JP5974429B2 - 複合材料構造物及びその製造方法 - Google Patents

複合材料構造物及びその製造方法 Download PDF

Info

Publication number
JP5974429B2
JP5974429B2 JP2011158723A JP2011158723A JP5974429B2 JP 5974429 B2 JP5974429 B2 JP 5974429B2 JP 2011158723 A JP2011158723 A JP 2011158723A JP 2011158723 A JP2011158723 A JP 2011158723A JP 5974429 B2 JP5974429 B2 JP 5974429B2
Authority
JP
Japan
Prior art keywords
space
flow path
base material
liquid
microchip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011158723A
Other languages
English (en)
Other versions
JP2013022804A (ja
JP2013022804A5 (ja
Inventor
行本 智美
智美 行本
山崎 剛
剛 山崎
秋山 昭次
昭次 秋山
秋山 雄治
雄治 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011158723A priority Critical patent/JP5974429B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Priority to PCT/JP2012/003939 priority patent/WO2013011629A1/en
Priority to CN201280034743.XA priority patent/CN103702826B/zh
Priority to CN201510420058.6A priority patent/CN105126940B/zh
Priority to IN261DEN2014 priority patent/IN2014DN00261A/en
Priority to EP12731185.0A priority patent/EP2734361B1/en
Priority to US14/131,730 priority patent/US9610750B2/en
Publication of JP2013022804A publication Critical patent/JP2013022804A/ja
Publication of JP2013022804A5 publication Critical patent/JP2013022804A5/ja
Application granted granted Critical
Publication of JP5974429B2 publication Critical patent/JP5974429B2/ja
Priority to US15/444,906 priority patent/US10414118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • G01N2021/513Cuvettes for scattering measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Description

本技術は、複合材料構造物及びその製造方法に関する。より詳しくは、熱変形温度が異なる材料からなる複数の部材を、熱変形を利用して複合化させた複合材料構造物等に関する。
近年、半導体産業における微細加工技術を応用し、シリコン製あるはガラス製などの基板に化学的又は生物学的な分析のための領域あるいは流路を設けたマイクロチップが開発されてきている。このようなマイクロチップを用いた分析システムは、μ−TAS(micro-Total-Analysis System)、ラボ・オン・チップあるいはバイオチップなどと称され、分析の高速化、高効率化あるいは集積化、さらには分析装置の小型化などを可能にする技術として注目されている。
μ−TASは、少量の試料で分析が可能なことや、マイクロチップの使い捨てが可能なことなどから、特に貴重な微量試料や多数の検体を扱う生物学的分析への応用が期待されている。μ−TASの応用例として、例えば、液体クロマトグラフィーの電気化学検出器及び医療現場における小型の電気化学センサーなどがある。
