WO2018207879A1 - 硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法 - Google Patents

硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法 Download PDF

Info

Publication number
WO2018207879A1
WO2018207879A1 PCT/JP2018/018154 JP2018018154W WO2018207879A1 WO 2018207879 A1 WO2018207879 A1 WO 2018207879A1 JP 2018018154 W JP2018018154 W JP 2018018154W WO 2018207879 A1 WO2018207879 A1 WO 2018207879A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
sulfur compound
compound
evaluating
odor
Prior art date
Application number
PCT/JP2018/018154
Other languages
English (en)
French (fr)
Inventor
厳生 大津
聡 大城
Original Assignee
株式会社ユーグレナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーグレナ filed Critical 株式会社ユーグレナ
Priority to JP2018539445A priority Critical patent/JP6426329B1/ja
Priority to MYPI2019006467A priority patent/MY192937A/en
Publication of WO2018207879A1 publication Critical patent/WO2018207879A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for evaluating a sulfur compound-containing substance contained in a sample such as a crop and a method for determining a volatile low-molecular sulfur compound.
  • a sensory test for evaluating items such as the appearance, touch, and aroma of the crop is generally performed by an evaluator (a seller or a consumer of the crop).
  • the sensory test involves the subject of the evaluator's subjectivity, so there is a problem that it cannot be objectively evaluated and cannot be quantitatively evaluated. Therefore, an evaluation method capable of objective and quantitative evaluation is required.
  • a method for quantitatively evaluating the freshness of crops for example, there is a method of measuring a change in the content of vitamin C in crops.
  • Agricultural crops have a reduced vitamin C content corresponding to the passage of time after harvest and the temperature of the storage environment. Therefore, the freshness of crops can be evaluated by measuring the variation in the content of vitamin C.
  • Examples of a method for measuring the content of vitamin C in agricultural products include a method using an ORAC (Oxygen Radical Absorbance Capacity) method (for example, see Non-Patent Document 1).
  • the present invention has been made in view of the above circumstances, and is a method for evaluating the freshness (redox degree) of a test substance such as a crop based on the analysis results of a plurality of sulfur compounds and a plurality of sulfur metabolism-related compounds.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for quantifying volatile low-molecular sulfur compounds by liquid chromatography mass spectrometry.
  • the subject is an evaluation method for a sulfur compound-containing substance for evaluating a plurality of test substances, and each test substance has a plurality of sulfur compounds and a plurality of substances.
  • a step of preparing a quantitative value of a compound related to sulfur metabolism, and an analysis value of the test substance including the quantitative value is analyzed by a multidimensional scaling method, and the redox degree, contribution of microbial metabolism, antioxidant capacity or odor or Based on the step of creating a scatter diagram with two or more kinds selected from odor as a scale, and the position on the scatter diagram, the redox degree of the test substance, contribution of microbial metabolism, antioxidant capacity or odor or And the step of evaluating odor.
  • the scatter diagram is a two-dimensional scatter diagram having two kinds selected from redox degree, contribution of microbial metabolism, antioxidant ability, odor or odor as a scale.
  • the scatter diagram is a three-dimensional scatter diagram having three kinds selected from redox degree, contribution of microbial metabolism, antioxidant ability, odor or odor as a scale.
  • the sulfur compound includes glutathione and a derivative thereof, and the sulfur metabolism-related compound includes an ergothioneine metabolism-related compound.
  • the sulfur compound is sulfite ion, thiosulfate ion, sulfide ion, glutathione, glutathione monosulfide, glutathione disulfide, glutathione trisulfide, glutathione tetrasulfide, oxidized glutathione, oxidized glutathione monosulfide, oxidized glutathione disulfide, Contains oxidized glutathione trisulfide, oxidized glutathione tetrasulfide, cysteine, cysteine monosulfide, methionine, 2-furfurylthiol, benzyl mercaptan, 4-mercapto-4-methyl-pentan-2-one and 2-mercaptoethyl acetate
  • the sulfur metabolism-related compound is cystine, cystathionine, S-adenosylmethionine, homocysteine, S-sulfocystein
  • the step of preparing the quantitative value includes a step of performing a pretreatment for modifying the volatile low molecular sulfur compound with an alkylating agent, and analyzing the modified volatile low molecular sulfur compound by liquid chromatography mass spectrometry. And a method for quantifying the volatile low-molecular sulfur compound, and a method for quantifying the volatile low-molecular sulfur compound.
  • the alkylating agent is 5,5′-dithiobis (2-nitrobenzoic acid), 2,6-dichlorophenolindophenol, p-chloromercuribenzoic acid, iodoacetamide, N-ethylmaleimide and monobromobimane.
  • the volatile low-molecular sulfur compound is one or more compounds selected from the group consisting of 2-furfurylthiol, benzyl mercaptan, 4-mercapto-4-methylpentan-2-one, and 2-mercaptoethyl acetate. Is preferable.
  • a method for evaluating a sulfur compound-containing substance for evaluating the freshness (redox degree) of a test substance such as a crop based on the analysis results of a plurality of sulfur compounds and a plurality of sulfur metabolism-related compounds, and volatilization It is possible to provide a method for quantifying a volatile low-molecular sulfur compound, wherein the volatile low-molecular sulfur compound is quantified by liquid chromatography mass spectrometry.
  • Embodiments of a method for evaluating a sulfur compound-containing substance and a method for determining a volatile low-molecular sulfur compound according to the present invention will be described. Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
  • the method for evaluating a sulfur compound-containing substance is a method for evaluating a sulfur compound-containing substance for evaluating a plurality of test substances, and includes a plurality of sulfur compounds and a plurality of sulfur metabolism-related compounds for each test substance.
  • a step of preparing a quantitative value and an analysis value of the test substance including the quantitative value are analyzed by a multidimensional scaling method, and selected from redox degree, contribution of microbial metabolism, antioxidant ability, odor or odor
  • the “test substance” is used to evaluate the degree of redox, contribution of microbial metabolism, odor, odor, or the like by the method for evaluating a sulfur compound-containing substance according to the present embodiment. Means the target substance.
  • the test substance in the volatile low-molecular-weight sulfur compound quantification method of the present embodiment is not particularly limited, and examples thereof include soil, water, food, beverages, biological samples, and the like.
  • Examples of food include meat; fish and shellfish; eggs; milk; crops such as cereals, beans, potatoes, vegetables and fruits.
  • Examples of the beverage include those made by brewing beer, wine, Japanese sake, and soft drinks.
  • Examples of the biological sample include blood, saliva, stool, and the like.
  • a step of performing a pretreatment for modifying the volatile low molecular sulfur compound with an alkylating agent according to the volatile low molecular sulfur compound quantification method of the embodiment described later ( The step A) and the step of quantifying the volatile low-molecular sulfur compound by analyzing the volatile low-molecular sulfur compound modified with the alkylating agent by liquid chromatography mass spectrometry (step B) can be performed.
  • the sulfur compound is not particularly limited as long as it can be modified with an alkylating agent and can be analyzed by liquid chromatography mass spectrometry after modification with the alkylating agent.
  • Alkylating agents include 5,5′-dithiobis (2-nitrobenzoic acid), 2,6-dichlorophenolindophenol, p-chloromercuribenzoic acid, iodoacetamide, N-ethylmaleimide and monobromobimane (mBBr) It is preferably one or more compounds selected from the group consisting of These alkylating agents may be used individually by 1 type, and may use 2 or more types together.
  • monobromobimane (mBBr) is represented by the following formula (1).
  • monobromobiman may be abbreviated as “mBBr”.
  • sulfur compounds As sulfur compounds, sulfite ion, thiosulfate ion, sulfide ion, glutathione, glutathione monosulfide, glutathione disulfide, glutathione trisulfide, glutathione tetrasulfide, oxidized glutathione, oxidized glutathione monosulfide, oxidized glutathione disulfide, oxidized glutathione Preferably includes trisulfide, oxidized glutathione tetrasulfide, cysteine, cysteine monosulfide, methionine, 2-furfurylthiol, benzyl mercaptan, 4-mercapto-4-methyl-pentan-2-one and 2-mercaptoethyl acetate .
  • the quantitative values of these sulfur compounds are factors for evaluating the redox degree of the test substance.
  • the sulfur metabolism-related compound is not particularly limited as long as it can be modified with the above alkylating agent and can be analyzed by liquid chromatography mass spectrometry after the modification with the alkylating agent, but cystine, cystathionine, S -Adenosylmethionine, homocysteine, S-sulfocysteine, O-phosphoserine, O-acetylserine, N-acetylserine, O-succinylhomoserine, adenosine 5'-phosphosulfate, lanthionine, 3'-phosphoadenosine-5 ' -Sulphates, preferably 3'-phosphoadenosine-5'-phosphosulfate, ergothioneine, hercinin, 5-glutamylcysteine, S-helsinyl-cysteine sulfoxide and 5-glutamyl-S-helsinyl-cysteine sulfox
  • LC-MS / MS liquid chromatography mass spectrometry
  • gas chromatography mass spectrometry Gas Chromatography-Mass Spectrometry, GC-MS
  • gas chromatography mass spectrometry Gas Chromatography-tandem Mass Spectrometry, GC-MS / MS
  • capillary electrophoresis-mass spectrometry Capillary Electrophoresis-Mass Spectrometry, CE-MS, etc.
  • liquid chromatography mass spectrometry it is preferable to use liquid chromatography mass spectrometry because it is easily associated with a quantitative value of an off-flavor compound described later.
  • the quantitative value obtained by a method other than liquid chromatography mass spectrometry can be associated with the quantitative value obtained by liquid chromatography mass spectrometry.
  • analysis values of a test substance prepared in advance for each test substance are obtained by a multidimensional scaling method. Analyze to create a 2D or 3D scatter plot. Then, based on the position on the scatter diagram, the redox degree of the test substance, the contribution of microbial metabolism, the antioxidant capacity, or the odor or odor is evaluated.
  • the scale of the scatter diagram (parameters for each axis) can be selected from the degree of redox, contribution of microbial metabolism, antioxidant capacity (the action of microorganisms) or odor or odor. It is not limited to.
  • a two-dimensional or three-dimensional scatter diagram is created by analysis using a multidimensional scaling method.
  • a scatter diagram for example, a two-dimensional scatter diagram shown in FIGS. 1 and 2 is obtained.
  • the analysis by the multidimensional scaling method is performed using a multidimensional scaling method (Vegan) which is one of the packages of the statistical analysis free software “R”.
  • Vegan multidimensional scaling method
  • FIG. 1 is a scatter diagram showing the results of analysis using a multidimensional scaling method for 69 types of commercially available wines as test substances.
  • FIG. 2 is a scatter diagram showing the results of analyzing the above-described sulfur compound and sulfur metabolism-related compound by a multidimensional scaling method.
  • labeling indicates a sulfur compound or sulfur metabolism-related compound modified with the above alkylating agent.
  • the oxidation-reduction state of the test substance can be evaluated by comparing the position of the sulfur compound and the sulfur metabolism-related compound on the scatter chart with the position of the test substance on the scatter chart.
  • a compound in a reduced state is located in the right region with reference to 0 on the x-axis, so that the right region is in a reduced state.
  • an oxidized compound (oxidized glutathione, etc.) is positioned in the left region with reference to 0 on the x-axis, so that the left region is defined as being in an oxidized state.
  • ergothioneine is located in the upper region with reference to 0 on the y-axis, so that it is defined that the upper region indicates a high contribution of microbial metabolism.
  • Ergothioneine is a kind of sulfur-containing amino acid and is known to be biosynthesized only by some microorganisms. Therefore, the test substance containing a large amount of ergothioneine shows a high contribution of microbial metabolism.
  • a compound located in an upper region (the front side of the drawing) with respect to 0 of the z-axis orthogonal to the x-axis and the y-axis has a strong odor. It may be defined that the compound located in the lower (back side of the paper) region with respect to 0 of the z-axis orthogonal to the x-axis and the y-axis is in a weak odor state.
  • the upper region is defined as indicating a strong coffee-like scent. In this way, based on the position on the scatter diagram, it is possible to evaluate the redox degree of the test substance, the contribution of microbial metabolism, the antioxidant capacity, or the odor or odor.
  • the result of evaluating the redox state and odor of the test substance may be shown in a two-dimensional scatter diagram. Further, in the method for evaluating a sulfur compound-containing substance of the present embodiment, the result of evaluating the contribution and odor of the microbial metabolism of the test substance may be shown in a two-dimensional scatter diagram. Furthermore, in the method for evaluating a sulfur compound-containing substance of the present embodiment, the evaluation result of the redox state, antioxidant capacity, odor or odor of the test substance may be shown in a three-dimensional scatter diagram.
  • the analysis value of the test substance including the quantitative value of the sulfur compound having a thiol group and the polysulfide of the sulfur compound, which is quantified by liquid chromatography mass spectrometry is multidimensional. It is possible to evaluate the oxidation-reduction state of the test substance based on the type of the sulfur compound having a thiol group and the polysulfide of the sulfur compound and the quantitative value based on the analysis result by the scale method.
  • glutathione, glutathione monosulfide, glutathione disulfide, glutathione trisulfide and glutathione tetrasulfide modified with mBBr form an order in this order as shown in FIG. 3 when quantified by liquid chromatography mass spectrometry.
  • the following formula (2) shows glutathione (GS-bimine) modified with mBBr
  • the following formula (3) shows glutathione monosulfide (GS-S-biane) modified with mBBr
  • the following formula (4) shows The glutathione disulfide (GS-S 2 -bimane) modified with mBBr
  • the following formula (5) shows the glutathione trisulfide (GS-S 3 -bimane) modified with mBBr
  • the following formula (6) shows mBBr Shows glutathione tetrasulfide (GS-S 4 -bimane) modified with
  • GS-bimane, GS-S-bimane, GS-S 2 -bimane, GS-S 3 -bimane and GS-S 4 -bimane also form an order in this order.
  • This order indicates the oxidation-reduction state of the test substance, and when the quantitative value of GS-bimane is large, it is determined that the degree of oxidation of the test substance is low. On the other hand, when the quantitative value of GS-S 4 -bimane is large, it is determined that the degree of oxidation of the test substance is high.
  • the freshness of the test substance can be evaluated by evaluating the oxidation-reduction state of the test substance such as food, that is, the degree of oxidation.
  • the umami of the test substance can be evaluated by evaluating the contribution of microbial metabolism. .
