WO2007055280A1 - カメラシステム - Google Patents
カメラシステム Download PDFInfo
- Publication number
- WO2007055280A1 WO2007055280A1 PCT/JP2006/322374 JP2006322374W WO2007055280A1 WO 2007055280 A1 WO2007055280 A1 WO 2007055280A1 JP 2006322374 W JP2006322374 W JP 2006322374W WO 2007055280 A1 WO2007055280 A1 WO 2007055280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- imaging
- control characteristic
- camera system
- state
- Prior art date
Links
- 238000012937 correction Methods 0.000 claims abstract description 131
- 230000003287 optical effect Effects 0.000 claims abstract description 91
- 238000003384 imaging method Methods 0.000 claims abstract description 66
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 230000000694 effects Effects 0.000 claims description 20
- 230000036544 posture Effects 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 36
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 15
- 230000006641 stabilisation Effects 0.000 description 11
- 238000011105 stabilization Methods 0.000 description 11
- 230000001629 suppression Effects 0.000 description 11
- 230000011514 reflex Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010297 mechanical methods and process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- -1 silver halide Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/02—Viewfinders
- G03B13/10—Viewfinders adjusting viewfinders field
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B19/00—Cameras
- G03B19/02—Still-picture cameras
- G03B19/12—Reflex cameras with single objective and a movable reflector or a partly-transmitting mirror
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/66—Remote control of cameras or camera parts, e.g. by remote control devices
- H04N23/663—Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/681—Motion detection
- H04N23/6812—Motion detection based on additional sensors, e.g. acceleration sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
- H04N23/687—Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2205/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B2205/0007—Movement of one or more optical elements for control of motion blur
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2217/00—Details of cameras or camera bodies; Accessories therefor
- G03B2217/005—Blur detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2101/00—Still video cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
Definitions
- the present invention relates to a camera system, and more particularly to a single-lens reflex digital camera.
- single-lens reflex digital camera power capable of converting an optical image of a subject into an electrical image signal and outputting it has rapidly spread.
- the light incident on the photographing lens that is, the subject image
- the subject image is reflected by a reflecting mirror disposed on the photographing optical path after the lens.
- the position where the optical path for the finder is formed is the fixed position of the reflecting mirror.
- One of the features of digital cameras is that you can shoot while looking at a display device (for example, a liquid crystal monitor) at the time of shooting, and check the shot image immediately after shooting.
- a display device for example, a liquid crystal monitor
- Patent Document 1 JP 2001-125173 A
- An object of the present invention is to enhance the blur correction effect in the monitor photographing mode in the camera system having the monitor photographing mode.
- a camera system is a camera system that captures an image of a subject, and includes an imaging unit, an imaging optical system, an observation optical system, a display unit, a movable reflection mirror, and a reflection mirror switching unit.
- the imaging optical system guides the optical image of the subject to the imaging unit.
- the observation optical system can observe the light from the imaging optical system.
- the display unit displays the image acquired by the imaging unit.
- the reflection mirror has a first state that guides light from the imaging optical system to the observation optical system and a second state that guides light from the imaging optical system to the imaging unit.
- the reflection mirror switching unit switches between the first state and the second state of the reflection mirror.
- the motion detector detects the motion of the camera system.
- the shake correction unit corrects the shake of the captured image caused by the movement of the camera system in accordance with the motion detected by the motion detection unit.
- the correction activation unit causes the shake correction unit to perform a correction operation when the reflection mirror is set to the second state by the reflection mirror switching unit.
- the first state of the reflecting mirror corresponds to the viewfinder shooting mode in which the optical image can be observed with the observation optical system.
- the second state of the reflecting mirror corresponds to the monitor shooting mode in which an optical image can be observed on the display unit.
- a camera system is a camera system for imaging a subject, and includes an imaging unit, an imaging optical system, an observation optical system, a display unit, a movable reflection mirror, and a reflection mirror switching unit.
- the imaging optical system guides the optical image of the subject to the imaging unit.
- the observation optical system can observe light from the imaging optical system.
- the display unit displays the image acquired by the imaging unit.
- the reflecting mirror has a first state in which light from the imaging optical system is guided to the observation optical system and a second state in which light from the imaging optical system is guided to the imaging unit.
- the reflection mirror switching unit switches between the first state and the second state of the reflection mirror.
- the motion detector detects the motion of the camera system.
- the shake correction unit corrects the shake of the captured image caused by the movement of the camera system in accordance with the motion detected by the motion detection unit.
- the selection unit can select different control characteristics as the control characteristics of the shake correction unit for the detected movement according to the state of the reflection mirror.
- the control characteristic of the shake correction unit is selected according to the state of the reflecting mirror, that is, according to the finder or the monitor photographing mode. For this reason, shake correction can be performed with optimal control characteristics for each mode. Thereby, in the monitor photographing mode, it is possible to enhance the blur correction effect of the monitor photographing mode that is not affected by the control characteristics set in the finder photographing mode.
- a camera system is the camera system according to the second aspect of the invention, comprising a storage unit for storing first and second control characteristic information for determining the control characteristic of the shake correction unit for the detected motion. It has more.
- the selection unit selects the first control characteristic information as the control characteristic to be applied by the shake correction unit when the reflection mirror is in the first state, and the shake is detected when the reflection mirror is in the second state.
- the second control characteristic information is selected as the control characteristic applied by the correction unit.
- a camera system is the camera system according to the third aspect, wherein the first and second control characteristic information includes a relationship between the detected motion frequency and the correction effect.
- the second control characteristic information has a higher motion frequency that maximizes the correction effect than the first control characteristic information.
- the camera system according to a fifth aspect is the camera system according to the fourth aspect, wherein the display unit can take a plurality of postures having different angles with respect to the optical axis of the imaging optical system.
- the storage unit further stores third control characteristic information.
- the selection unit selects one of the second and third control characteristic information according to the attitude of the display unit.
- the camera system according to a sixth aspect of the invention is the camera system according to the fifth aspect of the invention, wherein the display unit includes a first posture in which the display surface is substantially orthogonal to the optical axis of the imaging optical system, and the imaging optical system. A second posture in which the display surface is inclined with respect to the optical axis.
- the selection unit selects the second control characteristic information as the control characteristic to be applied by the shake correction unit when the display unit is in the first posture, and the shake correction unit when the display unit is in the second state.
- the third control characteristic information is selected as the control characteristic to be applied.
- the camera system according to a seventh aspect is the camera system according to the second aspect, wherein a switching between a moving image shooting mode capable of shooting a moving image and a still image shooting mode capable of shooting a still image is possible in the imaging section. And a mode switching unit.
- the selection unit selects a different control characteristic as the control characteristic of the shake correction unit for the detected motion according to the shooting mode.
- FIG. 1 is a schematic configuration diagram of a camera system according to a first embodiment of the present invention.
- FIG. 2 is a block diagram of the camera system according to the first embodiment of the present invention.
- FIG. 3 is a block diagram showing a control system in the interchangeable lens according to the first embodiment of the present invention.
- FIG. 4 is a hardware block diagram of a shake correction unit according to the first embodiment of the present invention.
- 1 is a conceptual diagram illustrating a viewfinder shooting mode according to a first embodiment of the invention.
- FIG. 6 is a conceptual diagram illustrating a monitor shooting mode according to the first embodiment of the present invention.
- FIG. 7 is a flowchart showing a sequence of shooting modes according to the first embodiment of the present invention.
- FIG. 8 is a conceptual diagram showing the effect of blur correction of the control signal table.
- FIG. 10 is a conceptual diagram showing the effect of shake correction of the control signal table according to the second embodiment of the present invention.
- FIG. 11 is a flowchart showing a sequence of shooting modes according to the second embodiment of the present invention.
- FIG. 12 shows the effect of image blur correction of the control signal table according to the third embodiment of the present invention.
- FIG. 13 is a conceptual diagram illustrating a monitor photographing mode according to the third embodiment of the present invention.
- FIG. 14 is a conceptual diagram illustrating a monitor photographing mode according to a third embodiment of the present invention.
- FIG. 15 is a conceptual diagram illustrating a monitor photographing mode according to the third embodiment of the present invention.
- FIG. 16 is a conceptual diagram showing the effect of shake correction of the control signal table according to the fourth embodiment of the present invention.
- FIG. 1 shows a schematic diagram of the camera system 100.
- a camera system 100 is an interchangeable lens type single-lens reflex digital camera, and includes a camera body 1 and an interchangeable lens 2 that is detachably attached to the camera body 1.
- the interchangeable lens 2 is detachably attached to a lens mount 3 provided on the front body of the camera body 1.
- the subject light that has passed through the interchangeable lens 2 is split into two light beams by the main mirror 4a of the quick return mirror 4, and the reflected light beam is guided to the finder optical system 19.
- the transmitted light flux is reflected by the sub-mirror 4b provided on the back side of the quick return mirror 4 and used as the AF light flux of the focus detection unit 5.
- the focus detection unit 5 generally uses a phase difference detection method.
- the light beam reflected by the main mirror 4a forms an image on the finder screen 6.
- the subject image formed on the finder screen 6 can be observed from the viewfinder eyepiece window 9 via the pentaprism 7 and the eyepiece lens 8.
- the quick return mirror drive control unit 29 causes the quick return mirror 4 to jump out of the optical path X, and the shutter unit 10 is opened to form a subject image on the imaging surface of the imaging sensor 11. Is done.
- the quick return mirror 4 When not photographing, the quick return mirror 4 is inserted on the optical path X as shown in FIG. 1, and the shutter unit 10 is closed.
- a sequence microcomputer 12 for controlling various sequences is installed.
- the image sensor drive control unit 13 performs drive control of the image sensor 11.
- the shutter drive control unit 14 performs drive control of the shutter unit 10.
- the liquid crystal unit drive control unit 15 for image display reads image data from the image sensor 11 and performs predetermined image processing. Then, control is performed to display the captured image on the image display liquid crystal monitor 16. Further, the image recording control unit 17 reads / writes a captured image via an image recording unit 18 with respect to a recording medium such as an SD card (not shown).
- the detachable interchangeable lens 2 has an imaging optical system L for connecting a subject image to the imaging sensor 11 in the camera body 1.
- a lens microcomputer 20 that controls various sequences in the interchangeable lens 2 and incorporates various types of lens information is installed.
- a shake detection unit 21 that detects a shake amount such as an angular velocity sensor and a shake correction unit drive control unit 23 that drives and controls the shake correction lens group 22 are mounted.
- the interchangeable lens 2 is equipped with a focus lens group drive control unit 25 that drives and controls the focus lens group 24.
- the interchangeable lens 2 is equipped with an aperture drive control unit 27 that controls the aperture unit 26.
- the lens microcomputer 20 includes an IZO unit 30 through which the shake detection unit 21, the shake correction unit drive control unit 23, the focus lens group drive control unit 25, the aperture drive control unit 27, and the operation switch. Communicate with 31.
