WO2007049516A1 - 冷却システムおよびその制御方法並びに自動車 - Google Patents

冷却システムおよびその制御方法並びに自動車 Download PDF

Info

Publication number
WO2007049516A1
WO2007049516A1 PCT/JP2006/320938 JP2006320938W WO2007049516A1 WO 2007049516 A1 WO2007049516 A1 WO 2007049516A1 JP 2006320938 W JP2006320938 W JP 2006320938W WO 2007049516 A1 WO2007049516 A1 WO 2007049516A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive system
flow rate
cooling medium
drive
cooling
Prior art date
Application number
PCT/JP2006/320938
Other languages
English (en)
French (fr)
Inventor
Takashi Suzuki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/992,747 priority Critical patent/US8151917B2/en
Priority to CN2006800396017A priority patent/CN101296829B/zh
Priority to EP06821999.7A priority patent/EP1942038B1/en
Publication of WO2007049516A1 publication Critical patent/WO2007049516A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a cooling system, a control method therefor, and an automobile.
  • this type of cooling system includes a circulation path through which a refrigerant for cooling an engine circulates, a branch path that branches from the circulation path and circulates the refrigerant to a motor and an inverter, and a refrigerant in the circulation path.
  • a pump equipped with an electric pump for pressure-feeding for example, see Patent Document 1.
  • the engine and motor are cooled appropriately by controlling the electric pump so that the flow rate of the refrigerant increases as the temperature of the refrigerant passing through the engine increases and the temperature of the refrigerant passing through the motor increases. I can do it.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-227644
  • the engine or motor may not be properly cooled depending on the operating state of the engine or motor.
  • the power to control the electric pump so that the flow rate of the refrigerant increases to cool the engine. May become cooled.
  • the power to control the electric pump to increase the flow rate of refrigerant to cool the motor.
  • the flow rate of refrigerant flowing to the engine increases. May overcool. Therefore, in such a case, the engine and the motor cannot be properly cooled.
  • a cooling system, a control method therefor, and an automobile of the present invention have an object to more appropriately cool a drive device having a plurality of drive systems including a drive source that generates heat. Further, the cooling system, the control method thereof, and the automobile of the present invention have a drive device.
  • One of the objectives is to suppress the increase in power consumption of the electric pump that pumps the cooling medium for cooling.
  • the cooling system, the control method thereof, and the automobile of the present invention employ the following means in order to achieve at least a part of the above-described object.
  • a cooling system for a drive device having a first drive system including a first drive source that generates heat and a second drive system including a second drive source that generates heat, the first drive system A circulation flow path for circulating the cooling medium, a second drive system flow path for bypassing the first drive system in the circulation flow path and circulating the cooling medium to the second drive system, and A flow distribution adjusting means for adjusting a flow distribution between a flow rate of the cooling medium to be circulated to the first drive system and a flow rate of the cooling medium to be circulated to the second drive system by bypassing the first drive system; and the circulation Electric pressure feeding means for pumping the cooling medium to the flow path, refrigerant temperature detection means for detecting the temperature of the cooling medium, first state detection means for detecting the driving state of the first drive system, and the second drive Second state detecting means for detecting the driving state of the system, the detected temperature of the cooling medium and the detection
  • the first required flow rate required for cooling the first drive system is set based on the drive state of the first drive system,
  • the required flow rate setting means for setting the second required flow rate required for cooling the second drive system based on the drive state, the flow rate of the cooling medium circulating to the first drive system, and the second drive system circulates to the second drive system
  • the gist of the invention is that it comprises a control means for controlling the flow rate distribution adjusting means and the electric pressure feeding means so that the flow rate of the cooling medium becomes the set first required flow rate and second required flow rate.
  • the first required flow rate required for cooling the first drive system is set based on the temperature of the coolant and the driving state of the first drive system, and the temperature of the coolant and the second
  • the second required flow rate required for cooling the second drive system is set based on the drive state of the drive system, and the flow rate of the cooling medium circulating to the first drive system and the flow rate of the cooling medium circulating to the second drive system
  • the flow distribution adjusting means and the electric pressure feeding means are controlled so that the first required flow rate and the second required flow rate are set to.
  • a cooling medium with a first required flow rate required for cooling the first drive system circulates in the first drive system
  • a cooling medium with a second required flow rate required for cooling the second drive system circulates in the second drive system.
  • the first drive system and the second drive system can be appropriately cooled.
  • the cooling medium of the first required flow rate required for cooling the first drive system is circulated to the first drive system of the electric pressure feeding means, and the second required flow rate required for cooling the second drive system is circulated to the second drive system. Since the cooling medium is controlled to circulate, it is possible to suppress an increase in the power consumption of the electric pumping means compared to the case where the cooling medium is pumped to the first drive system or the second drive system at a flow rate higher than that required for cooling. it can.
  • the first drive system includes an internal combustion engine as the first drive source, and the second drive system drives an electric motor as the second drive source and the electric motor.
  • the first state detecting means is means for detecting the rotational speed and torque of the internal combustion engine as the driving state of the first drive system
  • the second state detecting means is the first state detecting means. It may be a means for detecting a current value flowing in the drive circuit as a drive state of the two drive system. If it carries out like this, an internal combustion engine, an electric motor, and its drive circuit can be cooled appropriately.
  • the refrigerant temperature detecting means is attached upstream of the first drive system in the circulation flow path, and heat exchange of the cooling medium with outside air is performed.
  • a bypass flow path for bypassing the cooling medium from the downstream side of the first drive system to the upstream side of the refrigerant temperature detection means,
  • a cooling medium that is provided at the junction of the circulation channel and the bypass channel and that circulates to the radiator and flows through the junction when the temperature of the cooling medium flowing through the junction is equal to or higher than a predetermined temperature.
  • Switching means for switching the flow path of the cooling medium so that the cooling medium circulates bypassing the radiator when the temperature of the cooling medium is lower than the predetermined temperature.
  • the cooling medium flowing through the junction between the circulation flow path and the bypass flow path when the cooling medium flowing through the junction between the circulation flow path and the bypass flow path is lower than a predetermined temperature, the cooling medium force s bypasses the circulator and circulates. It is possible to suppress overcooling of the first drive system and the second drive system.
  • the cooling medium flowing through the junction of the circulation flow path and the bypass flow path is at a predetermined temperature or higher, the cooling medium circulates to the radiator, so the radiator releases heat of the cooling medium to promote the first drive system and the second
  • the flow rate of the cooling medium circulating in the drive system can be reduced, and an increase in power consumption of the electric pumping means can be suppressed.
  • An automobile of the present invention includes a drive device having a first drive system including a first drive source that generates heat and a second drive system including a second drive source that generates heat, and cooling the drive device.
  • the cooling system of the present invention according to any of the above-described embodiments, that is, basically, a first drive system including a first drive source that generates heat and a second drive system including a second drive source that generates heat
  • a cooling system for a drive device comprising: a circulation channel for circulating a cooling medium in the first drive system; and bypassing the first drive system in the circulation channel to pass the cooling medium to the first drive system. 2 a second drive system flow path circulating in the drive system;
  • a flow rate distribution adjusting means for adjusting a flow rate distribution between a flow rate of the coolant circulated to the first drive system and a flow rate of the coolant circulated to the second drive system bypassing the first drive system; and the circulation Electric pressure feeding means for pumping the cooling medium to the flow path, refrigerant temperature detecting means for detecting the temperature of the cooling medium, first state detecting means for detecting the driving state of the first drive system, and the second drive Second state detecting means for detecting a driving state of the system, a first temperature necessary for cooling the first driving system based on the detected temperature of the cooling medium and the detected driving state of the first driving system.
  • a cooling system for controlling the flow rate distribution adjusting means and the electric pressure feeding means so that the amount and the flow rate of the cooling medium circulating to the second drive system become the set first required flow rate and second required flow rate.
  • the automobile of the present invention includes the cooling system of the present invention according to any one of the aspects described above, the effects exhibited by the cooling system of the present invention, for example, the first drive system and the second drive system are appropriately set.
  • the effect of being able to cool and the effect of being able to suppress the increase in the power consumption of the electric pumping means can be exhibited.
  • a control method for a cooling system of the present invention includes a circulation flow path for circulating a cooling medium in a first drive system including a first drive source that generates heat, and the first drive system in the circulation flow path.
  • a cooling system control method comprising: a flow distribution adjusting unit; and an electric pumping unit that pumps a cooling medium to the circulation flow path, based on a temperature of the cooling medium and a driving state of the first drive system.
  • the first required flow rate required for cooling the first drive system is set, and the second required flow rate required for cooling the second drive system based on the temperature of the cooling medium and the drive state of the second drive system. And the flow rate distribution adjustment so that the flow rate of the cooling medium circulating to the first drive system and the flow rate of the cooling medium circulating to the second drive system become the set first required flow rate and second required flow rate.
  • the gist is to control the means and the electric pumping means.
  • the first required flow rate required for cooling the first drive system is set based on the temperature of the coolant and the drive state of the first drive system, and the temperature of the coolant is set.
  • the second required flow rate required for cooling the second drive system is set based on the drive state of the second drive system and the flow rate of the cooling medium circulating to the first drive system and the cooling medium circulating to the second drive system.
  • the flow distribution adjusting means and the electric pumping means are controlled so that the first flow rate and the second required flow rate are the same.
  • the first required flow rate cooling medium required for cooling the first drive system circulates in the first drive system
  • the second required flow rate cooling medium required for cooling the second drive system circulates in the second drive system.
  • the first drive system and the second drive system can be cooled appropriately.
  • the first required flow rate of the cooling medium required for cooling the first drive system circulates in the first drive system of the electric pumping means, and the second required flow required for cooling the second drive system in the second drive system. Since the amount of cooling medium is controlled to circulate, the increase in power consumption of the electric pumping means is suppressed compared to the case where the cooling medium exceeding the flow rate required for cooling is pumped to the first drive system and the second drive system. Can do.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 10 as an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of a flow control routine executed by the hybrid ECU 80.
  • FIG. 3 is an explanatory diagram showing an example of an engine required flow rate setting map.
  • FIG. 4 is an explanatory diagram showing an example of a necessary motor flow rate setting map.
  • FIG. 5 is an explanatory diagram showing an example of a relationship between a duty ratio setting map at a certain valve opening and a flow rate of a coolant circulating in the motor drive system 22;
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 10 equipped with a cooling system 50 as an embodiment of the present invention.
  • the hybrid vehicle 10 of the embodiment includes a planetary gear mechanism 16 having a carrier connected to the crankshaft 13 of the engine 12 and the engine 12 and a ring gear connected to a drive shaft connected to the axles of the front wheels 14a and 14b. Electricity is exchanged with motors MG1 and MG2 via motor MG1, which has a rotating shaft connected to the sun gear of mechanism 16, motor MG2, which has a rotating shaft connected to the ring gear of planetary gear mechanism 16, and inverters 18, 19.
  • hybrid ECU 30 composed of a battery 20 that cools, a cooling system 50 that cools a motor drive system 22 composed of an engine 12 and motors MG1, MG2, inverters 18 and 19, and electronic control for a hybrid that controls the entire vehicle Unit (hereinafter referred to as hybrid ECU) 80.
  • the hybrid vehicle 10 includes a heater 70 that supplies warm-up to a passenger compartment (not shown).
  • the engine 12 is controlled by an engine electronic control unit (hereinafter referred to as engine ECU) 24.
  • engine ECU engine electronic control unit
  • the motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as “motor ECU”) 26 that controls switching of inverters 18 and 19 as drive circuits thereof.
  • the notch 20 is managed by a motor ECU 26.
  • the cooling system 50 includes a circulation channel 32 that circulates the refrigerant in the engine 12, an electric pump 46 that pumps and circulates the refrigerant to the circulation channel 32, and heat that cools the refrigerant by heat exchange with the outside air. And Rajeta 48 configured as an exchange.
  • the circulation flow path 32 includes a motor drive system flow path 34 that bypasses the refrigerant upstream of the engine 12 and circulates it to the motor drive system 22, and a part of the refrigerant downstream of the engine 12 to the heater 70.
  • a heater flow path 36 that circulates back to the upstream side of the engine 12 and a bypass flow path 38 that circulates the refrigerant from the downstream side of the engine 12 to the upstream side of the engine 12 by bypassing the radiator 48 are branched. .
  • a flow distribution adjusting valve 40 is attached to the branch of the circulation flow path 32 and the motor drive system flow path 34. It has been.
  • the flow control / distribution valve 40 includes a rotary valve mechanism that is rotated by a drive motor (not shown) that is driven and controlled by the hybrid ECU 80, and is connected to the valve opening of the circulation flow path 32 and the motor drive system flow path 34. The flow rate distribution between the flow rate of the refrigerant circulating in the engine 12 and the flow rate of the refrigerant circulating in the motor drive system 22 bypassing the engine 12 is adjusted.
  • the flow control / distribution valve 40 fully closes the valve opening to the circulation flow path 32 and fully opens the valve opening to the motor drive system flow path 34 to bypass the engine 12 and supply the refrigerant to the motor. Without circulating the refrigerant to the motor drive system 22 without circulating it to the drive system 22 or fully opening the valve opening to the motor drive system flow path 34 and opening the valve opening to the circulation flow path 32 fully. Circulate the refrigerant in the engine 12 and adjust the valve opening to the circulation flow path 32 and the valve opening to the motor drive system flow path 34 to circulate the refrigerant in both the engine 12 and the motor drive system 22. .
  • a thermostat valve 42 is attached to the junction of the circulation channel 32 and the binos channel 38.
  • the thermostat valve 42 When the temperature of the flowing refrigerant is equal to or higher than a predetermined value, the thermostat valve 42 fully closes the bypass flow path 38 and fully opens the flow path from the radiator 48 to circulate the refrigerant to the radiator 48 so that the flowing refrigerant flows.
  • the flow path from the radiator 48 When the temperature is lower than the predetermined value, the flow path from the radiator 48 is fully closed and the bypass flow path 38 is fully opened to switch the flow path so that the refrigerant bypasses the radiator 48 and circulates.
  • the electric pump 46 operates when a drive motor (not shown) is driven and controlled by the hybrid ECU 80, and circulates a refrigerant having a flow rate according to the duty ratio as an on / off time ratio of the drive motor. To pump.
  • the hybrid ECU 80 is configured as a microprocessor centered on a CPU (not shown). In addition to the CPU, a ROM that stores a processing program, a RAM that temporarily stores data, and an input (not shown). An output port and a communication port; The hybrid ECU 80 is mounted near the entrance of the engine 12 in the circulation flow path 32, detects the refrigerant temperature Tw, the refrigerant temperature Tw from the refrigerant temperature sensor 32a, and the shift from the shift position sensor 92 that detects the operation position of the shift lever 91.
  • the hybrid ECU 80 is connected to the engine ECU 24 and the motor ECU 26 via a communication port, and exchanges various control signals and data with the engine ECU 24 and the motor ECU 26.
  • the hybrid vehicle 10 of the embodiment configured in this way calculates a required torque to be output to the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 93 by the driver,
  • the engine 12, the motor MG1, and the motor MG2 are operation-controlled so that the required power corresponding to this required torque is output to the drive shaft.
  • the engine 12 and motor MG1 and motor MG2 are operated and controlled by controlling the engine 12 so that power corresponding to the required power is output from the engine 12 and all the power output from the engine 12 is the planetary gear mechanism 16
  • the motor MG1 and the motor MG2 are torque-converted and output to the drive shaft. The torque is converted to output to the drive shaft.
  • the torque conversion operation mode and the required power and the power required for charging / discharging the battery 20 are met.
  • the engine 12 is operated and controlled so that power is output from the engine 12, and all or part of the power output from the engine 12 with charge / discharge of the battery 20 is planetary gear mechanism 16, motor MG1, and motor MG2.
  • Charge / discharge operation mode for controlling the drive of motor MG1 and motor MG2 so that the required power is output to the drive shaft with torque conversion due to
  • FIG. 2 is a flowchart showing an example of a flow control routine executed by the hybrid ECU 80. This routine is repeatedly executed every predetermined time (for example, every several msec).
  • the CPU (not shown) of the hybrid ECU 80 outputs the refrigerant temperature Tw from the refrigerant temperature sensor 32a, the rotational speed Ne of the engine 12, and the engine 12 A process for inputting data necessary for control such as the torque Te being applied and the inverter current Iinv flowing through the inverters 18 and 19 is executed (step S100).
  • the rotational speed Ne of the engine 12 is calculated based on the signal from the crank position sensor 13a attached to the crankshaft 13, and is input from the engine ECU 24 by communication.
  • the torque Te of the engine 12 is calculated based on the load torque of the motor MG1 calculated from the drive current of the motor MG1 and the gear ratio p of the planetary gear mechanism 16, and is input as the torque Te. Furthermore, the inverter current Iinv is the larger of the detection value of the current sensor 21a that detects the DC current of the inverter 18 and the detection value of the current sensor 21b that detects the direct current of the inverter 19 that is attached to the power line 21.
  • the inverter current Ii nv is set and input from the motor ECU 26 via communication.
  • the flow rate of the refrigerant necessary for cooling the engine 12 is calculated.
  • Set gin side required flow rate Vwe (step S110).
  • the engine-side required flow rate Vwe is not shown in the hybrid ECU 80 as a map for setting the required engine flow rate by predetermining the relationship between the product of the rotational speed Ne and the torque Te of the engine 12 and the refrigerant temperature Tw. This is stored in the ROM, and when the product of the rotational speed Ne of the engine 12 and the torque Te and the refrigerant temperature Tw are given, the stored map force corresponding to the required engine flow rate Vwe is derived and set.
  • Fig. 3 shows an example of the required engine flow rate setting map.
  • the engine required flow rate setting map is set such that the engine-side required flow rate Vwe increases as the product of the rotational speed Ne and the torque Te of the engine 12 increases and as the refrigerant temperature Tw increases.
  • the motor side required flow rate Vwm is set as the refrigerant flow rate required to cool the motor drive system 22 (Ste S120).
  • the motor-side required flow rate Vwm is not stored in the ROM of the hybrid ECU 80 as a motor required flow rate setting map by predetermining the relationship between the inverter current Iinv and the refrigerant temperature Tw!
  • the motor-side required flow rate Vwm corresponding to the stored map camera is derived and set.
  • Figure 4 shows an example of the required motor flow setting map. Motor required In the flow rate setting map, the motor-side required flow rate Vwm is set to increase as the inverter current Iinv increases and the refrigerant temperature Tw increases.
  • the duty ratio of the electric pump 46 is set so that the engine-side required flow rate Vwe flows through the engine 12, and the drive motor (not shown) of the electric pump 46 is driven and controlled with the set duty ratio (step). S140), this routine is terminated.
  • the duty ratio of the driving motor of the electric pump 46 is determined by the valve opening A, the flow rate of the refrigerant circulating to the engine 12 at the valve opening A, and the duty ratio D of the driving motor (not shown) of the electric pump 46.
  • FIG. 5 shows an example of the relationship between the duty ratio setting map at the valve opening and the flow rate of the refrigerant circulating in the motor drive system 22.
  • the flow rate ratio between the flow rate of the refrigerant circulating through the engine 12 and the flow rate of the refrigerant circulating through the motor drive system 22 is the engine side required flow rate Vwe and the motor side required flow rate Vwm. Therefore, if the duty ratio is set to the value D so that the engine-side required flow rate Vwe refrigerant flows through the engine 12, the flow rate of the refrigerant circulating to the motor drive system 22 is the motor-side required flow rate Vwm. Become.
  • the electric pump 46 pumps the refrigerant having the sum of the engine-side required flow rate Vwe and the motor-side required flow rate Vwm.
  • the refrigerant with the required engine-side flow rate Vwe circulates in the engine 12
  • the refrigerant with the required motor-side flow rate Vwm circulates in the motor drive system 22. Therefore, the engine 12 and the motor drive system 22 are appropriately cooled to It can suppress reaching to cooling.
  • the electric pump 46 pumps the refrigerant at a flow rate necessary for cooling the engine 12 and the motor drive system 22, more than necessary refrigerant is circulated through the engine 12 and the motor drive system 22. Compared to the above, an increase in power consumption of the electric pump 46 can be suppressed.
  • the thermostat valve 42 switches the flow path so that it circulates bypassing the refrigerant radiator 48 when the flowing refrigerant is below a predetermined temperature, the engine 12 and the motor drive system 22 are excessive. Cooling can be suppressed.
  • the thermostat valve 42 switches the flow path so that it circulates to the refrigerant carraget 48 when the flowing refrigerant is at a predetermined temperature or higher, so the heat dissipation of the refrigerant is promoted and the flow rate of the refrigerant pumped from the electric pump 46 is reduced. Therefore, an increase in power consumption of the electric pump 46 can be suppressed.
  • the flow rate of the refrigerant circulating to the engine 12 side becomes the engine side required flow rate Vwe and the flow rate of the coolant circulating to the motor drive system 22 is the motor side required flow rate. Since the flow control / distribution valve 40 and the electric pump 46 are controlled so as to be Vwm, the engine 12 and the motor drive system 22 can be appropriately cooled. In addition, an increase in power consumption of the electric pump 46 can be suppressed as compared with the case where more than the necessary amount of refrigerant flows through the engine 12 and the motor drive system 22.
  • the engine-side required flow rate Vwe is set based on the detected rotational speed Ne, torque Te, and refrigerant temperature Tw by detecting the rotational speed Ne and torque Te of the engine 12. For example, the temperature of the refrigerant immediately after passing through the engine 12 is detected, and the refrigerant temperature and the refrigerant temperature sensor 32a immediately after passing through the engine 12 are detected.
  • the engine side required flow rate Vwe may be set based on the detected refrigerant temperature Tw.
  • the inverter current Iinv is detected, and the motor-side required flow rate Vwm is set based on the detected inverter current Iinv and the refrigerant temperature Tw. Therefore, for example, the refrigerant temperature detected immediately after passing through the motor MG1 and the refrigerant temperature detected immediately after passing through the motor MG1 and the refrigerant temperature sensor 32a are detected.
  • the motor side required flow rate Vwm may be set based on the temperature Tw.
  • the refrigerant temperature sensor 32a is attached near the entrance of the engine 12.
  • the refrigerant temperature sensor 32a is Since it is only necessary to detect the temperature of the refrigerant flowing into the inverter drive system 22, the refrigerant may be attached between the radiator 48 and the flow regulating / distributing valve 40 or between the flow regulating / distributing valve 40 and the inverter 18.
  • bypass passage 38 for circulating the refrigerant through the radiator 48 in the circulation passage 32, the thermostat valve 42, and the heater passage 36 for circulating the refrigerant to the heater 70 are provided! / ⁇ !!
  • the motor drive system flow path 34 is a force that causes the refrigerant to circulate through the motors MG1, MG2, inverters 18, 19, and the motors MG1, MG2, inverters 18, 19 As long as at least one of them circulates, for example, a flow path that circulates only the motor MG1 or only the inverter 18 may be circulated.
  • the cooling system that cools the drive device including the engine, the two motors, and the drive circuit that drives each motor is exemplified as the cooling system.
  • the drive that generates two heats is used.
  • the present invention can be applied to any drive device including a power source, for example, a drive device including an engine, a single motor, and a drive circuit for driving the motor.
  • the present invention can be used in the manufacturing industry of cooling systems and automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

