WO2007046162A1 - 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置 - Google Patents

質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置 Download PDF

Info

Publication number
WO2007046162A1
WO2007046162A1 PCT/JP2006/309032 JP2006309032W WO2007046162A1 WO 2007046162 A1 WO2007046162 A1 WO 2007046162A1 JP 2006309032 W JP2006309032 W JP 2006309032W WO 2007046162 A1 WO2007046162 A1 WO 2007046162A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
holding surface
pore
sample holding
porous alumina
Prior art date
Application number
PCT/JP2006/309032
Other languages
English (en)
French (fr)
Inventor
Yoshinao Wada
Takashi Yanagishita
Hideki Masuda
Shoji Okuno
Original Assignee
Japan Science And Technology Agency
Osaka Prefectural Hospital Organization
Kanagawa Academy Of Science And Technology
Okuno, Naoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Osaka Prefectural Hospital Organization, Kanagawa Academy Of Science And Technology, Okuno, Naoko filed Critical Japan Science And Technology Agency
Priority to US11/988,166 priority Critical patent/US8237114B2/en
Priority to JP2007540878A priority patent/JP4885142B2/ja
Publication of WO2007046162A1 publication Critical patent/WO2007046162A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates

Definitions

  • the present invention relates to a sample target used in mass spectrometry, a method for producing the same, and a mass spectrometer using the sample target.
  • the present invention relates to a sample without using a matrix.
  • the present invention relates to a sample target that enables ionization, a manufacturing method thereof, and a mass spectrometer using the sample target.
  • Mass spectrometry is an analysis method in which a sample is ionized, the ratio of the mass of the sample or fragment ion of the sample and the charge (hereinafter referred to as mZz value) is measured, and the molecular weight of the sample is examined.
  • mZz value the ratio of the mass of the sample or fragment ion of the sample and the charge
  • MALDI matrix-assisted laser desorption / ionization mass spectrometry
  • the MALDI method can ionize a thermally unstable substance or a high-molecular-weight substance, and the sample can be "softly” ionized compared to other ionization techniques. Therefore, this method is widely used for mass spectrometry of various substances such as biopolymers, endocrine disruptors, synthetic polymers, and metal complexes.
  • the MALDI method uses a matrix of an organic compound
  • the analysis of sample ions may be difficult due to related ions derived from the matrix.
  • matrix-related ions such as ions of the matrix molecules, ions of clusters in which matrix molecules are bonded by hydrogen bonds, and fragment ions generated by decomposition of the matrix molecules are observed. Therefore, analysis of sample ions is often difficult.
  • the present inventors provide a sample target having a surface made of various materials having a concavo-convex structure on the order of submicrometers as a sample holding surface!
  • a sample holding surface in which porous alumina is coated with gold or platinum.
  • Patent Document 1 US Pat. No. 6,288,390 (published on September 11, 2001)
  • Patent Document 2 International Publication No. 2005Z083418 pamphlet (published on September 9, 2005) free laser des orption / ionization of peptides on sub-micrometer structures: Grooves on silicon and metal-coated porous alumina, 53rd ASMS Conference on Mass Spectrometry and A Hied Topics, (San Antonio, Texas, USA), Proceedings (2005 4 (Published on the web on May 15) Disclosure of Invention
  • the conventional laser desorption ionization mass spectrometry by DIOS method disclosed in Patent Document 1 and the like is effective for ionic ions of substances having a molecular weight of 3000 or less.
  • a surface having a regular concavo-convex structure produced by a lithography method disclosed in Patent Document 2 is used as a sample holding surface, or a surface having a fine concavo-convex structure is coated with a metal. Even if the prepared sample target is used and the laser is irradiated without using the matrix, the molecular weight exceeds 10,000, and the ion of the substance cannot be produced.
  • the present invention has been made in view of the above problems, and its purpose is to use a matrix.
  • V A sample target capable of ionization of a high molecular weight substance exceeding 10,000 and its production method, and its sample target, using mass spectrometry that enables ion ionization of the sample without using the sample target. It is to provide a mass spectrometer.
  • the sample target according to the present invention is used to hold a sample when the sample is ionized by laser irradiation and subjected to mass spectrometry.
  • a sample target having a sample holding surface having a large number of pores opening on the surface to be irradiated with the pores, the pore diameter of the pores being not less than 30 nm and less than 5 m and fine
  • the pore depth Z (pore period, pore diameter) is 2 or more and 50 or less, and the surface of the sample holding surface is coated with a metal or a semiconductor.
  • the sample holding surface preferably has a porous alumina force.
  • the metal is preferably at least one of platinum (Pt) and gold (Au).
  • the above semiconductors are tin oxide (SnO), zinc oxide (Zn
  • ITO indium oxide tin
  • / or carbon are preferred.
  • the sample target according to the present invention is used to hold a sample when the sample is ionized by mass irradiation with laser light and is analyzed.
  • a sample target having a sample holding surface having a large number of pores opening on the surface side that receives the irradiation of the surface, and the sample holding surface transfers the uneven structure of the porous alumina using a porous alumina in a bowl shape.
  • a negative holding structure having a concavo-convex structure having the same shape as the porous alumina concavo-convex structure on the surface, wherein the concavo-convex structure is transferred using the negative structure in a saddle shape. It is characterized by being.
  • the sample holding surface also has a metal or semiconductor force.
  • the surface of the sample holding surface may be coated with a metal or a semiconductor.
  • the pores preferably have a pore diameter of 30 nm to less than 5 ⁇ m and a pore depth Z (pore periodic pore diameter) of 2 to 50.
  • the metal is preferably at least one of platinum (Pt) and gold (Au).
  • the above semiconductors are tin oxide (SnO), zinc oxide (ZnO), indium oxide.
  • the sample target according to the present invention is used to hold a sample when the sample is ionized by mass irradiation with laser light to solve the above-described problem.
  • a sample target having a surface having a fine concavo-convex structure with an interval of 1 nm to 10 ⁇ m and a recess depth of 10 nm to 10 ⁇ m as a sample holding surface.
  • the surface is covered with a semiconductor.
  • the above semiconductors are tin oxide (SnO), zinc oxide (ZnO), indium oxide tin (ITO) and
  • the sample target manufacturing method according to the present invention is used to hold a sample when the sample is ionized and subjected to mass spectrometry by irradiation with a single laser beam in order to solve the above-described problems.
  • a sample target manufacturing method comprising a sample holding surface having a large number of pores opened on the surface side to be irradiated with laser light, wherein the sample holding surface is formed using porous alumina as the sample holding surface.
  • the method includes a step of coating the surface of the surface with a metal or a semiconductor.
  • a method for producing a sample target according to the present invention is used to hold a sample when the sample is ionized and subjected to mass spectrometry by irradiation with a single laser beam.
  • a method of manufacturing a sample target which includes a step of producing a negative structure using porous alumina in a vertical shape and transferring the uneven structure of the porous alumina, and a negative structure obtained in the step And transferring the concavo-convex structure using an object in a bowl shape to obtain a sample holding surface having a concavo-convex structure of the same shape as the porous alumina concavo-convex structure on the surface.
  • the sample holding surface is preferably made of metal or semiconductor.
  • the sample target manufacturing method may further include a step of coating the surface of the sample holding surface with a metal or a semiconductor.
  • the porous alumina preferably has a pore diameter of 30 nm or more and a pore depth Z (pore periodic pore diameter) of 2 or more and 50 or less.
  • the mass spectrometer according to the present invention is characterized by using a sample target in order to solve the above-mentioned problems.
  • the mass spectrometer according to the present invention is preferably a laser desorption ion mass spectrometer that irradiates a sample to be measured with laser light to ionize the sample and measure its molecular weight.
  • the sample target according to the present invention includes a sample holding surface having a large number of pores opened on the surface that is irradiated with laser light, and the pore diameter of the pores is 30 nm or more. less than m, and the pore depth Z (pore period, pore diameter) is 2 or more and 50 or less, and the surface of the sample holding surface is covered with metal or semiconductor. Even when ionization is carried out without using it, it is possible to ionize a substance having a molecular weight exceeding 10,000.
  • the pore diameter is 30 nm or more. It is possible to easily produce a regular pore structure with a pore depth Z (pore cycle pore diameter) of 2 to 50 and less than / zm. Further, by selecting the conditions for anodization, the pore diameter, pore depth, and pore cycle can be controlled.
  • the mass spectrometer according to the present invention includes the sample target as described above, even when ion analysis is performed without using a matrix when performing mass analysis, the molecular weight is small. It has the effect of enabling ionization of more than 10,000 substances.
  • the sample target for the present invention is a negative type structure in which the uneven structure of porous alumina is transferred using porous alumina in a saddle shape, and the negative type structure is obtained. Since it has a sample holding surface having a concavo-convex structure of the same shape as the porous alumina concavo-convex structure on the surface, which is transferred to the concavo-convex structure using a saddle type, porous alumina having a concavo-convex structure suitable for the sample holding surface If the sample holding surface having the same structure as the above can be manufactured with a desired material, there will be an effect.
  • a sample holding surface is manufactured from a metal or a semiconductor, even when ionization is performed without using a matrix when performing mass spectrometry, the ionization performance is improved. In addition, even when the sample holding surface has a material force that does not have conductivity, if the surface is covered with a metal or a semiconductor, the ionization performance is improved. Furthermore, when the pore diameter of the sample holding surface is not less than 30 nm and the pore depth Z (pore period pore diameter) is not less than 2 and not more than 50, an ionic salt of a substance having a large molecular weight is present. It becomes possible.
  • the sample target that is useful in the present invention is a fine unevenness in which the interval between the recesses or the protrusions is In m to 10 ⁇ m and the depth of the recesses is 10 nm to 10 ⁇ m.
  • the method for producing a sample target according to the present invention includes a step of anodizing aluminum or an alloy thereof to obtain porous alumina as a sample holding surface, and the obtained test. And the step of coating the surface of the material holding surface with a metal or semiconductor, it is possible to easily produce a regular pore structure suitable for the sample holding surface.
  • the pore diameter, pore depth, and pore cycle can be controlled by selecting the conditions for anodization.
  • the method for producing a sample target that is useful in the present invention includes the step of producing a negative structure using porous alumina in a bowl shape and transferring the uneven structure of the porous alumina. Transferring the concavo-convex structure using the negative structure obtained in the step as a saddle shape, and obtaining a sample holding surface having the concavo-convex structure having the same shape as the porous alumina concavo-convex structure on the surface; Therefore, the sample holding surface having the same structure as the porous alumina having the uneven structure suitable for the sample holding surface can be produced with a desired material.
  • FIG. 1 (a) is a schematic view showing a sample target according to the present invention, and is a perspective view of a part of the sample target.
  • FIG. 1 (b) is a schematic view showing a sample target according to the present invention, and is a cross-sectional view of the sample target shown in FIG.
  • FIG. 2 is a cross-sectional view schematically showing regular porous alumina, showing the prior art.
  • the depth of the concave portion is not related to the size of ionizable molecular weight.
  • the sample target (A) is used for holding a sample when the sample is ionized by laser light irradiation for mass spectrometry, and is applied to the surface that is irradiated with the laser light.
  • the laser desorption ionization mass spectrometry that does not use a matrix disclosed in Patent Document 1 and the like cannot ionize a substance having a high molecular weight exceeding 10,000.
  • the main reason for this is that if the energy of the laser used to ionize high molecular weight substances is increased, the microstructure of the porous silicon is destroyed.
  • the structure of the porous silicon is easily destroyed.
  • the reason for the damage is not only the influence of silicon and the material of the silicon, but also the structural strength of the convex part of the concave part of the porous silicon is difficult. It is done.
  • porous alumina is used in a vertical mold and processed by the imprint method, a fine structure with a high aspect ratio of several nanometers to several tens of micrometers compared to a fine structure produced by the conventional porous silicon lithography method. Can be processed more stably and with high accuracy. Therefore, if the microfabrication technology that actually works is used, it is possible to stably produce a regular uneven shape on the surface of the sample holding surface. We also found that it is possible to stably produce sample targets of good quality by using metal or semiconductor as the material to be transferred, or by coating the transferred microstructure surface with metal or semiconductor. .
  • the present invention also includes a sample target having a microstructured surface produced by imprinting using strong porous alumina in a saddle shape.
  • the present invention has a large number of pores that are used to hold a sample when the sample is ionized by laser light irradiation for mass analysis and open on the surface side that receives the laser light irradiation.
  • a negative holding structure in which the uneven structure of the porous alumina is transferred by using porous alumina in a saddle shape, and the negative structure is formed in a saddle shape.
  • a sample target (B) having a concavo-convex structure having the same shape as the porous alumina concavo-convex structure on the surface.
  • the present invention is used for holding a sample when the sample is ionized by laser light irradiation for mass analysis, and the interval between the concave portions or the convex portions is Inn! ⁇ 10 m and the depth of the recess is ⁇ !
  • a surface with a fine concavo-convex structure of ⁇ 10 m is provided as a sample holding surface, and the surface of the sample holding surface is covered with a semiconductor! Included sample target (C).
  • the reason why the ion target of molecules (for example, proteins) having a molecular weight exceeding 1000 is possible is not clear.
  • the laser intensity required for the ion ion is proportional to the size of the sample molecule both in the ionization method using the DIOS method and ionization using the sample target that is useful in the present invention. Therefore, it is necessary to irradiate the sample surface with a strong laser beam for large molecule ions.
  • the sample holding surface cannot withstand such laser intensity, and the nanostructure is destroyed.
  • the performance of IONI no longer appears.
  • the sample target of the present invention has sufficient structural resistance against the laser intensity! /, It is considered that ionization is possible.
  • the sample target according to the present invention is used in a laser desorption / ionization mass spectrometer for ionizing and mass-analyzing a sample by laser light irradiation, and functions as a sample stage on which a sample to be analyzed is placed. .
  • the configuration, shape, material, and the like of the portion other than the sample holding surface are not particularly limited as long as the above-described sample target includes a sample holding surface that is a surface for holding the sample.
  • Examples of the material of the sample target include semiconductors, metals, resins such as synthetic polymers, ceramics, and composites including a plurality of these materials.
  • Specific examples of such a complex include a multilayer structure in which a semiconductor film is applied to the surface of a metal layer, a multilayer structure in which a semiconductor film is applied to the surface of a resin layer, and a ceramic status. Examples include a multilayer structure having a semiconductor film on the surface, but the composite is not limited to these.
  • the sample holding surface of the sample target according to the present invention is a surface that holds the sample to be analyzed, and is irradiated with laser light while the sample is held.
  • a sample target according to the present invention includes a sample holding surface having a large number of pores opened on a surface that is irradiated with laser light.
  • the narrow pores open to the surface of the sample holding surface and extend in the thickness direction of the sample holding surface.
  • the pore arrangement, shape, and angle with the sample holding surface may be regular or irregular, but in order to further improve the function as a sample target for mass spectrometry, Is more regular.
  • FIGS. 1 (a) and 1 (b) An example of the sample holding surface of the sample target according to the present invention is schematically shown in FIGS. 1 (a) and 1 (b).
  • 1 (a) and 1 (b) are sample holding surfaces before being covered with a metal or semiconductor.
  • Fig. 1 (a) is a perspective view showing a part of the sample holding surface of the sample target
  • Fig. 1 (b) is a cross-sectional view of the sample holding surface showing a cut surface taken along the broken line B in Fig. 1 (a).
  • the sample holding surface shown in FIG. 1 (a) and FIG. 1 (b) shows the sample holding surface when the arrangement and shape of the pores and the angle with the sample holding surface are regular.
  • the sample holding surface is a surface of the sample holding surface and has a large number of pores opened on the surface that is irradiated with laser light, that is, the upper surface of FIG. 1 (a). As shown in FIG. 1 (b), the pores extend in the thickness direction of the sample holding surface and have a bottom portion.
  • the shape of the cross section when the pore is cut along a plane parallel to the sample holding surface is not particularly limited, and may be a circle, an ellipse, or a triangle. Further, it may be a polygon such as a quadrangle, a pentagon, or a hexagon, or a shape obtained by slightly deforming these. Further, the shape of the cross section may be regular or irregular. That is, a single shape need not occupy all parts of the sample holding surface. However, in order to further improve the function as a sample target for mass spectrometry, the cross-sectional shape is preferably regular, that is, the same shape. In order to further improve the function as a sample target for mass spectrometry, the shape of the cross section is preferably constant from the opening to the bottom of the pore, but may be slightly deformed. Yo ...
  • the pores extend in the direction of the surface force thickness of the sample holding surface.
  • the pores are preferably perpendicular to the surface of the sample holding surface, but have a slight inclination. You may have it.
  • the angle between the pore and the surface of the sample holding surface may be different for each pore. Force is preferably regular. That is, each pore preferably extends in the same direction. This is preferable because the function as a sample target can be further improved.
  • the pores preferably extend linearly from the opening to the bottom. In the case where the pores are not linear, the laser light does not enter the inside of the pores, which is preferable because the ionization efficiency is improved.
  • the pores preferably have a pore diameter of 30 nm or more and less than 5 ⁇ m, and a pore depth Z (pore period pore diameter) of 2 or more and 50 or less.
  • a pore diameter is the largest dimension in the cross section obtained by cutting the pore in a plane parallel to the sample holding surface! /, The dimension in the direction! )
  • the size of the part indicated by D is the largest dimension in the cross section obtained by cutting the pore in a plane parallel to the sample holding surface! /, The dimension in the direction! )
  • the pore depth refers to the length of the pore opening force up to the bottom, which means the size of the part indicated by E in Fig. 1 (b).
  • the pore period refers to the distance between the centers of adjacent pores, and means the size of the part indicated by C in Fig. 1 (b).
  • the alternate long and short dash line is the center line of the pore. If the pore diameter, pore depth, and pore period are not uniform, average values are used as these values.
  • the cross-sectional view shown in FIG. 1 (b) is a cross-sectional view taken along a cross section where D is the largest. For example, when the cross section obtained by cutting the pore with a plane parallel to the sample holding surface is circular, the cross section is cut along a plane including the diameter.
  • the pore period and the pore diameter are about 1 nm to several tens of ⁇ m.
  • the pore period is 30 nm. More preferably, it is 31 nm or more and 1 ⁇ m, more preferably 33 nm to 500 nm, and most preferably 34 nm to 300 nm.
  • the pore diameter is more preferably 30 nm or more and less than 5 m, more preferably 40 nm or more and 1 ⁇ m, further preferably 45 nm to 700 nm, particularly preferably 50 ⁇ m to 500 nm. Most preferably it is. Thereby, the ion sample of the measurement sample in mass spectrometry can be favorably performed.
  • the pore period and pore diameter may be regular or irregular. However, in order to further improve the function as a sample target for mass spectrometry, it is preferable to be regular. That is, it is preferable that the pore period and the pore diameter are uniform. Good. When the above-mentioned pore period and pore diameter are regular, since the unevenness of the sample holding surface is small, the ionic properties are more stable.
  • the pore depth should be about 30 nm or more and less than 5 ⁇ m! However, in order to further improve the function as a sample target for mass analysis, it is more preferable that it is 30 ⁇ -2 / ⁇ m 50 ⁇ ! ⁇ 1.5 ⁇ m is more preferable 70 ⁇ ! It is particularly preferable that the average particle diameter is ⁇ 1 ⁇ m, and most preferable is 100 ⁇ to 1 / ⁇ ⁇ .
  • the pore depth may be regular or irregular. That is, the pore depth may vary or may be uniform. In order to further improve the function as a sample target for mass spectrometry, the pore depth is preferably uniform. When the pore depth is uniform, the ionization performance is more stable because the unevenness of the sample holding surface is small.
  • the pore depth ⁇ (pore cycle and pore diameter) is preferably 2 to 50, more preferably 2.5 to 45, and more preferably 3 to 35. It is more preferable that it is 3.5-30, and it is most preferable that it is 4-25 especially preferable. As a result, in mass spectrometry, even when a matrix is not used, ions having a molecular weight exceeding 10,000 can be favorably performed.
  • the value of the pore depth ⁇ (pore cycle pore diameter) exceeds 50 and is too large, the structure of the convex portion is weak and the structure is destroyed. I can't enter because I can't get in.
  • the value of the pore depth ⁇ (pore cycle pore diameter) is less than 2 and is small, the ionic efficiency is poor, so that a high molecular weight substance cannot be ionized.
  • the value of the pore depth ⁇ is an average value of the entire portion where the pores are arranged (porous portion).
  • the value of pore depth ⁇ (pore period and pore diameter) is calculated without considering V for partial large defects.
  • the surface of the sample holding surface is coated with a metal or a semiconductor.
  • the performance of the ionizer can be improved, and a high molecular weight substance can be ionized even when a matrix is not used.
  • Specific examples of the metal covering the sample holding surface include 1A in the periodic table of elements.
  • the metal is more preferably Au or Pt. Since Au and Pt are not easily oxidized, ion efficiency can be improved, and oxidation of the sample holding surface having a large number of pores can be prevented.
  • the metal may be a single metal selected from the above metals, or may be an alloy having at least two kinds of strength selected from the above metals.
  • the alloy may be a metal in which two or more kinds of metals are mixed, and the existence form of the two or more kinds of mixed metals is not particularly limited. Examples of the presence form of the two or more kinds of mixed metals include a solid solution, an intermetallic compound, a state in which a solid solution and an intermetallic compound are mixed, and the like.
  • the surface of the sample holding surface may be coated as a plurality of layers respectively formed from a plurality of metals selected from the metals.
  • the semiconductor covering the sample holding surface is not particularly limited, and any semiconductor may be used. Specific examples include Si, Ge, SiC, GaP, GaAs, InP, Si Ge (0 ⁇ X> 1), SnO, ZnO, InO, mixtures thereof, carbon, etc. l -XX 2 2 3
  • the above semiconductors are SnO, ZnO, InO, a mixture of SnO and InO.
  • ITO which is 2 2 3 2 2 3. Since these substances are originally acidic and are not further oxidized, the performance of the ionic liquid does not deteriorate even when left in the air. In addition, although carbon has different physical properties depending on the bonding state of its atoms, it is classified here as a semiconductor. Since carbon is not easily oxidized in the air, the performance of the ionizer does not deteriorate even if left in the air.
  • the surface of the sample holding surface is at least selected from the semiconductor and the metal.
  • the thickness of the coated metal and the cocoon or the semiconductor depends on the number of sample holding surfaces. There is no particular limitation as long as it does not impair the concavo-convex structure that also has several pore forces. Specifically, for example, it is preferably 1 nm or more and 200 nm or less. When the thickness of the metal and Z or semiconductor does not exceed this upper limit, the concavo-convex structure of the sample holding surface is not impaired, and when the thickness is larger than the lower limit, efficient ionization is possible.
  • the thickness of the metal and Z or semiconductor is more preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and lOO nm or less, and even more preferably lOnm or more and 80 nm or less, particularly preferably 20 nm. As described above, the thickness is most preferably 75 nm or less. This allows more efficient ionization.
  • the material of the sample holding surface is not particularly limited as long as it has the above shape, and examples thereof include a resin such as a synthetic polymer, ceramics, and the like. Even if the material does not have conductivity, the efficiency of ionic ions can be improved by coating with metal and Z or semiconductor.
  • Examples of the synthetic polymer include polyethylene, polypropylene, polyacrylic acid ester, polymethacrylic acid ester, polystyrene, polysiloxane, polystannoxane, polyamide, polyester, polyaline, polypyrrole, polythiophene, polyurethane, and polyethylene ether.
  • Examples include terketones, poly-4-fluorinated styrene, and copolymers and mixtures thereof, graft polymers, and block polymers.
  • the ceramics include alumina (acid-aluminum), magnesia, beryllia, zircoia (acid-zirconium), acid-uranium, acid sodium, silica (quartz), holsterite, steatite.
  • Wollastonite, Ginolecon, Mullite, Cordierite Z Cordierite, Spodumene Aluminum titanate, Spinel apatite, Barium titanate, Ferrite, Lithium niobate, Silicon nitride (SiN), Sialon, Aluminum nitride, Boron nitride, Titanium nitride, silicon carbide (silicon carbide), boron carbide, titanium carbide, tungsten carbide, lanthanum boride, titanium boride, zirconium boride, sulfur sulfide, molybdenum sulfide, molybdenum carbide, diamond, single crystal Saff Such as Oia is like we are.
  • the material of the sample holding surface may be a metal or a semiconductor. If force is applied, it is not essential that the sample holding surface is further coated with metal and Z or semiconductor. Absent.
  • the metal and semiconductor used as the material for the sample holding surface are the same as the metal and semiconductor for covering the sample holding surface described above.
  • porous alumina As a material of the sample holding surface, for example, porous alumina can be suitably used.
  • Porous alumina refers to an acid film having many fine pores formed on the surface by anodizing aluminum or an alloy thereof in an electrolytic solution.
  • By controlling the conditions of the cationic acid it is possible to produce regular porous alumina in which pores are regularly arranged over a wide range.
  • the regular porous alumina thus obtained has a large number of pores in one direction on a layer 102 of aluminum (or an alloy thereof) through a noria layer 103 as shown in FIG. An array of porous alumina layers 101 is formed.
  • the force barrier layer in which the barrier layer exists may be removed.
  • porous alumina has a regular uneven structure, and can obtain a structure having a large pore depth Z (pore period, pore diameter), and thus is suitable for the sample target of the present invention. Can be used. Furthermore, porous alumina can be suitably used in the present invention because the pore diameter, pore depth, and pore cycle can be controlled by changing the anodizing conditions.
  • Porous alumina having a regular pore structure is, for example, H. Masuda and M. Satoh,
  • Jpn. J Appl. Phys., 35, pp. L126 (1996), a method of performing anodization in two steps, a plurality of protrusions disclosed in JP-A-10-121292 A substrate provided with an anodized substrate is applied to the surface of the aluminum plate to form a recess having a desired pore period or arrangement, and then the aluminum plate is anodized by a conventionally known method. it can.
  • the method for producing the sample target (A) is not particularly limited as long as it can produce the sample target having the sample holding surface having a large number of pores as described above, a method using anodization, a lithography method, etc.
  • a conventionally known method for processing a fine structure can be suitably used.
  • a method of obtaining the sample target by using porous alumina as a sample holding surface and coating it with metal and Z or semiconductor (Production Example 1)
  • Porous alumina is used as a saddle shape, and a sample holding surface made of another material having the same pore structure as the porous alumina used as the saddle shape is manufactured.
  • a method of coating with Z or semiconductor can be preferably used.
  • the pore diameter is 30 nm or more and less than 5 ⁇ m, and the pore depth Z (pore period ⁇ The pore diameter is 2 or more and 50 or less.
  • a regular pore structure is easy with a pore diameter of 30 nm or more and less than 5 ⁇ m and a pore depth Z (pore periodic pore diameter) of 2 or more and 50 or less. It becomes possible to make it. Further, by selecting the conditions for anodic oxidation, the pore diameter, pore depth, and pore period can be controlled.
  • the production method 2 not only the same effect as the production method 1 can be obtained, but also the sample holding surface having the same structure as the porous alumina having the concavo-convex structure suitable for the sample holding surface can be obtained. Can be made of material. Therefore, these production methods are also included in the present invention.
  • a method using porous alumina as a saddle type was mentioned.
  • what is used as a saddle type is not limited to porous alumina obtained by anodic acid soot.
  • a structure having a fine uneven surface produced by another method can be used.
  • the structure used as a saddle has a large number of pores that open on the surface, and the pore diameter is 30 nm or more and less than 5 ⁇ m.
  • a material having a pore depth Z (pore cycle-pore diameter) of 2 or more and 50 or less is used.
  • This manufacturing method is used to hold the sample when the sample is ionized by laser light irradiation for mass analysis, and has a large number of pores that open to the surface side that receives the laser light irradiation.
  • a method for producing a sample target comprising a holding surface comprising the step of using porous alumina as the sample holding surface and coating the surface of the sample holding surface with a metal or semiconductor! / ,.
  • porous alumina is obtained by anodizing aluminum or an alloy thereof. You can make it, or you can use commercially available porous alumina!
  • the method for producing porous alumina is not particularly limited, and any method may be used. Moreover, a conventionally well-known method can be used suitably.
  • aluminum or an alloy thereof is preferably polished and anodized in an electrolytic solution.
  • the electrolytic solution may be acidic or alkaline, but is preferably sulfuric acid, oxalic acid, phosphoric acid, or the like.
  • the anodizing voltage, anodizing time, the type and concentration of the electrolyte, temperature conditions, etc. may be appropriately selected. .
  • the method of polishing aluminum or its alloy before anodic oxidation is not particularly limited.
  • the electrolytic polishing treatment is performed in a mixed solution of perchloric acid and ethanol, a mixed solution of phosphoric acid and sulfuric acid, or the like. And a method of mechanically polishing the surface.
  • the porous alumina obtained by anodic acid may be subjected to an enlargement treatment of the pore diameter by an etching treatment using a phosphoric acid aqueous solution, a sulfuric acid aqueous solution or the like.
  • the step of coating the surface of the sample holding surface with a metal or semiconductor includes the step of coating the surface of the sample holding surface made of porous alumina with the metal or semiconductor described in (I 1) above with the above-described thickness. If so, it is not particularly limited.
  • the method for coating the surface of the sample holding surface with a metal or semiconductor is not particularly limited, and a conventionally known method can be suitably used. Examples of such methods include sputtering, chemical vapor deposition (CVD), vacuum deposition, electroless plating, electrolytic plating, coating, noble metal varnish, organometallic thin film, and sol-gel. Can do. These methods may be appropriately selected and used depending on the type of metal or semiconductor, the thickness of the layer to be coated, the state of the sample holding surface to be coated, and the like. There is a method that can strongly coat metal or semiconductor on the sample holding surface. preferable.
  • This manufacturing method is used to hold the sample when the sample is ionized by laser light irradiation for mass analysis, and has a large number of pores that open to the surface side that receives the laser light irradiation.
  • a method for producing a sample target having a holding surface which uses a porous alumina in a bowl shape to produce a negative structure in which the uneven structure of the porous alumina is transferred, And transferring the concavo-convex structure using the obtained negative structure as a saddle shape to obtain a sample holding surface having a concavo-convex structure having the same shape as the porous alumina concavo-convex structure on the surface. If it is, it will not specifically limit.
  • Such a method is not particularly limited as long as it is an "imprint” method in which a fine structure is used in a saddle shape and the structure is transferred to another substance, and any method is used. It's okay.
  • imprint a fine structure is used in a saddle shape and the structure is transferred to another substance, and any method is used. It's okay.
  • microstructures made in units of lnm to several tens of meters have been used in a saddle shape.
  • Various “imprint” methods for transferring the structure to another substance have been developed, and these conventionally known methods can be suitably used.
  • Such imprinting methods include, for example, K. Nishio, M. Nakano, and A. Yokoo, Jpn. J.
  • a thin metal layer is formed on the surface of porous alumina.
  • This thin metal layer is later used as an electrode in the electrolytic deposition of metals.
  • the pores of the porous alumina are filled with the monomer and the polymerization initiator, and the monomer is polymerized to form a polymer.
  • aluminum and alumina are dissolved and removed to obtain a negative structure in which the uneven structure of porous alumina composed of a metal layer and a polymer is transferred.
  • the obtained negative structure is formed into a saddle shape, and electrolytic deposition is performed using the metal layer as an electrode.
  • the polymer is dissolved and removed to obtain a sample holding surface having a concavo-convex structure having the same shape as the concavo-convex structure of the porous alumina made of the metal.
  • the metal used for the sample holding surface which is produced by transferring the concavo-convex structure of porous alumina in a saddle shape in a powerful method, includes, for example, group 1A (Li, Na, K, R b , Cs, Fr), 2A group (Be, Mg, Ca, Sr, Ba, Ra), 3A group (Sc, Y), 4A group (Ti, Zr, Hf) ), 5A (V, Nb, Ta), 6A (Cr, Mo, W) 7A (Mn, Tc, Re), 8 (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt), IB group (Cu, Ag, Au), 2B group (Zn, Cd, Hg), 3B group (Al), and lanthanoid series (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb) , Dy, Ho, Er, Tm, Yb, Lu), actinoid series (A)
  • the method for forming a thin metal layer on the surface of porous alumina is not particularly limited, and sputtering, chemical vapor deposition (CVD), vacuum deposition, electroless plating, electrolytic plating, and the like are not particularly limited. Method, coating method, noble metal varnish method, organometallic thin film method, sol-gel method and the like.
  • the thickness of the metal layer is not particularly limited, for example, 5 ⁇ ! ⁇ I prefer to be lOOnm ⁇ ! More preferably, it is ⁇ 50 nm.
  • the monomer for example, acryl-based monomers such as methyl methacrylate and methyl acrylate can be used.
  • the polymerization initiator is not particularly limited, and a conventionally known polymerization initiator such as peroxybenzoyl may be used.
  • the solvent used for dissolution and removal of aluminum and alumina is not particularly limited as long as it dissolves aluminum and alumina and does not dissolve the polymer.
  • sodium hydroxide aqueous solution, hydroxide solution Examples include potassium aqueous solution.
  • the solvent used for dissolving and removing the polymer is not particularly limited as long as it is a solvent that dissolves the polymer and does not dissolve the metal. Examples thereof include acetone and black mouth form. Can do.
  • the material of the sample holding surface produced by transferring the uneven structure of porous alumina to the metal by the imprint method is applied to the metal.
  • it may be a resin, a resin such as a synthetic polymer, a ceramic, or the like.
  • the material of the sample holding surface is a semiconductor, ionization efficiency is excellent even when it is not covered with metal.
  • the efficiency of ions can be improved by coating a metal or semiconductor with a non-conductive material such as a resin such as a synthetic polymer or a ceramic.
  • the method for transferring the concavo-convex structure to semiconductors, polymers, ceramics, etc. is not particularly limited, and any conventionally known method may be used.
  • any conventionally known method may be used.
  • H. Masuda, K. . Nishio and N. Ba The method described in ba, Jpn. J. Appl. Phys., 31, L1775 (1992) can be suitably used.
  • the semiconductor used for the sample holding surface that is fabricated by transferring the concavo-convex structure of porous alumina in a saddle shape is not particularly limited, and any semiconductor may be used.
  • the resin and ceramics such as the synthetic polymer
  • the same synthetic polymers and ceramics as those described in (1-1) above can be preferably used.
  • the material of the sample holding surface produced by transferring the uneven structure of porous alumina by imprint method is a resin or a ceramic such as a synthetic polymer
  • the present production method It is preferable to include a step of coating the surface of the holding surface with metal or semiconductor.
  • the step of coating the surface of the sample holding surface with a metal or a semiconductor is described in (1-1) above, wherein the surface of the sample holding surface produced by transferring the uneven structure of the porous alumina by the imprint method is used. If it is the process of coat
  • the method for coating the surface of the sample holding surface with a metal or a semiconductor is not particularly limited, and a conventionally known method can be suitably used. Examples of such methods include sputtering, chemical vapor deposition (CVD), vacuum deposition, electroless plating, electrolytic plating, coating, noble metal varnish, organometallic thin film, and sol-gel. Can be mentioned.
  • the sample target (B) is used to hold a sample when the sample is ionized by mass irradiation with laser light and is subjected to mass analysis.
  • a negative structure having a convex structure transferred thereon was prepared, and the concave / convex structure having the same shape as the porous alumina concave / convex structure was transferred to the surface using the negative structure as a saddle shape. If it has a sample holding surface,
  • sample target and the sample holding surface are as described in (I-1) above.
  • the sample target (B) includes a sample holding surface having a large number of pores opened on the surface that is irradiated with the laser beam.
  • the narrow pores open to the surface of the sample holding surface and extend in the thickness direction of the sample holding surface.
  • the pore arrangement, shape, and angle with the sample holding surface may be regular or irregular, but in order to further improve the function as a sample target for mass spectrometry, these may be used. Is more regular.
  • the sample holding surface is made of a negative type structure in which the uneven structure of the porous alumina is transferred using porous alumina in a bowl shape, and the negative type structure is Any sample holding surface having a concavo-convex structure having the same shape as the porous alumina concavo-convex structure on the surface, to which the concavo-convex structure is transferred using a saddle shape, may be used.
  • the porous alumina is also as described in (I 1) above, and has many fine pores formed on the surface by anodizing aluminum or its alloy in the electrolytic solution. Any oxide film may be used.
  • the pore diameter, the pore depth, and the pore period are not particularly limited as long as the porous alumina usually has a size.
  • the above pores are more preferably regular and have a pore diameter of less than 30 nm and a pore depth Z (pore period-fine The pore diameter is more preferably 2 or more and 50 or less. This makes it possible to ionize a substance having a molecular weight exceeding 10,000 even when a matrix is not used in mass spectrometry.
  • a negative type structure in which the uneven structure of the porous alumina was transferred using the porous alumina as a saddle type was produced, and the above uneven structure was transferred using the negative type structure as a vertical type.
  • a sample holding surface having a concavo-convex structure having the same shape as the porous alumina concavo-convex structure on its surface was prepared as a negative structure by the method described in Production Example 2 of (I 2) above.
  • the structure of the porous alumina obtained by transferring the concavo-convex structure using a vertical structure. Any sample holding surface having a concavo-convex structure having the same shape as the concavo-convex structure on the surface may be used.
  • the material of the sample holding surface having a concavo-convex structure having the same shape as the porous alumina concavo-convex structure on the surface may also be a metal or semiconductor force as in Production Method 2, or may be a synthetic polymer or the like. Fats, ceramics, etc. may be used.
  • the material of the sample holding surface is a semiconductor, ion efficiency is excellent even when it is not covered with metal. In addition, the efficiency of ionic ions can be improved by coating with a metal or a semiconductor even if it is a non-conductive material such as a resin such as a synthetic polymer or a ceramic.
  • the material of the sample holding surface produced by transferring the concavo-convex structure of porous alumina by the imprint method is a resin or ceramic such as a synthetic polymer
  • the surface of the sample holding surface is Preferred to be coated with metal or semiconductor.
  • the metal and semiconductor used for coating the sample holding surface, the thickness of the metal and Z or the semiconductor covered, and the thickness of the semiconductor are the same as described in (I 1) above. Is omitted.
  • the method for producing the sample target (B) is the same as that described in Production Example 2 in the above (1-2), and therefore the description thereof is omitted here.
  • the sample target (C) is used to hold the sample when the sample is ionized by laser irradiation and subjected to mass spectrometry.
  • the sample target and the sample holding surface are as described in (I-1) above.
  • the interval between the concave portions and the convex portions is lnm. ⁇ 10 ⁇ m, concave The depth of the part is ⁇ ! It is only necessary to have a surface with a fine concavo-convex structure of ⁇ 10 ⁇ m as the sample holding surface.
  • the interval between adjacent concave portions and convex portions of the concavo-convex structure may be about lnm to about LO m.
  • the interval between the adjacent concave portions or convex portions is 30 ⁇ !
  • ⁇ 5 ⁇ m is more preferred 31 nm to l ⁇ m is more preferred 33 nm to 500 nm is particularly preferred 34 nm to 300 nm Force S is most preferred. Thereby, ionization of the measurement sample in mass spectrometry can be performed satisfactorily.
  • the interval between adjacent concave portions or convex portions of the concavo-convex structure may be regular or irregular. However, in order to further improve the function as a sample target for mass spectrometry, regularity is more preferable. When the intervals between the recesses or the protrusions are regular, the unevenness of the unevenness is small, and the ionic properties are more stable.
  • the depth of the concave portion of the concave-convex structure may be about lOnm or more and less than about 10 ⁇ m. However, in order to further improve the function as a sample target for mass spectrometry, 30 nm to 2 m is more preferable, and 50 nm to l.5 m is more preferable. L m is particularly preferred. 100 nm to l ⁇ m is most preferred. Further, the depth of the concave portion may vary or may be uniform. However, in order to further improve the function as a sample target for mass spectrometry, the depth of the concave portion is preferably uniform. When the depth of the recess is uniform, the unevenness of the unevenness is small, so that the ion performance is more stable.
  • the specific shape of the recess is not particularly limited, and may be any shape.
  • the concavo-convex structure may be a mixture of concave portions of various shapes, where the concave portions are not constant in shape. However, in order to further improve the function as a sample target for mass spectrometry, it is preferable that the concavo-convex structure has a concave force of a certain shape. Examples of the shape that can be applied include the shape of a groove, a lattice in which the grooves intersect, and a hole.
  • the shape of the groove and hole is not particularly limited, and may be any shape, for example, a straight groove; a curved groove; an arc-shaped groove. A circular hole; an elliptical hole; a polygonal hole such as a triangle, a quadrangle, or a pentagon.
  • the wall surface of the recess may be perpendicular to the sample holding surface or may have an inclination.
  • the concavo-convex structure may be formed on the entire sample holding surface, or may be formed partially on the sample holding surface.
  • the sample target according to the present invention is such that the surface of the sample holding surface is coated with a semiconductor.
  • the semiconductor is not particularly limited, and any semiconductor may be used. Specifically, for example, Si, Ge, SiC, GaP, GaAs, InP, Si Ge (0 l -X X
  • the above semiconductors are SnO, ZnO, InO, a mixture of SnO and InO, ITO, etc.
  • the thickness of the semiconductor covered is not particularly limited as long as it does not damage the uneven structure of the sample holding surface. Specifically, for example, it is preferably from 1 nm to 200 nm. When the thickness of the metal does not exceed this upper limit, the uneven structure of the sample holding surface is not impaired, and when the thickness is larger than the lower limit, efficient ionization is possible. Further, the thickness of the metal is more preferably 5 nm or more and lOO nm or less, more preferably 10 nm or more and 90 nm or less, further preferably 15 nm or more and 80 nm or less, particularly preferably 20 nm or more and 75 nm or less. Most preferably it is. This allows more efficient ionization.
  • the method for producing the sample target (C) according to the present invention has a fine concavo-convex structure in which the interval between the concave portions or the convex portions is 1 nm to 10 ⁇ m and the depth of the concave portions is 10 nm to 10 ⁇ m.
  • a sample target equipped with a surface as a sample holding surface! Is not particularly limited as long as it is a method for producing a semiconductor-coated material, and it should include at least a step of coating the surface of the sample holding surface with a semiconductor.
  • the method of coating the surface of the sample holding surface with a semiconductor is not particularly limited, and the method described in (1-2) can be preferably used.
  • the interval between the concave portions or the convex portions is Inn! ⁇ 10 m and the depth of the recess is ⁇ !
  • a step of manufacturing a sample holding surface having a fine concavo-convex structure of up to 10 m on the surface may be included.
  • a method for producing a concavo-convex concavo-convex structure a sample holding surface is formed on a surface of the substrate by regularly forming a concave portion having a predetermined width on the surface of the substrate by using a lithospheric technology. It may be a method to do.
  • the lithography technique it is preferable to form the concave portion using an electron beam drawing apparatus. Further, production method example 1, production method example 2 and the like described in (1-2) above can be suitably used.
  • the sample target of the present invention is used as a sample stage for placing a sample to be measured in mass spectrometry of various substances such as biopolymers, endocrine disrupting substances, synthetic polymers, and metal complexes. can do.
  • the sample target is useful because it can efficiently and stably perform sample ionization particularly when used in laser single desorption ionization mass spectrometry.
  • the mass spectrometer of the present invention is a laser desorption ionization mass spectrometer that ionizes a sample to be measured by irradiating the sample with laser light and measures the molecular weight of the sample. I prefer to be there.
  • the sample to be measured is placed on the sample target and used, so that when the sample is irradiated with laser light, Ion ion can be performed satisfactorily.
  • An aluminum plate having a purity of 99.99% was subjected to electropolishing treatment in a mixed solution of perchloric acid and ethanol (volume ratio 1: 4).
  • the mirror-finished aluminum plate was anodized in 0.5 M phosphoric acid aqueous solution at a bath temperature of 17 ° C under a direct current of 80 V for 15 minutes, and anodized porous alumina with a pore depth of 500 ⁇ m was obtained. Formed. Thereafter, the sample was immersed in a 10% by weight phosphoric acid aqueous solution for 10 minutes, subjected to pore size enlargement treatment, and the pore size was adjusted to lOOnm.
  • Pore depth Z (pore cycle pore diameter) is 5 o
  • a Si-coated porous alumina substrate having a pore period of 200 nm was obtained by coating 50 nm of Si by sputtering on the anodized porous alumina surface produced in the same manner as in Example 1.
  • the sample was immersed in a 10% by weight phosphoric acid aqueous solution for 30 minutes, subjected to pore size enlargement treatment, and the pore size was adjusted to 250 ⁇ m.
  • the surface of the obtained anodized porous alumina was coated with 50 nm of Pt using an ion beam sputtering apparatus to obtain an ideally aligned porous alumina substrate with a pore period of 500 nm.
  • the pore depth Z (pore cycle pore diameter) was 8.
  • An aluminum plate having a purity of 99.99% was subjected to electropolishing treatment in a mixed solution of perchloric acid and ethanol (volume ratio 1: 4).
  • a mirror-finished aluminum plate was placed in a 0.5 M phosphoric acid aqueous solution at a bath temperature of 17 ° C for 11 minutes under a direct current of 80 V in a phosphoric acid aqueous solution adjusted to a concentration of 0.3 M and a bath temperature of 10 ° C.
  • anodizing was performed for 23 minutes under a direct current of 120 V to form anodized porous alumina with a pore depth of 500 nm and a pore period of 200 nm and 300 nm, respectively.
  • Porous alumina with a pore period of 300 nm had a pore diameter of 100 nm and a pore depth Z (pore period pore diameter) of 2.5.
  • the pore diameter of porous alumina with a pore period of 200 nm was 70 nm and the pore depth Z (pore period pore diameter) was 3.8.
  • a 99.99% pure aluminum plate was electropolished in a perchloric acid / ethanol mixed solution (volume ratio 1: 4).
  • the mirror-finished aluminum plate was subjected to anodization for 15 hours in a 0.3 M oxalic acid aqueous solution at a bath temperature of 17 ° C and a direct current of 40 V, and then the oxide layer was subjected to clonic acid, It was dissolved and removed with a phosphoric acid mixed solution, and anodized again for 10 minutes under the same conditions to form anodized porous alumina having a pore depth of 1 m.
  • the sample was immersed in a 5% by weight phosphoric acid aqueous solution for 40 minutes, subjected to pore size enlargement treatment, and the pore size was adjusted to 7 Onm.
  • the surface of the obtained anodized porous alumina was coated with 2 Onm of Pt by sputtering to obtain a highly ordered porous alumina substrate with a pore period of lOOnm.
  • the pore depth Z (pore cycle pore diameter) was 33.
  • a 99.99% pure aluminum plate was electropolished in a perchloric acid / ethanol mixed solution (volume ratio 1: 4).
  • the mirror-finished aluminum plate was anodized for 15 hours in a 0.3 M phosphoric acid aqueous solution at a bath temperature of 0 ° C and a direct current of 195 V, and then the oxide layer was chlorinated. It was dissolved and removed with a mixed solution of acid and phosphoric acid, and anodic oxidation was again performed under the same conditions for 15 minutes to form anodic acid porous alumina having a pore depth of 1 ⁇ m.
  • the sample was immersed in a 10% by weight phosphoric acid aqueous solution for 60 minutes, subjected to pore size enlargement treatment, and the pore size was adjusted to 30 Onm.
  • the surface of the resulting anodized / porous alumina was coated with 50 nm of Pt using an ion beam sputtering apparatus to obtain a highly ordered porous alumina substrate having a pore period of 500 nm.
  • the pore depth Z (pore cycle pore diameter) was 5.
  • An aluminum plate with a purity of 99.99% was electropolished in a perchloric acid / ethanol mixed solution (volume ratio 1: 4).
  • a Ni mold with a structure in which protrusions are regularly arranged at a period of 200 nm was pressed against the mirror-finished aluminum plate surface to form a fine uneven pattern.
  • the imprinted aluminum plate was anodized in a 0.5 M phosphoric acid aqueous solution at a bath temperature of 17 ° C. under a direct current of 80 V for 11 minutes to form anodized porous alumina having a hole depth of 500 nm.
  • the sample was immersed in a 10% by weight phosphoric acid aqueous solution for 10 minutes, subjected to pore size enlargement treatment, and the pore size was adjusted to lOOnm.
  • the surface of the obtained anodized porous alumina was coated with 50 nm of Pt using an ion beam sputtering apparatus to obtain an ideally aligned porous alumina substrate with a pore period of 200 nm.
  • the pore depth Z (pore periodic pore diameter) was 5.
  • a 99.99% pure aluminum plate was electropolished in a perchloric acid / ethanol mixed solution (volume ratio 1: 4).
  • a mirror-finished aluminum plate was anodized for 15 hours in a 0.3 M phosphoric acid aqueous solution at a bath temperature of 17 ° C and a direct current of 195 V, and then the oxide layer was It was dissolved and removed with a mixed solution of acid and phosphoric acid, and again anodized under the same conditions for 2 hours to form anodized porous alumina having a pore depth of 15 m.
  • the sample was immersed in a 10% by weight phosphoric acid aqueous solution for 60 minutes, subjected to pore size enlargement treatment, and the pore size was adjusted to 300 nm.
  • the surface of the obtained anodized porous alumina was coated with 50 nm of Pt by sputtering to obtain an ideally aligned porous alumina substrate with a pore period of 500 nm.
  • the pore depth Z (pore cycle pore diameter) was 75.
  • a 99.99% pure aluminum plate was electropolished in a perchloric acid / ethanol mixed solution (volume ratio 1: 4).
  • a Ni mold with a structure in which protrusions were regularly arranged with a period of 200 nm was pressed against the mirror-finished aluminum plate surface to form a fine uneven pattern.
  • An imprinted aluminum plate was anodized in 0.5 M phosphoric acid aqueous solution at a bath temperature of 17 ° C and under a direct current of 80 V for 2 hours, with a pore depth of 70 nm.
  • Anodized Porous alumina was formed. The pore size was adjusted to lOOnm by performing pore size expansion treatment.
  • the surface of the obtained anodized / porous alumina was coated with Pt by 50 nm using an ion beam sputtering apparatus to obtain an ideally aligned porous alumina substrate having a pore period of 200 nm.
  • the pore depth Z (pore cycle pore diameter) was 0.7.
  • a Waters MassPREP TM DIOS-target plate was pretreated with isopropanol as per the manual and then loaded with trypsinogen lOpmol with a molecular weight of 24000.
  • a time-of-flight mass spectrometer Voyager DE—Pro (Applied Biosystems) As a result of mass spectrometry using the laser desorption ion method in linear mode, it was difficult to detect sample ions.
  • Laser desorption ionic mass spectrometry is currently used in a wide range of fields as mass spectrometry for biopolymers, endocrine disruptors, synthetic polymers, metal complexes, and the like. Since the sample target of the present invention is an effective material for performing this laser desorption ionization mass spectrometry more accurately and stably, it can be said that the applicability of the present invention is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 マトリックスを用いずに試料のイオン化を可能とする質量分析において、分子量10000を超える高分子量の物質のイオン化が可能となる試料ターゲットおよびその製造方法と、当該試料ターゲットを用いた質量分析装置とを提供する。  レーザー光の照射を受ける表面に開口する多数の細孔を有する試料保持面を備え、当該細孔の細孔径が30nm以上5μm未満、且つ、細孔深さ/(細孔周期-細孔径)が2以上50以下であり、上記試料保持面の表面が金属または半導体で被覆されている試料ターゲットを用いる。

Description

明 細 書
質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当 該試料ターゲットを用いた質量分析装置
技術分野
[0001] 本発明は、質量分析法に用いられる試料ターゲットおよびその製造方法、並びに 当該試料ターゲットを用いた質量分析装置に関するものであり、特に、マトリックスを 用いな 、場合にぉ ヽても試料のイオン化を可能とする試料ターゲットおよびその製造 方法、並びに当該試料ターゲットを用いた質量分析装置とに関するものである。 背景技術
[0002] 質量分析法は、試料をイオンィ匕し、試料あるいは試料のフラグメントイオンの質量と 電荷の比(以下、 mZz値と表記する)を測定し、試料の分子量を調べる分析法であ る。その中でも、マトリックス支援レーザー脱離イオン化(MALDI : Matrix- assisted la ser desorption/ ionization mass spectrometry)法は、マトリックスと呼ばれ o低分子量 の有機化合物と試料とを混合し、さらにレーザーを照射することにより、当該試料をィ オンィ匕する方法である。この方法では、マトリックスが吸収したレーザーのエネルギー を試料に伝えることになるので、試料を良好にイオンィ匕することができる。
[0003] MALDI法は、熱に不安定な物質や高分子量物質をイオン化することが可能であり 、他のイオンィ匕技術と比較しても試料を「ソフトに」イオンィ匕できる。それゆえ、この方 法は、生体高分子や、内分泌攪乱物質、合成高分子、金属錯体など様々な物質の 質量分析に広く用いられて 、る。
[0004] しかしながら、上記 MALDI法では、有機化合物のマトリックスを用いるために、当 該マトリックスに由来する関連イオンにより、試料イオンの解析が困難となることがある 。具体的には、有機化合物のマトリックスを用いると、このマトリックス分子のイオン、マ トリックス分子が水素結合で結合したクラスターのイオン、マトリックス分子が分解して 生成するフラグメントイオン等のマトリックス関連イオンが観測されるため、試料イオン の解析が困難になる場合が多い。
[0005] そこで、従来から、上記マトリックス関連イオンの妨害を避けるための技術が種々提 案されている。具体的には、マトリックス関連イオンを生成させないように,マトリックス 分子を固定する技術として、例えば、 aーシァノー 4ーヒドロキシケィ皮酸やシンナム アミドなどのマトリックスをセファロースのビーズに固定する技術、ターゲットである金 の表面に、マトリックスであるメチルー N— (4—メルカプトフエ-ルーカーバメート)の 自己組織化単分子膜を形成する技術、ゾルゲル法により、マトリックスである 2, 5—ジ ヒドロキシ安息香酸 (DHB)をシリコンポリマーシート中に固定する技術等が知られて いる。し力しながら、上記のようにマトリックス分子を固定する方法は、検出感度ゃ耐 久性が実用上十分ではないという問題が生ずる。また、検出時には、フラグメントィォ ンによるノイズを回避できな 、と 、う問題もある。
[0006] そこで、最近では、マトリックスを用いない技術が提案されている。具体的には、多 穴'性の表面を有する半導体基板(文献中では、 porous light-absorbing semiconducto r substrateと記載)を試料ターゲットとして用いる技術が開示されている(例えば、特 許文献 1等参照。 ) oこの試料ターゲットは、半導体基板における試料保持面を、多 穴性 (porous)構造すなわち微細な凹凸構造となるように加工して 、る。同文献では、 このような試料保持面に試料を塗布し、当該試料にレーザー光を照射すると、マトリツ タスが無くても高分子量の物質力 Sイオンィ匕されると報告している。この方法は、 DIOS (Desorption/Ionization on Porous Silicon)法と名 1、J'けりれて ヽる。
[0007] また、マトリックスを用いない場合もイオンィ匕を可能とする技術として、本発明者らは 、リソグラフィ一法により作製したナノメートルな 、し数十マイクロメートルオーダーの 微細で規則的な凹凸構造を有する表面を試料保持面として備えている試料ターゲッ トゃ、ナノメートルな 、し数十マイクロメートルオーダーの微細な凹凸構造を有する表 面を金属で被覆した試料保持面を備えて ヽる試料ターゲットによれば、従来のマトリ ックスを用いない技術と比較して、イオンィ匕効率の向上およびより安定なイオン化が 可能であることを見出している (例えば特許文献 2等参照。)。
[0008] さらに、本発明者らは、サブマイクロメートルオーダーの凹凸構造を有する種々の 材質からなる表面を試料保持面として備えて 、る試料ターゲットにつ!、て検討を行つ ており、かかる材質の一つとして、ポーラスアルミナを金や白金で被覆した試料保持 面を用いる場合にもマトリックスを用いずにイオンィ匕が可能であることを見出して 、る ( 例えば、非特許文献 1等参照。 ) o
特許文献 1 :米国特許第 6288390号明細書 (2001年 9月 11日公開)
特許文献 2:国際公開第 2005Z083418号パンフレット(2005年 9月 9日公開) 非特干文献 1 : Shoji ukuno, Ryuichi Arakawa, Kazumasa Okamoto, Yosninon Matsui , Shu Seki, Takahiro Kozawa, Seiichi Tagawa, Yoshinao Wada, Matrix-free laser des orption/ ionization of peptides on sub-micrometer structures: Grooves on silicon and metal-coated porous alumina, 53rd ASMS Conference on Mass Spectrometry and A Hied Topics, (San Antonio, Texas, USA),予稿集(2005年 4月 15日 Web上で公開) 発明の開示
発明が解決しょうとする課題
[0009] し力しながら、従来のマトリックスを用いないレーザー脱離イオン化質量分析では、 分子量 10000を超える高分子量の物質をイオンィ匕することはできない。
[0010] すなわち、特許文献 1等に開示されている従来の DIOS法によるレーザー脱離ィォ ン化質量分析は、分子量 3000以下の物質のイオンィ匕には有効であるが、分子量が
10000を超える物質をイオンィ匕することはできな 、。
[0011] また、特許文献 2に開示されているリソグラフィ一法により作製した規則的な凹凸構 造を有する表面を試料保持面や、微細な凹凸構造を有する表面を金属で被覆した 試料保持面を備えて ヽる試料ターゲットを用い、マトリックスを用いずにレーザーを照 射しても分子量が 10000を超える大き 、物質のイオンィ匕はできな 、。
[0012] 本発明は、上記問題点に鑑みてなされたものであり、その目的は、マトリックスを用
Vヽずに試料のイオンィ匕を可能とする質量分析にぉ 、て、分子量 10000を超える高分 子量の物質のイオンィ匕が可能となる試料ターゲットおよびその製造方法と、当該試料 ターゲットを用いた質量分析装置とを提供することにある。
課題を解決するための手段
[0013] 本発明にかかる試料ターゲットは、上記課題を解決するために、レーザー光の照射 により試料をイオンィ匕して質量分析するときに、試料を保持するために用いられ、レ 一ザ一光の照射を受ける表面に開口する多数の細孔を有する試料保持面を備えて いる試料ターゲットであって、当該細孔の細孔径が 30nm以上 5 m未満、且つ、細 孔深さ Z (細孔周期 細孔径)が 2以上 50以下であり、上記試料保持面の表面が金 属または半導体で被覆されて 、ることを特徴として 、る。上記試料保持面はポーラス アルミナ力もなることが好ましい。また、上記金属は、白金 (Pt)および金 (Au)の少な くとも何れかであることが好ましい。上記半導体は、酸化スズ (SnO )、酸化亜鉛 (Zn
2
O)、酸化インジウム'スズ (ITO)およびカーボンの少なくとも何れかであることが好ま しい。
[0014] 本発明にかかる試料ターゲットは、上記課題を解決するために、レーザー光の照射 により試料をイオンィ匕して質量分析するときに、試料を保持するために用いられ、レ 一ザ一光の照射を受ける表面側に開口する多数の細孔を有する試料保持面を備え ている試料ターゲットであって、上記試料保持面は、ポーラスアルミナを铸型に用い て該ポーラスアルミナの凹凸構造を転写したネガ型の構造物を作製し、該ネガ型の 構造物を铸型に用いて上記凹凸構造を転写した、上記ポーラスアルミナの凹凸構造 と同一の形状の凹凸構造を表面に有する試料保持面であることを特徴としている。
[0015] 上記試料保持面は金属または半導体力もなることが好ま 、。また、上記試料保持 面の表面は、金属または半導体で被覆されていてもよい。また、上記細孔は、細孔径 が 30nm以上 5 μ m未満、細孔深さ Z (細孔周期 細孔径)が 2以上 50以下であるこ とが好ましい。また、上記金属は、白金 (Pt)および金 (Au)の少なくとも何れかである ことが好ましい。上記半導体は、酸化スズ (SnO )、酸ィ匕亜鉛 (ZnO)、酸化インジゥ
2
ム 'スズ (ITO)およびカーボンの少なくとも何れかであることが好まし!/、。
[0016] 本発明にかかる試料ターゲットは、上記課題を解決するために、レーザー光の照射 により試料をイオンィ匕して質量分析するときに、試料を保持するために用いられ、各 凹部および各凸部の間隔が lnm〜10 μ mであって、凹部の深さが 10nm〜10 μ m の微細な凹凸構造を有する表面を試料保持面として備えている試料ターゲットであ つて、上記試料保持面の表面が半導体で被覆されていることを特徴としている。上記 半導体は、酸化スズ (SnO )、酸ィ匕亜鉛 (ZnO)、酸化インジウム'スズ (ITO)および
2
カーボンの少なくとも何れかであることが好ましい。
[0017] 本発明にかかる試料ターゲットの製造方法は、上記課題を解決するために、レーザ 一光の照射により試料をイオン化して質量分析するときに、試料を保持するために用 いられ、レーザー光の照射を受ける表面側に開口する多数の細孔を有する試料保 持面を備えて 、る試料ターゲットの製造方法であって、ポーラスアルミナを試料保持 面として用い、該試料保持面の表面を金属または半導体で被覆する工程を含むこと を特徴としている。
[0018] 本発明に力かる試料ターゲットの製造方法は、上記課題を解決するために、レーザ 一光の照射により試料をイオン化して質量分析するときに、試料を保持するために用 いられ、レーザー光の照射を受ける表面側に開口する多数の細孔を有する試料保 持面を備えて!/ヽる試料ターゲットの製造方法であって、ポーラスアルミナを铸型に用 いて該ポーラスアルミナの凹凸構造を転写したネガ型の構造物を作製する工程と、 該工程で得られたネガ型の構造物を铸型に用いて上記凹凸構造を転写して、上記 ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に有する試料保持面を 得る工程とを含むことを特徴としている。上記試料保持面は、金属または半導体から なることが好ましい。本試料ターゲットの製造方法は、さらに、上記試料保持面の表 面を金属または半導体で被覆する工程を含んで ヽてもよ ヽ。上記ポーラスアルミナ は、その細孔径が 30nm以上 未満、細孔深さ Z (細孔周期 細孔径)が 2以上 50以下であることが好まし 、。
[0019] 本発明にかかる質量分析装置は、上記課題を解決するために、試料ターゲットを用 いることを特徴としている。本発明にかかる質量分析装置は、測定対象となる試料に レーザー光を照射することによって、当該試料をイオンィ匕してその分子量を測定する レーザー脱離イオンィ匕質量分析装置であることが好ましい。
発明の効果
[0020] 本発明に力かる試料ターゲットは、以上のように、レーザー光の照射を受ける表面 に開口する多数の細孔を有する試料保持面を備え、当該細孔の細孔径が 30nm以 上 5 m未満、且つ、細孔深さ Z (細孔周期 細孔径)が 2以上 50以下であり、上記 試料保持面の表面が金属または半導体で被覆されているので、質量分析するときに マトリックスを用いずにイオンィ匕を行う場合でも、分子量が 10000を超える物質のィォ ン化を可能とすると 、う効果を奏する。
[0021] 上記試料保持面としてポーラスアルミナを用いる場合には、細孔径が 30nm以上 5 /z m未満、且つ、細孔深さ Z (細孔周期 細孔径)が 2以上 50以下で、規則的な細 孔構造を容易に作製することが可能となる。また、陽極酸化の条件を選択すること〖こ より、細孔径、細孔深さ、および細孔周期を制御することが可能になる。
[0022] また、本発明に力かる質量分析装置は、以上のように、上記試料ターゲットを備え ているので、質量分析するときにマトリックスを用いずにイオンィ匕を行う場合でも、分 子量が 10000を超える物質のイオンィ匕を可能とするという効果を奏する。
[0023] 本発明に力かる試料ターゲットは、以上のように、ポーラスアルミナを铸型に用いて 該ポーラスアルミナの凹凸構造を転写したネガ型の構造物を作製し、該ネガ型の構 造物を铸型に用いて上記凹凸構造を転写した、上記ポーラスアルミナの凹凸構造と 同一の形状の凹凸構造を表面に有する試料保持面を備えているので、試料保持面 に適した凹凸構造を有するポーラスアルミナと同一の構造を有する試料保持面を、 所望の材質で製造することができると ヽぅ効果を奏する。かかる試料保持面を金属ま たは半導体で製造する場合には、質量分析するときにマトリックスを用いずにイオン 化を行う場合でも、イオンィ匕性能が向上するという効果を奏する。また、かかる試料保 持面が導電性を有さない材質力 なる場合も、その表面が、金属または半導体で被 覆されている場合は、イオン化性能が向上するという効果を奏する。さらに、かかる試 料保持面の細孔の、細孔径が 30nm以上 未満、細孔深さ Z (細孔周期 細孔 径)が 2以上 50以下である場合は、分子量が大きな物質のイオンィ匕が可能となる。
[0024] 本発明に力かる試料ターゲットは、以上のように、各凹部または各凸部の間隔が In m〜10 μ mであって、凹部の深さが 10nm〜10 μ mの微細な凹凸構造を有する表 面を試料保持面として備えて!/、る試料ターゲットであって、上記試料保持面の表面 が半導体で被覆されているので、質量分析するときにマトリックスを用いずにイオンィ匕 を行う場合でも、イオンィ匕効率が向上するという効果を奏する。本発明にかかる質量 分析装置は、以上のように、上記試料ターゲットを備えているので、質量分析するとき にマトリックスを用いずにイオンィ匕を行う場合でも、イオンィ匕効率が向上するという効 果を奏する。
[0025] 本発明に力かる試料ターゲットの製造方法は、以上のように、アルミニウムまたはそ の合金を陽極酸化してポーラスアルミナを試料保持面として得る工程と、得られた試 料保持面の表面を金属または半導体で被覆する工程とを含むので、試料保持面に 適した規則的な細孔構造を容易に作製することが可能となる。また、陽極酸化の条 件を選択することにより、細孔径、細孔深さ、および細孔周期を制御することが可能 になる。
[0026] 本発明に力かる試料ターゲットの製造方法は、以上のように、ポーラスアルミナを铸 型に用 、て該ポーラスアルミナの凹凸構造を転写したネガ型の構造物を作製するェ 程と、該工程で得られたネガ型の構造物を铸型に用いて上記凹凸構造を転写して、 上記ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に有する試料保 持面を得る工程とを含むので、試料保持面に適した凹凸構造を有するポーラスアル ミナと同一の構造を有する試料保持面を、所望の材質で製造することができるという 効果を奏する。
[0027] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0028] [図 1(a)]図 1 (a)は、本発明にかかる試料ターゲットを示す模式図であって、試料ター ゲットの一部の斜視図である。
[図 1(b)]図 1 (b)は、本発明にかかる試料ターゲットを示す模式図であって、図 1 (a) に示す試料ターゲットを破線 Bで切断した場合の断面図である。
[図 2]図 2は、従来技術を示すものであり、規則的なポーラスアルミナを模式的に示す 断面図である。
符号の説明
[0029] 101 ポーラスアルミナの層
102 アルミニウム(またはその合金)の層
103 ノ リア一層
発明を実施するための最良の形態
[0030] 本発明について以下に詳細に説明する力 本発明は以下の記載に限定されるもの ではない。 [0031] 本発明者らは、上記課題を解決すべく鋭意検討した結果、従来の微細で規則的な 凹凸構造を有する表面を試料保持面として備えている試料ターゲットでは分子量が 大き 、物質のイオンィ匕ができな 、のに対し、ポーラスアルミナを試料保持面として用 いた試料ターゲットでは分子量 10000を超える大きな物質がイオンィ匕できることを見 出した。そして、従来の試料保持面では凹部が浅く形成されていたのに対し、ポーラ スアルミナは、凹部が深く形成されることから、凹部の深さがイオン化可能な分子量の 大きさと関係しているのではないかと考え、凹部の深さや間隔を変化させて検討を行 つた。その結果、実際に、マトリックスを用いずにイオン化を行う場合でも分子量が大 きい物質のイオンィ匕を可能とするためには、試料保持面の凹凸構造における、凹部 の深さと隣り合う凹部の間隔との比率が関係していることを初めて見出し本発明を完 成させるに至った。
[0032] すなわち、本発明にかかる試料ターゲット (A)は、レーザー光の照射により試料をィ オン化して質量分析するときに、試料を保持するために用いられ、レーザー光の照射 を受ける表面に開口する多数の細孔を有する試料保持面を備えて 、る試料ターゲッ トであって、当該細孔の細孔径が 30nm以上 5 m未満、且つ、細孔深さ Z (細孔周 期 細孔径)が 2以上 50以下であり、上記試料保持面の表面が金属または半導体 で被覆されている。
[0033] なお、上述したように、特許文献 1等に開示されている、マトリックスを用いないレー ザ一脱離イオン化質量分析では、分子量 10000を超える高分子量の物質をイオン ィ匕できない。この大きな原因は、高分子量物質をイオン化するために照射するレーザ 一のエネルギーを大きくすると、ポーラスシリコンの微細構造が破壊されることである
。ポーラスシリコンの構造が破壊されやす ヽのはシリコンと 、う素材の影響だけでなく 、ポーラスシリコンの凹部凸部の構造制御が困難であるために構造的に強度が弱い ことが原因であると考えられる。
[0034] また、近年、ナノテクノロジーの分野にぉ 、て、 DNAチップ、半導体のデバイス、化 学反応のための微小な容器などを作製するために、 lnmから数十 mの単位で作 製された微細構造体を铸型に用いて、その構造を別の物質に転写する「インプリント 」法により新たな微細構造体を作製する技術が開発されて!、る。 [0035] そこで、本願発明者らは、この「インプリント」技術に着目し、ポーラスアルミナを铸型 にして転写することで、レーザー脱離イオンィ匕質量分析に用いる試料ターゲットの表 面力卩ェに利用できないかと考えた。ポーラスアルミナを铸型に用いてインプリント法に より加工すれば、従来法によるポーラスシリコンゃリソグラフィ一法で作製した微細構 造に比べて高アスペクト比の数 nm〜数十 μ m単位の微細構造をより安定して高精 度に加工することができる。それゆえ、実際に力かる微細加工技術を利用すれば、試 料保持面の表面に規則的な凹凸形状を安定して作製することが可能になる。また、 転写する材料に金属あるいは半導体を用いる力、もしくは転写した微細構造表面に 金属あるいは半導体を被覆することで、良好な品質の試料ターゲットを安定して生産 することが可能になることを見出した。
[0036] したがって本発明には、力かるポーラスアルミナを铸型に用いてインプリント法により 転写して作製した微細構造表面を持つ試料ターゲットも含まれる。すなわち、本発明 には、レーザー光の照射により試料をイオンィ匕して質量分析するときに、試料を保持 するために用いられ、レーザー光の照射を受ける表面側に開口する多数の細孔を有 する試料保持面を備え、上記試料保持面は、ポーラスアルミナを铸型に用いて該ポ 一ラスアルミナの凹凸構造を転写したネガ型の構造物を作製し、該ネガ型の構造物 を铸型に用いて上記凹凸構造を転写した、上記ポーラスアルミナの凹凸構造と同一 の形状の凹凸構造を表面に有する試料ターゲット (B)も含まれる。
[0037] また、本発明には、レーザー光の照射により試料をイオンィ匕して質量分析するとき に、試料を保持するために用いられ、各凹部または各凸部の間隔が Inn!〜 10 m であって、凹部の深さが ΙΟηπ!〜 10 mの微細な凹凸構造を有する表面を試料保 持面として備え、上記試料保持面の表面が半導体で被覆されて!ヽる試料ターゲット ( C)ち含まれる。
[0038] なお、従来の DIOS法等、マトリックスを用いないレーザー脱離イオン化質量分析に ついてはそのイオン化メカニズムは不詳であり、本発明に力かる試料ターゲットにつ いても、そのイオン化メカニズムは明らかではないが、とも〖こ、ナノ構造を有しているこ とから、光照射によるナノ構造面における局所的電磁場の発生が基本にあると考えら れる。そして、平面に比べて多孔構造による試料保持面の大幅な拡大も役立ってい ると考えられる。また、イオンィ匕に必要なプロトンは、試料溶媒の水あるいは酸が多孔 中に保持されており、そこ力も発生するものと考えられる。
[0039] そして、 DIOS法と異なり、本発明に力かる試料ターゲットにおいて、分子量が 100 00を超える分子 (例えばタンパク質)のイオンィ匕が可能であるという性能についても、 その理由は明らかではないが、以下のような理由が可能性として考えられる。すなわ ち、 DIOS法によるイオンィ匕においても、本発明に力かる試料ターゲットを用いるィォ ン化においても、イオンィ匕に必要なレーザー強度は試料分子の大きさに比例する。 従って、大きな分子のイオンィヒには強いレーザーを試料面に照射することが必要とな る力 DIOS法においては、試料保持面がそのようなレーザー強度に耐えられず、ナ ノ構造が破壊されるために、もはやイオンィ匕の性能は出なくなると考えられる。これに 対して本発明の試料ターゲットにおいては、レーザー強度に対して十分な構造耐性 を有して!/、るので、イオンィ匕が可能になるものと考えられる。
[0040] 以下、本発明に力かる試料ターゲットおよびその製造方法、並びに当該試料ター ゲットを用いた質量分析装置について、(I)試料ターゲット (Α)、(Π)試料ターゲット( B)、(III)試料ターゲット (C)、(IV)本発明の利用(質量分析装置)の順に説明する。
[0041] (I)試料ターゲット(A)
(1—1)試料ターゲット (A)
本発明にかかる試料ターゲットは、レーザー光の照射によって試料をイオン化して 質量分析するレーザー脱離イオン化質量分析装置に用いられ、分析対象となる試料 を載せる言わば試料台としての機能を果たすものである。
[0042] カゝかる上記試料ターゲットは、試料を保持する面である試料保持面を備えていれば よぐ試料保持面以外の部分の構成、形状、材質等は特に限定されるものではない。
[0043] 上記試料ターゲットの材質としては、例えば、半導体、金属、合成高分子などの榭 脂、セラミックス、これらの各材質を複数種含んでなる複合体等を挙げることができる 。力かる複合体としては、具体的には、例えば、金属層の表面に半導体の被膜が施 された多層構造体、榭脂層の表面に半導体の被膜が施された多層構造体、セラミツ タスの表面に半導体の被膜が施された多層構造体等を挙げることができるが複合体 はこれらに限定されるものではない。 [0044] 本発明にかかる試料ターゲットの、上記試料保持面は、分析対象である試料を保 持する面で、試料を保持した状態で、レーザー光の照射を受ける。
[0045] 本発明に力かる試料ターゲットは、レーザー光の照射を受ける表面に開口する多 数の細孔を有する試料保持面を備えて!/ヽる。カゝかる細孔は試料保持面の表面に開 口し、試料保持面の厚さ方向に延びている。細孔の配列、形状、および試料保持面 との角度は、規則的であっても不規則であってもよいが、質量分析用の試料ターゲッ トとしての機能をより向上させるためには、これらが規則的であることがより好ましい。
[0046] 本発明にかかる試料ターゲットの試料保持面の一例を図 1 (a)および図 1 (b)に模 式的に示す。なお、図 1 (a)および図 1 (b)は、金属または半導体により被覆される前 の試料保持面である。図 1 (a)は試料ターゲットの試料保持面の一部を示す斜視図、 図 1 (b)は図 1 (a)における破線 Bで切断した切断面を示す試料保持面の断面図であ る。図 1 (a)および図 1 (b)に示す試料保持面は、細孔の配列、形状、および試料保 持面との角度が規則的な場合の試料保持面を示すものである。上記試料保持面は、 試料保持面の表面でありレーザー光の照射を受ける面、すなわち図 1 (a)の上面に 開口する多数の細孔を有している。この細孔は図 1 (b)に示すように、試料保持面の 表面力 試料保持面の厚さ方向に延び、底部を有して 、る。
[0047] また、細孔を試料保持面と平行な面で切断したときの断面の形状は、特に限定され るものではなぐ円形であってもよいし、楕円形であってもよいし、三角形、四角形、 五角形、六角形等の多角形であってもよいし、これらが多少変形した形状であっても よい。また、かかる断面の形状は、規則的であっても不規則であってもよい。すなわち 、単一の形状が試料保持面のすべての部分を占める必要はない。しかし、質量分析 用の試料ターゲットとしての機能をより向上させるためには、かかる断面の形状は、規 則的、すなわち同一の形状であることが好ましい。また、質量分析用の試料ターゲッ トとしての機能をより向上させるためには、かかる断面の形状は、細孔の開口部から 底部にわたり一定であることが好ま 、が、多少変形して 、てもよ 、。
[0048] また、上記細孔は、試料保持面の表面力 厚さ方向に延びていればよぐ細孔は試 料保持面の表面に対して垂直であることが好ま 、が、多少斜度を有して 、てもかま わない。また、細孔と試料保持面の表面との角度は、細孔ごとに異なっていてもよい 力 規則的であることが好ましい。すなわち、それぞれの細孔は同じ方向に延びてい ることが好ましい。これにより試料ターゲットとしての機能をより向上させることができる ので好ましい。また、細孔は、開口部から底部にかけて、直線状に延びていることが 好まし 、。細孔が直線状でな 、場合には細孔内部までレーザー光が入り込まな ヽた めにイオン化の効率がよくな 、ため好ましくな 、。
[0049] また、上記細孔は、細孔径が 30nm以上 5 μ m未満であって、且つ、細孔深さ Z ( 細孔周期 細孔径)が 2以上 50以下であることが好ましい。これにより、分子量 1000 0以上の物質のイオン化が可能となる。ここで、細孔径とは、細孔を試料保持面に平 行な面で切断した断面における最も寸法の大き!/、方向の寸法を! 、球形の場合は その直径をいい、図 1 (b)中 Dで示す部分の大きさのことを意味する。また、細孔深さ とは、細孔の開口部力 底部までの長さをいい、図 1 (b)中 Eで示す部分の大きさのこ とを意味する。また、細孔周期とは、隣接する細孔の中心間の間隔をいい、図 1 (b) 中 Cで示す部分の大きさのことを意味する。なお、図 1 (b)中、一点鎖線は細孔の中 心線である。細孔径、細孔深さおよび細孔周期が均一でない場合には、平均値を用 いてこれらの値とする。なお、図 1 (b)に示す断面図は、 Dが最も大きくなるような断面 で切断する断面図である。たとえば、細孔を試料保持面に平行な面で切断した断面 が円形である場合には、直径を含む面で切断した断面図である。
[0050] 上記細孔周期および細孔径は、 lnm〜数十 μ m程度であればょ 、が、質量分析 用の試料ターゲットとしての機能をより向上させるためには、上記細孔周期は、 30nm 以上 5 μ m未満であることがより好ましぐ 31nm以上 1 μ mであることがさらに好ましく 、 33nm〜500nmであることが特に好ましぐ 34nm〜300nmであることが最も好ま しい。また、上記細孔径は、 30nm以上 5 m未満であることがより好ましぐ 40nm以 上 1 μ mであることがさらに好ましぐ 45nm〜700nmであることが特に好ましぐ 50η m〜500nmであることが最も好ましい。これにより、質量分析における測定試料のィ オンィ匕を良好に行うことができる。
[0051] また、上記細孔周期および細孔径は、規則的であっても不規則であってもよい。し 力しながら、質量分析用の試料ターゲットとしての機能をより向上させるためには、規 則的であることが好ましい。すなわち、細孔周期および細孔径が均一であることが好 ましい。上記細孔周期および細孔径が規則正しい場合には、試料保持面の凹凸の ばらつきが少ないため、イオンィ匕性能はより安定する。
[0052] また、細孔深さは 30nm以上 5 μ m未満程度であればよ!、。しかしながら、質量分 析用の試料ターゲットとしての機能をより向上させるためには、 30ηπι〜2 /ζ mである ことがより好ましぐ 50ηπ!〜 1. 5 μ mであることがさらに好ましぐ 70ηπ!〜 1 μ mであ ることが特に好ましぐ 100ηπι〜1 /ζ πιであることが最も好ましい。また、上記細孔深 さは規則的であっても不規則であってもよい。すなわち、細孔深さにはばらつきがあ つてもよいし、均一であってもよい。し力しながら、質量分析用の試料ターゲットとして の機能をより向上させるためには、上記細孔深さは均一であることが好ましい。上記 細孔深さは均一である場合には、試料保持面の凹凸のばらつきが少ないため、ィォ ン化性能はより安定する。
[0053] また、細孔深さ Ζ (細孔周期一細孔径)は、 2〜50となっていることが好ましぐ 2.5 〜45となっていることがより好ましぐ 3〜35となっていることがさらに好ましぐ 3.5〜 30となっていることが特に好ましぐ 4〜25となっていることが最も好ましい。これによ り、質量分析において、マトリックスを用いない場合でも、分子量が 10000を超える物 質のイオンィ匕を良好に行うことができる。
[0054] 細孔深さ Ζ (細孔周期 細孔径)の値が 50を超えて大きすぎる場合、凸部分の構 造が弱いために構造が破壊されやすぐまた、細孔内部までレーザー光が入り込ま ないためにイオンィ匕ができない。また、細孔深さ Ζ (細孔周期 細孔径)の値が 2未 満で小さ 、場合にはイオンィ匕効率が悪 、ために高分子量の物質をイオンィ匕できな 、
[0055] なお、細孔が不規則な構造の場合、細孔深さ Ζ (細孔周期 細孔径)の値は、細 孔が配列する部分 (ポーラス部分)全体の平均の値とする。部分的な大きな欠陥につ V、ては考慮せずに細孔深さ Ζ (細孔周期 細孔径)の値を求める。
[0056] また、本発明の試料ターゲットでは、上記試料保持面の表面は金属または半導体 で被覆されている。これにより、イオンィ匕の性能を向上させ、マトリックスを用いない場 合にも、高分子量の物質をイオンィ匕することが可能となる。
[0057] 上記試料保持面を被覆する金属としては、具体的には、例えば、元素周期表の 1A 族(Li, Na, K, Rb, Cs, Fr)ゝ 2A族(Be, Mg, Ca, Sr, Ba, Ra)、 3A族(Sc, Y)ゝ 4A族(Ti, Zr, Hf)、 5A族(V, Nb, Ta)、 6A族(Cr, Mo, W)ゝ 7A族(Mn, Tc, R e)、 8族(Fe, Ru, Os'Co, Rh, Ir, Ni, Pd, Pt)、 IB族(Cu, Ag, Au)ゝ 2B族(Zn , Cd, Hg)、 3B族(Al)、およびランタノイド系列(La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)、ァクチノイド系列(Ac, Th, Pa, U, Np, Pu , Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr)等を挙げることができる。なかでも、上 記金属は Au又は Ptであることがさらに好ましい。 Auや Ptは酸ィ匕されにくいため、ィ オンィ匕の効率を向上させることができるのみならず、多数の細孔を有する上記試料保 持面の酸ィ匕を防止することが可能となる。また、上記金属は、上記金属から選ばれる 単一金属であってもよいし、上記金属から選ばれる少なくとも 2種以上力 なる合金 であってもよい。ここで合金とは、 2種以上の金属が混合されている金属であればよく 、混合された 2種以上の上記金属の存在形態は特に限定されるものではない。混合 された 2種以上の上記金属の存在形態としては、例えば、固溶体、金属間化合物、 固溶体及び金属間化合物が混在した状態等を挙げることができる。
[0058] また、上記試料保持面の表面は、上記金属から選ばれる複数の金属からそれぞれ 形成される複数の層として被覆されて 、るものであってもよ 、。
[0059] また、上記試料保持面を被覆する半導体としては、特に限定されるものではなくど のようなものであってもよい。具体的には、例えば、 Si、 Ge、 SiC、 GaP、 GaAs、 InP 、 Si Ge (0く Xく 1)、 SnO 、 ZnO、 In Oやその混合物、カーボン等を挙げるこ l -X X 2 2 3
とができる。なかでも、上記半導体は、 SnO 、 ZnO、 In O 、 SnOと In Oの混合物
2 2 3 2 2 3 である ITO等であることがより好ましい。これらの物質はもともと酸ィ匕物であり、これ以 上酸ィ匕されないため、空気中に放置してもイオンィ匕の性能が下がることはない。また 、カーボンはその原子の結合状態によって物性は異なるが、ここでは半導体として分 類する。カーボンも空気中では酸ィ匕されにくいために、空気中に放置してもイオンィ匕 の'性能が下がることはない。
[0060] また、上記試料保持面の表面は、上記半導体と上記金属とから選ばれる少なくとも
2種以上力もなる混合物で被覆されて 、ることが好ま 、。
[0061] 被覆されている上記金属および Ζまたは上記半導体の厚みは、試料保持面の多 数の細孔力もなる凹凸構造を損なうものでなければ特に限定されるものではない。具 体的には、例えば、 lnm以上 200nm以下であることが好ましい。上記金属および Z または半導体の厚みがこの上限を超えないことにより、試料保持面の凹凸構造が損 なわれず、下限より大きいことにより、効率的なイオンィ匕が可能となる。さらに、上記金 属および Zまたは半導体の厚みは、 lnm以上 150nm以下であることがより好ましぐ 5nm以上 lOOnm以下であることがさらに好ましぐ lOnm以上 80nm以下であること が特に好ましぐ 20nm以上、 75nm以下であることが最も好ましい。これにより、より 効率的なイオン化が可能となる。
[0062] 試料保持面の材質は、上記形状を有するものであれば特に限定されるものではな ぐ例えば、合成高分子などの榭脂、セラミックス等を挙げることができる。導電性を有 しない材質であっても金属および Zまたは半導体で被覆することによりイオンィ匕の効 率を向上させることができる。
[0063] 上記合成高分子としては、ポリエチレン、ポリプロピレン、ポリアクリル酸エステル、ポ リメタクリル酸エステル、ポリスチレン、ポリシロキサン、ポリスタノキサン、ポリアミド、ポ リエステル、ポリア-リン、ポリピロール、ポリチォフェン、ポリウレタン、ポリェチルエー テルケトン、ポリ 4—フッ化工チレンおよびこれらの共重合体や混合物ゃグラフトポリ マーおよびブロックポリマーが挙げられる。
[0064] また、上記セラミックスとしては、アルミナ(酸ィ匕アルミニウム)、マグネシア、ベリリア、 ジルコユア (酸ィ匕ジルコニウム)、酸ィ匕ウラン、酸ィ匕トリウム、シリカ(石英)、ホルステラ イト、ステアタイト、ワラステナイト、ジノレコン、ムライト、コージライト Zコージエライト、ス ポジュメン、チタン酸アルミニウム、スピネルアパタイト、チタン酸バリウム、フェライト、 ニオブ酸リチウム、窒化ケィ素(シリコンナイトライド)、サイアロン、窒化アルミニウム、 窒化ホウ素、窒化チタン、炭化ケィ素 (シリコンカーバイド)、炭化ホウ素、炭化チタン 、炭化タングステン、ホウ化ランタン、ホウ化チタン、ホウ化ジルコニウム、硫ィ匕力ドミゥ ム、硫化モリブデン、ケィ化モリブデン、ダイヤモンド、単結晶サファイアなどが挙げら れる。
[0065] また、上記試料保持面の材質は、金属または半導体であってもよ 、。力かる場合は 、試料保持面をさらに、金属および Zまたは半導体で被覆されていることは必須では ない。試料保持面の材質として用いられる金属および半導体としては、上述した、試 料保持面を被覆する金属、半導体と同様である。
[0066] 上記試料保持面の材質としては、例えば、ポーラスアルミナを好適に用いることが できる。ポーラスアルミナとは、アルミニウムまたはその合金を電解液中で陽極酸ィ匕す ることにより、表面に形成される、微細な細孔を多数有する酸ィ匕皮膜のことをいう。陽 極酸ィ匕の条件を制御することにより細孔が広範囲にわたって規則的に配列した規則 的なポーラスアルミナを製造することができる。このようにして得られる規則的なポー ラスアルミナは、例えば、図 2に示すように、アルミニウム(またはその合金)の層 102 上に、ノリア一層 103を介して、多数の細孔が一方向に配列したポーラスアルミナの 層 101が形成されている。なお、図 2ではバリアー層が存在する力 バリアー層は除 去されていてもよい。
[0067] このようにポーラスアルミナは、規則的な凹凸構造を有し、また、細孔深さ Z (細孔 周期 細孔径)が大きな構造を得ることができることから、本発明の試料ターゲットに 好適に用いることができる。さらにポーラスアルミナは、陽極酸化の条件を変化させる ことによって、細孔径、細孔深さ、および細孔周期を制御することが可能であることか ら、本発明に好適に用いることができる。
[0068] 規則的な細孔構造を有するポーラスアルミナは、例えば、 H. Masuda and M. Satoh,
Jpn. J Appl. Phys., 35, pp. L126 (1996)に開示されている、 2段階に分けて陽極酸 化を行う方法、特開平 10— 121292号公報に開示されている、複数の突起を備えた 基板を陽極酸ィ匕するアルミニウム板表面におしつけて、所望の細孔周期や配列の窪 みを形成した後、当該アルミニウム板を陽極酸化する方法等、従来公知の方法により 得ることができる。
[0069] (I - 2)試料ターゲット (A)の製造方法
試料ターゲット (A)の製造方法は、上述した多数の細孔を有する試料保持面を有 する試料ターゲットを製造できる方法であれば特に限定されるものではなぐ陽極酸 化による方法、リソグラフィ一法など微細構造を加工する従来公知の方法を好適に用 いることができる。中でも、例えば、ポーラスアルミナを試料保持面として用い、これを 金属および Zまたは半導体で被覆して上記試料ターゲットを得る方法 (製法例 1)、 ポーラスアルミナを铸型として用い、铸型として用いたポーラスアルミナと同一の細孔 構造を有する他の材質カゝらなる試料保持面を製造し、得られた試料保持面を必要に 応じて金属および Zまたは半導体で被覆する方法 (製法例 2)等を好適に用いること ができる。なお、試料ターゲット (A)を製造するためには、製法例 1および製法例 2に おいて、ポーラスアルミナとして、その細孔径が 30nm以上 5 μ m未満、細孔深さ Z( 細孔周期-細孔径)が 2以上 50以下であるものを用いる。これにより、質量分析によ り、マトリックスを用いない場合にも、分子量が 10000を超える物質のイオン化が可能 となる。
[0070] 製造方法 1によれば、細孔径が 30nm以上 5 μ m未満、且つ、細孔深さ Z (細孔周 期 細孔径)が 2以上 50以下で、規則的な細孔構造を容易に作製することが可能と なる。また、陽極酸化の条件を選択することにより、細孔径、細孔深さ、および細孔周 期を制御することが可能になる。また、製造方法 2によれば、製造方法 1と同様の効 果が得られるだけでなぐさらに、試料保持面に適した凹凸構造を有するポーラスァ ルミナと同一の構造を有する試料保持面を、所望の材質で製造することができる。し たがって、これらの製造方法も本発明に含まれる。
[0071] なお、製法例 2として、ポーラスアルミナを铸型として用いる方法を挙げたが、铸型と して用いられるのは、陽極酸ィ匕により得られるポーラスアルミナに限定されるものでは なぐもちろん、他の方法により作製された、微細な凹凸面を有する構造体を用いて もカゝまわない。カゝかる場合も、試料ターゲット (A)を製造するためには、铸型として用 いられる構造体は、表面に開口する多数の細孔を有し、その細孔径が 30nm以上 5 μ m未満、細孔深さ Z (細孔周期-細孔径)が 2以上 50以下であるものを用いる。
[0072] <製法例 1 >
本製法例は、レーザー光の照射により試料をイオンィ匕して質量分析するときに、試 料を保持するために用いられ、レーザー光の照射を受ける表面側に開口する多数の 細孔を有する試料保持面を備えて!/、る試料ターゲットの製造方法であって、ポーラス アルミナを試料保持面として用い、該試料保持面の表面を金属または半導体で被覆 する工程を含んで 、ればよ!/、。
[0073] ここで、ポーラスアルミナは、アルミニウムまたはその合金を陽極酸ィ匕することにより 製造してもよ 、し、市販されて 、るポーラスアルミナを用いてもよ!、。
[0074] ポーラスアルミナを製造する方法は、特に限定されるものではなくどのような方法を 用いてもよい。また、従来公知の方法を好適に用いることができる。一般的には、アル ミニゥムまたはその合金を好ましくは研磨し、これを電解液中で陽極酸化すればよい 。上記電解液は酸性であってもアルカリ性であってもよいが、例えば、硫酸、シユウ酸 、リン酸等であることが好ましい。また所望の細孔径、細孔深さおよび細孔周期を有 する試料保持面を得るために、陽極酸化電圧、陽極酸化時間、電解液の種類や濃 度、温度条件等を適宜選択すればよい。また、陽極酸ィ匕前にアルミニウムやその合 金を研磨する方法も特に限定されるものではなぐ例えば、過塩素酸とエタノールと の混合液、リン酸と硫酸との混合溶液中等で電解研磨処理する方法、機械的に表面 研磨処理する方法等を挙げることができる。また、陽極酸ィ匕により得られたポーラスァ ルミナは、リン酸水溶液、硫酸水溶液等を用いたエッチング処理等により、細孔径を 拡大処理してもよい。
[0075] また、規則的なポーラスアルミナを製造するためには、上述したように、例えば、 H.
Masuda and M. Satoh, Jpn. J Appl. Phys., 35, pp. L126 (1996)【こ開示されて ヽる、 2 段階に分けて陽極酸ィ匕を行う方法、特開平 10— 121292号公報に開示されている、 複数の突起を備えた基板 (モールド)を陽極酸ィ匕するアルミニウム板表面におしつけ て、所望の細孔周期や配列の窪みを形成した後、当該アルミニウム板を陽極酸ィ匕す る方法等を好適に用いることができる。
[0076] 試料保持面の表面を金属または半導体で被覆する工程は、ポーラスアルミナから なる試料保持面の表面を、上記 (I 1)に記載の金属または半導体で、上述した厚 みで被覆する工程であれば特に限定されるものではな 、。上記試料保持面の表面を 金属または半導体で被覆する方法は、特に限定されるものではなぐ従来公知の方 法を好適に用いることができる。かかる方法としては、例えば、スパッタ法、化学気相 成長法 (CVD)、真空蒸着法、無電解メツキ法、電解メツキ法、塗布法、貴金属ワニス 法、有機金属薄膜法、ゾルゲル法等を挙げることができる。これらの方法は、金属又 は半導体の種類、被覆する層の厚み、被覆する試料保持面の状態等により、適宜選 択して用いればよい。金属または半導体を試料保持面により強く被覆できる方法が 好ましい。
[0077] <製法例 2>
本製法例は、レーザー光の照射により試料をイオンィ匕して質量分析するときに、試 料を保持するために用いられ、レーザー光の照射を受ける表面側に開口する多数の 細孔を有する試料保持面を備えて!/、る試料ターゲットの製造方法であって、ポーラス アルミナを铸型に用 、て該ポーラスアルミナの凹凸構造を転写したネガ型の構造物 を作製する工程と、該工程で得られたネガ型の構造物を铸型に用いて上記凹凸構 造を転写して、上記ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に 有する試料保持面を得る工程とを含む方法であれば特に限定されるものではない。
[0078] かかる方法としては、微細構造体を铸型に用いて、その構造を別の物質に転写す る「インプリント」法であれば、特に限定されるものではなくどのような方法を用いてもよ い。近年、ナノテクノロジーの分野において、 DNAチップ、半導体のデバイス、化学 反応のための微小な容器などを作製するために、 lnmから数十 mの単位で作製さ れた微細構造体を铸型に用いて、その構造を別の物質に転写する「インプリント」法 が種々開発されており、これらの従来公知の方法を好適に用いることができる。
[0079] かかるインプリント法としては、例えば K. Nishio, M. Nakano, and A. Yokoo, Jpn. J.
Appl. Phys., 42, p丄 83-L85 (2003)に記載の方法を挙げることができる。この方法で は、ポーラスアルミナ表面に、薄い金属層を形成する。この薄い金属層は後に金属 の電解析出において電極として用いられる。次に、単量体と重合開始剤とをポーラス アルミナの細孔に充填し、単量体を重合させて重合体を生成させる。続いて、アルミ -ゥムとアルミナを溶解除去して、金属層と重合体とからなるポーラスアルミナの凹凸 構造を転写したネガ型の構造物を得る。得られたネガ型の構造物を铸型にして、金 属層を電極に電解析出を行う。その後、重合体を溶解除去して、上記金属からなる 上記ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に有する試料保 持面を得る。
[0080] 力かる方法において、ポーラスアルミナの凹凸構造を铸型にして転写して作製する 試料保持面に用いられる金属としては、例えば、元素周期表の 1A族 (Li, Na, K, R b, Cs, Fr)、 2A族(Be, Mg, Ca, Sr, Ba, Ra)、 3A族(Sc, Y)、 4A族(Ti, Zr, Hf ) , 5A族(V, Nb, Ta)、 6A族(Cr, Mo, W) 7A族(Mn, Tc, Re)、 8族(Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt)、 IB族(Cu, Ag, Au)、 2B族(Zn, Cd, Hg)、 3B族 (Al)、およびランタノイド系列(La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)、ァクチノイド系列(Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf , Es, Fm, Md, No, Lr)が挙げられる。
[0081] また、ポーラスアルミナ表面に、薄い金属層を形成する方法としては、特に限定され るものではなぐスパッタ法、化学気相成長法 (CVD)、真空蒸着法、無電解メツキ法 、電解メツキ法、塗布法、貴金属ワニス法、有機金属薄膜法、ゾルゲル法等を挙げる ことができる。上記金属層の厚みも特に限定されるものではないが、例えば、 5ηπ!〜 lOOnmであることが好ましぐ ΙΟηπ!〜 50nmであることがより好ましい。
[0082] また、上記単量体としては、例えば、メタアクリル酸メチル、アクリル酸メチル等のァ クリル系単量体等を用いることができる。重合開始剤も特に限定されるものではなぐ 過酸ィ匕ベンゾィル等の従来公知の重合開始剤を用いればょ 、。アルミニウムおよび アルミナの溶解除去に用いられる溶剤としては、アルミニウム及びアルミナを溶解し、 重合体を溶解しない溶剤であれば、特に限定されるものではないが、例えば、水酸 化ナトリウム水溶液、水酸ィ匕カリウム水溶液等を挙げることができる。また、重合体の 溶解除去に用いられる溶剤としては、重合体を溶解し、金属を溶解しない溶剤であ れば、特に限定されるものではないが、例えば、アセトン、クロ口ホルム等を挙げること ができる。
[0083] 上述したインプリント法では、金属にポーラスアルミナの凹凸構造を転写する方法を 示したが、インプリント法によりポーラスアルミナの凹凸構造を転写して作製する試料 保持面の材質は、金属に限定されるものでなぐ例えば、半導体、合成高分子などの 榭脂、セラミックス等であってもよい。試料保持面の材質が半導体であるときは、金属 で被覆しない場合にもイオン化効率に優れる。また、合成高分子などの榭脂、セラミ ックス等の導電性を有しない材質であっても金属又は半導体で被覆することによりィ オンィ匕の効率を向上させることができる。半導体、高分子、セラミックス等に凹凸構造 を転写する方法としても特に限定されるものではなぐ従来公知の方法を用いればよ いが、例えば、半導体である TiOに構造転写を行う H. Masuda, K. Nishio and N. Ba ba, Jpn. J. Appl. Phys., 31, L1775 (1992)に記載の方法等を好適に用いることができ る。
[0084] なお、ポーラスアルミナの凹凸構造を铸型にして転写して作製する試料保持面に 用いられる半導体は、特に限定されるものではなくどのようなものであってもよい。例 えば、 Siゝ Geゝ SiC、 GaPゝ GaAsゝ InPゝ Si Ge (0<X< 1)、 SnO 、 TiO 、 In O l -X X 2 2 2
、カーボン類が挙げられる。
3
[0085] また、合成高分子などの榭脂、セラミックスとしては、上記 (1—1)に記載のものと同 様の合成高分子、セラミックスを好適に用いることができる。
[0086] インプリント法によりポーラスアルミナの凹凸構造を転写して作製する試料保持面の 材質が合成高分子などの榭脂、セラミックスである場合には、本製造方法は、さら〖こ、 上記試料保持面の表面を金属または半導体で被覆する工程を含んでいることが好ま しい。
[0087] 試料保持面の表面を金属または半導体で被覆する工程は、インプリント法によりポ 一ラスアルミナの凹凸構造を転写して作製した試料保持面の表面を、上記 (1—1)に 記載の金属または半導体で、上述した厚みで被覆する工程であれば特に限定される ものではない。上記試料保持面の表面を金属または半導体で被覆する方法は、特に 限定されるものではなぐ従来公知の方法を好適に用いることができる。かかる方法と しては、例えば、スパッタ法、化学気相成長法 (CVD)、真空蒸着法、無電解メツキ法 、電解メツキ法、塗布法、貴金属ワニス法、有機金属薄膜法、ゾルゲル法等を挙げる ことができる。これらの方法は、金属又は半導体の種類、被覆する層の厚み、被覆す る試料保持面の状態等により、適宜選択して用いればよい。金属または半導体を試 料保持面により強く被覆できる方法が好ましい。
[0088] (II)試料ターゲット (B)
(Π— 1)試料ターゲット (B)
本発明にかかる試料ターゲット (B)は、レーザー光の照射により試料をイオン化して 質量分析するときに、試料を保持するために用いられ、レーザー光の照射を受ける 表面側に開口する多数の細孔を有する試料保持面を備えて 、る試料ターゲットであ つて、上記試料保持面は、ポーラスアルミナを铸型に用いて該ポーラスアルミナの凹 凸構造を転写したネガ型の構造物を作製し、該ネガ型の構造物を铸型に用いて上 記凹凸構造を転写した、上記ポーラスアルミナの凹凸構造と同一の形状の凹凸構造 を表面に有する試料保持面であればょ 、。
[0089] ここで、試料ターゲット、試料保持面につ!ヽては上記 (I一 1)で説明したとおりである
[0090] 試料ターゲット(B)は、レーザー光の照射を受ける表面に開口する多数の細孔を有 する試料保持面を備えている。カゝかる細孔は試料保持面の表面に開口し、試料保持 面の厚さ方向に延びている。細孔の配列、形状、および試料保持面との角度は、規 則的であっても不規則であってもよいが、質量分析用の試料ターゲットとしての機能 をより向上させるためには、これらが規則的であることがより好ましい。
[0091] 試料ターゲット(B)は、その上記試料保持面が、ポーラスアルミナを铸型に用いて 該ポーラスアルミナの凹凸構造を転写したネガ型の構造物を作製し、該ネガ型の構 造物を铸型に用いて上記凹凸構造を転写した、上記ポーラスアルミナの凹凸構造と 同一の形状の凹凸構造を表面に有する試料保持面であればよい。ここで、ポーラス アルミナについても、上記 (I 1)で説明したとおりであり、アルミニウムまたはその合 金を電解液中で陽極酸化することにより、表面に形成される、微細な細孔を多数有 する酸化皮膜であればよい。したがって、細孔径、細孔深さ、および細孔周期も、ポ 一ラスアルミナが通常有する大きさであればよぐ特に限定されるものではない。質量 分析用の試料ターゲットとしての機能をより向上させるためには、上記細孔は、規則 的であることがより好ましぐ細孔径が 30nm以上 未満、細孔深さ Z (細孔周期 —細孔径)が 2以上 50以下であることがより好ましい。これにより、質量分析したときに 、マトリックスを用いない場合にも、分子量が 10000を超える物質をイオンィ匕すること が可能となる。
[0092] また、ポーラスアルミナを铸型に用いて該ポーラスアルミナの凹凸構造を転写した ネガ型の構造物を作製し、該ネガ型の構造物を铸型に用いて上記凹凸構造を転写 した、上記ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に有する試 料保持面は、上記 (I 2)の製法例 2に記載の方法によりネガ型の構造物を作製し、 該ネガ型の構造物を铸型に用いて上記凹凸構造を転写した上記ポーラスアルミナの 凹凸構造と同一の形状の凹凸構造を表面に有する試料保持面であればよい。上記 ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に有する試料保持面 の材質も、製法例 2と同様に、金属または半導体力もなるものであってもよいし、合成 高分子などの榭脂、セラミックス等であってもよい。試料保持面の材質が半導体であ るときは、金属で被覆しない場合にもイオンィ匕効率に優れる。また、合成高分子など の榭脂、セラミックス等の導電性を有しな ヽ材質であっても金属又は半導体で被覆す ることによりイオンィ匕の効率を向上させることができる。
[0093] 上記金属、半導体、合成高分子などの榭脂、セラミックスについては上記 (I 2)の 製法例 2で説明したとおりであるのでここでは説明を省略する。
[0094] また、インプリント法によりポーラスアルミナの凹凸構造を転写して作製する試料保 持面の材質が合成高分子などの榭脂、セラミックスである場合には、上記試料保持 面の表面は、金属または半導体で被覆されて 、ることが好ま 、。
[0095] 試料保持面の被覆に用いられる金属および半導体、被覆されて!ヽる上記金属およ び Zまたは上記半導体の厚みについては、上記 (I 1)で説明したとおりであるので ここでは説明を省略する。
[0096] (II 2)試料ターゲット (B)の製造方法
また、試料ターゲット (B)の製造方法については、上記上記 (1— 2)の製法例 2で説 明したとおりであるのでここでは説明を省略する。
[0097] (III)試料ターゲット(C)
(III— 1)試料ターゲット (C)
試料ターゲット(C)は、上述したように、レーザー光の照射により試料をイオンィ匕し て質量分析するときに、試料を保持するために用いられ、各凹部または各凸部の間 隔が lnm〜10 μ mであって、凹部の深さが 10nm〜10 μ mの微細な凹凸構造を有 する表面を試料保持面として備えて ヽる試料ターゲットであって、上記試料保持面の 表面が半導体で被覆されて 、るものであればよ 、。
[0098] ここで、試料ターゲット、試料保持面につ!ヽては上記 (I一 1)で説明したとおりである [0099] 試料ターゲット(C)は、各凹部および各凸部の間隔が lnm〜10 μ mであって、凹 部の深さが ΙΟηπ!〜 10 μ mの微細な凹凸構造を有する表面を試料保持面として備 えていればよい。ここで、凹凸構造の隣接する各凹部および各凸部の間隔は、 lnm 〜: LO m程度であればよい。し力しながら、質量分析用の試料ターゲットとしての機 能をより向上させるためには、上記隣接する各凹部又は各凸部の間隔は 30ηπ!〜 5 μ mとなっていることがより好ましぐ 31nm〜l μ mとなっていることがさらに好ましぐ 33nm〜500nmとなっていることが特に好ましぐ 34nm〜300nmとなっていること 力 Sもっとも好ましい。これにより、質量分析における測定試料のイオンィ匕を良好に行う ことができる。
[0100] また、上記凹凸構造の隣接する各凹部又は各凸部の間隔は、規則的であっても不 規則であってもよい。しかしながら、質量分析用の試料ターゲットとしての機能をより 向上させるためには、規則的であることがより好ましい。上記各凹部又は各凸部の間 隔が規則正しい場合には、その凹凸のばらつきが少ないため、イオンィ匕性能はより安 定する。
[0101] 上記凹凸構造の凹部の深さは、 lOnm以上 10 μ m未満程度であればよい。しかし ながら、質量分析用の試料ターゲットとしての機能をより向上させるためには、 30nm 〜2 mであることがより好ましぐ 50nm〜l. 5 mであることがさらに好ましぐ 70η m〜: L mであることが特に好ましぐ 100nm〜l μ mであることが最も好ましい。また 、上記凹部の深さにはばらつきがあってもよいし、均一であってもよい。しかしながら、 質量分析用の試料ターゲットとしての機能をより向上させるためには、上記凹部の深 さは均一であることが好ましい。上記凹部の深さは均一である場合には、その凹凸の ばらつきが少ないため、イオンィ匕性能はより安定する。
[0102] 上記凹部の具体的な形状は特に限定されるものではなぐどのような形状のもので あってもよい。また、上記凹凸構造は、凹部の形状が一定ではなぐ種々の形状の凹 部が混ざったものであってもよい。しかしながら、質量分析用の試料ターゲットとして の機能をより向上させるためには、上記凹凸構造は、一定の形状の凹部力もなるもの であることが好ましい。力かる形状としては、例えば、溝、溝同士が交差した格子、穴 等の形状を挙げることができる。また、上記溝、穴の形状も特に限定されるものではな ぐどのような形状のものであってもよいが、例えば、直線の溝;曲線の溝;弧を描く溝 ;円形の穴;楕円形の穴;三角形、四角形、五角形等多角形の穴等を挙げることがで きる。
[0103] また、上記凹部の壁面は、試料保持面に対して垂直であってもよいし、斜度を有し ていてもかまわない。
[0104] また、上記凹凸構造は、試料保持面の全体に形成されているものであってもよいし 、試料保持面に部分的に形成されて 、るものであってもよ 、。
[0105] 本発明にかかる試料ターゲットは、上記試料保持面の表面が半導体で被覆されて いるものである。上記半導体としては、特に限定されるものではなくどのようなもので あってもよい。具体的には、例えば、 Si、 Ge、 SiC、 GaP、 GaAs、 InP、 Si Ge (0 l -X X
<X< 1)、 SnO、 ZnO、 In Oやその混合物、カーボン等を挙げることができる。な
2 2 3
かでも、上記半導体は、 SnO、 ZnO、 In O、 SnOと In Oの混合物である ITO等
2 2 3 2 2 3
であることがより好ましい。これらの物質はもともと酸ィ匕物であり、これ以上酸化されな いため、空気中に放置してもイオンィ匕の性能が下がることはない。また、カーボンは その原子の結合状態によって物性は異なるが、ここでは半導体として分類する。カー ボンも空気中では酸ィ匕されにくいために、空気中に放置してもイオンィ匕の性能が下 がることはない。
[0106] 被覆されている上記半導体の厚みは、試料保持面の凹凸構造を損なうものでなけ れば特に限定されるものではない。具体的には、例えば、 lnm以上 200nm以下で あることが好ましい。上記金属の厚みがこの上限を超えないことにより、試料保持面の 凹凸構造が損なわれず、下限より大きいことにより、効率的なイオンィ匕が可能となる。 さらに、上記金属の厚みは、 5nm以上 lOOnm以下であることがより好ましぐ 10nm 以上 90nm以下であることがさらに好ましぐ 15nm以上 80nm以下であることが特に 好ましぐ 20nm以上、 75nm以下であることが最も好ましい。これにより、より効率的 なイオン化が可能となる。
[0107] (III 2)試料ターゲット (C)の製造方法
本発明にかかる試料ターゲット (C)の製造方法は、各凹部または各凸部の間隔が 1 nm〜10 μ mであって、凹部の深さが 10nm〜10 μ mの微細な凹凸構造を有する表 面を試料保持面として備えて!/、る試料ターゲットであって、上記試料保持面の表面 が半導体で被覆されているものを製造する方法であれば特に限定されるものではな く、少なくとも試料保持面の表面を半導体で被覆する工程等を含んで 、ればよ!/、。
[0108] 上記試料保持面の表面を半導体で被覆する方法は、特に限定されるものではなく 、上記 (1— 2)に記載した方法を好適に用いることができる。
[0109] また、本発明に力かる試料ターゲット (C)の製造方法は、上記試料保持面の表面を 半導体で被覆する工程の前に、各凹部または各凸部の間隔が Inn!〜 10 mであつ て、凹部の深さが ΙΟηπ!〜 10 mの微細な凹凸構造を表面に有する試料保持面を 製造する工程を含んでいてもよい。力かる凹凸構造を製造する方法としては、リソダラ フィー技術を用いて、基板の表面に、所定の幅を有する凹部を規則的に繰り返し形 成すること〖こよって、当該表面に試料保持面を形成する方法であってもよい。また、 上記リソグラフィー技術としては、電子ビーム描画装置を用いて上記凹部を形成する ことが好ましい。また、上記 (1— 2)に記載した、製法例 1、製法例 2等を好適に用いる ことができる。
[0110] (IV)本発明の利用(質量分析装置)
本発明の試料ターゲットは、生体高分子や内分泌撹乱物質、合成高分子、金属錯 体などの様々な物質の質量分析を行う場合に測定対象となる試料を載置するための 言わば試料台として使用することができる。また、上記試料ターゲットは、特にレーザ 一脱離イオン化質量分析において用いられた場合に、試料のイオンィ匕を効率的かつ 安定的に行うことができるため有用である。
[0111] そこで、上述の本発明の試料ターゲットを用いてなる質量分析装置についても本発 明の範疇に含まれる。上記試料ターゲットは、特にレーザー脱離イオン化質量分析 装置において用いられた場合に、試料のイオンィ匕を効率的かつ安定的に行うことが できる。そのため、本発明の質量分析装置は、より具体的には、測定対象となる試料 にレーザー光を照射することによってイオン化して当該試料の分子量を測定するレ 一ザ一脱離イオン化質量分析装置であることが好ま 、。
[0112] 上記レーザー脱離イオンィ匕質量分析装置においては、測定対象となる試料を上述 の試料ターゲット上に載置して使用することによって、当該試料に対してレーザー光 を照射した場合に試料のイオンィ匕を良好に行うことができる。 実施例
[0113] 本発明について、実施例に基づいてより具体的に説明するが、本発明はこれに限 定されるものではない。
[0114] 〔実施例 1〕
純度 99.99%のアルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4) で電解研磨処理を施した。鏡面化を行ったアルミニウム板を、 0.5 Mリン酸水溶液中 で、浴温 17°Cにおいて直流 80Vの条件下で 15分間陽極酸化を行い、細孔深さ 500η mの陽極酸ィ匕ポーラスアルミナを形成した。その後、試料を 10重量%リン酸水溶液に 10分間浸漬し、孔径拡大処理を施し細孔径を lOOnmに調節した。得られた陽極酸化 ポーラスアルミナ表面に、スパッタ法で Ptを 50nmコートすることにより、細孔周期 200η mの Ptコートポーラスアルミナ基板を得た。細孔深さ Z (細孔周期 細孔径)は 5であ つた o
[0115] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 24000のトリプシノーゲンを 5pmol担持させ、飛行 時間型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用 、て 、リニアモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、 m/z 240 00のイオンを検出することができた。
[0116] 〔実施例 2〕
実施例 1と同様の方法で作製した陽極酸ィ匕ポーラスアルミナ表面に、スパッタ法に より Siを 50nmコートすることにより、細孔周期 200nmの Siコートポーラスアルミナ基板 を得た。
[0117] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 12360のチトクロム Cを 5pmol担持させ、飛行時間 型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用いて、リニ アモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、 m/z 12360の イオンを検出することができた。
[0118] 〔実施例 3〕
純度 99.99%アルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4)で 電解研磨処理を施した。鏡面化を行ったアルミニウム板を、 0.3 Mリン酸水溶液中で、 浴温 17°Cにおいて直流 195Vの条件下で 15時間陽極酸ィヒを行った後、ー且、酸ィ匕物 層をクロン酸、リン酸混合溶液により溶解除去し、再び同一条件下において 2時間間 陽極酸ィ匕を行うことで孔深さ 2 mの陽極酸ィ匕ポーラスアルミナを形成した。その後、 試料を 10重量%リン酸水溶液に 30分間浸漬し、孔径拡大処理を施し細孔径を 250η mに調節した。得られた陽極酸ィ匕ポーラスアルミナ表面に、イオンビームスパッタリン グ装置を用い Ptを 50nmコートすることにより、細孔周期 500nmの理想配列ポーラスァ ルミナ基板を得た。細孔深さ Z (細孔周期 細孔径)は 8であった。
[0119] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 12360のチトクロム Cを 5pmol担持させ、飛行時間 型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用いて、リニ アモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、リニアモードでレ 一ザ一脱離イオン化法による質量分析を行ったところ、 m/z 12360のイオンを検出 することができた。
[0120] 〔実施例 4〕
純度 99.99%のアルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4) で電解研磨処理を施した。鏡面化を行ったアルミニウム板を、 0.5 Mリン酸水溶液中 で、浴温 17°Cにおいて直流 80Vの条件下で 11分間、 0.3Mの濃度に調整したリン酸 水溶液中で、浴温 10°Cにおいて直流 120Vの条件下で 23分間陽極酸ィヒを行うことで 、孔深さが 500nmである細孔周期 200nmと 300nmの陽極酸化ポーラスアルミナをそ れぞれ形成した。得られた陽極酸ィ匕ポーラスアルミナ表面に、スパッタ法により Ptを 50 nmコートした。細孔周期 300nmのポーラスアルミナの細孔径は 100nm、細孔深さ Z( 細孔周期 細孔径)は 2.5であった。また、細孔周期 200nmのポーラスアルミナの細 孔径は 70nm、細孔深さ Z (細孔周期 細孔径)は 3.8であった。
[0121] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 24000のトリプシノーゲンを 5pmol担持させ、飛行 時間型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用 、て 、リニアモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、いずれの 場合にお ヽても mZz 24000のイオンを検出することができた。
[0122] 〔実施例 5〕
純度 99.99%アルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4)で 電解研磨処理を施した。鏡面化を行ったアルミニウム板を、 0.3 Mシユウ酸水溶液中 で、浴温 17°Cにおいて直流 40Vの条件下で 15時間陽極酸ィヒを行った後、ー且、酸 化物層をクロン酸、リン酸混合溶液により溶解除去し、再び同一条件下において 10 分間陽極酸ィ匕を行うことで孔深さ 1 mの陽極酸ィ匕ポーラスアルミナを形成した。そ の後、試料を 5重量%リン酸水溶液に 40分間浸漬し、孔径拡大処理を施し細孔径を 7 Onmに調節した。得られた陽極酸ィ匕ポーラスアルミナ表面に、スパッタ法により Ptを 2 Onmコートすることにより細孔周期 lOOnmの高規則性ポーラスアルミナ基板を得た。 細孔深さ Z (細孔周期 細孔径)は 33であった。
[0123] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 24000のトリプシノーゲンを 5pmol担持させ、飛行 時間型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用 、て 、リニアモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、 m/z2400 0のイオンを検出することができた。
[0124] 〔実施例 6〕
純度 99.99%アルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4)で 電解研磨処理を施した。鏡面化を行ったアルミニウム板を、 0.3 Mリン酸水溶液中で 、浴温 0°Cにおいて直流 195Vの条件下で 15時間陽極酸ィ匕を行った後,ー且,酸ィ匕 物層をクロン酸、リン酸混合溶液により溶解除去し、再び同一条件下において 15分 間陽極酸ィ匕を行うことで孔深さ 1 μ mの陽極酸ィ匕ポーラスアルミナを形成した。その 後、試料を 10重量%リン酸水溶液に 60分間浸漬し、孔径拡大処理を施し細孔径を 30 Onmに調節した。得られた陽極酸ィ匕ポーラスアルミナ表面に、イオンビームスパッタリ ング装置を用い Ptを 50nmコートすることにより、細孔周期 500nmの高規則性ポーラス アルミナ基板を得た。細孔深さ Z (細孔周期 細孔径)は 5であった。
[0125] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 24000のトリプシノーゲンを 5pmol担持させ、飛行 時間型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用 、て 、リニアモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、いずれの 場合においても mZz24000のイオンを検出することができた。
[0126] 〔実施例 7〕
純度 99.99%のアルミニウム板を過塩素酸、エタノール混合溶液中(体積比 1 :4)で 電解研磨処理を施した。鏡面化を行ったアルミニウム板表面に、 200 nm周期で突起 が規則的に配列した構造を持つ Ni製モールドを押し付け、微細な凹凸パターンを形 成した。インプリント処理を施したアルミニウム板を、 0.5 Mリン酸水溶液中で、浴温 17 °Cにおいて直流 80Vの条件下で 11分間陽極酸化を行い、孔深さ 500nmの陽極酸化 ポーラスアルミナを形成した。その後、試料を 10重量%リン酸水溶液に 10分間浸漬し 、孔径拡大処理を施し細孔径を lOOnmに調節した。得られた陽極酸化ポーラスアル ミナ表面に、イオンビームスパッタリング装置を用い Ptを 50nmコートすることにより、細 孔周期 200nmの理想配列ポーラスアルミナ基板を得た。細孔深さ Z (細孔周期 細 孔径)は 5であった。
[0127] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 24000のトリプシノーゲンを 5pmol担持させ、飛行 時間型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用 、て 、リニアモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、いずれの 場合においても mZz24000のイオンを検出することができた。
[0128] 〔比較例 1〕
純度 99.99%アルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4)で 電解研磨処理を施した。鏡面化を行ったアルミニウム板を、 0.3 Mリン酸水溶液中で、 浴温 17°Cにおいて直流 195Vの条件下で 15時間陽極酸ィヒを行った後、ー且、酸ィ匕物 層をクロン酸、リン酸混合溶液により溶解除去し、再び同一条件下において 2時間間 陽極酸ィ匕を行うことで孔深さ 15 mの陽極酸ィ匕ポーラスアルミナを形成した。その後 、試料を 10重量%リン酸水溶液に 60分間浸漬し、孔径拡大処理を施し細孔径を 300 nmに調節した。得られた陽極酸ィ匕ポーラスアルミナ表面に、スパッタ法により Ptを 50 nmコートすることにより、細孔周期 500nmの理想配列ポーラスアルミナ基板を得た。 細孔深さ Z (細孔周期 細孔径)は 75であった。
[0129] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 12360のチトクロム Cを 5pmol担持させ、飛行時間 型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用いて、リニ アモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、試料イオンを検 出することができなかった。さらに分子量 5800のインシュリンのイオンィ匕を試みたが同 様にイオンィ匕できな力つた。
[0130] 〔比較例 2〕
純度 99.99%アルミニウム板を、過塩素酸、エタノール混合溶液中(体積比 1 :4)で 電解研磨処理を施した。鏡面化を行ったアルミニウム板表面に、 200nm周期で突起 が規則的に配列した構造を持つ Ni製モールドを押し付け、微細な凹凸パターンを形 成した。インプリント処理を施したアルミニウム板を、 0.5 Mリン酸水溶液中で、浴温 17 °Cにお!/、て直流 80Vの条件下で 2時間陽極酸化を行!、、細孔深さ 70nmの陽極酸化 ポーラスアルミナを形成した。孔径拡大処理を施し細孔径を lOOnmに調節した。得ら れた陽極酸ィ匕ポーラスアルミナ表面に、イオンビームスパッタリング装置を用い、 Ptを 50nmコートすることにより、細孔周期 200nmの理想配列ポーラスアルミナ基板を得た 。細孔深さ Z (細孔周期 細孔径)は 0.7であった。
[0131] 次に、得られた試料ターゲットを用いてレーザー脱離イオン化法による質量分析を 行った。試料ターゲットに、分子量 12360のチトクロム Cを 5pmol担持させ、飛行時間 型質量分析計 Voyager DE - Pro (アプライドバイォシステムズ社製)を用いて、リニ アモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、試料イオンを検 出することができな力つた。
[0132] 〔比較例 3〕
ウォーターズ社製 MassPREP™ DIOS- targetプレートを使用マニュアル通りにイソ プロパノールにて前処理した後に、分子量 24000のトリプシノーゲン lOpmolを担持さ せ、飛行時間型質量分析計 Voyager DE— Pro (アプライドバイオシステムズ社製) を用いて、リニアモードでレーザー脱離イオンィ匕法による質量分析を行ったところ、試 料イオンを検出することができな力つた。 [0133] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性
[0134] 本発明の試料ターゲットによれば、レーザー脱離イオンィ匕質量分析法において、マ トリックスを用いない場合にも、優れたイオン化の性能、高分子量の物質のイオン化を 実現することが可能である。
[0135] レーザー脱離イオンィ匕質量分析法は、生体高分子や内分泌撹乱物質、合成高分 子、金属錯体などの質量分析法として、現在幅広い分野で活用されている。本発明 の試料ターゲットは、このレーザー脱離イオン化質量分析をより正確かつ安定して実 施するために有効な材料であるため、本発明の利用可能性は高 、と言える。

Claims

請求の範囲
[1] レーザー光の照射により試料をイオンィ匕して質量分析するときに、試料を保持する ために用いられ、レーザー光の照射を受ける表面に開口する多数の細孔を有する試 料保持面を備えて!/ヽる試料ターゲットであって、
当該細孔の細孔径が 30nm以上 5 m未満、且つ、細孔深さ Z (細孔周期 細孔 径)が 2以上 50以下であり、上記試料保持面の表面が金属または半導体で被覆され て 、ることを特徴とする試料ターゲット。
[2] 上記試料保持面はポーラスアルミナ力もなることを特徴とする請求項 1に記載の試 料ターゲット。
[3] レーザー光の照射により試料をイオンィ匕して質量分析するときに、試料を保持する ために用いられ、レーザー光の照射を受ける表面側に開口する多数の細孔を有する 試料保持面を備えて!/ヽる試料ターゲットであって、
上記試料保持面は、ポーラスアルミナを铸型に用いて該ポーラスアルミナの凹凸構 造を転写したネガ型の構造物を作製し、該ネガ型の構造物を铸型に用いて上記凹 凸構造を転写した、上記ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表 面に有する試料保持面であることを特徴とする試料ターゲット。
[4] 上記試料保持面は金属または半導体力 なることを特徴とする請求項 3に記載の 試料ターゲット。
[5] 上記試料保持面の表面は、金属または半導体で被覆されて!ヽることを特徴とする 請求項 3に記載の試料ターゲット。
[6] 上記細孔は、細孔径が 30nm以上 5 μ m未満、細孔深さ Z (細孔周期 細孔径)が
2以上 50以下であることを特徴とする請求項 3な 、し 5の 、ずれか 1項に記載の試料 ターケット。
[7] 上記金属が、白金 (Pt)および金 (Au)の少なくとも何れかであることを特徴とする請 求項 1、 2、 4、 5または 6のいずれ力 1項に記載の試料ターゲット。
[8] レーザー光の照射により試料をイオンィ匕して質量分析するときに、試料を保持する ために用いられ、各凹部および各凸部の間隔が Inn!〜 10 mであって、凹部の深 さが ΙΟηπ!〜 10 /z mの微細な凹凸構造を有する表面を試料保持面として備えている 試料ターゲットであって、上記試料保持面の表面が半導体で被覆されて ヽることを特 徴とする試料ターゲット。
[9] 上記半導体が、酸化スズ (SnO )、酸化亜鉛 (ZnO)、酸化インジウム'スズ (ITO)
2
およびカーボンの少なくとも何れかであることを特徴とする請求項 1、 2、 4、 5、 6また は 8に記載の試料ターゲット。
[10] レーザー光の照射により試料をイオンィ匕して質量分析するときに、試料を保持する ために用いられ、レーザー光の照射を受ける表面側に開口する多数の細孔を有する 試料保持面を備えて 、る試料ターゲットの製造方法であって、ポーラスアルミナを試 料保持面として用い、該試料保持面の表面を金属または半導体で被覆する工程を 含むことを特徴とする試料ターゲットの製造方法。
[11] レーザー光の照射により試料をイオンィ匕して質量分析するときに、試料を保持する ために用いられ、レーザー光の照射を受ける表面側に開口する多数の細孔を有する 試料保持面を備えている試料ターゲットの製造方法であって、
ポーラスアルミナを铸型に用 、て該ポーラスアルミナの凹凸構造を転写したネガ型 の構造物を作製する工程と、
該工程で得られたネガ型の構造物を铸型に用いて上記凹凸構造を転写して、上記 ポーラスアルミナの凹凸構造と同一の形状の凹凸構造を表面に有する試料保持面を 得る工程とを含むことを特徴とする試料ターゲットの製造方法。
[12] 上記試料保持面は、金属または半導体力 なることを特徴とする請求項 11に記載 の試料ターゲットの製造方法。
[13] さらに、上記試料保持面の表面を金属または半導体で被覆する工程を含むことを 特徴とする請求項 11に記載の試料ターゲットの製造方法。
[14] 上記ポーラスアルミナは、その細孔径が 30nm以上 5 μ m未満、細孔深さ Z (細孔 周期-細孔径)が 2以上 50以下であることを特徴とする請求項 10な 、し 13の 、ずれ 力 1項に記載の試料ターゲットの製造方法。
[15] 請求項 1な!、し 9の 、ずれか 1項に記載の試料ターゲットを用いることを特徴とする 質量分析装置。
[16] 測定対象となる試料にレーザー光を照射することによって、当該試料をイオン化し てその分子量を測定するレーザー脱離イオンィ匕質量分析装置であることを特徴とす る請求項 15に記載の質量分析装置。
PCT/JP2006/309032 2005-10-20 2006-04-28 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置 WO2007046162A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/988,166 US8237114B2 (en) 2005-10-20 2006-04-28 Sample target used in mass spectrometry, method for producing the same, and mass spectrometer using the sample target
JP2007540878A JP4885142B2 (ja) 2005-10-20 2006-04-28 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-306386 2005-10-20
JP2005306386 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046162A1 true WO2007046162A1 (ja) 2007-04-26

Family

ID=37962262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309032 WO2007046162A1 (ja) 2005-10-20 2006-04-28 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置

Country Status (3)

Country Link
US (1) US8237114B2 (ja)
JP (1) JP4885142B2 (ja)
WO (1) WO2007046162A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041648A (ja) * 2006-07-11 2008-02-21 Canon Inc 質量分析用基板及び質量分析用基板の製造方法
JP2009002704A (ja) * 2007-06-19 2009-01-08 Canon Inc 質量分析用基板、質量分析方法および質量分析装置
JP2009236489A (ja) * 2008-03-25 2009-10-15 Kanagawa Acad Of Sci & Technol 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
JP2010071727A (ja) * 2008-09-17 2010-04-02 Fujifilm Corp 質量分析用デバイス及びそれを用いた質量分析装置、質量分析方法
JP2010078482A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 質量分析用基板および質量分析方法
JP2010175338A (ja) * 2009-01-28 2010-08-12 Kanagawa Acad Of Sci & Technol 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
WO2019058784A1 (ja) * 2017-09-21 2019-03-28 浜松ホトニクス株式会社 レーザ脱離イオン化法及び質量分析方法
WO2019058857A1 (ja) * 2017-09-21 2019-03-28 浜松ホトニクス株式会社 試料支持体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110796B2 (en) 2009-01-17 2012-02-07 The George Washington University Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays
US9490113B2 (en) * 2009-04-07 2016-11-08 The George Washington University Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry
US9829467B2 (en) * 2014-05-19 2017-11-28 National University Corporation Nagoya University Method of analysis of component in sample, method of specific isolation of component in sample, and sample for mass spectrometry
EP3654365B1 (en) 2015-09-03 2023-09-13 Hamamatsu Photonics K.K. Mass spectrometry device
JP6093492B1 (ja) * 2015-09-03 2017-03-08 浜松ホトニクス株式会社 試料支持体、及び試料支持体の製造方法
WO2018126230A1 (en) * 2016-12-30 2018-07-05 Inredox Llc Substrate with matrix-free nanostructured hydrophilic analyte spots for use in mass spectrometry
CN111465843B (zh) * 2017-11-28 2023-08-15 浜松光子学株式会社 激光解吸电离法、质谱法、试样支承体和试样支承体的制造方法
EP3751271A4 (en) 2018-02-09 2021-11-10 Hamamatsu Photonics K.K. SAMPLE CARRIERS, IONIZATION METHOD AND MASS SPECTROMETRIC METHOD
JP6962831B2 (ja) * 2018-02-09 2021-11-05 浜松ホトニクス株式会社 イオン化方法及び試料支持体
JP7217714B2 (ja) 2018-02-09 2023-02-03 浜松ホトニクス株式会社 試料支持体
JP7051632B2 (ja) 2018-07-30 2022-04-11 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
JP2022094173A (ja) 2020-12-14 2022-06-24 浜松ホトニクス株式会社 試料支持体、イオン化法及び質量分析方法
JP7449848B2 (ja) 2020-12-14 2024-03-14 浜松ホトニクス株式会社 試料支持体、イオン化法及び質量分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285382A (ja) * 2001-03-23 2002-10-03 Hitachi Maxell Ltd 陽極酸化ポーラスアルミナ及びその製造方法
WO2004047142A2 (en) * 2002-11-18 2004-06-03 3M Innovative Properties Company Microstructured polymeric substrate
JP2005226087A (ja) * 2004-02-10 2005-08-25 Kanagawa Acad Of Sci & Technol 陽極酸化ポーラスアルミナおよびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US314936A (en) * 1885-03-31 Machine for nicking screw-blanks
JP3714507B2 (ja) 1996-08-26 2005-11-09 日本電信電話株式会社 多孔性陽極酸化アルミナ膜の作製方法
US6139713A (en) 1996-08-26 2000-10-31 Nippon Telegraph And Telephone Corporation Method of manufacturing porous anodized alumina film
US5777324A (en) * 1996-09-19 1998-07-07 Sequenom, Inc. Method and apparatus for maldi analysis
EP1166329A4 (en) * 1999-03-09 2005-03-23 Scripps Research Inst METHOD AND DEVICE FOR THE DESORPTION / IONIZATION OF POROUS, LIGHT ABSORBING PAPERS
US6825477B2 (en) * 2001-02-28 2004-11-30 Jan Sunner Method and apparatus to produce gas phase analyte ions
US20030010908A1 (en) 2001-07-02 2003-01-16 Phillip Clark Conductive card suitable as a MALDI-TOF target
CN1774626A (zh) * 2003-03-14 2006-05-17 日本电气株式会社 质谱系统和用于分析的方法
JP2007508552A (ja) * 2003-10-10 2007-04-05 プロテイン・デイスカバリー・インコーポレーテツド マトリックス支援レーザー脱離/イオン化(maldi)質量分析法(ms)を包含する化学分析のための被検体の濃縮および精製のための方法および装置
JP4512589B2 (ja) 2004-02-26 2010-07-28 独立行政法人科学技術振興機構 表面加工が施された試料保持面を有する試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
WO2005083148A1 (ja) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法
WO2007014303A2 (en) * 2005-07-26 2007-02-01 Sionex Corporation Ultra compact ion mobility based analyzer system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285382A (ja) * 2001-03-23 2002-10-03 Hitachi Maxell Ltd 陽極酸化ポーラスアルミナ及びその製造方法
WO2004047142A2 (en) * 2002-11-18 2004-06-03 3M Innovative Properties Company Microstructured polymeric substrate
JP2005226087A (ja) * 2004-02-10 2005-08-25 Kanagawa Acad Of Sci & Technol 陽極酸化ポーラスアルミナおよびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OKUNO S. ET AL.: "Requirements for Laser-Induced Desorption/Ionization on Submicrometer Structures", ANALYTICAL CHEMISTRY, vol. 77, no. 16, 15 September 2005 (2005-09-15), pages 5364 - 5369, XP003012113 *
OKUNO S.: "Submicrometer-Sized no Kozotai ni okeru Matrix-free Laser Datsuri Ionization - Ionization ni Hitsuyo na Mono wa Nani ka?", DAI 53 KAI ANNUAL CONFERENCE ON MASS SPECTROMETRY, 27 May 2005 (2005-05-27), pages 344 - 345, XP003012114 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041648A (ja) * 2006-07-11 2008-02-21 Canon Inc 質量分析用基板及び質量分析用基板の製造方法
JP2009002704A (ja) * 2007-06-19 2009-01-08 Canon Inc 質量分析用基板、質量分析方法および質量分析装置
JP2009236489A (ja) * 2008-03-25 2009-10-15 Kanagawa Acad Of Sci & Technol 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
JP2010071727A (ja) * 2008-09-17 2010-04-02 Fujifilm Corp 質量分析用デバイス及びそれを用いた質量分析装置、質量分析方法
JP2010078482A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 質量分析用基板および質量分析方法
JP2010175338A (ja) * 2009-01-28 2010-08-12 Kanagawa Acad Of Sci & Technol 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
WO2019058784A1 (ja) * 2017-09-21 2019-03-28 浜松ホトニクス株式会社 レーザ脱離イオン化法及び質量分析方法
WO2019058857A1 (ja) * 2017-09-21 2019-03-28 浜松ホトニクス株式会社 試料支持体
JP6535151B1 (ja) * 2017-09-21 2019-06-26 浜松ホトニクス株式会社 レーザ脱離イオン化法及び質量分析方法
JP6539801B1 (ja) * 2017-09-21 2019-07-03 浜松ホトニクス株式会社 試料支持体
CN111094965A (zh) * 2017-09-21 2020-05-01 浜松光子学株式会社 激光解吸电离法和质量分析方法
US11047827B2 (en) 2017-09-21 2021-06-29 Hamamatsu Photonics K.K. Sample support body
US11127577B2 (en) 2017-09-21 2021-09-21 Hamamatsu Photonics K.K. Laser desorption/ionization method and mass spectrometry method
US11360049B2 (en) 2017-09-21 2022-06-14 Hamamatsu Photonics K.K. Sample support body
US11656198B2 (en) 2017-09-21 2023-05-23 Hamamatsu Photonics K.K. Sample support body

Also Published As

Publication number Publication date
JP4885142B2 (ja) 2012-02-29
JPWO2007046162A1 (ja) 2009-04-23
US8237114B2 (en) 2012-08-07
US20090095897A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4885142B2 (ja) 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
JP4512589B2 (ja) 表面加工が施された試料保持面を有する試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
JP5129628B2 (ja) 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
JP5438330B2 (ja) 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
US10410821B2 (en) Method and apparatus for a porous electrospray emitter
US20090166523A1 (en) Use of carbon nanotubes (cnts) for analysis of samples
US20130098774A1 (en) Method and Apparatus for a Porous Metal Electrospray Emitter
CN1966393A (zh) 具有纳米尺寸孔的多比例悬臂结构及其制备方法
JP2006089788A (ja) 微細構造体およびその製造方法
JP2004188395A (ja) 流体制御装置及びその製造方法
JP5049549B2 (ja) 質量分析用基板、その製造方法および質量分析測定装置
Djenizian et al. Electrochemical fabrication of tin nanowires: a short review
JP4654083B2 (ja) 金属粒子型反応触媒およびその製造方法、並びに該触媒を用いた有機合成反応装置
JP4395008B2 (ja) 微細構造体およびその製造方法
JP2003342791A (ja) 細孔を有する構造体及びその製造方法
JP2005059135A (ja) カーボンナノチューブを用いたデバイス及びその製造方法
JP2006038506A (ja) 微細構造体
Walewyns et al. Synthesis of patterned freestanding nickel nanowires by using ion track-etched polyimide
Juremi et al. Nanosphere Lithography: Fabrication of Periodic Arrays of Nanoholes
KR20090010484A (ko) 필터 제조방법
JP2007101532A (ja) パターン化された有機薄膜とその製造方法
JP2003266400A (ja) シリコン酸化物ナノ構造体の製造方法
Kim et al. Controlled patterning of vertical silicon structures using polymer lithography and wet chemical etching
Korotcenkov et al. Alternative methods of silicon porosification and properties of these PSi layers
KR20150057931A (ko) 템플레이트 제조방법 및 이를 위한 임프린트 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11988166

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007540878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745891

Country of ref document: EP

Kind code of ref document: A1