また、他の応用例として、マイクロチップに配設された流路内で細胞やマイクロビーズなどの微小粒子の特性を光学的、電気的あるいは磁気的に分析する微小粒子分析技術がある。この微小粒子分析技術では、分析により所定の条件を満たすと判定されたポピュレーション(群)を微小粒子中から分別回収することも行われている。
例えば、特許文献1には、「微小粒子を含む液体が通流される流路と、この流路を通流する液体をチップ外の空間に排出するオリフィスと、が配設され、流路の所定部位に微小粒子の光学特性を検出するための光照射部が構成されたマイクロチップ」が開示されている。このマイクロチップは、オリフィスから吐出される微小粒子を含む液滴の移動方向を制御することにより、光照射部において所定の光学特性を有すると判定された微小粒子を分別回収するために用いられる。
特開2010−190680号公報
マイクロチップを複数の部材を組み合わせて構成する場合、各部材に形成された流路あるいは領域を高精度に位置決めして繋ぎ合わせる必要がある。流路等の位置決め方法としては、従来、顕微鏡を用いて各部材の流路等を観察しながら接続を行うという非常に手間がかかる方法がとられていた。
そこで、本技術は、各部材に形成された流路あるいは領域を高精度かつ簡便に位置決めして繋ぎ合わせることが可能な複合材料構造物を提供することを主な目的とする。
上記課題解決のため、本技術は、熱可塑性樹脂からなり、熱圧着により接合された二以上の基材と、前記熱可塑性樹脂よりも熱変形温度が高い材料からなり、前記基材の少なくとも一つに形成された空間内に挿入された一以上の部材と、から構成され、前記空間内に挿入された前記部材が、熱圧着により熱変形した前記基材の前記空間を構成する壁面によって固定保持されている複合材料構造物を提供する。
この複合材料構造物では、前記空間内における前記部材の位置を熱変形した前記壁面によって位置決めすることにより、前記基材の少なくとも一以上と前記部材とにそれぞれ形成された領域が連絡され繋ぎ合わされている。
この複合材料構造物は、前記領域として液体が通流される流路が形成されたマイクロチップとすることができ、さらに前記流路を通流する液体あるいは該液体に含まれる試料に対して光が照射される光照射部を備えるものとできる。この場合、前記光照射部は、前記基材を構成する前記熱可塑性樹脂よりも光透過性に優れた材料からなる部材によって構成することが好適となる。
また、本技術は、熱可塑性樹脂からなり、少なくとも一つに形成された空間を有する二以上の基材を配する工程と、前記空間内に、前記熱可塑性樹脂よりも熱変形温度が高い材料からなる一以上の部材を挿入する工程と、前記基材を熱圧着により接合することによって、前記空間内に挿入された前記部材を、熱変形した前記基材の前記空間を構成する壁面によって固定保持させる工程と、を含む複合材料構造物の製造方法を提供する。
この複合材料構造物の製造方法では、前記空間内における前記部材の位置を熱変形した前記壁面によって位置決めすることにより、前記基材の少なくとも一以上と前記部材とにそれぞれ形成された領域を連絡し繋ぎ合わせることができる。
この複合材料構造物の製造方法において、前記基材の熱圧着は、前記基材を構成する前記熱可塑性樹脂の熱変形温度よりも高く、かつ、前記部材を構成する材料の熱変形温度よりも低い温度で行われる。
本技術により、各部材に形成された流路あるいは領域を高精度かつ簡便に位置決めして繋ぎ合わせることが可能なマイクロチップが提供される。
本技術に係る複合材料構造物の構成を説明する上面模式図である。 本技術に係る複合材料構造物の構成を説明する断面模式図(図1中P−P断面)である。 本技術に係る複合材料構造物の構成を説明する断面模式図(図1中Q−Q断面)である。 基材11,12の構成を説明する断面模式図である。 部材2の構成を説明する模式図である。(A)は上面図、(B)は側面図、(C)は正面図を示す。 基材11,12と部材2の接合部の構成を説明する断面模式図である。(A)は基材11,12の熱変形前、(B)は熱変形後を示す。 基材11,12と部材2の接合部の変形例の構成を説明する断面模式図である。(A)、(C)は基材11,12の熱変形前、(B)、(D)は熱変形後を示す。 本技術に係る複合材料構造物の実施形態の具体例を説明する模式図である。
以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。

1.複合材料構造物
2.複合材料構造物の製造方法
3.微小粒子分析用マイクロチップ
1.複合材料構造物
図1は、本技術に係る複合材料構造物の構成を説明する上面模式図である。また、図2及び図3は、本技術に係る複合材料構造物の構成を説明する断面模式図である。図2は図1中P−P断面に対応し、図3はQ−Q断面に対応する。
図中、符号Aで示す複合材料構造物は、熱圧着により接合された基材11、12と、基材中に埋め込まれて接合された埋め込み部材2(以下、単に「部材2」と称する)とから構成されている。基材11,12及び部材2には、領域3が形成されている。以下、領域3を液体が通流される流路として説明し、「流路3」と称するものとする。また、複合材料構造物Aを前記液体の分析に供されるマイクロチップとして説明し、「マイクロチップA」と称する。
基材11、12は、熱可塑性樹脂からなり、熱圧着により接合されている。基材11、12には、流路3の一部構成として、分析対象とする液体あるいは分析対象物を含む液体を外部から流路3内に導入するための導入口31と、該液体を流路3内から外部へ導出するための排出口32が形成されている。
熱可塑性樹脂としては、マイクロチップの材料として従来用いられている樹脂であってよく、ポリカーボネート、ポリメタクリル酸メチル樹脂(PMMA)、環状ポリオレフィン、ポリエチレン、ポリスチレン、ポリプロピレン及びポリメチルジシラザン(PDMS)などが挙げられる。基材11、12への流路3等の成形は、ナノインプリント、射出成型及び機械加工などの従来公知の手法によって行うことができる。
部材2は、基材11、12を構成する熱可塑性樹脂よりも熱変形温度が高い材料からなる。部材2の材料としては、上述の熱可塑性樹脂、金属、ガラス、石英、セラミック等が挙げられる。部材2への流路3等の成形は、例えば部材2がガラス製の場合、ウェットエッチングやドライエッチングによって行うことができる。また、例えば部材2が金属製の場合には、機械加工によって行えばよい。
流路3のうち、基材11、12に形成された部分と部材2に形成された部分とは、図1及び図2に示されるように、位置ずれを生じることなく連絡され、繋ぎ合わされている。これにより、流路3内に導入された液体が、基材11、12に形成された部分と部材2に形成された部分との繋ぎ目において流れに乱れを生じることなく流路3内を通流できるようにされている。
このような基材11、12に形成された流路3と部材2に形成された流路3との繋ぎ合わせは、熱圧着時に生じる基材11、12の熱変形を利用して、基材11,12に対して部材2を位置決めすることによって達成できる。すなわち、図3に示すように、マイクロチップAでは、部材2が熱変形により収縮した基材11,12の壁面13によって固定保持されることによって、基材11,12と部材2とが位置決めされている。基材11、12の熱変形を利用した基材11,12と部材2との位置決めについては、次の複合材料構造物の製造方法の項において詳しく説明する。
ここでは、マイクロチップAとして、二つの基材11,12と一つの部材2が複合化された複合材料構造物を例示したが、本技術に係る複合材料構造物は、基材を三以上含むものであってよく、部材も二以上含んでいてよい。また、ここでは、流路3等の領域が基材11,12のそれぞれに一部ずつ形成されてなる場合を例に説明したが、これらの領域は基材11,12のいずれか一方に全て形成されているものであってよい。
2.複合材料構造物の製造方法
次に、図4〜図6を参照して、上述のマイクロチップAを例に、本技術に係る複合材料構造物の製造方法について説明する。図4は、基材11,12の構成を説明する断面模式図であり、図2において部材2を省略した図に相当する。図5は、部材2の構成を説明する模式図であり、(A)は上面図、(B)は側面図、(C)は正面図を示す。図6は、基材11,12と部材2の接合部の構成を説明する断面模式図であり、(A)は基材11,12の熱変形前、(B)は熱変形後を示す。なお、図6は、図1中Q−Q断面に対応している。
まず、第一の工程として、熱可塑性樹脂からなり、空間14を有する基材11,12を配する工程について説明する。本工程では、基材11,12に、両者を重ね合わせた状態において部材2を挿入可能となる空間14を形成する(図4参照)。この空間14は、基材11、12の重ね合わせ時において、一面に流路3が開口し、これと対向する面が開放された直方体形状の空間とされている。空間14は、流路3と同様に、ナノインプリント、射出成型及び機械加工などの手法より成形される。
一方、部材2の両端には、基材11,12の空間14に挿入される係合端21が構成されている。係合端21は、直方体形状とされた部材2本体の両端に、正面視八角形(図5(C)参照)の柱体形状で設けられている。部材2本体及び二つの係合端21には、一本の流路3が形成されている。