エンジンに冷媒を循環させる循環流路と、この循環流路から分岐してモータ駆動系に冷媒を循環させるモータ駆動系用循環流路と、循環流路とモータ駆動系用循環流路との分岐に取り付けられた流量分配調節弁と、循環流路に冷媒を圧送する電動ポンプとを備える冷却システムにおいて、エンジンの回転数NeとトルクTeと冷媒温度Twとに基づいてエンジン側必要流量Vweを設定し(ステップS110)、モータ駆動系のインバータ電流Iinvと冷媒温度とに基づいてモータ側必要流量Vweを設定し(ステップS120)、エンジン側に流れる冷媒の流量がエンジン側必要流量Vweとなると共にモータ,インバータ側に流れる冷媒の流量がモータ側必要流量Vwmとなるよう流量分配調節弁と電動ポンプとを制御する(ステップS130,ステップS140)。

Description

明 細 書
冷却システムおよびその制御方法並びに自動車
技術分野
[0001] 本発明は、冷却システムおよびその制御方法並びに自動車に関する。
背景技術
[0002] 従来、この種の冷却システムとしては、エンジンを冷却する冷媒が循環する循環流 路と、循環流路から分岐して冷媒をモータやインバータに循環させる分岐路と、循環 流路に冷媒を圧送する電動ポンプとを備えるものが提案されている(例えば、特許文 献 1参照)。このシステムでは、エンジンを通過する冷媒の温度が高くなるほど、また、 モータを通過する冷媒の温度が高くなるほど冷媒の流量が多くなるよう電動ポンプを 制御することにより、エンジンとモータとを適切に冷却できるとしている。
特許文献 1:特開 2002— 227644号公報
発明の開示
[0003] し力しながら、上述の冷却システムでは、エンジンやモータの運転状態によっては エンジンやモータを適切に冷却できないことがある。例えば、エンジンが運転中でモ ータが駆動停止しているときには、エンジンを冷却するため冷媒の流量が多くなるよう 電動ポンプを制御する力 同時にモータに流れる冷媒の流量も多くなるためモータ が過冷却になることがある。また、エンジンが運転停止していてモータが駆動中であ るときには、モータを冷却するために冷媒の流量が多くなるよう電動ポンプを制御す る力 同時にエンジンに流れる冷媒の流量が多くなるためエンジンが過冷却になるこ とがある。従って、このような場合にはエンジンやモータを適切に冷却することができ なくなってしまう。また、エンジンおよびモータのいずれかに循環する冷媒の量を増加 させるためには全体で循環する冷媒の流量を増加する必要があるため、この場合、 電動ポンプの消費電力が増加してしまう。
[0004] 本発明の冷却システムおよびその制御方法並びに自動車は、熱を発生する駆動 源を含む駆動系を複数有する駆動装置をより適切に冷却することを目的の一つとす る。また、本発明の冷却システムおよびその制御方法並びに自動車は、駆動装置を 冷却するための冷却媒体を圧送する電動ポンプの消費電力の増加を抑えることを目 的の一つする。
[0005] 本発明の冷却システムおよびその制御方法並びに自動車は、上述の目的の少なく とも一部を達成するために以下の手段を採った。
[0006] 熱を発生する第 1駆動源を含む第 1駆動系と熱を発生する第 2駆動源を含む第 2駆 動系とを有する駆動装置の冷却システムであって、前記第 1駆動系に冷却媒体を循 環させる循環流路と、該循環流路のうち前記第 1駆動系をバイパスして前記冷却媒 体を前記第 2駆動系に循環させる第 2駆動系用流路と、前記第 1駆動系に循環させ る冷却媒体の流量と前記第 1駆動系をバイパスして前記第 2駆動系に循環させる冷 却媒体の流量との流量配分を調節する流量配分調節手段と、前記循環流路に冷却 媒体を圧送する電動圧送手段と、前記冷却媒体の温度を検出する冷媒温度検出手 段と、前記第 1駆動系の駆動状態を検出する第 1状態検出手段と、前記第 2駆動系 の駆動状態を検出する第 2状態検出手段と、前記検出された冷却媒体の温度と前記 検出された第 1駆動系の駆動状態とに基づいて前記第 1駆動系の冷却に必要な第 1 必要流量を設定すると共に前記検出された冷却媒体の温度と前記検出された第 2駆 動系の駆動状態とに基づいて前記第 2駆動系の冷却に必要な第 2必要流量を設定 する必要流量設定手段と、前記第 1駆動系に循環する冷却媒体の流量および前記 第 2駆動系に循環する冷却媒体の流量が前記設定された第 1必要流量および第 2必 要流量になるよう前記流量配分調節手段と前記電動圧送手段とを制御する制御手 段と、を備えることを要旨とする。
[0007] 本発明の冷却システムでは、冷却媒体の温度と第 1駆動系の駆動状態とに基づい て第 1駆動系の冷却に必要な第 1必要流量を設定すると共に冷却媒体の温度と第 2 駆動系の駆動状態とに基づいて第 2駆動系の冷却に必要な第 2必要流量を設定し、 第 1駆動系に循環する冷却媒体の流量および第 2駆動系に循環する冷却媒体の流 量が設定した第 1必要流量および第 2必要流量になるよう流量配分調節手段と電動 圧送手段とを制御する。第 1駆動系に第 1駆動系の冷却に必要な第 1必要流量の冷 却媒体が循環すると共に第 2駆動系に第 2駆動系の冷却に必要な第 2必要流量の冷 却媒体が循環するから、第 1駆動系と第 2駆動系とを適切に冷却することができる。ま た、電動圧送手段を第 1駆動系に第 1駆動系の冷却に必要な第 1必要流量の冷却 媒体が循環すると共に第 2駆動系に第 2駆動系の冷却に必要な第 2必要流量の冷却 媒体が循環するよう制御するから、第 1駆動系や第 2駆動系に冷却に必要な流量以 上の冷却媒体を圧送するものに比して電動圧送手段の消費電力の増加を抑えること ができる。
[0008] 本発明の冷却システムにおいて、前記第 1駆動系は、前記第 1駆動源として内燃機 関を含み、前記第 2駆動系は、前記第 2駆動源としての電動機と、該電動機を駆動す る駆動回路とを含み、前記第 1状態検出手段は、前記第 1駆動系の駆動状態として 前記内燃機関の回転数とトルクとを検出する手段であり、前記第 2状態検出手段は、 前記第 2駆動系の駆動状態として前記駆動回路に流れる電流値を検出する手段で あるものとすることもできる。こうすれば、内燃機関および電動機並びにその駆動回路 を適切に冷却することができる。
[0009] また、本発明の冷却システムにお 、て、前記冷媒温度検出手段は、前記循環流路 の前記第 1駆動系より上流側に取り付けられており、前記冷却媒体を外気との熱交換 を用いて冷却するラジェータと、前記循環流路のうち前記冷却媒体を前記第 1駆動 系の下流側から前記ラジェータをバイパスして前記冷媒温度検出手段の上流側に 循環させるバイパス流路と、前記循環流路と前記バイパス流路との合流部に設けら れ、該合流部を流れる冷却媒体の温度が所定温度以上であるときには該冷却媒体 が前記ラジェータに循環し、前記合流部を流れる冷却媒体の温度が前記所定温度 未満であるときに前記冷却媒体が前記ラジェータをバイパスして循環するよう前記冷 却媒体の流路を切り換える切換手段と、を備えるものとすることもできる。こうすれば、 循環流路とバイパス流路との合流部を流れる冷却媒体が所定温度未満であるときに は冷却媒体力 sラジェータをバイパスして循環するから、冷却媒体による冷却効率が 低下して第 1駆動系や第 2駆動系が過冷却になるのを抑えることができる。また、循 環流路とバイパス流路との合流部を流れる冷却媒体が所定温度以上であるときには 冷却媒体がラジェータに循環するから、ラジェータにより冷却媒体の放熱が促進され て第 1駆動系や第 2駆動系に循環する冷却媒体の流量を低くすることができ、電動圧 送手段の消費電力の増加を抑えることができる。 [0010] 本発明の自動車は、熱を発生する第 1駆動源を含む第 1駆動系と熱を発生する第 2 駆動源を含む第 2駆動系とを有する駆動装置と、該駆動装置を冷却する上述したい ずれかの態様の本発明の冷却システム、すなわち、基本的には、熱を発生する第 1 駆動源を含む第 1駆動系と熱を発生する第 2駆動源を含む第 2駆動系とを有する駆 動装置の冷却システムであって、前記第 1駆動系に冷却媒体を循環させる循環流路 と、該循環流路のうち前記第 1駆動系をバイパスして前記冷却媒体を前記第 2駆動 系に循環させる第 2駆動系用流路と、
前記第 1駆動系に循環させる冷却媒体の流量と前記第 1駆動系をバイパスして前記 第 2駆動系に循環させる冷却媒体の流量との流量配分を調節する流量配分調節手 段と、前記循環流路に冷却媒体を圧送する電動圧送手段と、前記冷却媒体の温度 を検出する冷媒温度検出手段と、前記第 1駆動系の駆動状態を検出する第 1状態検 出手段と、前記第 2駆動系の駆動状態を検出する第 2状態検出手段と、前記検出さ れた冷却媒体の温度と前記検出された第 1駆動系の駆動状態とに基づいて前記第 1 駆動系の冷却に必要な第 1必要流量を設定すると共に前記検出された冷却媒体の 温度と前記検出された第 2駆動系の駆動状態とに基づいて前記第 2駆動系の冷却に 必要な第 2必要流量を設定する必要流量設定手段と、前記第 1駆動系に循環する冷 却媒体の流量および前記第 2駆動系に循環する冷却媒体の流量が前記設定された 第 1必要流量および第 2必要流量になるよう前記流量配分調節手段と前記電動圧送 手段とを制御する制御手段と、を有する冷却システムとを備えることを要旨とする。
[0011] 本発明の自動車では、上述したいずれかの態様の本発明の冷却システムを備える から、本発明の冷却システムが奏する効果、例えば、第 1駆動系と第 2駆動系とを適 切に冷却することができる効果や電動圧送手段の消費電力の増加を抑えることがで きる効果を奏することができる。