  • the analysis value of a test substance prepared in advance for each test substance and including quantitative values of a plurality of sulfur compounds and a plurality of sulfur metabolism-related compounds is a multidimensional scale.
  • the method for quantifying a volatile low-molecular sulfur compound includes a step of performing a pretreatment for modifying a volatile low-molecular sulfur compound with an alkylating agent (hereinafter referred to as “step A”), and the modified volatilization.
  • step A a pretreatment for modifying a volatile low-molecular sulfur compound with an alkylating agent
  • step B the volatile low-molecular-weight sulfur compound is quantified
  • the volatile low molecular sulfur compound quantification method of the present embodiment quantifies the volatile low molecular sulfur compound contained in the test substance as described below.
  • the test substance in the volatile low-molecular-weight sulfur compound quantification method of the present embodiment is not particularly limited, and examples thereof include soil, water, food, beverages, biological samples, and the like.
  • Examples of food include meat; fish and shellfish; eggs; milk; crops such as cereals, beans, potatoes, vegetables and fruits.
  • Examples of the beverage include those made by brewing beer, wine, Japanese sake, and soft drinks.
  • Examples of the biological sample include blood, saliva, stool, and the like.
  • the volatile low-molecular sulfur compound in the method for quantifying the volatile low-molecular sulfur compound of the present embodiment is a liquid having a low molecular weight and a property of being easily evaporated.
  • the volatile low molecular sulfur compound in the volatile low molecular sulfur compound determination method of the present embodiment has a weight average molecular weight (Mw) of 50 or more and 300 or less.
  • the volatile low-molecular sulfur compound in the method for quantifying volatile low-molecular sulfur compounds of the present embodiment is a strange odor that is secondarily generated due to chemical changes in the food component itself or deterioration of the food quality due to contamination of external substances.
  • a compound that causes off-flavor such as altered odor and bad odor hereinafter referred to as “off-flavor compound”.
  • Such an off-flavor compound (volatile low molecular sulfur compound) is selected from the group consisting of 2-furfurylthiol, benzyl mercaptan, 4-mercapto-4-methylpentan-2-one and 2-mercaptoethyl acetate 1 More than one kind of compound. That is, two or more types of off-flavor compounds may be contained in the sample.
  • Step A pretreatment for modifying the volatile low-molecular sulfur compound with an alkylating agent is performed.
  • the pretreatment in step A means that in the subsequent step B, a volatile low-molecular sulfur compound is alkylated so that it can be analyzed by liquid chromatography mass spectrometry (Liquid Chromatography-Tandem Mass Spectrometry, LC-MS / MS). This is a process of modifying with an agent.
  • a liquid chromatography mass spectrometer that performs liquid chromatography mass spectrometry has a component separation (LC) section, a first mass analysis (MS) section, and a second mass analysis (MS) section.
  • LC component separation
  • MS mass analysis
  • MS mass analysis
  • a test substance is separated for each component by a difference in affinity in a component separation (LC) section, and then only a component having a specific mass is further separated in a first mass analysis section.
  • This is an analysis method in which a specific ion is detected (quantified) in a second mass analysis unit after dissociation and fragmentation.
  • step A the volatile low molecular sulfur compound and the alkylating agent are reacted, and the volatile low molecular sulfur compound is modified with the alkylating agent. Produces volatile low molecular sulfur compounds modified with alkylating agents, having quantifiable molecular weight.
  • step A first, a volatile low-molecular sulfur compound contained in the test substance is extracted as follows. For example, after adding an extract to a test substance and mixing the test substance and the extract sufficiently, the mixture is centrifuged and the supernatant liquid is recovered. Thereby, a volatile low molecular sulfur compound is extracted.
  • the amount of the test substance to be collected is preferably 0.001 ⁇ g or more and 10 ⁇ g or less, and more preferably 0.01 ⁇ g or more and 0.1 ⁇ g or less.
  • a solution containing D-sodium-10-sulfonate sodium with a final concentration of 0.1 ⁇ M to 100 ⁇ M diluted with ultrapure water and methanol with a final concentration of 99% (w / w) is used. It is done.
  • the amount of the extract added is preferably 50 ⁇ L or more and 1000 ⁇ L or less, and more preferably 100 ⁇ L or more and 500 ⁇ L or less.
  • the number of rotations is preferably 10,000 rpm to 15000 rpm, more preferably 13000 rpm to 15000 rpm.
  • the temperature is preferably 1 ° C. or higher and 10 ° C. or lower, more preferably 4 ° C. or higher and 5 ° C. or lower. Centrifugation is preferably performed for 1 minute to 10 minutes, more preferably 3 minutes to 5 minutes, at the above rotation speed and temperature.
  • Tris-hydrochloric acid buffer is added to the collected supernatant, and an alkylating agent is further added.
  • the mixture is stirred, and the volatile low-molecular sulfur compound is modified with the alkylating agent.
  • the alkylating agent includes 5,5′-dithiobis (2-nitrobenzoic acid), 2,6-dichlorophenolindophenol, p-chloromercuribenzoic acid, iodoacetamide, N-ethylmaleimide and monobromobimane It is preferable that it is 1 or more types of compounds chosen from these. These alkylating agents may be used individually by 1 type, and may use 2 or more types together.
  • iodoacetamide reacts with thiol groups, it is suitably used for quantification (detection) of thiol group-containing compounds.
  • N-ethylmaleimide reacts with thiol groups, it is suitably used for quantification (detection) of thiol group-containing compounds.
  • Monobromobiman (3- (bromomethyl) -2,5,6-trimethylpyrazolo [1,2-a] pyrazole-1,7-dione) has a sulfide ion (S 2 ⁇ ) and a thiol group. Since it reacts, it is suitably used for the determination (detection) of sulfur compounds having a thiol group and polysulfides of sulfur compounds.
  • the amount of the supernatant is preferably 50 ⁇ L or more and 100 ⁇ L or less, and more preferably 60 ⁇ L or more and 90 ⁇ L or less.
  • the concentration of the Tris-HCl buffer is preferably 1M or more and 2M or less, and more preferably 1.5M or more and 2M or less.
  • the pH of the Tris-HCl buffer is preferably 8 or more and 9 or less, more preferably 8.7 or more and 8.9 or less.
  • the addition amount of the alkylating agent is preferably 1 ⁇ L or more and 20 ⁇ L or less, and more preferably 5 ⁇ L or more and 10 ⁇ L or less.
  • step A the following treatment is further performed on the volatile low-molecular sulfur compound modified with the alkylating agent so that it can be quantified by liquid chromatography mass spectrometry in step B.
  • the number of rotations is preferably 10,000 rpm to 15000 rpm, more preferably 13000 rpm to 15000 rpm.
  • the temperature is preferably 1 ° C. or higher and 10 ° C. or lower, more preferably 4 ° C. or higher and 5 ° C. or lower. Centrifugation is preferably performed for 1 minute to 10 minutes, more preferably 3 minutes to 5 minutes, at the above rotation speed and temperature.
  • the supernatant after centrifugation is collected and dried with a centrifugal evaporator to dry the supernatant. Subsequently, ultrapure water is added to the dried supernatant and resuspended to prepare a suspension.
  • the amount of the supernatant is preferably 50 ⁇ L or more and 100 ⁇ L or less, and more preferably 60 ⁇ L or more and 90 ⁇ L or less.
  • the drying treatment by the centrifugal evaporator is preferably 2 hours or more and 48 hours or less, and more preferably 12 hours or more and 16 hours or less.
  • the amount of ultrapure water added to the dried supernatant is preferably 10 ⁇ L or more and 100 ⁇ L or less, and more preferably 30 ⁇ L or more and 60 ⁇ L or less.
  • the suspension is centrifuged and the supernatant is recovered.
  • the number of rotations is preferably 10,000 rpm to 15000 rpm, more preferably 13000 rpm to 15000 rpm.
  • the temperature is preferably 1 ° C. or higher and 10 ° C. or lower, more preferably 4 ° C. or higher and 5 ° C. or lower. Centrifugation is preferably performed for 1 minute to 10 minutes, more preferably 3 minutes to 5 minutes, at the above rotation speed and temperature.
  • step B the modified volatile low-molecular sulfur compound is analyzed by liquid chromatography mass spectrometry, and the volatile low-molecular sulfur compound is quantified. That is, in step B, a part of the supernatant obtained by centrifuging the suspension is analyzed by liquid chromatography mass spectrometry, and the volatile low-molecular sulfur compound contained in the supernatant is quantified.
  • step B a part of the supernatant obtained by centrifuging the suspension is transferred to a sample cup.
  • the amount of the supernatant transferred to the sample cup is preferably 30 ⁇ L or more and 100 ⁇ L or less, and more preferably 40 ⁇ L or more and 60 ⁇ L or less.
  • the amount of the supernatant used for quantification by liquid chromatography mass spectrometry is preferably 1 ⁇ L or more and 10 ⁇ L or less, and more preferably 3 ⁇ L or more and 5 ⁇ L or less.
  • the composition of the extract extracted from the test substance is clarified by quantifying the volatile low molecular sulfur compounds by liquid chromatography mass spectrometry. be able to.
  • the degree of progress of the degree of damage of the test substance can be evaluated. For example, when a large amount of 2-furfurylthiol is detected among volatile low-molecular sulfur compounds, it can be said that the test substance has a coffee-like scent. When a large amount of benzyl mercaptan is detected, it can be said that the test substance contains a roasted scent.
  • test substance contains a wine-like scent.
  • 2-mercaptoethyl acetate it can be said that the test substance contains a rubber-like scent.
  • Example 1 As test substances, 69 kinds of commercially available wines were prepared. The volatile low molecular sulfur compounds contained in these wines were modified with an alkylating agent and then analyzed by liquid chromatography mass spectrometry to quantify the volatile low molecular sulfur compounds contained in the wine. 0.5 mL of wine is collected, and 0.5 mL of the extract is added to the wine (5 ⁇ L of final concentration 500 ⁇ M D-camphor-10-sodium sulfonate diluted with ultrapure water, final concentration 99% (w / w)). Methanol (495 ⁇ L) was added and the wine and the extract were mixed well, and then centrifuged at 15000 rpm, 4 ° C.
  • Liquid chromatography mass spectrometry was performed using 5 ⁇ L to quantify volatile low-molecular sulfur compounds.
  • a liquid chromatography mass spectrometer (model name: LC ⁇ S-8030, manufactured by Shimadzu Corporation) was used.
  • ACQUITY registered trademark
  • UPLC CSH C18 1.7 ⁇ m manufactured by Waters was used.
  • mobile phase acetonitrile containing 0.1% formic acid was used. The measurement time was 20 minutes.
  • Quantitative values (analytical values) of sulfur compounds and sulfur metabolism-related compounds for each test substance obtained by liquid chromatography mass spectrometry, and quantitative values of sulfur compounds and sulfur metabolism-related compounds prepared in advance,
  • a two-dimensional scatter diagram as shown in FIG. 1 was created by analysis by the multidimensional scaling method (Vegan) of statistical analysis free software “R”.
  • cystine cystathionine, S-adenosylmethionine, homocysteine, S-sulfocysteine, O-phosphoserine, O-acetylserine, N-acetyl as compounds related to sulfur metabolism in advance for each test substance.
  • FIG. 1 a large point indicates wine to which no antioxidant is added, and a small point indicates wine to which an antioxidant is added. From the results shown in FIG. 1, it was found that wine added with no antioxidant has a high degree of oxidation and thus is easily oxidized. On the other hand, it was found that wine to which an antioxidant is added has a high degree of reduction and is not easily oxidized. It was also found that both wines with no antioxidant added and those with an antioxidant added have high and low contributions to microbial metabolism. Therefore, in order to select a wine considered to be more delicious, it has been found that it is sufficient to select a wine having a low degree of oxidation (high degree of reduction) and a high contribution of microbial metabolism in FIG. In FIG. 1, it can be evaluated that the wine in the region on the right side with respect to 0 on the x axis and on the upper side with reference to 0 on the y axis is a more delicious wine.
  • Example 2 As a test substance, a culture solution after culturing a plurality of microorganisms was prepared. The volatile low molecular sulfur compounds contained in these culture solutions are modified with an alkylating agent and then analyzed by liquid chromatography mass spectrometry. The volatile low molecular sulfur compounds contained in the culture solution are the same as in Experimental Example 1. Quantified by the method.
  • Quantitative values (analytical values) of sulfur compounds and sulfur metabolism-related compounds for each test substance obtained by liquid chromatography mass spectrometry, and quantitative values of sulfur compounds and sulfur metabolism-related compounds prepared in advance
  • a three-dimensional scatter diagram as shown in FIG. 4 was created by analyzing by the multidimensional scaling method (Vegan) of statistical analysis free software “R”. Specifically, a three-dimensional scatter diagram was created by selecting three scales of redox degree (freshness), antioxidant capacity, and odor as the x-axis, y-axis, and z-axis.
  • Vegan multidimensional scaling method
  • cystine cystathionine, S-adenosylmethionine, homocysteine, S-sulfocysteine, O-phosphoserine, O-acetylserine, N-acetyl as compounds related to sulfur metabolism in advance for each test substance.
  • A1 to A3 indicate culture solutions of Bacillus subtilis
  • B1 to B8 indicate culture solutions of E. coli
  • C1 to C5 indicate culture solutions of actinomycetes
  • D indicates a culture solution of lactic acid bacteria.
  • Example 3 A commercially available wine was prepared as a test substance.
  • the volatile low-molecular sulfur compounds contained in these wines are modified with an alkylating agent and then analyzed by liquid chromatography / mass spectrometry.
  • the volatile low-molecular sulfur compounds contained in the wine are treated in the same manner as in Experimental Example 1. And quantified.
  • Example 4 Twenty kinds of commercially available beers were prepared as test substances. Using 9 types of beer, 7 types of sparkling liquor, and 4 types of non-alcohol beer, multivariate analysis was performed using only the compound to be polysulfidized. Specifically, after modifying a volatile low-molecular sulfur compound with an alkylating agent, it is analyzed by liquid chromatography mass spectrometry, and the volatile low-molecular sulfur compound contained in beer is converted into the same method as in Experimental Example 1. And quantified.
  • the horizontal (X-axis) direction indicates that the measured degree of oxidation of beer is lower (the more sulfurous acid, thiosulfuric acid, and sulfide ions), the vertical (Y-axis) direction indicates that microorganisms are It was found that the larger the amount of ergothioneine produced (the function of microorganisms), the higher the order.
  • the scatter diagram is divided into four regions, beer is located in the region surrounded by the solid line in the upper left, and the happoshu is located in the region surrounded by the dashed line on the lower left, and the right side (upper right and lower right). It was found that non-alcoholic beer is located in the area surrounded by the dotted line. From this result, it was found that different types of beverages such as beer, happoshu, and non-alcoholic beer can be distinguished from each other using this evaluation method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