- the operation switch 31 is an operation unit for the photographer to select whether to operate the shake correction unit 47, and is, for example, an ON-OFF type switch. When ON is selected, shake correction is performed according to the output of the shake detection unit 21, and when OFF is selected, the shake correction lens group 22 is held at the center of the optical axis and the shake correction operation is performed. Stop.
- the serial IZO unit 33 performs serial communication such as data with the camera body 1.
- the CPU 34 is for performing arithmetic control and the like, and is a RAM (Random Access Memory) 35, a flash ROM 36 which is a nonvolatile memory, and a writing circuit which is a writing circuit for writing a program to the flash ROM 36.
- Each controller 37 is connected by an internal bus.
- the flash ROM 36 includes various programs, data indicating the relationship between the focal length and the distance to the subject, and the amount of movement of the focus lens group 24, and the center of the optical axis of the shake correction lens group 22 corresponding to the focal length. The amount of shift data is stored.
- the blur correction unit 47 will be described with reference to FIG.
- the shake correction unit drive control unit 23 is a control unit that drives and controls the shake correction lens group 22, and moves the shake correction lens group 22 up, down, left, and right within a plane orthogonal to the optical axis of the imaging optical system L.
- the movement amount detection unit 40 is a detection unit that detects the actual movement amount of the shake correction lens group 22, and forms a feedback control loop for driving and controlling the shake correction lens group 22 together with the shake correction unit drive control unit 23. /!
- the angular velocity sensor 41 is a sensor for detecting the movement of the camera system 100 itself including the imaging optical system L, and the direction of movement of the camera system 100 is based on the output when the camera system 100 is stationary. To output both positive and negative angular velocity signals.
- the angular velocity sensor 41 is a sensor that detects movements in two directions, ie, winging and pitching, and two sensors are provided. Figure 4 shows only one direction. As described above, the angular velocity sensor 41 has a function of a motion detection unit that detects the motion of the camera system 100 due to camera shake and other vibrations.
- the HPF 42 is a high-pass filter that removes a DC drift component in unnecessary band components included in the output of the angular velocity sensor 41.
- the LPF 43 is a low-pass filter that removes the resonance frequency component and noise component of the sensor from unnecessary band components included in the output of the angular velocity sensor 41.
- the amplifier 44 is a circuit for adjusting the output signal level of the angular velocity sensor.
- the AZD conversion unit 45 is a conversion unit that converts the output signal of the amplifier 44 into a digital signal, and the output is transmitted to the lens microcomputer 20.
- the lens microcomputer 20 performs filtering, integration processing, phase compensation, gain adjustment, clip processing, etc. on the output signal of the angular velocity sensor 41 taken in via the AZD conversion unit 45, and provides the image stabilization lens group necessary for shake correction.
- This is a control signal generator that obtains and outputs a drive control amount (hereinafter referred to as a control signal).
- the shake correction unit 47 is formed by the shake correction lens group 22, the shake correction unit drive control unit 23, the angular velocity sensor 41, the lens microcomputer 20, and the like.
- the sequence microcomputer 12 in the camera body 1 that is activated by power supply receives various lens data from the lens microcomputer 20 in the interchangeable lens 2 that is also activated by power supply via the electrical section 38 of the lens mount 3. Save to internal memory.
- the sequence microcomputer 12 acquires the defocus amount (hereinafter referred to as Df amount) from the focus detection unit 5 and instructs the lens microcomputer 20 to drive the focus lens group 24 by the Df amount.
- the lens microcomputer 20 controls the focus lens group drive control unit 25 to operate the focus lens group 24 by the amount of Df. As described above, the focus detection and the driving of the focus lens group 24 are repeated, so that the Df amount becomes small.
- the sequence microcomputer 12 instructs the lens microcomputer 20 to make the aperture value calculated based on the output of the photometric sensor force (not shown) by fully pressing the release button 50. Then, the lens microcomputer 20 controls the aperture drive control unit 27 to narrow the aperture to the instructed aperture value. Simultaneously with the aperture value instruction, the sequence microcomputer 12 uses the quick return mirror drive control unit 29 to retract the quick return mirror 4 from the optical path X.
- the image sensor drive control unit 13 instructs the image sensor 11 to be driven, and instructs the operation of the shutter unit 10.
- the image sensor drive control unit 13 exposes the image sensor 11 for the time of the shutter speed calculated based on the output of the photometric sensor force (not shown).
- the image sensor drive control unit 13 reads the image data from the image sensor 11, and controls to display the captured image on the image display liquid crystal monitor 16 after predetermined image processing.
- Image data is written to the storage medium via the image recording unit 18.
- reset the quick return mirror 4 and shutter unit 10 to their initial positions.
- the sequence microcomputer 12 instructs the lens microcomputer 20 to reset the aperture to the open position, and the lens microcomputer 20 issues a reset command to each unit.
- the icon 20 notifies the sequence microcomputer 12 of the completion of reset.
- the sequence microcomputer 12 waits for reset completion information from the lens microcomputer 20 and completion of a series of processes after exposure. After that, the sequence microcomputer 12 confirms that the state of the release button is not pushed in, and the shooting sequence ends.
- the shooting mode switching switch 51 is also switched to ON.
- the transition to monitor shooting mode is started.
- the sequence microcomputer 12 retracts the quick return mirror 4 from the optical path X by the timing return mirror drive control unit 29.
- the subject image reaches the image sensor 11.
- the imaging sensor drive control unit 13 reads image data from the imaging sensor 11 and displays a captured image on the image display liquid crystal motor 16 after predetermined image processing. In this way, by displaying the photographed image on the liquid crystal monitor 16, the photographer can follow the subject passing through the viewfinder eyepiece window 9.
- the sequence microcomputer 12 of the camera body 1 transmits various kinds of information transmitted from the lens microcomputer 20 in the interchangeable lens 2 via the electrical section 38 of the lens mount 3. Receive lens data.
- the lens data is stored in a memory built in the lens microcomputer 20.
- the sequence microcomputer 12 returns the quick return mirror 4 to a fixed position in the optical path X by the quick return mirror single drive control unit 29 and acquires the Df amount from the focus detection unit 5.
- the sequence microcomputer 12 informs the lens microcomputer 20 to move the focus lens group 24 by the amount of Df.
- the lens microcomputer 20 controls the focus lens group drive control unit 25 to operate the focus lens group 24 by the amount of Df.
- the focus detection and the driving of the focus lens group 24 are repeated, so that the Df amount decreases.
- the Df amount is less than or equal to the predetermined amount, it is determined that focus is achieved, and the driving of the focus lens group 24 is stopped.
- the sequence microcomputer 12 operates the aperture unit 50 by fully pressing the release button 50.
- the lens microcomputer 20 is instructed to drive the aperture unit 26 so that the aperture state of the aperture 26 becomes the aperture value calculated based on the output from the photometric sensor.
- the lens microcomputer 20 controls the aperture drive controller 27 to narrow down the aperture unit 26 to the specified aperture value.
- the sequence microcomputer 12 retracts the quick return mirror 4 from the optical path X by the quick return mirror drive control unit 29.
- the image sensor drive control unit 13 drives the image sensor 11 and drives the shutter unit 10. Note that the image sensor drive control unit 13 exposes the image sensor 11 for the time of the shirt speed calculated based on the output of the photometric sensor force.
- the image sensor drive control unit 13 After the exposure is completed, the image sensor drive control unit 13 reads image data from the image sensor 11. After the predetermined image processing, the imaging sensor drive control unit 13 displays the captured image on the image display liquid crystal monitor 16. Image data is written to the storage medium via the image recording unit 18. Further, after the exposure is completed, the quick return mirror 4 is held by the quick return mirror drive control unit 29 in a retracted state from the optical path X. This makes it possible to continue the monitor shooting mode.
- the shooting mode switching switch 51 When canceling the monitor shooting mode, the shooting mode switching switch 51 is operated, and the shooting mode is changed from the monitor shooting mode to the normally used finder shooting mode. Specifically, the quick return mirror drive control unit 29 returns the quick return mirror 4 to a predetermined position in the optical path X. The quick return mirror 4 is also returned to a predetermined position in the optical path X when the power of the camera body 1 is turned off.
- the sequence microcomputer 12 of the camera body 1 monitors the ON / OFF state of the shooting mode switch 51 while using the camera system 100 (when the power is turned on) (Stepl). If the shooting mode switch 51 is switched from OFF to ON, the process proceeds to Step 2, and if it is switched from ON to OFF, the process proceeds to Step 6 (Stepl).
- the quick return mirror drive controller 29 retracts the quick return mirror 4 out of the optical path X (Step 2)
- the sensor drive control unit 13 starts the operation of the image sensor 11 (Step 3).
- information on the shooting mode switching switch 51 is transmitted from the sequence microcomputer 12 to the lens microcomputer 20.
- the lens microcomputer 20 causes the camera shake correction unit 47 to start the camera shake correction operation via the camera shake correction unit drive control unit 23 (Step 4).
- the operation of the shake correction unit 47 is started regardless of the state of the operation switch 31. That is, based on the state of the photographing mode switching switch 51 that is not in the state of the operation switch 31, it is determined whether or not to start the operation of the shake correction unit 47.
- the photographed image is displayed on the LCD monitor 16 (Step 5), and the switching operation from the finder photographing mode to the monitor photographing mode is completed.
- Step 6 when the shooting mode switching switch 51 is switched from OFF to OFF, the liquid crystal motor 16 is turned OFF (Step 6), and the shake correction unit 47 is turned OFF (Step 7). At this time, ON / OFF of the shake correction unit 47 may be determined according to the state of the operation switch 31. Further, the driving of the imaging sensor 11 is stopped by the imaging sensor drive control unit 13 (Step 8), and the quick return mirror 4 is inserted into the optical path X by the quick return mirror drive control unit 29 (Step 9). This completes the switching operation from the monitor shooting mode to the viewfinder shooting mode.
- the shake correction lens group 22 is held at the optical axis center electrically or mechanically.
- the method of holding the image stabilization lens group 22 is a method of passing current to the actuator via the image stabilization unit drive control unit 23, or a method of locking the image stabilization lens group 22 by a mechanical method! There may be. When locking with a mechanical method, it is not necessary to pass an electric current, so that power consumption can be reduced.
- the photographer's eyes are close to the finder eyepiece window 9, and as a result, the camera system 100 is supported by the photographer's hand and face. For this reason, it is possible to reduce blurring of the camera system 100 during shooting.
- the monitor shooting mode the photographer looks at the liquid crystal monitor 16 for shooting. In order to see the LCD monitor 16, it is necessary to shoot with the camera system 100 The distance to the person increases. For this reason, the photographing posture becomes unstable, the camera system 100 is likely to be shaken, and the influence of the shake on the shot image is increased.
- the camera shake correction unit 47 when the camera is in the monitor shooting mode, the camera shake correction unit 47 forcibly performs the camera shake correction operation so that the camera shake correction operation is not performed. Compared with the case where the image stabilization operation by the correction unit 47 is not performed), it is possible to greatly reduce the frequency of taking a failed photo due to the image blur.