[0012] 本発明の冷却システムの制御方法は、熱を発生する第 1駆動源を含む第 1駆動系 に冷却媒体を循環させる循環流路と、該循環流路のうち前記第 1駆動系をバイパス して熱を発生させる第 2駆動源を含む第 2駆動系に前記冷却媒体を循環させる第 2 駆動系用流路と、前記第 1駆動系に循環させる冷却媒体の流量と前記第 1駆動系を バイパスして前記第 2駆動系に循環させる冷却媒体の流量との流量配分を調節する 流量配分調節手段と、前記循環流路に冷却媒体を圧送する電動圧送手段とを備え る冷却システムの制御方法であって、前記冷却媒体の温度と前記第 1駆動系の駆動 状態とに基づいて前記第 1駆動系の冷却に必要な第 1必要流量を設定すると共に前 記冷却媒体の温度と前記第 2駆動系の駆動状態に基づいて前記第 2駆動系の冷却 に必要な第 2必要流量を設定し、前記第 1駆動系に循環する冷却媒体の流量および 前記第 2駆動系に循環する冷却媒体の流量が前記設定された第 1必要流量および 第 2必要流量になるよう前記流量配分調整手段と前記電動圧送手段とを制御する、 ことを要旨とする。
[0013] 本発明の冷却システムの制御方法では、冷却媒体の温度と第 1駆動系の駆動状態 とに基づいて第 1駆動系の冷却に必要な第 1必要流量を設定すると共に冷却媒体の 温度と第 2駆動系の駆動状態とに基づいて第 2駆動系の冷却に必要な第 2必要流量 を設定し、第 1駆動系に循環する冷却媒体の流量および第 2駆動系に循環する冷却 媒体の流量が設定した第 1必要流量および第 2必要流量になるよう流量配分調節手 段と電動圧送手段とを制御する。第 1駆動系に第 1駆動系の冷却に必要な第 1必要 流量の冷却媒体が循環すると共に第 2駆動系に第 2駆動系の冷却に必要な第 2必要 流量の冷却媒体が循環するから、第 1駆動系と第 2駆動系とを適切に冷却することが できる。また、電動圧送手段を第 1駆動系に第 1駆動系の冷却に必要な第 1必要流 量の冷却媒体が循環すると共に第 2駆動系に第 2駆動系の冷却に必要な第 2必要流 量の冷却媒体が循環するよう制御するから、第 1駆動系や第 2駆動系に冷却に必要 な流量以上の冷却媒体を圧送するものに比して電動圧送手段の消費電力の増加を 抑えることができる。
図面の簡単な説明
[0014] [図 1]本発明の一実施例としてのハイブリッド自動車 10の構成の概略を示す構成図 である。
[図 2]ノ、イブリツド ECU80により実行される流量制御ルーチンの一例を示すフローチ ヤートである。
[図 3]エンジン必要流量設定用マップの一例を示す説明図である。
[図 4]モータ必要流量設定用マップの一例を示す説明図である。 [図 5]ある弁開度におけるデューティ比設定用マップとモータ駆動系 22に循環する冷 媒の流量との関係の一例を示す説明図である。
発明を実施するための最良の形態
[0015] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。図 1は、本 発明の一実施例としての冷却システム 50を搭載するハイブリッド自動車 10の構成の 概略を示す構成図である。実施例のハイブリッド自動車 10は、エンジン 12,エンジン 12のクランクシャフト 13にキャリアが接続されると共に前輪 14a, 14bの車軸に連結さ れた駆動軸にリングギヤが接続された遊星歯車機構 16,遊星歯車機構 16のサンギ ャに回転軸が接続された発電可能なモータ MG 1 ,遊星歯車機構 16のリングギヤに 回転軸が接続されたモータ MG2,インバータ 18, 19を介してモータ MG1, MG2と 電力をやり取りするバッテリ 20から構成される駆動システム 30と、エンジン 12やモー タ MG1, MG2,インバータ 18, 19から構成されるモータ駆動系 22を冷却する冷却 システム 50と、自動車全体を制御するハイブリッド用電子制御ユニット(以下、ハイブ リツド ECUという) 80とを備える。ハイブリッド自動車 10は、この他に、図示しない乗員 室に暖機を供給するヒータ 70を備える。なお、エンジン 12は、エンジン用電子制御 ユニット(以下、エンジン ECUという) 24により運転制御されている。また、モータ MG 1, MG2は、いずれもモータ用電子制御ユニット(以下、モータ ECUという) 26がそ の駆動回路としてのインバータ 18, 19のスイッチング素子をスイッチング制御するこ とにより駆動制御されている。さらに、ノ ッテリ 20は、モータ ECU26により管理されて いる。
[0016] 冷却システム 50は、エンジン 12に冷媒を循環させる循環流路 32と、循環流路 32 に冷媒を圧送して循環させる電動ポンプ 46と、外気との熱交換により冷媒を冷却す る熱交^^として構成されたラジェータ 48とを備える。循環流路 32には、冷媒をェン ジン 12の上流側でバイパスさせてモータ駆動系 22に循環させるモータ駆動系用流 路 34と、エンジン 12の下流側で冷媒の一部をヒータ 70に循環させてエンジン 12の 上流側に戻すヒータ用流路 36と、冷媒をエンジン 12の下流側からラジェータ 48をバ ィパスしてエンジン 12の上流側に循環させるバイパス流路 38とが分岐している。
[0017] 循環流路 32とモータ駆動系用流路 34との分岐には流量配分調整弁 40が取り付け られている。流量調節分配弁 40は、ハイブリッド ECU80により駆動制御される図示し ない駆動用モータにより回動されるロータリー式の弁機構を備え、循環流路 32の弁 開度やモータ駆動系用流路 34への弁開度を調節してエンジン 12に循環する冷媒の 流量とエンジン 12をバイパスしてモータ駆動系 22に循環する冷媒の流量との流量配 分を調節する。すなわち、流量調節分配弁 40は、循環流路 32への弁開度を全閉に すると共にモータ駆動系用流路 34への弁開度を全開にして冷媒をエンジン 12をバ ィパスしてモータ駆動系 22に循環させたり、モータ駆動系用流路 34への弁開度を全 閉にすると共に循環流路 32への弁開度を全開にしてモータ駆動系 22に冷媒を循環 させずにエンジン 12に冷媒を循環させたり、循環流路 32への弁開度やモータ駆動 系用流路 34への弁開度を調節してエンジン 12とモータ駆動系 22との双方に冷媒を 循環させる。このような流量調節分配弁 40では、モータ駆動系用流路 34への弁開度 を大きくするほどモータ駆動系 22に循環する冷媒の流量が増加する一方、循環流路 32ではエンジン 12に循環する冷媒の流量が減少する。
[0018] 循環流路 32とバイノス流路 38との合流部にはサーモスタットバルブ 42が取り付け られている。サーモスタットバルブ 42は、流れる冷媒の温度が所定値以上であるとき にはバイパス流路 38を全閉にすると共にラジェータ 48からの流路を全開にして冷媒 をラジェータ 48に循環させて、流れる冷媒の温度が所定値未満であるときにはラジ エータ 48からの流路を全閉にすると共にバイパス流路 38を全開にして冷媒がラジェ ータ 48をバイパスして循環するよう流路を切り換える。
[0019] 電動ポンプ 46は、ハイブリッド ECU80により図示しない駆動用モータが駆動制御 されることにより動作し、駆動用モータのオンオフの時間比としてのデューティ比に応 じた流量の冷媒を循環流路 32に圧送する。
[0020] ハイブリッド ECU80は、図示しない CPUを中心とするマイクロプロセッサとして構成 されており、 CPUの他に、図示しないが、処理プログラムを記憶する ROMと、データ を一時的に記憶する RAMと、入出力ポートおよび通信ポートとを備える。ハイブリッド ECU80には、循環流路 32のエンジン 12の入り口付近に取り付けられ冷媒温度 Tw を検出する冷媒温度センサ 32aからの冷媒温度 Tw,シフトレバー 91の操作位置を 検出するシフトポジションセンサ 92からのシフトポジション SP,アクセルペダル 93の 踏み込み量を検出するアクセルペダルポジションセンサ 94からのアクセル開度 Acc ,ブレーキペダル 95の踏み込み量を検出するブレーキペダルポジションセンサ 96か らのブレーキペダルポジション BP,車速センサ 98からの車速 Vなどが入力ポートを 介して入力されている。ハイブリッド ECU80は、エンジン ECU24やモータ ECU26と 通信ポートを介して接続されており、エンジン ECU24やモータ ECU26と各種制御 信号やデータのやり取りを行なっている。
[0021] こうして構成された実施例のハイブリッド自動車 10は、運転者によるアクセルペダル 93の踏み込み量に対応するアクセル開度 Accと車速 Vとに基づいて駆動軸に出力 すべき要求トルクを計算し、この要求トルクに対応する要求動力が駆動軸に出力され るように、エンジン 12とモータ MG1とモータ MG2とが運転制御される。エンジン 12と モータ MG1とモータ MG2の運転制御としては、要求動力に見合う動力がエンジン 1 2から出力されるようにエンジン 12を運転制御すると共にエンジン 12から出力される 動力のすべてが遊星歯車機構 16とモータ MG1とモータ MG2とによってトルク変換 されて駆動軸に出力されるようモータ MG1およびモータ MG2を駆動制御するトルク 変換運転モードや要求動力とバッテリ 20の充放電に必要な電力との和に見合う動力 がエンジン 12から出力されるようにエンジン 12を運転制御すると共にバッテリ 20の充 放電を伴ってエンジン 12から出力される動力の全部またはその一部が遊星歯車機 構 16とモータ MG1とモータ MG2とによるトルク変換を伴って要求動力が駆動軸に 出力されるようモータ MG1およびモータ MG2を駆動制御する充放電運転モード、ェ ンジン 12の運転を停止してモータ MG2から要求動力に見合う動力を駆動軸に出力 するよう運転制御するモータ運転モードなどがある。
[0022] 次に、こうして構成された実施例のハイブリッド自動車 10の冷却システム 50の動作 、特に、エンジン 12やモータ駆動系 22に流れる冷媒の流量を調整する際の動作に ついて説明する。図 2は、ハイブリッド ECU80により実行される流量制御ルーチンの 一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、数 msec毎 )に繰り返し実行される。
[0023] 流量制御ルーチンが実行されると、ハイブリッド ECU80の図示しない CPUは、冷 媒温度センサ 32aからの冷媒温度 Tw,エンジン 12の回転数 Ne,エンジン 12から出 力されているトルク Te,インバータ 18, 19に流れるインバータ電流 Iinvなど制御に必 要なデータを入力する処理を実行する(ステップ S 100)。ここで、エンジン 12の回転 数 Neは、クランクシャフト 13に取り付けられたクランクポジションセンサ 13aからの信 号に基づいて計算されたものをエンジン ECU24から通信により入力するものとした。 また、エンジン 12のトルク Teは、モータ MG1の駆動電流から算出されるモータ MG1 の負荷トルクと遊星歯車機構 16のギヤ比 pとに基づいて算出したものをトルク Teとし て入力するものとした。さらに、インバータ電流 Iinvは、電力ライン 21に取り付けられ インバータ 18の直流電流を検出する電流センサ 21aの検出値とインバータ 19の直 流電流を検出する電流センサ 21bの検出値のうち大きいほうの値をインバータ電流 Ii nvとして設定してモータ ECU26から通信により入力するものとした。
[0024] こうしてデータを入力すると、入力されたエンジン 12の回転数 Neとトルク Teと冷媒 温度 Twとに基づ!/、て、エンジン 12を冷却するために必要な冷媒の流量としてのェン ジン側必要流量 Vweを設定する(ステップ S 110)。ここで、エンジン側必要流量 Vwe は、実施例では、エンジン 12の回転数 Neとトルク Teとの積と冷媒温度 Twとの関係 を予め定めてエンジン必要流量設定用マップとしてハイブリッド ECU80の図示しな い ROMに記憶しておき、エンジン 12の回転数 Neとトルク Teとの積と冷媒温度 Twが 与えられると記憶したマップ力 対応するエンジン必要流量 Vweを導出して設定する ものとした。図 3にエンジン必要流量設定用マップの一例を示す。エンジン必要流量 設定用マップでは、エンジン 12の回転数 Neとトルク Teとの積が大きくなるほど、また 、冷媒温度 Twが高くなるほど、エンジン側必要流量 Vweが多くなるよう設定されてい る。
[0025] 続、て、入力されたインバータ電流 Iinvと冷媒温度 Twとに基づ 、て、モータ駆動 系 22を冷却するために必要な冷媒の流量としてのモータ側必要流量 Vwmを設定す る(ステップ S120)。ここで、モータ側必要流量 Vwmは、実施例では、インバータ電 流 Iinvと冷媒温度 Twとの関係を予め定めてモータ必要流量設定用マップとしてハイ ブリツド ECU80の図示しな!、ROMに記憶しておき、インバータ電流 Iinvと冷媒温度 Twとが与えられると記憶したマップカゝら対応するモータ側必要流量 Vwmを導出して 設定するものとした。図 4にモータ必要流量設定用マップの一例を示す。モータ必要 流量設定用マップでは、インバータ電流 Iinvが大きくなるほど、また、冷媒温度 Twが 高くなるほど、モータ側必要流量 Vwmが多くなるよう設定されている。
[0026] こうして、エンジン側必要流量 Vweとモータ側必要流量 Vwmとが設定されると、ェ ンジン 12に循環する冷媒の流量とモータ駆動系 22に循環する冷媒の流量との流量 比が設定されたエンジン側必要流量 Vweとモータ側必要流量 Vwmとの比 Vrになる よう流量調節分配弁 40の図示しない弁機構の弁開度 Aを設定すると共に設定した弁 開度になるよう図示しな 、弁機構を制御する (ステップ S 130)。
[0027] 続いて、エンジン 12にエンジン側必要流量 Vweが流れるよう電動ポンプ 46のデュ 一ティ比を設定すると共に設定したデューティ比で電動ポンプ 46の図示しない駆動 用モータを駆動制御して(ステップ S140)、本ルーチンを終了する。ここで、電動ポン プ 46の駆動用モータのデューティ比は、弁開度 Aと弁開度 Aでエンジン 12に循環す る冷媒の流量と電動ポンプ 46の図示しない駆動用モータのデューティ比 Dとの関係 を予め定めてデューティ比設定用マップとしてハイブリッド ECU80の図示しない RO Mに記憶しておき、弁開度 Aとエンジン側必要流量 Vweとが与えられると記憶したマ ップカも対応する電動ポンプ 46のデューティ比を導出して設定するものとした。図 5 にある弁開度におけるデューティ比設定用マップとモータ駆動系 22に循環する冷媒 の流量との関係の一例を示す。図 5に示すように、流量調節分配弁 40がエンジン 12 に循環する冷媒の流量とモータ駆動系 22に循環する冷媒の流量との流量比がェン ジン側必要流量 Vweとモータ側必要流量 Vwmとの比 Vrになるよう調節しているから 、エンジン 12にエンジン側必要流量 Vweの冷媒が流れるようデューティ比を値 Dに 設定するとモータ駆動系 22に循環する冷媒の流量はモータ側必要流量 Vwmとなる 。すなわち、電動ポンプ 46は、デューティ比が値 Dに設定されるとエンジン側必要流 量 Vweとモータ側必要流量 Vwmとの和の流量の冷媒を圧送することになる。このよ うに、エンジン 12にエンジン側必要流量 Vweの冷媒が循環すると共にモータ駆動系 22にモータ側必要流量 Vwmの冷媒が循環するから、エンジン 12やモータ駆動系 2 2を適切に冷却して過冷却に至るのを抑えることができる。
[0028] また、電動ポンプ 46は、エンジン 12やモータ駆動系 22の冷却に必要な流量の冷 媒を圧送するから、エンジン 12やモータ駆動系 22に必要以上の冷媒を循環させるも のに比して電動ポンプ 46の消費電力の増加を抑えることができる。
[0029] さらに、サーモスタットバルブ 42は、流れる冷媒が予め決められた所定温度未満で あるときには冷媒カ Sラジェータ 48をバイパスして循環するよう流路を切り換えるから、 エンジン 12やモータ駆動系 22が過冷却になるのを抑えることができる。また、サーモ スタツトバルブ 42は、流れる冷媒が所定温度以上であるときには冷媒カラジェータ 4 8に循環するよう流路を切り換えるから、冷媒の放熱を促進して、電動ポンプ 46から 圧送する冷媒の流量を低くすることができ、電動ポンプ 46の消費電力の増加を抑え ることがでさる。
[0030] 以上説明した実施例のハイブリッド自動車 10によれば、エンジン 12側に循環する 冷媒の流量がエンジン側必要流量 Vweになると共にモータ駆動系 22に循環する冷 媒の流量がモータ側必要流量 Vwmとなるよう流量調節分配弁 40と電動ポンプ 46と を制御するから、エンジン 12やモータ駆動系 22を適切に冷却することができる。また 、エンジン 12やモータ駆動系 22に必要量以上の冷媒を流すものに比して電動ボン プ 46の消費電力の増加を抑えることができる。
[0031] 実施例のハイブリッド自動車 10では、エンジン 12の回転数 Neとトルク Teとを検出し て検出した回転数 Neとトルク Teと冷媒温 Twとに基づいてエンジン側必要流量 Vwe を設定するものとした力 エンジン 12の運転状態が検出できるものであればよいから 、例えば、エンジン 12を通過した直後の冷媒の温度を検出して、エンジン 12を通過 した直後の冷媒温度と冷媒温センサ 32aで検出した冷媒温度 Twとに基づいてェン ジン側必要流量 Vweを設定するものとしてもよ 、。
[0032] 実施例のハイブリッド自動車 10では、インバータ電流 Iinvを検出して、検出したイン バータ電流 Iinvと冷媒温 Twとに基づいてモータ側必要流量 Vwmを設定するものと したが、モータ駆動系 22の駆動状態が検出できるものであればよいから、例えば、モ ータ MG1を通過した直後の冷媒温度を検出して、モータ MG1を通過した直後の冷 媒温度と冷媒温度センサ 32aで検出した冷媒温度 Twとに基づいてモータ側必要流 量 Vwmを設定するものとしてもよ 、。
[0033] 実施例のハイブリッド自動車 10では、冷媒温度センサ 32aがエンジン 12の入り口 付近に取り付けられているものとした力 冷媒温度センサ 32aは、エンジン 12やモー タ駆動系 22に流入する冷媒の温度を検出できればよいから、ラジェータ 48と流量調 節分配弁 40との間や流量調節分配弁 40とインバータ 18との間に取り付けるものとし てもよい。
[0034] 実施例のハイブリッド自動車 10では、循環流路 32には冷媒をラジェータ 48をバイ パスして循環させるバイパス流路 38やサーモスタットバルブ 42,冷媒をヒータ 70に循 環させるヒータ用流路 36が設けられて 、るものとした力 バイパス流路 38ゃサーモス タツトノ レブ 42,ヒータ用流路 36が設けられて!/ヽな!、ものとしてもよ!/、。
[0035] 実施例のハイブリッド自動車 20では、モータ駆動系用流路 34はモータ MG1, MG 2,インバータ 18, 19に冷媒を循環させるものとした力 モータ MG1, MG2,インバ ータ 18, 19のうちの少なくとも一つを循環するものであれば、例えば、モータ MG1の みを循環する流路としたり、インバータ 18のみを循環するものとしてもよい。
[0036] また、上述した実施例では、冷却システムとしてエンジンと二つのモータと各モータ を駆動する駆動回路とを含む駆動装置を冷却する冷却システムを例示したが、二つ の熱を発生する駆動源を含む駆動装置であれば如何なるものにも適用でき、例えば 、エンジンと一つのモータとこのモータを駆動する駆動回路とを含む駆動装置などに ち適用することがでさる。
[0037] 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、 本発明はこうした実施例に何等限定されるものではなぐ本発明の要旨を逸脱しない 範囲内において、種々なる形態で実施し得ることは勿論である。
産業上の利用可能性
[0038] 本発明は、冷却システムや自動車の製造産業に利用可能である。

Claims

請求の範囲
[1] 熱を発生する第 1駆動源を含む第 1駆動系と熱を発生する第 2駆動源を含む第 2駆 動系とを有する駆動装置の冷却システムであって、
前記第 1駆動系に冷却媒体を循環させる循環流路と、
該循環流路のうち前記第 1駆動系をバイパスして前記冷却媒体を前記第 2駆動系 に循環させる第 2駆動系用流路と、
前記第 1駆動系に循環させる冷却媒体の流量と前記第 1駆動系をバイパスして前 記第 2駆動系に循環させる冷却媒体の流量との流量配分を調節する流量配分調節 手段と、
前記循環流路に冷却媒体を圧送する電動圧送手段と、
前記冷却媒体の温度を検出する冷媒温度検出手段と、
前記第 1駆動系の駆動状態を検出する第 1状態検出手段と、
前記第 2駆動系の駆動状態を検出する第 2状態検出手段と、
前記検出された冷却媒体の温度と前記検出された第 1駆動系の駆動状態とに基づ いて前記第 1駆動系の冷却に必要な第 1必要流量を設定すると共に前記検出された 冷却媒体の温度と前記検出された第 2駆動系の駆動状態とに基づいて前記第 2駆 動系の冷却に必要な第 2必要流量を設定する必要流量設定手段と、
前記第 1駆動系に循環する冷却媒体の流量および前記第 2駆動系に循環する冷 却媒体の流量が前記設定された第 1必要流量および第 2必要流量になるよう前記流 量配分調節手段と前記電動圧送手段とを制御する制御手段と、
を備える冷去 Pシステム。
[2] 請求項 1記載の冷却システムであって、
前記第 1駆動系は、前記第 1駆動源として内燃機関を含み、
前記第 2駆動系は、前記第 2駆動源としての電動機と、該電動機を駆動する駆動回 路とを含み、
前記第 1状態検出手段は、前記第 1駆動系の駆動状態として前記内燃機関の回転 数とトルクとを検出する手段であり、
前記第 2状態検出手段は、前記第 2駆動系の駆動状態として前記駆動回路に流れ る電流値を検出する手段である
冷却システム。
[3] 請求項 1記載の冷却システムであって、
前記冷媒温度検出手段は、前記循環流路の前記第 1駆動系より上流側に取り付け られており、
前記冷却媒体を外気との熱交換を用いて冷却するラジェータと、
前記循環流路のうち前記冷却媒体を前記第 1駆動系の下流側から前記ラジェータ をバイパスして前記冷媒温度検出手段の上流側に循環させるバイパス流路と、 前記循環流路と前記バイパス流路との合流部に設けられ、該合流部を流れる冷却 媒体の温度が所定温度以上であるときには該冷却媒体が前記ラジェータを循環し、 前記合流部を流れる冷却媒体の温度が前記所定温度未満であるときに前記冷却媒 体が前記ラジェータをバイパスして循環するよう前記冷却媒体の流路を切り換える切 換手段と、
を備える冷去 Pシステム。
[4] 熱を発生する第 1駆動源を含む第 1駆動系と熱を発生する第 2駆動源を含む第 2駆 動系とを搭載する自動車であって、
前記第 1駆動系に冷却媒体を循環させる循環流路と、
該循環流路のうち前記第 1駆動系をバイパスして前記冷却媒体を前記第 2駆動系 に循環させる第 2駆動系用流路と、
前記第 1駆動系に循環させる冷却媒体の流量と前記第 1駆動系をバイパスして前 記第 2駆動系に循環させる冷却媒体の流量との流量配分を調節する流量配分調節 手段と、
前記循環流路に冷却媒体を圧送する電動圧送手段と、
前記冷却媒体の温度を検出する冷媒温度検出手段と、
前記第 1駆動系の駆動状態を検出する第 1状態検出手段と、
前記第 2駆動系の駆動状態を検出する第 2状態検出手段と、
前記検出された冷却媒体の温度と前記検出された第 1駆動系の駆動状態とに基づ いて前記第 1駆動系の冷却に必要な第 1必要流量を設定すると共に前記検出された 冷却媒体の温度と前記検出された第 2駆動系の駆動状態とに基づいて前記第 2駆 動系の冷却に必要な第 2必要流量を設定する必要流量設定手段と、
前記第 1駆動系に循環する冷却媒体の流量および前記第 2駆動系に循環する冷 却媒体の流量が前記設定された第 1必要流量および第 2必要流量になるよう前記流 量配分調節手段と前記電動圧送手段とを制御する制御手段と、
を備える自動車。
[5] 請求項 4記載の自動車であって、
前記第 1駆動系は、前記第 1駆動源として内燃機関を含み、
前記第 2駆動系は、前記第 2駆動源としての電動機と、該電動機を駆動する駆動回 路とを含み、
前記第 1状態検出手段は、前記第 1駆動系の駆動状態として前記内燃機関の回転 数とトルクとを検出する手段であり、
前記第 2状態検出手段は、前記第 2駆動系の駆動状態として前記駆動回路に流れ る電流値を検出する手段である
自動車。
[6] 請求項 4記載の自動車であって、
前記冷媒温度検出手段は、前記循環流路の前記第 1駆動系より上流側に取り付け られており、
前記冷却媒体を外気との熱交換を用いて冷却するラジェータと、
前記循環流路のうち前記冷却媒体を前記第 1駆動系の下流側から前記ラジェータ をバイパスして前記冷媒温度検出手段の上流側に循環させるバイパス流路と、 前記循環流路と前記バイパス流路との合流部に設けられ、該合流部を流れる冷却 媒体の温度が所定温度以上であるときには該冷却媒体が前記ラジェータを循環し、 前記合流部を流れる冷却媒体の温度が前記所定温度未満であるときに前記冷却媒 体が前記ラジェータをバイパスして循環するよう前記冷却媒体の流路を切り換える切 換手段と、
を備える自動車。
[7] 熱を発生する第 1駆動源を含む第 1駆動系に冷却媒体を循環させる循環流路と、 該循環流路のうち前記第 1駆動系をバイパスして熱を発生させる第 2駆動源を含む 第 2駆動系に前記冷却媒体を循環させる第 2駆動系用流路と、前記第 1駆動系に循 環させる冷却媒体の流量と前記第 1駆動系をバイパスして前記第 2駆動系に循環さ せる冷却媒体の流量との流量配分を調節する流量配分調節手段と、前記循環流路 に冷却媒体を圧送する電動圧送手段とを備える冷却システムの制御方法であって、 前記冷却媒体の温度と前記第 1駆動系の駆動状態とに基づいて前記第 1駆動系 の冷却に必要な第 1必要流量を設定すると共に前記冷却媒体の温度と前記第 2駆 動系の駆動状態に基づいて前記第 2駆動系の冷却に必要な第 2必要流量を設定し 前記第 1駆動系に循環する冷却媒体の流量および前記第 2駆動系に循環する冷 却媒体の流量が前記設定された第 1必要流量および第 2必要流量になるよう前記流 量配分調整手段と前記電動圧送手段とを制御する、
冷却システムの制御方法。
PCT/JP2006/320938 2005-10-25 2006-10-20 冷却システムおよびその制御方法並びに自動車 WO2007049516A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/992,747 US8151917B2 (en) 2005-10-25 2006-10-20 Cooling system, control method of cooling system, and vehicle equipped with cooling system
CN2006800396017A CN101296829B (zh) 2005-10-25 2006-10-20 冷却系统及其控制方法以及汽车
EP06821999.7A EP1942038B1 (en) 2005-10-25 2006-10-20 Cooling system. method of controlling the cooling system, and automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005309556A JP4631652B2 (ja) 2005-10-25 2005-10-25 冷却システムおよびその制御方法並びに自動車
JP2005-309556 2005-10-25

Publications (1)

Publication Number Publication Date
WO2007049516A1 true WO2007049516A1 (ja) 2007-05-03

Family

ID=37967628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320938 WO2007049516A1 (ja) 2005-10-25 2006-10-20 冷却システムおよびその制御方法並びに自動車

Country Status (6)

Country Link
US (1) US8151917B2 (ja)
EP (1) EP1942038B1 (ja)
JP (1) JP4631652B2 (ja)
KR (1) KR100915429B1 (ja)
CN (1) CN101296829B (ja)
WO (1) WO2007049516A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112422A1 (en) * 2007-10-26 2009-04-30 Gm Global Technology Operations, Inc. Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US20100087979A1 (en) * 2007-05-15 2010-04-08 Eva Neusinger Method for cooling components of a motor vehicle
JP2011230617A (ja) * 2010-04-27 2011-11-17 Toyota Motor Corp 車両用冷却システム
JP2012171557A (ja) * 2011-02-23 2012-09-10 Toyota Motor Corp ハイブリッド自動車用冷却システム

