CN1774626A - 质谱系统和用于分析的方法 - Google Patents

质谱系统和用于分析的方法 Download PDF

Info

Publication number
CN1774626A
CN1774626A CN200480010376.5A CN200480010376A CN1774626A CN 1774626 A CN1774626 A CN 1774626A CN 200480010376 A CN200480010376 A CN 200480010376A CN 1774626 A CN1774626 A CN 1774626A
Authority
CN
China
Prior art keywords
sample
mass spectrometer
spectrometer system
passage
separation district
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200480010376.5A
Other languages
English (en)
Inventor
高桥胜利
饭田一浩
马场雅和
井口宪幸
佐野亨
川浦久雄
阪本利司
服部涉
染谷浩子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NEC Corp
Publication of CN1774626A publication Critical patent/CN1774626A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8447Nebulising, aerosol formation or ionisation
    • G01N2030/8452Generation of electrically charged aerosols or ions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

当在形成于微芯片(353)的通道中将样本事先分离成多种成分之后,使用从激光振荡器(361)发射的激光束沿着分离方向对通道进行照射,以对在通道中分离的每一个小段顺序地进行电离。通过质谱单元(363)来检测被电离的小段,并且通过分析结果分析单元(371)来进行分析。分析结果存储在存储器(369)中,同时与驱动器控制单元(367)中的位置信息和激光控制单元(373)中的激光束照射条件信息相关联,并且通过成像单元(375)对分析结果进行成像。成像的分析结果显示在显示器(377)上。