- the camera system 100 in the monitor shooting mode using the liquid crystal monitor 16, even if the photographer does not select the shake correction mode, he or she forgets to select it. Even if this is the case, a shake correction operation is forcibly performed. For this reason, when the liquid crystal monitor 16 is used, even if the shooting posture is more unstable than in the finder shooting mode, the influence of camera system 100 blurring can be reduced. As a result, it is possible to obtain a photographed image in which blurring is suppressed even in the monitor photographing mode.
- the horizontal axis represents the blur frequency Fes (Hz)
- the vertical axis represents the blur suppression degree Scs (dB).
- the degree of blur suppression Scs is an index indicating the degree of the effect of blur correction, and is defined by the following equation.
- the blur amount Acs and the residual blur amount Ar in the above definition (1) correspond to the amplitude of the blur amount represented by the curve WO and the amplitude of the residual blur amount represented by the curve Wr shown in FIG.
- the lower the suppression level Scs the higher the absolute value of the suppression level Scs
- the better the blur correction performance the lower the suppression level Scs (the higher the absolute value of the suppression level Scs)
- the camera shake frequency Fes is about 1 to 10 (Hz).
- the frequency characteristics are usually set so that the blur correction performance is improved for a specific frequency.
- the blur suppression degree Scs varies depending on the blur frequency Fes (hereinafter, the dependence of the blur suppression degree Scs on the blur frequency Fes is referred to as “frequency characteristic of blur correction”).
- the blur correction performance (blur correction effect) in the blur correction unit 47 depends on the blur frequency Fes, and is maximized at a specific blur frequency Fes (the absolute value of the blur suppression degree Scs is maximized).
- the shake frequency at that time is called the optimum shake frequency;). For example, as shown in FIG. 8, when the frequency of camera shake of a large number of photographers is about 7 (Hz), the frequency of camera shake correction so that the performance of the camera shake correction unit 47 is maximized at that frequency 7 (Hz). Characteristics are preset.
- the shake frequency may differ depending on the photographing posture of the photographer.
- the camera system 100 is more likely to shake in the monitor shooting mode than in the viewfinder shooting mode.
- the frequency of blurring is shifted to a higher value than in the finder shooting mode.
- the shake correction effect does not become the highest with respect to the other shake frequency.
- one blur correction frequency characteristic is used as in the conventional case, it is not possible to cope with two shooting modes having different blur frequency characteristics.
- the camera system according to the present embodiment is provided for each shooting mode according to the shooting mode. It has a function to select the frequency characteristic of shake correction that is optimal for the camera.
- the flash ROM 36 in the exchange lens 2 stores a plurality of control signal tables (control characteristic information) indicating the relationship between the blur frequency and the degree of suppression.
- control signal tables 61 and 62 corresponding to the finder photographing mode and the monitor photographing mode are used.
- the optimum blur frequency is set to around 5 (Hz)
- the control signal table 62 corresponding to the monitor shooting mode the optimum blur frequency is set to 7 (Hz). It is set near (Hz).
- the lens microcomputer 20 selects a table corresponding to the shooting mode according to the shooting mode.
- the sequence microcomputer 12 of the camera body 1 monitors the ONZOFF state of the shooting mode switch 51 while the camera system 100 is in use (when the power is turned on) (Stepl). If the shooting mode switch 51 is also turned OFF, the process proceeds to Step 2, and if it is switched from ON to OFF, the process proceeds to Step 7 (Step pl) o
- the quick return mirror drive control unit 29 retracts the quick return mirror 4 out of the optical path X (Step 2), and the imaging sensor drive control unit 13 operates the imaging sensor 11. Is started (Step 3).
- information on the shooting mode switching switch 51 is transmitted from the sequence microcomputer 12 to the lens microcomputer 20.
- the lens microcomputer 20 causes the camera shake correction unit 47 to start the camera shake correction operation via the camera shake correction unit drive control unit 23 (Step 4).
- the control characteristic peculiar to the monitor photographing mode is selected as the control characteristic of the blur correction unit 47 (Step 5).
- the lens microcomputer 20 selects the control signal table 61 shown in FIG. Based on the selected control signal table 61, the shake correction unit 47 performs a shake correction operation. Further, the photographed image is displayed on the liquid crystal monitor 16 (Step 6), and the switching operation from the finder photographing mode to the monitor photographing mode is completed.
- the shooting mode switch 51 is switched from ON to OFF, the LCD mode 16 is turned off (Step 7), and the image stabilization unit 47 is turned off (Step 8).
- ON / OFF of the shake correction unit 47 may be determined according to the state of the operation switch 31.
- the shake correction unit 47 performs the correction operation, a control characteristic specific to the viewfinder shooting mode is selected as the control characteristic of the shake correction unit 47 (Step 19). More specifically, the lens microcomputer 20 selects the control signal table 62 shown in FIG. Therefore, as shown in Fig. 10, in this viewfinder shooting mode, the blur correction characteristics are best when the blur frequency is around 5 (Hz).
- the quick return mirror drive control unit 29 inserts the title return mirror 4 into the optical path X (Step 10), and the monitor shooting mode force is also switched to the viewfinder shooting mode.
- the shake correction control characteristic that is optimal for the selected shooting mode is applied to the shake correction unit 47 in accordance with the switching between the monitor shooting mode and the finder shooting mode. Is done. As a result, it is possible to perform shake correction control optimal for each shooting mode for each shooting mode, thereby realizing more effective shake correction.
- the shake correction lens group 22 is held at the optical axis center electrically or mechanically.
- the method of holding the image stabilization lens group 22 is a method of passing current to the actuator via the image stabilization unit drive control unit 23, or a method of locking the image stabilization lens group 22 by a mechanical method! There may be. When locking with a mechanical method, it is not necessary to pass an electric current, so that power consumption can be reduced.
- the photographing posture of the photographer further changes depending on the angle of the liquid crystal monitor 16. For example, when shooting to avoid crowds, change the angle of the LCD monitor 16 with the hinge mechanism 72 (tilt downward) as shown in Fig. 14, and shoot with the digital camera raised to a high position. It is possible. Compared to the case where the liquid crystal motor 16 is used in a normal posture orthogonal to the optical axis (for example, the state shown in Fig. 6), the photographer's posture becomes more unstable in these special states of use and is optimal. It is expected that the blur frequency will shift to a higher level.
- the angle with respect to the optical axis is changed to change the liquid crystal monitor.
- a control signal table corresponding to 16 (second monitor shooting mode) is added. Specifically, as shown in FIG. 12, a control signal table 63 is added so that the blur correction performance is best when the blur frequency is around 9 (Hz).
- the control signal table 63 corresponding to the second monitor photographing mode is stored in the flash ROM 36 in the same manner as the other control signal tables 61 and 62.
- the camera body 1 is provided with an open / close detection pin 70 fixed to the liquid crystal monitor 16 and an open / close detection sensor 71 for detecting the state of the pin 70. .
- the liquid crystal monitor 16 may be open upward or in other directions.
- the control signal table 64 corresponding to the moving image shooting mode is a control signal table corresponding to the still image shooting mode in order to reduce the influence due to malfunction during panning or tilting.
- the degree of suppression of shaking around 1-2 Hz is set lower. In this way, more effective shake correction can be realized by optimizing the control characteristics of shake correction during still image shooting and movie shooting.
- the first to fourth embodiments are described as different embodiments. But first It is also possible to implement the fourth embodiment in combination with various patterns.
- the method for driving the shake correcting lens group is not limited to the method for driving the shake correcting lens group as the method for correcting the shake.
- a method of driving an image sensor provided in the digital camera body in a direction orthogonal to the optical axis may be used.
- the effect of blur correction can be confirmed, and the effect becomes even more pronounced. In this case, it is preferable to provide the operation switch 31 on the camera body 1 side.
- the blur correction method is not limited to the optical type, but may be an electronic blur correction.
- the following method may be used. That is, instead of using the focus detection unit 5, it is possible to perform an autofocus operation using the contrast value of the image data generated by the image sensor 11.
- the quick return mirror drive control unit 29 does not need to return the quitter return mirror 4 to a fixed position in the optical path X at the time of focusing. For this reason, it is possible to shorten the focusing time.
- the control characteristics of the two types of shake correction units 47 corresponding to the open state and the closed state of the liquid crystal monitor 16 are provided.
- the control characteristics may be changed according to the angle of the liquid crystal monitor 16.
- an angle detector 73 that detects the angle of the liquid crystal monitor 16 is provided in the camera body 1.
- the flash ROM 36 stores a plurality of control signal tables corresponding to the output of the angle detection unit 73 or a relational expression capable of calculating a control signal table.
- the lens microcomputer 20 selects or calculates the control signal table according to the output of the angle detection unit 73.
- the optimum frequency is between 7 and 9 (Hz). The frequency will change. It is preferable that the optimum vibration frequency increases as the angle of the LCD monitor 16 increases. In this case, as compared with the third embodiment described above, it is possible to perform more optimal blur correction according to the use state.
- liquid crystal monitor 16 may be detachable.
- control characteristics of the shake correction unit 47 are selected in the state where the liquid crystal monitor 16 is attached and removed and the state is removed.
- the image displayed on the liquid crystal monitor 16 is performed using the image sensor 11.
- another imaging sensor may be arranged in the finder optical system and the image displayed on the liquid crystal monitor 16 may be used.
- the autofocus operation may be performed using the contrast value of the image data generated by the image sensor 11.
