ピリジン、 γ —ピコリン、ピラジン等の芳 香族系アミン類を挙げることができる。
[0240] また、ポリイミド前駆体の溶液中に脱水試薬を添加することにより化学イミドィ匕を行う こともできる。この反応は通常、脱水試薬と塩基性物質の存在下に行う。
化学イミドィ匕において使用可能な脱水試薬としては、無水酢酸、やトリフルォロ無水 酢酸などの低級カルボン酸の酸無水物や、無水トリメリット酸、無水ピロメリット酸など の芳香族ジカルボン酸の無水物、 Ν, Ν—ジシクロへキシルカルボジイミドなどのアル キルカルポジイミドなどが挙げられる。その使用量は、ポリイミド前駆体に含まれるアミ ド酸基のモル数に対して通常下限が 1. 0モル倍、好ましくは 2. 0モル倍、さらに好ま しくは 4. 0モル倍であり、上限は特に制限はないが、通常は 50モル倍、好ましくは 30 モル倍、さらに好ましくは 20モル倍である。脱水試薬が少なすぎると反応の進行が遅 くなり、多すぎると目的物中に残存してしまう、という問題を生ずる。
[0241] 一方、使用可能な塩基性物質の種類としては特に限定されないが、ピリジン、トリエ チルァミン、トリブチルァミン、 Ν, Ν—ジメチルァ-リン、ジメチルァミノピリジン等の有 機 3級ァミン類、炭酸カリウム、水酸ィ匕ナトリウム等の無機の塩基性物質を用いること 力 Sできる。中でもピリジンや、トリェチルァミンは安価に入手できる点や液体で溶解性 に富むため反応操作が容易になる、と!、う点で好ま 、。
[0242] 塩基性物質の使用量は、通常下限がポリイミド前躯体のアミド酸基の 0. 1モル倍、 好ましくは 0. 5モル倍、さらに好ましくは 1. 0モル倍、上限は通常 30モル倍、好ましく は 20モル倍、さらに好ましくは 10モル倍である。塩基性物質が少なすぎると反応の 進行が遅くなり、多すぎると目的物中に残存してしまう、という問題を生ずる。
[0243] 反応溶媒としては前述したポリイミド前駆体合成時に用いる溶媒を使用することが できる。
[0244] 採用される反応温度は下限が通常 10°C、好ましくは 5°C、より好ましくは 0°C、 上限は通常 80°C、好ましくは 60°C、より好ましくは 40°Cである。
[0245] 反応時間は、通常下限が 5分、好ましくは 10分、上限は特に制限はないが通常は 1 00時間、好ましくは 24時間である。
反応は通常、常圧で行われるが、必要に応じて加圧下、または減圧下でも実施す ることがでさる。
反応雰囲気は、通常窒素雰囲気とされる。
このイミド化反応によるイミド化率は、触媒量と反応温度、反応時間を調節すること により制御することができる。
[0246] 上記の方法により得られる一般式(7)の構造を少なくとも一部に含む重合物を溶液 とし、あるいは反応で得られる溶液に、ベンゾイルク口リドゃ無水酢酸とピリジンのよう な試薬を加えて末端アミノ基をアミド基として保護することもできる。こうすると、ポリイミ ドの着色が防がれ、安定性も向上するので好ましい。
[0247] 上記の様にして脱水試薬と塩基性物質存在下にイミド化する方法においては、ポリ イミドの異性体であるポリイソミドが混合することがある。ポリイソミドの混合割合は、通 常 50%以上であり、好ましくは 80%以上である。なおこのポリイソミドが混合したポリ イミドは、粉末とした後、あるいは再度溶媒に溶力して基板などに塗布してフィルムと した後に加熱することにより混合したポリイソミドをポリイミドへ異性ィ匕させることができ る。
[0248] この際の温度は、下限として通常 100°C、好ましくは 200°C、さらに好ましくは 300 °Cが採用可能である。一方上限は、通常 500°C、好ましくは 400°C、さらに好ましくは 350°Cが採用可能である。また、その際の反応時間は、通常下限が 5分、好ましくは 10分、上限は特に制限はないが通常は 100時間、好ましくは 24時間である。
[0249] (ii)ポリイミド前駆体を介さずに得る方法
ポリイミド前駆体を介さずに得る方法としては、上記一般式(1)または(2)で表され るテトラカルボン酸系化合物を原料として、これをジァミン類と反応させて直接環化ィ ミド化反応を行い、本発明の重合物を製造する方法が挙げられる。 この方法は、中間体であるポリイミド前駆体を途中単離せずに、直接環化イミド化ま で行う方法であるが、その際の反応条件としては、上述したポリイミド前駆体力 一般 式 (7)の構造を少なくとも一部に含む重合物を製造する加熱イミド化の条件を適宜採 用することができる。
[0250] [本発明の重合物の形態の変換方法]
上記のようにして得られる前記一般式 (7)の構造を少なくとも一部に含む本発明の 重合物は、これを溶媒に溶解して溶液 (ワニス)とすると、これから種々形態を変えた 重合物を容易に製造できる。
[0251] 例えば、大量の貧溶媒中に滴下'濾過すると、前記一般式 (7)の構造を少なくとも 一部に含む重合物を粉末として単離することができる。この際に使用可能な貧溶媒と しては特に限定されないが、水、メタノール、アセトン、へキサン、ブチルセルソルブ、 ヘプタン、メチルェチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼ ンなどを挙げることができる。貧溶媒に投入して沈殿させた特定重合体は濾過して回 収した後、常圧あるいは減圧下で、常温あるいは加熱乾燥して粉末とすることが出来 る。
また、粉末とした重合物を、有機溶媒に再溶解させ、再沈殿回収する操作を 2〜10 回繰り返すと、重合物中の不純物を少なくすることができる。この際の貧溶媒として例 えばアルコール類、ケトン類、炭化水素など 3種類以上の貧溶媒を用いると、より一層 精製の効率が上がるので好まし 、。
[0252] こうして得られた粉末の重合物は、再び溶媒に溶解させることで溶液 (ワニス)とする ことができる。
その際に使用可能な溶媒としては、ポリイミド前駆体を合成する際に用いた溶媒が 使用できる。
さらにこれにカ卩え、塗膜均一性向上を目的として、ェチルセ口ソルブ、プチルセロソ ルブ、ェチルカルビトール、ブチルカルビトール、ェチルカルビトールアセテート、ェ チレングリコール、 1ーメトキシ 2—プロパノール、 1 エトキシ 2—プロパノール、 1—ブトキシ一 2—プロパノール、 1—フエノキシ 2—プロパノール、プロピレングリコ ールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール 1 モノメチノレエーテノレ 2—アセテート、プロピレングリコーノレ 1ーモノエチノレエーテ ルー 2—アセテート、ジプロピレングリコール、 2— (2—エトキシプロポキシ)プロパノ ール、乳酸メチルエステル、乳酸ェチルエステル、乳酸 n プロピルエステル、乳酸 n ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒も用いる ことができる。これら溶媒は 1種類でも複数種類を混合して用いても良い。
[0253] また、これら塗膜均一性向上を目的とした溶媒の混合量としては、好ましくは全溶 媒中の 10〜80重量0 /0、より好ましくは 20〜60重量%である。また、この時の重合物 の濃度は、下限が通常 1重量%、好ましくは 5重量%、さらに好ましくは 10重量%、上 限は通常 80重量%、好ましくは 60重量%、さらに好ましくは 50重量%である。
[0254] このようにして得られたポリイミド溶液 (ワニス)は、各種材料のコーティング材として 製膜用、皮膜用として使用することができる。
[0255] また、この重合物の溶液を濾過することにより含まれる異物粒子を取り除くことが可 能である。異物粒子を取り除くことは光学用途においては重要なことであり、本発明 で得られる一般式 (7)の構造を少なくとも一部に含む重合物の異物量は通常、投影 面積円相当径が 5〜20 mである不溶性微粒体として、前駆体 lg当り 5000個以下 であり、好ましくは 3000個以下、さらに好ましくは 1000個以下である。この不溶性微 粒体量の測定の方法は前述の通りである。