Description

质谱系统和用于分析的方法
技术领域
本发明涉及质谱系统和用于分析的方法。
背景技术
在分析诸如细胞等生物样本和诸如蛋白质和核酸等生物物质时,在分析之前执行用于预先分离和提纯样本的操作和用于根据大小或电荷来分离样本的操作。例如,在蛋白体(proteomics)分析中,通常使用质谱分析来分析分离的成分。当包含在用于进行质谱分析的样本中的成分是诸如蛋白质、核酸和多糖等生物成分时,现有情况下需要事先将目标成分从生物样本中孤立出来。例如,当对包含多种成分的样本进行分析时,样本已经被提纯,通过二维电泳对每一种成分进行了分离,从每一个分离的点中恢复出每一种成分,并且用每一个恢复的成分制备用于质谱分析的样本。因此,需要单独进行分离处理和样本制备处理,这使操作复杂化。
研究了有效地执行样本中的成分分离和质谱分析,以消除这种复杂的操作的方法(专利文献1和2)。专利文献1和2讲述了一种质谱设备,其中集成了用于执行电泳的毛细管和用于执行质谱分析的电离单元,以便持续地执行电泳和质谱分析。但是,在这种设备中,对于从毛细管中恢复的成分需要逐点执行质谱分析。因此,从分析效率的角度来说,仍然存在改进的余地。进而,由于设备的结构变得庞大,因此从节省空间的角度来,仍然存在改进的余地。
最近,积极地进行将从活体组织得到的物质进行分离或分析的功能包括在芯片上的微芯片的研究和开发。专利文献3讲述了其中使用了微芯片的质谱分析。在专利文献3所讲述的方法中,在衬底的底表面上提供有结合了吸附剂的探测器(probe),通过使衬底接触样本,样本中的特定成分被吸附剂所吸附,以便分离成分,并且然后在每一个探测器中执行质谱分析。
但是,在专利文献3讲述的方法中,需要选择对应于样本中每一成分的吸附剂,以制备其中固定了所选吸附剂的探测器衬底。然后,将样本滴在探测器上,并且需要清洗和除去不需要的成分。然后,吸附的成分在每一个探测器中被顺序地电离,以执行质谱分析。因此,样本的分离和分析不是连续的,并且操作相对复杂。
专利文献1:日本专利申请未决公开No.H5-164741。
专利文献2:日本专利No.2572397的说明书。
专利文献3:日本专利申请未决公开No.2001-281222。
发明内容
鉴于前述内容,本发明提出一种有效地执行样本分离和以高精确度进行质谱分析的技术。
根据本发明,提供的质谱系统包括:微芯片,其具有通过样本的通道以及位于通道中的样本分离区;光照单元,用于当沿着样本分离区移动光照位置时使用激光束进行照射;以及分析单元,用于分析样本片段以获得质谱数据,其中样本片段由光照生成。
质谱系统直接电离在样本分离区中分离的样本,以分析样本的片段。因此,根据本发明的质谱系统,通过微芯片上的位置A和分子量B这两个参数,可以获得二维分布图。图82(a)和82(b)示出了二维分布图的例子。在这些例子中,正如下面要讲到的,当沿着样本分离区移动光照位置时,通过激光束照射来执行质谱分析,并且根据微芯片上的位置A和分子量B来获得二维分布图。
使用该分布图能够获得各种信息,而不需要通过质谱分析来执行成分识别。例如,当对测试主体的血液进行分析以筛选特定疾病时,健康者的分布图和患病者的分布图被设置为参考数据,以与来自测试主体的血液的二维分布图进行比较,这能够在不对成分进行分析的情况下实现筛选。
在本发明的质谱系统中,根据样本的属性在样本分离区中对样本进行分离。当沿着样本分离区移动光照位置时,用激光束对分离的样本进行照射,以执行质谱分析。因此,分离的样本能够被电离,以在不从样本被分离的位置移动样本的情况下来执行质谱分析。由于不需要从样本被分离的位置提取被分离样本的处理,因此没有产生样本损失。因此,甚至在少量样本的情况下,也能够可靠地执行分离和以高精确度执行质谱分析。在本发明中,“沿着样本分离区移动光照位置”是指激光束相对于样本分离区的位置被移动,并且包括激光束照射方向或照射角度的改变。
因此,根据本发明的质谱系统,由于通过沿着样本分离区使用激光束直接照射样本使样本电离以执行质谱分析,因此在样本分离区中被分离的每一种成分的质谱分析光谱都能够被有效获得。
在本发明的质谱系统中,分析单元可以包括数据存储器单元,该数据存储单元中存储有相互关联的光照位置和对应于光照位置的质谱数据。
因此,通过将每一种成分的分离位置和该成分的质谱分析光谱结合起来,可以有效执行分析以获得每一种成分的详细光谱属性。因此,根据所获得的信息能够以高精度快速地执行样本中的成分识别等。
在本发明的质谱系统中,样本分离区根据分子量、等电势点或样本的表面憎水属性来分离样本,并且当沿着样本分离区中被分离的样本移动光照位置时,光照单元可以使用激光束进行照射。因此,包含多种成分的样本能够根据成分的属性被可靠地分离,以执行质谱分析。进而,由于通过结合成分的属性和每一种成分的质谱分析光谱能够有效地执行分析,因此能够快速地执行成分的识别等。
在上述质谱系统中,重要的技术问题是以适合于质谱分析的模式分离样本分离区中的样本。例如,当使用激光束来照射样本分离区时,希望样本分离区的组分不被电离。另外,当使用激光束进行照射时,希望质谱设备快速电离样本,以将片段顺利移到质谱仪中。从这几点来看,用聚合物凝胶填充通道的现有样本分离区存在的问题是部分聚合物凝胶被激光照射而电离并且来自样本的片段没有被有效地释放出。因此,现有样本分离区并不总是适用于本发明的样本分离区的使用。也就是说,在本发明中,从与现有分离设备中所使用的结构不同的角度来设计样本分离区很重要。采用本发明的这种样本分离区能够准确地获得多边数据,包括与样本分离有关的微芯片上位置A和与质谱分析有关的分子量B这两个参数,这能够实现新颖的分析。下面来讲述用于根据本发明的原理进行质谱分析的样本分离区的结构。
在本发明的质谱系统中,通道可以位于衬底表面上,并且样本分离区可具有多个柱状体。因此,相邻柱状体之间的间隔起到滤网的作用。在本发明中通过这种方法执行样本分离,诸如核酸和蛋白质等通过现有技术难以分离的各种小尺寸物质能够被分离和分馏。在本发明中,多个柱状体是指能够施加分离功能的柱状体的个数。
通过在柱状体中形成样本分离区,使用激光束来照射分离的样本,以便有效地执行电离。此时,当与诸如电泳等其中使用了诸如凝胶和珠子等填充物的现有分离方法进行比较时,在激光束照射期间液体样本容易被蒸发,而在分离期间液体样本保持在分离通道中以抑制干燥。在使用填充物的情况下,有时测量精确度因填充物的电离而严重下降。根据其中使用了本发明的柱状体的结构,这种问题可以得到解决,并且可以执行高精确度的分析。来自样本的片段从样本分离区中有效地释放,这实现高精确度分析。进而,根据该结构,例如通过合理设计柱状体的间隔和分布,可以测量蛋白质等中具有相对较大尺寸的分子。
在本发明的质谱系统中,样本分离区可以包括多个柱状体分布部分,其中分布有多个柱状体,并且路径可以位于相邻柱状体分布部分之间,样本穿过该路径。因此,如果被分离物质的尺寸变得更小,则通过样本分离区中的柱状体能够更加容易地捕获物质以使其穿过长的路径。也就是说,较小尺寸物质被分离以便接在较大尺寸物质之后被释放。由于较大尺寸物质相对容易地穿过分离区,因此阻塞问题减少,吞吐量大大提高。因此,可以应用于核酸、蛋白质等类物质的分离,这能够确保包括这些物质的样本的质谱分析的性能。在采用上述结构的情况下,优选情况下在样本分离区中对样本中的每一种成分进行分离,即使测量主体是较大的成分和较小的成分相混合的样本。结果,通过一次分析能够有效获得分析数据。
在本发明的质谱系统中,路径宽度可以大于柱状体分布部分中的柱状体之间的平均间隔。因此,尽管较大尺寸物质很容易穿过样本分离区中的路径,而较小尺寸物质则根据物质的尺寸穿过柱状体分布部分并且通过长的路径到达样本分离区。
在本发明的质谱系统中,可以接合和分布多个柱状体分布部分使得平面分布呈近似菱形,并且分布柱状体使得每一个柱状体分布部分的平面分布呈近似菱形。因此,可以进一步改善分离能力。
在本发明的质谱系统中,多个柱状体的密度可以朝向通道中样本的前进方向逐渐增加。这样,由于被柱状体分布部分所捕获的分子在柱状体分布部分中的驻留时间变得更长,因此被柱状体分布部分所捕获的分子和没有被柱状体分布部分所捕获的分子之间的保持时间的差别变得显著,这能够提高分离能力。
另一方面,在本发明的质谱系统中,多个柱状体的密度可以朝向通道中样本的前进方向逐渐下降。在这种情况下,在柱状体分布部分中抑制了阻塞,这能够提高吞吐能力。
在本发明的质谱系统中,在相对于通道中的样本的前进方向上,样本分离区和调整区可以交替形成,在调整区中形成的柱状体的密度小于样本分离区中的柱状体的密度。因此,由于每一个分离带的形状能够进一步被线性地形成,因此当执行每一个带的质谱分析时,该带能够被压缩并且能够以高精确度执行检测。
在本发明的质谱系统中,金属层可以位于柱状体的表面。另外,在本发明的质谱系统中,柱状体可以由金属制成。由于通过使用金属至少形成柱状体的表面而在柱状体的表面上生成表面等离子体波,因此改善了样本的电离效率。在柱状体的表面上还产生了强电场,这能够提高电离样本的提取效率。在这种情况下,优选情况下在柱状体的截面形状中,底部宽于顶部。因此,电场能够集中在柱状体的顶部,以进一步提高电离样本的提取效率。
在本发明的质谱系统中,激光束可以是红外激光束或紫外激光束。因此,诸如蛋白质和核酸等具有相对大的分子尺寸的生物高聚物能够被进一步可靠地电离。
在本发明的质谱系统中,样本分离区可以具有多个凹部。因此,随着被分离物质的尺寸变小,物质更容易被样本分离区中的凹部所捕获,以穿过长的路径。也就是说,较小尺寸物质被分离以便接在较大尺寸物质之后被释放。由于较大尺寸物质相对容易地穿过分离区,因此阻塞问题减少,吞吐量大大提高。特别是,在分离核酸、蛋白质等时,由于分子的惯性半径覆盖较宽的范围,因此巨大尺寸物质就容易发生阻塞。一旦巨大尺寸物质发生阻塞,即使执行清洗,也难以释放出巨大尺寸物质。根据本发明,由于问题得到解决,因此优选情况下本发明能够被应用到对核酸、蛋白质等的分离中。
在本发明中,多个凹部是指能够发挥分离功能的凹部的个数。在本发明中,凹部的开口最大直径可以被设置为极窄值。在这种情况下,甚至没有被预测的各种物质也能够被分离和分馏。例如,在分离核酸或蛋白质时,希望凹部具有尺寸为几百个纳米或更小量级的精细开口。
开口的形状没有特别限制,例如,圆形、椭圆形、多边形等形状。在本发明中,凹部的开口最大直径是指通过连接开口的一点和其它点之一而形成的任意线中最长的线的长度。在本发明中,凹部的深度方向并不需要与重力方向一致。例如,凹部可以位于与通道的壁表面相平行的方向上。
本发明的质谱系统可以包括样本分离区中的突出部件,其中多个凹部位于突出部件中。因此,由于具有凹部的表面面积可以增加,因此分离能力得到改进。
在本发明的质谱系统中,凹部可以通过阳极氧化处理来形成。在阳极氧化处理中,可以通过较少数量的处理来实现具有预定尺寸的凹部和在凹部之间具有预定间隔的样本分离区。
在本发明的质谱系统中,通道的内壁的表面可以是亲水的。另外,在本发明的质谱系统中,通道的内壁的表面可以是经过斥水处理的。因此,由于样本成分到通道内壁的非特定吸附可以得到抑制,因此能够抑制样本损失或分离精确度的下降,以发挥好的分离能力。进而,由于样本损失被抑制,因此能够提高质谱分析的精确度。
在本发明的质谱系统中,通过将亲水性物质黏附到通道的内壁的表面而使通道的内壁具有亲水性。
另外,在本发明的质谱系统中,通过在通道的表面上形成硅热氧化物膜可以使通道的内壁具有亲水性。热氧化物膜的形成抑制了样本到通道壁的非特定吸附。进而,在激光束照射期间,黏附于样本分离的通道表面上的亲水性物质的电离被抑制。因此,可以减少质谱分析的本底,以进一步提高测量精度。
在本发明的质谱系统中,样本分离区的表面可以具有多个第一区和一个第二区,第一区的分布相互分离,第二区占有样本分离区中除第一区之外的表面,并且第一区和第二区之一可以形成在憎水区中,并且其它的可以形成在亲水区中。具体地说,可以采纳下列结构:
(i)其中第一区是憎水区而第二区是亲水区的结构,或者
(ii)其中第一区是亲水区而第二区是憎水区的结构。
在本发明中,亲水区是指亲水性比憎水区高的区域。例如,通过测量水接触角可以得到亲水性程度。
然后,下面以(i)的情况作为例子来讲述本发明中样本分离的原理。在这种情况下,被分离的样本被导入到通道中同时被溶解或扩散到具有相对高的亲水性的溶剂中。具有相对高的亲水性的溶剂离开憎水区(第一区)的表面,并且仅分布于样本分离区中的亲水区(第二区)。因此,憎水区的间隙部分成为一个可以通过被分离的样本的路径。结果,穿过该样本分离区所需的时间是由样本尺寸和憎水区之间的间隔之间的关系所决定的,这能够根据尺寸大小来执行样本分离。
在本发明中,除了根据尺寸进行分离以外,也可以根据样本极性来执行分离。也就是说,亲水性/憎水性各不相同的多种样本能够被分离开。在(i)的例子中,憎水区容易捕获具有高憎水性的样本并且释放时间相对较长。另一方面,憎水区很难捕获具有高亲水性的样本并且释放时间相对较短。因此,本发明不仅可以根据样本尺寸而且可以根据极性来执行分离,因此可以实现在现有情况下难以执行的多成分系统分离。
与通过障碍物的结构来执行分离的方法不同,在本发明中位于通道表面上的样本分离区是作为分离单元而形成的。例如,在现有的膜分离中,需要精确地控制膜中的微孔尺寸。但是,并不总是很容易地能够稳定地制作具有期望尺寸和微孔形状的膜。另一方面,在本发明中,可以通过通道的表面处理来形成样本分离区,并且通过控制第一区之间的距离可以获得期望的分离能力。因此,根据分离的目的可以相对容易地实现合理的结构。
例如,在本发明的质谱系统中,通过提供至少在通道的表面上具有开口的掩模,经由开口将具有亲水基团的化合物积淀在通道的表面上,并且去除掩模,可以形成样本分离区,其中亲水区分布在样本分离区中。在这种情况下,通过调整掩模开口宽度可以容易地调整憎水区之间的间隔。也就是说,根据分离的目的来合理地调节憎水区之间的间隔,并且根据分离的目的可以形成样本分离区的结构。特别是,在蛋白质或DNA的分离中,需要分离从巨大尺寸物质到具有纳米量级尺寸的物质等各种物质。在这些当中,在现有技术下很难在短时间内以高精确度来分离具有纳米量级尺寸的物质。在本发明中,通过收窄第一区之间的间隔可以收窄分离的尺寸。由于通过使用精细处理技术可以容易地实现第一区之间的间隔,因此优选情况下可以实现具有纳米量级尺寸的物质的分离。进而,在本发明的质谱系统中,通过提供在通道的至少一部分表面上具有开口的掩模,经由开口将具有憎水基团的化合物积淀在通道的表面上,并且去除掩模,可以形成样本分离区,其中憎水区分布在样本分离区中。
根据上述结构,可以在短时间内以少量的样本来执行分离。由于本发明的分离是通过样本分离区的表面属性来执行的,因此可以实现精确的分离。进而,由于几乎没有样本损失,因此使用少量的样本就能够实现足够高的分离度,并且能够实现极佳的分离度。在本发明中,分离是通过样本所穿过的通道的表面属性来执行的,因此减少了阻塞等问题。进而,在使用后,例如通过对样本分离区的表面使用清洗溶液的方法可以容易地执行清洗。
在本发明中,通过包含在液体中的分离目标的样本尺寸与相邻第一区之间的距离之间的关系,可以实现各种功能的分离。当样本尺寸大于该距离时,样本分离区起到样本浓缩设备的作用。样本分离区起到过滤器的作用,以沥出位于样本分离区上游侧的样本。结果,样本在样本分离区上游侧以高浓度被浓缩。另一方面,当样本尺寸小于该距离时,样本分离区起到样本分馏的作用,在样本分离区中根据尺寸和亲水性的程度等来对样本进行分馏。结果,分馏的样本流出到样本分离区的下游侧。
本发明的质谱系统可以包括多个样本分离区。因此,在样本分离区的设计中,可以进一步增加自由度,以选择优化样本的样本分离区的形状,这能够进一步提高分离能力。例如,在本发明的质谱系统中,多个样本分离区可以分布成条带形状。
在本发明的质谱系统中,可以通过包含具有憎水基团的化合物的膜来形成憎水区。具有憎水基团的化合物可以是具有憎水基团的硅烷耦合剂。另外,它可以是硅树脂化合物。
在本发明的质谱系统中,可以通过使聚二甲基硅氧烷块与亲水性的通道的表面相接触来形成憎水区。当使聚二甲基硅氧烷块与通道表面相接触时,接触部分可以被有选择地憎水化。因此,能够可靠和容易地形成憎水区。
在本发明的质谱系统中,可以通过将液态硅树脂化合物印刷到亲水性的通道的表面上来形成憎水区。例如,可以使用硅树脂油作为液态硅树脂化合物。根据该方法,通过简单的处理可以形成其中将憎水性表面和亲水性表面混合起来的模式。
在本发明的质谱系统中,可以通过包含具有亲水基团的化合物的膜来形成亲水区。具有亲水基团的化合物可以是具有亲水基团的硅烷耦合剂。
在本发明的质谱系统中,可以设置多个通道,并且可以设置与通道交叉的液体样本导入通道。因此,可以通过将样本导入到一点来将样本导入到多个通道,以便能够大大提高分析的效率。此时,可以将多个柱状体分布在样本分离区和通道与液体样本导入通道彼此交叉的部分之间。在这种情况下,样本中的分子通过分布有柱状体的区域到达分离区,这能够限制在通道中流动的分子的大小。因此,对于具有期望尺寸的分子可以快速和正确地实现质谱分析。
本发明的质谱系统可以进一步包括堵塞部件,在堵塞部件中柱状体呈线状分布。因此,扩散的样本可以被会聚到与堵塞部件相邻的预定区域中。由于可以在预定区域中会聚样本以在分离之前收窄样本的带,因此可以提高分离能力。
在本发明的质谱系统中,可以邻近样本分离区来分布堵塞部件。因此,由于在样本穿过样本分离区之前可以收窄样本的带,因此提高了分离能力,这能够实现高精确度的分离。进而,由于带宽度在分离的样本中也被收窄,因此可以浓缩分离的样本。因此,可以进一步可靠地来测量质谱分析。
在本发明的质谱系统中,可以通过裂缝将样本分离区分成多个区。可以使用单个裂缝或多个裂缝。因此,在检测单元中带形状变为线性的,这能够加宽检测区以提高检测灵敏度。
本发明的质谱系统可以进一步包括外力施加单元,用于对样本施加外力以移动通道中的样本。因此,根据加载外力的程度可以合理地设置分离精确度,并且根据目的可以合理地设置分离所需的时间。为了方便,使用压力和电力来作为外力。这是因为不需要有大规模外力施加部件。
通过利用毛细管现象可以移动样本。因此,由于并不需要提供外力施加单元,因此可以容易地执行分离操作,同时简化了系统结构。因此,可以更加有效地执行分离操作和接在其后的质谱分析操作。例如,在执行质谱分析的小室中可以容易地执行分离操作。在本发明的质谱系统中,可以在样本分离区中形成微通道,并且可以通过毛细管现象将样本从通道穿过微通道导入到样本分离区。
在本发明的质谱系统中,可以用包含用于质谱分析的矩阵的薄膜来覆盖通道的上部。因此,优选情况下在分离期间可以抑制通道中的样本干燥。在分离之后,由于在不去除覆盖物的情况下可以使用激光来照射样本,因此不需要进行事先将矩阵混合到样本中的操作或在样本分离之后将矩阵添加到样本分离区的操作。
根据本发明,提出了一种质谱系统,包括:衬底;样本分离区,其中样本吸附颗粒黏附于衬底上以便根据特定属性来展开样本;光照单元,当沿着样本分离区移动光照位置时使用激光束进行照射;以及分析单元,分析样本的片段以获得质谱数据,其中样本的片段由光照生成。在本发明中,术语“展开(development)”是指根据样本的属性将样本分布到样本分离区,并且分离应该是展开的模式之一。
与在通道中执行精细处理的区域相比,能够以简单的方式容易地形成其中样本吸附颗粒黏附于衬底的样本分离区。根据样本和用于展开样本的展开溶液之间的亲和性可以展开样本。根据极性也可以展开样本。因此,可以可靠地分离样本。进而,根据本发明,可以在将样本干燥到一定程度时开始分离。因此,可以收窄样本的带宽度。
在本发明的质谱系统中,样本吸附颗粒可以是硅胶。因此,根据展开溶液的属性可以可靠地展开样本,同时样本被可靠地吸附到吸附颗粒上。
根据本发明,提出了一种使用具有样本分离区的微芯片来执行质谱分析的分析方法,包括:根据样本的特定属性来分离样本分离区中的样本的步骤;当沿着样本分离区移动光照位置时使用激光束进行照射的步骤;以及分析样本的片段以获得质谱数据的步骤,其中样本的片段由光照生成。
根据本发明,提出了一种使用具有样本分离区的微芯片来执行质谱分析的分析方法,包括:根据样本的特定属性来在样本分离区中展开样本的步骤;当沿着样本分离区移动光照位置时使用激光束进行照射的步骤;以及分析样本的片段以获得质谱数据的步骤,其中样本的片段由光照生成。
在根据本发明的分析方法中,可以通过将所分离或展开的样本中每一种成分的位置和该成分的质谱分析光谱的结合来执行分析,这能够有效地获得每一种成分的光谱属性。因此,可以根据所获信息,以高精确度来快速执行样本等中的成分识别。
本发明的分析方法可以进一步包括获取第一质谱数据的步骤,获取第一质谱数据的步骤包括:在分离样本的步骤之后对样本进行解聚的步骤;在分离样本的步骤之后通过执行使用激光束进行照射的步骤而不执行解聚样本的步骤来分析样本的片段以获取第二质谱数据的步骤,其中样本的片段由光照生成;以及根据第一质谱数据和第二质谱数据来识别样本的步骤。
本发明的分析方法可以进一步包括获取第一质谱数据的步骤,获取第一质谱数据的步骤包括:在展开样本的步骤之后对样本进行解聚的步骤;在展开样本的步骤之后通过执行使用激光束进行照射的步骤而不执行解聚样本的步骤来分析样本的片段以获取第二质谱数据的步骤,其中样本的片段由光照生成;以及根据第一质谱数据和第二质谱数据来识别样本的步骤。
当在分离或展开之前对被分析的样本进行解聚时,由于在样本中的成分是混合的情况下对样本进行解聚,因此现有技术中难以判断所分离或展开的片段来自样本中的哪个成分。另一方面,在本发明中,由于在没有事先将样本分离或展开之后从样本分离区的内部移动样本的情况下对样本进行解聚,因此在样本的每一种成分中可以获得用于解聚片段的质谱数据,这能够进一步详细的分析。样本是通过将对所分离或展开的样本中的每一种成分进行解聚而得到的第一质谱数据和不解聚每一种成分而得到的第二质谱数据结合起来进行识别的。因此,可以以较高的精确度来获得样本中每一种成分的详细信息。
本发明的分析方法可以进一步包括在展开样本的步骤之后,在使用激光束进行照射的步骤之前将所分离的样本固定到样本分离区的步骤。进而,本发明的分析方法可以包括在展开样本的步骤之后,在使用激光束进行照射的步骤之前将所展开的样本固定到样本分离区的步骤。
因此,在样本被固定到所分离的或所展开的位置时可以使用激光束对其进行照射。因此,所分离或展开的样本在样本分离区的扩散可以得到抑制,并且所分离或展开的位置信息的精确度可以得到提高。进而,甚至在解聚样本时,通过在解聚之前将样本固定到样本分离区,使所解聚样本的扩散被抑制,这能够获得较高精确度的信息。
本发明的分析方法可以进一步包括在展开样本的步骤之后,在使用激光束进行照射的步骤之前将用于质谱分析的矩阵喷射到样本分离区的步骤。进而,本发明的分析方法可以进一步包括在展开样本的步骤之后,在使用激光束进行照射的步骤之前将用于质谱分析的矩阵喷射到样本分离区的步骤。因此,用于质谱分析的矩阵能够容易地被添加到所分离或展开的样本上,这能够有效地执行矩阵辅助型质谱分析。
在方法或设备中,这些结构的任意组合和本发明的表达的改变作为本发明的模式也是有效的。
如上所述,本发明实现了以高精确度来容易地执行样本分离和质谱分析的技术。具体地说,实现了不执行成分识别就能获得有关分析目标的详细信息的新颖的质谱分析,以及实现质谱分析的系统。
附图说明
在下面的实施例和附图中,本发明的上述目的、其它目的、优点和特征将变得更加明显。
图1是示出了根据实施例的质谱系统的结构的视图;
图2是示出了使用了图1的质谱系统的质谱分析的视图;
图3是示出了用于图1的质谱系统的微芯片的结构的视图;
图4是用于解释图3的微芯片中的贮液器的结构的视图;
图5为沿着图4的线A-A’的截面图;
图6是示出了图3中的分离通道的详细结构的视图;
图7为图6的分离通道的截面图;
图8是用于解释样本分离方法的视图;
图9是用于解释将缓冲溶液导入微芯片的方法的视图;
图10为在微芯片中形成的纳米结构的截面图;
图11是用于解释形成图10所示的纳米结构的方法的视图;
图12是用于解释形成图10所示的纳米结构的方法的视图;
图13是用于解释形成图10所示的纳米结构的方法的视图;
图14是用于解释微芯片制作方法的视图;
图15是用于解释微芯片制作方法的视图;
图16是用于解释微芯片制作方法的视图;
图17是用于解释微芯片制作方法的视图;
图18是用于解释微芯片制作方法的视图;
图19是用于解释形成微芯片的分离通道的方法的视图;
图20是用于解释微芯片制作方法的视图;
图21是示出了用于图1的质谱系统的微芯片的结构的视图;
图22是示出了应用校正电压以调整电渗(electro-osmotic)电流的方法的视图;
图23是示出了用于图1的质谱系统的微芯片的结构的视图;
图24是示出了用于微芯片的合作用户(joint user)的结构的视图;
图25是用于解释样本分离方法的视图;
图26是用于解释制作微芯片的分离通道的方法的视图;
图27是用于解释制作微芯片的分离通道的方法的视图;
图28是示出了柱形体分布方法的视图;
图29是示出了柱形体分布方法的视图;
图30为平面图,示出了柱状块组的分布;
图31为平面图,示出了柱状块组的分布;
图32是示出了柱形体分布方法的例子的视图;
图33是示出了柱形体分布方法的例子的视图;
图34是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图35是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图36是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图37是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图38是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图39是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图40是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图41是示出了通道结构的例子的视图;