複数の硫黄化合物および複数の硫黄代謝関連化合物の分析結果に基づく、農作物等の被検物質の鮮度(酸化還元度)等の評価方法を提供する。揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法で定量する方法を提供する。 複数の被検物質を評価する硫黄化合物含有物質の評価方法であって、被検物質毎に、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を用意する工程と、前記定量値を含む前記被検物質の分析値を多次元尺度法により解析して、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される2種以上を尺度とする散布図を作成する工程と、前記散布図上の位置に基づいて、前記被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価する工程と、を行うことを特徴とする硫黄化合物含有物質の評価方法。

Description

硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法
 本発明は、農作物等の試料に含まれる硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法に関する。
 農作物の中には、酸化による品質の劣化が早く、長期保存が難しいものがある。従来、農作物の鮮度を評価する方法としては、一般的に、評価者(農作物の販売者や消費者等)により、農作物の外観、触感、香り等の項目を評価する官能試験が行われている。しかし、官能試験は、評価者の主観が入ることがあるため、客観的な評価ができない上に、定量的な評価ができないという課題がある。そこで、客観的かつ定量的な評価が可能な評価方法が求められている。
 農作物の鮮度を定量的に評価する方法としては、例えば、農作物におけるビタミンCの含有量の変動を測定する方法が挙げられる。農作物は、収穫後の時間の経過と貯蔵環境の温度に対応して、ビタミンCの含有量が低下する。そのため、ビタミンCの含有量の変動を測定することによって、農作物の鮮度を評価することができる。農作物におけるビタミンCの含有量を測定する方法としては、例えば、ORAC(Oxygen Radical Absorbance Capacity:活性酸素吸収能力)法を用いた方法が挙げられる(例えば、非特許文献1参照)。
Cao,G.,and Prior,R.(1999)Methods Enzymol.299:50-62.Measurement of oxygen radical absorbance capacity in biological samples.
 ビタミンCの含有量の変動を測定する方法では、農作物について、収穫時と鮮度評価時のそれぞれにおいて、少なくとも1回ずつのビタミンCの含有量の測定を行う必要がある。すなわち、この方法によって農作物の鮮度を測定するためには、農作物の収穫時に鮮度の基準となるビタミンCの含有量を測定する必要がある。したがって、この方法では、収穫時の農作物の状態を把握していなければ、その鮮度を評価できないため、任意の時点で農作物の鮮度を評価することができないという課題があった。
 また、本発明者等は、農作物等に含まれる複数の硫黄化合物および複数の硫黄代謝関連化合物の分析結果を多変量解析に供することにより、鮮度の評価が可能であることを見出したが、揮発性の低分子硫黄化合物は従来ガスクロマトグラフィーにより分析され、不揮発性の硫黄化合物と同時に液体クロマトグラフィー質量分析法(LC-MS/MS法)で定量することが困難であった。
 本発明は、上記事情に鑑みてなされたものであって、複数の硫黄化合物および複数の硫黄代謝関連化合物の分析結果に基づく、農作物等の被検物質の鮮度(酸化還元度)等の評価方法を提供することを目的とする。また、本発明は、揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法で定量する方法を提供することを目的とする。
 前記課題は、本発明の硫黄化合物含有物質の評価方法によれば、複数の被検物質を評価する硫黄化合物含有物質の評価方法であって、被検物質毎に、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を用意する工程と、前記定量値を含む前記被検物質の分析値を多次元尺度法により解析して、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される2種以上を尺度とする散布図を作成する工程と、前記散布図上の位置に基づいて、前記被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価する工程と、を行うことにより解決される。
 このとき、前記散布図が、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される2種を尺度とする二次元の散布図であると好適である。
 このとき、前記散布図が、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される3種を尺度とする三次元の散布図であること好適である。
 このとき、前記硫黄化合物がグルタチオンおよびその誘導体を含むものであり、前記硫黄代謝関連化合物がエルゴチオネイン代謝関連化合物を含むものであると好適である。
 このとき、前記硫黄化合物が少なくとも20種であり、前記硫黄代謝関連化合物が少なくとも18種であると好適である。
 このとき、前記硫黄化合物が亜硫酸イオン、チオ硫酸イオン、硫化物イオン、グルタチオン、グルタチオンモノスルフィド、グルタチオンジスルフィド、グルタチオントリスルフィド、グルタチオンテトラスルフィド、酸化型グルタチオン、酸化型グルタチオンモノスルフィド、酸化型グルタチオンジスルフィド、酸化型グルタチオントリスルフィド、酸化型グルタチオンテトラスルフィド、システイン、システインモノスルフィド、メチオニン、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチル-ペンタン-2-オンおよび酢酸2-メルカプトエチルを含み、前記硫黄代謝関連化合物がシスチン、シスタチオニン、S-アデノシルメチオニン、ホモシステイン、S-スルホシステイン、O-ホスホセリン、O-アセチルセリン、N-アセチルセリン、O-スクシニルホモセリン、アデノシン5’-ホスホスルフェート、ランチオニン、3’-ホスホアデノシン-5’-スルフェート、3’-ホスホアデノシン-5’-ホスホスルフェート、エルゴチオネイン、ヘルシニン、5-グルタミルシステイン、S-ヘルシニル-システインスルホキシドおよび5-グルタミル-S-ヘルシニル-システインスルホキシドを含むと好適である。
 このとき、前記定量値を用意する工程は、揮発性低分子硫黄化合物をアルキル化剤で修飾する前処理を行う工程と、前記修飾した揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法により分析し、前記揮発性低分子硫黄化合物を定量する工程と、を備える揮発性低分子硫黄化合物の定量方法を行うと好適である。
 このとき、前記アルキル化剤が、5,5’-ジチオビス(2-ニトロ安息香酸)、2,6-ジクロロフェノールインドフェノール、p-クロロメルクリ安息香酸、ヨードアセトアミド、N-エチルマレイミドおよびモノブロモビマンからなる群から選ばれる1種以上の化合物であると好適である。
 このとき、前記揮発性低分子硫黄化合物が、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチルペンタン-2-オンおよび酢酸2-メルカプトエチルからなる群から選ばれる1種以上の化合物であると好適である。
 本発明によれば、複数の硫黄化合物および複数の硫黄代謝関連化合物の分析結果に基づく、農作物等の被検物質の鮮度(酸化還元度)等を評価する硫黄化合物含有物質の評価方法、及び揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法で定量する揮発性低分子硫黄化合物の定量方法を提供することができる。
被検物質として、市販のワイン69種類について、多次元尺度法により解析した結果を示す散布図である。 複数の硫黄化合物および複数の硫黄代謝関連化合物について、多次元尺度法により解析した結果を示す散布図である。 モノブロモビマン(mBBr)で修飾されたグルタチオン(GS-bimane)、mBBrで修飾されたグルタチオンモノスルフィド(GS-S-bimane)、mBBrで修飾されたグルタチオンジスルフィド(GS-S-bimane)、mBBrで修飾されたグルタチオントリスルフィド(GS-S-bimane)およびmBBrで修飾されたグルタチオンテトラスルフィド(GS-S-bimane)の液体クロマトグラフィー質量分析法による定量結果である。 被検物質として、複数の微生物をそれぞれ培養した後の培養液について、多次元尺度法により解析した結果を示す散布図である。 被検物質として、市販のワインについて、多次元尺度法により解析した結果を示す散布図である。 被検物質として、市販のワインについて、多次元尺度法により解析した結果を示す散布図である。 被検物質として、市販のビール類について、多次元尺度法により解析した結果を示す散布図である。 被検物質として、市販のビール類について、多次元尺度法により解析した結果を示す散布図である。
 本発明の硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[硫黄化合物含有物質の評価方法]
 本実施形態の硫黄化合物含有物質の評価方法は、複数の被検物質を評価する硫黄化合物含有物質の評価方法であって、被検物質毎に、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を用意する工程と、前記定量値を含む前記被検物質の分析値を多次元尺度法により解析して、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される2種以上を尺度とする散布図を作成する工程と、前記散布図上の位置に基づいて、前記被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価する工程と、を行う方法である。
 本実施形態の硫黄化合物含有物質の評価方法において、「被検物質」とは、本実施形態の硫黄化合物含有物質の評価方法によって、酸化還元度、微生物代謝の寄与または匂い若しくは臭気などを評価する対象となる物質を意味する。
 本実施形態の揮発性低分子硫黄化合物の定量方法における被検物質としては、特に限定されず、例えば、土壌、水、食品、飲料、生体試料等が挙げられる。
 食品としては、例えば、肉類;魚介類;卵類;牛乳;穀物、豆類、芋類、野菜類、果実類等の農作物等が挙げられる。
 飲料としては、例えば、ビール、ワイン、日本酒等の醸造により造られるもの、清涼飲料水等が挙げられる。
 生体試料としては、例えば、血液、唾液、糞便等が挙げられる。
 なお、本実施形態の硫黄化合物含有物質の評価方法では、後述の実施形態の揮発性低分子硫黄化合物の定量方法に従って、揮発性低分子硫黄化合物をアルキル化剤で修飾する前処理を行う工程(工程A)と、アルキル化剤で修飾した揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法により分析し、揮発性低分子硫黄化合物を定量する工程(工程B)を行うことができる。
 本実施形態の硫黄化合物含有物質の評価方法では、揮発性低分子硫黄化合物であるオフフレーバー化合物に加えて、グルタチオンおよびその誘導体を含む硫黄化合物と、エルゴチオネイン代謝関連化合物を含む硫黄代謝関連化合物とを定量することが望ましい。
 硫黄化合物は20種以上、硫黄代謝関連化合物は18種以上であってもよい。
 硫黄化合物は、アルキル化剤で修飾することができ、かつ、アルキル化剤で修飾した後に液体クロマトグラフィー質量分析法により分析可能であれば、特に限定されない。
 アルキル化剤としては、5,5’-ジチオビス(2-ニトロ安息香酸)、2,6-ジクロロフェノールインドフェノール、p-クロロメルクリ安息香酸、ヨードアセトアミド、N-エチルマレイミドおよびモノブロモビマン(mBBr)からなる群から選ばれる1種以上の化合物であることが好ましい。これらのアルキル化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ここで、モノブロモビマン(mBBr)は、下記式(1)で表わされる。以下、モノブロモビマンを「mBBr」と略すことがある。
Figure JPOXMLDOC01-appb-C000001
 硫黄化合物として、亜硫酸イオン、チオ硫酸イオン、硫化物イオン、グルタチオン、グルタチオンモノスルフィド、グルタチオンジスルフィド、グルタチオントリスルフィド、グルタチオンテトラスルフィド、酸化型グルタチオン、酸化型グルタチオンモノスルフィド、酸化型グルタチオンジスルフィド、酸化型グルタチオントリスルフィド、酸化型グルタチオンテトラスルフィド、システイン、システインモノスルフィド、メチオニン、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチル-ペンタン-2-オンおよび酢酸2-メルカプトエチルを含むことが好ましい。これらの硫黄化合物の定量値は、被検物質の酸化還元度を評価するための要素となる。
 硫黄代謝関連化合物は、上記のアルキル化剤で修飾することができ、かつ、アルキル化剤で修飾した後に液体クロマトグラフィー質量分析法により分析可能であれば、特に限定されないが、シスチン、シスタチオニン、S-アデノシルメチオニン、ホモシステイン、S-スルホシステイン、O-ホスホセリン、O-アセチルセリン、N-アセチルセリン、O-スクシニルホモセリン、アデノシン5’-ホスホスルフェート、ランチオニン、3’-ホスホアデノシン-5’-スルフェート、3’-ホスホアデノシン-5’-ホスホスルフェート、エルゴチオネイン、ヘルシニン、5-グルタミルシステイン、S-ヘルシニル-システインスルホキシドおよび5-グルタミル-S-ヘルシニル-システインスルホキシドを含むことが好ましい。これらの硫黄代謝関連化合物の定量値は、被検物質の微生物代謝の寄与を評価するための要素となる。
 本実施形態の硫黄化合物含有物質の評価方法では、予め被検物質毎に、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を用意しておく。
 被検物質に含まれる硫黄化合物および硫黄代謝関連化合物を予め定量する方法としては、例えば、液体クロマトグラフィー質量分析法(LC-MS/MS)、ガスクロマトグラフィー質量分析法(Gas Chromatography-Mass Spectrometry、GC-MS)、ガスクロマトグラフィー質量分析法(Gas Chromatography-tandem Mass Spectrometry、GC-MS/MS)、キャピラリー電気泳動-質量分析法(Capillary Electrophoresis-Mass Spectrometry、CE-MS)等が挙げられる。これらの中でも、後述するオフフレーバー化合物の定量値と関連付けやすい点から、液体クロマトグラフィー質量分析法を用いることが好ましい。なお、液体クロマトグラフィー質量分析法以外の方法で得られた定量値は、液体クロマトグラフィー質量分析法で得られた定量値と関連付けることができる。
 本実施形態の硫黄化合物含有物質の評価方法では、予め被検物質毎に用意した、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を含む被検物質の分析値を多次元尺度法により解析して、二次元または三次元の散布図を作成する。そして、その散布図上の位置に基づいて、被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価する。
 ここで、散布図の尺度(各軸のパラメータ)としては、酸化還元度、微生物代謝の寄与、抗酸化能(微生物の働き)または匂い若しくは臭気から選択することが可能であるが、これらの尺度に限定されるものではない。
 本実施形態の硫黄化合物含有物質の評価方法では、多次元尺度法による解析により、二次元または三次元の散布図を作成する。散布図としては、例えば、図1や図2に示す二次元の散布図が得られる。
 本実施形態の硫黄化合物含有物質の評価方法では、多次元尺度法による解析は、統計分析フリーソフト「R」のパッケージの1つである多次元尺度法(Vegan)を用いて行われる。
 図1は、被検物質として、市販のワイン69種類について、多次元尺度法により解析した結果を示す散布図である。図2は、上記の硫黄化合物および硫黄代謝関連化合物について、多次元尺度法により解析した結果を示す散布図である。なお、図2において、「ラベル化」と記載されているものは、上記のアルキル化剤で修飾された硫黄化合物または硫黄代謝関連化合物を示す。
 図1と図2を比較することにより、図1の散布図における被検物質の酸化還元状態を評価することができる。すなわち、図2に示すそれぞれの硫黄化合物および硫黄代謝関連化合物は、酸化状態にあるものであるか、あるいは、還元状態にあるものであるのかが知られている。したがって、それらの硫黄化合物および硫黄代謝関連化合物の散布図上における位置と、被検物質の散布図上における位置とを比較することにより、被検物質の酸化還元状態を評価することができる。図2において、例えば、還元状態の化合物(亜硫酸イオン、グルタチオン等)がx軸の0を基準として右側の領域に位置しているため、その右側の領域が還元状態であることを示すと定義する。また、図2において、例えば、酸化型の化合物(酸化型グルタチオン等)がx軸の0を基準として左側の領域に位置しているため、その左側の領域が酸化状態であることを示すと定義する。さらに、図2において、例えば、エルゴチオネインがy軸の0を基準として上側の領域に位置しているため、その上側の領域が微生物代謝の寄与が高いことを示すと定義する。エルゴチオネインは、含硫アミノ酸の一種であり、一部の微生物でのみ生合成されることが知られる。したがって、エルゴチオネインを多く含む被検物質は、微生物代謝の寄与が高いことを示す。
 また、図1および図2には示されていないが、例えば、x軸およびy軸に直交するz軸の0を基準として上側(紙面の表側)の領域に位置する化合物は臭気が強い状態にあると定義し、x軸およびy軸に直交するz軸の0を基準として下側(紙面の裏側)の領域に位置する化合物は臭気が弱い状態にあると定義してもよい。例えば、2-フルフリルチオールがz軸の0を基準として上側の領域に位置している場合、その上側の領域がコーヒー様の香りが強いことを示すと定義する。
 このようにすれば、散布図上の位置に基づいて、被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価することができる。
 本実施形態の硫黄化合物含有物質の評価方法では、被検物質の酸化還元状態と匂いについて評価した結果を二次元の散布図で示してもよい。また、本実施形態の硫黄化合物含有物質の評価方法では、被検物質の微生物代謝の寄与と匂いについて評価した結果を二次元の散布図で示してもよい。さらに、本実施形態の硫黄化合物含有物質の評価方法では、被検物質の酸化還元状態、抗酸化能または臭気若しくは匂いについて評価した結果を三次元の散布図で示してもよい。
 また、本実施形態の硫黄化合物含有物質の評価方法では、液体クロマトグラフィー質量分析法により定量した、チオール基を有する硫黄化合物および硫黄化合物のポリスルフィドの定量値を含む被検物質の分析値を多次元尺度法により解析して、その解析の結果から、チオール基を有する硫黄化合物および硫黄化合物のポリスルフィドの種類や定量値に基づいて、被検物質の酸化還元状態を評価することもできる。
 例えば、mBBrで修飾されたグルタチオン、グルタチオンモノスルフィド、グルタチオンジスルフィド、グルタチオントリスルフィドおよびグルタチオンテトラスルフィドは、液体クロマトグラフィー質量分析法により定量すると、図3に示すように、この順に序列を形成する。
 下記式(2)はmBBrで修飾されたグルタチオン(GS-bimane)を示し、下記式(3)はmBBrで修飾されたグルタチオンモノスルフィド(GS-S-bimane)を示し、下記式(4)はmBBrで修飾されたグルタチオンジスルフィド(GS-S-bimane)を示し、下記式(5)はmBBrで修飾されたグルタチオントリスルフィド(GS-S-bimane)を示し、下記式(6)はmBBrで修飾されたグルタチオンテトラスルフィド(GS-S-bimane)を示す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 GS-bimane、GS-S-bimane、GS-S-bimane、GS-S-bimaneおよびGS-S-bimaneも、この順に序列を形成する。この序列は、被検物質の酸化還元状態を示し、GS-bimaneの定量値が多い場合には、被検物質の酸化度が低いと判断する。一方、GS-S-bimaneの定量値が多い場合には、被検物質の酸化度が高いと判断する。