[0256] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物の粉末を加熱圧縮する ことにより、所望の形の重合物の成型体とすることができる。その際に加熱する温度 は、下限が通常 150°C、好ましくは 200°C、さらに好ましくは 250°Cであり、一方、上 限は通常 450°C、好ましくは 400°C、さらに好ましくは 350°Cである。また、一且単離 した重合物の粉末を例えば、重合の際に使用した溶媒に再溶解すると一般式 (7)の 構造を少なくとも一部に含む重合物のワニスに戻すこともできる。
[0257] さらにこの一般式(7)の構造を少なくとも一部に含む重合物のワニスを、基板上に 塗布して乾燥すると一般式 (7)の構造を少なくとも一部に含む重合物のフィルムを形 成することができる。
この場合の塗布方法に特に制限はないが、例えば重合物の溶液を石英板、ステン レス板、カプトンフィルムなどの光学用基板に滴下し、高さを固定した支持体上をな ぞり溶液を伸ばすことにより均一な高さに塗布する方法が挙げられる。この際、ドクタ 一ブレードなどの機器を使用して行っても力まわない。
また、この他の塗布方法としては、スプレー法、ディップコート法、スピンコート法、印 刷法、インクジェット法などが挙げられる力 生産性の面から工業的には転写印刷法 が広く用いられており、本発明にお ヽても好適に用いられる。
[0258] このようにして塗布された一般式(7)の構造を少なくとも一部に含む重合物はまだ 多量の溶媒を含んでいる。そこで、加熱して溶媒を除去する。その際の温度は、通常 下限が 70°C、好ましくは 100°C、さらに好ましくは 150°Cであり、上限は通常 350°C、 好ましくは 300°C、さらに好ましくは 250°Cである。加熱は、段階的に昇温しても良い し連続的に昇温しても力まわな 、。
これらの工程は、減圧下もしくは不活性雰囲気中で行っても良い。
減圧下に行う場合に採用される減圧度は、通常 0. 05MPa以下、好ましくは 0. 01 MPa以下、さらに好ましくは 0. OOlMPa以下である。
[0259] また、このようにして得られたフィルムは必要に応じてウエットエッチング、ドライエツ チング、レーザーアブレーシヨンなどの方法によりパターユングして、所定の形に形成 した光部品とすることもできる。
このようにして得られる一般式 (7)の構造を少なくとも一部に含む本発明の重合物 を用いたフィルム、光部品等の光学用素子は、複屈折も小さく無色透明であるために 、厚膜であってもそれらの物'性は極めて良好である。
[0260] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物のフィルムを形成する際 の厚みは、塗布する溶液の厚みを変えることにより制御することができ、下限が通常 0 . 1 m、好ましくは 1 μ m、さら〖こ好ましくは 5 μ m、上限は通常 1000 μ m、好ましく は 700 μ m、さら〖こ好ましくは 500 μ mである。
[0261] さらに、一般式 (7)の構造を少なくとも一部に含む本発明の重合物は、溶媒溶解性 に優れるため、その溶液力もシートや、繊維などその形態は用途に応じて自由にカロ 工することができる。また、フィルムは単層ば力りでなく多層として使用することも可能 である。
[0262] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物およびその前駆体には 、必要に応じて酸ィ匕安定剤、無機および Zまたは有機のフィラー、シランカップリング 剤、感光剤、光重合開始剤、難燃剤および増感剤等の添加物を加えることができる。
[0263] また、強度向上、耐熱性の増強、吸水性の低下、など樹脂に要求される物性を達 成するために、他の榭脂を混合することも可能である。
その際に使用される榭脂は、一般式 (7)の構造を少なくとも一部に含む本発明の 重合物と均一に混合することができれば問題なぐ特に制限はされないが、例えばポ リイミドや、ポリエーテルイミド、他の組成のポリエステルイミド、ポリエーテルスルホン、 トリァセチルセルロース、ポリカーボネート、ポリステル、ポリ(メタ)アタリレート、ポリシ クロォレフィンなどの光学用透明性榭脂などが挙げられる。
[0264] [本発明の重合物の物性]
上述した優れた耐熱性、透過性、吸収性等の物性を併せ持つ榭脂の中でも、一般 式 (7)の構造を少なくとも一部に含む本発明の重合物の具体的な物性を下記に示 す。
[0265] この重合物のガラス転移温度 Tg (°C)は、通常下限が 200°C、好ましくは 250°Cで あり、上限は通常 500°C、好ましくは 450°C、さらに好ましくは 400°Cの範囲内であり 、高い耐熱性を有する。
また、耐熱性を表す別の指標としての 5%重量減少温度は、不活性ガス雰囲気で は通常 350°C以上、好ましくは 400°C以上、さらに好ましくは 420°C以上、空気雰囲 気では、通常 350°C以上、好ましくは 380°C以上、さらに好ましくは 400°C以上であ る。
[0266] さらに一般式 (7)の構造を少なくとも一部に含む本発明の重合物は、透明性が高 いという特徴を持つ。その透明性は、厚さ 30 /z mのポリイミドフィルムにして測定した 紫外線 ·可視光吸収スペクトルのグラフにお 、て、 250〜800nmの波長の範囲内に おける平均透過率が、通常は 50%以上、好ましくは 60%以上、さらに好ましくは 70 %以上である。また、 400nmの単色光の透過率は、通常 70%以上、好ましくは 75% 以上、さらに好ましくは 80%以上、特に好ましくは 85%以上である。また、カットオフ 波長は通常 350nm以下、好ましくは 330nm以下、さらに好ましくは 310nm以下で ある。カットオフ波長の下限は通常 220nm、好ましくは 250nmである。 なお、カットオフ波長は、後述の実施例の項に記載するように、島津製作所社製紫 外可視分光光度計 (UV— 3100S)を用いて、膜厚が 30 μ mのフィルムにつ 、て、 波長 200nmから 800nmの可視 '紫外線透過率を測定し、透過率が 0. 5%以下とな る波長 (カットオフ波長)を調べることにより、求めることができる。
[0267] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物は、光学的等方性に優 れており複屈折力 、さいという特徴を持つ。通常、その複屈折は、 0. 05以下、好まし くは 0. 01以下、さらに好ましくは 0. 005以下となる。
[0268] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物の鉛筆硬度 CFIS—K54 00)は、通常 B〜7Hの範囲内であり、好ましくは H〜4Hの範囲内である。
[0269] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物の屈折率は、上限が通 常 1. 75、好ましく ίま 1. 70、さらに好ましく ίま 1. 68、下限力 1. 50、好ましく ίま 1. 53 、さらに好ましくは 1. 55である。なお、榭脂中にフッ素原子を導入すると屈折率が低 下することはよく知られているが、本発明の重合物にもフッ素原子を導入すると屈折 率は下がり、その場合の屈折率は、通常上限が 1. 65、好ましくは 1. 63、さらに好ま しくは 1. 60であり、下限は通常 1. 45、好ましくは 1. 48、さらに好ましくは 1. 50であ る。
[0270] 一般式(7)の構造を少なくとも一部に含む本発明の重合物の 1MHzにおける誘電 率は通常 3. 2以下であり、好ましくは 3. 0以下、さらに好ましくは 2. 9以下である。ま た、榭脂中にフッ素原子を導入すると誘電率が低下することはよく知られているが、 本発明の重合物にもフッ素原子を導入すると誘電率は下がり、その場合の誘電率は 、通常 3. 0以下、好ましくは 2. 8以下、さらに好ましくは 2. 7以下となる。さらに、 1〜 20GHzの範囲において誘電正接についても周波数依存性が低ぐ 0. 005〜0. 02 0の範囲でほぼ一定の値を示すと 、う特徴も有しており、極めて優れた高周波特性を 持つ。
[0271] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物中に含まれる異物粒子 の量は通常、投影面積円相当径が 5〜20 /ζ πιである不溶性微粒体としては、前述の 如ぐ重合物 lg当り 5000個以下であり、好ましくは 3000個以下、さらに好ましくは 1 000個以下である。 [0272] 一般式(7)の構造を少なくとも一部に含む本発明の重合物の 25°Cの水に 24時間 浸漬した際の吸水率は、通常 2. 0重量%以下、好ましくは 1. 5重量%以下、さらに 好ましくは 1. 0重量%以下である。
なお、この吸水率は、後述の実施例の項に記載するように、膜厚 30 mに形成し たフィルムを 80°Cで 3時間真空乾燥した後、 25°Cの水に 24時間浸漬し、次いでフィ ルムを引き上げて乾いた吸水性の良い紙 (パルプ 100%)にはさみこんで 1分間放置 し、フィルムの表面に付着した水分を紙にしみこませ、さらに紙を 2回交換し、同様の 操作を繰り返した後、重量を測定し、浸漬前後の重量増加分力 求めることができる
[0273] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物の線熱膨張率は、通常 lOOppmZK以下、好ましくは 50ppmZK以下、さらに好ましくは 30ppmZK以下 である。
[0274] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物は、溶剤に対して高い 溶解性を示す。特に上記したポリイミド前駆体を合成する際に用いた溶媒にはよく溶 解し、容易に溶液とすることができる。
[0275] 一般式 (7)の構造を少なくとも一部に含む本発明の重合物は、上記したフィルムと した時、しなやかで折り曲げることができ、元に戻した時には平らなフィルムに戻ると いう高い復元性がある特徴を持つ。通常、一般式 (7)の構造を少なくとも一部に含む 本発明の重合物のフィルムは、 180° の折り曲げを行っても割れることのない柔軟性 に優れたものとして製造することも可能である。
[0276] 一般式(7)の構造を少なくとも一部に含む本発明の重合物をフィルムとした時の引 つ張り強度は、通常 lOMPa以上、好ましくは 30MPa以上、さらに好ましくは 50MPa 以上である。
[0277] 一般式(7)の構造を少なくとも一部に含む本発明の重合物をフィルムとした時の引 つ張り弾性率は、通常 0. lGPa以上、好ましくは 0. 5GPa以上、さらに好ましくは 1. OGPa以上である。
[0278] 一般式(7)の構造を少なくとも一部に含む本発明の重合物をフィルムとした時の引 つ張り伸びは、通常下限が 0. 1%、好ましくは 0. 5%、さらに好ましくは 1. 0%、上限 は、通常 100%以下、好ましくは 50%以下、さらに好ましくは 30%以下である。
[用途]
本発明の重合物は、高ガラス転移温度、低複屈折性、無色透明性、低吸水性、低 誘電性を同時に満たすものであり、これらの優れたバランスのとれた特性を生カゝして 、半導体分野、光学材料分野、光通信分野、表示装置分野、電気電子機器分野、 輸送機器分野、航空宇宙分野などにおける素材として使用できる。
例えば、光学材料分野としては、レンズ、回折格子などの精密光部品、ホログラム、 CD、 MD、 DVD,光ディスク等のディスク基板、光学用接着剤、表示装置用途として は、 LCD用基板、偏光板用支持フィルム、透明榭脂シート、位相差フィルム、光拡散 フイノレム、プリズムシート、 LCD用接着剤、 LCD用スぺーサ、 LCD用電極基板、カラ 一フィルター用透明保護膜、カラーフィルター、透明保護膜等、 LCD以外の表示材 料用途としてはプロジェクター用のスクリーン、プラズマディスプレイ用の基板ゃフィ ルム、光学フィルター、有機 EL用コーティング材料等、光通信分野や光学素子分野 では、光ファイバ一、光導波路、光分岐器、光合波器、光スイッチング素子、光変調 器、光フィルター、波長分割器、光増幅器、光減衰器、光波長変換器、電気電子機 器分野では、絶縁テープ、各種積層板、フレキシブルプリント回路基板、多層プリント 回路基板用接着フィルム、プリント回路基板用カバーフィルム、半導体集積回路素子 の表面保護膜、電線用被覆剤、などや、フラッシュメモリー、 CCD、 PD、 LD等の光 半導体の封止材、半導体分野ではバッファーコート膜、パッシベーシヨン膜、層間絶 縁膜等、感光性ポリマーのベースポリマー半導体コーティング剤、アンダーフィル剤、 航空宇宙分野では、ソーラーセル、熱制御システム等の特別な航空宇宙用コンポ一 ネントコーティング材等、この他本剤の特性を生かして、太陽電池の被覆材ゃベース フィルム基材、接着剤、その他のコーティング材料用などが挙げられる。
本発明の重合物をこれら用途に適用する場合には、該当する技術分野における当 業者の知見の範囲内で適用することができる。具体的には、各種材料のコーティング や単層及び多層フィルム、シート、繊維、成型体といった形態での使用や、またこれ らに対する酸化安定剤、フィラー、シランカップリング剤、感光剤、光重合開始剤、難 燃剤及び増感剤等の添加、他の樹脂との混合等である。 [0280] 中でも、本発明の重合物は、溶媒に可溶で塗布により低温でフィルム化でき、また 光学的に透明で光透過率が高く複屈折が極めて小さいという他の光学用榭脂には ない特性バランスを有することから液晶ディスプレイ用の各種部材として使用すること に適している。例えば、配向膜、粘着剤、偏光板、カラーフィルター、榭脂ブラックマト リックス材料、視野角補償フィルムなどの液晶ディスプレイ用部材を作成する際の原 料榭脂として利用することが可能である。
実施例
[0281] 以下に実施例を挙げて本発明をより具体的に説明する。
なお、以下の実施例で採用した分析方法は次の通りである。
[0282] <赤外吸収スペクトル >
フーリエ変換赤外分光光度計(日本分光社製 FT— IR8000)を用い、透過法にて ポリイミド薄膜の赤外吸収スペクトルを測定した。
[0283] <固有粘度 >
0. 5重量%のポリイミド前駆体溶液について、ウベローデ粘度計を用いて 30°Cで 測定した。
[0284] <ガラス転移温度: Tg>
ブルカーエイエックス社製熱機械分析装置 (TMA4000)を用い、引っ張り測定に より、昇温速度 10°CZ分における引張り伸び量の変化力もポリイミド膜のガラス転移 温度を求めた。
[0285] <カットオフ波長 (透明性) >
島津製作所社製紫外可視分光光度計 (UV— 3100S)を用いて、膜厚が 30 μ mで あるポリイミド膜の 200nmカゝら 800nmの可視'紫外線透過率を測定した。透過率が 0 . 5%以下となる波長 (カットオフ波長)を透明性の指標とした。カットオフ波長が短い 程、ポリイミド膜の透明性が良好であることを意味する。
[0286] <光透過率 (透明性) >
島津製作所社製紫外可視分光光度計 (UV— 3100S)を用いて、膜厚が 30 μ mで あるポリイミド膜の 400nmにおける光透過率を測定した。透過率が高い程、ポリイミド 膜の透明性が良好であることを意味する。 [0287] <線熱膨張係数: CTE >
ブルカーエイエックス社製熱機械分析装置 (TMA4000)を用いて、熱機械分析に より、荷重 0. 5gZ膜厚 l / m、昇温速度 10°CZ分における試験片の伸びより、 100 〜200°Cの範囲での平均値としてポリイミド膜の線熱膨張係数を求めた。
[0288] <吸水率>
80°Cで 3時間真空乾燥したポリイミド膜 (膜厚 30 μ m)を 25°Cの水に 24時間浸漬し た。次いで膜を乾いた吸水性の良い紙 (パルプ 100%)にはさみこんで 1分間放置し 、膜の表面に付着した水分を紙にしみこませた。さらに紙を 2回交換し、同様の操作 を繰り返した。その後、重量を測定し、重量増加分力も吸水率 (%)を求めた。
[0289] 以下の実施例においては、本発明のテトラカルボン酸二無水物の製造の一例とし て、下記構造式で表される 1, 4 ビス (4'—ォキサ 3 '、 5 '—ジォキソトリシクロ [5. 2. 1. 02' 6]—デカンー8,ーィルカルボキシ)ベンゼンの合成を説明する。
[0290] [化 29]
Figure imgf000072_0001
[0291] このものを合成する際の原料となるノルボルナン 2— exo, 3— exo, 5— exo トリ カルボン酸トリメチルエステルは、特許 3342938号公報に記載の方法などで合成す ることがでさる。
[0292] 実施例 1
窒素導入菅およびコンデンサー付反応容器中に、ノルボルナン— 2— exo, 3— ex o, 5— exo トリカルボン酸トリメチルエステル 30. Og (l l lmmol)、スルフォラン 30 . 0g、硫酸 10. 9gを水 50. Ogに溶解させた水溶液を仕込み、窒素雰囲気中、 104 °Cで 5時間加熱した。この間、 1時間あたり 17gの水をカ卩えるとともに留出するメタノー ルと水を系外へ除去した。反応後冷却し、水 150gを添カ卩してトルエン(200mL X 4 回)で抽出した。水層に塩ィ匕ナトリウム 70gを添加した後、テトラヒドロフラン Z酢酸ェ チル(lZl) (体積比)の混合溶媒(200mL X 2回、 lOOmL X 1回)で抽出を行った 。得られたテトラヒドロフラン Z酢酸ェチル層を飽和食塩水(lOOmL X 1回)で洗浄し た。その後、テトラヒドロフラン Z酢酸ェチル層は全量が 57gとなるまで濃縮し、トルェ ンを 40mLカロえ、析出した結晶を濾過した。このものは、ノルボルナン 2— exo, 3 exo, 5— exo トリカルボン酸の粗体であり粗収率は、 19. 3g (76%)であった。こ の粗体にテトラヒドロフラン 60mL、トルエン 60mLを加え、 80°Cの湯浴で加熱して溶 解し、留出する溶媒 26gを系外に除去した。その後、室温下に放置して析出した結 晶を濾過することにより、精製されたノルボルナン— 2— exo, 3— exo, 5— exo トリ カルボン酸を 14. 2g (第 1晶)得た。さらに濾液を濃縮して 4. 5gの結晶(第 2晶)を得 た (第 1晶、第 2晶合わせて回収率 98%)。このものの1 H— NMRから目的物であるこ
、ガスクロマトグラフィー分析を行ったところ、純度は 100%であることが判明した。
[0293] 実施例 2
窒素導入菅およびコンデンサー付反応容器中に、実施例 1の方法で得たノルボル ナン— 2— exo, 3 -exo, 5— exo トリカルボン酸 20. lg (87. 7mmol)、ジメチル ホルムアミド 32mg (0. 44mmol;トリカルボン酸に対して 0. 005モル等量)、溶媒とし てトルエン lOOmLを入れ、内温が 70°Cになるよう加熱した。これに塩化チォ -ル 31 . 3g (263mmol;トリカルボン酸に対して 3. 0モル等量)を加え、窒素雰囲気中、 2時 間還流した。その後、減圧下で過剰分の塩ィ匕チォ-ルとトルエン 8 lgを留去した。こ の残液にヘプタン 200mLをカ卩え、結晶を析出させた。この結晶を濾過して、粗 5 e xo -クロ口ホルミル -ノルボルナン一 2— exo, 3— exo ジカルボン酸無水物の白 色結晶を 16. 0g (粗収率 80%)得た。このものをトルエン 20mL、酢酸ェチル 20mL の混合溶媒から再結晶し、第 1晶として 12. 5g (回収率 80%)、第 2晶として 1. 4g ( 回収率; 9%)の結晶を得た。このもののスペクトルデータを以下に示す。また、融点 測定器で測定した融点は、 130°Cであった。
[0294] ^H—NMR ^ベクトル(400MHz CDC1 ); 図 1に示す。
3
13C—NMR ^ベクトル(CDC1 ); 図 2に示す。
3
•IR ^ベクトル(KBr); 図 3に示す。 •Massスペクトル(CI); 図 4に示す。
[0295] 実施例 3
窒素雰囲気下とした反応容器にハイドロキノン 2. 89g (26. 3mmol)、ピリジン 16. 6g、およびテトラヒドロフラン 70mLを入れて溶解させた。このものを氷浴中で 2°Cに 冷却した後に、実施例 2で得た 5— exo クロ口ホルミル—ノルボルナン— 2— exo, 3 — exo ジカルボン酸無水物 12. 0g (52. 5mmol;ノヽイドロキノンに対して 2. 0モル 等量)にテトラヒドロフラン 50mLをカ卩えて溶解した溶液を、滴下ロートにて 15分かけ て滴下し、更に 5時間撹拌して白色沈殿を得た。生成した白色沈殿を濾別後、水 15 OmLに懸濁して濾過し、さらに十分に水で洗浄して塩酸塩を完全に除去した。得ら れた生成物を 150°Cで 20時間真空乾燥して、 11. lg (収率 85%)の白色粉末を得 た。
[0296] このものの下記スペクトルの測定により、得られた生成物は前記構造式で表される 1 , 4 ビス(4, 一ォキサ 3,、 5, 一ジォキソトリシクロ [5. 2. 1. 02' 6]—デカン一 8, 一 ィルカルボキシ)ベンゼンであることが確認された。また、融点測定器で測定した融点 は、 273〜275。Cであった。
[0297] ^H— NMR ^ベクトル(400MHz、 DMSO); 図 5に示す。
13C— NMR ^ベクトル(DMSO); 図 6に示す。
•IR ^ベクトル(KBr); 図 7に示す。
•Massスペクトル(CI); 図 8に示す。
[0298] 以下においては、実施例 3で得られた 1, 4 ビス(4, 一ォキサー3 '、 5,ージォキソ トリシクロ [5. 2. 1. 02' 6]—デカン一 8, 一ィルカルボキシ)ベンゼンを用いる、ポリイミ ドの製造および製膜にっ 、て説明する。
[0299] 実施例 4
以下に示す構造のポリイミドの製造および製膜を行った。
[化 30]
Figure imgf000075_0001
[0300] 窒素雰囲気下にした 50mL三つ口フラスコ中で p—フエ-レンジァミン 0. 219g (2.
02mmol)を N, N—ジメチルァセトアミド(DMAc) 3. 85gに溶解し、この溶液に実施 例 3で製造したテトラカルボン酸二無水物粉末 1. 001g (2. 02mmol)をカ卩え、室温 で攪拌した。途中、反応液の粘度が上がってきたところで都度 DMAcを追加し、粘度 を調整した。合計 6時間攪拌を継続して、透明で粘調なポリイミド前駆体溶液を得た。 このものの最終的な濃度は、 11. 9重量%であり、また固有粘度は 1. 31dLZgであ つた o
[0301] 上記反応液をガラス基板に塗布し、加熱イミドィ匕法によりポリイミドフィルムを調製し た。このものを 60°Cで 0. 5時間、窒素雰囲気下において乾燥した後、 0. OOlMPa の減圧下 80°Cで 1時間、次いで 300°C、 1時間熱処理し、ガラス基板力 剥がして膜 厚 30 μ mの透明なフィルムを得た。
[0302] 得られたポリイミドフィルムの膜物性は、ガラス転移温度が 295°C (TMA測定値)で 比較的高い耐熱性を示し、また、カットオフ波長が 283nm、 400nmでの光透過率 8 5. 4%と、極めて高い透明性を示した。さらにこのものの 100°C〜200°Cにおける線 熱膨張係数(CTE)は 45. 3ppm/K,吸水率は 0. 5%であった。またこのフィルムを 180° 折り曲げても割れることはな力つた。
得られたポリイミドの薄膜の IR ^ベクトルを図 9に示す。
[0303] 実施例 5
以下に示す構造のポリイミドの製造および製膜を行った。
[化 31]
Figure imgf000076_0001
[0304] 窒素雰囲気下にした 50mL三つ口フラスコ中で 4, 4, 一ォキシジァ-リン 0. 304g ( 1. 52mmol)を N, N—ジメチルァセトアミド(DMAc) 3. l lgに溶解し、この溶液に 実施例 3で製造したテトラカルボン酸二無水物粉末 0. 750g (l. 52mmol)をカロえ、 室温で攪拌した。途中、反応液の粘度が上がってきたところで都度 DMAcを追加し、 粘度を調整した。合計 4時間攪拌を継続して、透明で粘調なポリイミド前駆体溶液を 得た。このものの最終的な濃度は、 14. 8重量%であり、また固有粘度は 1. 13dL/ gであつ 7こ o
その後、 DMAcl l. 72g、ピリジン 0. 77gおよび無水酢酸 1. 59gを加え、室温で 1 時間攪拌した。内容物をメタノール 180mlに加え、析出した固体を濾過した後、メタノ ールで洗浄し、 40°Cで 1時間真空乾燥した後、 0. 86gの白色の粉末を得た。
[0305] この粉末を DMAcに溶解した溶液 (約 20重量%)をガラス基板に塗布し、 60°Cで 0 . 5時間、窒素雰囲気下で乾燥した後、 0. OOlMPaの減圧下、 80°Cで 1時間熱処 理した。ここで熱処理後の塗膜をガラス基板カゝら剥がし、両端を金属板に固定させた 状態で 0. OOlMPaの減圧下、 300°Cにて 1時間熱処理して、膜厚 30 /z mの透明な フイノレムを得た。
[0306] 得られたポリイミドフィルムの膜物性は、ガラス転移温度が 266°C (TMA測定値)で 比較的高い耐熱性を示し、また、カットオフ波長が 299nm、 400nmでの光透過率が 85. 8%と、極めて高い透明性を示した。さらにこのものの 100°C〜200°Cにおける 線熱膨張係数(CTE)は 58. 9ppmZKであった。またこのフィルムを 180° 折り曲げ ても割れることはなかった。
[0307] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 11月 15日付で出願された日本特許出願 (特願 2005— 330427)、 2006年 2月 23曰付で出願された曰本特許出願(特願 2006— 046955 )、 2006年 3月 29日付で出願された日本特許出願 (特願 2006— 091426)及び 20 06年 7月 6日付で出願された日本特許出願 (特願 2006 - 186825)に基づ 、ており 、その全体が引用により援用される。

Claims

請求の範囲
[1] ガラス転移温度が 200°C以上であり、膜厚 30 μ mのフィルムでの 400nmの光の透 過率が 70%以上、さらに、膜厚 30 mのフィルムを 25°Cの水に 24時間浸漬させた 後の吸水率が 2. 0%以下である榭脂。
[2] 下記一般式(1)または(2)で表されることを特徴とするテトラカルボン酸系化合物。
[化 32]
X
Figure imgf000078_0001
式(1) , (2)中、 Aは 2価の基を示す。
X1, X2, X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル 基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。た だし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあっては、そ の炭素数は 10以下である。
R1, R2, R3, R4は各々独立にカルボキシル基(― C (O) OH)を表す力 或いは、 R1 と R2および Zまたは R3と R4とで形成された酸無水物基(-C (O) OC (O) -)を表す nは 1または 2の整数を表す。
式(2)中、環 Bは置換基を有していても良い 3価以上の環状基を表す。
請求項 2において、前記一般式(2)で表される化合物力 下記一般式(2A) , (2B) または(2C)で表されることを特徴とするテトラカルボン酸系化合物。
[化 33]
Figure imgf000079_0001
Figure imgf000079_0002
Figure imgf000079_0003
式(2A) , (2B) , (2C)中、 A, X1, X2, X°, nは、それぞれ一般式(2)におけると同 義である。
X4, X5, X6は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、アルキル 基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を表す。た だし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあっては、そ の炭素数は 10以下である。
mは 1または 2の整数を表す。 請求項 3において、前記一般式(2A) , (2B) , (2C)における Aが下記式(3)で表さ れることを特徴とするテトラカルボン酸系化合物。
[化 34]
Figure imgf000080_0001
式(3)中、 Dは 2価の基を表す。
[5] 請求項 4において、前記一般式(2A) , (2B) , (2C)における Aが下記式(3A)また は(3B)で表されることを特徴とするテトラカルボン酸系化合物。
[化 35]
O O
II II
— C— 0— D1— 0— C— (3A)
O H H O
II I I II
— C— — D2— N— C— (3B)
式(3A) , (3B)中、 D1, D2は 2価の基を表す。
[6] 請求項 3において、前記一般式(2A) , (2B) , (2C)における X1、 X2、 X3、 X4、 X5、 および X6が水素原子であり、かつ Aが少なくとも 1つの環状構造を含む 2価の基であ ることを特徴とするテトラカルボン酸系化合物。
[7] 下記一般式 (4)で表されることを特徴とする酸ハライド。
[化 36]
Figure imgf000080_0002
式 (4)中、 X1, X2, X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基 、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基 を表す。ただし、これらの基は更に置換基を有していても良ぐまた、炭素含有基にあ つては、その炭素数は 10以下である。
R1, R2は各々独立にカルボキシル基(― C (O) OH)を表す力、或いは、 R1と R2とで 形成された酸無水物基(一 c(o)oc(o)—)を表す。
nは 1または 2の整数を表す。
Xは塩素原子または臭素原子を表す。
[8] 請求項 7に記載される酸ノヽライドを、 2価のアルコールまたはァミン、或いはカルボ ン酸無水物基を有する 1価のアルコールまたはァミンと反応させることを特徴とする請 求項 2な 、し 6の 、ずれ力 1項に記載のテトラカルボン酸系化合物の製造方法。
[9] 請求項 2に記載のテトラカルボン酸系化合物を少なくとも一部に含む原料モノマー を重合または共重合させて得られる重合物。
[10] 下記一般式 (5)で表される構成単位を少なくとも一部に含むポリイミド前駆体。
[化 37]
Figure imgf000081_0001
式(5)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は、各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、 アルキル基、ァルケ-ル基、アルキニル基、アルコキシ基、アミノ基、またはアミド基を 表す。
Qは 2価の芳香族基または脂肪族基を表す。
R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。 nは 1または 2の整数を表す。
下記一般式 (6)で表される構成単位を少なくとも一部に含むポリイミド前駆体。
[化 38]
Figure imgf000082_0001
(6) 式(6)中、 D1は 2価の基を示す。
X1、 X2、 X3、 X4、 X5および X6はそれぞれ独立に水素原子、ハロゲン原子、二トリル 基、ニトロ基、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、ま たはアミド基を表す。
Qは 2価の芳香族基または脂肪族基を表す。
R11, R12は各々独立に水素原子、炭素数 1から 10のアルキル基またはシリル基を 表す。
nおよび mは各々独立に 1または 2の整数を表す。
[12] 一般式 (7)で表される構成単位を少なくとも一部に含むポリイミド。
[化 39]
Figure imgf000082_0002
(7) 式(7)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、ァ ルキル基、アルケニル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基を表 す。 Qは 2価の芳香族基または脂肪族基を表す。
nは 1または 2の整数を表す。
[13] 下記一般式 (8)で表される構成単位を少なくとも一部に含むポリイミド。
[化 40]
Figure imgf000083_0001
式(8)中、 D1は 2価の基を示す。
X1、 X2、 X3、 X4、 X5および X6はそれぞれ独立に水素原子、ハロゲン原子、二トリル 基、ニトロ基、アルキル基、ァルケ-ル基、アルキ-ル基、アルコキシ基、アミノ基、ま たはアミド基を表す。
Qは 2価の芳香族基または脂肪族基を表す。
nおよび mは各々独立に 1または 2の整数を表す。
[14] 請求項 2に記載のテトラカルボン酸系化合物とジァミン類を反応させた後、環化イミ ド化反応させる工程を有する、請求項 12に記載のポリイミドの製造方法。
[15] 請求項 2に記載のテトラカルボン酸系化合物とジァミン類を反応させた後、環化イミ ド化反応させる工程を有する、請求項 13に記載のポリイミドの製造方法。
[16] 請求項 10に記載のポリイミド前駆体を環化イミドィ匕反応させる工程を有する、請求 項 12に記載のポリイミドの製造方法。
[17] 請求項 10に記載のポリイミド前駆体を環化イミドィ匕反応させる工程を有する、請求 項 13に記載のポリイミドの製造方法。
[18] 請求項 11に記載のポリイミド前駆体を環化イミドィ匕反応させる工程を有する、請求 項 12に記載のポリイミドの製造方法。
[19] 請求項 11に記載のポリイミド前駆体を環化イミドィ匕反応させる工程を有する、請求 項 13に記載のポリイミドの製造方法。
[20] 環化イミド化反応が、加熱および Zまたは脱水試薬を用いて行われることを特徴と する、請求項 14に記載のポリイミドの製造方法。
[21] 環化イミド化反応が、加熱および Zまたは脱水試薬を用いて行われることを特徴と する、請求項 15に記載のポリイミドの製造方法。
[22] 環化イミド化反応が、加熱および Zまたは脱水試薬を用いて行われることを特徴と する、請求項 16に記載のポリイミドの製造方法。
[23] 環化イミド化反応が、加熱および Zまたは脱水試薬を用いて行われることを特徴と する、請求項 17に記載のポリイミドの製造方法。
[24] 環化イミド化反応が、加熱および Zまたは脱水試薬を用いて行われることを特徴と する、請求項 18に記載のポリイミドの製造方法。
[25] 環化イミド化反応が、加熱および Zまたは脱水試薬を用いて行われることを特徴と する、請求項 19に記載のポリイミドの製造方法。
[26] 下記一般式 (7)の構成単位を少なくとも一部に含む榭脂により製造されたフィルム
[化 41]
Figure imgf000084_0001
式(7)中、 D1は 2価の基を示す。
環 Bは置換基を有して 、ても良 ヽ 3価以上の環状基を表す。
X1、 X2、および X3は各々独立に水素原子、ハロゲン原子、二トリル基、ニトロ基、ァ ルキル基、アルケニル基、アルキ-ル基、アルコキシ基、アミノ基、またはアミド基を表 す。
Qは 2価の芳香族基または脂肪族基を表す。
nは 1または 2の整数を表す。 [27] 請求項 1に記載の榭脂により製造されたフィルム。
[28] 請求項 26又は 27に記載のフィルムを用いた液晶用部材。
PCT/JP2006/322614 2005-11-15 2006-11-14 テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法 WO2007058156A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/093,685 US7795370B2 (en) 2005-11-15 2006-11-14 Tetracarboxylic acid compound, polyimide thereof, and production method thereof
CN200680042702XA CN101309950B (zh) 2005-11-15 2006-11-14 四羧酸系化合物、该化合物的聚酰亚胺及其制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005330427 2005-11-15
JP2005-330427 2005-11-15
JP2006-046955 2006-02-23
JP2006046955 2006-02-23
JP2006091426 2006-03-29
JP2006-091426 2006-03-29
JP2006-186825 2006-07-06
JP2006186825 2006-07-06

Publications (1)

Publication Number Publication Date
WO2007058156A1 true WO2007058156A1 (ja) 2007-05-24

Family

ID=38048542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322614 WO2007058156A1 (ja) 2005-11-15 2006-11-14 テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法

Country Status (3)

Country Link
US (1) US7795370B2 (ja)
CN (1) CN101309950B (ja)
WO (1) WO2007058156A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101885A1 (ja) * 2008-02-14 2009-08-20 Kyowa Hakko Chemical Co., Ltd. ポリイミド
EP2181144A1 (en) * 2007-08-20 2010-05-05 Kolon Industries Inc. Polyimide film