- the camera system according to the present invention is useful as a camera system having a plurality of shooting modes.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Studio Devices (AREA)
- Adjustment Of Camera Lenses (AREA)
- Cameras In General (AREA)
Abstract
カメラシステム(1)は、カメラ本体(1)と、カメラ本体(1)に取り外し可能に装着される交換レンズ(2)と、を備えている。カメラシステム(1)は、撮像センサ(11)と、撮像光学系(L)と、ファインダ光学系(19)と、液晶モニタ(16)と、クイックリターンミラー(4)と、ぶれ検出ユニット(21)と、ぶれ補正ユニット(47)と、シーケンスマイコン(12)と、レンズマイコン(20)を備えている。ぶれ補正ユニット(47)は、ぶれ検出ユニット(21)により検出された動きに応じて、カメラシステム(1)の動きに起因して発生する撮像画像のぶれを補正する。レンズマイコン(20)は、モニタ撮影モードの場合に、ぶれ補正ユニット(47)に補正動作を行わせる。
Description
明 細 書
カメラシステム 技術分野
[0001] 本発明は、カメラシステムに関し、特に一眼レフデジタルカメラに関する。
背景技術
[0002] 近年、被写体の光学的な像を電気的な画像信号に変換して出力可能な一眼レフ デジタルカメラ力 急速に普及している。この一眼レフデジタルカメラでは、撮影者に よるファインダを用いた被写体観察時には、撮影レンズに入射した光 (すなわち被写 体像)を、レンズの後の撮影用光路上に配置した反射ミラーで反射することにより光 路を変更し、ペンタプリズム等を通して正像にして光学ファインダに導くことで、レンズ を通した被写体像を光学ファインダから見ることができる。したがって通常は、ファイン ダ用光路を形成する位置が反射ミラーの定位置となっている。
一方、レンズを撮影用として使用する場合は、反射ミラーが瞬時に位置を変え、撮 影用光路力 待避することで、ファインダ用光路を撮影用光路に切り換え、撮影が終 了すると定位置に瞬時に戻る。この方式は、一眼レフ方式であれば、従来の銀塩カメ ラでも、デジタルカメラでも同様である。
デジタルカメラの特徴の一つとしては、撮影時に表示装置 (例えば、液晶モニタ)を 見ながら撮影し、撮影後にすぐに撮影画像を確認できることが挙げられる。
しかし、これまでの一眼レフカメラの反射ミラーの方式を用いると、構造上、撮影時 に液晶モニタを使用するモニタ撮影モードを実現できない。
そこで、撮影時にも、液晶モニタを用いて撮影できる一眼レフデジタルカメラシステ ムが提案されている。
特許文献 1 :特開 2001—125173号公報
発明の開示
[0003] し力しながら、光学ファインダを覼くことなぐ液晶モニタを用いて撮影することにより 、撮影者とデジタルカメラ本体の距離が離れる。このため、デジタルカメラ本体を持つ 姿勢が不安定となり、その結果としてカメラシステムのボディがぶれやすくなる。すな
わち、撮影モードごとでボディのぶれ方が異なる。例えば、液晶モニタを用いるモニタ 撮影モードは、光学ファインダを用いるファインダ撮影モードに比べて、ぶれ (撮影時 における、撮影者の手のぶれ、その他の振動によるカメラシステムのボディの動きに よる像ぶれ)が撮影画像に及ぼす影響が大きい傾向にある。したがって、液晶モニタ を用 ヽて撮影する際に、このぶれ補正 (カメラシステムのボディの動きにより生じる像 ぶれの補正)の効果が高 、カメラシステムが望まれて!/、る。
本発明の課題は、モニタ撮影モードを有するカメラシステムにおいて、モニタ撮影 モードでのぶれ補正効果を高めることにある。
第 1の発明に係るカメラシステムは、被写体を撮像するカメラシステムであって、撮 像部と、撮像光学系と、観察光学系と、表示部と、可動式の反射ミラーと、反射ミラー 切換部と、動き検出部と、ぶれ補正部と、補正起動部と、を備えている。撮像光学系 は被写体の光学像を撮像部に導く。観察光学系は撮像光学系からの光を観察可能 とする。表示部は撮像部により取得された画像を表示する。反射ミラーは、撮像光学 系からの光を観察光学系に導く第 1の状態と、撮像光学系からの光を撮像部に導く 第 2の状態と、を有している。反射ミラー切換部は反射ミラーの第 1の状態および第 2 の状態を切り換える。動き検出部はカメラシステムの動きを検出する。ぶれ補正部は 、動き検出部により検出された動きに応じて、カメラシステムの動きに起因して発生す る撮像画像のぶれを補正する。補正起動部は、反射ミラー切換部により反射ミラーが 第 2の状態に設定されている場合に、ぶれ補正部に補正動作を行わせる。
このカメラシステムでは、被写体力もの光が撮像光学系および反射ミラーにより観察 光学系または撮像部に導かれる。反射ミラーの第 1の状態は、観察光学系で光学像 が観察できるファインダ撮影モードに対応している。反射ミラーの第 2の状態は、表示 部で光学像が観察できるモニタ撮影モードに対応している。
この場合、モニタ撮影モードにおいては、補正起動部が強制的にぶれ補正部に補 正動作を行わせる。このため、ファインダ撮影モードよりもカメラシステムの動きの影響 が大きくなるモニタ撮影モードの場合にぉ 、て、カメラシステムの動きの影響を抑制し やすくなる。すなわち、このカメラシステムではモニタ撮影モードでの補正効果を高め ることがでさる。
第 2の発明に係るカメラシステムは、被写体を撮像するカメラシステムであって、撮 像部と、撮像光学系と、観察光学系と、表示部と、可動式の反射ミラーと、反射ミラー 切換部と、動き検出部と、ぶれ補正部と、選択部と、を備えている。撮像光学系は被 写体の光学像を撮像部に導く。観察光学系は撮像光学系からの光を観察可能とす る。表示部は撮像部により取得された画像を表示する。反射ミラーは、撮像光学系か らの光を観察光学系に導く第 1の状態と、撮像光学系からの光を撮像部に導く第 2の 状態と、を有している。反射ミラー切換部は反射ミラーの第 1の状態および第 2の状態 を切り換える。動き検出部はカメラシステムの動きを検出する。ぶれ補正部は、動き検 出部により検出された動きに応じて、カメラシステムの動きに起因して発生する撮像 画像のぶれを補正する。選択部は、反射ミラーの状態に応じて、検出された動きに対 するぶれ補正部の制御特性として異なる制御特性を選択可能である。
このカメラシステムでは、反射ミラーの状態に応じて、すなわちファインダあるいはモ ユタ撮影モードに応じて、ぶれ補正部の制御特性が選択される。このため、各モード に最適な制御特性によりぶれ補正を行える。これにより、モニタ撮影モードにおいて、 ファインダ撮影モードで設定される制御特性の影響を受けることがなぐモニタ撮影 モードのぶれ補正効果を高めることができる。
第 3の発明に係るカメラシステムは、第 2の発明に係るカメラシステムにおいて、検 出された動きに対するぶれ補正部の制御特性を決定する第 1および第 2の制御特性 情報を記憶する記憶部をさらに備えている。選択部は、反射ミラーが第 1の状態であ る場合に、ぶれ補正部が適用する制御特性として第 1の制御特性情報を選択し、反 射ミラーが第 2の状態である場合に、ぶれ補正部が適用する制御特性として第 2の制 御特性情報を選択する。
第 4の発明に係るカメラシステムは、第 3の発明に係るカメラシステムにおいて、第 1 および第 2の制御特性情報には検出された動きの周波数と補正効果との関係が含ま れている。第 2の制御特性情報は、第 1の制御特性情報に比べて、補正効果が最大 となる動きの周波数が高い。
第 5の発明に係るカメラシステムは、第 4の発明に係るカメラシステムにおいて、表 示部が撮像光学系の光軸に対して角度が異なる複数の姿勢をとることが可能である
。記憶部は、第 3の制御特性情報をさらに記憶している。反射ミラーが第 2の状態で ある場合、選択部は、表示部の姿勢に応じて第 2および第 3の制御特性情報のいず れか一方を選択する。
第 6の発明に係るカメラシステムは、第 5の発明に係るカメラシステムにおいて、表 示部が、撮像光学系の光軸に対して表示面が略直交する第 1の姿勢と、撮像光学系 の光軸に対して表示面が傾斜している第 2の姿勢と、をとることが可能である。選択部 は、表示部が第 1の姿勢である場合に、ぶれ補正部が適用する制御特性として第 2 の制御特性情報を選択し、表示部が第 2の状態である場合に、ぶれ補正部が適用す る制御特性として第 3の制御特性情報を選択する。
第 7の発明に係るカメラシステムは、第 2の発明に係るカメラシステムにおいて、動 画を撮影可能な動画撮影モードと、静止画を撮影可能な静止画撮影モードと、を撮 像部において切換可能なモード切換部をさらに備えている。選択部は、撮影モード に応じて、検出された動きに対するぶれ補正部の制御特性として異なる制御特性を 選択する。
図面の簡単な説明
[図 1]本発明の第 1実施形態に係るカメラシステムの概略構成図
[図 2]本発明の第 1実施形態に係るカメラシステムのブロック図
[図 3]本発明の第 1実施形態に係る交換レンズ内の制御システムを示すブロック図 [図 4]本発明の第 1実施形態に係るぶれ補正ユニットのハードウェアのブロック図 [図 5]本発明の第 1実施形態に係るファインダ撮影モードを説明する概念図
[図 6]本発明の第 1実施形態に係るモニタ撮影モードを説明する概念図
[図 7]本発明の第 1実施形態に係る撮影モードのシーケンスを示すフローチャート [図 8]制御信号用テーブルのぶれ補正の効果を示す概念図
[図 9]残留ぶれ量を説明する図
[図 10]本発明の第 2実施形態に係る制御信号用テーブルのぶれ補正の効果を示す 概念図
[図 11]本発明の第 2実施形態に係る撮影モードのシーケンスを示すフローチャート [図 12]本発明の第 3実施形態に係る制御信号用テーブルの像ぶれ補正の効果を示
す概念図
[図 13]本発明の第 3実施形態に係るモニタ撮影モードを説明する概念図
[図 14]本発明の第 3実施形態に係るモニタ撮影モードを説明する概念図
[図 15]本発明の第 3実施形態に係るモニタ撮影モードを説明する概念図
[図 16]本発明の第 4実施形態に係る制御信号用テーブルのぶれ補正の効果を示す 概念図
符号の説明
L 撮像光学系
Df 焦点ずれ量
X 光路
1 デジタルカメラ
2 レンズ鏡筒
3 レンズマウント
4 クイックリターンミラー
10 ンャッターユニット
11 撮像センサ
12 シーケンスマイコン
16 液晶モニタ
20 レンズマイコン
21 ぶれ検出ユニット
22 ぶれ補正レンズ群
23 ぶれ補正ユニット駆動制御部
24 フォーカスレンズ群
29 クイックリターンミラー駆動制御部
41 角速度センサ
47 ぶれ ¾i正ユニット
50 レリーズボタン
51 撮影モード切換スィッチ
60, 61, 62, 63, 64, 65 制御信号用テーブル (制御特性情報)
100 カメラシステム
発明を実施するための最良の形態
〔第 1実施形態〕
< 1.全体構成〉
本発明の第 1実施形態に係るカメラシステム 100について説明する。図 1にカメラシ ステム 100の概略構成図を示す。
図 1に示すように、カメラシステム 100は、交換レンズ式の一眼レフデジタルカメラで あり、カメラ本体 1と、カメラ本体 1に取り外し可能に装着され交換レンズ 2と、から構成 されている。交換レンズ 2は、カメラ本体 1のボディ前面に設けられたレンズマウント 3 に着脱可能に装着される。
交換レンズ 2を通過した被写体光は、クイックリターンミラー 4のメインミラー 4aにより 2つの光束に分割され、反射光束はファインダ光学系 19へ導かれる。一方、透過光 束は、クイックリターンミラー 4の背面側に設けられたサブミラー 4bで反射されて、焦 点検出用ユニット 5の AF用光束として利用される。この焦点検出用ユニット 5は、一般 的には、位相差検出方式が使用される。
メインミラー 4aで反射された光束はファインダースクリーン 6上に結像される。フアイ ンダースクリーン 6上に結像された被写体像は、ペンタプリズム 7および接眼レンズ 8 を介してファインダ接眼窓 9から観察することができる。
通常の撮影時には、クイックリターンミラー駆動制御部 29により、クイックリターンミラ 一 4が光路 X外に跳ね上げられるとともに、シャッターユニット 10が開かれて撮像セン サ 11の撮像面上に被写体像が結像される。
非撮影時には、図 1に示すようにクイックリターンミラー 4が光路 X上に挿入されると ともに、シャッターユニット 10は閉状態とされる。
カメラ本体 1内には、各種シーケンスをコントロールするシーケンスマイコン 12が搭 載されている。撮像センサ駆動制御部 13は、撮像センサ 11の駆動制御を行う。シャ ッター駆動制御部 14は、シャッターユニット 10の駆動制御を行う。画像表示用液晶 ユニット駆動制御部 15は、撮像センサ 11より画像データを読み出し、所定の画像処
理後、画像表示用液晶モニタ 16へ撮影画像を表示するよう制御する。また、画像記 録制御部 17は、図示せぬ SDカードなどの記録媒体に対して、画像記録部 18を介し て、撮影画像の読み書きを行う。
着脱可能な交換レンズ 2は、カメラ本体 1内の撮像センサ 11に被写体像を結ぶため の撮像光学系 Lを有する。また交換レンズ 2内の各種シーケンスをコントロールし、各 種レンズ情報を内蔵したレンズマイコン 20が搭載されている。交換レンズ 2内には、 角速度センサなどのぶれ量を検出するぶれ検出ユニット 21と、ぶれ補正レンズ群 22 を駆動制御するぶれ補正ユニット駆動制御部 23と、が搭載されている。このぶれ補 正レンズ群 22を駆動制御することにより、撮影者の手ぶれ等の影響が抑制された良 好な撮影画像を得ることが可能となる。また、交換レンズ 2には、フォーカスレンズ群 2 4を駆動制御するフォーカスレンズ群駆動制御部 25が搭載されている。さらに、交換 レンズ 2には、絞りユニット 26を制御する絞り駆動制御部 27が搭載されている。
次に、交換レンズ 2内に搭載されているレンズマイコン 20について、図 3を用いて説 明する。
レンズマイコン 20は、 IZO部 30を有し、この ΙΖΟ部 30を介して、ぶれ検出ユニット 21、ぶれ補正ユニット駆動制御部 23、フォーカスレンズ群駆動制御部 25、絞り駆動 制御部 27、および操作スィッチ 31と通信を行う。この操作スィッチ 31は、ぶれ補正ュ ニット 47を動作させるかどうかを撮影者が選択するための操作部であり、例えば ON — OFF式スィッチである。 ONが選択された場合には、ぶれ検出ユニット 21の出力に 応じてぶれ補正が行われ、 OFFが選択された場合には、ぶれ補正レンズ群 22が光 軸中心に保持され、ぶれ補正動作が停止する。シリアル IZO部 33は、カメラ本体 1と データなどのシリアル通信を行う。さらに、 CPU34は、演算制御等を行うためのもの であり、 RAM (ランダムアクセスメモリ) 35、不揮発性メモリであるフラッシュ ROM36、 および、このフラッシュ ROM36にプログラムを書込むための書込み回路である書込 みコントローラ 37と共に、それぞれ内部バスにより結合されている。なお、フラッシュ R OM36には、各種プログラム、あるいは焦点距離及び被写体までの距離とフォーカス レンズ群 24の移動量との関係を示すデータや、焦点距離に応じたぶれ補正レンズ群 22の光軸中心からのシフト量のデータなどが記憶されている。
次に、ぶれ補正ユニット 47について、図 4を用いて説明する。ぶれ補正ユニット駆 動制御部 23は、ぶれ補正レンズ群 22を駆動及び制御する制御部であり、撮像光学 系 Lの光軸に直交する平面内で、ぶれ補正レンズ群 22を上下左右に移動させる。移 動量検出部 40は、ぶれ補正レンズ群 22の実際の移動量を検出する検出部であり、 ぶれ補正ユニット駆動制御部 23と共にぶれ補正レンズ群 22を駆動制御するための 帰還制御ループを形成して!/、る。
角速度センサ 41は、撮像光学系 Lを含むカメラシステム 100自体の動きを検出する ためのセンサであり、カメラシステム 100が静止している状態での出力を基準に、カメ ラシステム 100の動きの方向により正負両方の角速度信号を出力する。角速度セン サ 41は、ョーイング及びピッチングの 2方向の動きを検出するセンサであり、 2個設け られている。図 4では 1方向のみ図示する。このように角速度センサ 41は、手ぶれ及 びその他の振動によるカメラシステム 100の動きを検出する動き検出部の機能を有し ている。
HPF42は、角速度センサ 41の出力に含まれる不要帯域成分中の直流ドリフト成分 を除去する高域通過フィルタである。 LPF43は、角速度センサ 41の出力に含まれる 不要帯域成分中のセンサの共振周波数成分やノイズ成分を除去する低域通過フィ ルタである。アンプ 44は、角速度センサの出力信号レベルの調整を行うための回路 である。 AZD変換部 45はアンプ 44の出力信号をデジタル信号に変換する変換部 あり、その出力はレンズマイコン 20に送信される。
レンズマイコン 20は、 AZD変換部 45を介して取り込んだ角速度センサ 41の出力 信号に対し、フィルタリング、積分処理、位相補償、ゲイン調整、クリップ処理等を施し 、ぶれ補正に必要なぶれ補正レンズ群の駆動制御量 (以下、制御信号と称す)を求 めて出力する制御信号発生部である。
以上のように、ぶれ補正レンズ群 22、ぶれ補正ユニット駆動制御部 23、角速度セ ンサ 41、およびレンズマイコン 20などにより、ぶれ補正ユニット 47が形成されている。
< 3.動作 >
次に、カメラシステム 100の撮影動作について説明する。
(3. 1 :ファインダ撮影モード)
まず、図 5を用いて撮影者がファインダ接眼窓 9を覼 ヽて撮影する場合 (ファインダ 撮影モード)の駆動シーケンスについて説明する。
撮影者のレリーズボタン 50の半押し動作により、カメラ本体 1内のシーケンスマイコ ン 12および各種ユニットには、電源が供給される。電源供給により起動するカメラ本 体 1内のシーケンスマイコン 12は、同じく電源供給で起動する交換レンズ 2内のレン ズマイコン 20より、レンズマウント 3の電気切片 38を介して、各種レンズデータを受け 取り、内蔵するメモリに保存する。次に、シーケンスマイコン 12は、焦点検出用ュ-ッ ト 5より、焦点ずれ量 (以後、 Df量という)を取得し、その Df量分、フォーカスレンズ群 24を駆動するようレンズマイコン 20に指示する。レンズマイコン 20は、フォーカスレン ズ群駆動制御部 25をコントロールして、 Df量分だけフォーカスレンズ群 24を動作さ せる。このように焦点検出とフォーカスレンズ群 24の駆動とを繰り返すうち、 Df量は小 さくなり、所定量以下になった時に合焦と判断し、フォーカスレンズ群 24の駆動を止 める。
この後、シーケンスマイコン 12は、レリーズボタン 50の全押し動作により、レンズマイ コン 20に不図示測光センサ力もの出力に基づいて計算された絞り値にするよう指示 する。そして、レンズマイコン 20は、絞り駆動制御部 27をコントロールし、指示された 絞り値まで、絞りを絞り込む。絞り値の指示と同時にシーケンスマイコン 12は、クイック リターンミラー駆動制御部 29により、クイックリターンミラー 4の光路 X内からの退避を 行う。退避完了後、撮像センサ駆動制御部 13は、撮像センサ 11の駆動を指示し、シ ャッターユニット 10の動作を指示する。なお、撮像センサ駆動制御部 13は、不図示 の測光センサ力もの出力に基づいて計算されたシャッタースピードの時間だけ、撮像 センサ 11を露光する。
露光完了後、撮像センサ駆動制御部 13は、撮像センサ 11より画像データを読み 出し、所定の画像処理後、画像表示用液晶モニタ 16へ撮影画像を表示するよう制 御する。画像記録部 18を介して、記憶媒体に画像データが書き込まれる。また、露 光終了後、クイックリターンミラー 4とシャッターユニット 10とを初期位置にリセットする 。シーケンスマイコン 12は、レンズマイコン 20へ、絞りを開放位置にリセットするよう指 示し、レンズマイコン 20は、各ユニットにリセット命令を行う。リセット完了後、レンズマ
イコン 20は、シーケンスマイコン 12にリセット完了を伝える。シーケンスマイコン 12は 、レンズマイコン 20からのリセット完了情報と露光後の一連処理の完了を待つ。その 後、レリーズボタンの状態が押し込みされていないことをシーケンスマイコン 12が確 認し、撮影シーケンスが終了する。
(3. 2 :モニタ撮影モード)
次に、図 6を用いて、撮影者が液晶モニタ 16を用いて撮影する場合 (モニタ撮影モ ード)の駆動シーケンスについて説明する。
液晶モニタ 16を用いて撮影する際には、撮影モード切換スィッチ 51が OFF力も O Nに切り換えられる。撮影モード切換スィッチ 51が ONに切り換えられると、モニタ撮 影モードへの移行動作が開始される。具体的には、シーケンスマイコン 12は、タイツ クリターンミラー駆動制御部 29により、クイックリターンミラー 4を光路 X内から退避させ る。この結果、被写体像が撮像センサ 11に到達する。撮像センサ駆動制御部 13は、 撮像センサ 11より画像データを読み出し、所定の画像処理後、画像表示用液晶モ- タ 16へ撮影画像を表示させる。このように、撮影画像を液晶モニタ 16に表示させるこ とにより、撮影者はファインダ接眼窓 9を覼くことなぐ被写体を追いかけることが可能 となる。
次に、撮影者のレリーズボタン 50の半押し動作により、カメラ本体 1のシーケンスマ イコン 12は、レンズマウント 3の電気切片 38を介して、交換レンズ 2内のレンズマイコ ン 20から送信される各種レンズデータを受け取る。レンズデータはレンズマイコン 20 に内蔵されるメモリに保存される。次に、シーケンスマイコン 12は、クイックリターンミラ 一駆動制御部 29により、クイックリターンミラー 4を光路 X内の定位置に戻し、焦点検 出用ユニット 5より、 Df量を取得する。シーケンスマイコン 12は、その Df量分だけフォ 一カスレンズ群 24を馬区動するようにレンズマイコン 20に旨示する。レンズマイコン 20 は、フォーカスレンズ群駆動制御部 25をコントロールして、 Df量分だけフォーカスレ ンズ群 24を動作させる。このように焦点検出とフォーカスレンズ群 24の駆動とを繰り 返すうち、 Df量は小さくなる。 Df量が所定量以下になったときに合焦と判断され、フ オーカスレンズ群 24の駆動が停止される。
この後、シーケンスマイコン 12は、レリーズボタン 50の全押し動作により、絞りュニッ
ト 26の絞り状態が測光センサからの出力に基づ 、て計算された絞り値になるように、 レンズマイコン 20に絞りユニット 26の駆動を指示する。レンズマイコン 20は、絞り駆動 制御部 27をコントロールし、指示された絞り値まで、絞りユニット 26を絞り込む。絞り 値の指示と同時にシーケンスマイコン 12は、クイックリターンミラー駆動制御部 29によ り、クイックリターンミラー 4の光路 X内からの退避を行う。退避完了後、撮像センサ駆 動制御部 13は、撮像センサ 11を駆動させ、シャッターユニット 10を駆動させる。なお 、撮像センサ駆動制御部 13は、測光センサ力 の出力に基づいて計算されたシャツ タースピードの時間だけ、撮像センサ 11を露光する。
露光完了後、撮像センサ駆動制御部 13は、撮像センサ 11より画像データを読み 出す。所定の画像処理後、撮像センサ駆動制御部 13は画像表示用液晶モニタ 16 に撮影画像を表示させる。画像記録部 18を介して記憶媒体に画像データが書き込 まれる。また、露光完了後、クイックリターンミラー駆動制御部 29によりクイックリターン ミラー 4は光路 X内力ゝら退避した状態で保持される。これにより、モニタ撮影モードを 継続することが可能となる。
また、モニタ撮影モードを解除する場合には、撮影モード切換スィッチ 51が操作さ れ、モニタ撮影モードから通常使用されるファインダ撮影モードへ撮影モードが移行 する。具体的には、クイックリターンミラー駆動制御部 29により、クイックリターンミラー 4が光路 X内の所定位置に戻される。また、カメラ本体 1の電源が切断される際にも、 クイックリターンミラー 4は光路 X内の所定位置に戻される。
(3. 3 :撮影モード切換時の動作)
次に、カメラシステム 100の使用中における撮影モード切換時の動作について、図 7に示すフローチャートを用いて詳細に説明する。
カメラ本体 1のシーケンスマイコン 12は、カメラシステム 100の使用中(電源 ON時) に撮影モード切換スィッチ 51の ON/OFFの状態を監視している(Stepl)。撮影モ ード切換スィッチ 51が OFFから ONへ切り換えられた場合には Step2に移行し、 ON から OFFへ切り換えられた場合には Step6に移行する(Stepl)。
撮影モード切換スィッチ 51が OFF力も ONへ切り換えられた場合、クイックリターン ミラー駆動制御部 29がクイックリターンミラー 4を光路 X外に退避させ (Step2)、撮像
センサ駆動制御部 13により撮像センサ 11の動作が開始される(Step3)。次に、シー ケンスマイコン 12からレンズマイコン 20へ撮影モード切換スィッチ 51の情報が送信さ れる。レンズマイコン 20は、この情報に基づいて、ぶれ補正ユニット駆動制御部 23を 介してぶれ補正ユニット 47にぶれ補正動作を開始させる(Step4)。このとき、操作ス イッチ 31の状態とは無関係に、ぶれ補正ユニット 47の動作が開始される。すなわち、 操作スィッチ 31の状態ではなぐ撮影モード切換スィッチ 51の状態に基づいて、ぶ れ補正ユニット 47の動作を開始するか否かが判断される。その後、液晶モニタ 16に 撮影画像が表示され (Step5)、ファインダ撮影モードからモニタ撮影モードへの切換 動作が完了する。
一方、撮影モード切換スィッチ 51が ON力ら OFFへ切り換えられた場合、液晶モ- タ 16が OFFとなり(Step6)、ぶれ補正ユニット 47が OFFとなる(Step7)。このとき、 操作スィッチ 31の状態によりぶれ補正ユニット 47の ON、 OFFが決定されてもよい。 さらに、撮像センサ駆動制御部 13により撮像センサ 11の駆動が停止され (Step8)、 クイックリターンミラー駆動制御部 29によりクイックリターンミラー 4が光路 X内に挿入さ れる(Step9)。これにより、モニタ撮影モードからファインダ撮影モードへの切換動作 が完了する。
なお、 Step7においてぶれ補正ユニット 47が OFFの場合には、ぶれ補正レンズ群 22は電気的あるいは機械的に光軸中心に保持される。ぶれ補正レンズ群 22を保持 する方式は、ぶれ補正ユニット駆動制御部 23を介してァクチユエータに電流を流す 方式、あるいはぶれ補正レンズ群 22をメカ-カルな方法でロックする方式の!/、ずれ であってもよい。メカ-カルな方法でロックする場合、電流を流す必要がないため、消 費電力の低減を図ることができる。
<4.作用効果 >
一般的に、ファインダ撮影モードにおいては、撮影者の眼がファインダ接眼窓 9に 近接するため、その結果として、撮影者の手および顔面によりカメラシステム 100が支 持される。このため、撮影時のカメラシステム 100のぶれを軽減することができる。 それに対して、モニタ撮影モードにおいては、撮影者は液晶モニタ 16を見て撮影 することになる。液晶モニタ 16を見るためには、必然的に、カメラシステム 100と撮影
者との距離が大きくなる。このため、撮影姿勢が不安定となり、カメラシステム 100の ぶれが生じやすくなり、撮影画像へのぶれの影響が大きくなる。
しかし、このカメラシステム 100では、前述のようにモニタ撮影モードの場合に強制 的にぶれ補正ユニット 47によるぶれ補正動作を行うことにより、ぶれ補正動作を行わ な 、時 (例えば、モニタ撮影モードにぶれ補正ユニット 47によるぶれ補正動作を行わ ない場合)に比べて、ぶれによる失敗写真を撮る頻度を大幅に軽減することが可能と なる。
以上のように本実施形態に係るカメラシステム 100では、液晶モニタ 16を用いたモ ユタ撮影モードにおいては、撮影者がぶれ補正モードを選択していなくても、あるい は選択するのを忘れていたとしても、強制的にぶれ補正動作が行われる。このため、 液晶モニタ 16を使用する際に、ファインダ撮影モードよりも撮影姿勢が不安定であつ ても、カメラシステム 100のぶれの影響を小さくできる。これにより、モニタ撮影モード の場合でもぶれの抑制された撮影画像を得ることが可能となる。
〔第 2実施形態〕
ファインダ撮影モードとモニタ撮影モードとでは、ぶれ周波数が異なる場合がある。 このため、各モードのぶれ周波数に適したぶれ補正動作を行うことが考えられる。以 下、本発明の第 2実施形態に係るカメラシステムについて説明する。なお、第 1実施 形態において説明したものについては、同一の符号を付し、その説明は省略する。 モニタ撮影モードへの移行にっ 、て、図 11に示すフローチャートを用いて説明する
< 1.ぶれ補正ユニットの周波数特性 >
図 8を用いてぶれ補正ユニットの制御特性について説明する。図 8において、横軸 はぶれの周波数 Fes (Hz)を示し、縦軸はぶれの抑圧度 Scs (dB)を示している。ここ で、ぶれの抑圧度 Scsとは、ぶれ補正の効果の程度を示す指標であって、下記の式 によって定義される。
Scs = 20 · log (Ar/ Acs) - (1)
ただし、 Acs:ぶれ量 (カメラシステムのぶれにより生じる画像のぶれ量)
Ar :残留ぶれ量
上記の定義式(1)におけるぶれ量 Acsと残留ぶれ量 Arは、図 9示す曲線 WOで表 されるぶれ量の振幅と曲線 Wrで表される残留ぶれ量の振幅とにそれぞれ相当する。 上記のようなぶれの抑圧度 Scsの定義によれば、抑圧度 Scsの数値が低 、ほど(抑 圧度 Scsの絶対値が大きいほど)、ぶれ補正性能が優れていることになる。一般に、 撮影者のぶれ周波数 Fesは 1〜10 (Hz)程度である。しかし、すべての周波数に対し ぶれ補正性能を向上させること、すなわち抑圧度 Scsを一定にすること、は困難であ る。このため、通常は、ある特定の周波数に対してぶれ補正の性能が向上するように 周波数特性が設定される。
以上より、図 8に示すように、ぶれの抑圧度 Scsはぶれの周波数 Fesによって変化 する(以下、ぶれの抑圧度 Scsのぶれの周波数 Fesに対する依存性を「ぶれ補正の 周波数特性」という)。すなわち、ぶれ補正ユニット 47におけるぶれ補正の性能(ぶれ 補正の効果)は、ぶれ周波数 Fesに依存し、ある特定のぶれ周波数 Fesにおいて最 大となる(ぶれの抑圧度 Scsの絶対値が最大となる。その時のぶれ周波数を最適ぶ れ周波数という。;)。例えば図 8に示すように、多数の撮影者のぶれの周波数が 7 (Hz )程度である場合、その周波数 7 (Hz)においてぶれ補正ユニット 47の性能が最大と なるように、ぶれ補正の周波数特性が予め設定される。
このように、想定されるぶれ周波数に応じてぶれ補正の周波数特性を予め調節す ることで、そのぶれ周波数に適したぶれ補正が可能となる。これにより、撮影者のぶ れの影響が除去された良好な撮影画像が得られる。
しかし、第 1実施形態のく 4.作用効果〉で説明したように、撮影者の撮影姿勢に よりぶれ周波数が異なる場合がある。例えば、ファインダ撮影モードに比べて、モニタ 撮影モードではカメラシステム 100がぶれやすい。このため、モニタ撮影モードは、フ アインダ撮影モードに比べて、ぶれの周波数は高い方にシフトする。この場合、いず れか一方のぶれ周波数に合わせてぶれ補正ユニット 47の制御特性を調節しても、 他方のぶれ周波数に対して、その制御特性ではぶれ補正効果が最も高くならない。 すなわち、従来のように 1つのぶれ補正の周波数特性を用いる場合、ぶれ周波数 の特性が異なる 2つの撮影モードに対応できない。
そこで、本実施形態に係るカメラシステムは、撮影モードに応じて、撮影モードごと
に最適なぶれ補正の周波数特性を選択する機能を備えている。具体的には、交換レ ンズ 2内のフラッシュ ROM36には、ぶれ周波数と抑圧度との関係を示す複数の制御 信号用テーブル (制御特性情報)が格納されている。本実施形態では、図 10に示す ように、ファインダ撮影モードおよびモニタ撮影モードに対応する 2種類の制御信号 用テーブル 61, 62が用いられる。例えば、ファインダ撮影モードに対応する制御信 号用テーブル 61では、最適ぶれ周波数が 5 (Hz)付近に設定されており、モニタ撮 影モードに対応する制御信号用テーブル 62では、最適ぶれ周波数が 7 (Hz)付近に 設定されている。そして、撮影モードに応じて、その撮影モードに対応するテーブル がレンズマイコン 20により選択される。
< 2.撮影モード切換時の動作 >
図 11を用いて、撮影モード切換時の動作にっ 、て説明する。
図 11に示すように、カメラ本体 1のシーケンスマイコン 12は、カメラシステム 100の 使用中(電源 ON時)に撮影モード切換スィッチ 51の ONZOFFの状態を監視して いる(Stepl)。撮影モード切換スィッチ 51が OFF力も ONへ切り換えられた場合に は Step2に移行し、 ONから OFFへ切り換えられた場合には Step7に移行する(Ste pl) o
撮影モード切換スィッチ 51が OFF力も ONへ切り換えられた場合、クイックリターン ミラー駆動制御部 29がクイックリターンミラー 4を光路 X外に退避させ (Step2)、撮像 センサ駆動制御部 13により撮像センサ 11の動作が開始される(Step3)。次に、シー ケンスマイコン 12からレンズマイコン 20へ撮影モード切換スィッチ 51の情報が送信さ れる。レンズマイコン 20は、この情報に基づいて、ぶれ補正ユニット駆動制御部 23を 介してぶれ補正ユニット 47にぶれ補正動作を開始させる(Step4)。このとき、ぶれ補 正ユニット 47の制御特性としてモニタ撮影モード特有の制御特性が選択される(Ste pl5)。具体的には、レンズマイコン 20により図 10に示す制御信号用テーブル 61が 選択される。この選択された制御信号用テーブル 61に基づいて、ぶれ補正ユニット 4 7はぶれ補正動作を行う。さらに、液晶モニタ 16に撮影画像が表示され (Step6)、フ アインダ撮影モードからモニタ撮影モードへの切換動作が完了する。
一方、撮影モード切換スィッチ 51が ON力ら OFFへ切り換えられた場合、液晶モ-
タ 16が OFFとなり(Step7)、ぶれ補正ユニット 47が OFFとなる(Step8)。このとき、 操作スィッチ 31の状態によりぶれ補正ユニット 47の ON、 OFFが決定されてもよい。 ぶれ補正ユニット 47が補正動作を行う場合、ぶれ補正ユニット 47の制御特性として ファインダ撮影モード特有の制御特性が選択される(Step 19)。具体的には、レンズ マイコン 20により図 10に示す制御信号用テーブル 62が選択される。このため図 10 に示すように、このファインダ撮影モードにおいては、ぶれ周波数が 5 (Hz)付近にて ぶれ補正特性が最良となる。さらに、クイックリターンミラー駆動制御部 29によりタイツ クリターンミラー 4が光路 X内に挿入され (Step 10)、モニタ撮影モード力もファインダ 撮影モードへの切換動作が完了する。
以上のように、本実施形態に係るカメラシステム 100では、モニタ撮影モードとファ インダ撮影モードとの切り換えに応じ、選択された撮影モードに最適なぶれ補正の制 御特性がぶれ補正ユニット 47において適用される。これにより、撮影モードごとで、そ の撮影モードに最適なぶれ補正制御を行うことが可能となり、より効果的なぶれ補正 を実現できる。
なお、 Step8においてぶれ補正ユニット 47が OFFの場合には、ぶれ補正レンズ群 22は電気的あるいは機械的に光軸中心に保持される。ぶれ補正レンズ群 22を保持 する方式は、ぶれ補正ユニット駆動制御部 23を介してァクチユエータに電流を流す 方式、あるいはぶれ補正レンズ群 22をメカ-カルな方法でロックする方式の!/、ずれ であってもよい。メカ-カルな方法でロックする場合、電流を流す必要がないため、消 費電力の低減を図ることができる。
〔第 3実施形態〕
また、液晶モニタ 16が可動式である場合、液晶モニタ 16の角度によって撮影者の 撮影姿勢がさらに変化する。例えば、人混みなどを避けるように撮影する場合、図 14 に示すように液晶モニタ 16の角度をヒンジ機構 72により変えて (斜め下向きにして)、 デジタルカメラを高 、位置に持ち上げた状態で撮影することが考えられる。液晶モ- タ 16が光軸に直交する通常の姿勢で使用する場合 (例えば図 6のような状態)に比 ベて、これらの特殊な使用状態では撮影者の姿勢がより不安定となり、最適ぶれ周 波数がさらに高い方にシフトすることが予想される。
そこで、本実施形態に係るカメラシステムでは、ファインダを使用する場合および液 晶モニタ 16を通常の姿勢で使用する場合 (第 1モニタ撮影モード)に加えて、光軸に 対する角度を変えて液晶モニタ 16を使用する場合 (第 2モニタ撮影モード)に対応す る制御信号用テーブルが追加されている。具体的には図 12に示すように、ぶれ周波 数が 9 (Hz)付近にてぶれ補正性能が最良となるような制御信号用テーブル 63が追 加されている。第 2モニタ撮影モードに対応する制御信号用テーブル 63は、他の制 御信号用テーブル 61、 62と同様にフラッシュ ROM36に記憶されている。
また、図 13および図 14に示すように、液晶モニタ 16に固定された開閉検出用のピ ン 70と、ピン 70の状態を検出する開閉検出センサ 71と、がカメラ本体 1に設けられて いる。これにより、液晶モニタ 16の開閉状態を検出することが可能となり、開閉状態に 応じて制御信号テーブルを選択することが可能となる。
以上の構成により、撮影モードごとに、さらに最適な制御特性を選択することができ る。
なお、図 15に示すように、液晶モニタ 16が上側やその他の方向に開く構成でもよ い。
〔第 4実施形態〕
また、図 16に示すように、モニタ撮影モード上における静止画撮影時と動画撮影時 にて、ぶれ補正の制御特性を変更することも可能である。具体的には、動画撮影モ ードに対応する制御用信号テーブル 64は、パンニング、あるいはチルティングを行う 際の誤動作による影響を低減させるために、静止画撮影モードに対応する制御用信 号テーブル 65に比べて、 1〜2 (Hz)付近のぶれの抑圧度が低く設定されている。こ のように、静止画撮影時と動画撮影時とにより、ぶれ補正の制御特性を最適化するこ とにより、より効果的なぶれ補正を実現できる。
〔その他の実施形態〕
本発明の実施形態は、発明の趣旨を逸脱しない範囲で、種々の変更および修正 が可能である。
(1)
第 1〜第 4実施形態は、それぞれ別の実施形態として説明されている。しかし、第 1
〜第 4実施形態を様々なパターンで組み合わせて実施することも可能である。
(2)
前述の実施形態においては、ぶれ補正の方式として、ぶれ補正レンズ群を駆動す る方式を説明している力 その方式に限定されるものではない。例えば、デジタルカメ ラ本体に設けられた撮像センサを光軸に対して直交する方向に駆動する方式であつ ても良い。従来、一眼レフデジタルカメラにおいて、撮像センサを駆動してぶれ補正 を行う方式においては、ファインダ接眼窓を覼いて撮影すると、撮影者は、そのぶれ 補正の効果を確認することができない。し力しながら、液晶モニタを用いて撮影する 際には、ぶれ補正の効果を確認することができるので、その効果はより一層顕著にな る。この場合、操作スィッチ 31をカメラ本体 1側に設けるのが好ましい。
ぶれ補正の方式は、光学式に限定されるものではなぐ電子式のぶれ補正であつ ても良い。
(3)
モニタ撮影モード時の焦点合わせについては、以下の方式を用いても良い。すな わち、焦点検出用ユニット 5を用いる替わりに、撮像センサ 11にて生成された画像デ ータのコントラスト値を用いてオートフォーカス動作を行うことも可能である。この方式 を用いることにより、焦点合わせ時に、クイックリターンミラー駆動制御部 29により、ク イツタリターンミラー 4を光路 X内の定位置に戻す必要がなくなる。このため、焦点合 わせの時間を短縮することが可能となる。
(4)
前述の第 3実施形態では、液晶モニタ 16の開状態および閉状態に対応する 2種類 のぶれ補正ユニット 47の制御特性が設けられている。し力し、液晶モニタ 16の角度 に応じて制御特性を変化させてもよい。この場合、図 14および図 15に示すように、例 えば液晶モニタ 16の角度を検出する角度検出部 73がカメラ本体 1に設けられている 。フラッシュ ROM36には角度検出部 73の出力に応じた複数の制御信号用テープ ルあるいは制御信号用テーブルを算出可能な関係式などが格納されて 、る。角度検 出部 73の出力に応じて、レンズマイコン 20により制御信号用テーブルが選択あるい は算出される。図 12に示す制御特性の場合、ぶれ周波数 7〜9 (Hz)の間で最適ぶ
れ周波数が変化することになる。液晶モニタ 16の角度が大きくなるほど最適ぶれ周 波数が大きくなる方が好ましい。この場合、前述の第 3実施形態に比べて、使用状態 に応じてより最適なぶれ補正を行うことが可能となる。
また、液晶モニタ 16のみ着脱可能な構成であっても良い。この場合、液晶モニタ 1 6が装着されて 、る状態および取り外されて 、る状態でぶれ補正ユニット 47の制御 特性が選択される。
(5)
前述の第 1および第 2実施形態においては、液晶モニタ 16に表示する画像につい ては、撮像センサ 11を用いて行っている。しかし、他の撮像センサをファインダ光学 系内に配置し、その画像を液晶モニタ 16に表示させる方式であっても良い。
(6)
前述のように、動画撮影時には、撮像センサ 11にて生成された画像データのコント ラスト値を用いてオートフォーカス動作を行っても良 、。この方式を用いることにより、 焦点合わせの時間を短縮することが可能となる。
産業上の利用可能性
本発明に係るカメラシステムは、複数の撮影モードを有するカメラシステムとして有 用である。
Claims
[1] 被写体を撮像するカメラシステムであって、
撮像部と、
前記被写体の光学像を前記撮像部に導く撮像光学系と、
前記撮像光学系からの光を観察可能な観察光学系と、
前記撮像部により取得された画像を表示可能な表示部と、
前記撮像光学系からの光を前記観察光学系に導く第 1の状態と、前記撮像光学系 からの光を前記撮像部に導く第 2の状態と、を有する可動式の反射ミラーと、 前記反射ミラーの前記第 1の状態および第 2の状態を切り換える反射ミラー切換部 と、
前記カメラシステムの動きを検出する動き検出部と、
前記動き検出部により検出された動きに応じて、前記カメラシステムの動きに起因し て発生する撮像画像のぶれを補正するぶれ補正部と、
前記反射ミラー切換部により前記反射ミラーが前記第 2の状態に設定されている場 合に、前記ぶれ補正部に補正動作を行わせる補正起動部と、
を備えたカメラシステム。
[2] 被写体を撮像するカメラシステムであって、
撮像部と、
前記被写体の光学像を前記撮像部に導く撮像光学系と、
前記撮像光学系からの光を観察可能な観察光学系と、
前記撮像部により取得された画像を表示可能な表示部と、
前記撮像光学系からの光を前記観察光学系に導く第 1の状態と、前記撮像光学系 からの光を前記撮像部に導く第 2の状態と、を有する可動式の反射ミラーと、 前記反射ミラーの前記第 1の状態および第 2の状態を切り換える反射ミラー切換部 と、
前記カメラシステムの動きを検出する動き検出部と、
前記動き検出部により検出された動きに応じて、前記カメラシステムの動きに起因し て発生する画像のぶれを補正するぶれ補正部と、
前記反射ミラーの状態に応じて、前記検出された動きに対する前記ぶれ補正部の 制御特性として異なる制御特性を選択可能な選択部と、
を備えたカメラシステム。
[3] 前記検出された動きに対する前記ぶれ補正部の制御特性を決定する第 1および第
2の制御特性情報を記憶する記憶部をさらに備え、
前記選択部は、前記反射ミラーが前記第 1の状態である場合に、前記ぶれ補正部 が適用する制御特性として前記第 1の制御特性情報を選択し、前記反射ミラーが前 記第 2の状態である場合に、前記ぶれ補正部が適用する制御特性として前記第 2の 制御特性情報を選択する、
請求項 2に記載のカメラシステム。
[4] 前記第 1および第 2の制御特性情報には、前記検出された動きの周波数と補正効 果との関係が含まれており、
前記第 2の制御特性情報は、前記第 1の制御特性情報に比べて、前記補正効果が 最大となる動きの周波数が高 、、
請求項 3に記載のカメラシステム。
[5] 前記表示部は、前記撮像光学系の光軸に対して角度が異なる複数の姿勢をとるこ とが可能である、
前記記憶部は、第 3の制御特性情報をさらに記憶しており、
前記反射ミラーが前記第 2の状態である場合、前記選択部は、前記表示部の姿勢 に応じて前記第 2および第 3の制御特性情報のいずれか一方を選択する、 請求項 4に記載のカメラシステム。
[6] 前記表示部は、前記撮像光学系の光軸に対して表示面が略直交する第 1の姿勢と
、前記撮像光学系の光軸に対して前記表示面が傾斜している第 2の姿勢と、をとるこ とが可能であり、
前記選択部は、前記表示部が前記第 1の姿勢である場合に、前記ぶれ補正部が 適用する制御特性として前記第 2の制御特性情報を選択し、前記表示部が前記第 2 の状態である場合に、前記ぶれ補正部が適用する制御特性として前記第 3の制御特 性情報を選択する、
請求項 5に記載のカメラシステム。
前記撮像部において、動画を撮影可能な動画撮影モードと、静止画を撮影可能な 静止画撮影モードと、を切換可能なモード切換部をさらに備え、
前記選択部は、前記撮影モードに応じて、前記検出された動きに対する前記ぶれ 補正部の制御特性として異なる制御特性を選択する、
請求項 2に記載のカメラシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/092,886 US7826731B2 (en) | 2005-11-11 | 2006-11-09 | Camera system |
JP2007544179A JP4499796B2 (ja) | 2005-11-11 | 2006-11-09 | カメラシステム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-327775 | 2005-11-11 | ||
JP2005327775 | 2005-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007055280A1 true WO2007055280A1 (ja) | 2007-05-18 |
Family
ID=38023281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/322374 WO2007055280A1 (ja) | 2005-11-11 | 2006-11-09 | カメラシステム |
Country Status (4)
Country | Link |
---|---|
US (1) | US7826731B2 (ja) |
JP (1) | JP4499796B2 (ja) |
CN (1) | CN100556081C (ja) |
WO (1) | WO2007055280A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012234196A (ja) * | 2012-07-19 | 2012-11-29 | Olympus Imaging Corp | 撮像装置および撮像装置の制御方法 |
JP2012253795A (ja) * | 2007-07-09 | 2012-12-20 | Panasonic Corp | デジタル一眼レフカメラ |
US8736691B2 (en) | 2006-02-20 | 2014-05-27 | Panasonic Corporation | Image pickup apparatus to control an exposure time based on motion of a detected optical image |
JP2020118944A (ja) * | 2019-01-28 | 2020-08-06 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 制御装置、撮像装置、移動体、制御方法、及びプログラム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8159542B2 (en) * | 2005-11-11 | 2012-04-17 | Panasonic Corporation | Interchangeable lens, camera system, and its control method |
US20100272423A1 (en) * | 2009-04-23 | 2010-10-28 | Panasonic Corporation | Shake correcting apparatus and imaging apparatus having the same |
JP5775659B2 (ja) * | 2009-05-07 | 2015-09-09 | オリンパス株式会社 | 撮像装置および撮像装置におけるモード切換え方法 |
JP5574157B2 (ja) * | 2010-03-16 | 2014-08-20 | 株式会社リコー | 撮像装置の組み立て方法および撮像装置 |
JP5984574B2 (ja) * | 2012-08-14 | 2016-09-06 | キヤノン株式会社 | 撮像システム及びその制御方法、撮像装置 |
WO2014115197A1 (ja) * | 2013-01-24 | 2014-07-31 | パナソニック株式会社 | 撮像装置、検出装置 |
JP6682336B2 (ja) * | 2016-04-20 | 2020-04-15 | オリンパス株式会社 | カメラシステム、及びカメラ本体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001125173A (ja) * | 1999-10-26 | 2001-05-11 | Minolta Co Ltd | デジタルカメラ |
JP2003222922A (ja) * | 2002-01-31 | 2003-08-08 | Minolta Co Ltd | カメラ |
JP2004159051A (ja) * | 2002-11-06 | 2004-06-03 | Minolta Co Ltd | 手ぶれ補正装置及び撮像装置 |
JP2005128092A (ja) * | 2003-10-21 | 2005-05-19 | Olympus Corp | カメラ |
JP2005175897A (ja) * | 2003-12-11 | 2005-06-30 | Konica Minolta Photo Imaging Inc | 撮像装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3415922B2 (ja) | 1994-05-10 | 2003-06-09 | オリンパス光学工業株式会社 | カメラのぶれ補正装置 |
US5771405A (en) * | 1995-09-07 | 1998-06-23 | Nikon Corporation | Shake correcting apparatus |
JPH11282037A (ja) | 1998-03-31 | 1999-10-15 | Canon Inc | 像振れ補正機能付き装置、一眼レフカメラ用交換レンズ、及び一眼レフカメラシステム |
JP4142205B2 (ja) * | 1999-05-19 | 2008-09-03 | オリンパス株式会社 | 電子スチルカメラ |
JP3460643B2 (ja) * | 1999-09-29 | 2003-10-27 | ミノルタ株式会社 | デジタルカメラ |
US7064777B2 (en) * | 2000-08-31 | 2006-06-20 | Canon Kabushiki Kaisha | Blur correction aparatus, control apparatus to be used in a blur correction apparatus, image taking apparatus, control method to be used in these apparatuses and computer program product to be used with these apparatuses |
JP2002303909A (ja) * | 2001-04-06 | 2002-10-18 | Canon Inc | 像振れ補正機能付き撮影装置 |
JP2002311470A (ja) * | 2001-04-10 | 2002-10-23 | Matsushita Electric Ind Co Ltd | 画像動き補正装置 |
JP4738672B2 (ja) * | 2001-09-03 | 2011-08-03 | キヤノン株式会社 | 像振れ補正機能付カメラ |
JP2005086669A (ja) * | 2003-09-10 | 2005-03-31 | Olympus Corp | カメラ |
-
2006
- 2006-11-09 CN CNB2006800393771A patent/CN100556081C/zh not_active Expired - Fee Related
- 2006-11-09 JP JP2007544179A patent/JP4499796B2/ja not_active Expired - Fee Related
- 2006-11-09 US US12/092,886 patent/US7826731B2/en not_active Expired - Fee Related
- 2006-11-09 WO PCT/JP2006/322374 patent/WO2007055280A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001125173A (ja) * | 1999-10-26 | 2001-05-11 | Minolta Co Ltd | デジタルカメラ |
JP2003222922A (ja) * | 2002-01-31 | 2003-08-08 | Minolta Co Ltd | カメラ |
JP2004159051A (ja) * | 2002-11-06 | 2004-06-03 | Minolta Co Ltd | 手ぶれ補正装置及び撮像装置 |
JP2005128092A (ja) * | 2003-10-21 | 2005-05-19 | Olympus Corp | カメラ |
JP2005175897A (ja) * | 2003-12-11 | 2005-06-30 | Konica Minolta Photo Imaging Inc | 撮像装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8736691B2 (en) | 2006-02-20 | 2014-05-27 | Panasonic Corporation | Image pickup apparatus to control an exposure time based on motion of a detected optical image |
JP2012253795A (ja) * | 2007-07-09 | 2012-12-20 | Panasonic Corp | デジタル一眼レフカメラ |
US8928761B2 (en) | 2007-07-09 | 2015-01-06 | Panasonic Corporation | Digital camera |
JP2012234196A (ja) * | 2012-07-19 | 2012-11-29 | Olympus Imaging Corp | 撮像装置および撮像装置の制御方法 |
JP2020118944A (ja) * | 2019-01-28 | 2020-08-06 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 制御装置、撮像装置、移動体、制御方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007055280A1 (ja) | 2009-04-30 |
CN101292517A (zh) | 2008-10-22 |
US7826731B2 (en) | 2010-11-02 |
CN100556081C (zh) | 2009-10-28 |
US20090097832A1 (en) | 2009-04-16 |
JP4499796B2 (ja) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4499796B2 (ja) | カメラシステム | |
JP5919543B2 (ja) | デジタルカメラ | |
JP5101506B2 (ja) | カメラシステムおよびカメラ本体 | |
JP3861815B2 (ja) | 手振れ補正機能付きカメラ | |
US8040381B2 (en) | Image blur correction for a camera system and display of comparison of camera and lens blur correction specifications | |
JP6486656B2 (ja) | 撮像装置 | |
JP2003172961A (ja) | ブレ補正装置及び撮影装置 | |
JP2005215388A (ja) | 交換レンズ及びそれを用いたカメラシステム | |
JP5932410B2 (ja) | 撮像装置 | |
US20080165271A1 (en) | Image pickup apparatus | |
JP2008040085A (ja) | カメラシステム、カメラ本体およびカメラシステムの制御方法 | |
JP2006126667A (ja) | カメラシステム、カメラおよび交換レンズ | |
JP2009204628A (ja) | 撮像装置 | |
JP2008070566A (ja) | カメラシステム、カメラ本体、交換レンズユニットおよび像ブレ補正方法 | |
JP2006133265A (ja) | カメラシステム | |
JP4845653B2 (ja) | カメラシステム、カメラ本体、交換レンズユニットおよび像ブレ補正方法 | |
JP2010145493A (ja) | カメラシステム | |
JP3919783B2 (ja) | 電子スチルカメラ | |
JP2006171654A (ja) | 撮影装置 | |
JP2010085440A (ja) | 撮影装置及びカメラシステム | |
JP5053873B2 (ja) | 撮像装置 | |
JP7418116B2 (ja) | ブレ補正制御装置、撮像装置及びブレ補正制御方法 | |
JP2007043491A (ja) | デジタルカメラ | |
JP2009015184A (ja) | 撮像装置 | |
JPH1042188A (ja) | 電子スチルカメラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680039377.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12092886 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007544179 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06823261 Country of ref document: EP Kind code of ref document: A1 |