 食品等は時間の経過に伴って酸化度が進行することから、食品等の被検物質の酸化還元状態、すなわち、酸化度を評価することにより、被検物質の鮮度を評価することができる。
 また、ビール、ワイン、日本酒等の醸造により造られるものは、発酵が進行することにより、旨味が増すことから、微生物代謝の寄与を評価することにより、被検物質の旨味を評価することができる。
 本実施形態の硫黄化合物含有物質の評価方法によれば、予め被検物質毎に用意した、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を含む被検物質の分析値を多次元尺度法により解析して、二次元または三次元の散布図を作成することにより、被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価することができる。
[揮発性低分子硫黄化合物の定量方法]
 炭素循環や窒素循環があるように、硫黄にも循環がある。硫黄の代謝は、生物によって得手不得手がはっきりしている。特に無機硫黄化合物を有機硫黄化合物に変換する「同化」を得意としているのは限られた微生物のみである。多くの微生物や植物(農作物)は、硫黄化合物の同化が苦手であり、人を含む動物は硫黄化合物を同化する能力を有しない。つまり、硫黄化合物を網羅的に分析することによって、人から農作物まで、どのようなものを摂取し、どのような環境で育ったのかという、生活環境や生育環境を推測することができる。
 本発明者等は、上記のような知見に基づいて、本発明を完成するに至った。
 本実施形態の揮発性低分子硫黄化合物の定量方法は、揮発性低分子硫黄化合物をアルキル化剤で修飾する前処理を行う工程(以下、「工程A」と言う。)と、前記修飾した揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法により分析し、前記揮発性低分子硫黄化合物を定量する工程(以下、「工程B」と言う。)と、を備える。
 本実施形態の揮発性低分子硫黄化合物の定量方法では、下記のような被検物質に含まれる揮発性低分子硫黄化合物を定量する。
 本実施形態の揮発性低分子硫黄化合物の定量方法における被検物質としては、特に限定されず、例えば、土壌、水、食品、飲料、生体試料等が挙げられる。
 食品としては、例えば、肉類;魚介類;卵類;牛乳;穀物、豆類、芋類、野菜類、果実類等の農作物等が挙げられる。
 飲料としては、例えば、ビール、ワイン、日本酒等の醸造により造られるもの、清涼飲料水等が挙げられる。
 生体試料としては、例えば、血液、唾液、糞便等が挙げられる。
 本実施形態の揮発性低分子硫黄化合物の定量方法における揮発性低分子硫黄化合物は、分子量が低く、蒸発しやすい性質を有する液体である。
 また、本実施形態の揮発性低分子硫黄化合物の定量方法における揮発性低分子硫黄化合物は、重量平均分子量(Mw)が50以上300以下である。
 本実施形態の揮発性低分子硫黄化合物の定量方法における揮発性低分子硫黄化合物は、食品成分自身の化学変化や、外部からの物質の混入によって食品の品質が劣化して二次的に生じる異臭、変質臭、悪変臭等のオフフレーバーの原因となる化合物(以下、「オフフレーバー化合物」と言う。)を含む。
 このようなオフフレーバー化合物(揮発性低分子硫黄化合物)は、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチルペンタン-2-オンおよび酢酸2-メルカプトエチルからなる群から選ばれる1種以上の化合物である。すなわち、オフフレーバー化合物は、上記の試料に2種以上含まれることがある。
 本実施形態の揮発性低分子硫黄化合物の定量方法では、工程Aにおいて、上記の揮発性低分子硫黄化合物をアルキル化剤で修飾する前処理を行う。
 工程Aにおける前処理とは、後段の工程Bにおいて、液体クロマトグラフィー質量分析法(Liquid Chromatography-tandem Mass Spectrometry、LC-MS/MS)により分析可能となるように、揮発性低分子硫黄化合物をアルキル化剤で修飾する処理である。
 液体クロマトグラフィー質量分析法を行う液体クロマトグラフィー質量分析装置は、成分分離(LC)部と、第1の質量分析(MS)部と、第2の質量分析(MS)部とを有する。液体クロマトグラフィー質量分析法は、被検物質を成分分離(LC)部にて、親和性の差によって成分毎に分離した後、第1の質量分析部にて、特定の質量の成分のみをさらに解離・フラグメント化し、第2の質量分析部にて、特定のイオンを検出(定量)する分析方法である。
 上記のような揮発性低分子硫黄化合物は、分子量が低過ぎるため、そのままでは液体クロマトグラフィー質量分析法で定量することが難しい。そこで、本実施形態の揮発性低分子硫黄化合物の定量方法では、工程Aにおいて、揮発性低分子硫黄化合物とアルキル化剤とを反応させ、揮発性低分子硫黄化合物をアルキル化剤で修飾し、定量可能な分子量を有する、アルキル化剤で修飾された揮発性低分子硫黄化合物を生成する。
 工程Aでは、以下のようにして、まず、被検物質に含まれる揮発性低分子硫黄化合物を抽出する。
 例えば、被検物質に抽出液を加えて、被検物質と抽出液を充分に混合した後、その混合物を遠心分離し、上澄み液を回収する。これにより、揮発性低分子硫黄化合物を抽出する。
 採取する被検物質の量は、0.001μg以上10μg以下であることが好ましく、0.01μg以上0.1μg以下であることがより好ましい。
 抽出液としては、超純水で希釈した終濃度0.1μM以上100μM以下のD-しょうのう-10-スルホン酸ナトリウムと、終濃度99%(w/w)のメタノールとを含むものが用いられる。
 抽出液の添加量は、50μL以上1000μL以下であることが好ましく、100μL以上500μL以下であることがより好ましい。
 遠心分離において、回転数は、10000rpm以上15000rpm以下であることが好ましく、13000rpm以上15000rpm以下であることがより好ましい。
 遠心分離において、温度は、1℃以上10℃以下であることが好ましく、4℃以上5℃以下であることがより好ましい。
 遠心分離は、上記の回転数および温度で、1分以上10分以下行うことが好ましく、3分以上5分以下行うことがより好ましい。
 次いで、回収した上澄み液に、トリス-塩酸緩衝液を加え、さらにアルキル化剤を加えて、これらの混合物を撹拌し、揮発性低分子硫黄化合物をアルキル化剤で修飾する。
 アルキル化剤としては、5,5’-ジチオビス(2-ニトロ安息香酸)、2,6-ジクロロフェノールインドフェノール、p-クロロメルクリ安息香酸、ヨードアセトアミド、N-エチルマレイミドおよびモノブロモビマンからなる群から選ばれる1種以上の化合物であることが好ましい。これらのアルキル化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 5,5’-ジチオビス(2-ニトロ安息香酸)は、チオール基と反応するため、チオール基含有化合物の定量(検出)に好適に用いられる。
 2,6-ジクロロフェノールインドフェノールは、チオール基と反応するため、チオール基含有化合物の定量(検出)に好適に用いられる。
 p-クロロメルクリ安息香酸は、チオール基と反応するため、チオール基含有化合物の定量(検出)に好適に用いられる。
 ヨードアセトアミドは、チオール基と反応するため、チオール基含有化合物の定量(検出)に好適に用いられる。
 N-エチルマレイミドは、チオール基と反応するため、チオール基含有化合物の定量(検出)に好適に用いられる。
 モノブロモビマン(Monobromobiman、3-(ブロモメチル)-2,5,6-トリメチルピラゾロ[1,2-a]ピラゾール-1,7-ジオン)は、硫化物イオン(S2-)およびチオール基と反応するため、チオール基を有する硫黄化合物と硫黄化合物のポリスルフィドの定量(検出)に好適に用いられる。
 上澄み液の量は、50μL以上100μL以下であることが好ましく、60μL以上90μL以下であることがより好ましい。
 トリス-塩酸緩衝液の濃度は、1M以上2M以下であることが好ましく、1.5M以上2M以下であることより好ましい。
 トリス-塩酸緩衝液のpHは、8以上9以下であることが好ましく、8.7以上8.9以下であることより好ましい。
 アルキル化剤の添加量は、1μL以上20μL以下であることが好ましく、5μL以上10μL以下であることがより好ましい。
 工程Aでは、さらに、工程Bにおいて、液体クロマトグラフィー質量分析法で定量可能となるように、アルキル化剤で修飾された揮発性低分子硫黄化合物について、以下のような処理を行う。
 アルキル化剤で修飾された揮発性低分子硫黄化合物を含む混合物を遠心分離し、上澄み液を回収する。
 遠心分離において、回転数は、10000rpm以上15000rpm以下であることが好ましく、13000rpm以上15000rpm以下であることがより好ましい。
 遠心分離において、温度は、1℃以上10℃以下であることが好ましく、4℃以上5℃以下であることがより好ましい。
 遠心分離は、上記の回転数および温度で、1分以上10分以下行うことが好ましく、3分以上5分以下行うことがより好ましい。
 次いで、遠心分離後の上澄み液を回収し、遠心型エバポレーターで乾燥処理し、上澄み液を乾固させる。
 次いで、乾固した上澄み液に超純水を加えて再懸濁させて、懸濁液を調製する。
 上澄み液の量は、50μL以上100μL以下であることが好ましく、60μL以上90μL以下であることがより好ましい。
 遠心型エバポレーターによる乾燥処理は、2時間以上48時間以下であることが好ましく、12時間以上16時間以下であることがより好ましい。
 乾固した上澄み液に加える超純水の量は、10μL以上100μL以下であることが好ましく、30μL以上60μL以下であることがより好ましい。
 次いで、懸濁液を遠心分離し、上澄み液を回収する。
 遠心分離において、回転数は、10000rpm以上15000rpm以下であることが好ましく、13000rpm以上15000rpm以下であることがより好ましい。
 遠心分離において、温度は、1℃以上10℃以下であることが好ましく、4℃以上5℃以下であることがより好ましい。
 遠心分離は、上記の回転数および温度で、1分以上10分以下行うことが好ましく、3分以上5分以下行うことがより好ましい。
 本実施形態の揮発性低分子硫黄化合物の定量方法では、工程Bにおいて、修飾した揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法により分析し、揮発性低分子硫黄化合物を定量する。すなわち、工程Bでは、懸濁液を遠心分離して得た上澄み液の一部を液体クロマトグラフィー質量分析法により分析し、上澄み液に含まれる揮発性低分子硫黄化合物を定量する。