图42是示出了通道结构的例子的视图;
图43是示出了图3中的分离通道的详细结构的视图;
图44是示出了图3中的分离通道的详细结构的视图;
图45是用于解释样本分离方法的视图;
图46是示出了样本分离区中凹部的分布的视图;
图47是示出了样本分离区中凹部的分布的视图;
图48是示出了样本分离区中凹部的分布的视图;
图49是示出了样本分离区中凹部的分布的视图;
图50是示出了样本分离区中凹部的分布的视图;
图51是示出了样本分离区中凹部的分布的视图;
图52是示出了样本分离区中凹部的分布的视图;
图53是用于解释用于根据实施例的质谱系统的微芯片中的凹部的形状的视图;
图54是示出了微芯片中分离通道的结构的例子的视图;
图55是示出了微芯片中分离通道的结构的例子的视图;
图56是示出了微芯片中分离通道的结构的例子的视图;
图57是用于解释制作衬底中的凹部的处理的视图;
图58是示出了多孔氧化铝的视图;
图59是示出了铝层的外围部分被绝缘膜所覆盖的状态的视图;
图60是示出了根据实施例的微芯片中的分离通道的详细结构的视图;
图61是示出了根据实施例的微芯片中的分离通道的详细结构的视图;
图62是用于解释样本分离方法的视图;
图63是用于解释样本分离方法的视图;
图64是用于解释微芯片制作方法的视图;
图65是用于解释微芯片制作方法的视图;
图66是用于解释微芯片制作方法的视图;
图67是用于解释微芯片制作方法的视图;
图68是用于解释微芯片制作方法的视图;
图69是用于解释微芯片制作方法的视图;
图70是用于解释微芯片制作方法的视图;
图71为截面图,示出了用于根据实施例的质谱系统的微芯片的示意性结构;
图72是示出了微芯片中通道的结构的例子的视图;
图73是示出了微芯片中通道的结构的例子的视图;
图74是示出了微芯片中通道的结构的例子的视图;
图75是用于解释柱状网格功能的视图;
图76是示出了用于根据实施例的质谱系统的微芯片的结构的视图;
图77是示出了根据实施例的质谱系统的结构的视图;
图78是用于解释控制图77的质谱系统的方法的视图;
图79是用于解释根据实施例的质谱系统的视图;
图80是用于解释根据实施例的质谱系统的视图;
图81是用于解释对通过根据实施例的质谱分析而获得的片段图案进行分析的方法的视图;
图82是用于解释通过根据实施例的质谱系统而获得的片段图案的视图;
图83是示出了根据实施例的质谱系统的结构的视图;
图84是示出了将矩阵型溶液喷射到通道中的方法的视图;
图85是用于解释样本预处理方法的视图;
图86是示出了柱状体的结构的例子的视图;以及
图87是示出了铝层的外围部分被导电层所覆盖的状态的视图。
具体实施方式
下面来讲述本发明的实施例。在下面的实施例中,可以采用如图3、21、22、23、35、37和76所示的任何一个结构来作为微芯片的整体结构。在本说明书的实施例中,所示的“柱”表示柱状体的模式(mode),并且“柱”是指具有圆柱形状或椭圆柱形状的微柱状体。“柱状块组”和“块组区域”表示柱状体分布部分的模式,并且“柱状块组”和“块组区域”是指大量的柱形成为束的区域。
(第一实施例)
图1是示出了根据该实施例的质谱系统的结构的视图。在图1的质谱系统351中,用从激光振荡器361发射的激光束照射样本台355上的微芯片353中形成的通道(未示出),并且对在通道中分离的样本进行电离。此时,从激光振荡器361射出的激光束被激光束会聚器359聚光,并且沿着微芯片353上的通道照射。因此,在将样本事先在微芯片353上的通道中分离成多种成分之后,沿着分离方向用激光束对通道进行照射,这能够顺序地电离每一个被分离的小段。质谱单元363通过离子提取电极381来检测电离片段。
在沿着通道进行激光照射期间,微芯片353上的通道的位置被驱动器357移动,其中驱动器357调整在其上放置有微芯片353的样本台355的位置。驱动器控制单元367控制驱动器357的操作。在驱动器控制单元367中,可以从键盘379来输入驱动方法。激光控制单元373控制来自激光振荡器361的激光照射。分析结果分析单元371分析由质谱单元363所检测的信号。
由分析结果分析单元371执行的分析结果存储在存储器369中,它与驱动器控制单元367中的位置信息和激光控制单元373中的激光束照射条件信息有关。分析结果被成像单元375成像。显示器377显示成像的分析结果。
控制质谱系统的控制单元365包括驱动器控制单元367、分析结果分析单元371、激光控制单元373、存储器369和成像单元375。
然后,下面参考图2来讲述具有质谱系统351的质谱系统程序。图2是示出了使用了图1的质谱系统的质谱分析。在通过微芯片353上的通道(未示出)将样本分离成小段之后,将微芯片353贴到样本台355上的样本保持器(未示出)上(S11)。在样本室(未示出)中减小压强以形成真空(S12)。
驱动器357将样本台355上的样本保持器的位置设定为初始状态(S13),并且执行定位以便用激光束照射微芯片353上的通道(未示出)(S14)。启动激光振荡器361的激光振荡(S15),并且在Z(高度)方向上调整微芯片353的位置(S16)。
然后,用激光束照射微芯片353上的通道(未示出)(S17),执行质谱分析(S18),并且将通过分析结果分析单元371获得的光谱存储在存储器369中(S19)。当在X方向和Y方向上将样本台355顺序地移动一个微长度时,重复步骤17~19中的每一步,直到终点(S20中的否)。
当执行激光照射直到终点(S20中的是)时,停止激光振荡器361(S23),通过成像单元375来成像获得的质谱(S24)。根据每一种成分的图像来执行蛋白质等类的识别(S25)。
在步骤18的质谱分析中,只要电离方法是通过激光照射来执行的方法,则可以使用LD(激光解吸附电离)和MALDI(矩阵辅助激光解吸附电离)。对于可以通过TOF(飞行时间)方法和其它给定方法来分离的电离样本进行分离的方法没有特别的限制。除了质谱分析(MS)以外,在步骤18中可以使用MS/MS。当使用MS/MS时,可以获得更详细的信息。
矩阵的例子包括芥子酸、α-CHCA(α-氰基-4-羟基肉桂酸)、2,5-DHB(2,5-二羟基苯甲酸)、2,5-DHB和DHBs(5-甲氧基水杨酸)的混合、HABA(2-(4-羟基苯偶氮基)苯甲酸)、3-HPA(3-羟基吡啶甲酸)、蒽三酚、THAP(2,4,6-三羟基乙酰苯)、IAA(反式-3-吲哚丙烯酸)、吡啶甲酸(picolinic acid)、烟酸等类似物。在样本是未修正的蛋白质的情况下,优选情况下使用2-DHB作为矩阵,并且通过红外激光束照射来执行电离。因此,样本能够被可靠地电离,从而提高测量精确度。
在使用矩阵的情况下,可以在预定的时刻将作为矩阵的物质导入到通道中,或者事先将其添加到诸如缓冲溶液等移动相中。进而,在样本分离之后通过喷射等来使通道被矩阵溶液覆盖。
图84(a)~84(c)是示出了将矩阵溶液喷射到通道上的方法的视图。参考图84(a),将微芯片353放置到金属板383上,并且使用电喷方法从喷雾器385喷射矩阵溶液387。电喷方法是利用当对管施加高压时细小金属管中的液体被喷射到精细颗粒上的现象的方法。
范围从500V至5kV的电压被施加在喷雾器385和金属板383之间,以从距离微芯片353上的通道(图84(a)中未示出)大约5mm至10cm的范围内的位置喷射矩阵溶液387,该距离的范围允许矩阵溶液387喷射到通道上。此时,例如可以将喷射量设定为大约每分钟几微升。
图84(b)是示出了通过喷雾器的气压从喷雾器389喷射矩阵溶液387的方法的视图。例如,可以使用诸如N2、Ar等惰性气体来作为喷雾器的气体。
图84(c)是示出了喷雾器399的视图,其中结合使用电喷方法和喷雾器的气体的压强。当如图84(a)的情况那样在喷雾器399和金属板383之间施加电压时,可以用作电喷方法。还可以构造成能够在不施加电压的情况下通过喷雾器气体的压强来喷射矩阵溶液387,如在图84(b)中那样。进而,可以通过同时施加电压和气体压强来喷射矩阵溶液387。
还能够使矩阵形成为片状并且使用片状矩阵来覆盖通道。因此,在分离期间抑制了样本的干燥,并且不需要在分离之后去除通道上部的片状物。进而,当在设置片状物的情况下用激光束照射样本时,由于样本和矩阵混合起来,因此不需要进行将矩阵添加到分离后的样本中的操作。
下面来讲述用于图1的质谱系统351的微芯片353的结构。在用于质谱系统351的微芯片353中,通道和样本分离区可以形成于硅衬底、诸如石英等玻璃衬底以及诸如硅树脂等树脂衬底的表面上。例如,在衬底的表面上设置凹槽部分,并且该凹槽部分被表面部件所密封,这可以使被形成的通道和样本分离区处于被包围的空间中。
分离区中设置多个柱状体。通过将衬底蚀刻成预定图案形状可以形成柱状体。但是,在其制作方法上没有特别的限制。
柱状体的形状包括各种形状,例如,诸如圆柱和椭圆柱等伪柱形状;诸如圆锥、椭圆锥和三角锥等锥体;诸如三棱柱和四棱柱等棱柱;以及条带形状的凸出物。在柱状体的尺寸方面,宽度范围从约10nm至约1mm,并且高度范围从约10nm至约1mm。
相邻圆柱体之间的间隔要根据分离的目的进行合理设置。例如,在下面的处理中:
(i)细胞和其它成分的分离和浓缩,
(ii)固体物质(细胞膜、线粒体和内质网的片段)以及通过破坏细胞所获得的成分中的液体部分(细胞质)的分离和浓缩,以及
(iii)液体部分成分中的高分子量成分(DNA、RNA、蛋白质和糖链)和低分子量成分(类固醇、葡萄糖等)的分离和浓缩,
在(i)的情况下,间隔可以设置在1μm~1mm范围之间,在(ii)的情况下,间隔可以设置在100nm~10μm范围之间,并且在(iii)的情况下,间隔可以设置在1nm~1μm范围之间。
在样本分离区中可以设置一个或多个柱状体分布部分。柱状体分布部分包括柱状体组。每一个柱状体分布部分中的柱状体组可以以不同的间隔分布成不同的尺寸。柱状体可以形成为基本上相同的尺寸并且以均匀间隔规则地分布。
以相邻柱状体分布部分之间的间隔形成样本能够穿过的路径。此时,当柱状体分布部分之间的间隔大于柱状体之间的间隔时,巨大尺寸的分子等能够顺利移动,因此能够进一步提高分离效率。
图3是示出了如质谱系统351的样本台355上的微芯片353一样放置的微芯片307的结构的视图。分离通道112形成于衬底110之上,并且贮液器101a和贮液器101b形成于它的两端。多个柱状体(未示出)分布在分离通道112中,以分离样本。电极(未示出)位于贮液器101a和贮液器101b中,并且通过使用电极可以将电压施加到分离通道112的两端。使用时选择任意值作为微芯片307的外部尺寸。例如,如图3所示,纵向值范围为5mm~5cm,并且横向值范围为3mm~3cm。
下面以贮液器101a为例,参考图4和图5来讲述在其中设置电极的贮液器的结构。图4是图3的贮液器101a附近的放大视图。图5为沿着图4的线A-A’的截面图。如图4和图5所示,盖子801布置在其中设置有分离通道112和贮液101a的衬底110上。在盖子801中设置有通过其注入缓冲溶液的开口802。贮液器101a、贮液器101b和分离通道112并不被盖子801所覆盖,并且其上部是开放的。能够连接到外部电源的导电路径803位于盖子801上。电极板804沿着贮液器101a和导电路径803的壁表面布置。电极板804和导电路径803压接(crimp)并且电气相连。贮液器101b可以形成为相同的结构。
回到图3,来讲述使用微芯片307分离样本的方法。首先,诸如缓冲溶液等液体从贮液器101a导入到分离通道112中。样本被注入到贮液器101a中。然后,在贮液器101a和贮液器101b之间施加电压,以使样本朝向贮液器101b的方向流动,这使样本穿过分离通道112。在这期间,样本穿过分离通道112,其速度取决于分子大小、电荷强度和柱状体之间的间隔。结果,样本中不同的分子基团被分离成以不同速度移动的带。
然后,来讲述微芯片307中的分离通道112的结构。图6示出了图3中的分离通道112的详细结构。如图6所示的结构还可以应用到图6之后的附图。参考图6,在衬底110中形成具有宽度W和高度D的凹槽部分,并且在其中以均匀间隔有规则地形成具有直径φ和高度d的圆柱形柱125。样本穿过柱125之间的间隔。相邻柱125之间的平均间隔为p。例如,每一个尺寸的设置参见图6所示的范围。
图7为图6的分离通道112的截面图。在衬底110中制作的凹槽部分的空间中形成多个柱125。柱125之间的间隔形成分离通道112。
在使用在其中密集地形成多个柱125的结构来作为样本分离单元的情况下,主要有两种分离方法。一种是图8所示的方法。另一种在第四实施例中参考图25来讲述。在图8的方法中,随着分子尺寸的增加,柱125变成障碍,并且穿过图8中的分离区的时间变得更长。当分子尺寸小时,分子相对顺利地穿过柱125之间的间隔,并且与具有大分子尺寸的分子相比,分子以短时间穿过分离区。
通过使用柱125,可以可靠地分离样本中的多种成分。通过使用微芯片307来作为图1中的微芯片353对样本进行分离,然后将样本放置在图1的质谱系统351的样本台355上,并且用来自激光振荡器361的激光束沿着分离通道112对其进行照射,以便每一个分离的带都被电离。分离操作可以在样本台355上执行,并且质谱分析可以连续执行。
这样,在该实施例中可以在微芯片307上执行目标成分的提取、干燥和结构分析。微芯片307和质谱系统351还可以用于例如蛋白分析。
在执行分离时,在分离通道112的上部可以有覆盖物(未示出)。设置的覆盖物能够在分离期间抑制样本干燥。例如,由PDMS(聚二甲基硅氧烷)制成的膜可以用作覆盖物材料。由于PDMS膜容易揭开,并且具有极佳的密封性能,因此优选情况下在分离期间使用它来抑制样本干燥。在分离结束后PDMS膜能够容易地从衬底110剥落,因此样本被迅速干燥,以便在分离之后执行质谱分析。如上所述,矩阵可以形成为片状,以使用片状矩阵来作为覆盖物。
在上面的讲述中,以等间隔布置柱状体。但是,柱状体也可以在柱状体分布部分中以不等间隔布置。因此,具有诸如大尺寸、中尺寸和小尺寸等多个尺寸的分子或离子可以被进一步有效地分离。对于柱状体的分布,也可以采用在样本的前进方向上以“Z”字形方式来布置柱状体的方法。因此,能够有效地分离出目标成分,同时有效地防止了阻塞。
为了防止诸如DNA和蛋白质等分子黏附到分离通道112的壁表面,优选情况下将通道壁覆盖起来。因此,微芯片307能够发挥出较好的分离能力。可以以具有类似于组成细胞膜的磷脂的结构的物质来作为覆盖材料的例子。该物质的一个例子包括LIPIDURE(注册商标,NOF公司的产品)。当使用LIPIDURE(商标)时,它溶解在诸如TBE(三硼酸盐+EDTA)等缓冲溶液中,浓度为0.5wt%,分离通道112中充满了这种溶液,并且保留几分钟。因此,通道壁能够被覆盖。通过使用诸如氟树脂等排斥性树脂或诸如牛血清蛋白(bovine serumalbumin)等亲水性物质来覆盖通道壁,可以防止诸如DNA等分子黏附到通道壁上。
优选情况下使用微芯片307,同时将缓冲溶液导入到微芯片307中。当通过诸如塑料等憎水性材料来形成诸如分离通道112的壁表面以及壁表面的覆盖部分等通道表面时,通常不容易导入缓冲溶液。例如,可以采用图9所示的方法来作为顺利导入缓冲溶液的方法。在附图中所示的方法中,当将芯片150固定到离心管151的保持器153上时执行离心分离,这允许缓冲溶液被导入到芯片150中。通过将微芯片307作为芯片150,可以可靠地将缓冲溶液导入到微芯片307的通道中。
在分离通道112的表面上形成诸如硅氧化物膜等亲水性膜作为可靠地将缓冲溶液导入到通道中的方法是有效的。亲水性膜的形成能够使缓冲溶液顺利地导入,而不需要特别地施加外力。后面将参考图17讲述这一点(通过图17(d)的处理形成硅热氧化物膜209)。
当使用在其中通道壁被如上所述地覆盖的微芯片307来执行质谱分析时,有时覆盖物质作为本底被检测到。但是,当形成硅热氧化物膜以实现通道表面的亲水性状态时,如后面所述,在质谱分析期间可以减少本底以进一步提高测量精确度。
在微芯片307的分离通道112中设置的柱状体中,优选情况下上部的直径小于下部的直径。也就是说,优选情况下柱状体具有锥形或伪锥形状,并且界面在朝向末端方向上被加宽。特别是,当在柱状体表面上形成诸如硅热氧化物膜等亲水性膜时,上述形状的效果变得很明显。例如,当通过对柱状体执行热氧化来在柱状体的表面上形成热氧化物膜时,有时氧化发生在柱状体的底部附近,并且柱状体的高度减小从而使纵横比减少。当柱状体的形状是以上述方式形成时,则可以有效防止因氧化所导致的纵横比减小。
当采用上述形状作为柱状体的形状时,优选情况下在样本分离区中形成柱状体,同时相邻柱状体的侧表面相互靠得很近,以至达到这些侧表面在柱状体的底部相互接触的程度。因此,可以进一步有效地防止因氧化所导致的纵横比减小。图10示出了其中采用了上述结构的柱状体的例子。参考图10,锥形柱状体位于衬底110的表面上,并且柱状体的表面被硅氧化物膜104所覆盖。在该柱状体中,形成了相邻柱状体的侧表面,同时它们相互靠得很近,以至达到这些侧表面在柱状体的底部相互接触的程度。
因此,当通过执行衬底110的热氧化来用热氧化物膜覆盖其表面时,硅氧化物膜104的膜厚度在柱状体的底部变薄,并且柱状体的纵横比可以维持在良好的状态。尽管原因并不总是那么明显,但是可以猜测,由于圆锥形柱状体的侧表面彼此相互接触的结构,因此当氧化进展到柱状体的底部附近时,产生压应力以使进一步的氧化难以进行。
这样,上面讲述了其中在微芯片307的分离通道112中形成柱状体的结构。当用激光束照射具有柱状体的分离通道112以电离样本时,优选情况下使用具有波长约200~400nm的紫外激光束或波长约800~约11000nm的红外激光束来作为激光束。通过使用这些激光束,即使样本是范围为300kDa~400kDa的巨大分子,也能够被可靠地电离。参考照射条件,例如,光强度范围为0.1~500μJ/脉冲,并且脉冲宽度范围为1~500ns。在紫外激光的情况下,光斑直径为50μm或更小。在红外激光的情况下,光斑直径为500μm或更小。
然后,参考图11和图12来讲述形成图10所示的纳米结构的方法。如图11(a)所示,硅氧化物膜105和抗蚀膜107被顺序地积淀在衬底110上。然后,通过电子束曝光等对抗蚀膜107进行构图,以形成具有预定开口的图案(图11(b))。
然后,使用抗蚀膜107执行硅氧化物膜105的干蚀刻,通过硅氧化物膜105来形成硬掩模(图11(c))。在除去抗蚀膜107之后(图11(d)),通过执行衬底110的干蚀刻来获得具有高纵横比的柱状体(图12(e))。在去除硅氧化物膜105之后(图12(f)),在850℃或更高的高温下对该表面进行氧化,以形成硅氧化物膜104(图12(g))。通过上述处理,得到图10所示的纳米结构。可以在微芯片307的分离通道112中形成该纳米结构,并且用于样本分离。
在图11和图12中,通过利用抗蚀掩模形成的硬掩模来蚀刻衬底110。但是,可以使用抗蚀掩模来直接蚀刻衬底110。图13示出了该方法。在图13所示的处理中,在衬底110上形成抗蚀剂900之后(图13(a)),执行构图(图13(b)),并且使用它作为掩模来蚀刻衬底110以形成柱状体(图13(c))。
然后,参考图14~18来讲述形成具有柱状体的通道的另一种方法。在图14~18中,右侧的视图是俯视图,左侧的视图是截面图。如图14(a)所示,在硅衬底201上顺序地形成硅氧化物膜202和杯芳烃电子束负性抗蚀剂203。硅氧化物膜202和杯芳烃电子束负性抗蚀剂203的膜厚度分别被设为35nm和55nm。然后,用电子束(EB)对成为样本通道的阵列区进行曝光。通过二甲苯进行显影,并且用异丙醇来清洗。通过该处理,获得了其中如图14(b)所示执行构图的抗蚀剂204。
使用具有如下所示结构的杯芳烃电子束负性抗蚀剂203作为电子束曝光抗蚀剂,并且优选情况下使用杯芳烃电子束负性抗蚀剂203来作为纳米级处理抗蚀剂。
Figure A20048001037600381
正性光致抗蚀剂205覆盖在表面上(图14(c))。膜厚度设为1.8μm。然后,执行掩模曝光,使得阵列区被曝光,并且执行显影(图14(d))。
使用CF4和CHF3的混合气体来执行对硅氧化物膜202的RIE蚀刻。蚀刻后膜的厚度被设为35nm(图15(a))。通过使用丙酮、乙醇和水的混合溶液的有机清洗来除去抗蚀剂204,并且然后执行氧化等离子处理(图15(b))。然后,用HBr气体执行硅衬底201的ECR蚀刻。硅衬底201的蚀刻后的膜厚度被设为400nm(图15(c))。通过用BHF缓冲氢氟酸来执行湿蚀刻以除去硅氧化物膜202(图15(d))。
在硅衬底201上积淀CVD硅氧化物膜206(图16(a))。膜厚度被设为100nm。然后,将正性光致抗蚀剂207涂布到表面上(图16(b))。膜厚度被设为1.8μm。如图16(c)所示,对通道区执行掩模曝光(阵列区被保护)并执行显影。用缓冲氢氟酸执行对CVD硅氧化物膜206的湿蚀刻(图16(d))。通过有机清洗来除去正性光致抗蚀剂207(图17(a)),并且用TMAH(四甲基氢氧化铵)执行硅衬底201的湿蚀刻(图17(b))。通过使用缓冲氢氟酸来执行湿蚀刻以除去CVD硅氧化物膜206(图17(c))。
然后,将硅衬底201放置到炉中,以形成硅热氧化物膜209(图17(d))。此时,选择热处理条件,使得硅热氧化物膜209的膜厚度被具体设为20nm。该膜的形成会使通道表面处于亲水性状态,以消除将缓冲溶液导入到通道的困难。然后,在通道上设置盖子210(图18)。
通过上述处理得到了具有柱状体的通道。硅衬底201用作衬底110并且采用该方法,这能够以高精确度可靠地形成精细柱状体阵列结构。
进而,来讲述用金属模具执行掩模构图的方法,作为制作具有柱状体的通道的另一种方法。图19为处理截面图,示出了制作分离通道112的方法。如图19(a)所示制备衬底110和模具106。衬底110由硅制成,并且在其表面上形成树脂膜160。模具106的模铸表面是以预定的起伏形状形成的。聚甲基异丁烯酸酯(poly methylmethacrylate)材料用作树脂膜160的材料,并且其厚度被设为约200nm。对模具106的材料并没有特别限制。例如,可以使用Si、SiO2和SiC作为模具106。
如图19(b)所示,当模具106的模铸表面与树脂膜160的表面相邻接时,模具被加热并且被挤压到树脂膜160上。压强范围为约600到约1900psi,并且温度范围约140到约180℃。然后,除去衬底110,并且执行氧等离子灰化处理,以执行树脂膜160的构图(图19(c))。
通过使用树脂膜160作为掩模来对衬底110进行干蚀刻(图19(d))。例如,使用卤素气体来作为蚀刻气体。蚀刻深度为大约0.4μm,并且通过蚀刻形成的柱状体之间间隔约为100nm。蚀刻纵横比(高宽之比)约为4∶1。此时,由于微负载效应,在靠近由蚀刻所生成的凹部的底部附近蚀刻的进展减缓,并且凹部的前端被收窄,以形成弯曲表面。结果,柱状体朝向底部被加宽,并且柱状体的截面形状中底部宽于顶部。由于柱状体之间的距离窄,因此形成的每一个柱状体使得相邻柱状体的侧表面相互靠近,以至达到这些侧表面在柱状体的底部相互接触的程度。
接着图19(d),在退火炉中800℃~900℃的温度下执行热氧化,以便在柱状体的侧壁上形成硅热氧化物膜(图19中未示出)。此时,柱状体的形状和凹部朝向底部被加宽,如图10所述,氧化物膜的厚度在柱状体的底部变薄,因此柱状体的纵横比能够维持在良好状态。
通过上述处理,在衬底110上形成柱状体组。因此,由于不需要通过电子束曝光来形成掩模开口的处理,因此生产能力显著提高。
在图19中,在对成为掩模的树脂膜160进行构图中使用了模具。但是,使用模具也可以直接形成柱状体。具体地,在用给定的塑料材料来覆盖衬底之后,可以通过上述处理来类似地进行模铸。优选情况下使用具有优良可铸性和合适的亲水性的材料作为覆盖衬底的塑料材料。优选情况下使用聚乙烯醇(polyvinylalcohol)树脂,特别是乙烯基乙烯醇树脂(EVOH)、聚对苯二甲酸乙二醇酯(polyethyleneterephthalate)等类似物。甚至可以使用憎水性树脂,因为当在模铸之后执行上述覆盖时,可以形成憎水状态的通道表面。
在上述的通道形成方法中,存在着在硅热氧化物膜的形成中由于氧化条件的原因而没有充分形成膜的可能性。在这种情况下,由于电流泄露到衬底,因此当通过电泳来执行样本分离时不能得到所需电场。为了避免这一点,如图20所示,在衬底中可以设置分离通道和贮液器。
首先,如图20(a)所示,通过硅衬底201的热氧化来形成硅氧化物膜202。多晶硅积淀在硅氧化物膜202上以形成多晶硅膜707,然后通过多晶硅膜707的热氧化来形成氧化膜708。
然后,在氧化膜708上形成杯芳烃电子束负性抗蚀剂。通过电子束(EB)来对成为贮液器和样本通道的区域执行图案曝光,从而对抗蚀剂进行构图。然后,对氧化膜708执行RIE蚀刻,并且除去抗蚀剂以形成如图20(b)所示的状态。使用蚀刻的氧化膜708作为保护膜来执行多晶硅膜707的ECR蚀刻,然后除去氧化膜708以形成如图20(c)所示的状态。然后,执行蚀刻的多晶硅膜707的热氧化,并且与硅氧化物膜202集成形成如图20(d)所示的状态。
通过上述处理形成的分离通道完全与硅衬底201隔离。因此,当使用硅衬底201作为衬底110时,能够确保可靠地施加电场以分离样本。可以用石英衬底来替代硅衬底201和硅氧化物膜202。可以使用SOI(绝缘体上硅)衬底来取代硅衬底201、硅氧化物膜202和多晶硅膜707。
图86是示出了柱状体的另一结构的视图。参考图86(a),衬底110和柱状体是由金属制成的。参考图86(b),在柱状体的表面上形成金属膜397。这样,当至少柱状体的表面由金属制成时,在柱状体的表面上产生表面等离子体波(surface plasmon wave),这能够对提出的分离样本进行电离。电场被集中在柱状体的前端的凸起上,这提高了电离样本的提取效率。
例如,可以通过蚀刻金属衬底110来形成图86(a)所示的结构。例如,使用图11和12所述的方法对硅衬底110执行直到图12(f)的处理,并且诸在所形成的柱状体的表面上蒸发如银等金属,这能够形成图86(b)所示的结构。
对于该实施例的质谱系统,使用人类血清来作为样本,并且使用包括有具有如图3所示结构的样本分离部件112的微芯片来对其进行分离,并且执行质谱分析。从质谱分析的结果中证实了白蛋白的存在。
(第二实施例)
在图1的质谱系统中,微芯片353可以具有相互交叉的多个通道。图21是示出了可以被应用到质谱系统351的微芯片307的结构的视图。
与图3的微芯片307相类似,在图21中,在衬底110中也形成有分离通道112。形成的充电通道111与分离通道112相交叉。贮液器101a和101b以及贮液器102a和102b分别形成于分离通道112和充电通道111的两端。电极(未示出)位于每一个贮液器中,并且能够以与第一实施例相同的方式在分离通道112的两端施加电压。选择合适的值来作为根据本申请的微芯片307的外部尺寸。通常,如图21所示,纵向值的范围为5mm~5cm,并且横向值的范围为3mm~3cm。
当用图21的微芯片307来执行分离时,样本被注入到贮液器102a或102b中。当注入到贮液器102a中时,施加电压使得样本朝向贮液器102a的方向流动,并且当注入到贮液器102b中时,施加电压使得样本朝向贮液器102b的方向流动。这种结构能够使样本流入到充电通道111中。结果,充电通道111中充满了样本。此时,在分离通道112中,样本仅存在于充电通道111和分离通道112的交叉点,样本形成具有充电通道111的宽度的窄带。
然后,停止贮液器102a和贮液器102b之间的电压施加,并且将电压施加到贮液器101a和贮液器101b之间,以便样本朝向贮液器101b的方向流动,这能够使样本穿过分离通道112。在此期间,样本穿过分离通道112,其速度取决于分子大小、电荷强度和柱状体之间间隔。这样,类似于图3的微芯片307,在图21的微芯片307中,将电压施加到分离通道112的两端,这能够使样本在分离通道112中移动。
结果,样本中不同的分子基团被分离成以不同速度移动的带。此时,除了用于向样本施加外力的电压以外,还可以施加用于抑制电渗流的电压。参考图22,为了抑制电渗流的目的,将zeta校正电压施加到衬底。因此,可以抑制电渗流,以有效地防止测量峰值加宽。
在图21中,分离通道112与充电通道111垂直。但是,分离通道112和充电通道111之间的角度并不受限制。例如,即使采用在其中分离通道112和充电通道111以45°的角度交叉的结构,也可以获得同样的效果。
在使用图21的微芯片307分离样本之后,象第一实施例那样,通过沿着分离通道112的延伸方向用激光束照射样本来电离分离的带。
(第三实施例)
在第一实施例和第二实施例中所述的微芯片307中采用了通过施加电压来移动样本的方法。除了电压之外,还可以采用施加压强的方法。图23示出了采用了压强施加方法的微芯片的例子。参考图23,在分离芯片中,套筒接头(female joint)被固定到位于充电通道19和分离通道20的端部的贮液器部件上。与空管13、管14至16相耦合的插入接头(male joint)分别被连接到套筒接头上。使用接头17的原因是为了防止液体泄漏。例如,图24示出了接头17的具体结构。
连接到插入接头的管分别被耦合到电磁阀(solenoid valve)10、4、5和11。缓冲溶液通过分离泵8和常速注射器9从贮液器7提供到电磁阀10。通过分离通道20传递来的样本被提供给电磁阀11,并且样本被导入到废液贮存器12。样本通过充电泵2和常速注射器3从样本贮存器1提供到电磁阀4。通过充电通道19传递来的样本被提供给电磁阀5,并且样本被导入到废液贮存器6。
控制单元21控制电磁阀4、5、10和11,分离泵8,充电泵2以及常速注射器9和3的工作点。
下面将讲述使用图23所示的设备进行分离的程序。首先,电磁阀10和11关闭,这能够防止样本从充电通道19流入分离通道20。然后,电磁阀4和5打开,并且将样本输入到样本贮存器1。
接下来,充电泵2对样本增压,并且通过常速注射器3、电磁阀4和管14将样本导入到充电通道19。通过充电通道19泄漏的样本通过管15和电磁阀5被导入到废液贮存器6。
在样本填充到充电通道19之后,电磁阀4和5关闭并且电磁阀10和11打开。然后,分离泵8对缓冲溶液增压,以通过常速注射器9、电磁阀10和管13将样本导入到分离通道20。这样,执行分离操作。在该结构中,由于利用压强作为外力来移动样本,因此仅通过提供相对简单的外力施加设备就产生了压强。因此,在降低产品成本和减小设备尺寸方面具有优势。
第三实施例的微芯片也能够优选地作为微芯片353应用到如图1所示的质谱系统351。
(第四实施例)
该实施例是用于图1的质谱系统351的微芯片353的另一结构。在微芯片353中分离通道112构造为如图8中所示的情况下,当样本中包括有巨大尺寸物质,有时就会发生阻塞。一旦阻塞发生,通常难以消除阻塞。
当以高分离能力来分离包含具有小分子尺寸的多种物质的样本时,阻塞问题变得显著。为了以高分离能力来分离包含具有小分子尺寸的多种物质的样本,需要降低柱125之间的间隔到一定程度。但是,在这种情况下,大尺寸分子容易产生阻塞。
另一方面,阻塞问题在如图25所示的分离方法中得到解决。在图25中,在分离通道112中形成了多个柱状体分布部分(柱状块组121),它们彼此相互分离。在每一个柱状体分布部分中,具有相同尺寸的柱125以等间隔分布。大分子在小分子之前穿过分离通道112。随着分子尺寸的减小,分子被捕获到分离区并且穿过更长的路径。另一方面,大尺寸物质顺利穿过相邻柱状块组121之间的路径。
结果,执行了分离,使得小尺寸物质在大尺寸物质之后被释放。由于大尺寸物质相对比较顺利穿过分离区,因此阻塞问题下降,吞吐能力显著提高。为了更加明显地展示该效果,优选情况下使相邻柱状块组121之间的路径宽度大于柱状块组121中的柱125之间的间隔。优选情况下路径宽度为柱125之间的间隔的2至20倍,并且更为优选的情况下为柱125之间的间隔的5至10倍。
例如,可以以下述方式来制作具有多个柱状体分布部分的分离通道112。图26和27是示出了在根据本实施例的微芯片中制作通道的过程的示出。这些附图中的硅衬底201用作衬底110。
如图26(a)所示,在硅衬底201上形成具有35nm膜厚的硅氧化物膜202。形成具有55nm膜厚的杯芳烃电子束负性抗蚀剂,并且用电子束(EB)曝光成为样本通道的阵列区。用二甲苯执行显影,并且用异丙醇来清洗。如图26(b)所示,通过该处理获得经过构图的抗蚀剂204。
然后,使用CF4和CHF3的混合气体来执行硅氧化物膜202的RIE蚀刻(图26(c))。通过使用丙酮、乙醇和水的混合溶液进行有机清洗以除去抗蚀剂,执行氧化等离子处理,并且使用HBr气和氧气来执行硅衬底201的ECR蚀刻(图27(d))。通过使用BHF缓冲氢氟酸来执行湿蚀刻以除去硅氧化物膜202。将通过上述处理得到的衬底放入炉中,以形成硅热氧化物膜209(图27(e))。这样,获得了具有多个柱状体分布部分的通道。
在第四实施例中,与第一实施例一样,柱状体可以以不同的间隔分布在柱状体分布部分中。
如图28(a)所示,可以采用其中柱之间间隔朝向流动方向减小的柱状体分布部分。在这种情况下,柱状体的积聚密度在通道的下游侧增加,并且移动速度随着进入柱状体分布部分的分子的移动而下降,使得进入柱状体分布部分的分子和无法进入柱状体分布部分的大分子之间的保持时间之差变得显著。结果,实现了分离能力的提高。另一方面,如图28(b)所示,可以采用其中柱之间间隔朝向流动方向增加的柱状体分布部分。因此,柱状体的积聚密度在通道的下游侧减小,这抑制了柱状体分布部分中的阻塞。因此,实现了吞吐量的提高。柱之间的间隔朝向流动方向增加或减小的模式可以应用到不具有柱状体分布部分的分离区。
还可以形成层次分布,其中通过汇集多个柱状体分布部分来进一步形成大的柱状体分布部分,并且大的柱状体分布部分之间的间隔比初始柱状体分布部分之间的间隔宽。图29示出了层次分布的例子。通过汇集七个小的柱状块组712形成中等块组713,并且通过汇集七个中等块组713形成大的柱状块组714。这样,以层次的方式形成柱状体分布部分,这使得具有各种尺寸的分子以尺寸的降序同时被分离。也就是说,当较大的分子穿过较大的柱状体分布部分之间时,中等尺寸的分子被捕获到中等尺寸的柱状体分布部分中并且被分离。进而,小分子被捕获到小的柱状体分布部分中并且被分离。随着分子尺寸的减小,分子流出需要更长的时间。因此,能够以尺寸的降序分离出具有不同尺寸的多种分子。
下面参考图30来讲述实现图25所示分离方法的样本分离区的结构。如图30所示,样本分离区具有如下结构,其中柱状块组121以均匀间隔分布在被通道壁129所包围的空间中。柱状块组121包括多个柱。在这种情况下,柱状块组121的宽度R被设为10μm或更小,并且柱状块组121之间的间隔Q被设为20μm或更小。
在图25中,当从上表面来看时,由稠密的柱所形成的柱状块组121形成为圆形区域。但是,柱状块组的形状并不限于圆形,也可以应用其它形状。在图31的例子中,当从上表面来看时,块组区域130形成为条带形状。在该模式中,块组区域130的宽度R被设为10μm或更小,并且块组区域130之间的间隔Q范围为10~100μm。
图32示出了多个菱形柱状块组121以菱形分布的例子。在这种情况下,由路径和流动方向形成了恒定的角,以增加分子和柱状块组121之间的接触频率,这增加了由柱状块组121捕获比组成柱状块组121的柱之间的间隔小的分子的可能性。因此,被柱状块组121捕获的分子和没有被柱状块组121捕获的较大分子之间的保持时间之差变得显著,这能够提高分离能力。当R是分离的目标分子的直径时,优选情况下柱状块组之间的间隔h、柱状块组121的对角线D和d以及组成柱状块组的柱之间的间隔p满足以下条件。因此,可以以高精确度来分离目标分子。
h:R≤h<10R,
p:0.5R≤p<2R,
D:5h≤D<20h,
d:5h≤d<20h。
形成块组区域的组件并不限于柱。例如,还可以形成在其中以均匀间隔分布板状部件的块组区域。图33示出了例子。图33(a)为俯视图,并且图33(b)为沿着图33(a)中的线A-A’的截面图。块组区域的分布如图33(c)所示。一旦分子被捕获到块组区域130中,分子驻留在块组区域130中,直到分子逃脱到分离通道112中为止。被块组区域捕获的分子和没有被块组区域捕获的分子之间的保持时间之差变得显著,这提高了分离能力。当R是分离的目标分子的直径时,优选情况下块组区域130之间的间隔Λ和组成块组区域130的板状部件之间的间隔λ满足以下条件。因此,可以以高精确度来分离目标分子。
Λ:R≤Λ<10R,
λ:0.5R≤λ<2R。
柱状体或板状部件的上部可以与通道的上表面相接触或相分离。当柱状体或板状部件的上部与通道的上表面相分离时,在柱状体或板状部件的上部与通道的上表面之间存在隙缝,从而会增加大分子通过的机会。因此,可以进一步解决阻塞问题。对于小分子而言,小分子通过隙缝从上面进入块组区域的机会增加了,因此进一步提高了分离效果。通过在成为通道上表面的部件(覆盖的玻璃等)中事先设置凹槽部分,或者通过使柱状体和板状部件的高度低于通道的深度,可以容易地实现上述模式。
根据被分离的成分,例如,诸如核酸、氨基酸、缩氨酸和蛋白质等有机分子,或者诸如螯合金属等分子和离子,来合理选择柱状体分布部分之间的路径宽度和柱状体分布部分中的柱状体之间的间隔。例如,优选情况下柱状体之间的间隔基本上等于与被分离的分子基团大小的中间值相对应的惯性半径,或者该间隔稍小于或大于该惯性半径。具体地说,与该中间值相对应的惯性半径和柱状体之间的间隔之差被设为100nm或更小的值,更为优选的情况下为10nm或更小,并且最优选的情况下为1nm或更小。通过合理设置柱状体之间间隔可以进一步提高分离能力。
优选情况下相邻柱状体分布部分之间的间隔(路径宽度)等于在样本中包含的分子的惯性半径,或者该间隔稍小于或大于该惯性半径。具体地说,样本中包含的分子的惯性半径和柱状体分布部分之间的间隔之差被设在分子的惯性半径的10%以内,更为优选的情况下为5%以内,并且最优选的情况下为1%以内。当柱状体分布部分之间的间隔太宽时,有时无法有效进行小尺寸分子的分离。当柱状体分布部分之间的间隔太窄时,有时容易发生阻塞。
(第五实施例)
在用作为图1的微芯片353的微芯片中,具体地说,在如图21所示的微芯片307中,柱状体可以以一行或多行分布在位于分离通道112中的分离区的上游侧,也就是样本被导入的一侧。图34示出了例子。如图34(a)所示,一个柱行710分布在通道中的分离区711的前面。柱行710中的柱之间的间隔基本上等于包括在分离目标的分子基团709中最小尺寸的分子。通过采用上述结构,获得了下述效果。分离区711可以通过提供块组区域或柱状体分布部分来形成,或者分离区711可以通过一致地提供柱状体来形成。
在图34(a)中,当对分离目标分子基团709施加弱驱动力(例如,极其微弱的电场)时,广泛扩散的分离目标分子基团709在通道中移动,并且当它到达柱行710时被堵塞,从而其在与柱行710相邻的窄带形区域中形成细带(图34(b))。
然后,通过对分子基团暂时施加强驱动力(例如,强电场),使分离目标分子基团穿过柱行同时保持细带状态(图34(c))。也就是说,在诸如DNA和蛋白质等大分子的情况下,即使分子尺寸大于柱之间的间隔,当形成一行或几行柱行时,通过分子延长可以使分子擦(scrape)过柱之间的间隔(匍匐效应(reptation effect))。
在分离目标分子基团穿过柱行之后,对分子基团施加用于分离的驱动力,这能够有效地执行分离(图34(d))。由于分子基团按照上面所述保持细带状态,因此在分离之后减少了峰值重叠,这能够以高精确度实现分离。
在将柱状体行应用到第四实施例中所述的结构的情况下,例如,还能够用于如下结构,即其中图34所示的柱行710位于具有图28(a)所示的柱状体分布部分的分离区的前面。
(第六实施例)
该实施例是可以被应用到图1的质谱系统351的微芯片的另一结构。在该实施例中,利用毛细管现象来分离样本。图35是示出了根据该实施例的微芯片的结构的视图。分离柱(未示出)分布在形成于衬底550中的分离通道540中。衬底550的材料和分离柱的结构的形成方式可以和第一至第五实施例相同。在分离通道540的一端制作气孔560,并且在另一端设置缓冲液入口510。缓冲液入口510在分离期间注入缓冲溶液。分离通道540除了缓冲液入口510和气孔560的部分之外被密封。样本计量管530连接到分离通道540的开始部分,并且样本入口520位于样本计量管530的另一端。
计量柱(未示出)分布在样本计量管530中。计量柱分布的密度小于分离柱,并且在计量柱中从不进行样本分离。样本计量管530除了样本入口520的部分之外被密封。
图36是示出了如图35所示的样本计量管530的周围部分的放大视图。样本计量管530中的计量柱和样本保持器部分503由临时停止裂缝502隔开。在样本保持器部分503中分布的柱(未示出)比在缓冲液导入部分504和分离部分506中分布的柱密集。与分离柱一样被汇集的这些柱(未示出)分布在缓冲液导入部分504中。样本保持器部分503、缓冲液导入部分504和分离部分506被临时停止裂缝505和507所分开。样本保持器部分503的空腔体积基本上等于样本计量管530的空腔体积和临时停止裂缝502的体积之和。临时停止裂缝505的宽度比临时停止裂缝502的宽度窄。
接下来,讲述用图35的设备进行分离操作的程序。样本被逐渐注入到样本入口520中,以用样本来填充样本计量管530。此时,调整液体高度使其不再上升。在样本注入操作中,样本保持在分布在样本计量管530中的样本计量柱之间。在样本填充了样本计量管530之后,样本逐渐渗到临时停止裂缝502。当渗到临时停止裂缝502的样本到达样本保持器部分503的表面时,在临时停止裂缝502和样本计量管530中的所有样本量都被吸收到具有较大毛细管效应的样本保持器部分503。样本保持器部分503在毛细管效应方面大于样本计量管530的原因是柱的形成比较密,并且样本保持器部分503具有较大的表面面积。由于存在临时停止裂缝505和507,样本在填充样本保持器部分503时,不会流入到缓冲液导入部分504或分离部分506中。
在样本被导入到样本保持器部分503中之后,分离缓冲溶液被注入到缓冲液入口510。缓冲液导入部分504被临时填充了所注入的缓冲溶液,并且与样本保持器部分503的接口变成线性的。当缓冲液导入部分504被进一步填充缓冲溶液时,缓冲溶液渗到临时停止裂缝505并且流入到样本保持器部分503中。然后,缓冲溶液在拖曳样本的同时,跨过临时停止裂缝507到达分离部分506。此时,临时停止裂缝502的宽度大于临时停止裂缝505和507的宽度。因此,即使缓冲溶液回流到临时停止裂缝502,也几乎不会发生样本回流,因为几乎所有的样本量已经走在样本保持器部分503的前头。
由于毛细管现象,分离缓冲溶液进一步穿过分离部分506朝向气孔,并且通过该处理分离了样本。
下面参考图37和38来讲述通过毛细管现象利用样本计量注入的原理的样本注入的另一例子。在如图37和38所示的设备中,用样本输入管570代替了图36中的样本计量管530。样本入口520和出口580位于样本输入管570的两端。在样本输入管570的内部没有分布柱。样本输入管570通过输入孔509向样本保持器部分503开放。
下面来讲述使用该设备进行分离的程序。将样本输入到样本入口520并填充出口580。在此期间,样本通过输入孔509被吸收进入样本保持器部分503。
将空气注入样本入口520,以便将样本从出口580释放出去,样本从样本输入管570的内部被排出去,并且使样本输入管570的内部干燥。在利用毛细管现象进行分离的情况下,如上所述注入分离缓冲溶液。在通过电泳进行分离的情况下,在样本输入之前先将移动缓冲溶液导入到对应于缓冲液入口510的贮液器以及对应于气孔560的贮液器。由于存在广泛形成的临时停止裂缝505和507,因此缓冲溶液没有流入到样本保持器部分503中。
在样本保持器部分503中结束样本保持的阶段,极其少量的移动缓冲溶液被进一步添加到位于分离通道一端的贮液器中,或者将轻微的振动施加到样本保持器部分503的周围,这使移动缓冲溶液连续。因此,施加了电压以执行分离。
这样,在该实施例的微芯片中,可以通过毛细管现象来分离样本。因此,不需要在衬底上形成电极,从而能够进一步简化设备结构。
(第七实施例)
该实施例是可以被应用到图1的质谱系统351的微芯片的另一种结构。在该实施例中,通过使用微芯片执行分离,其中在微芯片中,在通道中设置通过裂缝被分成多个部分的分离区。图39是示出了根据该实施例的微芯片中的通道的结构的视图。参考图39,在通道中形成样本分离区601,以阻塞通道。样本分离区601通过裂缝602分成多个部分。在壁603和样本分离区601之间没有缝隙。在采用该结构的情况下,被分离的样本的带形状是优选的,并且分离能力得到提高。下面将参考图40来讲述这一点。
当单个样本分离区601没有裂缝时,如图40的左图所示,从上部流到下部的样本的液体的液面呈曲面。这是因为毛细管现象对通道区的中心部分起微小的作用,通过在沿着壁的部分中的毛细管作用来促进样本移动。由于样本的流动速度在壁附近增加,因此形成了附图中所示的带。另一方面,当样本分离区601通过裂缝602分成多个部分时,由于裂缝的存在,在分离期间液体临时保持在位于裂缝上方的样本分离区中。由于在裂缝中有空气,因此当位于裂缝上方的样本分离区中存在的样本的压强超过裂缝中气体的压强时,液体开始从样本分离区流动到裂缝。
这样,由于包括有样本的液体被临时保持在样本分离区中,即使壁部分和中心部分之间的移动距离产生差别,在液体被保持期间也会消除差别。结果,在液体穿过裂缝的阶段结束时,液面变成基本上与分离方向相垂直的平面(图40的右图)。因此,形成了与分离方向相垂直的带,以提高分离能力。在第一实施例至第四实施例中讲述的结构都可以任意地用作样本分离区601。例如,可以形成其中布置有块组区域或柱状体分布部分的样本分离区,或者其中均匀地分布柱状体的样本分离区。
图41和42是示出了毛细管作用所导致的样本带形状的差异。如图41所示,当提供现有情况下被用作样本分离区的单个人造凝胶时,带形状就朝向样本前进方向弯曲。另一方面,参考图42,在所采用的结构中,交替形成了其中柱稀疏地形成的区域和其中柱稠密地形成的区域。稀疏形成柱的区域起到图39和40中的裂缝的作用。也就是说,包括有样本的液体在稀疏地形成柱的区域的前面正好临时停止,并且在此期间消除了在稀疏地形成柱的区域中产生的液体的移动距离之差,这导致了基本平面在样本前进方向上的带形状。
这样,下面来讲述在通过毛细管现象来导入样本的情况下,稀疏地形成裂缝和柱的区域的效果。在使用电场来进行样本移动的情况下,通过提供裂缝等类似物也可以获得同样的效果。在通过电泳进行分离的情况下,已知随着移动的进行,带变得弯曲。通过裂缝等类似物可以调整带形状。在这种情况下,即使裂缝中填充了缓冲溶液,也能获得带形状调整的效果。
(第八实施例)
在上述实施例中讲述的模式中,样本被其中形成有从底部表面朝向通道突出的突起的分离通道112所分离。但是,还可以使用其中形成有凹部而不是突起的分离通道112来分离样本。
下面来讲述具有其中形成有凹部的分离通道112的微芯片。具有其中形成有凹部的分离通道112的微芯片也可以应用到图1的质谱系统351。由于可以以与上述实施例相同的方式来形成微芯片的基本结构,因此下面主要来讲述不同的结构。
优选情况下使用成形为圆柱、椭圆柱、圆锥和椭圆锥的凹口,也可以采用诸如四方锥和三角锥等各种形状。根据分离的目的来合理设置凹部的尺寸。例如,在下述处理中:
(i)细胞和其它成分的分离和浓缩,
(ii)固体物质(细胞膜、线粒体和内质网的片段)以及通过破坏细胞所获得的成分中的液体部分(细胞质)的分离和浓缩,以及
(iii)液体部分成分中的高分子量成分(DNA、RNA、蛋白质和糖链)和低分子量成分(类固醇、葡萄糖等)的分离和压缩,
在(i)的情况下,间隔可以设置在1μm~1mm的范围内,
在(ii)的情况下,间隔可以设置在100nm~10μm的范围内,并且
在(iii)的情况下,间隔可以设置在1nm~1μm的范围内。
根据应用可以合理地设置凹部的深度。例如,凹部的深度可以被设置在5~2000nm的范围内。相邻凹部之间的间隔设置为200nm或更小的值,更为优选的情况下为100nm或更小,并且进一步优选的情况下为70nm。间隔的下限没有特别的限制。例如,间隔可以设置为5nm或更大的值。凹部之间的间隔是指凹部中心点之间的距离。
图43示出了根据第八实施例的微芯片中的分离通道112的详细结构。参考图43,在衬底110中形成了具有宽度W和深度D的凹槽部分,并且在凹槽的底部以恒定间隔有规则地形成具有直径φ和深度d的圆柱形孔。例如,通道的宽度W,通道的深度D,孔的直径φ,孔的深度d,以及孔之间的间隔p可以设置成图43所示的尺寸。在如图46、47、48、49和52中所示的后面要讲述的各个模式中,能够以相同的尺寸设置W、D、φ、d和p。
在分离期间可以用如图44所示的覆盖部分来覆盖通道。此时,在衬底中形成的通道被覆盖部分所密封,以形成空间,并且样本在该空间中移动。覆盖部分具有防止包含在样本中的水蒸发的功能。在下面参考图56要讲述的实施例中,需要在通道上方提供电极,从而需要具有透明电极的覆盖部分作为样本分离中的一部分组件。
然后,将参考图45来讲述其中具有多个孔的结构起到样本分离单元的作用的原因。参考图45,在样本分离区中以预定间隔制作多个孔部分。当具有大于孔直径的尺寸的分子穿过该区域时,分子不会被孔所捕获,而是直接穿过通道。因此,分子以短时间穿过该区域。另一方面,小尺寸分子被制作在衬底中的孔所捕获,而穿过了长的路径。结果,样本被分离,同时小尺寸物质在大尺寸物质之后被释放。
这样,在其中在分离通道112中形成凹部的结构中,由于容易造成阻塞的大分子物质相对容易地穿过分离区,因此减少了阻塞问题,大大提高了吞吐能力。
下面参考图46来讲述实现图45所示分离方法的样本分离区的结构例子。如图46所示,在样本分离区中,具有开口最大直径φ的凹部以间隔p有规则地形成。
图47示出了样本分离区的另一个例子。在该例子中,凹部有序地成行分布。
图48示出了样本分离区的另一个例子。该例子具有如下结构,即其中分布有凹部,同时凹部的直径朝向流动方向增加。
图49示出了样本分离区的另一个例子。该例子具有如下结构,即其中具有不同开口直径的凹部随机分布。
图50示出了样本分离区的另一个例子。在该例子中,凹部形成为条带状。也就是说,凹部没有形成孔而是形成为凹槽。在这种情况下,φ和p分别表示凹槽的宽度和凹槽之间的间隔。
图51示出了样本分离区的另一个例子。在该例子具有如下结构,即其中在通道中具有宽度朝向流动方向加宽的凹槽形式的凹部。
图52示出了样本分离区的另一个例子。与图50类似,凹部形成为条带状。尽管在图50中条带方向平行于样本的流动方向,但是在图52中条带方向垂直于样本的流动方向。在这种情况下,φ和p也分别表示凹槽的宽度和凹槽之间的间隔。
通过形成图48、49和51所示的结构中的样本分离区而获得如下效果。
对于比孔和凹槽的尺寸大的分子,很难获得孔引起的分离效果。因此,当孔和凹槽的尺寸设为恒定时,比孔和凹槽的尺寸大的分子的分离度(resolution)与小分子相比就会下降。进而,当孔和凹槽的尺寸被设为恒定时,其中能够获得大分离效果的分子尺寸范围变窄。因此,在如图48、49、51所示的结构中形成通道。因此,可以加宽其中能够获得足够分离效果的分子尺寸范围,同时可以增加大尺寸分子的分离度。
根据被分离成分的尺寸来合理选择凹部的开口最大直径。例如,凹部的开口最大直径可以基本上等于与被分离的分子基团大小的中间值相对应的惯性半径,或者该开口最大直径可以稍小于或大于该惯性半径。具体地说,与该中间值相对应的惯性半径和凹部的开口最大直径之差被设为100nm或更小的值,更为优选的情况下为10nm或更小,并且最优选的情况下为1nm或更小。通过合理设置凹部的开口最大直径可以进一步提高分离能力。
在上述结构中,凹部以预定间隔分布。但是,在样本分离区中也可以以不同的间隔来分布凹部。因此,具有诸如大尺寸、中尺寸和小尺寸等多种尺寸的分子和离子可以被有效地分离。对于凹部的分布,如图46所示,也可以采用在样本的前进方向上以“Z”字形方式来分布凹部的方法。因此,凹部和分子的接触机会增加,从而能够有效地分离出目标成分,同时有效地防止了阻塞。
在上述结构中,凹部可以形成为圆柱形状。但是,凹部的形状并不限于圆柱形。例如,还可以采用其中凹部的内径朝向底部表面减小的楔形。具体地说,能够以其中凹部的内径以如图53(a)所示的阶梯方式减小的形状,或者其中凹部的内径如图53(b)和图53(c)所示连续减小的形状来作为例子。在这些情况下,由于较小的分子可以移动到凹部的较深部分,因此较小的分子会驻留在凹部中较长的时间。结果,进一步提高了分离能力。
通过各种技术可以得到楔形凹部。例如,当通过阳极氧化处理来获得凹部时,电压逐渐降低,这能够提供楔形凹部。
可以通过蚀刻来提供楔形凹部。例如,当使用硅来作为衬底时,通过干蚀刻制作其内径基本上与凹部的底部表面的内径基本相同的垂直孔。然后,使用各向同性蚀刻溶液来对垂直孔执行湿蚀刻。垂直孔中蚀刻溶液的交换速率在垂直孔的底部表面变得最小,并且交换速率从垂直孔的底部表面到开口逐渐增加。因此,在垂直孔的底部表面附近很难进行侧蚀刻,并且内径很难扩大。另一方面,从底部表面到开口,侧蚀刻的程度逐渐增加,这导致内径的扩大。这样,能够提供楔形凹部。
在上述结构中,凹部分布在平面上。但是,凹部也可以立体地分布。例如,通过在通道中设置分离板来将通道分成两层,并且使凹部布置在分离板和通道壁中。
该实施例的结构具有流出随着分子尺寸的减小而延迟的特点。为了以与大尺寸分子一样快的速度来执行小尺寸分子的初步分离,在分离板中设置具有与目标分子尺寸相似的尺寸的通孔。因此,由于目标小尺寸分子能够通过位于通道中的通道,尽管可以以与大尺寸分子一样快的速度来对小尺寸分子进行初步分离,但是也能够实现其它分子的分离。
图54是示出了其中通道被分成两层的结构的例子的视图。图54(a)为相对于流动方向的垂直截面图。位于硅衬底417中的通道409被分离板419分成两层。图54(b)为沿着图54(a)的线A-A’的截面图。通孔420和凹部421部分地位于分离板419中,并且能够穿过通孔420的分子移动到位于附图下部的通道409中。采用这种结构能够对其中流出时间在单层通道的结构中慢的小尺寸分子进行快速的初步分离。在分离板419中具有比凹部421小的凹部422(图54(c))。因此,在下层通道409中可以实现小尺寸分子的精确分离。
如图55(a)和55(b)所示,在通道中具有柱或突起,并且在柱或突起和通道壁中具有凹部。因此,具有凹部的分离区的面积增加,从而提高了分离能力。
在该实施例中,与第一实施例一样,通过参考图9所述的方法可以可靠地将缓冲溶液导入到通道中。通过参考图22所述的方法可以使用电压来移动样本。对样本施加外力的手段并不仅限于电压。例如,在导入包含分离目标样本的缓冲溶液同时缓冲溶液没有被导入到通道中去的情况下,缓冲溶液通过毛细管作用自动流入到通道中。在该过程中也可以实现分离。
在分离了样本和实现了初步分离的情况下,需要导入相对大的样本量,以便通道的深度被设置在更深的值。在这种情况下,由于分离目标样本和凹部之间的接触频率小,所以有时无法期望足够的分离效果。因此,在这种情况下,优选情况下通过在通道的上表面和下表面之间施加电压来将分子可靠地导入到凹部中。
图56示出了这种实施例的例子。金电极437布置在玻璃衬底436上,并且多孔的氧化铝层438位于金电极437上。另一方面,覆盖部分441位于通道442上,并且覆盖部分441包括覆盖玻璃440及布置在其下面的透明电极439。金电极437被设为阳极,并且透明电极439被设为阴极。当施加电压时,分离的目标分子在通道中移动,同时受到从透明电极439朝向金电极437的外力。因此,分子和凹部之间的接触频率上升,从而实现了分离能力的提高。对于电压,在上面的讲述中使用直流电压。但是,直流电压和交流电压都可以用。
在采用直流电压的情况下,通常诸如DNA和蛋白质等生物分子带负电荷,因此施加电压时具有凹部的一侧被设置为正电极。当施加过大的电压时,由于分离的目标分子难以从凹部中逃脱,因此流出被大大延迟。因此,优选情况下所施加的电场强度为50V/cm或更小。
然后,将讲述在衬底中形成凹部的方法。可以通过蚀刻衬底来制作凹部。图57是用于解释在衬底中形成凹部的方法的视图。
如图57(a)所示,制备硅衬底201,并且在其上施加杯芳烃电子束负性抗蚀剂203(图57(b))。然后,用电子束(EB)对成为样本通道的部分进行曝光。用二甲苯来显影,并且用异丙醇来清洗。通过该得到其中如图57(c)所示执行了构图的抗蚀剂204。
然后,通过使用抗蚀剂204作为掩模来对硅衬底201进行蚀刻(图57(d))。在除去抗蚀剂之后(图57(e)),再次在表面上涂覆正性抗蚀剂205(图57(f))。然后,执行掩模曝光,使得通道部分暴露出来,并且执行显影(图57(g))。对正性抗蚀剂205进行构图,以便在硅衬底201中形成期望的凹部(孔部分)。
使用CF4和CHF3的混合气体来执行对硅衬底201的RIE蚀刻(图57(h))。通过使用丙酮、乙醇和水的混合溶液进行有机清洗以除去抗蚀剂(图57(i))。然后,根据需要提供盖子210,并且完成凹部(图57(j))。
凹部还可以通过阳极氧化处理来形成。在阳极氧化处理中,被氧化的金属(例如,铝、钛、锆、铌、铪、钽)设为阳极,并且在电解液中接通电流并进行氧化。在该氧化处理中,使用酸性电解液,并且通过接通电流使水发生电解,在阴极产生氢气。但是,在阳极没有产生氧气,而在金属表面上形成了氧化物覆盖层。在铝的情况下,氧化物覆盖层叫做多孔氧化铝。如图58所示,多孔氧化铝层416具有周期性结构,其中细孔430位于每一个胞元431的中心。这些结构是以自组织的方式形成的,因此不需要执行构图就能够容易地获得纳米结构。胞元之间的间隔与氧化电压成正比(2.5nm/V)。在铝的情况下,可以根据氧化电压来使用硫酸(直到30V)、草酸(直到50V)和磷酸(直到200V)作为酸性电解液。
另一方面,细孔的尺寸取决于氧化条件和氧化后表面处理。随着氧化电压的增加,细孔的直径增大。例如,当将氧化电压设置为5V、25V、80V和120V时,细孔具有分别为约10nm、约20nm、约100nm和约150nm的最大直径。其开口可以是圆形或椭圆形状。在形成多孔氧化铝之后,执行表面处理,使得使用例如3wt%的磷酸来蚀刻多孔氧化铝的表面。随着表面处理时间的增加,细孔的直径增大。
这样,通过合理选择氧化电压和表面处理时间,可以以期望的间隔来有规则地设置具有期望直径的凹部。
为了形成更均匀(homogeneous)的多孔氧化铝,如图59和87所示,优选情况下在进行阳极氧化时,阳极氧化处理的目标铝层的外围部分被绝缘膜所覆盖。图59为俯视图,示出了其中用绝缘膜411来覆盖形成于绝缘衬底上的铝层402的外围部分的状态。可以使用诸如光敏聚酰亚胺等绝缘树脂来作为绝缘膜411。因此,可以抑制当在离阳极较远的部分中形成不能氧化的区域时阳极氧化处理只能在电极粘贴部分412的周围中迅速进行阳极氧化的现象,从而可以在铝层402上提供均匀的多孔氧化铝。
根据Asou等人所讲述的方法(J.Vac.Sci.Technol.,B,19(2),569(2001)),还可以以期望的分布来提供多孔氧化铝,以便当在提供多孔氧化铝的点处,在事先使用模具形成凹部之后来执行阳极氧化。在这种情况下,通过控制电压也可以形成期望的凹部最大直径。
图87是示出了其中用导电层413来覆盖铝层402的外围部分的状态的视图。图87(a)为俯视图,并且图87(b)为截面图。如图87(a)和87(b)所示,无法执行阳极氧化处理的导电材料(金等)被蒸发到位于载片401上的铝层402上,以形成导电层413,并且执行阳极氧化,这能够在铝层402上提供均匀的多孔氧化铝。在使用金作为导电材料的情况下,在执行了阳极氧化之后,通过金蚀刻剂除去导电层413。金蚀刻剂是通过将碘化钾、碘和水混合而得到的。混合比例为:碘化钾∶碘∶水=1∶1∶3(重量比)。
在该实施例中,为了防止诸如DNA和蛋白质等分子黏附到分离通道112的壁表面,优选情况下对通道壁做诸如覆盖等亲水性处理。结果,发挥出了很好的分离能力。能够以具有与组成细胞膜的磷脂相似的结构的物质来作为覆盖材料的例子。该物质的例子包括LIPIDURE(注册商标,NOF公司的产品)。当使用LIPIDURE(商标)时,LIPIDURE以0.5wt%的浓度溶解在诸如TBE的缓冲溶液中,通道被填充该溶液,并且保留几分钟。因此,通道壁能够被覆盖。
通过使用诸如氟树脂等排斥性树脂或诸如牛血清蛋白等亲水性物质来覆盖通道壁,也可以防止诸如DNA等分子黏附到通道壁上。
(第九实施例)
在用于图1的质谱系统351的微芯片中,在通道的表面上可以形成亲水区和憎水区。例如,在具有如图3、21、22、23、35和37等的结构的微芯片中的分离通道112或分离通道540中,可以形成样本分离区,其中形成有亲水区和憎水区。样本分离区的表面包括多个憎水区和亲水区。憎水区以基本上均匀的间隔形成为二维的。亲水区占有除了憎水区之外的样本分离部分的表面。图60示出了图3、图21、图22、图35或图37中的分离通道112或分离通道540的详细结构。参考图60,在衬底701中形成具有深度D的凹槽部分,并且以均匀间隔有规则地形成具有直径φ的憎水区705。在该实施例中,通过使具有憎水基团的耦合剂黏附到衬底701的表面,或者通过将耦合剂结合到衬底701的表面而形成憎水区705。在分离期间,在通道的上部可以设置图60中未示出的盖子,这能够防止溶剂蒸发。压强能够使样本在通道中移动。但是,也可以形成不具有盖子的结构。对于不具有盖子的结构的情况,在进行质谱分析之前不需要移走盖子的操作,因此提高了可操作性。
例如,图60中的部分的尺寸设置如下:
W:10~20μm,
D:50nm~10μm,
φ:10~1000nm,以及
p:50nm~10μm。
每一个部分的尺寸要根据分离的目的进行合理设置。例如,对于p,在下面的处理中:
(i)细胞和其它成分的分离和浓缩,
(ii)固体物质(细胞膜、线粒体和内质网的片段)以及通过破坏细胞所获得的成分中的液体部分(细胞质)的分离和压缩,以及
(iii)液体部分成分中的高分子量成分(DNA、RNA、蛋白质和糖链)和低分子量成分(类固醇、葡萄糖等)的分离和压缩,
在(i)的情况下,可以将其设置在1μm~1mm的范围内,
在(ii)的情况下,可以将其设置在100nm~10μm的范围,并且
在(iii)的情况下,可以将其设置在1nm~1μm的范围内。
深度D的大小是决定分离性能的重要因素。优选情况下深度D是分离目标样本的惯性半径的大约一至十倍,并且更为优选的情况下深度D是该惯性半径的大约一至五倍。
图61为示出了图60的结构的俯视图(61(a))和侧视图(61(b))。通常憎水区具有范围为0.1~100nm的膜厚度。衬底701的表面暴露在除了憎水区705之外的其它部分中。在图60的结构中,通过为衬底701选择诸如玻璃衬底等亲水性材料,以预定图案在亲水性表面上形成憎水性表面,这产生了样本分离功能。也就是说,当使用亲水性缓冲溶液等作为承载溶剂时,样本仅穿过亲水性表面而不穿过憎水性表面。因此,憎水区705起到样本流通的障碍物的作用,以产生样本分离功能。
将针对分子尺寸来讲述基于憎水区705的图案形成的分离方法。认为作为分离方法主要采用两种方法。一种是如图62所示的分离方法。在该方法中,象图8那样,分子尺寸越大,则憎水区就越地成为障碍。因此,对于较大尺寸的分子需要花较长的时间穿过如图中所示的分离部分。小尺寸分子能够相对容易地穿过憎水区705之间的隙缝,并且与大尺寸分子相比,小尺寸分子以短时间穿过分离区。
与图62相反,图63所示的分离方法是其中大尺寸分子迅速地流出而小尺寸分子缓慢地流出的方法。在图62的分离方法中,象图25那样,当样本中包含巨大尺寸物质时,巨大尺寸物质接近憎水区705之间的间隔,并且有时分离效率下降。在图63所示的分离方法中,这个问题得到了解决。参考图63,在分离通道112中形成了多个样本分离部分706,同时它们相互隔离。在每一个样本分离部分706中,以均匀间隔分布具有基本相同尺寸的憎水区705。
由于大尺寸分子所穿过的宽路径位于样本分离部分706之间,因此与图62相反,大尺寸分子迅速地流出而小尺寸分子缓慢地流出。这是因为大尺寸分子顺利穿过样本分离部分706之间的路径而小尺寸分子被分离区所捕获从而穿过较长的路径。结果,小尺寸物质被分离但是在却在大尺寸物质之后被释放。由于大尺寸分子相对容易地穿过分离区,因此减少了因大尺寸分子陷入憎水区705之间所导致的分离效率的下降的问题,并且分离效率被显著提高。为了使效果增强得更加显著,优选情况下相邻样本分离部分706之间的路径宽度大于样本分离部分706中憎水区705之间的隙缝。优选情况下路径的宽度为憎水区705之间隙缝的约2至约200倍,更为优选的情况下为隙缝的约5至约100倍。
在图63的例子中,在每一个样本分离区中以均匀间隔形成具有相同尺寸的憎水区705。但是,在每一个样本分离区中也可以以不同的间隔形成具有不同尺寸的憎水区705。
当分离具有分子量级尺寸的物质时,根据被分离成分(诸如核酸、氨基酸、缩氨酸和蛋白质等有机分子,或者诸如螯合金属等分子和离子)的尺寸来合理选择样本分离部分之间的路径宽度和样本分离部分中的憎水区705之间的间隔。例如,优选情况下憎水区705之间的间隔基本上等于包含在样本中的最小尺寸分子的惯性半径,或者稍小于或大于它。具体地说,包含在样本中的最小尺寸分子的惯性半径和憎水区705之间的间隔之差被设在100nm或更小的值,更为优选的情况下为50nm或更小,并且最优选的情况下为10nm或更小。通过合理设置第一个间隔,进一步提高了分离能力。
优选情况下相邻样本分离部分706之间的间隔(路径宽度)基本上等于包含在样本中的分子的惯性半径,或者稍小于或大于它。具体地说,包含在样本中的最大尺寸分子的惯性半径和样本分离部分之间间隔之差被设置在分子的惯性半径的10%以内,更为优选的情况下为5%以内,并且最优选的情况下为1%以内。当样本分离部分706之间的间隔太宽时,有时不能充分地执行小尺寸分子的分离。当样本分离部分706之间的间隔太窄时,有时容易发生阻塞。
在该实施例中,憎水区呈等间隔分布。但是,憎水区也可以在样本分离部分706中以不同的间隔分布。因此,具有诸如大尺寸、中尺寸和小尺寸等多种尺寸的分子和离子可以被有效地分离。对于憎水区的分布,采用在样本的前进方向上以“Z”字形方式来分布憎水区的方法也是有效的。因此,能够有效地分离出目标成分。
在该实施例中,与上述实施例相似,如图22所示,将电压施加到分离通道112的两端,这能够使样本在分离通道112中流动。此时,除了用于向样本施加外力的电压以外,还可以应用用于抑制电渗流的电压。在图22的结构中,为了抑制电渗流的目的,将zeta校正电压施加于衬底。因此,可以抑制电渗流,以有效地防止测量峰值加宽。
下面将以图21的微芯片307的通道形状为例并结合附图64~69来讲述该实施例的微芯片的制作方法。
凹槽部分730位于衬底701的表面上,如图64(a)所示,并且在凹槽部分730中的预定点处形成样本分离区731,如包含图21的通道形状的图64(b)所示。然后,参考图65来讲述在图64(a)的衬底701中形成凹槽部分730的处理。在该实施例中将讲述将玻璃衬底用作衬底701的例子。
首先,在衬底701上顺序地形成硬掩模770和抗蚀掩模771(图65(a))。在抗蚀掩模771中设置预定的开口(图65(b))。通过使用其中设置开口的抗蚀掩模771作为掩模来进行干蚀刻,以获得如图65(c)所示的状态。使用SF6等用作蚀刻气体。然后,使用诸如缓冲氢氟酸等蚀刻溶液来对衬底701执行湿蚀刻。通常蚀刻深度被设置为大约1μm。图65(d)示出了结束湿蚀刻的状态。最后,除去硬掩模770和抗蚀掩模771(图65(e))。通过上述处理形成如图64(a)所示的凹槽部分730。
在图64(a)中形成凹槽部分730的过程中,也可以在亲水性状态下形成凹槽部分730的表面,并且在亲水性表面中形成除了凹槽部分730之外的表面。然后,参考图66来讲述形成该结构的处理。在图65(e)中所获得的结构的表面上形成憎水性表面处理膜720(图66(a))。能够以3-硫醇丙基三乙氧基硅烷作为组成憎水性表面处理膜720的材料的例子。
然后,通过旋涂方法将抗蚀剂721涂覆到衬底的表面上,并且对抗蚀剂721进行干燥(图66(b))。与凹槽部分相对应的开口位于抗蚀剂721中(图66(c))。通过使用其中有开口的抗蚀剂721作为掩模来执行干蚀刻(图66(d))。通过灰化和剥离溶液处理来除去抗蚀剂721。通过执行上述处理,获得了如图66(e)所示的状态。也就是说,样本通道凹槽的内壁具有如下结构,其中由玻璃材料制成的衬底701的亲水性表面被暴露,而其它部分则被憎水性表面处理膜720所覆盖。因此,当使用亲水性溶剂来作为承载溶剂时,样本决不会泄漏到凹槽的外面。
然后,参考图67来讲述形成如图64(b)中的样本分离区731的处理。如图67(a)所示,在衬底701上形成电子束曝光抗蚀剂702。然后,通过电子束来对电子束曝光抗蚀剂702进行图案曝光,以获得具有预定形状的图案(图67(b))。当曝光部分被溶解和除去时,如图67(c)所述形成以预定形状构图的开口。然后,如图67(d)中所示执行氧等离子灰化。在形成亚微米级图案中需要进行氧等离子灰化。当执行氧等离子灰化时,耦合剂所黏附之处被激活,以获得适合于精确地形成图案的表面。另一方面,当形成不低于微米级的大图案时,不需要执行氧等离子灰化。
在灰化之后获得了图68(a)的状态。在附图中,抗蚀剂残留物和污染物积淀下来形成亲水区703。在该状态下,形成憎水区705(图68(b))。例如,可以使用气相方法作为淀积组成憎水区705的膜的方法。在这种情况下,衬底701和包含具有憎水基团的耦合剂的溶液分布在密封的室中并且经过预定的时间,这能够使膜形成。根据该方法,由于溶剂等不会黏附到衬底701的表面,因此能够获得具有期望精细图案的处理膜。另一种膜积淀方法是旋涂法。在这种情况下,涂覆具有憎水基团的耦合剂的溶液以执行表面处理,并且形成憎水区705。能够拿3-硫醇丙基三乙氧基硅烷来作为具有憎水基团的耦合剂的例子。还可以使用浸渍法等来作为膜积淀方法。憎水区705不是积淀在亲水区703的上部,而是仅积淀在衬底701的暴露的部分,这包括了形成有多个憎水区705并且彼此相互分离的表面结构,如图61所示。
除了上述处理以外,通过下述方法也可以获得同样的表面结构。在该方法中,如图67(c)所示,在形成了其中形成有构图的未曝光部分702a之后,通过在抗蚀剂开口中积淀3-硫醇丙基三乙氧基硅烷来形成憎水区705,而不需要执行如图69(a)所示的氧等离子灰化。然后,通过用能够有选择地除去未曝光部分702a的溶剂执行湿蚀刻,来获得图69(b)的结构。此时,选择出不会损害组成憎水区705的膜的溶剂很重要。能够以丙酮作为该溶剂的例子。
在上述实施例中,憎水区是在通道凹槽部分中形成的。另外,可以采用下面的方法。如图70(a)和70(b)所示,制备两种衬底。图70(a)所示的衬底具有在玻璃衬底901上形成憎水膜903的结构。憎水膜903是通过具有诸如3-硫醇丙基三乙氧基硅烷等憎水基团的化合物形成的。憎水膜903以预定的构图形状形成。憎水膜903所处的位置成为样本分离部分。另一方面,在如图70(b)所示的衬底具有在玻璃衬底902的表面上设置条带状凹槽的结构。凹槽部分成为样本通道。上面讲述了形成憎水膜903的方法。如上所述,通过使用掩模执行湿蚀刻,也可以在玻璃衬底902的表面上容易地制作条带状凹槽。该实施例的结构可以通过如图71所示的结合来获得。由两个衬底所形成的空间904成为样本通道。根据该方法,在扁平表面上形成了憎水膜903,从而使制作变得容易进行,并且获得好的产品稳定性。
这种通过利用LB膜推拉(pulling-up)方法来在衬底上形成包含硅烷耦合剂的膜,并且形成包括有亲水/憎水属性的微型图案的方法,可以用来作为耦合剂膜的制作方法。
在该实施例中,在样本分离区中只有一个憎水区。在这种情况下,例如,在具有亲水表面的分离通道中可以形成在样本流动方向上延伸的一个憎水区。在这种情况下,当样本穿过分离通道时,还可以通过样本分离区的表面特性来分离样本。
进而,通道本身可以通过上述憎水处理和亲水处理来形成。
在通过憎水处理来形成通道的情况下,通过使用诸如玻璃衬底等亲水衬底来由憎水区形成与通道壁相对应的部分。由于亲水性缓冲溶液在前进的同时避开了憎水区,因此在壁部分之间形成了通道。通道可以被覆盖,或者可以不被覆盖。在通道被覆盖的情况下,优选情况下在衬底和盖子之间形成了几μm的隙缝。隙缝是通过将盖子结合到衬底上而实现的,其中重叠宽度被设置在盖子的边缘附近,并且使用诸如PDMS和PMMA等粘性树脂来作为粘结剂。即使仅在盖子的边缘附近结合到衬底,当导入缓冲溶液时憎水区排斥水,从而形成了通道。
另一方面,在通过亲水性处理而形成通道的情况下,在通过硅氮烷处理等在憎水状态下形成的憎水衬底或衬底表面中形成了亲水性通道。由于缓冲溶液只进入到亲水区中,因此亲水区成为通道。
通过诸如模印(stamping)和喷墨印刷(inkjet printing)等印刷技术可以执行憎水处理或亲水处理。在模印方法中使用PDMS树脂。在PDMS树脂中,通过聚合硅树脂油(polymerizing silicone oil)来进行树脂化,并且在树脂化之后用硅树脂油来填充分子之间的隙缝。因此,当PDMS树脂与亲水性表面,具体地说是玻璃表面相接触时,接触部分变得具有强的憎水属性以排斥水。利用这种现象,在对应于通道部分的位置处形成凹部的PDMS块就作为一个印模(stamp)与亲水性衬底相接触,并且通过上述的憎水处理容易地制成通道。
在喷墨印刷方法中,使用低粘性类型硅树脂油来作为喷墨印刷的油墨,并且使用诸如聚乙烯、PET、醋酸纤维素、纤维素薄膜(玻璃纸)等亲水性树脂薄膜来作为印刷纸。在通道壁部分中通过印刷硅树脂油黏附于其上的图案也能获得同样的效果。
通过憎水处理和亲水处理形成具有预定形状的憎水块组或亲水块组,并且由此还可以在通道中形成不能通过不小于特定尺寸的物质而通过小于特定尺寸的物质的过滤器。
当由憎水块组形成过滤器时,通过以预定的间隔线性地重复分布这些块组,可以获得虚线形状的过滤器图形。憎水块组之间的间隔大于能穿过的物质的尺寸,并且小于不能穿过的物质的尺寸。例如,当除去100μm或更大的物质时,憎水块组之间的间隔比100μm窄,例如,间隔被设为50μm。
可以通过整体地形成用于形成通道的憎水区图形和以虚线形状形成的憎水块组的上述图案来实现过滤器。可以适当地使用上述光刻以及SAM膜形成方法、模印方法、喷墨方法等类似方法来作为过滤器形成方法。
当在通道中形成过滤器的情况下,可以在与流动方向相垂直的方向上形成过滤器表面,并且可以与流动方向相平行地形成过滤器表面。当与流动方向相平行地形成过滤器表面时,与其中过滤器表面垂直于流动方向的情况相比,其优点是过滤器几乎不被物质所阻塞,并且在过滤器中保证有较宽的区域。在这种情况下,通道部分的宽度被加宽,例如将宽度设为1000μm,在通道的流动方向上以50μm的间隔形成50μm×50μm的方形憎水块组,这能够将通道分成与流动方向相平行的两部分。当从被分开的通道的一侧导入包含被分离物质的液体时,将包含在液体中的大于50μm的物质除去之后的过滤的液体从另一个通道流出。因此,在通道的一侧可以将物质浓缩。
(第十实施例)
可以采用其中设置了具有分离区的多个通道并且设置了与这些通道相交并且将样本导入到这些分离区的样本导入通道的这种模式来作为用于质谱系统351的微芯片。图72示出了通道结构的例子。具有分离区423的多个通道409位于通道结构中。分离区423包括柱状体、凹部或憎水区/亲水区。分离目标样本从样本入口424导入,并且向贮存器425扩散。在样本入口424和贮存器425之间的通道426不具有分离能力,并且使用通道426是为了将样本传送到多个通道409,而它不具有分离能力。在样本填充了通道426之后,通过使样本从贮存器427迁移到贮存器428,来执行同时分离。因此,提高了分离效率。通道409包括具有不同特点的分离区423,这能够根据不同特点来对样本进行同时分离。如图73所示,还可以采用其中形成有一个贮存器427的模式。这个例子是有效的,因为缓冲溶液可以从贮存器427注入到所有通道409。
当样本分离部分的模式是第一至第九实施例中的任何一个时,可以采用如图72和73所示的结构。在如图72和73所示的模式中,如第五实施例中所述,可以将柱状网格分布在其中设置有分离区的通道与样本导入通道彼此相交的点处。图74示出了例子。在通道409和通道426之间的交点上,多个细柱以柱状网格429分布。柱状网格429具有过滤功能。通过控制柱状块组,柱状网格429只能让具有期望范围尺寸的分子穿过,到达分离区423。因此,可以快速和正确地执行期望的分析。在图74中,其中具有分离区的通道和样本导入通道彼此垂直,但是,对此并没有什么限制,甚至在其中提供有分离区的通道和样本导入通道以任意角度相交的结构中,也能够获得上述效果。
在包括有柱状网格429的情况下,当对分离目标分子基团施加弱驱动力(例如,极其微弱的电场)时,如图75(a)所示经过加宽的样本在迁移开始之前被柱状网格429堵塞。因此,分子基团被压缩,如图75(b)所示,从而形成细带。然后,当对分离目标分子基团临时施加强驱动力(例如,强电场)时,分子基团穿过柱行同时保持压缩状态。也就是说,在诸如DNA和蛋白质等大分子的情况下,即使分子尺寸大于柱之间的间隔,但是当形成一行或几行柱行时,通过分子延长可以使分子擦过柱之间的间隔(匍匐效应)。由于分子基团保持着细带状态,因此在分离之后减少了峰值重叠,这能够以高精确度实现分离。它还具有不需要充电通道的优点,因为即使样本被直接输入到通道409的贮存器427中,也能够获得足够薄的带。
在图74和75中,其中具有分离区的通道和样本导入通道彼此垂直,但是,它们并不限于此,并且甚至在其中提供有分离区的通道和样本导入通道以任意角度相交的结构中,也能够获得上述效果。
(第十一实施例)
在应用于图1的质谱系统351的微芯片中,可以通过让用于吸附样本的精细颗粒黏附到衬底上来构造样本分离部分。图76(a)为根据该实施例的微芯片的俯视图,并且图76(b)是用于解释沿着图76(a)的样本分离部分347的线E-E’所作的截面的状态的视图。参考图76(a),在衬底110中具有分离通道112,并且贮液器101a和101b形成于分离通道112的两端。用精细颗粒填充的样本分离部分347位于分离通道112中。在TLC(薄层套色版)等中作为吸收剂的材料可以作为用于填充样本分离部分347的精细颗粒。具体地说,例如,可以使用硅胶、氧化铝和纤维素,并且颗粒直径可以设在5~40nm的范围内。
例如,在使用硅胶来作为精细颗粒的情况下,在将堵塞部件设置在分离通道112的下游侧之后,将硅胶粉、粘合剂和水的混合物注入通道中,并且对混合物进行干燥和固化处理。因此,可以用硅胶粉来填充样本分离部分347。
使用具有样本分离部分347的微芯片进行分离的处理如下。在微芯片处于干燥的状态下,在样本分离部分347的贮液器101a一侧从上面至端部执行样本的成斑(spotting)。例如,成斑样本量被设置在约1μL~约10μL的范围内。因此可以确保足够量的样本量,以执行质谱分析。当在优选情况下形成了斑点(spot)宽度时,会展现出优选的分离能力。当在样本被干燥到一定程度的阶段将预定量的展开溶液(developing solution)导入到贮液器101a时,则通过毛细管作用,展开溶液被导入到分离通道112中。然后,通过毛细管作用,展开溶液从分离通道112渗透到样本分离部分347中的精细颗粒之间的隙缝。
此时,通过经过样本分离部分347向下游渗透即向贮液器101b一侧渗透的展开溶液流,将成斑的样本移动到样本分离部分347。样本中的成分对展开溶液具有越高的亲和力,则成分的移动就越快。也就是说,成分是根据亲和力来展开的。在样本中的成分被分离之后,与第一实施例相似,当使用激光束沿着样本分离部分347对样本进行照射时,可以对每一个样本成分执行质谱分析。在本发明的方法中,由于在展开之后样本分离部分347被迅速干燥,因此能够更有效地转到质谱分析的步骤。
在图76(a)中,用精细颗粒填充分离通道112。但是,还可以采用其中将吸附剂黏附到衬底表面的结构。本发明并不特别限于设置有通道的结构。
(第十二实施例)
该实施例涉及质谱系统的另一种结构。在第一至第十一实施例中讲述的微芯片中,具有任意结构的微芯片可以应用到本实施例的质谱系统中。下面来讲述具有如图21所示的微芯片307的通道结构并且其中分布有如图6所示的柱125的分离通道112的微芯片来作为例子。还可以使用第四实施例中讲述的分离通道112,其中形成有柱状块组。
图77为示意图,示出了根据该实施例的质谱系统的结构。参考图77,质谱系统319包括质谱设备301、微芯片307、转换单元321、运算处理单元333和系统控制单元309。系统控制单元309管理和控制这些设备和单元。质谱设备301包括激光源305、光源支持单元315、放置台325、盖子341、密封垫(packing)345、齿轮343和检测单元327。微芯片307位于放置台325上。
如下所述使用质谱系统319执行质谱分析。首先使用微芯片307,通过后面要讲到的方法在微芯片中的通道(图77中未示出)上分离样本。
微芯片307设置在放置台325上,并且调整齿轮343以便将放置台325插入到质谱设备301的小室中。此时,盖子341与位于小室的壁部上的密封垫345紧密接触,这能够在分析期间使小室内部优选地确保真空。调整放置台325或光源支持单元315,以进行与微芯片307或激光源305的位置对准。
在真空下使用来自激光源305的激光束沿着在其中分离样本的通道进行扫描,并且对样本中每一个分离的成分执行质谱分析。样本中每一个分离的成分在微芯片307的通道中被蒸发。放置台325为电极。当对电极施加电压时,蒸发的样本飞入真空,并且样本被检测单元327检测。在通过转换单元321执行检测值的A/D转换之后,运算处理单元333进行预定分析。还可以形成如下结构,在其中在微芯片的下表面上形成金属膜,以便能够连接到外部电源。因此,可以对微芯片施加电压。
这样,在质谱系统319中,在通道上对由微芯片307上的通道所分离的样本连续进行分析。因此,在包含多种成分的样本被分离之后,可以对每一种成分有效地进行质谱分析。
然后,详细讲述包括质谱设备301和微芯片307的质谱系统的结构以及使用该系统的分析。图78是用于解释质谱系统控制方法的视图。参考图78,系统控制单元309管理测量条件控制单元311和分析条件设置单元331。
测量条件控制单元311控制质谱分析测量的各种条件。例如,测量条件控制单元311控制激光源控制单元313、微芯片控制单元317、检测单元327和转换单元321。激光源控制单元313控制激光束的照射角度和照射强度。在这种情况下,激光源控制单元313调节激光源305的发光强度,以及支持激光源305的光源支持单元315的角度或位置。
微芯片控制单元317调整其上放置有微芯片307的放置台325的位置。因此,使用来自激光源305的激光束能够可靠地照射微芯片307的分离通道112。为了增加光照对准的精确度,优选情况下在微芯片307的预定位置上设置对准标记(图77和图21中未示出)。
检测单元327检测被激光束照射所电离的成分的片段。此时,例如,检测单元327开始检测,同时将激光束照射的开始时间设置为原点。因此,能够沿着分离通道112进行激光束扫描,并且获得对应于扫描位置的离子检测信号。对通过检测单327所检测到的离子检测信号进行A/D(模数)转换。经过转换单元321转换的数据被发送到运算处理单元333,以执行数据分析。数据存储在测量数据存储器单元329中。
分析条件设置单元331控制运算处理单元333,并且运算处理单元333执行预定的分析。此时,可以参考其中存储有比较数据等的参考数据存储器单元339中的信息。分析结果存储在测量数据存储器单元329中。分析结果可以经输出单元335输出,并且在显示单元337上显示。
图79是用于解释使用质谱系统的分析流程的图。如图79所示,进行粗提纯,其中在一定程度上除去样本中的污染物(S101)。在根据需要执行后面所述的预处理之后(S102),分离样本(S103)。通过使用激光束沿着分离通道112对样本进行照射,使激光照射位置(带)的成分电离,并且执行质谱分析(S104)。在进行质谱分析之后,从为每一种成分获得的片段中分析片段图案(S105),并且对所获得的数据进行分析(S106)。在步骤106的数据分析中,参考了存储在参考数据存储器单元339中的数据库。
能够以下述处理来作为步骤102中的预处理的例子。例如,在对具有内部二硫键(disulfide bond)的成分执行质谱分析的情况下,在诸如乙腈等包含诸如DTT(二硫代苏糖醇(dithiothreitol))等还原剂的溶剂中执行还原反应。优选情况下在还原反应后硫醇基被烷化所保护,以抑制硫醇基的氧化。
在样本中的成分具有大于适用于质谱设备301的分析方法的分子量的情况下,使用诸如胰岛素等蛋白质水解酶可以执行对蛋白质分子的降解(degradation)处理。由于降解是在诸如硫酸缓冲等缓冲溶液中执行的,因此在反应之后要执行软化和大分子分馏(fraction),也就是除去胰岛素。在执行降解处理的情况下,优选情况下事先要执行还原处理。因此,可以以较高精确度来执行测量。
在样本分离之后可以执行胰岛素处理。在样本分离之后执行胰岛素处理的情况下,样本被固定在被分离的位置。由于该固定有效地抑制了分离样本的扩散,因此优选情况下在降解期间可以抑制带宽度的增大等。图85是示出了胰岛素处理方法的例子的视图。如图85(a)所示,在形成于衬底110上的柱125的表面上形成了固定层391。在第一实施例中讲述的材料可以用作柱125的材料。例如,使用硅或金属材料。通过施加例如具有环氧基的硅烷耦合剂来形成固定层391。样本451被具有固定层391的柱125所分离,并且分离通道112被干燥,这能够使样本451被固定层391的环氧基固定。
如图85(b)所示,当在将样本固定到分离通道112中的同时,将分离样本451浸渍到恒热室(heat-retention bath)393的酶溶液395中以便在预定温度下执行酶处理时,样本在分离位置被降解。因此,在每一种分离的成分中可以获得片段的质谱分析结果。
通过具有相同结构的两个分离通道112来分离相同的样本451。对通过如图85所述的方法被分离通道112中的一个分离的样本451进行降解处理,并且使用激光束来照射样本。使用激光束来照射由另一分离通道112所分离的样本451而不对其执行降解处理。因此,在每一种成分中获得了样本451中的成分自身的片段图案和降解片段的片段图案这两种信息。在两个分离通道112的相同位置处检测到的带被认为是相同的成分,从而通过将这两种信息结合起来来执行分析,可以更加可靠地识别出成分。可以在单个微芯片上形成两个分离通道112,或者在不同的微芯片上形成两个分离通道112。
用上述方法执行步骤103中的分离。可以在质谱设备301的质谱分析室中执行步骤102和103,或者可以在质谱设备301的外部或者前面的小室中执行步骤102和103。进而,必要时可以在质谱设备301的外部执行步骤102和103。
下面参考图78~80来讲述在步骤104中的质谱分析程序。当在质谱设备301的质谱分析室的外部执行直到步骤103的步骤(图79)的情况下,将其上设置有微芯片307的放置台325移动到质谱分析室,并且将放置台325安装在质谱分析室中(图80中的S201)。
然后,使用来自激光源305的激光束沿着分离通道112照射微芯片307(图80中的S202)。此时,使用放置台325作为产生电场的衬底。检测单元327检测电离的样本成分的特定电荷(m/z)(S203)。
通过转换单元321,对由检测单元检测到的数据进行诸如A/D转换等预定的转换(S204)。转换的数据被存储在测量数据存储器单元329中(S205)。
在上述质谱分析中(图79中的S104),由于在微芯片307上的分离通道112中形成柱125,因此在没有使用矩阵的情况下可以以高效率来电离样本。蛋白质溶液不需要与矩阵溶液相混合,并且可以通过使用激光束照射分离通道112来执行电离。
在微芯片307上可以连续地执行图79中的步骤102(预处理)至104(质谱分析)的每一个。由于沿着分离通道112使用激光束进行直接照射,因此分离通道112中通过样本分离而获得的每一个带中的成分不从分离通道112移走的同时,能够执行质谱分析。因此,即使样本是少量的,也可以以高精确度来有效地执行从分离到质谱分析的这些步骤。
由于使用分离通道112中的柱125对样本进行了分离,因此不需要使用诸如凝胶和珠子等用于现有电泳技术的过滤器。因此,在激光束照射期间能够顺利执行蒸发,同时在分离期间能够将液体样本保持在分离通道112中以抑制干燥。在使用过滤器的情况下,有可能在测量期间由于过滤器的电离而使本底上升。但是,在其中使用了柱125的分离通道112中,本底的上升受到抑制。由于在激光束照射期间分离通道112所得到的成分抑制了电离,如第一实施例中所述,因此优选情况下使用硅热氧化物膜来用于分离通道112的表面的亲水性处理。
通过其中使用了矩阵的方法可以进行质谱分析。根据测量目标物质来合理选择矩阵。例如,可以使用在第一实施例中讲述的物质。
在图79的步骤106中对片段图案的分析是通过如图78所示的运算处理单元333来执行的。下面将参考图81和82来讲述步骤106中的片段图案分析方法的例子。图81是示出了在分离通道112中的每一种分离成分中获得的质谱分析片段图案的视图。图82A和82B为从不同标本提取的样本而获得的片段图案。
在图81中,在根据分子量来分离样本的情况下,可以通过生成与分离通道112的位置和分子量有关的二维图来分析样本中的每一种成分。也就是说,图82A和82B示出了二维图,同时芯片上的位置被设置为纵轴并且分子量被设置为横轴。对于纵轴,在每一种成分的片段图案中通过染上黑色示出了具有最大(峰值)检测强度的m/z。因此,通过利用图82A和82B之间片段图案中的差异,可以容易地标出不同的成分和不同的区域。例如,由于在预定的蛋白质、DNA等中有变化发生的情况下,当对成分执行质谱分析时,在片段图案中成为峰值的片段发生了改变。其中有变化发生的成分和区域可以通过片段图案分析来识别。分析结果可以为诊断等提供有用的指导。进而,还可以将分析结果应用于有用物质等的筛选。
因此,通过质谱系统319,可以以高精确度快速地实现从样本的分离到成分的识别等多个步骤。即使样本是极其少量的,也可以对每一种成分执行灵敏的检测。可以有效地获得每一种成分的片段图案,并且对结果可以有效地进行分析。因此,可以获得大量的信息。
在质谱系统319中,分离是在质谱设备301的外部执行的,并且其设置在质谱设备301的质谱分析室中。但是,还可以采用其中在质谱设备301中设置前室的结构。
图83是示出了质谱系统的另一种结构的视图。参考图83,设置与质谱分析室相邻的前室,并且在设备外部或者在前室中使用微芯片执行样本分离。因此,在质谱分析室中,事先可以减小压强。
在分离之后,具有其上装有微芯片的放置台的前室中的压强被减小。由于前室与质谱分析室相比较小,因此压强迅速达到预定的真空程度。通过移动机构将放置台从前室移到质谱分析室,并且将放置台放到预定的位置上。
对于质谱系统319(图77),通过用来自激光源的激光束沿着通道(未示出)照射样本,来执行通道中的成分电离。通过使用放置台来作为衬底同时施加预定电压来电离的片段到达检测单元并且该片段被检测。通过分析单元对检测值进行分析。控制单元控制着放置台、光源支持单元、激光源、检测单元和分析单元。
因此,由于图83的质谱系统包括前室,因此能够持续和有效地执行分离质谱分析。
如上所述,根据这些实施例对本发明进行了解释。虽然给出这些实施例仅作为例子,但本领域的一般技术人员将认识到,可以进行各种修改而不偏离本发明的范围。
例如,在上述实施例中,在分离通道112中根据成分的分子量来对样本进行了分离。但是,除了分子量之外,还可以通过样本的等电势点来进行分离。
在通过等电势点来执行分离的情况下,事先将样本与预定缓冲溶液相混合。这里使用的缓冲溶液是指当施加电场时能够形成pH梯度的溶液。能够以包含Ampholine或Pharmalyte(Amersham BiosciencesKK的产品)的溶液来作为例子。在使用图21的微芯片307执行分离的情况下,溶液被输入到贮液器101a或贮液器101b中,并且溶液被导入到分离通道112。
样本可以从相对于在分离通道112中产生的电场方向的一侧导入。也就是说,也可以从贮液器102a或102b导入包含等电势点电解液的样本。由于在样本中包含等电势点电解液,因此通过电场的影响,在分离通道112中形成了pH梯度。因此,在分离通道112中,导入的样本基于每一种成分的等电势点汇聚成带。
权利要求书
(按照条约第19条的修改)
1.(删除)
2.(删除)
3.(删除)
4.(修改)一种质谱系统,包括:
微芯片,其具有通过样本的通道以及位于所述通道中的样本分离区;
光照单元,用于当沿着所述样本分离区移动光照位置时使用激光束进行照射;以及
分析单元,用于分析所述样本的片段以获得质谱数据,所述样本的所述片段由光照生成,
其中所述通道位于衬底表面上,所述样本分离区具有多个柱状体,并且
用所述激光束照射具有所述柱状体的所述样本分离区。
5.如权利要求4所述的质谱系统,其中所述样本分离区包括多个柱状体分布部分,在该柱状体分布部分中分布有所述多个柱状体,并且一路径位于所述相邻柱状体分布部分之间,所述样本穿过所述路径。
6.如权利要求5所述的质谱系统,其中所述路径的宽度大于所述柱状体分布部分中的所述柱状体之间的平均间隔。
7.如权利要求5或6所述的质谱系统,其中所述多个柱状体分布部分被组合和分布,使得平面分布呈近似菱形,并且分布所述柱状体使得每一个所述柱状体分布部分的所述平面分布呈近似菱形。
8.如权利要求4所述的质谱系统,其中所述多个柱状体的密度朝向所述通道中所述样本的前进方向逐渐下降。
9.如权利要求4所述的质谱系统,其中所述多个柱状体的密度朝向所述通道中所述样本的前进方向逐渐增加。
10.如权利要求4~9中任何一个所述的质谱系统,其中在相对于所述通道中的所述样本的前进方向上,所述样本分离区和调整区交替形成,在所述调整区中形成的所述柱状体的密度小于所述样本分离区中的密度。
11.如权利要求4~10中任何一个所述的质谱系统,其中金属层位于所述柱状体的表面上。
12.如权利要求4~10中任何一个所述的质谱系统,其中所述柱状体由金属制成。
13.(修改)如权利要求4~12中任何一个所述的质谱系统,其中所述激光束是红外激光束或紫外激光束。
14.(修改)一种质谱系统,包括:
微芯片,其具有通过样本的通道以及位于所述通道中的样本分离区;
光照单元,用于当沿着所述样本分离区移动光照位置时使用激光束进行照射;以及
分析单元,用于分析所述样本的片段以获得质谱数据,所述样本的所述片段由光照生成,
其中所述样本分离区具有多个凹部,并且所述凹部是位于所述通道中的孔。
15.(修改)如权利要求14所述的质谱系统,其中所述通道位于衬底的表面上,
突出部件位于所述样本分离区中,以及
从通道壁到所述突出部件以预定间距来设置所述多个凹部。
16.(修改)如权利要求14或15所述的质谱系统,其中所述凹部形成在金属氧化物涂层中,该金属氧化物涂层通过阳极氧化处理设置在所述通道的表面上。
17.(修改)如权利要求4~16中任何一个所述的质谱系统,其中所述通道的内壁的表面是亲水的。
18.如权利要求17所述的质谱系统,其中通过将亲水性物质黏附到所述通道的所述内壁的所述表面来使所述通道的所述内壁具有亲水性。
19.如权利要求17所述的质谱系统,其中通过在所述通道的表面上形成硅热氧化物膜来使所述通道的所述内壁具有亲水性。
20.(修改)如权利要求4~16中任何一个所述的质谱系统,其中所述通道的内壁的表面是经过斥水处理的。
21.(修改)一种质谱系统,包括:
微芯片,其具有通过样本的通道以及位于所述通道中的样本分离区;
光照单元,用于当沿着所述样本分离区移动光照位置时使用激光束进行照射;以及
分析单元,用于分析所述样本的片段以获得质谱数据,所述样本的所述片段由光照生成,
其中所述样本分离区的表面具有多个第一区和一个第二区,所述第一区的分布相互分离,所述第二区占有所述样本分离区中除所述第一区之外的所述表面,并且所述第一区和所述第二区中的一个是憎水区而另一个亲水区。
22.如权利要求21所述的质谱系统,包括多个所述样本分离区。
23.如权利要求22所述的质谱系统,其中所述多个样本分离区以条带形状分布。
24.如权利要求21~23中任何一个所述的质谱系统,其中通过包含具有憎水基团的化合物的膜来形成所述憎水区。
25.如权利要求24所述的质谱系统,其中具有所述憎水基团的所述化合物是具有憎水基团的硅烷耦合剂。
26.如权利要求24所述的质谱系统,其中具有所述憎水基团的所述化合物是硅树脂化合物。
27.如权利要求21~24中任一个所述的质谱系统,其中通过使聚二甲基硅氧烷块与亲水性的所述通道的表面相接触来形成所述憎水区。
28.如权利要求21~24中任一个所述的质谱系统,其中通过将液态硅树脂化合物印刷到亲水性的所述通道的表面上来形成所述憎水区。
29.如权利要求21~28中任一个所述的质谱系统,其中通过提供在所述通道的至少一部分表面上具有开口的掩模,经由所述开口将具有憎水基团的化合物积淀在所述通道的所述表面上,并且去除所述掩模,来形成所述样本分离区,其中所述憎水区分布在所述样本分离区中。
30.如权利要求21~29中任何一个所述的质谱系统,其中所述亲水区是由包含具有亲水基团的化合物的膜构成的。
31.如权利要求30所述的质谱系统,其中具有所述亲水基团的所述化合物是具有亲水基团的硅烷耦合剂。
32.如权利要求21~31中任何一个所述的质谱系统,其中通过提供在所述通道的至少一部分所述表面中具有开口的掩模,经由所述开口将具有亲水基团的化合物积淀在所述通道的所述表面上,并且去除所述掩模,来形成所述样本分离区,其中所述亲水区分布在所述样本分离区中。
33.(修改)如权利要求4~32中任何一个所述的质谱系统,其中提供所述多个通道,并且提供与所述通道交叉的液体样本导入通道。
34.(修改)如权利要求33所述的质谱系统,其中在所述样本分离区和所述通道与所述液体样本导入通道彼此交叉的部分之间,
设置通过具有预定尺寸的分子的柱状网格,并且
通过分布多个柱状体来形成所述柱状网格。
35.(修改)如权利要求4~34中任何一个所述的质谱系统,进一步包括堵塞部件,在堵塞部件中柱状体以线状分布并且样本被浓缩成带形。
36.(修改)如权利要求35所述的质谱系统,其中与所述样本分离区相邻地分布所述堵塞部件以分离所述样本分离区中的所述样本,所述样本被浓缩成带形。
37.(修改)如权利要求4~36中任何一个所述的质谱系统,其中通过裂缝将所述样本分离区分成多个区。
38.(修改)如权利要求4~37中任何一个所述的质谱系统,进一步包括外力施加单元,用于对所述样本施加外力以移动所述通道中的所述样本。
39.(修改)如权利要求38所述的质谱系统,所述通道位于衬底的表面上,进一步包括:
多个贮液器,其与位于所述衬底的表面上的所述通道连通;
导电路径,其位于所述贮液器附近和所述衬底上;
电极,其从所述贮液器的壁表面设置到所述导电路径并且被施压结合在所述导电路径上,
其中所述外力是施加在所述多个贮液器之间的电力。
40.(修改)如权利要求38所述的质谱系统,进一步包括:
位于所述通道的一部分上的贮液器;
接头部件,其由插入接头和套筒接头的组合形成并且位于所述贮液器中;以及
导管,其通过所述接头部件与所述贮液器连通,
其中通过所述外力施加单元将压力施加到所述导管、所述接头部件以及所述贮液器的内部。
41.(修改)如权利要求4~37中任何一个所述的质谱系统,其中在所述样本分离区中形成微通道,并且通过毛细管现象将所述样本从所述通道穿过所述微通道导入到所述样本分离区。
42.(修改)如权利要求4~41中任何一个所述的质谱系统,其中包含用于质谱分析的矩阵并形成为薄膜形状的盖子位于所述通道的上部。
43.一种质谱系统,包括:
衬底;
样本分离区,其中样本吸附颗粒黏附于所述衬底上,以根据特定属性来展开样本;
光照单元,用于当沿着所述样本分离区移动光照位置时使用激光束进行照射;以及
分析单元,用于分析所述样本的片段以获得质谱数据,所述样本的片段由光照生成。
44.如权利要求43所述的质谱系统,其中所述样本吸附颗粒是硅胶。
45.如权利要求43或44所述的质谱系统,其中所述分析单元包括数据存储器单元,该数据存储单元中存储有相互关联的所述光照位置和对应于所述光照位置的所述质谱数据。
46.(删除)
47.(修改)一种分析方法,其中利用具有样本分离区的微芯片进行质谱分析,该方法包括:
根据所述样本的特定属性来分离所述样本分离区中的样本的步骤;
当沿着所述样本分离区移动光照位置时使用激光束进行照射的步骤;以及
分析所述样本的片段以获得质谱数据的步骤,其中所述样本的所述片段由光照生成;
获取第一质谱数据的步骤,获取所述第一质谱数据的所述步骤包括在分离样本的所述步骤之后对所述样本进行解聚的步骤;
在分离样本的所述步骤之后通过执行使用激光束进行照射的所述步骤而不执行解聚所述样本的所述步骤,来分析所述样本的片段以获取第二质谱数据的步骤,其中所述样本的所述片段由光照生成;以及
根据所述第一质谱数据和所述第二质谱数据来识别所述样本的步骤。
48.(修改)如权利要求47所述的方法,
其中所述样本分离区具有包括具有环氧基团的化合物的固定层,该方法进一步包括:
在分离样本的所述步骤之后,在使用激光束进行照射的所述步骤之前,用所述化合物将所述分离的样本固定到所述样本分离区的步骤。
49.(修改)如权利要求47或48所述的方法,进一步包括:在分离样本的所述步骤之后,在使用激光束进行照射的步骤之前,通过使用喷雾气的压力或电压将用于质谱分析的矩阵喷射到所述样本分离区的步骤。
50.(删除)
51.(修改)一种分析方法,其中利用具有样本分离区的微芯片进行质谱分析,该方法包括:
根据所述样本的特定属性来展开所述样本分离区中的样本的步骤;
当沿着所述样本分离区移动光照位置时使用激光束进行照射的步骤;以及
分析所述样本的片段以获得质谱数据的步骤,其中所述样本的所述片段由光照生成;
获取第一质谱数据的步骤,获取所述第一质谱数据的所述步骤包括在展开样本的所述步骤之后对所述样本进行解聚的步骤;
在展开样本的所述步骤之后,通过执行使用激光束进行照射的所述步骤而不执行解聚所述样本的所述步骤,来分析所述样本的片段以获取第二质谱数据的步骤,其中所述样本的所述片段由光照生成;以及
根据所述第一质谱数据和所述第二质谱数据来识别所述样本的步骤。
52.(修改)如权利要求51所述的方法,
其中所述样本分离区具有包括具有环氧基团的化合物的固定层,该方法进一步包括:
在分离样本的所述步骤之后,在使用激光束进行照射的所述步骤之前,用所述化合物将所述展开的样本固定到所述样本分离区的步骤。
53.(修改)如权利要求51到52所述的方法,进一步包括:在分离样本的所述步骤之后,在使用激光束进行照射的步骤之前,通过使用喷雾气的压力或电压将用于质谱分析的矩阵喷射到所述样本分离区的步骤。
54.(增加)如权利要求4-42中任何一个所述的质谱系统,
其中所述分析单元包括数据存储单元,在该数据存储单元中存储有相互关联的所述光照位置和对应于所述光照位置的所述质谱分析数据。
55.(增加)如权利要求4-42中任何一个所述的质谱系统,
其中所述样本分离区根据所述样本的分子量、等电势点或表面憎水属性来分离所述样本,并且
当沿着所述样本分离区中分离的所述样本移动所述光照位置时,所述光照单元使用所述激光束进行照射。

Claims (53)

1.一种质谱系统,包括:
微芯片,其具有通过样本的通道以及位于所述通道中的样本分离区;
光照单元,用于当沿着所述样本分离区移动光照位置时使用激光束进行照射;以及
分析单元,用于分析所述样本的片段以获得质谱数据,所述样本的所述片段由光照生成。
2.如权利要求1所述的质谱系统,
其中所述分析单元包括数据存储器单元,在该数据存储单元中存储有相互关联的所述光照位置和对应于所述光照位置的所述质谱数据。
3.如权利要求1或2所述的质谱系统,
其中所述样本分离区根据所述样本的分子量、等电势点或表面憎水属性来分离所述样本,并且
当沿着所述样本分离区中分离的所述样本移动所述光照位置时,所述光照单元使用所述激光束进行照射。
4.如权利要求1~3中任何一个所述的质谱系统,
其中所述通道位于衬底表面上,并且所述样本分离区具有多个柱状体。
5.如权利要求4所述的质谱系统,其中所述样本分离区包括多个柱状体分布部分,在该柱状体分布部分中分布有所述多个柱状体,并且一路径位于所述相邻柱状体分布部分之间,所述样本穿过所述路径。
6.如权利要求5所述的质谱系统,其中所述路径的宽度大于所述柱状体分布部分中的所述柱状体之间的平均间隔。
7.如权利要求5或6所述的质谱系统,其中所述多个柱状体分布部分被组合和分布,使得平面分布呈近似菱形,并且分布所述柱状体使得每一个所述柱状体分布部分的所述平面分布呈近似菱形。
8.如权利要求4所述的质谱系统,其中所述多个柱状体的密度朝向所述通道中所述样本的前进方向逐渐下降。
9.如权利要求4所述的质谱系统,其中所述多个柱状体的密度朝向所述通道中所述样本的前进方向逐渐增加。
10.如权利要求4~9中任何一个所述的质谱系统,其中在相对于所述通道中的所述样本的前进方向上,所述样本分离区和调整区交替形成,在所述调整区中形成的所述柱状体的密度小于所述样本分离区中的密度。
11.如权利要求4~10中任何一个所述的质谱系统,其中金属层位于所述柱状体的表面上。
12.如权利要求4~10中任何一个所述的质谱系统,其中所述柱状体由金属制成。
13.如权利要求1~12中任何一个所述的质谱系统,其中所述激光束是红外激光束或紫外激光束。
14.如权利要求1~3中任何一个所述的质谱系统,其中所述样本分离区具有多个凹部。
15.如权利要求14所述的质谱系统,进一步包括所述样本分离区中的突出部件,所述多个凹部位于所述突出部件中。
16.如权利要求14或15所述的质谱系统,其中所述凹部通过阳极氧化处理来形成。
17.如权利要求1~16中任何一个所述的质谱系统,其中所述通道的内壁的表面是亲水的。
18.如权利要求17所述的质谱系统,其中通过将亲水性物质黏附到所述通道的所述内壁的所述表面来使所述通道的所述内壁具有亲水性。
19.如权利要求17所述的质谱系统,其中通过在所述通道的表面上形成硅热氧化物膜来使所述通道的所述内壁具有亲水性。
20.如权利要求1~16中任何一个所述的质谱系统,其中所述通道的内壁的表面是经过斥水处理的。
21.如权利要求1~3中任一个所述的质谱系统,其中所述样本分离区的表面具有多个第一区和一个第二区,所述第一区的分布相互分离,所述第二区占有所述样本分离区中除所述第一区之外的所述表面,并且所述第一区和所述第二区中的一个是憎水区而另一个亲水区。
22.如权利要求21所述的质谱系统,包括多个所述样本分离区。
23.如权利要求22所述的质谱系统,其中所述多个样本分离区以条带形状分布。
24.如权利要求21~23中任何一个所述的质谱系统,其中通过包含具有憎水基团的化合物的膜来形成所述憎水区。
25.如权利要求24所述的质谱系统,其中具有所述憎水基团的所述化合物是具有憎水基团的硅烷耦合剂。
26.如权利要求24所述的质谱系统,其中具有所述憎水基团的所述化合物是硅树脂化合物。
27.如权利要求21~24中任一个所述的质谱系统,其中通过使聚二甲基硅氧烷块与亲水性的所述通道的表面相接触来形成所述憎水区。
28.如权利要求21~24中任一个所述的质谱系统,其中通过将液态硅树脂化合物印刷到亲水性的所述通道的表面上来形成所述憎水区。
29.如权利要求21~28中任一个所述的质谱系统,其中通过提供在所述通道的至少一部分表面上具有开口的掩模,经由所述开口将具有憎水基团的化合物积淀在所述通道的所述表面上,并且去除所述掩模,来形成所述样本分离区,其中所述憎水区分布在所述样本分离区中。
30.如权利要求21~29中任何一个所述的质谱系统,其中所述亲水区是由包含具有亲水基团的化合物的膜构成的。
31.如权利要求30所述的质谱系统,其中具有所述亲水基团的所述化合物是具有亲水基团的硅烷耦合剂。
32.如权利要求21~31中任何一个所述的质谱系统,其中通过提供在所述通道的至少一部分所述表面中具有开口的掩模,经由所述开口将具有亲水基团的化合物积淀在所述通道的所述表面上,并且去除所述掩模,来形成所述样本分离区,其中所述亲水区分布在所述样本分离区中。
33.如权利要求1~32中任何一个所述的质谱系统,其中提供所述多个通道,并且提供与所述通道交叉的液体样本导入通道。
34.如权利要求33所述的质谱系统,其中将所述多个柱状体分布在所述样本分离区和所述通道与所述液体样本导入通道彼此交叉的部分之间。
35.如权利要求1~34中任何一个所述的质谱系统,进一步包括堵塞部件,在堵塞部件中柱状体以线状分布。
36.如权利要求35所述的质谱系统,其中与所述样本分离区相邻地分布所述堵塞部件。
37.如权利要求1~36中任何一个所述的质谱系统,其中通过裂缝将所述样本分离区分成多个区。
38.如权利要求1~37中任何一个所述的质谱系统,进一步包括外力施加单元,用于对所述样本施加外力以移动所述通道中的所述样本。
39.如权利要求38所述的质谱系统,其中所述外力为电力。
40.如权利要求38所述的质谱系统,其中所述外力为压力。
41.如权利要求1~37中任何一个所述的质谱系统,其中在所述样本分离区中形成微通道,并且通过毛细管现象将所述样本从所述通道穿过所述微通道导入到所述样本分离区。
42.如权利要求1~41中任何一个所述的质谱系统,其中用包含用于质谱分析的矩阵的薄膜覆盖所述通道的上部。
43.一种质谱系统,包括:
衬底;
样本分离区,其中样本吸附颗粒黏附于所述衬底上,以根据特定属性来展开样本;
光照单元,用于当沿着所述样本分离区移动光照位置时使用激光束进行照射;以及
分析单元,用于分析所述样本的片段以获得质谱数据,所述样本的片段由光照生成。
44.如权利要求43所述的质谱系统,其中所述样本吸附颗粒是硅胶。
45.如权利要求43或44所述的质谱系统,其中所述分析单元包括数据存储器单元,该数据存储单元中存储有相互关联的所述光照位置和对应于所述光照位置的所述质谱数据。
46.一种分析方法,其中使用具有样本分离区的微芯片来执行质谱分析,包括:
根据所述样本的特定属性来分离所述样本分离区中的样本的步骤;
当沿着所述样本分离区移动光照位置时使用激光束进行照射的步骤;以及
分析所述样本的片段以获得质谱数据的步骤,其中所述样本的所述片段由光照生成。
47.如权利要求46所述的方法,进一步包括:
获取第一质谱数据的步骤,获取所述第一质谱数据的所述步骤包括在分离样本的所述步骤之后对所述样本进行解聚的步骤;
在分离样本的所述步骤之后通过执行使用激光束进行照射的所述步骤而不执行解聚所述样本的所述步骤,来分析所述样本的片段以获取第二质谱数据的步骤,其中所述样本的所述片段由光照生成;以及
根据所述第一质谱数据和所述第二质谱数据来识别所述样本的步骤。
48.如权利要求46或47所述的方法,进一步包括:在分离样本的所述步骤之后,在使用激光束进行照射的所述步骤之前,将所述分离的样本固定到所述样本分离区的步骤。
49.如权利要求46~48中任何一个所述的方法,进一步包括:在分离样本的所述步骤之后,在使用激光束进行照射的所述步骤之前,将用于质谱分析的矩阵喷射到所述样本分离区的步骤。
50.一种分析方法,其中使用具有样本分离区的微芯片来执行质谱分析,包括:
根据所述样本的特定属性来展开所述样本分离区中的样本的步骤;
当沿着所述样本分离区移动光照位置时使用激光束进行照射的步骤;以及
分析所述样本的片段以获得质谱数据的步骤,其中所述样本的所述片段由光照生成。
51.如权利要求50所述的方法,进一步包括:
获取第一质谱数据的步骤,获取所述第一质谱数据的所述步骤包括在展开样本的所述步骤之后对所述样本进行解聚的步骤;
在展开样本的所述步骤之后,通过执行使用激光束进行照射的所述步骤而不执行解聚所述样本的所述步骤,来分析所述样本的片段以获取第二质谱数据的步骤,其中所述样本的所述片段由光照生成;以及
根据所述第一质谱数据和所述第二质谱数据来识别所述样本的步骤。
52.如权利要求50或51所述的分析方法,进一步包括:在展开样本的所述步骤之后,在使用激光束进行照射的所述步骤之前,将所述展开的样本固定到所述样本分离区的步骤。
53.如权利要求50~52中任何一个所述的方法,进一步包括:在展开样本的所述步骤之后,在使用激光束进行照射的所述步骤之前,将用于质谱分析的矩阵喷射到所述样本分离区的步骤。
CN200480010376.5A 2003-03-14 2004-03-15 质谱系统和用于分析的方法 Pending CN1774626A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP069793/2003 2003-03-14
JP2003069793 2003-03-14

Publications (1)

Publication Number Publication Date
CN1774626A true CN1774626A (zh) 2006-05-17

Family

ID=32984631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480010376.5A Pending CN1774626A (zh) 2003-03-14 2004-03-15 质谱系统和用于分析的方法

Country Status (4)

Country Link
US (1) US7586091B2 (zh)
JP (1) JP4074921B2 (zh)
CN (1) CN1774626A (zh)
WO (1) WO2004081555A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466655A (zh) * 2010-11-16 2012-05-23 上海华质生物技术有限公司 一种微流控芯片与质谱联用检测装置及方法
CN104685353A (zh) * 2012-10-19 2015-06-03 株式会社岛津制作所 流路组件以及具备该流路组件的色谱仪
CN107429214A (zh) * 2014-12-31 2017-12-01 富鲁达加拿大股份有限公司 用于通过质量细胞计数法分析的结构化生物样品
CN111278549A (zh) * 2017-09-04 2020-06-12 制药流体股份有限公司 化学反应器
CN111684273A (zh) * 2018-02-09 2020-09-18 浜松光子学株式会社 试样支撑体、电离法以及质量分析方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512745B2 (ja) * 2004-10-29 2010-07-28 独立行政法人産業技術総合研究所 細胞の分離、同定装置及び方法
US20060183238A1 (en) 2005-02-09 2006-08-17 Applera Corporation Amine-containing compound analysis methods
JP4586179B2 (ja) * 2005-03-18 2010-11-24 独立行政法人産業技術総合研究所 二次元電気泳動法用試料注入器具及びそれを含む二次元電気泳動用装置並びに該装置を用いた二次元電気泳動法
CN1841587A (zh) * 2005-04-02 2006-10-04 鸿富锦精密工业(深圳)有限公司 电极结构及其制备方法
US20070017808A1 (en) * 2005-05-27 2007-01-25 Intel Corporation Linear valve-coupled two-dimensional separation device and separation matrix and method
WO2006137205A1 (ja) * 2005-06-22 2006-12-28 Tokyo Institute Of Technology 液体導入プラズマシステム
WO2007046162A1 (ja) * 2005-10-20 2007-04-26 Japan Science And Technology Agency 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
WO2007055293A1 (ja) * 2005-11-14 2007-05-18 Nec Corporation マイクロチップおよびその使用方法、ならびに質量分析システム
ATE528786T1 (de) * 2006-07-11 2011-10-15 Canon Kk Substrat zur massenspektrometrie und herstellungsverfahren für das substrat zur massenspektrometrie
JP5173165B2 (ja) * 2006-08-14 2013-03-27 東京エレクトロン株式会社 クロマトグラフィ用のカラム及びその製造方法
KR100790888B1 (ko) * 2006-09-26 2008-01-02 삼성전자주식회사 미세유동 칩을 위한 원심력 기반의 유체 주입 장치
US20100176287A1 (en) * 2006-11-23 2010-07-15 Koninklijke Philips Electronics N.V. Device for separation and maldi analysis of an analyte in a sample
JP5069497B2 (ja) * 2007-05-24 2012-11-07 富士フイルム株式会社 質量分析用デバイス及びそれを用いた質量分析装置
US8173958B2 (en) * 2007-11-22 2012-05-08 Shimadzu Corporation Mass spectrometer
JP2009162549A (ja) * 2007-12-28 2009-07-23 Nec Corp 電気泳動チップ
US7888127B2 (en) 2008-01-15 2011-02-15 Sequenom, Inc. Methods for reducing adduct formation for mass spectrometry analysis
JP5068206B2 (ja) * 2008-03-24 2012-11-07 富士フイルム株式会社 質量分析装置
JP2009270963A (ja) * 2008-05-08 2009-11-19 Toppan Printing Co Ltd 電気泳動用カセット
US8974749B2 (en) * 2008-06-16 2015-03-10 Johnson & Johnson Ab Assay device and method
JP5206790B2 (ja) * 2008-07-03 2013-06-12 株式会社島津製作所 質量分析装置
JP2010078482A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 質量分析用基板および質量分析方法
JP5974429B2 (ja) 2011-07-20 2016-08-23 ソニー株式会社 複合材料構造物及びその製造方法
JP6264275B2 (ja) * 2014-12-12 2018-01-24 株式会社島津製作所 マトリックス膜形成装置
GB201516543D0 (en) 2015-09-18 2015-11-04 Micromass Ltd Ion source alignment
US9733232B1 (en) * 2016-01-25 2017-08-15 International Business Machines Corporation Nanopillar arrays with interfaces for controlled polymer stretching and effective translocation into nanochannels
WO2018207879A1 (ja) * 2017-05-10 2018-11-15 株式会社ユーグレナ 硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法
TWI671397B (zh) * 2017-07-14 2019-09-11 國立中興大學 粒線體萃取裝置
US11600481B2 (en) * 2019-07-11 2023-03-07 West Virginia University Devices and processes for mass spectrometry utilizing vibrating sharp-edge spray ionization
TWI738581B (zh) * 2020-12-03 2021-09-01 國立臺灣師範大學 平板式氧化鋁氣相層析管柱及其製作方法
WO2023107663A1 (en) * 2021-12-09 2023-06-15 Forward Biotech, Inc. Liquid evaluation device
KR102674931B1 (ko) * 2022-01-27 2024-06-13 스페클립스 주식회사 유체 분리 장치 및 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705616A (en) 1986-09-15 1987-11-10 Sepragen Corporation Electrophoresis-mass spectrometry probe
JP2569570B2 (ja) * 1987-06-19 1997-01-08 株式会社島津製作所 固体クロマトグラフィ質量分析方法
JPH0440367A (ja) 1990-06-05 1992-02-10 Mitsui Toatsu Chem Inc 球状分離剤
JPH05164741A (ja) 1991-12-13 1993-06-29 Shimadzu Corp 電気泳動−質量分析装置
US5637458A (en) * 1994-07-20 1997-06-10 Sios, Inc. Apparatus and method for the detection and assay of organic molecules
US5777324A (en) * 1996-09-19 1998-07-07 Sequenom, Inc. Method and apparatus for maldi analysis
JP3592494B2 (ja) 1997-08-22 2004-11-24 日本電子株式会社 大気圧レーザー気化質量分析装置及び方法
US6387234B1 (en) * 1998-08-31 2002-05-14 Iowa State University Research Foundation, Inc. Integrated multiplexed capillary electrophoresis system
WO2000015321A1 (en) * 1998-09-17 2000-03-23 Advanced Bioanalytical Services, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
US6322980B1 (en) * 1999-04-30 2001-11-27 Aclara Biosciences, Inc. Single nucleotide detection using degradation of a fluorescent sequence
MXPA02000144A (es) 1999-07-07 2002-07-02 3M Innovative Properties Co Articulo de deteccion que tiene una pelicul a de control de fluidos.
JP2001264297A (ja) 2000-03-15 2001-09-26 Hitachi Ltd 試料分析方法及び装置
CA2301451A1 (en) 2000-03-20 2001-09-21 Thang T. Pham Method for analysis of analytes by mass spectrometry
US6783672B2 (en) * 2001-01-18 2004-08-31 Kemmons A. Tubbs Integrated high throughput system for the mass spectrometry of biomolecules
JP3640387B2 (ja) 2001-02-27 2005-04-20 独立行政法人理化学研究所 レーザーアブレーションを用いた高分子の分析方法およびそのシステム
JP2002311007A (ja) 2001-04-17 2002-10-23 Hitachi Instruments Service Co Ltd 液体クロマトグラフィー装置
JP2002365177A (ja) 2001-05-25 2002-12-18 Proteome Systems Ltd 質量分析用試料の前処理装置
CN1585898A (zh) 2001-11-20 2005-02-23 日本电气株式会社 分离装置,分离方法和生产分离装置的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466655A (zh) * 2010-11-16 2012-05-23 上海华质生物技术有限公司 一种微流控芯片与质谱联用检测装置及方法
CN102466655B (zh) * 2010-11-16 2015-12-16 上海华质生物技术有限公司 一种微流控芯片与质谱联用检测装置及方法
CN104685353A (zh) * 2012-10-19 2015-06-03 株式会社岛津制作所 流路组件以及具备该流路组件的色谱仪
CN104685353B (zh) * 2012-10-19 2016-06-29 株式会社岛津制作所 流路组件以及具备该流路组件的色谱仪
CN107429214A (zh) * 2014-12-31 2017-12-01 富鲁达加拿大股份有限公司 用于通过质量细胞计数法分析的结构化生物样品
CN111278549A (zh) * 2017-09-04 2020-06-12 制药流体股份有限公司 化学反应器
US11491458B2 (en) 2017-09-04 2022-11-08 Pharmafluidics Nv Method for producing chemical reactor
CN111684273A (zh) * 2018-02-09 2020-09-18 浜松光子学株式会社 试样支撑体、电离法以及质量分析方法
CN111684273B (zh) * 2018-02-09 2023-09-05 浜松光子学株式会社 试样支撑体、电离法以及质量分析方法

Also Published As

Publication number Publication date
US20060214101A1 (en) 2006-09-28
US7586091B2 (en) 2009-09-08
JPWO2004081555A1 (ja) 2006-06-15
JP4074921B2 (ja) 2008-04-16
WO2004081555A1 (ja) 2004-09-23

Similar Documents

Publication Publication Date Title
CN1774626A (zh) 质谱系统和用于分析的方法
CN1274400C (zh) 分离装置及其制造方法
CN1124167C (zh) 用于液体化学分析的集成小型化系统
CN1237572C (zh) 多电雾化装置、系统和方法
CN1575198A (zh) 分离装置、分析系统、分离方法以及制造该分离装置的方法
US9039973B2 (en) Hybrid digital and channel microfluidic devices and methods of use thereof
CN1867831A (zh) 芯片、使用该芯片的设备、以及使用该设备的方法
Huang et al. Single-cell assay on microfluidic devices
CN1476536A (zh) 电生理测量系统
CN1715932A (zh) 用于处理液体的微结构平台和方法
EP3035031B1 (en) Microanalysis of cellular function
CN1369039A (zh) 微型制造的弹性体的阀和泵系统
CN1993617A (zh) 用于生产dna芯片的方法和系统、用于检测杂交的方法和系统和用于基质处理的设备和方法
CN101052468A (zh) 采用共线电场的微流控装置
CN1720438A (zh) 分离设备和分离方法
CN1846136A (zh) 利用组合的样品处理和样品承载设备来分析样品的设备和方法
Baba et al. DNA size separation using artificially nanostructured matrix
CN1309769A (zh) 分析仪
CN1659431A (zh) 用于等电聚焦的设备
CN1596369A (zh) 碱基序列检测装置及碱基序列自动解析装置
CN1370278A (zh) 分析盒和液体输送控制装置
CN1890566A (zh) 生物样品鉴别装置、生物样品鉴别方法以及生物样品鉴别用平板
CN1350179A (zh) 电泳装置
CN1867795A (zh) 微流体的大规模集成
CN1834636A (zh) 细胞外电位测量装置及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication