WO2007046153A2 - 電気的接続装置の組み立て方法 - Google Patents

電気的接続装置の組み立て方法 Download PDF

Info

Publication number
WO2007046153A2
WO2007046153A2 PCT/JP2005/019850 JP2005019850W WO2007046153A2 WO 2007046153 A2 WO2007046153 A2 WO 2007046153A2 JP 2005019850 W JP2005019850 W JP 2005019850W WO 2007046153 A2 WO2007046153 A2 WO 2007046153A2
Authority
WO
WIPO (PCT)
Prior art keywords
probe
spacer
board
support member
tip
Prior art date
Application number
PCT/JP2005/019850
Other languages
English (en)
French (fr)
Other versions
WO2007046153A8 (ja
WO2007046153A1 (ja
Inventor
Yoshiei Hasegawa
Original Assignee
Nihon Micronics Kk
Yoshiei Hasegawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Micronics Kk, Yoshiei Hasegawa filed Critical Nihon Micronics Kk
Priority to KR1020087009567A priority Critical patent/KR100981645B1/ko
Priority to US12/091,207 priority patent/US7728608B2/en
Priority to JP2007540870A priority patent/JP4567063B2/ja
Priority to CN2005800519224A priority patent/CN101297445B/zh
Priority to DE112005003731T priority patent/DE112005003731B4/de
Priority to PCT/JP2005/019850 priority patent/WO2007046153A1/ja
Priority claimed from PCT/JP2005/019850 external-priority patent/WO2007046153A1/ja
Publication of WO2007046153A2 publication Critical patent/WO2007046153A2/ja
Publication of WO2007046153A1 publication Critical patent/WO2007046153A1/ja
Publication of WO2007046153A8 publication Critical patent/WO2007046153A8/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point

Definitions

  • the present invention relates to a method for assembling an electrical connection device such as a probe card used for electrical connection between an inspected object, for example, an integrated circuit and a tester performing the electrical inspection, for electrical inspection of the electrical circuit.
  • an electrical connection device such as a probe card used for electrical connection between an inspected object, for example, an integrated circuit and a tester performing the electrical inspection, for electrical inspection of the electrical circuit.
  • an electrical connection device including a probe board provided with a large number of probes, which can adjust the flatness of the probe board. It has been proposed (see Patent Document 1). According to this conventional electrical connection device, a pressing force or a tensile force can be applied to a part of the probe substrate from the support member that supports the probe substrate. By adjusting the acting force, even if the probe substrate is bent, the bending deformation of the probe substrate can be corrected, and the flatness of the probe substrate can be maintained.
  • the probe substrate is flattened by the adjustment work after the probe substrate is assembled to the support member. Because of the ability to hold, the tips of a number of probes extending from the probe substrate can be held on the same plane. As a result, since the tips of all the probes can be reliably brought into contact with the electrical connection terminals corresponding to the probes in the electrical circuit of the device under test, good electrical contact can be obtained between them. it can.
  • a probe is formed on a probe board that is bent and deformed in a free state without being loaded so that the tips are aligned on the same plane.
  • a spacer that allows the mounting bolts to pass therethrough is disposed between the mounting surface of the support member and the probe board, and this spacer prevents the deformation of the probe board when the mounting bolts are tightened. Holds the action. Therefore, since the probe substrate is attached to the reference surface of the support member while maintaining the above-described deformation, the tips of all the probes are located on the same plane.
  • the tips of all probes are connected to the electric circuits of the test object without performing the adjustment work for flattening the probe board as in the prior art. It can be pressed almost evenly on the connection terminals. As a result, even when the probe assembly is replaced, the above-described troublesome flattening adjustment work as described above becomes unnecessary, and an efficient electrical inspection becomes possible.
  • the length dimension of this type of spacer includes processing tolerances, which are tolerances in manufacturing.
  • each support portion that receives the end face of the spacer or each contact portion of the probe substrate also includes respective processing tolerances. Therefore, even when an electrical connection device including support members, spacers, and probe boards manufactured within each processing tolerance is assembled, the height of the probe tip is determined by the synergistic effect of the processing tolerance of each member. Variations that exceed the tolerances may occur.
  • Patent Document 1 Special Table 2 0 0 3-5 5 8 4 5 9 Disclosure of Invention
  • An object of the present invention is to provide an electrical connection assembling method that can suppress variations in the tip of a probe provided on a probe board without requiring a reduction in processing tolerance of each component. .
  • An electrical connection device to which the present invention is directed is a support member and a probe substrate disposed at a distance from the support member, on the other surface opposite to the one surface facing the support member, A flat plate-like probe board provided with a number of probes that are electrically connected to a tester and whose tips are brought into contact with the electrical connection terminals of an object to be inspected by the tester; and the support A plurality of spacers disposed between the support member and the probe substrate with both ends abutting against the mutually abutting portions of the mutually opposing surfaces of the probe substrate.
  • the contact portion of the support member and at least one of the contact portions of the probe board facing the contact portion may be provided for each contact portion. Measuring the height of the contact portion, measuring the length of the spacer for each of the plurality of previously formed spacers, and based on at least the measurement value obtained by the two measurements. And selecting the spacer suitable for holding the tip of the probe on the same plane between the abutting portions of the support member and the probe substrate facing each other.
  • the support member is machined so that its dimensions are within the machining tolerance, but the actual dimensions of each contact portion of the support member are allowed to vary within the machining tolerance.
  • the height level of each contact part generally varies within processing tolerances. There is a spoil.
  • the level of each contact portion of the probe substrate also varies within the processing tolerance.
  • the length dimension of each spacer also varies within the processing tolerance.
  • the height of each contact portion of at least one of the support member and the probe substrate with which both ends of each spacer contact each other is measured.
  • the length dimension of the wafer is measured.
  • the spacer By selecting the spacer, it is possible to combine the abutting portions and the corresponding spacers between the abutting portions so as to obtain an optimum combination for suppressing variations in the tip of the probe. As a result, it is possible to suppress variations in the probe tip without causing a change in the processing tolerance of the support member or the probe substrate and the processing tolerance of the spacer.
  • the combination described above is based on the data obtained from the actual measurement values, so that it is relatively easy to select the optimal combination relatively easily without requiring skill based on the feeling of conventional adjustment. Since it can be found, it is possible to easily and reliably suppress variations in the tip of the probe.
  • the height of the other abutting part is measured, and the two abutting parts that are paired with each other are measured.
  • the difference between the reference height level of the contact portion and the height level of each contact portion can be measured.
  • the support member and For measuring the height of the contact portions of both the probe substrates individual reference height levels are adopted for each of the support member and the probe substrate.
  • a difference between the reference length of the spacer and each of the spacer lengths can be measured.
  • a laser measuring device using laser light or an automatic measuring device using a CCD camera having an autofocus function can be used.
  • a plurality of screw members penetrating the support member and penetrating the spacer are provided in the electrical connection device, and screws which are screwed onto the one end surface of the probe board to the tip ends of the screw members
  • a plurality of anchor portions subjected to grinding processing are formed as the contact portions of the probe substrate so that the holes are opened to the top portions and the top surfaces of all the holes are at the height positions within the processing tolerances.
  • each of the anchor portions and the spacer corresponding to the top surface of the anchor portion can be combined so as to be an optimal combination for suppressing variations in the tip of the probe. It is possible to suppress variations in the probe tip without causing changes in the processing tolerance of the anchor portion of the probe substrate and the processing tolerance of the spacer.
  • the probe board is a flat probe board that is bent and deformed in a free state without receiving a load, and the probe board provided on the other surface of the probe board is deformed by the probe board.
  • the combination of the support member and the abutting portions of the probe board and the corresponding spacer is the combination of the probe board and the probe board. It is possible to select the optimal combination for maintaining bending deformation. By adopting this selection criterion, even if the probe board is bent, deformation of the probe tip can be achieved without changing the processing tolerances of the spacer and the support member. It is possible to suppress rash.
  • a combination with the spacer corresponding to the contact portion can be selected so as to be an optimal combination for suppressing variation within the tolerance of the tip of the probe.
  • a wiring board having a circuit connected to the tester and having a through hole allowing insertion of the screw member is disposed between the support board and the probe board, and between the wiring board and the probe board.
  • the electrical connection device according to the present invention includes a through hole that allows the thread member to pass therethrough and a connector that connects the circuit of the wiring board and the probes of the probe board.
  • the screw member is disposed through the wiring board and the through holes of the connector, and the spacer is inserted into the through holes in association with the screw member. Thereafter, the probe substrate can be coupled to the support substrate by fastening the screw member to the anchor portion.
  • the assembling method of the present invention it is possible to suppress variations in the tip of the probe without causing changes in the processing tolerance of the support member or the probe substrate and the processing tolerance of the spacer. Therefore, it is possible to suppress variations in the tip of the probe without increasing the processing accuracy of these parts, and thus without increasing the manufacturing cost due to the improved processing accuracy.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of an electrical connection device according to the present invention.
  • FIG. 2 is a longitudinal sectional view showing an essential part of the electrical connection device shown in FIG.
  • FIG. 3 is a drawing similar to FIG. 1 in which the main part of the electrical connection device shown in FIG. 2 is assembled.
  • FIG. 4 is an explanatory view showing the tolerances of the support member, the spacer, and the probe board of the electrical connection device according to the present invention.
  • the electrical connection device 10 includes a flat plate-like support member 12 whose bottom surface 1 2 a is a flat mounting reference surface, and a mounting surface 1 2 of the support member.
  • the fixing ring 2 2 has a central opening 2 2 a allowing the exposure of the probe 18 a of the probe substrate 18 at the center thereof.
  • a thermal deformation suppression member 2 4 for suppressing thermal deformation of the support member 1 2 holding the wiring board 1 4 is attached to the upper surface 1 2 b of the support member 1 2 by bolts 2 6. Yes.
  • the electrical connection device 10 is, as is well known in the art, for example, for electrical inspection of a large number of IC circuits built on a semiconductor wafer, each of which is a connection terminal of the IC circuit. Used to connect the connection pads to the tester's electrical circuit.
  • FIG. 2 is an exploded view of the main part of the present invention except for the auxiliary parts such as the base ring 20, the fixing ring 22, and the thermal deformation suppression member 24 from the electrical connection device 10 shown in FIG. 1. .
  • the wiring board 14 is generally made of, for example, a polyimide resin plate having a circular plate shape, and its lower surface 14 a is connected to the electric circuit of the tester.
  • a number of connection terminals (not shown) are arranged in a rectangular matrix.
  • the support member 1 2 has its mounting surface 1 2 a abutted against the upper surface 1 4 b of the wiring board 1 4.
  • a plate-like frame member made of a stainless steel plate.
  • the thermal deformation suppressing member 24 shown in FIG. 1 is composed of an annular member disposed so as to cover the peripheral edge portion of the upper surface 12 b of the support member 12 and is made of a metal material such as aluminum. This thermal deformation suppressing member 24 causes the support member 12 to generate a large temperature difference between its mounting surface 1 2 a and the upper surface 1 2 b under, for example, a burn-in test of an object to be inspected such as an IC circuit. The warping of the support member 1 2 that occurs when
  • Mounting bolt 3 2 for attaching probe board 1 8 to supporting member 1 2 and through-hole 3 0 that allows penetration of 8 and electrical connector 1 6 are screwed onto support member 1 2 Screw holes 3 4 to be formed are respectively formed.
  • the wiring board 14 is formed with through holes 3 6 and 3 8 corresponding to the through holes 30 and the screw holes 34, respectively.
  • the through holes 3 6 and 3 8 are formed in regions that do not affect the electrical connection of the wiring board 14 as in the prior art.
  • bolt holes 4 2 are formed on the outer edges of the support member 1 2 and the wiring board 1 4 that allow the mounting bolts 40 (see FIG. 1) to pass through the base ring 20 to the support member 1 2. 4 is formed.
  • a well-known sleeve 4 6 see FIG.
  • the probe substrate 18 is formed on a substrate member 48 made of, for example, a ceramic plate and a lower surface 48a of the substrate member, that is, the ceramic plate, as is well known in the art.
  • a multilayer wiring layer 50 includes a multilayer board made of, for example, a polyimide resin material that exhibits electrical insulation, and a wiring path formed between the multilayer boards. Have. On the lower surface 50 a of the multilayer wiring layer 50, probe lands 18 b that are electrically connected to the wiring paths of the multilayer wiring layer are formed.
  • each probe 1 8 a is connected to the corresponding probe land 1 8 b, so that each probe 1 8 a protrudes downward from the lower surface 50 0 a of the multilayer wiring layer 50.
  • the probe board 1 8 (48, 50) does not receive any load. In the free state, undulating bending deformation has occurred. Such deformation may be introduced into the ceramic plate during processing of the ceramic plate 48, and the difference in height between the lowest portion and the highest portion on the lower surface of the probe substrate 18 is, for example, several tens of ⁇ ⁇ 10. May show 0 ⁇ .
  • the lower end of the professional brand 1 8 b is aligned with the plane P 1 parallel to the virtual plane P of the probe board 1 8 and is connected to each probe land 1 8 b. Since the probes 18 a are formed to have the same length, the lower end, that is, the tip of each probe 1 8 a is aligned on a plane P 2 parallel to the virtual plane P in the free state of the probe substrate 18. Yes.
  • an electrical connection portion connected to the corresponding probe 18 a through the wiring path of the multilayer wiring layer 50 is formed on the upper surface 48 b of the ceramic plate 48.
  • the electrical connection portion is formed on the lower surface 14 a of the wiring board 14 so as to correspond to the numerous connection terminals arranged in a rectangular matrix.
  • the electrical connector 16 is composed of a pogo pin block 16 a composed of a plate-like member having electrical insulation, in which a large number of through holes 52 formed in the thickness direction are formed, and each through hole. 5
  • the pogo pin block 16 a is aligned with the through holes 5 4 and the screw holes 3 4 and the through holes 3 8 that are aligned with the through holes 30 and 3 6 and allow the mounting bolts 28 to pass therethrough.
  • a through hole 5 6 for receiving the mounting screw 3 2 is formed.
  • the electrical connector 16 is a pair of pogo pins 1 6 b and 16 b of one pogo pin 1 by the spring force of the compression coil spring 16 c. 6 b is in pressure contact with the connection terminal of the wiring board 14 and the other pogo pin 1 6 c is pressed against the electrical connection portion of the ceramic plate 48 corresponding to the connection terminal of the wiring board 14. As a result, the probes 18 a provided on the probe lands 18 b are reliably connected to the corresponding connection terminals of the wiring board 14.
  • connection pad is connected to the corresponding probe 1 8a, electrical connector 1 6 and wiring. Since it is connected to the tester via the substrate 14, an electrical inspection of the electric circuit of the semiconductor wafer can be performed by the tester.
  • the anchor portion 5 is attached to the upper surface of the probe substrate 18, that is, the upper surface 4 8 b of the ceramic plate 48, in order to couple the probe substrate 18 to the support member 12. 8 is formed.
  • a female screw hole 5 8 a that is screwed into the tip of the mounting bolt 2 8 that penetrates the through hole 30 of the support member 1 2 and the through hole 3 6 of the wiring board 1 4 is opened. To do.
  • the probe board 18 shown in FIG. 2 has the bending deformation described above, and the top surface of each anchor portion 58 is parallel to the virtual plane P in a state where the bending deformation of the probe board 18 is held. In order to be aligned on a flat plane P3, it has been ground in advance. In addition, between the support member 1 2 to which the probe board 1 8 is attached and the probe board 1 8, the deformation of the probe board 1 8 by tightening the mounting bolts 2 8 is restricted, and the top surface of each anchor part 5 8 A cylindrical spacer 60 is used to maintain a predetermined distance between 5 8 b and the mounting surface 1 2 a of the support member 12.
  • the probe board 1 8 Prior to attaching the probe board 1 8 to the support member 1 2, as shown in FIG. 3, it passes through the through hole 5 6 of the electrical connector 1 6 and the through hole 3 8 of the wiring board 1 4 and supports the support member.
  • the support member 1 2, the wiring board 1 4, and the electrical connector 1 6 are physically connected by a mounting screw 3 2 whose tip is screwed into the screw hole 3 4 of 1 2.
  • the base ring 2 0 is coupled to the lower surface 1 4 a of the wiring board 1 4 via the mounting Bonole 40. Is done. After the base ring 20 is joined, as shown in FIG.
  • each mounting bolt 28 passes through the through hole 30 of the support member 30 and the through hole 36 of the wiring board 14 from the support member 12 side.
  • Spacers 60 are attached to the respective mounting bolts 28.
  • Each spacer 60 has its upper end 60 a (see Fig. 2) attached to the mounting surface 1 2 of the support member 1 2 It abuts on the opening edge of each through hole 30 in a.
  • each spacer 60 After each spacer 60 is mounted, the tip of each mounting bolt 28 is screwed into the female screw hole 5 8 a of the corresponding anchor portion 58 of the probe board 18 and tightened with a predetermined tightening force. . By this tightening, the lower end 60 b (see FIG. 2) of each spacer 60 comes into contact with the top surface 58 b of the corresponding anchor portion 58. Therefore, as described above, each spacer 60 has a top surface 58b of the anchor portion 58, which is a contact portion of the probe substrate 18 with which its lower end 60b abuts, and its upper end 60. This defines the distance from the opening edge 1 2 a ′ (see FIG. 4) of the through hole 30 in the mounting surface 12 a, which is the contact part of the support member 12 in contact with a.
  • the fixing ring 2 2 is coupled to the base ring 2 0 with the bolts 6 2, thereby fixing as described above.
  • the edge of the probe board 18 is sandwiched between the ring 2 2 and the base ring 20, and the electrical connection device 10 is assembled.
  • the upper end 60 a and the lower end 60 b of the spacer 60 are in contact with the support member 12 and the probe substrate 18, respectively. Be placed.
  • the spacer 60 and the support member 12 and the probe board 18 on which the contact portions for receiving the upper end 60 a and the lower end 60 b are formed are within the respective tolerances. Formed with.
  • each spacer 60 if the design height dimension HI from the lower end 60 b to the upper end 60 a of each spacer 60 is a reference length, for example, the actual width of each spacer 60 As for the length, a tolerance a (error a 1 to a 4) of soil ⁇ 1 is generated from the reference length H 1 as a processing error ⁇ 1.
  • the upper surface 12 b is used as a reference surface P 4, and the contact surface at the edge of the through hole 30 of the mounting surface 12 a which is each contact region.
  • the height level of each contact portion 1 2 a 'on the mounting surface 1 2 a has an additional error.
  • a tolerance b (error bl ⁇ b 4) of ⁇ 2 is generated from the reference height level H 2.
  • the plane P 2 where the lower ends of the probes 18 a parallel to the virtual plane P of the probe board are aligned is used as a reference plane, and the top surface of the anchor portion 58 is formed from the reference plane P 2.
  • tolerances are, for example, ⁇ 10 / im.
  • the tolerances ⁇ 1 to ⁇ between the contact parts 12 a ′ and 58 b corresponding to each other and the spacer 60 disposed between the contact parts are Depending on the combination of 3, the maximum distance between the mounting surface 1 2 a of the support member 1 2 a and the top surface 5 8 b of the probe substrate 1 8 is +30 ⁇ , even though the spacer 60 is used. ! Variations can reach up to _ 30 m, so the tip of each probe 18 a in the electrical connection device 10 after assembly is, for example, 10 ⁇ It may greatly exceed.
  • the actual length of the spacer 60, the actual height of each contact portion 1 2a 'of the support member 12 and the actual height of the top surface 5 8b which is each contact portion of the probe board 18 are as follows. Each is measured. For this measurement, each error al to a 4 of the spacer 60 described above, each error bl to b 4 in each contact portion 1 2 a ′ of the support member 1 2 and each contact portion of the probe substrate 18 That is, each error cl to c 4 of the top face 58 b of the anchor portion 58 can be measured.
  • a laser measuring device using laser light or an automatic measuring device using a CCD camera having an autofocus function can be used. From these measurements, the errors a 1 to a 4 of the spacer 60, the errors bl to b 4 at the contact parts 1 2 a ′ of the support member 1 2, and the contact parts of the probe substrate 18, that is, anchors
  • the respective errors cl to c 4 of the top surface 58 b of the portion 58 are obtained, the respective contact portions 1 2 a of the support members 12 corresponding to each other and the respective contact of the probe substrate 18 corresponding to the contact portion
  • the sum of the respective errors from the contact part 58 b (a + c, ie al + cl, a 2 + c 2, a 3 + c 3, a 4 + c 4,) is obtained.
  • the probe substrate 18 is a flat probe substrate that is bent and deformed in a free state without receiving a force load. Yes, when the tip of the probe 18 a provided on the probe substrate is held on the same plane P 2 while holding the deformation of the probe substrate, the support member 12 and the probe substrate 18 The combination of both contact parts 1 2 a ′ and 5 8 b and the corresponding spacer 60 is an optimal combination for maintaining the bending deformation of the probe board 18. You can choose.
  • the contact portion on the support member 12 1 2 a 'and the spacer 60 arranged between the abutting part 5 8 b of the probe substrate 18 corresponding to the corresponding contact part, and the combination with the spacer 60 is a variation within the tolerance of the tip of the probe. It is possible to select a combination that is optimal for suppressing the noise. By adopting this selection criterion, it is possible to suppress variations within the tolerance of the probe tip without changing the machining tolerance of the spacer and support member, and the probe tip can be placed on the same plane with high accuracy. Can be aligned.
  • the spacer 60 For the selection of the spacer 60, an example in which the optimum combination is selected from the spacer 60 equal to the number between the corresponding contact portions 12a 'and 58b. As explained, but not limited to the corresponding abutment sites 1 2 a 'and 5 For example, it is possible to find a combination in which the added value addition (a + b + c) of each error is zero from among a larger number of spacers 60 than the number between 8 b. As a result, variations in the tips of the probes 18 a can be almost eliminated.
  • the height of both the contact part 12 a of the support member 12 and the contact part 58 b of the probe board 18 has been described. Instead, measure the height of one of the contact parts 1 2 a 'or 5 8 b, and determine the error (al ⁇ a 4 or cl ⁇ c 4) of one of them and the spacer 60 Each spacer 60 can be selected from the error (bl ⁇ b 4).
  • the height of each of the contact part 1 2 a ′ of the support member 12 and the contact part 5 8 b of the probe board 18 is measured, and an error (al ⁇ a 4 and cl to c 4) and the spacer 60 (b 1 to b 4) in consideration of the corresponding spacers 1 2 a 'and 5 8 b It is desirable to select the in order to more accurately and surely suppress variations in the tips of the probes 18 a.
  • the length of the probe 18 a corresponding thereto is further measured.
  • the shift of the lower end position of each corresponding probe 18 a is also taken into account, and both contact portions 1 2 a ′, 5 8 b and the spacer 60 0 arranged between them are You can select any combination. As a result, it is possible to effectively suppress variations in the tip due to the machining tolerance of each probe 18a.
  • the method according to the present invention can also be applied to an electrical connection device having a flat probe substrate into which no bending deformation is introduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

電気的接続装置の組み立て方法 技術分野
本発明は、 電気回路の電気的検査のために、 被検査体である例えば集積回路と その電気的検査を行うテスタとの電気的接続に用いられるプローブカードのよう な電気的接続装置の組み立て方法に関する。
明 田
背景技術
従来のこの種の電気的接続装置の一つとして、 多数のプローブが設けられたプ ローブ基板を備える電気的接続装置であって前記プローブ基板の平坦性を調整可 能とする電気的接続装置が提案されている (特許文献 1参照) 。 この従来の電気 的接続装置によれば、 プローブ基板を支持する支持部材からプローブ基板の一部 に押圧力あるいは引張り力を作用させることができる。 この作用力の調整により、 プロ一ブ基板に曲がりが生じていてもプロ一ブ基板の曲がり変形を修正し、 該プ ローブ基板の平坦性を維持することができる。
したがって、 多数のプローブが設けられたプローブ基板の製造時に、 該プロー ブ基板に曲がり変形が生じても、 該プローブ基板の前記支持部材への組み付け後 の前記した調整作業により、 プローブ基板を平坦に保持することができること力 ら、 該プローブ基板から伸長する多数のプローブの先端を同一平面上に保持する ことができる。 これにより、 全ての前記プローブの先端を被検査体の電気回路の 前記各プローブに対応する電気接続端子に確実に接触させることができること力 ら、 この両者間に良好な電気的接触を得ることができる。
し力 しながら、 特許文献 1に記載の前記した従来技術によれば、 プローブ基板 の支持部材への組み付け時毎に、 各プローブ基板に導入された曲がり変形に応じ て、 全てのプローブ先端が同一平面上に位置するように調整する必要がある。 プ 口一ブ基板を支持部材に組み付けた状態で、 その全てのプロ一ブの先端が被検査 体の前記した対応する各電気接続端子に適正に接触するように調整する作業は繁 雑であり、 熟練を要する。 特に、 半導体ウェハ上に形成された多数の集積回路の 検査では、 プローブ組立体のプローブ数が著しく増大することから、 このような 多数のプローブが半導体ウェハ上の対応する各パッドに適正に接触するように、 調整する作業は容易ではない。
そこで、 出願人は、 先の国際特許出願 (P C TZ J P 2 0 0 5 / 0 0 9 8 1 2 ) で、 プローブ基板の変形に拘わらず支持部材への組み付け後におけるプロ一 ブ基板の平坦化調整作業を不要とし、 プローブと被検査体の電気回路の対応する 電気接続端子との確実な電気的接続を得ることができる電気的接続装置を提案し た。
この電気的接続装置では、 負荷を受けない自由状態で曲がり変形を生じたプロ ーブ基板に、 先端が同一面上に揃うように、 プローブが形成されている。 支持部 材の取付け面と前記プロ一ブ基板との間には取付けボルトの揷通を許すスぺーサ が配置され、 このスぺーサは、 取付けボルトの締め付け時、 プローブ基板の前記 した変形を保持する作用をなす。 そのため、 プローブ基板は前記した変形を維持 した状態で前記支持部材の基準面に取り付けられることから、 全てのプローブの 先端が同一平面上に位置する。
したがって、 プローブ基板の前記支持部材への取付け後、 従来のようなプロ一 ブ基板を平坦化するための調整作業を行うことなく、 全てのプローブの先端を被 検査体である電気回路の各電気接続端子にほぼ均等に押し付けることができる。 これにより、 プローブ組立体の取り替え毎においても、 従来のような前記した煩 わしい平坦化調整作業が不要となり、 効率的な電気的検査が可能となる。
しかしながら、 この種のスぺーザの長さ寸法は、 その製造時の許容誤差である 加工公差を含む。 また、 スぺーサの端面を受ける支持部材あるいはプローブ基板 の各当接部位にも、 それぞれの加工公差が含まれる。 そのため、 各加工公差内で 製造された支持部材、 スぺーサおよびプローブ基板を含む電気的接続装置を組み 立てても、 各部材の加工公差の相乗効果によって、 プローブ先端の高さ位置に所 定の公差を超えるばらつきを生じることがある。
このばらつきを抑制するには、 支持部材、 該支持部材の取付け面に一端が当接 するスぺーサおよび該スぺ一サの他端が当接するプローブ基板の各加工公差を小 さくすることが考えられる。 ところが、 各構成部材の加工公差を小さくするため にそれぞれの加工精度を高めることは、 それらの原価を押し上げることから、 電 気的接続装置の高価格化を招く。
[特許文献 1 ] 特表 2 0 0 3— 5 2 8 4 5 9号公報 発明の開示
発明が解決しょうとする課題
本発明の目的は、 各構成部材の加工公差の低減を必要とすることなく、 プロ一 ブ基板に設けられるプロ一ブ先端のばらつきを抑制し得る電気的接続の組み立て 方法を提供することにある。 課題を解決するための手段
本発明が対象とする電気的接続装置は、 支持部材と、 該支持部材から間隔をお いて配置されるプローブ基板であって前記支持部材に対向する一方の面と反対側 の他方の面に、 テスタに電気的に接続されかつ先端が前記テスタにより電気的検 査を受ける被検査体の電気接続端子に当接される多数のプローブが設けられた平 板状のプロ一ブ基板と、 前記支持部材ぉよぴ前記プロ一ブ基板の互いに対向する 面の相互に対向する両当接部位に両端をそれぞれ当接させて前記支持部材および 前記プロ一ブ基板間に配置される複数のスぺーサとを備える。 本発明に係る組み 立て方法は、 前記電気的接続装置の組み立てにおいて、 前記支持部材の当接部位 および該当接部位に対向する前記プローブ基板の当接部位の少なくともいずれか 一方の当接部位毎に該当接部位の高さを測定すること、 予め形成された前記複数 のスぺーサ毎に該スぺーサの長さを測定すること、 少なくとも前記两測定によつ て得られた測定値に基づいて、 前記プローブの前記先端を同一面上に保持するに 適した前記スぺーサを前記支持部材および前記プローブ基板の互いに対向する前 記両当接部位の間毎に選択することを含む。
前記支持部材は、 その寸法が加工公差内の寸法に収まるように加工されている が、 この支持部材の各当接部位の実際の寸法は加工公差内でのばらつきが許され ていることから、 該各当接部位の高さレベルは、 一般的には、 加工公差内でばら つきを生じている。 これと同様に、 前記プローブ基板の前記各当接部位のレベル にも、 その加工公差内でのばらつきが生じている。 また、 前記各スぺーサの長さ 寸法にも、 その加工公差内でのばらつきが生じている。
本発明に係る前記組み立て方法では、 前記各スぺーザの両端がそれぞれ当接す る前記支持部材およびプローブ基板の少なくともいずれか一方の各当接部位の高 さが測定され、 また前記各スぺーサの長さ寸法が測定される。
この測定により、 前記各スぺーザの実際の長さと、 該スぺ一ザの端部を受ける 前記支持部材またはプローブ基板の前記各当接部位の実際の高さレベルを知るこ とができるので、 該当接部位の誤差とスぺーサの誤差とが相互に打ち消し合い、 あるいはそれらの誤差の影響を低減し得るような組み合わせとなるように、 前記 支持部材およびプローブ基板間で対をなす両当接部位間毎に最適な前記スぺーサ を選択することができる。
このスぺーサの選択によって、 プローブの先端のばらつきを抑制するのに最適 な組み合わせとなるように、 前記各両当接部位間と、 該当接部位間に対応するス ぺーサとを組み合わせることができることから、 前記支持部材または前記プロ一 ブ基板の加工公差と、 スぺーサの加工公差との変更を招くことなく、 プローブの 先端のばらつきを抑制することができる。 - しかも、 前記した組み合わせは、 実測値によって得られるデータに基づいてな されること力 ら、 従来の調整のような感に基づく熟練を必要とすることなく、 比 較的容易に最適な組み合わせを見出すことができるので、 容易かつ確実にプロ一 ブ先端のばらつきを抑制することができる。
また、 前記支持部材および前記プローブ基板のいずれか一方の前記当接部位の 高さ測定に加えて、 その他方の前記当接部位の.高さ測定を行い、 互いに対をなす 両当接部位のそれぞれの測定の結果およびスぺーザの測定結果である 3つの測定 結果を用いて前記組み合わせを決めることにより、 前記支持部材および前記プロ ーブ基板の各加工公差と、 スぺーザの加工公差とを考慮することができるので、 プローブの先端のばらつきをより効果的に抑制することができる。
前記当接部位の高さ測定として、 該当接部位の基準高さレベルと前記各当接部 位の高さレベルとの差を測定することができる。 この場合、 前記支持部材および 前記プロ一ブ基板の両者の当接部位の高さ測定には、 前記支持部材ぉよび前記プ ローブ基板のそれぞれに個別の基準高さレベルが採用される。 また、 前記スぺー サの長さ測定として、 該スぺーサの基準長と前記各スぺーサ長との差を測定する ことができる。 これらの測定には、 例えば、 レーザ光を用いたレーザ測定装置あ るいは自動焦点機能を有する C C Dカメラを利用した自動測定装置等を用いるこ とができる。 _
前記支持部材を貫通しかつ前記スぺーサを貫通する複数のねじ部材が前記電気 接続装置に設けられ、 前記プローブ基板の前記一方の面に、 前記各ねじ部材の先 端部に螺合するねじ穴がそれぞれの頂部に開放しかつ予めすベての頂面が加工公 差内の高さ位置にあるように研削加工を受けた複数のアンカー部が前記プローブ 基板の前記当接部位として形成される場合、 本発明に係る前記方法における前記 プローブ基板についての前記当接部位の高さの測定として、 前記アンカー部の頂 面の基準面と前記頂面との差が測定され、 少なくとも前記アンカー部および前記 スぺーサについての前記各測定値に基づいて、 前記プローブの前記先端を同一面 上に保持するに適した前記スぺーサを前記両当接部位の間毎に選択することがで きる。
この選択によって、 プローブの先端のばらつきを抑制するのに最適な組み合わ せとなるように、 前記各アンカー部と、 該アンカー部の頂面に対応する前記スぺ 一サとを組み合わせることができるので、 前記プローブ基板のアンカー部の加工 公差およびスぺーサの加工公差の変更を招くことなく、 プローブの先端のばらつ きを抑制することができる。
前記プローブ基板が、 負荷を受けない自由状態で曲がり変形を生じた平板状の プロ一ブ基板であり、 該プローブ基板の前記他方の面に設けられた前記プロ一ブ は前記プローブ基板が前記変形を保持した状態で前記先端が同一面上に保持され ている場合、 前記支持部材および前記プローブ基板における前記両当接部位間と これに対応する前記スぺーサとの組み合わせは、 前記プローブ基板の曲がり変形 を保持するのに最適な組み合わせとなるように、 選択することができる。 この選 択基準を採用することにより、 プローブ基板にたとえ曲がり変形が生じていても、 スぺ一サおよび支持部材の加工公差に変更をまねくことなく、 プローブ先端のば らっきを抑制することができる。
また、 前記プローブ基板がその変形を保持した状態で、 前記プローブの先端が 加工公差内で同一面上に位置するように研削加工を受けている場合、 前記支持部 材における前記各当接部位と該当接部位に対応する前記スぺーザとの組み合わせ は、 前記プローブの前記先端の公差内でのばらつきを抑制するのに最適な組み合 わせとなるように、 選択することができる。 この選択基準を採用することにより、 スぺーサおよび支持部材の加工公差に変更をまねくことなく、 プローブ先端の公 差内でのばらつきを抑制することができる。
前記支持基板と前記プローブ基板との間に、 前記テスタに接続される回路を有 しかつ前記ねじ部材の挿通を許す貫通孔を有する配線基板が配置され、 該配線基 板と前記プローブ基板間には、 前記ねじ部材の揷通を許す貫通孔を有し前記配線 基板の前記回路と前記プローブ基板の前記各プローブとを接続する接続器が配置 された電気的接続装置では、 本発明に係る前記方法によれば、 前記ねじ部材が前 記配線基板および前記接続器の前記各貫通孔を揷通して配置され、 前記ねじ部材 に関連して前記スぺーサが前記各貫通孔内に挿入された後、 前記ねじ部材の前記 アンカー部への締め付けにより、 前記プローブ基板を前記支持基板に結合するこ とができる。 -
【発明の効果】
本発明に係る前記組み立て方法によれば、 前記したように、 前記支持部材また はプローブ基板の加工公差およびスぺーサの加工公差の変更を招くことなく、 プ ローブの先端のばらつきを抑制することができることから、 これら部品の加工精 度を高めることなく、 したがって、 加工精度の向上による製造費の増大を招くこ となく、 プローブの先端のばらつきを抑制することができる。
また、 前記した両当接部位間とスぺーザとの組み合わせは、 実測値によって得 られるデータに基づいてなされることから、 従来の調整のような感に基づく熟練 を必要とすることなく、 比較的容易に最適な組み合わせを見出すことができるの で、 容易かつ確実にプローブ先端のばらつきを抑制することができる。 図面の簡単な説明
図 1は、 本発明に係る電気的接続装置の一実施例を示す縦断面図である。 図 2は、 図 1に示した電気的接続装置の要部を分解して示す縦断面図である。 図 3は、 図 2に示した電気的接続装置の要部を組み立てた図 1と同様な図面で ある。
図 4は、 本発明に係る電気的接続装置の支持部材、 スぺーサおよびプローブ基 板の加ェ公差を示す説明図である。 発明を実施するための最良の形態
本発明に係る電気的接続装置 1 0は、 図 1示されているように、 下面 1 2 aが 平坦な取付け基準面となる平板状の支持部材 1 2と、 該支持部材の取付け面 1 2 aに保持される円形平板状の配線基板 1 4と、 該配線基板に電気接続器 1 6を経 て電気的に接続されるプローブ基板 1 8と、 電気接続器 1 6を受け入れる中央開 口 2 0 aが形成されたベースリング 2 0と、 該ベースリングの中央開口 2 0 aの 縁部と共同してプローブ基板 1 8の縁部を挟持する固定リング 2 2とを備える。 固定リング 2 2は、 その中央部に、 プローブ基板 1 8のプローブ 1 8 aの露出を 許す中央開口 2 2 aを有する。 図示の例では、 配線基板 1 4を保持する支持部材 1 2の熱変形を抑制するための熱変形抑制部材 2 4が、 ボルト 2 6により、 支持 部材 1 2の上面 1 2 bに取り付けられている。
電気的接続装置 1 0は、 図示しないが、 従来よく知られているように、 例えば 半導体ウェハに作り込まれた多数の I C回路の電気的検査のために、 該 I C回路 の接続端子である各接続パッドをテスタの電気回路に接続するのに用いられる。 図 2は、 図 1に示した電気的接続装置 1 0からベースリング 2 0、 固定リング 2 2および熱変形抑制部材 2 4等の補助部品を除いた本発明の要部を分解して示 す。 図 2を参照するに、 配線基板 1 4は、 全体的に円形板状の例えばポリイミ ド 樹脂板からなり、 その下面 1 4 aには、 前記テスタの前記電気回路に接続される 従来よく知られた多数の接続端子 (図示せず) が矩形マトリクス状に配列されて いる。
支持部材 1 2は、 その取付け面 1 2 aを配線基板 1 4の上面 1 4 bに当接させ て配置される例えばステンレス板からなる板状の枠部材からなる。 図 1に示した 熱変形抑制部材 2 4は、 支持部材 1 2の上面 1 2 bにおける周縁部を覆って配置 される環状部材からなり、 例えばアルミニウムのような金属材料で構成されてい る。 この熱変形抑制部材 2 4は、 前記 I C回路のような被検査体の例えばバーン ィンテスト下で、 支持部材 1 2がその取付け面 1 2 aおよび上面 1 2 bとの間で 大きな温度差を生じたときに生じる支持部材 1 2の反り返りを抑制する。
支持部材 1 2には、 プローブ基板 1 8を支持部材 1 2に取付けるための取付け ボルト 2 8の貫通を許す貫通孔 3 0および電気接続器 1 6を取り付けるための取 付けねじ 3 2が螺合するねじ孔 3 4がそれぞれ形成されている。 また、 配線基板 1 4には、 貫通孔 3 0およびねじ孔 3 4に対応する各貫通孔 3 6、 3 8が形成さ れている。 この貫通孔 3 6、 3 8は、 従来におけると同様に配線基板 1 4の電気 接続に影響を与えない領域に形成されている。 また、 支持部材 1 2および配線基 板 1 4の外縁部には、 ベースリング 2 0を支持部材 1 2に結合するための取付け ボルト 4 0 (図 1参照) の揷通を許すボルト穴 4 2、 4 4が形成されている。 配 線基板 1 4のボルト穴 4 4には、 配線基板 1 4を取付けボルト 4 0の締め付け力 から保護するための従来よく知られたスリーブ 4 6 (図 1参照) が配置されてい る。 - プローブ基板 1 8は、 図 2に示すように、 従来よく知られているように、 例え ばセラミック板からなる基板部材 4 8と、 該基板部材すなわちセラミック板の下 面 4 8 aに形成された多層配線層 5 0とを備える。 多層配線層 5 0は、 図示しな いが従来よく知られているように、 電気絶縁性を示す例えばポリイミ ド樹脂材料 からなる多層板と、 該各多層板間に形成された配線路とを有する。 多層配線層 5 0の下面 5 0 aには、 該多層配線層の前記配線路にそれぞれ電気的に接続された プローブランド 1 8 bが形成されている。 各プローブ 1 8 aの上端は、 対応する プローブランド 1 8 bに接続されており、 これにより、 各プローブ 1 8 aは、 多 層配線層 5 0の下面 5 0 aから下方へ突出するようにプロ ブ基板 1 8に設けら れ、 対応する各プローブランド 1 8 bを経て多層配線層 5 0の前記配線路に接続 されている。
図 2に示す例では、 プローブ基板 1 8 ( 4 8、 5 0 ) には、 負荷を受けない自 由状態で、 うねり状の曲がり変形が生じている。 このような変形は、 セラミック 板 4 8の加工時に該セラミック板に導入されることがあり、 プローブ基板 1 8の 下面におけるもっとも低い箇所と高い箇所との高低差が例えば数十 μ πι〜1 0 0 μ πιを示すことがある。 このプローブ基板 1 8の曲がり変形に拘わらず、 プロ一 ブランド 1 8 bの下端はプローブ基板 1 8の仮想平面 Pに平行な平面 P 1に揃え られており、 各プローブランド 1 8 bに接続されたプローブ 1 8 aは同一長に形 成されていることから、 プローブ基板 1 8の自由状態で各プローブ 1 8 aの下端 すなわち先端は、 仮想平面 Pに平行な平面 P 2上に揃えられている。
セラミック板 4 8の上面 4 8 bには、 図示しないが多層配線層 5 0の前記配線 路を経て対応する各プローブ 1 8 aに接続される電気接続部が形成されている。 この電気接続部は、 従来よく知られているように、 配線基板 1 4の下面 1 4 aに 矩形マトリクス状に配列された前記した多数の接続端子に対応して形成されてい る。
セラミック板 4 8の上面 4 8 bに形成された前記電気接続部と、 該各電気接続 部に対応する配線基板 1 4の前記接続端子との間には、 対応する両者を接続する ために前記電気接続器 1 6が配置されている。
電気接続器 1 6は、 図示の例では、 板厚方向に形成された多数の貫通孔 5 2が 形成された電気絶縁性を示す板状部材から成るポゴピンプロック 1 6 aと、 各貫 通孔 5 2内に直列的に配置され、 それぞれが貫通孔 5 2からの脱落を防止された 状態で貫通孔 5 2の軸線方向へ摺動可能に収容される一対のポゴピン 1 6 b、 1 6 bとを備える。 各一対のポゴピン 1 6 b、 1 6 b間には、 両ポゴピン 1 6 b、 1 6 bに相離れる方向への偏倚力を与え、 両ポゴピン間の導電路となる圧縮コィ ルばね 1 6 cが配置されている。 また、 ポゴピンブロック 1 6 aには、 前記貫通 孔 3 0、 3 6に整合して取付けボルト 2 8の貫通を許す貫通孔 5 4および前記ね じ孔 3 4および貫通孔 3 8に整合して取付けねじ 3 2を受け入れる貫通孔 5 6が 形成されている。
電気接続器 1 6は、 図 1に示す電気的接続装置 1 0の組み立て状態では、 その 圧縮コイルばね 1 6 cのばね力により、 各一対のポゴピン 1 6 b、 1 6 bの一方 のポゴピン 1 6 bが配線基板 1 4の前記接続端子に圧接し、 また他方のポゴピン 1 6 cが配線基板 1 4の前記接続端子に対応するセラミック板 4 8の前記電気接 続部に圧接する。 これにより、 各プローブランド 1 8 bに設けられたプローブ 1 8 aは、 配線基板 1 4の対応する前記接続端子に確実に接続される。 その結果、 プローブ 1 8 aの先端が半導体ウェハに形成された前記 I C回路の前記接続パッ ドに当接されると、 該接続パッドは対応する各プローブ 1 8 a、 電気接続器 1 6 および配線基板 1 4を経て、 前記テスタに接続されることから、 該テスタによる 前記半導体ウェハの前記電気回路の電気的検査が行える。
前記した電気的接続装置 1 0の組み立てで、 プローブ基板 1 8を支持部材 1 2 に結合するために、 プローブ基板 1 8の上面、 すなわちセラミック板 4 8の上面 4 8 bには、 アンカー部 5 8が形成されている。 このアンカー部の頂面には、 支 持部材 1 2の貫通孔 3 0、 配線基板 1 4の貫通孔 3 6を貫通する取付けボルト 2 8の先端部に螺合する雌ねじ穴 5 8 aが開放する。
図 2に示すプローブ基板 1 8には、 前記した曲がり変形が生じており、 各アン カー部 5 8の頂面は、 プローブ基板 1 8の前記した曲がり変形を保持した状態で 仮想平面 Pに平行な平面 P 3上に揃うように、 予め研削加工を受けている。 また、 プローブ基板 1 8が取り付けられる支持部材 1 2とプローブ基板 1 8との間には、 取付けボルト 2 8の締め付けによるプローブ基板 1 8の変形を規制し、 各アンカ 一部 5 8の頂面 5 8 bと支持部材 1 2の取付け面 1 2 aとの間に所定の間隔を保 持するための筒状のスぺーサ 6 0が適用されている。
このプローブ基板 1 8の支持部材 1 2への取付けに先立って、 図 3に示すよう に、 電気接続器 1 6の貫通孔 5 6および配線基板 1 4の貫通孔 3 8を貫通しかつ 支持部材 1 2のねじ孔 3 4に先端が螺合する取付けねじ 3 2により、 これら支持 部材 1 2、 配線基板 1 4および電気接続器 1 6がー体的に結合される。 その後、 図 3には図面の簡素化のために省略されているが、 図 1に示したように、 取付け ボノレト 4 0を介してベースリング 2 0が配線基板 1 4の下面 1 4 aに結合される。 このベースリング 2 0の結合後、 図 3に示すように、 各取付けボルト 2 8が支持 部材 1 2の側から該支持部材の貫通孔 3 0および配線基板 1 4の貫通孔 3 6を貫 通して挿通され、 またそれぞれの取付けボルト 2 8にスぺーサ 6 0が装着される。 各スぺーサ 6 0は、 その上端 6 0 a (図 2参照) を支持部材 1 2の取付け面 1 2 aにおける各貫通孔 3 0の開口縁部に当接する。
各スぺーサ 6 0の装着後、 各取付けボルト 2 8の先端がプローブ基板 1 8の対 応するアンカー部 5 8の雌ねじ穴 5 8 aに螺合され、 所定の締め付け力で締め付 けられる。 この締め付けにより、 各スぺーサ 6 0の下端 6 0 b (図 2参照) が対 応するアンカー部 5 8の頂面 5 8 bに当接する。 したがって、 前記したように、 各スぺーサ 6 0は、 その下端 6 0 bが当接するプローブ基板 1 8の当接部位であ るアンカー部 5 8の頂面 5 8 bと、 その上端 6 0 aが当接する支持部材 1 2の当 接部位である取付け面 1 2 aにおける貫通孔 3 0の開口縁部 1 2 a ' (図 4参 照) との間隔を規定する。
取付けボルト 2 8の締め付けによるプローブ基板 1 8の取付け後、 図 1に示す ように、 固定リング 2 2がベースリング 2 0にボルト 6 2で結合され、 これによ り、 前記したように、 固定リング 2 2とベースリング 2 0との間にプローブ基板 1 8の縁部が挟持され、 電気的接続装置 1 0が組み立てられる。
本発明に係る電気的接続装置 1 0では、 前記したように、 スぺーサ 6 0の上端 6 0 aおよび下端 6 0 bは支持部材 1 2およぴプローブ基板 1 8にそれぞれ当接 して配置される。 また、 スぺーサ 6 0と、 その上端 6 0 aおよび下端 6 0 bを受 ける各当接部位が形成される支持部材 1 2およびプローブ基板 1 8とは、 それぞ れの加ェ公差内で形成される。
そのため、 図 4に示すように、 各スぺーサ 6 0の下端 6 0 bから上端 6 0 aま での設計上の高さ寸法 H Iを例えば基準長さとすると、 各スぺーサ 6 0の実長に ついては、 加工誤差 Δ 1として、 基準長 H 1から土 Δ 1の公差 a (誤差 a 1〜a 4 ) が生じている。 また、 同様に、 支持部材 1 2については、 その上面 1 2 bを 基準面 P 4として、 各当接部位である取付け面 1 2 aの貫通孔 3 0の縁部におけ る当接部位迄の設計上の距離すなわち当該当接部位の設計上の距離を基準高さレ ベル H 2とすると、 取付け面 1 2 aの各当接部位 1 2 a ' の高さレベルには、 加 ェ誤差 Δ 2として、 基準高さレベル H 2から士 Δ 2の公差 b (誤差 b l〜b 4 ) が生じている。 さらに、 プローブ基板 1 8については、 該プローブ基板の仮想平 面 Pに平行な各プローブ 1 8 aの下端が揃う平面 P 2を基準面とし、 該基準面 P 2からアンカー部 5 8の頂面 5 8 bまでの設計上の距離をプローブ基板 1 8の当 接部位である頂面 58 bの基準高さレベル H 3とすると、 各アンカー部 58の頂 面 58 bの高さレベルには、 加工公差 Δ 3として、 基準高さレベル H 3から土厶 3の公差 c (誤差 c l〜c 4) が生じている。 なお、 図 4では、 図面の簡素化の ために、 セラミック板 48の前記変形が省略され、 プローブ基板 1 8 (48、 5 0) が平坦に示されている。
これらの公差は、 例えば ± 1 0 /imであるが、 互いに対応する当接部位 1 2 a' 、 5 8 bと、 該当接部位間に配置されるスぺーサ 60との公差 Δ 1〜Δ 3の 組み合わせによっては、 スぺーサ 60を用いたにも拘わらず、 支持部材 1 2の取 付け面 1 2 aとプローブ基板 1 8の頂面 5 8 bとの間隔に、 最大、 + 30 π!〜 _ 30 mにも達するばらつきを生じることがあり、 そのため、 組み立て後の電 気的接続装置 1 0における各プローブ 1 8 aの先端が、 そのばらつきの許容誤差- である例えば士 1 0 μπιを大きく超えてしまうことがある。
そこで、 スぺーサ 6 0の実長、 支持部材 1 2の各当接部位 1 2 a' の実高およ びプローブ基板 1 8の各当接部位である頂面 5 8 bの実高がそれぞれ測定される。 この測定のために、 前記したスぺーサ 60の各誤差 a l〜a 4、 支持部材 1 2の 各当接部位 1 2 a' における各誤差 b l〜b 4およびプローブ基板 1 8の各当接 部位すなわちアンカー部 5 8の頂面 58 bの各誤差 c l〜c 4を測定することが できる。
この誤差の実測には、 例えば、 レーザ光を用いたレーザ測定装置あるいは自動 焦点機能を有する C C Dカメラを利用した自動測定装置等を用いることができる。 これらの実測により、 スぺーサ 60の各誤差 a 1〜a 4、 支持部材 1 2の各当 接部位 1 2 a' における各誤差 b l〜b 4およびプローブ基板 1 8の各当接部位 すなわちアンカー部 58の頂面 58 bの各誤差 c l〜c 4が得られると、 互いに 対応する支持部材 1 2の各当接部位 1 2 a と、 該当接部位に对応するプローブ 基板 1 8の各当接部位 58 bとのそれぞれの誤差の加算値 ( a + c、 すなわち a l + c l、 a 2 + c 2、 a 3 + c 3、 a 4 + c 4、 ) がそれぞれ求められる。 次 に、 この誤差の各加算値 (a + b) と、 各スぺーサ 60の誤差 (c) を加算 (a + b + c) したとき、 それらのばらつきが最も小さくなる組み合わせとなるよう に、 互いに対向する当接部位 1 2 a' および 58 b間毎に、 これに配置されるス ぺーサ 6 0が選択される。
このように、 各誤差の加算値加算 (a + b + c ) のばらつきが最も小さくなる ような組み合わせで、 各対応する当接部位 1 2 a ' および当接部位 5 8 b間にス ぺーサ 6 0を組み込むことにより、 前記した各プローブ 1 8 aの先端のばらつき を抑制して、 許容誤差内に保持することができる。
本発明に係る電気的接続装置 1 0の組み立て方法によれば、 図 2に沿って説明 したように、 プローブ基板 1 8力 負荷を受けない自由状態で曲がり変形を生じ た平板状のプローブ基板であり、 該プローブ基板に設けられたプローブ 1 8 aの 先端が、 該プローブ基板の前記変形を保持した状態で同一面 P 2上に保持されて いる場合、 支持部材 1 2およびプローブ基板 1 8における両当接部位 1 2 a ' お よび 5 8 b間と、 これに対応するスぺーサ 6 0との組み合わせは、 プローブ基板 1 8の曲がり変形を保持するのに最適な組み合わせとなるように、 選択すること ができる。
この選択基準を採用することにより、 プローブ基板 1 8にたとえ曲がり変形が 生じていても、 スぺーサ 6 0、 支持部材 1 2およびプローブ基板 1 8の加工公差 Δ 1〜Δ 3に変更を招くことなく、 プローブ先端のばらつきを抑制することがで きる。 また、 この選択は、 それぞれの実測値に基づいて行うことができるので、 感に頼ることなく比較的容易に行うことができる。
また、 プローブ基板 1 8がその変形を保持した状態で、 プローブ 1 8 aの先端 が同一面 P 2上に位置するように研削加工を受けている場合、 支持部材 1 2にお ける当接部位 1 2 a ' と該当接部位に対応するプローブ基板 1 8の当接部位 5 8 bとの間に配置されるスぺーサ 6 0との組み合わせは、 前記プローブの前記先端 の公差内でのばらつきを抑制するのに最適な組み合わせとなるように、 選択する ことができる。 この選択基準を採用することにより、 スぺーサおよび支持部材の 加工公差に変更をまねくことなく、 プローブ先端の公差内でのばらつきを抑制す ることができ、 高精度にプローブ先端を同一面上に揃えることができる。
前記したところでは、 このスぺーサ 6 0の選択のために、 各対応する当接部位 1 2 a ' および 5 8 b間の数に等しいスぺーサ 6 0から最適な組み合わせを選択 した例について説明したが、 それに限らず、 対応する当接部位 1 2 a ' および 5 8 b間の数よりも多数のスぺーサ 6 0の中から例えば各誤差の加算値加算 (a + b + c ) が零となる組み合わせを探し出すことができる。 これにより、 各プロ一 ブ 1 8 aの先端のばらつきをほぼ無くすことができる。
さらに、 前記したところでは、 支持部材 1 2の当接部位 1 2 a およびプロ一 ブ基板 1 8の当接部位 5 8 bの両者についての高さを測定した例に沿って説明し たが、 これに代えて、 そのいずれか一方の当接部位 1 2 a ' または 5 8 bの高さ を測定し、 その一方の誤差 (a l〜a 4または c l〜c 4 ) と、 スぺーサ 6 0の 長さを測定し、 その誤差 (b l〜b 4 ) とから各スぺーサ 6 0を選択することが できる。
しかしながら、 前記したように、 支持部材 1 2の当接部位 1 2 a ' およびプロ ーブ基板 1 8の当接部位 5 8 bのそれぞれについて高さを測定し、 その両者の誤 差 (a l〜a 4および c l〜c 4 ) とスぺーサ 6 0の誤差 ( b 1〜 b 4 ) とを考 慮して対応する各当接部位 1 2 a ' および 5 8 b間のスぺーサ 6 0を選択するこ とが、 より正確かつ確実に各プローブ 1 8 aの先端のばらつきを抑制する上で、 望ましい。
また、 前記した両当接部位 1 2 a ' 、 5 8 bの高さの測定、 これらに対応する スぺーサ 6 0の長さ測定に加えて、 さらにこれらに対応するプローブ 1 8 aの長 さを測定することにより、 対応する各プローブ 1 8 aの下端位置のずれをも考慮 して、 両当接部位 1 2 a ' 、 5 8 bと、 その間に配置されるスぺーサ 6 0との組 み合わせを選択することができる。 これにより、 各プローブ 1 8 aの加工公差に よるその先端のばらつきをも効果的に抑制することができる。
本発明に係る前記方法は、 曲がり変形が導入されていない平坦なプローブ基板 を有する電気的接続装置にも適用することができる。
本発明は、 上記実施例に限定されず、 その趣旨を逸脱しない限り、 種々変更す ることができる。

Claims

請求の範囲
1 . 支持部材と、 該支持部材から間隔をおいて配置されるプローブ基板であつ て前記支持部材に対向する一方の面と反対側の他方の面に、 テスタに電気的に接 続されかつ先端が前記テスタにより電気的検査を受ける被検査体の電気接続端子 に当接される多数のプ口ーブが設けられた平板状のプ口一ブ基板と、 前記支持部 材および前記プローブ基板の互いに対向する面の相互に対向する両当接部位に両 端をそれぞれ当接させて前記支持部材および前記プローブ基板間に配置される複 数のスぺーサとを備える電気的接続装置の組み立て方法であって、
前記支持部材の前記当接部位および前記プローブ基板の前記当接部位の少なく ともいずれか一方の当接部位毎に該当接部位の高さを測定すること、
予め形成された前記複数のスぺーサ毎に該スぺーサの長さを測定すること、 前記両測定によって得られた測定値に基づいて、 前記プローブの前記先端を同 一面上に保持するに適した前記スぺーサを前記両当接部位間毎に選択することを 含む、 電気的接続装置の組み立て方法。
2 . 前記当接部位の高さの測定は、 該当接部位の基準高さレベルと前記各当接 部位の高さレベルとの差の測定であり、 前記スぺーサの長さ測定は、 該スぺーサ の基準長と前記各スぺーサ長との差の測定である、 請求項 1に記載の組み立て方 法。
3 . 前記支持部材を貫通しかつ前記スぺーサを貫通する複数のねじ部材が設け られ、 前記プローブ基板の前記一方の面には、 前記各ねじ部材の先端部に螺合す るねじ穴がそれぞれの頂部に開放しかつ予めすベての頂面が加工公差内の高さ位 置にあるように研削加工を受けた複数のアンカー部が前記プローブ基板の前記当 接部位として形成された電気的接続装置の組み立て方法であって、 前記プローブ 基板の前記当接部位の高さの測定として前記アンカー部の頂面の基準高さレベル と前記頂面の高さレベルとの差が測定され、 少なくとも前記アンカー部および前 記スぺーサについての前記各測定値に基づいて、 前記プローブの前記先端を同一 面上に保持するに適した前記スぺーサを前記両当接部位の間毎に選択する、 請求 項 1に記載の組み立て方法。
4 . 前記プローブ基板は、 負荷を受けない自由状態で曲がり変形を生じた平板 状のプローブ基板であり、 前記プローブ基板が前記変形を保持した状態で前記プ ローブの前記先端が同一面上に保持されており、 前記プローブ基板の曲がり変形 を保持すべく、 前記測定値に基づいて前記スぺーサを前記両当接部位の間毎に選 択することを含む、 請求項 1に記載の組み立て方法。
5 . 前記プローブ基板は、 負荷を受けない自由状態で曲がり変形を生じた平板 状のプローブ基板であり、 前記プローブは前記プローブ基板が前記変形を保持し た状態で前記先端が加工公差内で同一面上に位置するように研削加工を受けてお り、 前記測定値に基づいて、 前記プローブの前記先端の公差内でのばらつきを抑 制するに適した前記スぺーサを前記両当接部位の間毎に選択することを含む、 請 求項 1に記載の組み立て方法。
6 . 前記支持基板と前記プローブ基板との間には、 前記テスタに接続される回 路を有しかつ前記ねじ部材の揷通を許す貫通孔を有する配線基板が配置され、 該 配線基板と前記プローブ基板間には、 前記ねじ部材の揷通を許す貫通孔を有し前 記配線基板の前記回路と前記プローブ基板の前記各プローブとを接続する接続器 が配置されており、 前記ねじ部材が前記配線基板および前記接続器の前記各貫通 孔を揷通して配置され、 前記ねじ部材に関連して前記スぺーザが前記各貫通孔内 に挿入された後、 前記ねじ部材の前記アンカー部への締め付けにより、 前記プロ ーブ基板が前記支持基板に結合される、 請求項 3に記載の組み立て方法。
PCT/JP2005/019850 2005-10-24 2005-10-24 電気的接続装置の組み立て方法 WO2007046153A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087009567A KR100981645B1 (ko) 2005-10-24 2005-10-24 전기적 접속장치의 조립방법
US12/091,207 US7728608B2 (en) 2005-10-24 2005-10-24 Method for assembling electrical connecting apparatus
JP2007540870A JP4567063B2 (ja) 2005-10-24 2005-10-24 電気的接続装置の組み立て方法
CN2005800519224A CN101297445B (zh) 2005-10-24 2005-10-24 电连接装置的装配方法
DE112005003731T DE112005003731B4 (de) 2005-10-24 2005-10-24 Verfahren zur Montage einer elektrischen Verbindungsvorrichtung
PCT/JP2005/019850 WO2007046153A1 (ja) 2005-10-24 電気的接続装置の組み立て方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019850 WO2007046153A1 (ja) 2005-10-24 電気的接続装置の組み立て方法

Publications (3)

Publication Number Publication Date
WO2007046153A2 true WO2007046153A2 (ja) 2007-04-26
WO2007046153A1 WO2007046153A1 (ja) 2007-04-26
WO2007046153A8 WO2007046153A8 (ja) 2007-08-30

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468610B2 (en) 2006-11-29 2008-12-23 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
WO2009011365A1 (ja) * 2007-07-19 2009-01-22 Nhk Spring Co., Ltd. プローブカード

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468610B2 (en) 2006-11-29 2008-12-23 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
WO2009011365A1 (ja) * 2007-07-19 2009-01-22 Nhk Spring Co., Ltd. プローブカード
US8149008B2 (en) 2007-07-19 2012-04-03 Nhk Spring Co., Ltd. Probe card electrically connectable with a semiconductor wafer
CN101755216B (zh) * 2007-07-19 2012-10-10 日本发条株式会社 探针卡
JP5714817B2 (ja) * 2007-07-19 2015-05-07 日本発條株式会社 プローブカード

Also Published As

Publication number Publication date
JP4567063B2 (ja) 2010-10-20
WO2007046153A8 (ja) 2007-08-30
CN101297445A (zh) 2008-10-29
DE112005003731B4 (de) 2013-04-18
KR20080050517A (ko) 2008-06-05
US7728608B2 (en) 2010-06-01
KR100981645B1 (ko) 2010-09-10
JPWO2007046153A1 (ja) 2009-04-23
US20090284273A1 (en) 2009-11-19
CN101297445B (zh) 2011-06-01
DE112005003731T5 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4704426B2 (ja) 電気的接続装置、その製造方法および電気的接続装置
JP5190195B2 (ja) 電気的接続装置
JP4614108B2 (ja) プローブカード
US7843198B2 (en) Electrical connecting apparatus
JP2972595B2 (ja) プローブカード
KR101399032B1 (ko) 전기적 접속 장치 및 그 조립 방법
CN110678759B (zh) 电连接装置
JP2007538263A (ja) 速い製作サイクルを有する高密度の相互接続システム
WO2007116795A1 (ja) 電気的接続装置
JP2007278859A5 (ja)
JP4567063B2 (ja) 電気的接続装置の組み立て方法
US7586316B2 (en) Probe board mounting apparatus
KR20090022882A (ko) 프로브 카드
KR100862887B1 (ko) 평탄도 조절 어셈블리와 이를 포함하는 전기 검사 장치 및이를 이용한 평탄도 조절 방법
JP2006162422A (ja) プローブカード
KR20090014763A (ko) 프로브 카드
JP5015672B2 (ja) プローブカード
KR101328082B1 (ko) 프로브 카드
KR20080096984A (ko) 반도체 검사 장치의 프로브 카드 및 그 프로브 카드에서의프로브 블록 위치 보정 방법
KR100920790B1 (ko) 프로브 조립체, 그 제조방법 및 전기적 접속장치
WO2024024492A1 (ja) 電気的接続装置
KR100690239B1 (ko) 끼움 고정식 프로브 핀을 갖는 프로브 카드
JP2002228686A (ja) 破損防止機能を有するコンタクトプローブ及びプローブ装置
JP2002323516A (ja) プローブ装置
JP2020165775A (ja) プローブカード

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580051922.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007540870

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050037312

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009567

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12091207

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005003731

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05799212

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607