 工程Bでは、懸濁液を遠心分離して得た上澄み液のうち一部をサンプルカップに移す。
 サンプルカップに移す上澄み液の量は、30μL以上100μL以下であることが好ましく、40μL以上60μL以下であることがより好ましい。
 また、液体クロマトグラフィー質量分析法による定量に用いられる上澄み液の量は、1μL以上10μL以下であることが好ましく、3μL以上5μL以下であることがより好ましい。
 本実施形態の揮発性低分子硫黄化合物の定量方法によれば、液体クロマトグラフィー質量分析により、揮発性低分子硫黄化合物を定量することにより、被検物質から抽出した抽出物の構成を明らかにすることができる。これにより、被検物質の傷み具合の進行度を評価することができる。例えば、揮発性低分子硫黄化合物のうち、2-フルフリルチオールの量が多く検出された場合には、被検物質は、コーヒー様の香りを含む状態であると言える。ベンジルメルカプタンの量が多く検出された場合には、被検物質は、ロースト様の香りを含む状態であると言える。4-メルカプト-4-メチルペンタン-2-オンの量が多く検出された場合には、被検物質は、ワイン様の香りを含む状態であると言える。酢酸2-メルカプトエチルの量が多く検出された場合には、被検物質は、ゴム様の香りを含む状態であると言える。
 以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。
[実験例1]
 被検物質として、市販の69種類のワインを用意した。
 これらのワインに含まれる揮発性低分子硫黄化合物をアルキル化剤で修飾した後、液体クロマトグラフィー質量分析法により分析し、ワインに含まれる揮発性低分子硫黄化合物を定量した。
 ワインを0.5mL採取し、そのワインに抽出液0.5mL(超純水で希釈した終濃度500μMのD-しょうのう-10-スルホン酸ナトリウム5μL、終濃度99%(w/w)のメタノール495μL)を加えて、ワインと抽出液を充分に混合した後、これを15000rpm、4℃、3分の条件で遠心分離し、上澄み液を回収した。
 次いで、回収した上澄み液100μLに、2Mトリス-塩酸緩衝液(pH8.8)を10μL加え、さらに、20mMモノブロモビマンを10μL加えて、10分間の撹拌操作を行い、15000rpm、4℃、3分の条件で遠心分離し、上澄み液を回収した。
 次いで、回収した上澄み液87μLを、遠心型エバポレーターで2時間程度乾燥処理し、上澄み液を乾固させた。
 次いで、乾固した上澄み液に超純水60μLを加えて再懸濁させた後、15000rpm、4℃、3分の条件で遠心分離し、得られた上澄み液50μLをサンプルカップへ移し、そのうちの5μLを用いて液体クロマトグラフィー質量分析を行い、揮発性低分子硫黄化合物を定量した。
 液体クロマトグラフィー質量分析には、液体クロマトグラフィー質量分析装置(型式名:LC<S-8030、島津製作所社製)を用いた。カラムとしては、Waters社製のACQUITY(登録商標) UPLC CSH C18、1.7μmを用いた。
 移動相としては、0.1%ギ酸を含むアセトニトリルを用いた。
 測定時間を20分とした。
 液体クロマトグラフィー質量分析によって得られた、被検物質毎の硫黄化合物および硫黄代謝関連化合物の定量値(分析値)と、予め用意しておいた硫黄化合物および硫黄代謝関連化合物の定量値とを、統計分析フリーソフト「R」の多次元尺度法(Vegan)により解析して、図1に示すような二次元の散布図を作成した。
 なお、本実験例では、予め被検物質毎に、硫黄化合物として、亜硫酸イオン、チオ硫酸イオン、硫化物イオン、グルタチオン、グルタチオンモノスルフィド、グルタチオンジスルフィド、グルタチオントリスルフィド、グルタチオンテトラスルフィド、酸化型グルタチオン、酸化型グルタチオンモノスルフィド、酸化型グルタチオンジスルフィド、酸化型グルタチオントリスルフィド、酸化型グルタチオンテトラスルフィド、システイン、システインモノスルフィド、メチオニン、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチル-ペンタン-2-オンおよび酢酸2-メルカプトエチルの定量値を用意(分析)し、データベースに登録しておいた。
 また、本実験例では、予め被検物質毎に、硫黄代謝関連化合物として、シスチン、シスタチオニン、S-アデノシルメチオニン、ホモシステイン、S-スルホシステイン、O-ホスホセリン、O-アセチルセリン、N-アセチルセリン、O-スクシニルホモセリン、アデノシン5’-ホスホスルフェート、ランチオニン、3’-ホスホアデノシン-5’-スルフェート、3’-ホスホアデノシン-5’-ホスホスルフェート、エルゴチオネイン、ヘルシニン、5-グルタミルシステイン、S-ヘルシニル-システインスルホキシドおよび5-グルタミル-S-ヘルシニル-システインスルホキシドの定量値を用意(分析)し、データベースに登録しておいた。
 図1において、大きい点は酸化防止剤が無添加のワインを示し、小さい点は酸化防止剤が添加されているワインを示す。図1の結果から、酸化防止剤が無添加のワインは、酸化度が高いことから、酸化されやすいことが分かった。一方、酸化防止剤が添加されているワインは、還元度が高いことから、酸化され難いことが分かった。また、酸化防止剤が無添加のワインおよび酸化防止剤が添加されているワイン共に、微生物代謝の寄与が高いものと低いものがあることが分かった。そこで、より美味しいとされるワインを選択するためには、図1において、酸化度が低く(還元度が高く)かつ微生物代謝の寄与が高いワインを選択すればよいことが分かった。図1において、x軸の0を基準として右側かつy軸の0を基準として上側の領域にあるワインがより美味しいワインであると評価することができる。
[実験例2]
 被検物質として、複数の微生物をそれぞれ培養した後の培養液を用意した。
 これらの培養液に含まれる揮発性低分子硫黄化合物をアルキル化剤で修飾した後、液体クロマトグラフィー質量分析法により分析し、培養液に含まれる揮発性低分子硫黄化合物を実験例1と同様の手法にて定量した。
 液体クロマトグラフィー質量分析によって得られた、被検物質毎の硫黄化合物および硫黄代謝関連化合物の定量値(分析値)と、予め用意しておいた硫黄化合物および硫黄代謝関連化合物の定量値とを、統計分析フリーソフト「R」の多次元尺度法(Vegan)により解析して、図4に示すような三次元の散布図を作成した。具体的には、酸化還元度(鮮度)、抗酸化能、臭気の3つの尺度をx軸、y軸、z軸として選択することで、三次元の散布図を作成した。
 なお、本実験例では、予め被検物質毎に、硫黄化合物として、亜硫酸イオン、チオ硫酸イオン、硫化物イオン、グルタチオン、グルタチオンモノスルフィド、グルタチオンジスルフィド、グルタチオントリスルフィド、グルタチオンテトラスルフィド、酸化型グルタチオン、酸化型グルタチオンモノスルフィド、酸化型グルタチオンジスルフィド、酸化型グルタチオントリスルフィド、酸化型グルタチオンテトラスルフィド、システイン、システインモノスルフィド、メチオニン、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチル-ペンタン-2-オンおよび酢酸2-メルカプトエチルの定量値を用意(分析)し、データベースに登録しておいた。
 また、本実験例では、予め被検物質毎に、硫黄代謝関連化合物として、シスチン、シスタチオニン、S-アデノシルメチオニン、ホモシステイン、S-スルホシステイン、O-ホスホセリン、O-アセチルセリン、N-アセチルセリン、O-スクシニルホモセリン、アデノシン5’-ホスホスルフェート、ランチオニン、3’-ホスホアデノシン-5’-スルフェート、3’-ホスホアデノシン-5’-ホスホスルフェート、エルゴチオネイン、ヘルシニン、5-グルタミルシステイン、S-ヘルシニル-システインスルホキシドおよび5-グルタミル-S-ヘルシニル-システインスルホキシドの定量値を用意(分析)し、データベースに登録しておいた。
 図4において、A1~A3は枯草菌の培養液を示し、B1~B8は大腸菌の培養液を示し、C1~C5は放線菌の培養液を示し、Dは乳酸菌の培養液を示す。図4の結果から、多次元尺度法において、硫黄化合物は、筋がよく、第一主成分と第二主成分の軸が決まることがわかった。したがって、硫黄化合物は、腸内フローラ(腸内細菌叢)、土壌フローラや農作物・食品における微生物叢の働きや、鮮度を表す新しい指標、評価系となることがわかった。
[実験例3]
 被検物質として、市販のワインを用意した。これらのワインに含まれる揮発性低分子硫黄化合物をアルキル化剤で修飾した後、液体クロマトグラフィー質量分析法により分析し、ワインに含まれる揮発性低分子硫黄化合物を実験例1と同様の手法にて定量した。
 図5の結果から、水平(X軸)方向は、測定したワインの酸化度が低い(亜硫酸・チオ硫酸・硫化物イオンが多い)ほど右から順に、垂直(Y軸)方向は、微生物が産生するエルゴチオネインの量(微生物の働き)が多いほど上から順に並ぶことが分かった。
 また、図6の結果から、図5のデータにグルコースを含めて多次元尺度法を行うと全く異なる結果となり、垂直(Y軸)方向は、甘さで区別されることが分かった。
[実験例4]
 被検物質として、市販のビール類20種類を用意した。9種類のビール、7種類の発泡酒、4種類のノンアルコールビールを用い、ポリスルフィド化する化合物のみを用いた多変量解析を行った。具体的には、揮発性低分子硫黄化合物をアルキル化剤で修飾した後、液体クロマトグラフィー質量分析法により分析し、ビール類に含まれる揮発性低分子硫黄化合物を実験例1と同様の手法にて定量した。
 図7の結果から、水平(X軸)方向は、測定したビール類の酸化度が低い(亜硫酸・チオ硫酸・硫化物イオンが多い)ほど右から順に、垂直(Y軸)方向は、微生物が産生するエルゴチオネインの量(微生物の働き)が多いほど上から順に並ぶことが分かった。図7に示すように、散布図を4つの領域に区別すると、左上の実線で囲む領域にビールが位置し、左下の一点鎖線で囲む領域に発泡酒が位置し、右側(右上及び右下)の点線で囲む領域にノンアルコールビールが位置することがわかった。この結果より、ビール、発泡酒、ノンアルコールビールという種類の異なる飲料が本評価方法を用いてそれぞれ区別できることが分かった。
 また、9種類のビールに関する図8の結果から、垂直(Y軸)方向において、高価なビールが安価なビールよりも上方に並ぶことがわかった。言い換えると微生物代謝の寄与が高いビールは品質の良いビールであり、図8の17番のビールは安価なビールの中でも微生物代謝の寄与が高く、コストパフォーマンスの高いビールであることがわかる。ビールの開発者にとっては、本評価手法を用いることで良質なビールを生産する客観的指標を得ることができる。

Claims (9)

  1.  複数の被検物質を評価する硫黄化合物含有物質の評価方法であって、
     被検物質毎に、複数の硫黄化合物および複数の硫黄代謝関連化合物の定量値を用意する工程と、
     前記定量値を含む前記被検物質の分析値を多次元尺度法により解析して、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される2種以上を尺度とする散布図を作成する工程と、
     前記散布図上の位置に基づいて、前記被検物質の酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気を評価する工程と、を行うことを特徴とする硫黄化合物含有物質の評価方法。
  2.  前記散布図が、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される2種を尺度とする二次元の散布図であることを特徴とする請求項1に記載の硫黄化合物含有物質の評価方法。
  3.  前記散布図が、酸化還元度、微生物代謝の寄与、抗酸化能または匂い若しくは臭気から選択される3種を尺度とする三次元の散布図であることを特徴とする請求項1に記載の硫黄化合物含有物質の評価方法。
  4.  前記硫黄化合物がグルタチオンおよびその誘導体を含むものであり、前記硫黄代謝関連化合物がエルゴチオネイン代謝関連化合物を含むものであることを特徴とする請求項1乃至3のいずれか一項に記載の硫黄化合物含有物質の評価方法。
  5.  前記硫黄化合物が少なくとも20種であり、前記硫黄代謝関連化合物が少なくとも18種であることを特徴とする請求項1乃至4のいずれか一項に記載の硫黄化合物含有物質の評価方法。
  6.  前記硫黄化合物が亜硫酸イオン、チオ硫酸イオン、硫化物イオン、グルタチオン、グルタチオンモノスルフィド、グルタチオンジスルフィド、グルタチオントリスルフィド、グルタチオンテトラスルフィド、酸化型グルタチオン、酸化型グルタチオンモノスルフィド、酸化型グルタチオンジスルフィド、酸化型グルタチオントリスルフィド、酸化型グルタチオンテトラスルフィド、システイン、システインモノスルフィド、メチオニン、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチル-ペンタン-2-オンおよび酢酸2-メルカプトエチルを含み、
     前記硫黄代謝関連化合物がシスチン、シスタチオニン、S-アデノシルメチオニン、ホモシステイン、S-スルホシステイン、O-ホスホセリン、O-アセチルセリン、N-アセチルセリン、O-スクシニルホモセリン、アデノシン5’-ホスホスルフェート、ランチオニン、3’-ホスホアデノシン-5’-スルフェート、3’-ホスホアデノシン-5’-ホスホスルフェート、エルゴチオネイン、ヘルシニン、5-グルタミルシステイン、S-ヘルシニル-システインスルホキシドおよび5-グルタミル-S-ヘルシニル-システインスルホキシドを含むことを特徴とする請求項1乃至5のいずれか1項に記載の硫黄化合物含有物質の評価方法。
  7.  前記定量値を用意する工程は、
     揮発性低分子硫黄化合物をアルキル化剤で修飾する前処理を行う工程と、
     前記修飾した揮発性低分子硫黄化合物を液体クロマトグラフィー質量分析法により分析し、前記揮発性低分子硫黄化合物を定量する工程と、を備える揮発性低分子硫黄化合物の定量方法を行うことを特徴とする請求項1乃至6のいずれか一項に記載の硫黄化合物含有物質の評価方法。
  8.  前記アルキル化剤が、5,5’-ジチオビス(2-ニトロ安息香酸)、2,6-ジクロロフェノールインドフェノール、p-クロロメルクリ安息香酸、ヨードアセトアミド、N-エチルマレイミドおよびモノブロモビマンからなる群から選ばれる1種以上の化合物であることを特徴とする請求項7に記載の硫黄化合物含有物質の評価方法。
  9.  前記揮発性低分子硫黄化合物が、2-フルフリルチオール、ベンジルメルカプタン、4-メルカプト-4-メチルペンタン-2-オンおよび酢酸2-メルカプトエチルからなる群から選ばれる1種以上の化合物であることを特徴とする請求項7または8に記載の硫黄化合物含有物質の評価方法。
PCT/JP2018/018154 2017-05-10 2018-05-10 硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法 WO2018207879A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018539445A JP6426329B1 (ja) 2017-05-10 2018-05-10 硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法
MYPI2019006467A MY192937A (en) 2017-05-10 2018-05-10 Method for evaluating sulfur compound-containing substance, and method for quantifying volatile low molecular weight sulfur compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094037 2017-05-10
JP2017-094037 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018207879A1 true WO2018207879A1 (ja) 2018-11-15

Family

ID=64105322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018154 WO2018207879A1 (ja) 2017-05-10 2018-05-10 硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法

Country Status (3)

Country Link
JP (1) JP6426329B1 (ja)
MY (1) MY192937A (ja)
WO (1) WO2018207879A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474254A (zh) * 2020-04-14 2020-07-31 江南大学 一种同时检测黑蒜中蒜氨酸及其硫化物的方法
WO2023008047A1 (ja) * 2021-07-28 2023-02-02 公立大学法人大阪 活性硫黄の同定方法
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
WO2023225305A3 (en) * 2022-05-20 2024-02-22 The General Hospital Corporation Intranasal administration of polysulfide
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255421B (zh) * 2020-10-13 2021-07-23 北京永基恒声科技有限公司 一种脂蛋白a检测试剂盒及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271473A (ja) * 1995-03-28 1996-10-18 Anritsu Corp 味覚センサ用膜の洗浄方法
JPH11258199A (ja) * 1998-03-16 1999-09-24 Shimadzu Corp 電気化学式付臭剤センサ
JP2001050868A (ja) * 1999-08-06 2001-02-23 New Cosmos Electric Corp ガス供給装置及びニオイ識別方法
WO2004081555A1 (ja) * 2003-03-14 2004-09-23 Nec Corporation 質量分析システムおよび分析方法
JP2006266939A (ja) * 2005-03-24 2006-10-05 Kiyoshi Toko 味データ作成用校正サンプル構造体
JP2010203780A (ja) * 2009-02-27 2010-09-16 National Research Inst Of Brewing 清酒の老香発生の程度を予測する方法
JP2016166901A (ja) * 2016-06-09 2016-09-15 月桂冠株式会社 Dmts発生の予測方法、清酒の劣化予測方法、清酒および清酒の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271473A (ja) * 1995-03-28 1996-10-18 Anritsu Corp 味覚センサ用膜の洗浄方法
JPH11258199A (ja) * 1998-03-16 1999-09-24 Shimadzu Corp 電気化学式付臭剤センサ
JP2001050868A (ja) * 1999-08-06 2001-02-23 New Cosmos Electric Corp ガス供給装置及びニオイ識別方法
WO2004081555A1 (ja) * 2003-03-14 2004-09-23 Nec Corporation 質量分析システムおよび分析方法
JP2006266939A (ja) * 2005-03-24 2006-10-05 Kiyoshi Toko 味データ作成用校正サンプル構造体
JP2010203780A (ja) * 2009-02-27 2010-09-16 National Research Inst Of Brewing 清酒の老香発生の程度を予測する方法
JP2016166901A (ja) * 2016-06-09 2016-09-15 月桂冠株式会社 Dmts発生の予測方法、清酒の劣化予測方法、清酒および清酒の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUNK, SIGNE ET AL.: "Microbial Survival and Odor in Laundry", JOURNAL OF SURFACTANTS AND DETERGENTS, vol. 4, no. 4, 2001, pages 385 - 394, XP055095395 *
OKUDA, MASAKI, ISOGAI, ATSUKO ET AL.: "Relationship between the concentrations of nitrogen/sulfur compounds in sakes before storing and those of polysulfides in sakes after storing", JOURNAL OF THE BREWING SOCIETY OF JAPAN, vol. 104, 2009, pages 131 - 141 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474254A (zh) * 2020-04-14 2020-07-31 江南大学 一种同时检测黑蒜中蒜氨酸及其硫化物的方法
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
WO2023008047A1 (ja) * 2021-07-28 2023-02-02 公立大学法人大阪 活性硫黄の同定方法
WO2023225305A3 (en) * 2022-05-20 2024-02-22 The General Hospital Corporation Intranasal administration of polysulfide

Also Published As

Publication number Publication date
JP6426329B1 (ja) 2018-11-21
JPWO2018207879A1 (ja) 2019-06-27
MY192937A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2018207879A1 (ja) 硫黄化合物含有物質の評価方法及び揮発性低分子硫黄化合物の定量方法
Vasconcelos et al. Detection of biogenic amines in several foods with different sample treatments: An overview
González-Gómez et al. Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.)
Shukla et al. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang)
Bankole et al. Occurrence of aflatoxin B1 in food products derivable from ‘egusi’melon seeds consumed in southwestern Nigeria
Kinzurik et al. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide
Segurel et al. Ability of possible DMS precursors to release DMS during wine aging and in the conditions of heat-alkaline treatment
Zagorska et al. Evaluation of factors affecting freezing point of milk
Casale et al. Characterisation of table olive cultivar by NIR spectroscopy
Dugo et al. Determination of some inorganic anions and heavy metals in DOC Golden and Amber Marsala wines: statistical study of the influence of ageing period, colour and sugar content
Okada et al. Principal component analysis of the relationship between the D-amino acid concentrations and the taste of the sake
Pan et al. Isolation and identification of putative precursors of the volatile sulfur compounds and their inhibition methods in heat-sterilized melon juices
Chi et al. Distinction of volatile flavor profiles in various skim milk products via HS-SPME–GC–MS and E-nose
Kestens et al. Vaporisation coulometric Karl Fischer titration: A perfect tool for water content determination of difficult matrix reference materials
Shapiro et al. Rapid and accurate determination of malate, citrate, pyruvate and oxaloacetate by enzymatic reactions coupled to formation of a fluorochromophore: Application in colorful juices and fermentable food (yogurt, wine) analysis
Demarigny et al. Flavour sulphides are produced from methionine by two different pathways by Geotrichum candidum
Akyilmaz et al. Determination of calcium in milk and water samples by using catalase enzyme electrode
López del Castillo-Lozano et al. Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine–cysteine mixtures
Fischer et al. Identification of an important odorant precursor in durian: First evidence of ethionine in plants
Tomita et al. Metabolomic evaluation of different starter culture effects on water-soluble and volatile compound profiles in nozawana pickle fermentation
Mazzucotelli et al. Proton transfer reaction mass spectrometry: A green alternative for food volatilome profiling
Wang et al. Large volume headspace GC/MS analysis for the identification of volatile compounds relating to seafood decomposition
Li et al. Quantitative assessment of furosine, furfurals, and advanced glycation end products in different types of commercially available cheeses
Jiang et al. Detection and prediction of Botrytis cinerea infection levels in wine grapes using volatile analysis
Xi et al. Biosynthesis, behavior and fate of volatile organic sulfide in Lentinus edodes (Berk.) upon hot-air drying treatment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018539445

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797561

Country of ref document: EP

Kind code of ref document: A1