次に、第二の工程として、空間14内に、前記熱可塑性樹脂よりも熱変形温度が高い材料からなる部材2を挿入する工程について説明する。本工程では、係合端21を、重ね合わされた基材11、12が形成する空間14に挿入する。空間14に係合端21が挿入された状態を、図6(A)に示す。空間14への係合端21の挿入は、基材11と基材12を重ね合わせた後、空間14に係合端21を挿し入れることによって行ってもよいが、好適には以下のようにして行うことができる。すなわち、まず、基材12の空間14を構成する凹部に部材2の係合端21を係止させる。次に、基材11の空間14を構成する凹部の位置と、基材12に係止させた係合端21との位置が一致するようにして、基材11を基材12に重ね合わせる。
空間14への係合端21の挿入を容易にするため、空間14の内径Lは、係合端21の外径lと同径か、あるいは外径lよりも若干大きく形成することが好ましい。ただし、空間14の内径Lを係合端21の外径lよりも大きく形成する場合にも、次に説明するように、基材11,12の熱圧着時に、熱変形した空間14を構成する壁面13が係合端21に接触できるようにする必要がある。なお、ここで、内径L及び外径lは図中上下方向(Y軸方向)に限定して解釈されるものではなく、左右方向(X軸方向)を含めてあらゆる方向の径を意味すると解すべきである。
続いて、第三の工程として、基材11,12を熱圧着により接合することによって、空間14内に挿入された部材2を、熱変形した基材11,12の空間14を構成する壁面13によって固定保持させる工程について説明する。本工程では、空間14へ係合端21を挿入した後、基材11,12を熱圧着する。熱圧着は、基材11,12を構成する熱可塑性樹脂の熱変形温度よりも高く、部材2を構成する材料の熱変形温度よりも低い温度で行う。この熱圧着操作により、基材11,12は熱変形し、空間14を構成する壁面13が熱収縮し、空間14が縮小する。一方、部材2は、熱圧着操作によっても熱変形しない。その結果、熱変形後の空間14の内径Lが係合端21の外径lよりも小さくなり、図6(B)に示すように、熱収縮した壁面13によって係合端21が固定保持され、基材11,12と部材2が接合される。
熱圧着操作の際、壁面13の熱収縮及び空間14の縮小は等方的に生じる。具体的には、空間14を構成する壁面13のうちY軸方向で対向する壁面131,132とX軸方向で対向する壁面133,134との4面は、熱収縮によって空間14側に等しく膨出してくる。その結果、等量膨出した壁面131,132,133,134によって、係合端21が空間14内の中央に保持され、位置決めされることになる。そして、基材11,12に形成された流路3の一部と部材2に形成された流路3の一部とが連絡され、繋ぎ合わされる(図1及び図2参照)。
このように、基材11,12の熱収縮を利用して、空間14内の中央に部材2が保持固定されるようにすることで、基材11,12及び部材2にそれぞれ形成された流路3を簡便かつ高精度に位置決めでき、ずれを生じることなく繋ぎ合わせることが可能となる。
空間14の内径L及び係合端21の外径lは、このような壁面13の熱収縮量を考慮して、熱収縮した壁面13が係合端21に密に接触できるように適切な径に設定される。すなわち、空間14の内径Lは、熱変形後の内径Lが係合端21の外径lよりも小さくなるように予め設計される。
ここでは、熱収縮した壁面131,132,133,134によって係合端21が空間14内においてX軸方向及びY軸方向の両方向に位置決めされる場合を説明したが、位置決め方向は壁面131,132によってX軸方向にのみ、あるいは壁面133,134によってY軸方向のみの一方向になされてもよい。位置決めを一方向のみに行う場合、空間14の内径LはX軸方向とY軸方向とで異なっていてもよく、係合端21の外径lも同様にX軸方向とY軸方向とで異なっていてよい。さらに、位置決め方向は、X軸方向及び/又はY軸方向に加えて、これらにZ軸方向(流路3に平行な方向)にも行うことが可能である。
また、熱収縮した際、壁面13の一部は係合端21に接触しないように、空間14の形状及び係合端21の形状を設計することが好ましい。熱収縮した際、壁面13の全面が係合端21に密接する場合、空間14側に膨張する熱可塑性樹脂の圧力によって部材2が変形、破壊されるおそれがある。これを回避するため、ここでは、空間14を直方体形状とし、係合端21を八角柱形状としている。これにより、空間14が熱縮小した場合に、係合端21の8面のうち4面は壁面13に接触せず、壁面13との間に空隙を形成することとなるため、この空隙が膨張した熱可塑性樹脂の逃げ場となって部材2に過度の圧力がかかることが防止される。