WO2011121847A1 (ja) * 2010-03-29 2011-10-06 日立化成工業株式会社 ナジイミド骨格を有するポリアミドイミドの製造方法
WO2015163314A1 (ja) * 2014-04-23 2015-10-29 Jx日鉱日石エネルギー株式会社 テトラカルボン酸二無水物、ポリアミド酸、ポリイミド、及び、それらの製造方法、並びに、ポリアミド酸溶液
US9688689B2 (en) 2014-05-13 2017-06-27 Novartis Ag Compounds and compositions for inducing chondrogenesis
WO2022270546A1 (ja) * 2021-06-25 2022-12-29 住友ベークライト株式会社 ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023609B2 (ja) * 2005-09-28 2012-09-12 セントラル硝子株式会社 低分子又は中分子有機化合物からなるコーティング材料
TWI332580B (en) * 2007-05-14 2010-11-01 Ind Tech Res Inst Transparent substrate with low birefringence
WO2010079637A1 (ja) * 2009-01-08 2010-07-15 シャープ株式会社 液晶配向膜形成用組成物及び液晶表示装置
JP5562062B2 (ja) * 2010-02-09 2014-07-30 Jx日鉱日石エネルギー株式会社 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類、及び、その製造方法
CN106279690B (zh) * 2010-07-22 2019-07-05 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料
CN104114606A (zh) * 2012-03-05 2014-10-22 日产化学工业株式会社 聚酰胺酸及聚酰亚胺
CN104508009B (zh) 2012-05-28 2016-09-07 宇部兴产株式会社 聚酰亚胺前体和聚酰亚胺
WO2014034760A1 (ja) 2012-08-31 2014-03-06 Jx日鉱日石エネルギー株式会社 ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
US9783640B2 (en) 2012-09-18 2017-10-10 Ube Industries, Ltd. Polyimide precursor, polyimide, polyimide film, varnish, and substrate
US9456495B2 (en) 2012-09-26 2016-09-27 Jx Nippon Oil & Energy Corporation Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
US20150284556A1 (en) * 2012-10-31 2015-10-08 Dic Corporation Photopolymerizable molding resin composition and molded multilayer article
JP2015137235A (ja) * 2014-01-20 2015-07-30 Jx日鉱日石エネルギー株式会社 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類の製造方法
JP6527720B2 (ja) 2014-05-29 2019-06-05 株式会社リコー 駆動装置、画像形成装置及びグリース組成物
JP6544953B2 (ja) 2014-05-29 2019-07-17 株式会社リコー 画像形成装置及びグリース組成物
JP6544952B2 (ja) 2014-05-29 2019-07-17 株式会社リコー 駆動装置及び画像形成装置
US9285680B2 (en) * 2014-07-16 2016-03-15 Taiflex Scientific Co., Ltd. Photosensitive polyimide composition, base agent thereof, method of making the base agent, and solder-resistant polyimide thin film made from the composition
CN106496558B (zh) * 2016-11-04 2019-03-08 沈阳航空航天大学 一种可反应型聚芳醚腈酰亚胺树脂及其制备方法
US11018342B2 (en) * 2017-03-15 2021-05-25 Nec Corporation Binder composition for secondary battery
JP7203082B2 (ja) * 2018-02-21 2023-01-12 Eneos株式会社 ポリイミド前駆体樹脂組成物
CN111484615A (zh) * 2020-05-11 2020-08-04 浙江中科玖源新材料有限公司 低热膨胀系数和吸水率的透明聚酰亚胺薄膜及制备方法
KR20220031414A (ko) * 2020-09-04 2022-03-11 삼성전자주식회사 반도체 패키지
CN116285863B (zh) * 2023-02-17 2024-01-23 深圳市聚芯源新材料技术有限公司 一种低介电常数的复合工程塑料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239525A (ja) * 1988-03-20 1989-09-25 Japan Synthetic Rubber Co Ltd 液晶配向膜用材料
JPH0651316A (ja) * 1992-07-30 1994-02-25 Japan Synthetic Rubber Co Ltd 液晶配向剤
JPH07138205A (ja) * 1993-11-17 1995-05-30 Mitsui Toatsu Chem Inc ノルボルネン類のジアルコキシカルボニル化法
JP2002079634A (ja) * 2000-09-06 2002-03-19 Mitsui Chemicals Inc ポリイミド塗布金属板の加工品及び二次加工品
JP2002322275A (ja) * 2001-04-27 2002-11-08 Nissan Chem Ind Ltd ポリアミド酸エステルおよびポリイミドの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336933B2 (ja) 2001-06-12 2009-09-30 日産化学工業株式会社 脂環式テトラカルボン酸二無水物、その製造法及びポリイミド
JP2003168800A (ja) 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc 薄膜トランジスタ基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239525A (ja) * 1988-03-20 1989-09-25 Japan Synthetic Rubber Co Ltd 液晶配向膜用材料
JPH0651316A (ja) * 1992-07-30 1994-02-25 Japan Synthetic Rubber Co Ltd 液晶配向剤
JPH07138205A (ja) * 1993-11-17 1995-05-30 Mitsui Toatsu Chem Inc ノルボルネン類のジアルコキシカルボニル化法
JP2002079634A (ja) * 2000-09-06 2002-03-19 Mitsui Chemicals Inc ポリイミド塗布金属板の加工品及び二次加工品
JP2002322275A (ja) * 2001-04-27 2002-11-08 Nissan Chem Ind Ltd ポリアミド酸エステルおよびポリイミドの製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2181144A1 (en) * 2007-08-20 2010-05-05 Kolon Industries Inc. Polyimide film
EP2181144A4 (en) * 2007-08-20 2013-10-30 Kolon Inc POLYIMIDE FILM
WO2009101885A1 (ja) * 2008-02-14 2009-08-20 Kyowa Hakko Chemical Co., Ltd. ポリイミド
WO2011121847A1 (ja) * 2010-03-29 2011-10-06 日立化成工業株式会社 ナジイミド骨格を有するポリアミドイミドの製造方法
US10513582B2 (en) 2014-04-23 2019-12-24 Jxtg Nippon Oil & Energy Corporation Tetracarboxylic dianhydride, polyamic acid, polyimide, methods for producing the same, and polyamic acid solution
JPWO2015163314A1 (ja) * 2014-04-23 2017-04-20 Jxエネルギー株式会社 テトラカルボン酸二無水物、ポリアミド酸、ポリイミド、及び、それらの製造方法、並びに、ポリアミド酸溶液
WO2015163314A1 (ja) * 2014-04-23 2015-10-29 Jx日鉱日石エネルギー株式会社 テトラカルボン酸二無水物、ポリアミド酸、ポリイミド、及び、それらの製造方法、並びに、ポリアミド酸溶液
US9688689B2 (en) 2014-05-13 2017-06-27 Novartis Ag Compounds and compositions for inducing chondrogenesis
US10188638B2 (en) 2014-05-13 2019-01-29 Novartis Ag Compounds and compositions for inducing chondrogenesis
US10383863B2 (en) 2014-05-13 2019-08-20 Novartis Ag Compounds and compositions for inducing chondrogenesis
US10660881B2 (en) 2014-05-13 2020-05-26 Novartis Ag Compounds and compositions for inducing chondrogenesis
US11510912B2 (en) 2014-05-13 2022-11-29 Novartis Ag Compounds and compositions for inducing chondrogenesis
WO2022270546A1 (ja) * 2021-06-25 2022-12-29 住友ベークライト株式会社 ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置

Also Published As

Publication number Publication date
CN101309950B (zh) 2011-08-03
CN101309950A (zh) 2008-11-19
US20090182114A1 (en) 2009-07-16
US7795370B2 (en) 2010-09-14

Similar Documents

Publication Publication Date Title
WO2007058156A1 (ja) テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法
JP5320668B2 (ja) テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法
JP5135718B2 (ja) テトラカルボン酸又はそのポリエステルイミド、及びその製造方法
WO2006129771A1 (ja) テトラカルボン酸又はそのポリエステルイミド、及びその製造方法
KR20190095556A (ko) 폴리이미드 및 그의 성형체
Hu et al. Preparation and characterization of organic soluble polyimides with low dielectric constant containing trifluoromethyl for optoelectronic application
TWI694989B (zh) 具有環烴骨架與酯基團的四羧酸二酐
JP2008297362A (ja) エステル基含有テトラカルボン酸二無水物、高靭性を有するポリイミド及びその前駆体
KR102422752B1 (ko) 신규 테트라카르복시산 이무수물, 및 산이무수물로부터 얻어지는 폴리이미드 및 폴리이미드 공중합체
JP2016179969A (ja) フルオレン骨格を有するジアミン、ポリアミック酸、及びポリイミド
JP2008074769A (ja) テトラカルボン酸類及びそのポリイミド、ならびにその製造方法
JP2008163088A (ja) エステル基含有脂環式テトラカルボン酸無水物及びその製造方法
JP6584011B2 (ja) フルオレン骨格を有するジアミン化合物、ポリアミック酸、及びポリイミド
JP4957077B2 (ja) テトラカルボン酸類またはこれらから誘導されるポリエステルイミド及びその製造方法
JP6793434B2 (ja) テトラカルボン酸二無水物、ポリアミック酸及びポリイミド
JP5315994B2 (ja) ポリアミック酸およびポリイミド
JP2009067936A (ja) ポリアミック酸及びイミド化重合体
WO2016190170A1 (ja) 環状炭化水素骨格およびエステル基を有するテトラカルボン酸二無水物、ポリアミック酸、及びポリイミド
JP2008163090A (ja) テトラカルボン酸二無水物およびその製造方法並びに重合物
JP2008163087A (ja) エステル基含有脂環式テトラカルボン酸二無水物の製造方法
JP5252338B2 (ja) ジアミン化合物、それを使用して製造されるポリアミック酸及びイミド化重合体
JP2008163089A (ja) 脂環式ポリエステルイミド単位と芳香族ポリイミド単位とを少なくとも含む共重合体、およびポリイミドフィルム
JP5163898B2 (ja) ポリアミック酸およびポリイミド
JP2010189322A (ja) ジアミン化合物、それを使用して製造されるポリアミック酸及びイミド化重合体
JP2009126825A (ja) テトラカルボン酸二無水物、それを使用して製造されるポリアミック酸及びイミド化重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042702.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12093685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832576

Country of ref document: EP

Kind code of ref document: A1