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631652B2 (ja) * 2005-10-25 2011-02-16 トヨタ自動車株式会社 冷却システムおよびその制御方法並びに自動車
US20100230189A1 (en) * 2009-03-13 2010-09-16 Gm Global Technology Operrations, Inc. Cooling system for a vehicle
IT1397042B1 (it) * 2009-03-25 2012-12-28 Ferrari Spa Sistema di raffreddamento per un veicolo con propulsione ibrida
FR2944238B1 (fr) * 2009-04-09 2011-05-06 Renault Sas Dispositif de refroidissement pour vehicule automobile
FR2944235B1 (fr) * 2009-04-09 2012-10-19 Renault Sas Dispositif de refroidissement pour vehicule automobile
FR2944236B1 (fr) * 2009-04-09 2012-10-19 Renault Sas Dispositif de refroidissement pour vehicule automobile
DE102009020187B4 (de) 2009-05-06 2012-11-08 Audi Ag Kühlmittelkreislauf
DE102009056616B4 (de) * 2009-12-02 2018-10-25 Audi Ag Verfahren zur Verteilung von Wärme in einem Kühlmittelkreislauf eines Fahrzeugs
FR2954405B1 (fr) * 2009-12-22 2012-01-13 Renault Sa Dispositif de refroidissement pour vehicule automobile
US9096207B2 (en) 2010-12-31 2015-08-04 Cummins Inc. Hybrid vehicle powertrain cooling system
DE112011104871B4 (de) 2011-02-10 2016-08-25 Toyota Jidosha Kabushiki Kaisha Kühlsystem
GB2489016B (en) * 2011-03-16 2013-08-21 Land Rover Uk Ltd Hybrid electric vehicle cooling circuit and method of cooling
JP5240403B2 (ja) * 2011-03-18 2013-07-17 トヨタ自動車株式会社 エンジンの冷却システム
EP2752344A4 (en) * 2011-10-06 2016-03-02 Toyota Motor Co Ltd CONTROL DEVICE FOR A HYBRID VEHICLE
JP5761117B2 (ja) * 2012-05-08 2015-08-12 株式会社デンソー 回転機の制御装置
US20140000859A1 (en) * 2012-06-27 2014-01-02 Ford Global Technologies, Llc Variable-speed pump control for combustion engine coolant system
US10207567B2 (en) * 2012-10-19 2019-02-19 Ford Global Technologies, Llc Heater core isolation valve position detection
JP6171655B2 (ja) 2013-07-17 2017-08-02 スズキ株式会社 電動ポンプ制御装置
US10131205B2 (en) * 2013-08-26 2018-11-20 Ford Global Technologies, Llc Climate control system
DE102014207978B4 (de) 2014-04-28 2018-12-20 Mahle International Gmbh Kühlkreislauf zur Temperierung mehrerer Wärmequellen mit mehreren Thermostaten
FR3022497B1 (fr) * 2014-06-24 2018-01-12 Valeo Systemes Thermiques Dispositif de gestion thermique de vehicule automobile et procede de pilotage correspondant
CN105370378A (zh) * 2014-08-18 2016-03-02 株式会社山田制作所 电动水泵的控制装置
DE102014113753B4 (de) * 2014-09-23 2022-12-15 Pierburg Gmbh System und Verfahren zur prädiktiven Steuerung und/oder Regelung einer Heiz-Kühlvorrichtung eines Fahrzeugs
JP6032255B2 (ja) * 2014-10-07 2016-11-24 トヨタ自動車株式会社 冷媒循環システム
KR101679971B1 (ko) * 2015-05-14 2016-11-25 현대자동차주식회사 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
JP6427805B2 (ja) * 2015-05-19 2018-11-28 本田技研工業株式会社 回転電機の温度推定装置
DE102015107926A1 (de) * 2015-05-20 2016-11-24 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
DE102015225644A1 (de) 2015-12-17 2017-06-22 Schaeffler Technologies AG & Co. KG Thermomanagementsystem für ein elektrisches Antriebssystem, vorzugsweise für ein Fahrzeug
CN105599592B (zh) * 2016-01-28 2019-01-29 苏州汇川技术有限公司 电动车电机控制器散热控制系统及方法
KR101765628B1 (ko) * 2016-03-17 2017-08-07 현대자동차 주식회사 냉각수온 센서를 구비한 엔진 냉각시스템
GB2548835B (en) * 2016-03-29 2018-04-18 Ford Global Tech Llc A cooling system
KR101807046B1 (ko) * 2016-04-01 2017-12-08 현대자동차 주식회사 냉각수온 센서를 구비한 엔진 냉각시스템
JP6471133B2 (ja) * 2016-10-25 2019-02-13 本田技研工業株式会社 車両用電源装置
CN107499113B (zh) * 2017-05-18 2019-11-22 宝沃汽车(中国)有限公司 电动汽车驱动系统的冷却液流量分配的控制方法及装置
JP6627827B2 (ja) * 2017-07-10 2020-01-08 トヨタ自動車株式会社 熱交換システムの制御装置
JP6518293B2 (ja) * 2017-08-09 2019-05-22 株式会社Subaru 冷却制御装置
US10757843B2 (en) 2018-01-12 2020-08-25 Ford Global Technologies, Llc Vehicular traction inverter temperature control system
DE102018215921A1 (de) * 2018-09-19 2020-03-19 ZF Drivetech (Suzhou) Co.Ltd. Antriebsvorrichtung zum elektrischen Antrieb eines Kraftfahrzeugs mit zwei elektrischen Antriebsaggregaten und mit einer Kühlvorrichtung für diese Antriebsaggregate
RU196661U1 (ru) * 2018-11-30 2020-03-11 Общество с ограниченной ответственностью "Ликинский автобусный завод" (ООО "ЛиАЗ") Устройство охлаждения тягового электрооборудования электрического транспортного средства
KR102409466B1 (ko) * 2020-11-20 2022-06-16 현대모비스 주식회사 연료전지 차량용 열관리 시스템
CN113581161B (zh) * 2021-08-30 2023-01-03 奇瑞汽车股份有限公司 电动油泵的控制方法、装置及存储介质
DE102022116936A1 (de) 2022-07-07 2024-01-18 Audi Aktiengesellschaft Bedarfsgerechte Kühlung eines BEV