空間14及び係合端21の形状は、直方体形状と八角柱形状の組み合わせに限定されず、種々の形状の組み合わせであってよい。例えば図7(A)、(B)に示すように、係合端21の形状は、円柱であってもよい。また、例えば図7(C)、(D)に示すように、空間14を八角柱形状とし、係合端21を円柱形状としてもよい。いずれの場合にも、熱収縮した際、壁面13の一部は、係合端21に密接して空間14内に係合端21を位置決めするように機能し、かつ、壁面13の他の一部は係合端21との間に空隙を形成して部材2への過度の圧力を防止するように機能する。
基材11,12の熱変形により接合された基材11,12と部材2との接合部には、封止材を配したり、封止材による処理を行ったりして、液密性を高めるようにしてもよい。封止は、ゴム等の弾性部材(Oリングなど)を接合部に配する方法や、接着剤を接合部に塗布する方法などによって行うことができる。
3.微小粒子分析用マイクロチップ
上述したマイクロチップAの具体的な実施形態の一例として、マイクロチップAを微小粒子分析のために用いる例を説明する。なお、微小粒子分析用のマイクロチップとしては、先に挙げた特許文献1を参照可能である。
図8に示すマイクロチップAは、熱圧着により接合された熱可塑性樹脂製基材に、石英からなる部材2が埋め込まれてなり、基材と部材2には分析対象とする微小粒子を含む液体(以下、「サンプル液」と称する)が通流される流路3が形成されている。
サンプル液は、サンプルインレット311から流路3内に導入される。サンプル液に含まれる微小粒子は、細胞や微生物、リポソームなどの生体関連微小粒子、あるいはラテックス粒子やゲル粒子、工業用粒子などの合成粒子などであってよい。生体関連微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。対象とする細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。さらに、生体関連微小粒子には、核酸やタンパク質、これらの複合体などの生体関連高分子も包含され得るものとする。また、工業用粒子は、例えば有機もしくは無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれる。金属には、金コロイド、アルミなどが含まれる。これら微小粒子の形状は、一般には球形であるのが普通であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
サンプル液は、シースインレット312から導入されるシース液により周囲を取り囲まれた状態で流路3を送液される。シースインレット312から導入されたシース液は、2方向に分かれて送液された後、サンプルインレット311から導入されたサンプル液との合流部において、サンプル液を2方向から挟み込むようにしてサンプル液に合流する。これにより、合流部において、シース液層流の中央にサンプル液層流が位置された3次元層流が形成される。
符号4は、流路3に詰まりや気泡が生じた際に、流路3内に負圧を加えて流れを一時的に逆流させて詰まりや気泡を解消するための吸引流路を示す。吸引流路4の一端には、真空ポンプ等の負圧源が接続される吸引アウトレット42が形成され、他端は連通口41において流路3に接続している。
微小粒子は、形成された3次元層流中に一列に配列した状態となって流路3内を通流され、光学検出手段Bによる光照射部まで送液される。光学検出手段Bは、レーザー光源、微小粒子に対してレーザー光を集光・照射する集光レンズ、ダイクロイックミラー、バンドパスフィルターなどからなる照射系と、レーザー光の照射によって微小粒子から発生する測定対象光を検出する検出系と、によって構成される。検出系は、例えば、PMT(photo multiplier tube)や、CCD及びCMOS素子等のエリア撮像素子などによって構成される。なお、図では、光学検出手段Bとして集光レンズのみを示した。また、図では、照射系と検出系を同一の光学経路により構成した場合を示したが、照射系と検出系は別個の光学経路により構成してもよい。
光学検出手段Bの検出系により検出される測定対象光は、測定光の照射によって微小粒子から発生する光であって、例えば、前方散乱光や側方散乱光、レイリー散乱やミー散乱等の散乱光や蛍光などとすることができる。これらの測定対象光は電気信号に変換され、この電気信号に基づいて微小粒子の光学特性が検出される。
光照射部を通過したサンプル液は、流路3の一端に設けられた吐出口321からチップ外の空間に排出される。この際、振動素子によってマイクロチップAを振動させることで、サンプル液を微小粒子を含む液滴としてチップ外の空間に吐出できる。吐出された液滴には、荷電電極インレット5に挿入された電極によって電荷が付与される。
チップ外の空間には、吐出された液滴の移動方向に沿って、移動する液滴を挟んで対向する対電極配置されており、この対電極との電気的な反発力(又は吸引力)によって液滴の移動方向が制御されることによって、液滴に含まれる微小粒子がその光学特性に応じて分別、分取される。
マイクロチップAでは、流路3のうち光学検出手段Bによる光照射部を構成する部分を、光透過性に優れ、光学誤差の少ない石英によって形成している。このため、微小粒子へのレーザー光の照射効率が高く、測定対象光も高精度に検出することでき、微小粒子の光学特性を正確に判定して分取を行うことが可能である。
また、マイクロチップAの光照射部のみを高価な石英とし、他の部分は安価で成形が容易な熱可塑性樹脂によって構成することで、チップ全体の製造コストを抑制することも可能である。なお、部材2の材料は、光透過性に優れ、光学誤差の少ない材料であれば、石英に限定されることはない。
基材と部材2にそれぞれに形成された流路3は、上述した本技術に係る複合材料構造物の製造方法を適用することによって、位置ずれを生じることなく連絡し、繋ぎ合わされている。例えば、流路3の径が100μmである場合、本技術に係る複合材料構造物の製造方法によれば、数十μm以下の位置決め精度で流路を繋ぎ合わせることができる。
このため、マイクロチップAでは、流路3内に形成されたサンプル液とシース液との3次元層流が、基材に形成された部分と部材2に形成された部分との繋ぎ目において乱れることなく流路3内を通流できる。従って、マイクロチップAでは、光照射部におけるレーザー光の焦点位置と微小粒子の送流位置を精緻に一致させて、微小粒子の光学特性を正確に測定することができる。また、吐出口321からチップ外の空間に排出される液滴の形状及び大きさを安定化して、液滴の移動方向の制御及び分取を高精度に行うことができる。
本技術に係る複合材料構造物は以下のような構成をとることもできる。
(1)熱可塑性樹脂からなり、熱圧着により接合された二以上の基材と、前記熱可塑性樹脂よりも熱変形温度が高い材料からなり、前記基材の少なくとも一つに形成された空間内に挿入された一以上の部材と、から構成され、前記空間内に挿入された前記部材が、熱圧着により熱変形した前記基材の前記空間を構成する壁面によって固定保持されている複合材料構造物。
(2)前記空間内における前記部材の位置が前記壁面によって位置決めされている上記(1)記載の複合材料構造物。
(3)前記基材の少なくとも一以上と前記部材とにそれぞれ形成された領域が連絡するように、前記部材が前記空間内に位置決めされている上記(1)又は(2)記載の複合材料構造物。
(4)前記領域として液体が通流される流路が形成されたマイクロチップである上記(3)記載の複合材料構造物。
(5)前記流路を通流する液体あるいは該液体に含まれる試料に対して光が照射される光照射部を備え、前記基材を構成する前記熱可塑性樹脂よりも光透過性に優れた材料からなる前記部材によって、前記光照射部が構成されている上記(4)記載の複合材料構造物。
また、本技術に係る複合材料構造物の製造方法は以下のような構成をとることもできる。
(1)熱可塑性樹脂からなり、少なくとも一つに形成された空間を有する二以上の基材を配する工程と、前記空間内に、前記熱可塑性樹脂よりも熱変形温度が高い材料からなる一以上の部材を挿入する工程と、前記基材を熱圧着により接合することによって、前記空間内に挿入された前記部材を、熱変形した前記基材の前記空間を構成する壁面によって固定保持させる工程と、を含む複合材料構造物の製造方法。
(2)前記固定保持させる工程において、前記空間内における前記部材の位置を前記壁面によって位置決めする上記(1)記載の製造方法。
(3)前記固定保持させる工程において、前記基材の少なくとも一以上と前記部材とにそれぞれ形成された領域が連絡するように、前記部材を前記空間内に位置決めする上記(1)又は(2)記載の製造方法。
(4)前記固定保持させる工程において、前記基材を構成する前記熱可塑性樹脂の熱変形温度よりも高く、かつ、前記部材を構成する材料の熱変形温度よりも低い温度で、前記基材の熱圧着を行う上記(1)〜(3)のいずれかに記載の製造方法。
本技術に係る複合材料構造物及びその製造方法によれば、異種材料からなる複数の部材を簡便かつ高精度に位置決めして複合化させることができ、部材の熱収縮を利用して複合化を行うことで部材の公差に対する許容度を大きくできる。このため、本技術は、成形の容易性等などの製造工程上の制約及び光透過性などの機能上の制約から異種材料からなる部材を複合化させて構造物を得る際に有用であり、例えば高機能な光学用途の構造物を構成するために利用できる。
A:マイクロチップ、B:光学検出手段、11,12:基材、13,131,132,133,134:壁面、14:空間、2:埋め込み部材、21:係合端、3:流路、31:導入口、311:サンプルインレット、312:シースインレット、32:排出口、321:吐出口、4:吸引流路、41:連通口、42:吸引アウトレット、5:荷電電極インレット

Claims (10)

  1. 熱可塑性樹脂からなり、熱圧着により接合されている二以上の基材と、
    前記熱可塑性樹脂よりも熱変形温度が高い材料からなり、前記基材の少なくとも一つが有する空間内に挿入されている一以上の部材と、から構成され、
    前記基材のうち少なくとも一つと前記部材のそれぞれに液体が通流される流路が形成されており、
    前記流路を通流する前記液体あるいは前記液体に含まれる試料に対して光が照射される光照射部を備え
    前記空間内に挿入されている前記部材が、熱圧着により熱変形した前記基材の前記空間を構成する壁面によって固定保持されているマイクロチップ。
  2. 記空間内における前記部材の位置が前記壁面によって位置決めされている請求項1記載のマイクロチップ。
  3. 前記基材の少なくとも一つと前記部材とにそれぞれ形成された前記流路が連絡するように、前記部材が前記空間内に位置決めされている請求項1又は2記載のマイクロチップ。
  4. 前記光照射部は前記基材を構成する前記熱可塑性樹脂よりも光透過性に優れた材料からなる請求項1〜3のいずれか一項に記載のマイクロチップ。
  5. 前記基材の少なくとも一つに形成された前記流路は、微小粒子を含むサンプル液を導入するサンプルインレットと、前記微小粒子を含む液滴を排出する吐出口と、を備える請求項1〜4記載のマイクロチップ。
  6. 前記基材の少なくとも一つに形成された前記流路は、シース液を導入するシースインレットと、前記サンプル液及び前記シース液が合流する合流部と、を備える請求項5記載のマイクロチップ。
  7. 熱可塑性樹脂からなり、少なくとも一つに形成された空間を有する二以上の基材を配する工程と、
    前記空間内に、前記熱可塑性樹脂よりも熱変形温度が高い材料からなる一以上の部材を挿入する工程と、
    前記基材を熱圧着により接合することによって、前記空間内に挿入された前記部材を、熱変形した前記基材の前記空間を構成する壁面によって固定保持させる工程と、
    を含み、
    前記固定保持させる工程において、前記基材の少なくとも一以上と前記部材とにそれぞれ形成された流路が連絡するように、前記部材を前記空間内に位置決めするマイクロチップの製造方法。
  8. 前記流路を通流する液体あるいは該液体に含まれる試料に対して光が照射される光照射部を形成する工程と、を更に含む請求項記載の製造方法。
  9. 前記固定保持させる工程において、前記空間内における前記部材の位置を前記壁面によって位置決めする請求項又は記載の製造方法。
  10. 前記固定保持させる工程において、前記基材を構成する前記熱可塑性樹脂の熱変形温度よりも高く、かつ、前記部材を構成する材料の熱変形温度よりも低い温度で、前記基材の熱圧着を行う請求項のいずれか一項に記載の製造方法。
JP2011158723A 2011-07-20 2011-07-20 複合材料構造物及びその製造方法 Active JP5974429B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011158723A JP5974429B2 (ja) 2011-07-20 2011-07-20 複合材料構造物及びその製造方法
CN201280034743.XA CN103702826B (zh) 2011-07-20 2012-06-15 复合结构体及其制造方法
CN201510420058.6A CN105126940B (zh) 2011-07-20 2012-06-15 复合结构体和用于分析微粒子的微芯片
IN261DEN2014 IN2014DN00261A (ja) 2011-07-20 2012-06-15
PCT/JP2012/003939 WO2013011629A1 (en) 2011-07-20 2012-06-15 Composite structure and manufacturing method therefor
EP12731185.0A EP2734361B1 (en) 2011-07-20 2012-06-15 Composite structure and manufacturing method therefor
US14/131,730 US9610750B2 (en) 2011-07-20 2012-06-15 Composite structure and manufacturing method therefor
US15/444,906 US10414118B2 (en) 2011-07-20 2017-02-28 Microchip manufactured with thermocompression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158723A JP5974429B2 (ja) 2011-07-20 2011-07-20 複合材料構造物及びその製造方法

Publications (3)

Publication Number Publication Date
JP2013022804A JP2013022804A (ja) 2013-02-04
JP2013022804A5 JP2013022804A5 (ja) 2014-07-31
JP5974429B2 true JP5974429B2 (ja) 2016-08-23

Family

ID=46420487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158723A Active JP5974429B2 (ja) 2011-07-20 2011-07-20 複合材料構造物及びその製造方法

Country Status (6)

Country Link
US (2) US9610750B2 (ja)
EP (1) EP2734361B1 (ja)
JP (1) JP5974429B2 (ja)
CN (2) CN103702826B (ja)
IN (1) IN2014DN00261A (ja)
WO (1) WO2013011629A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393103A (zh) * 2018-03-03 2018-08-14 北京工业大学 一种可实现液滴尺寸不依赖流量的微流控芯片
US11665929B2 (en) * 2019-06-13 2023-05-30 Intel Corporation Micro light-emitting diode displays with improved power efficiency

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524516Y2 (ja) * 1987-04-21 1993-06-22
JPH03156888A (ja) * 1989-08-28 1991-07-04 Toshiba Corp 分散型elパネル及びその製造方法
GB8926294D0 (en) * 1989-11-21 1990-01-10 British Gas Plc Method of jointing hollow members by fusion
US5427663A (en) 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
GB9418981D0 (en) 1994-09-21 1994-11-09 Univ Glasgow Apparatus and method for carrying out analysis of samples
JP3388392B2 (ja) * 1999-06-02 2003-03-17 日精樹脂工業株式会社 Icカード製造装置
AU2002213043A1 (en) * 2000-10-06 2002-04-15 Protasis Corporation Fluid separation conduit cartridge
US6564475B2 (en) * 2000-12-22 2003-05-20 K-Swiss Inc. Footwear with enhanced temperature control
CN101158447B (zh) 2002-12-04 2012-12-26 斯宾克斯公司 流体的可程控微量控制用装置和方法
JP4074921B2 (ja) * 2003-03-14 2008-04-16 日本電気株式会社 質量分析システムおよび分析方法
JP4695851B2 (ja) * 2003-07-10 2011-06-08 シチズンホールディングス株式会社 マイクロ化学チップ温度調節装置
JP4304120B2 (ja) * 2004-04-30 2009-07-29 ベイバイオサイエンス株式会社 生物学的粒子をソーティングする装置及び方法
CN1687766A (zh) 2005-04-21 2005-10-26 复旦大学 一种纤维电泳芯片及其制备方法
EP1893336A2 (en) * 2005-05-19 2008-03-05 Koninklijke Philips Electronics N.V. Functional assembly and method of obtaining it
JP4695977B2 (ja) * 2005-12-21 2011-06-08 東ソー・クォーツ株式会社 マイクロチップ及びその製造方法
JP2007263706A (ja) * 2006-03-28 2007-10-11 Aisin Seiki Co Ltd バイオアッセイ用マイクロチップ
US8312646B2 (en) * 2006-05-25 2012-11-20 Nike, Inc. Article of footwear incorporating a tensile element
EP1972909A1 (en) 2007-03-23 2008-09-24 Koninklijke Philips Electronics N.V. Luminescence sensor
US7880108B2 (en) * 2007-10-26 2011-02-01 Becton, Dickinson And Company Deflection plate
JP2009243965A (ja) * 2008-03-28 2009-10-22 Sumitomo Bakelite Co Ltd 流路デバイス、外装ケース付き流路デバイス、流路デバイスの使用方法
JP4572973B2 (ja) * 2008-06-16 2010-11-04 ソニー株式会社 マイクロチップ及びマイクロチップにおける送流方法
JP5487638B2 (ja) * 2009-02-17 2014-05-07 ソニー株式会社 微小粒子分取のための装置及びマイクロチップ

Also Published As

Publication number Publication date
CN105126940A (zh) 2015-12-09
JP2013022804A (ja) 2013-02-04
US20140154475A1 (en) 2014-06-05
WO2013011629A1 (en) 2013-01-24
IN2014DN00261A (ja) 2015-06-05
CN105126940B (zh) 2018-05-18
US9610750B2 (en) 2017-04-04
US20170203296A1 (en) 2017-07-20
US10414118B2 (en) 2019-09-17
CN103702826A (zh) 2014-04-02
EP2734361A1 (en) 2014-05-28
EP2734361B1 (en) 2017-08-09
CN103702826B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6003020B2 (ja) マイクロチップ及び微小粒子分析装置
JP4661942B2 (ja) マイクロチップとその流路構造
KR101850548B1 (ko) 미소 입자 분류 장치, 마이크로칩 모듈 및 미소 입자들의 분류 방법
US8246805B2 (en) Micro-fluidic chip and flow sending method in micro-fluidic chip
EP2191895B1 (en) Microparticle analysis device, microfluidic chip for microparticle analysis, and microparticle analysis method
US20080213821A1 (en) Microfluidic Cell Sorter System
Shrirao et al. Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification
KR20130045236A (ko) 마이크로칩 및 미립자 분석 장치
JP5974429B2 (ja) 複合材料構造物及びその製造方法
JP5316530B2 (ja) マイクロチップとその流路構造
CN107427831B (zh) 微芯片、分析设备以及分析方法
JP5092881B2 (ja) 流路構造及びマイクロチップ
JP6965953B2 (ja) マイクロチップ及び微小粒子分析装置
WO2021100618A1 (ja) マイクロチップ、サンプル分取キット及び微小粒子分取装置
WO2022185980A1 (ja) 粒子分取キット
WO2019230489A1 (ja) マイクロチップ及びサンプル分取キット
JP2013250229A (ja) 微小粒子分取用マイクロチップ、該微小粒子分取用マイクロチップが搭載された微小粒子分取装置、並びに微小粒子の分取方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5974429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250