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238345A (ja) 1997-02-25 1998-09-08 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却装置
JPH1122460A (ja) 1997-06-30 1999-01-26 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却システム
JP2002276364A (ja) 2001-03-14 2002-09-25 Denso Corp ハイブリッド電気自動車の冷却装置
JP2004332744A (ja) * 2004-05-17 2004-11-25 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524507B2 (ja) 1987-11-07 1996-08-14 アルプス電気株式会社 光書込みヘッド
DE19508104C2 (de) * 1995-03-08 2000-05-25 Volkswagen Ag Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors
JP3443296B2 (ja) 1997-10-07 2003-09-02 日産ディーゼル工業株式会社 ハイブリッド電気自動車の冷却システム
JP3998861B2 (ja) * 1999-06-16 2007-10-31 株式会社小松製作所 排気還流装置およびその制御方法
JP4337207B2 (ja) * 2000-02-10 2009-09-30 株式会社デンソー 液冷式内燃機関の冷却装置
US6607142B1 (en) 2000-11-02 2003-08-19 Ford Motor Company Electric coolant pump control strategy for hybrid electric vehicles
JP3616005B2 (ja) * 2000-12-20 2005-02-02 本田技研工業株式会社 ハイブリッド車両の冷却装置
US6684826B2 (en) * 2001-07-25 2004-02-03 Toyota Jidosha Kabushiki Kaisha Engine cooling apparatus
US6668765B2 (en) * 2001-12-26 2003-12-30 Daimlerchrysler Corporation Liquid cooled power steering pump
US6705254B1 (en) * 2002-07-30 2004-03-16 Tony Gary Grabowski Method for cooling torque generation assemblies of a hybrid electric vehicle
GB0220521D0 (en) * 2002-09-04 2002-10-09 Ford Global Tech Inc A motor vehicle and a thermostatically controlled valve therefor
JP3933030B2 (ja) * 2002-10-22 2007-06-20 株式会社デンソー ハイブリッド車用空調装置
JP2004218600A (ja) 2003-01-17 2004-08-05 Hitachi Unisia Automotive Ltd ハイブリッド車両の冷却装置
US7082905B2 (en) * 2003-02-24 2006-08-01 Honda Motor Co., Ltd. Cooling apparatus for hybrid vehicle
JP2004346831A (ja) * 2003-05-22 2004-12-09 Denso Corp 車両用冷却システム
JP3956945B2 (ja) * 2004-02-13 2007-08-08 トヨタ自動車株式会社 冷却システム
JP4384066B2 (ja) * 2005-02-18 2009-12-16 日産自動車株式会社 車両冷却システム
JP4631652B2 (ja) * 2005-10-25 2011-02-16 トヨタ自動車株式会社 冷却システムおよびその制御方法並びに自動車
US7644792B2 (en) * 2006-01-06 2010-01-12 Hamilton Sundstrand Motor cooling system
US7377237B2 (en) * 2006-09-13 2008-05-27 Cummins Power Generation Inc. Cooling system for hybrid power system
US7343884B1 (en) * 2006-09-13 2008-03-18 Cummins Power Generation Inc. Coolant system for hybrid power system
JP4492672B2 (ja) * 2007-10-31 2010-06-30 トヨタ自動車株式会社 ハイブリッドシステムの制御装置
US7614368B2 (en) * 2007-12-03 2009-11-10 International Truck Intellectual Property Company, Llc Automated no-idle heating and engine pre-heat using engine coolant
US8387572B2 (en) * 2009-12-04 2013-03-05 Ford Global Technologies, Llc Auxiliary pump scheme for a cooling system in a hybrid-electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238345A (ja) 1997-02-25 1998-09-08 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却装置
JPH1122460A (ja) 1997-06-30 1999-01-26 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却システム
JP2002276364A (ja) 2001-03-14 2002-09-25 Denso Corp ハイブリッド電気自動車の冷却装置
JP2004332744A (ja) * 2004-05-17 2004-11-25 Nissan Motor Co Ltd ハイブリッド電気自動車の冷却システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087979A1 (en) * 2007-05-15 2010-04-08 Eva Neusinger Method for cooling components of a motor vehicle
US20090112422A1 (en) * 2007-10-26 2009-04-30 Gm Global Technology Operations, Inc. Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US8406945B2 (en) * 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
JP2011230617A (ja) * 2010-04-27 2011-11-17 Toyota Motor Corp 車両用冷却システム
JP2012171557A (ja) * 2011-02-23 2012-09-10 Toyota Motor Corp ハイブリッド自動車用冷却システム

Also Published As

Publication number Publication date
CN101296829A (zh) 2008-10-29
KR100915429B1 (ko) 2009-09-03
EP1942038B1 (en) 2013-04-10
JP2007120312A (ja) 2007-05-17
CN101296829B (zh) 2011-12-28
US8151917B2 (en) 2012-04-10
JP4631652B2 (ja) 2011-02-16
KR20080054405A (ko) 2008-06-17
US20090139686A1 (en) 2009-06-04
EP1942038A4 (en) 2011-05-11
EP1942038A1 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
WO2007049516A1 (ja) 冷却システムおよびその制御方法並びに自動車
US7628125B2 (en) Cooling system
US6607142B1 (en) Electric coolant pump control strategy for hybrid electric vehicles
JP5077162B2 (ja) 駆動装置およびその制御方法並びに車両
US10124651B2 (en) Systems and methods for controlling electrically powered heating devices within electrified vehicles
JP2007022297A (ja) ハイブリッド車およびその制御方法
US20160363037A1 (en) Control method for engine thermal management
GB2489016A (en) A cooling circuit for a hybrid electric vehicle and a method cooling
JP2012020730A (ja) 電気暖房装置
JP2007182857A (ja) 冷却装置
JPH11285106A (ja) ハイブリッド車両の冷却装置
US11597375B2 (en) Vehicle control device
US20180222327A1 (en) Hybrid vehicle
JP4269772B2 (ja) 車両用冷却装置
JP4052256B2 (ja) 温度調節装置
US20220219526A1 (en) Vehicle temperature adjustment system
JP2002213242A (ja) 移動体の冷却制御装置
JP2018170825A (ja) 車両用冷却システム
JP2005113831A (ja) ハイブリッド自動車用冷却システム
JP2016084062A (ja) ハイブリッド自動車
JP5024870B2 (ja) 電動機の冷却装置およびその制御方法
JP7313188B2 (ja) 電動車両の温調装置
JP5630117B2 (ja) 車両の冷却装置
JP3674925B2 (ja) 車両の空調システム
JP2022125582A (ja) 電動車両の冷却装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039601.7

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11992747

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006821999

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE