WO2007043515A1 - 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法 - Google Patents

電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法 Download PDF

Info

Publication number
WO2007043515A1
WO2007043515A1 PCT/JP2006/320194 JP2006320194W WO2007043515A1 WO 2007043515 A1 WO2007043515 A1 WO 2007043515A1 JP 2006320194 W JP2006320194 W JP 2006320194W WO 2007043515 A1 WO2007043515 A1 WO 2007043515A1
Authority
WO
WIPO (PCT)
Prior art keywords
double layer
layer capacitor
electric double
capacitor according
ion
Prior art date
Application number
PCT/JP2006/320194
Other languages
English (en)
French (fr)
Inventor
Masahiro Ohmori
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to KR1020137005889A priority Critical patent/KR101296183B1/ko
Priority to KR1020087007175A priority patent/KR101287435B1/ko
Priority to EP06811507.0A priority patent/EP1936642B1/en
Priority to CN2006800375665A priority patent/CN101283420B/zh
Priority to JP2007539939A priority patent/JP4499795B2/ja
Publication of WO2007043515A1 publication Critical patent/WO2007043515A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Definitions

  • the present invention relates to a current collector for an electric double layer capacitor, an electrode for an electric double layer capacitor, an electric double layer capacitor, and a method for producing them.
  • Electric double layer capacitors are capable of rapid charge / discharge, are resistant to overcharge / discharge, do not involve chemical reactions, and therefore can be used in a long life, wide and temperature range, and do not contain heavy metals. It is environmentally friendly and has no special characteristics. Electric double layer capacitors are mainly used for memory backup power supplies. Electric double layer capacitors are also being considered for use in power storage systems combined with solar cells and fuel cells, engine assistance for hybrid cars, and so on.
  • an electric double layer capacitor a pair of polarizable electrodes in which a mixture containing activated carbon or the like is laminated on a current collector such as an aluminum foil are opposed to each other through a separator in a solution containing electrolyte ions.
  • the structure has become.
  • a DC voltage is applied to the electrode, the anion force in the solution is polarized to the positive (+) side, and the cation in the solution is attracted to the electrode polarized to the negative (one) side.
  • the electric double layer formed at the interface between the electrode and the solution can be used as electric energy.
  • Patent Document 1 an aluminum foil having a thickness of 10 to 50 ⁇ m, a conductive layer having a thickness of 0.2 to 20 ⁇ m, and an electrode layer having a thickness of 80 to 500 m are laminated in this order.
  • An electrode for an electric double layer capacitor is disclosed.
  • This conductive layer consists of graphite powder as the conductive material and It is a conductive paint that contains amidoimide resin.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-270470
  • Patent Document 2 discloses an electrode layer containing a carbon material having a specific surface area of 100 to 2500 m 2 / g on an electrode current collector, and a highly conductive layer that is more conductive and porous than the electrode layer. An electrode for an electric double layer capacitor that is laminated in order is disclosed. Specific surface area on electrode current collector
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-309045
  • Patent Document 3 discloses a current collector for an electric double layer capacitor comprising a film made of a conductive agent and a thermoplastic resin, and a low electric resistance layer provided on the film surface. ing.
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-31468
  • the present invention has been made in view of the above circumstances, and is an electric double layer capacitor for obtaining a high-performance electric double layer capacitor that has a low impedance, a high capacity, a high charge / discharge current, and can be rapidly charged / discharged. It is an object of the present invention to provide a current collector for a multilayer capacitor, an electrode for an electric double layer capacitor, and a method for producing them.
  • the present inventor specifically uses an ion-permeable compound instead of the binder compound that has been used so far.
  • the present invention has been completed by further studies based on this finding.
  • the present invention provides the following solutions.
  • a current collector for an electric double layer capacitor comprising: a conductive sheet; and a film a including an ion-permeable composite and carbon fine particles a provided thereon.
  • the ion-permeable I ⁇ comprises, Ru der permeability force 1 X 10- 2 SZcm more fluorine ion (1) to an electric double layer capacitor collector according to any one of [4] .
  • the activated carbon b is an electrode for an electric double layer capacitor as described in [14] or [15], wherein the BET specific surface area is 800 to 2500 m 2 / g.
  • An electric double layer comprising a step in which an ion-permeable compound and carbon fine particles a dispersed or dissolved in a solvent are applied to a conductive sheet and dried to form a film a
  • a method of manufacturing a current collector for a capacitor
  • the ion-permeable I ⁇ comprises an electric double layer capacitor manufacturing method of a current collector according to Ru der permeability force 1 X 10- 2 S / cm or more fluoride ion [18].
  • Ion permeability and compound strength Polysaccharides are acrylamide, acrylonitrile, chitosan pyrolidone carboxylate, hydroxypropyl chitosan, phthalic anhydride, maleic anhydride, anhydrous trimellitic acid, pyromellitic anhydride, acid anhydride
  • a current collector for an electric double layer capacitor according to any one of [1] to [13], wherein a binder, carbon fine particles b, and activated carbon b are dispersed or dissolved in a solvent.
  • a method for producing an electrode for an electric double layer capacitor comprising a step of forming a film b by coating and drying on the film a.
  • Manufacture of an electrode for an electric double layer capacitor including a step in which a binder, carbon fine particles b, and activated carbon b dispersed or dissolved in a solvent are coated on a film a and dried to form a film b. Method.
  • ion-permeable I ⁇ comprises an electric double layer capacitor manufacturing method of electrode according to Ru der permeability force 1 X 10- 2 S / cm or more fluoride ion [25].
  • Ion permeability Compound strength Polysaccharides are acrylamide, acrylonitrile, chitosan pyrolidone carboxylate, hydroxypropyl chitosan, phthalic anhydride, maleic anhydride, anhydrous trimellitic acid, pyromellitic anhydride, acid anhydride
  • An electric double layer capacitor comprising the electrode for an electric double layer capacitor according to any one of [14] to [17], a separator, and an electrolytic solution.
  • a method for producing an electric double layer capacitor comprising a step of immersing the stacked electrodes and separator in an electrolytic solution.
  • the power supply system includes a double layer capacitor.
  • boundary values X and y are included. “Less than ⁇ ” and “greater than y” indicate that the boundary values X and y are not included.
  • the boundary values X and y in the range indicated by “x to y” are included in the range.
  • An electric double layer capacitor current collector according to the present invention and an electric double layer capacitor using an electrode for an electric double layer capacitor in which an electrode layer (coating b) is provided on the current collector, have a low impedance and a high capacity. Thus, rapid charge / discharge is possible with high charge / discharge current.
  • FIG. 1 is a conceptual diagram showing a cross-sectional structure of a current collector for an electric double layer capacitor obtained in Example 1.
  • FIG. 2 is a conceptual diagram showing a cross-sectional structure of an electrode for an electric double layer capacitor obtained in Example 2.
  • FIG. 3 is a diagram showing a glass cell used for measuring fluorine ion permeability.
  • the current collector for an electric double layer capacitor in a preferred embodiment of the present invention has a conductive sheet and a film a containing the ion-permeable compound and carbon fine particles a provided thereon. It is.
  • the conductive sheet constituting the current collector for the electric double layer capacitor according to a preferred embodiment of the present invention has holes such as a punching metal foil mesh formed only by a foil having no holes. Including foil.
  • the conductive sheet is not particularly limited as long as it is composed of a conductive material, and examples thereof include those made of conductive metal and those made of conductive resin. Particularly preferred are those made of aluminum or aluminum alloy.
  • As the aluminum foil foils such as A1085 and A3003 are usually used.
  • the conductive sheet may have a smooth surface! /, But a sheet (etched foil) whose surface is roughened by an electrical or chemical etching process or the like is preferable.
  • the conductive sheet is not particularly limited depending on the thickness, but is usually preferably 5 ⁇ m to 100 ⁇ m. If the thickness is too thin, the mechanical strength will be insufficient and the conductive sheet will break. It is easy to cause a disconnection. On the other hand, if the thickness is too thick, the volume occupied by the conductive sheet in the volume of the electric double layer capacitor becomes unnecessarily large, and the electric capacity per volume of the capacitor tends to be low.
  • the film a constituting the current collector in a preferred embodiment of the present invention includes carbon fine particles a and an ion-permeable compound.
  • the carbon fine particles a used in the present invention are conductive fine particles containing carbon as a main component.
  • As the carbon fine particles a acetylene black, ketjen black, vapor grown carbon fiber, graphite (graphite) and the like are suitable.
  • Carbon fine particle a is electrical resistance preferably from 1 X 10- 1 ⁇ 'cm or less at 100% of the green compact of a powder.
  • the carbon fine particles a can be used alone or in combination of two or more.
  • the carbon fine particles a are not particularly limited by the particle size, but those having a volume-based average particle size of 10 nm to 50 ⁇ m are preferred, and those having a particle size of 10 nm to 100 nm are more preferred.
  • the carbon fine particles a may have a spherical shape, but are preferably needle-shaped or rod-shaped (anisotropic shape). Since anisotropic carbon fine particles a have a large surface area per weight and a large contact area with the conductive sheet and activated carbon b described later, the conductivity between the aluminum foil and activated carbon b is increased even with a small amount of addition. can do. Examples of the anisotropic shaped carbon microparticles a include carbon nanotubes and carbon nanofibers.
  • Carbon nanotubes and carbon nanofibers usually have a fiber diameter of 0.001 to 0, preferably 0.03 to 0.21, and a fiber length of 1 to 100 111, preferably 1 to 100. Those having ⁇ 30 111 are suitable for improving conductivity.
  • conductive fine particles such as metal carbide and metal nitride can be used in combination with the carbon fine particles a.
  • the ion-permeable compound used in the present invention is not particularly limited as long as it has the ability to transmit ions! ,.
  • the ion-permeable compound preferably has a high ion permeability. Specifically it is preferable compound fluoride ion permeability has a higher IX 10- 2 SZcm. Fluorine ion permeability can be determined as follows. Dissolve the ion-permeable compound in water or n-methylpyrrolidone, adjust the viscosity, apply to the substrate and dry it at 150 ° C in an air atmosphere. A thin film (ion permeable membrane) was obtained by leaving for 5 minutes. The thin film was peeled off and the thickness d ⁇ m] was measured. As shown in Fig. 3, a glass cell with an inner diameter of 6 cm and a depth of 7.5 cm is filled with 212 cm 3 of pure water with a temperature of 25 ° C and an electrical conductivity of ⁇ [S / cm]. Dense
  • the ion-permeable compound preferably has a number average molecular weight of 50,000 or less.
  • the ion-permeable compound used in the present invention is preferably a non-compound that is swellable with respect to an organic solvent.
  • the ion-permeable compound used in the present invention is preferably a compound that does not cause peeling in the friction peeling test using an organic solvent! Since an organic solvent may be used for the electrolytic solution of the electric double layer capacitor, it is preferable that the membrane does not swell or dissolve by the electrolytic solution.
  • the swelling property with respect to the organic solvent is determined by swelling the membrane of the ion-permeable composite compound in an organic solvent (30 ° C) used for the electrolyte solution for 60 minutes.
  • the friction peeling test using an organic solvent is a cloth in which the membrane surface of an ion-permeable compound is used as an electrolyte solution. A cloth soaked in an organic solvent is rubbed 10 times with a force of lOOg, and the film is peeled off. Was observed.
  • Preferable examples of the ion-permeable compound include polysaccharides or those obtained by crosslinking polysaccharides.
  • the polysaccharide is a polymer compound in which monosaccharides (including carbon sugar substitutes and derivatives) are polymerized by glycosidic bonds. Many monosaccharides are produced by hydrolysis. Usually, 10 or more monosaccharides are polymerized.
  • the polysaccharide may have a substituent, for example, a polysaccharide in which an alcoholic hydroxyl group is substituted with an amino group (amino sugar), a polysaccharide in which a carboxyl group or an alkyl group is substituted, or a deacetylated polysaccharide. Etc. are included.
  • the polysaccharide may be either a homopolysaccharide or a heteropolysaccharide.
  • polysaccharide examples include agarose, amylose, amylopectin, araban, arabinan, aragapinogalactan, alginic acid, inulin, carrageenan, galactan, galatatosamine (chondrosamine), glucan, xylan, xyloglucan, Canoleboxy norequinolecithin, chitin, glycogen, glucomanan, keratan sulfate, colominic acid, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, cellulose, dextran, dendone, hyaluronic acid, fructan, pectic acid, pectic acid Examples include cutin, heparic acid, heparin, hemicellulose, pentozan, / 3-1, 4 'mannan, ⁇ -1, 6'-mannan, lichenan, levan, lentinan
  • Cross-linking agents used for cross-linking polysaccharides include acrylamide, acrylonitrile, chitosan pyrrolidone carboxylate, hydroxypropyl chitosan, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, acid Any of the anhydrides are preferred.
  • the ion-permeable compound include crosslinked polymers of cellulose by acrylamide, crosslinked polymers of cellulose by chitosan pyrrolidone carboxylate, chitosan, chitin and the like crosslinked by a crosslinking agent. And those obtained by crosslinking polysaccharides with acrylic additives and acid anhydrides.
  • the ion-permeable compound can be used alone or in combination of two or more.
  • the mass ratio between the ion-permeable compound contained in the film a and the carbon fine particles a is preferably 20Z80 to 99Zl, more preferably 40/60 to 90/10.
  • the coating a may contain activated carbon a as necessary. By including the activated carbon a in the film a, the electric capacity of the electric double layer capacitor is increased.
  • the activated charcoal a to be used can be selected from those listed as activated carbon b described later.
  • the film a is not particularly limited by the formation method.
  • a coating agent is prepared by dispersing or dissolving an ion-permeable compound, carbon fine particles a, and, if necessary, activated carbon a in a solvent to prepare a coating agent.
  • the coating agent is applied to a conductive sheet and dried. Can be formed.
  • the coating method include a casting method, a bar coater method, a dipping method, and a printing method. Of these methods, the bar coater method and casting are easy because the thickness of the film is easy to control. The method is preferred.
  • the solvent used in the coating agent is not particularly limited as long as it can disperse or dissolve the ion-permeable compound and the carbon fine particles a.
  • a solvent so that the solid content of the coating agent is 10% by mass to 100% by mass. The solvent is almost 100% removed by drying after application.
  • the coating film a is preferably heat-cured.
  • Some powerful ion-permeable compounds such as polysaccharides or those obtained by crosslinking polysaccharides include those that are cured by heating.
  • the above-mentioned crosslinking agent can be added to the coating agent.
  • the thickness of the film a is preferably 0.01 m or more and 50 m or less, more preferably 0.1 ⁇ m or more and 10 m or less. If the thickness is too thin, desired effects such as a decrease in internal resistance tend not to be obtained. If the thickness is too thick, the volume occupied by the coating a in the volume of the electric double layer capacitor becomes uselessly large, and the electric capacity per volume of the capacitor tends to be low.
  • the film a adheres to the conductive sheet and does not peel off. Specifically, it is preferable that the film a is not peeled off in the tape peeling test (JIS D0202-1988)! ! /
  • An electrode for an electric double layer capacitor in a preferred embodiment of the present invention is a film comprising the current collector for an electric double layer capacitor, a binder provided on the film a of the current collector, carbon fine particles b, and activated carbon b. b.
  • the film b constituting the electrode for the electric double layer capacitor in a preferred embodiment of the present invention contains a noinder, carbon fine particles b and activated carbon b.
  • Noinda is a known binder used for an electrode for an electric double layer capacitor.
  • the binder include polyvinylidene fluoride, polytetrafluoroethylene, and styrene butadiene rubber.
  • a solution obtained by dissolving or dispersing this binder in a solvent such as N-methylpyrrolidone, xylene or water is suitable for mixing with activated carbon b described later.
  • the coating b may contain the aforementioned ion-permeable compound.
  • Activated carbon b is preferred because it has a high specific surface area as well as a viewpoint power to increase electric capacity. Specifically, the activated carbon b preferably has a BET specific surface area of 800 to 2500 m 2 / g. Activated carbon b An average particle size (D50) force of 1 ⁇ m to 50 ⁇ m is preferable. Here, the average particle size (D50) of the activated carbon is a 50% cumulative particle size ( ⁇ m) measured by a Microtrac particle size distribution analyzer.
  • Activated carbon b can be employed from known ones. Examples thereof include coconut shell activated carbon and fibrous activated charcoal.
  • the activated carbon is not particularly limited depending on the activation method, and those obtained by a steam activation method, a chemical activation method, or the like can be employed.
  • alkali activation process (alkali activated charcoal) is suitable.
  • the alkali activated carbon can be obtained, for example, by heat-treating coconut shell, coatas, polymer carbide, non-graphitizable carbide, and graphitizable carbide in the presence of an alkali metal compound.
  • Examples of the easily graphitizable carbonized carbide include those obtained by heat-treating pitches such as petroleum pitch, coal pitch, and their organic solvent soluble components, and carbides of polysalt / bulb compounds. Is used.
  • Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, potassium carbonate and the like.
  • the activated carbon b used in the present invention preferably has a solid bulk density (tap density) in the range of 0.3 gZcm 3 to 0.9 g / cm 3 . If the compacted bulk density is too small, the packing density decreases and the electric capacity per volume of the electric double layer capacitor and per cell tends to decrease. If the bulk density is too high, the electric capacity per weight decreases, and the amount of electrolyte that can be retained tends to decrease, so the capacity retention ratio may decrease.
  • the mass ratio of the binder to the activated carbon b in the coating b is preferably 50Z50 to: LZ99, more preferably 30Z70 to 3Z97.
  • the carbon fine particles b are the same as those exemplified as the above-mentioned carbon fine particles a. Specifically, acetylene black, ketjen black, vapor grown carbon fiber, graphite (graphite) and the like are used. The carbon fine particles b are preferably contained in the film b within a range of 2 to 10% by mass.
  • the thickness of the coating b can be appropriately adjusted according to the desired electric capacity, but is preferably 10 m or more and 500 ⁇ m or less.
  • the film b is not particularly limited by the formation method.
  • the coating b can be formed by preparing a coating agent by dispersing or dissolving a binder, carbon fine particles b, and activated carbon b in a solvent, applying the coating agent on the coating a, and drying.
  • the coating method include a casting method, a bar coater method, a dipping method, and a printing method, but are not particularly limited, and a known method can be employed. Of these methods, the bar coater method and the cast method are preferable from the viewpoint of easy control of the thickness of the film.
  • the solvent used in the coating agent is not particularly limited as long as it can disperse or dissolve the binder, activated carbon b, and carbon fine particles b.
  • an appropriate amount of a solvent is preferably added to the coating agent. The solvent is almost 100% removed by drying and heat treatment after coating.
  • An electric double layer capacitor in a preferred embodiment of the present invention includes the electrode for an electric double layer capacitor, a separator superimposed on the electrode, and an electrolytic solution in which the electrode and the separator are immersed. .
  • any known non-aqueous solvent electrolyte solution or water-soluble electrolyte solution can be used, and in addition to other electrolyte solutions, a polymer solid which is a non-aqueous electrolyte. Electrolytes, polymer gel electrolytes, and ionic liquids can also be used. Examples of water-based (water-soluble electrolyte solution) include sulfuric acid aqueous solution, sodium sulfate aqueous solution, and sodium hydroxide aqueous solution.
  • non-aqueous solvent electrolyte solution cations represented by ⁇ ⁇ ⁇ 4 ⁇ + or ⁇ ⁇ ⁇ ⁇ + (R 1 , R 2 , R 3 , R 4 are Independently 1 to C carbon: LO alkyl group or aryl group) and BF-, PF-, CIO-, etc.
  • a salt or a quaternary phosphonium salt is used as an electrolyte, and a carbonate non-aqueous solvent such as ethylene carbonate or propylene carbonate is used as a solvent. Further, two or more kinds of electrolytes or solvents can be used in combination.
  • the separator overlapped with the electrode may be a porous separator that transmits ions.
  • a microporous polyethylene film, a microporous polypropylene film, an ethylene nonwoven fabric, a polypropylene nonwoven fabric, a glass fiber mixed nonwoven fabric, and the like are preferable. Can be used.
  • the electric double layer capacitor of the present invention is a coin type housed in a metal case together with an electrolytic solution via a separator between a pair of sheet-like electrodes, and a wound type formed by winding a pair of electrodes via a separator.
  • a misaligned structure such as a stacked type in which a plurality of separators and electrodes are stacked. Even if it is a mature one.
  • the electric double layer capacitor in a preferred embodiment of the present invention can be applied to a power supply system.
  • the electric double layer capacitor of the present invention includes a power supply system for vehicles such as automobiles and railways; a power supply system for ships; a power supply system for aircraft; a power supply system for portable electronic devices such as mobile phones, portable information terminals, and portable electronic computers.
  • Power supply systems for office equipment; power generation systems for power generation systems such as solar cell power generation systems, wind power generation systems, and fuel cell systems; can be applied to communication equipment and electronic tags.
  • An aluminum foil made of A1085 material with a thickness of 30 ⁇ m was prepared.
  • ion-permeable compound prepared by crosslinking chitosan, a polysaccharide, with pyromellitic anhydride was prepared.
  • the number average molecular weight of this ion-permeable compound was 35000 as measured by gel permeation chromatography (GPC).
  • This ion-permeable composite, carbon fine particles a (acetylene black: average particle size 40 nm), and water were mixed at a mass ratio of 40:40:20 and kneaded to obtain a paste.
  • the thickness of the film a after drying was 5 m, and the content of the carbon fine particles a in the film a was 60% by mass.
  • the electrical conductivity was measured with a normal tester, it was confirmed that there was sufficient energization.
  • FIG. 1 is a diagram conceptually showing a cross-sectional structure of the current collector obtained above.
  • the current collector for an electric double layer capacitor of the present invention has a coating a (2 ) Are stacked! Film a (2) contains carbon fine particles (3) and an ion-permeable compound (4).
  • Example 2 On the current collector obtained in Example 1, a paste composed of activated carbon, carbon microparticles b, a binder and a solvent having the following formulation was applied, and a polarizable electrode layer (film) consisting of activated carbon having a thickness of 200 m as a main component. b) was formed, and an electrode for an electric double layer capacitor was prepared.
  • a paste composed of activated carbon, carbon microparticles b, a binder and a solvent having the following formulation was applied, and a polarizable electrode layer (film) consisting of activated carbon having a thickness of 200 m as a main component. b) was formed, and an electrode for an electric double layer capacitor was prepared.
  • Activated carbon 85 parts by mass of alkali-activated activated carbon having a specific surface area of 1500 m 2 , g
  • Carbon fine particles b Acetylene black (average particle size 40 nm) 5 parts by mass
  • PVDF Polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • two electric double layer capacitor electrodes were punched out with a diameter of 20 mm in accordance with the size of the evaluation capacitor container.
  • Two electrodes are stacked on top of each other with a separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrodes, and finally covered with a lid, and an evaluation electrical container.
  • a double layer capacitor was created.
  • the solvent is propylene carbonate
  • the electrolyte is (C H) NBF
  • FIG. 2 is a diagram conceptually showing the cross-sectional structure of the electrode obtained above.
  • the electrode for an electric double layer capacitor of the present invention has a film a (2) laminated on an aluminum foil (1), and a film b (6) further laminated on the film a. ing.
  • the coating b (6) contains a noinder (7), activated carbon (5), and carbon fine particles b (3).
  • Impedance was measured using a KIKUSUI impedance measuring instrument (PAN110-5 AM) at 1 kHz.
  • the electric capacity was measured using a charge / discharge tester (HJ-101SM6) manufactured by Hokuto Denko Co., Ltd., and charged and discharged at a current density of 1.59 mAZcm 2 at 0 to 2.5V. Discharge curve force measured during the second constant current discharge The electric capacity per cell (FZ cell) was calculated.
  • the capacity retention rate (%) was calculated as (electric capacity at 20th cycle) / (electric capacity at 2nd cycle) X 100.
  • the electric double layer capacitor obtained using the current collector of the present invention has a low capacitance, a high capacitance per cell, and a good capacity retention.
  • Example 1 Electricity was the same as in Example 1 except that carbon fine particles a (acetylene black) used in Example 1 were replaced with vapor grown carbon fiber (VGCF (registered trademark), Showa Denko, fiber length 20 ⁇ m).
  • VGCF vapor grown carbon fiber
  • a current collector for a double layer capacitor was obtained.
  • An electrode for an electric double layer capacitor and an electric double layer capacitor were obtained in the same manner as in Example 2 except that this current collector was used. The evaluation results are shown in Table 1.
  • Electrode for electric double layer capacitor as in Example 2 except that carbon fine particle b (acetylene black) used in Example 2 was replaced with vapor grown carbon fiber (VGCF Showa Denko, fiber length 20 m) And an electric double layer capacitor were obtained.
  • the evaluation results are shown in Table 1.
  • An ion-permeable compound prepared by crosslinking chitin, a polysaccharide, with maleic anhydride was prepared. This number average molecular weight was 30000 according to GPC measurement. Using this, a paste was prepared in the same manner as in Example 1 to obtain a current collector composed of an aluminum foil and a film containing an ion-permeable compound and carbon fine particles.
  • Example 1 the material of the aluminum foil was changed from A1085 to A3003, and the ion-permeable compound was crosslinked with chitosan, a polysaccharide, with acrylonitrile (number average molecular weight was 31000 by GPC measurement).
  • a paste was prepared in the same manner as in Example 1 except that the current collector was changed to) to obtain a current collector comprising an ion-permeable composite and a film containing carbon fine particles and an aluminum foil.
  • an electric double layer capacitor was obtained in the same process as in Example 2.
  • electric capacity, capacity retention, internal resistance, and impedance were measured, and the result was 3 ⁇ 4 kl.
  • Example 1 except that the ion-permeable compound was changed to a polysaccharide obtained by cross-linking chitosan, a polysaccharide, with trimellitic anhydride (this number average molecular weight was 22000 by GPC measurement).
  • a paste was prepared in the same manner as in Example 1 to obtain a current collector comprising an ion-permeable composite and a film containing carbon fine particles and an aluminum foil.
  • An ion-permeable compound prepared by crosslinking a polysaccharide chitosan with acrylonitrile was prepared. This compound was formed into a film having a thickness of 0.5 / zm, and a tape peeling test was conducted. Exfoliation was observed in all 100 squares. The number average molecular weight of this compound was 26000 as measured by GPC.
  • Example 2 In the same manner as in Example 1, except that carbon fine particles a were used, that is, instead of the paste used in Example 1, a solution containing only ion permeable compound and water was used. Thus, a current collector for an electric double layer capacitor was obtained. The evaluation results are shown in Table 2. The electrical conductivity was measured with a normal tester, but the current was strong enough to flow.
  • Example 2 The electrode for the electric double layer capacitor and the electric double layer capacitor were prepared in the same manner as in Example 2 except that the current collector used in Example 2 was replaced with an aluminum foil that also had an A1085 material whose surface was etched. Obtained. The evaluation results are shown in Table 2.
  • An electric double layer capacitor was prepared in the same manner as in Example 1 and Example 2 except that the ion-permeable compound was replaced with PVDF.
  • Example 2 The quantity retention rate and internal resistance were measured under the same conditions as in Example 2. The results are shown in Table 2. The force that could be used to manufacture an electric double layer capacitor When the surface of the current collector was rubbed with a cloth soaked with propylene carbonate, a large amount of peeling occurred. The electric double layer capacitor obtained in Comparative Example 3 is considered unable to withstand long-term use even if the initial characteristics are good.
  • An electric double layer capacitor was prepared in the same manner as in Example 1 and Example 2 except that the ion-permeable compound was replaced with a PVA (polybulal alcohol) binder.
  • the capacity retention rate and internal resistance were measured under the same conditions as in Example 2. The results are shown in Table 2.
  • a tape peel test similar to that in Comparative Example 3 was performed at the current collector stage. As a result, the current collector surface was largely peeled off.
  • the electric double layer capacitor obtained in Comparative Example 4 is considered to be unable to withstand long-term use even if the initial characteristics are good.
  • each of the electric double layer capacitors (Examples) using the current collector for the electric double layer capacitor of the present invention has a low impedance and a large capacitance. It can be seen that the retention rate is also excellent. In other words, it is possible to charge and discharge with a large current (rapid charge and discharge), and to be higher performance than conventional electric double layer capacitors. It is attached.
  • the ion-permeable compound and the conductive carbon fine particles a in the film a are ion and This is presumed to be due to the sharing of electrons and the smooth exchange of ions and electrons between the polarizable electrode layer (coating b) and the conductive sheet (aluminum foil).

Abstract

 イオン透過性化合物と炭素微粒子aとを溶剤に分散又は溶解したものを、アルミニウム箔などの導電性シートに塗布し乾燥して皮膜aを形成し、電気二重層キャパシタ用集電体を得る。バインダーと炭素微粒子bと活性炭bとを溶剤に分散又は溶解したものを、前記電気二重層キャパシタ用集電体の皮膜aの上に塗布し乾燥して皮膜bを形成し、電気二重層キャパシタ用電極を得る。この電極をセパレータと重ね合わせ電解液に浸漬して電気二重層キャパシタを得る。

Description

明 細 書
電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電 気二重層キャパシタ、並びにそれらの製造方法
技術分野
[0001] 本発明は、電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び 電気二重層キャパシタ、並びにそれらの製造方法に関するものである。
背景技術
[0002] 電気二重層キャパシタは、急速充放電が可能で、過充放電に強く、化学反応を伴 わな 、ために長寿命、広 、温度範囲で使用可能であり、また重金属を含まな 、ため に環境に優し 、などのバッテリーにはな 、特性を有して 、る。電気二重層キャパシタ はメモリーバックアップ電源等に主に使用されている。さらに、電気二重層キャパシタ は太陽電池や燃料電池と組み合わせた電力貯蔵システム、ノ、イブリットカーのェンジ ンアシスト等への活用も検討されて 、る。
[0003] 電気二重層キャパシタは、活性炭等を含む合剤をアルミニウム箔などの集電体に 積層させてなる一対の分極性電極を、電解質イオンを含む溶液中でセパレータを介 して対向させた構造カゝらなっている。電極に直流電圧を印加すると正(+ )側に分極 した電極には溶液中の陰イオン力 負(一)側に分極した電極には溶液中の陽イオン が弓 Iき寄せられる。これによつて電極と溶液との界面に形成された電気二重層を電 気エネルギーとして利用することができる。
[0004] 高出力高容量の電気二重層キャパシタを得るためには、キャパシタが有する内部 抵抗をできるだけ小さくすることが必要である。キャパシタの内部抵抗は、電解液、分 極性電極、集電体ゃこれらの界面などによって生じることが知られており、例えば、集 電体又は電極が有する体積抵抗値を小さくすることで、キャパシタの内部抵抗を小さ くする試みが従来力 行われてきた。
[0005] 特許文献 1には、厚さ 10〜50 μ mのアルミニウム箔、厚さ 0. 2〜20 μ mの導電層 、及び厚さ 80〜500 mの電極層がこの順で積層された電気二重層キャパシタ用電 極が開示されている。この導電層は導電材として黒鉛粉末及びバインダーとしてポリ アミドイミド榭脂を含有する導電性塗料力 なるものである。
特許文献 1:特開 2002— 270470号公報
[0006] 特許文献 2には、電極集電体上に比表面積 100〜2500m2/gの炭素材料を含む 電極層と、前記電極層より導電性が高くかつ多孔質の高導電層とがこの順で積層さ れてなる電気二重層キャパシタ用電極が開示されている。電極集電体上に比表面積
100〜2500m2Zgの炭素材料を含む電極層をカーボンを含む導電性接着剤を用
V、て貼り合わせ接合すると記載して!/、る。
特許文献 2:特開 2003 - 309045号公報
[0007] また、特許文献 3には、導電剤と熱可塑性榭脂とからなるフィルムと、該フィルム表 面に設けられた低電気抵抗層とからなる電気二重層キャパシタ用集電体が開示され ている。
特許文献 3:特開 2004— 31468号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、上記公報に提案されているものを含め、従来の電気二重層キャパシ タは、内部インピーダンスが比較的大きぐ急速充放電の点で満足できるものではな かった。
[0009] 本発明は、上記事情に鑑みなされたものであり、低インピーダンス且つ高容量で、 高 、充放電電流で急速充放電ができる、高性能な電気二重層キャパシタを得るため の、電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、並びにそれら の製造方法を提供することを目的とするものである。
課題を解決するための手段
[0010] 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、これまで用いら れて 、たバインダー化合物に代わりイオン透過性ィ匕合物を活用することで、具体的 には、電気二重層キャパシタ用の従来の集電体 (アルミニウム箔等)上に、イオン透 過性と電気導電性を併せ持った皮膜、より具体的にはイオン透過性ィ匕合物と炭素微 粒子 aとを含む皮膜 aを形成させることによって、低インピーダンスかつ高容量で急速 充放電が可能な電気二重層キャパシタを得ることができることを見出した。 本発明はこの知見に基づきさらに検討することによって完成するに至ったものであ る。
[0011] すなわち、本発明は、以下の解決手段を提供する。
〔1〕 導電性シートと、その上に備えたイオン透過性ィ匕合物及び炭素微粒子 aを含む 皮膜 aと、を有する電気二重層キャパシタ用集電体。
〔2〕 導電性シートが、アルミニウム箔、アルミニウムエッチング箔またはアルミニウム パンチング箔である〔1〕に記載の電気二重層キャパシタ用集電体。
〔3〕 イオン透過性ィ匕合物が、有機溶媒に対して膨潤性のない化合物である、〔1〕又 は〔2〕に記載の電気二重層キャパシタ用集電体。
〔4〕 イオン透過性ィ匕合物が、有機溶媒による摩擦剥離試験において剥がれの生じ ない化合物である〔1〕〜〔3〕のいずれか一に記載の電気二重層キャパシタ用集電体
〔5〕 イオン透過性ィ匕合物は、フッ素イオンの透過度力 1 X 10— 2 SZcm以上であ る〔1〕〜〔4〕のいずれか一に記載の電気二重層キャパシタ用集電体。
〔6〕 イオン透過性化合物は、平均分子量が 5万以下である〔1〕〜〔5〕のいずれか一 に記載の電気二重層キャパシタ用集電体。
[0012] 〔7〕 イオン透過性ィ匕合物が、多糖類又は多糖類を架橋させた化合物である〔1〕〜〔 6〕のいずれか一に記載の電気二重層キャパシタ用集電体。
〔8〕 イオン透過性ィ匕合物力 多糖類をアクリルアミド、アクリロニトリル、キトサンピロリ ドンカルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレイン酸、無水 トリメリット酸、無水ピロメリット酸、酸無水物、のいずれかで架橋させたィ匕合物である〔 1〕〜〔6〕の 、ずれか一に記載の電気二重層キャパシタ用集電体。
〔9〕 多糖類が、キトサンもしくはキチンである〔7〕又は〔8〕に記載の電気二重層キヤ パシタ用集電体。
[0013] 〔10〕 皮膜 aがテープ剥離試験 (JIS D0202— 1988)において剥離しない〔1〕〜〔 9〕のいずれか一に記載の電気二重層キャパシタ用集電体。
〔11〕 皮膜 aが熱硬化によって得られたものである〔1〕〜〔10〕のいずれか一に記載 の電気二重層キャパシタ用集電体。 〔12〕 皮膜 aにさらに活性炭 aが含まれる〔1〕〜〔11〕のいずれか一に記載の電気二 重層キャパシタ用集電体。
〔13〕 炭素微粒子 aが針状若しくは棒状である〔 1〕〜〔 12〕の 、ずれか一に記載の 電気二重層キャパシタ用集電体。
[0014] 〔14〕 前記〔1〕〜〔13〕のいずれか一に記載の電気二重層キャパシタ用集電体と、 該集電体の皮膜 aの上に備えたノインダー、炭素微粒子 b及び活性炭 bを含む皮膜 b と、を有する電気二重層キャパシタ用電極。
[15] 炭素微粒子 bが針状若しくは棒状である〔14〕に記載の電気二重層キャパシタ 用電極。
〔16〕 活性炭 bは、 BET比表面積が 800〜2500m2/gである〔14〕又は〔15〕に記 載の電気二重層キャパシタ用電極。
〔17〕 バインダーがイオン透過性ィ匕合物を含む〔14〕〜(16)のいずれか一に記載 の電気二重層キャパシタ用電極。
[0015] 〔18〕 イオン透過性ィ匕合物と、炭素微粒子 aと、を溶剤に分散又は溶解したものを、 導電性シートに塗布し乾燥して皮膜 aを形成する工程を含む電気二重層キャパシタ 用集電体の製造方法。
〔19〕 イオン透過性ィ匕合物は、フッ素イオンの透過度力 1 X 10— 2 S/cm以上であ る〔18〕に記載の電気二重層キャパシタ用集電体の製造方法。
〔20〕 イオン透過性ィ匕合物は、平均分子量が 5万以下である〔18〕又は〔19〕に記載 の電気二重層キャパシタ用集電体の製造方法。
〔21〕 イオン透過性ィ匕合物が、多糖類又は多糖類を架橋させた化合物である〔18〕 〜〔20〕のいずれか一に記載の電気二重層キャパシタ用集電体の製造方法。
[22] イオン透過性ィ匕合物力 多糖類をアクリルアミド、アクリロニトリル、キトサンピロ リドンカルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレイン酸、無 水トリメリット酸、無水ピロメリット酸、酸無水物、のいずれかで架橋させたィ匕合物であ る〔18〕〜〔20〕のいずれか一に記載の電気二重層キャパシタ用集電体の製造方法。 〔23〕 炭素微粒子 aが針状若しくは棒状である〔18〕〜〔22〕のいずれか一に記載の 電気二重層キャパシタ用集電体の製造方法。 [0016] 〔24〕 バインダーと、炭素微粒子 bと、活性炭 bと、を溶剤に分散又は溶解したものを 、〔1〕〜〔13〕のいずれか一に記載の電気二重層キャパシタ用集電体の皮膜 aの上 に、塗布し乾燥して皮膜 bを形成する工程を含む電気二重層キャパシタ用電極の製 造方法。
〔25〕 イオン透過性化合物と、炭素微粒子 aと、を溶剤に分散又は溶解したものを、 導電性シートに塗布し乾燥して皮膜 aを形成し、
バインダーと、炭素微粒子 bと、活性炭 bと、を溶剤に分散又は溶解したものを、皮 膜 aの上に塗布し乾燥して皮膜 bを形成する工程を含む電気二重層キャパシタ用電 極の製造方法。
〔26〕 イオン透過性ィ匕合物は、フッ素イオンの透過度力 1 X 10— 2 S/cm以上であ る〔25〕に記載の電気二重層キャパシタ用電極の製造方法。
[27] イオン透過性ィ匕合物は、平均分子量が 5万以下である〔25〕又は〔26〕に記載 の電気二重層キャパシタ用電極の製造方法。
〔28〕 イオン透過性ィ匕合物が、多糖類又は多糖類を架橋させた化合物である〔25〕 〜〔27〕のいずれか一に記載の電気二重層キャパシタ用電極の製造方法。
〔29〕 イオン透過性ィ匕合物力 多糖類をアクリルアミド、アクリロニトリル、キトサンピロ リドンカルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレイン酸、無 水トリメリット酸、無水ピロメリット酸、酸無水物、のいずれかで架橋させたィ匕合物であ る〔25〕〜〔28〕の 、ずれか一に記載の電気二重層キャパシタ用電極の製造方法。 〔30〕 炭素微粒子 aが針状若しくは棒状である〔25〕〜〔29〕のいずれか一に記載の 電気二重層キャパシタ用電極の製造方法。
〔31〕 炭素微粒子 bが針状若しくは棒状である〔24〕〜〔30〕のいずれか一に記載の 電気二重層キャパシタ用電極の製造方法。
〔32〕 活性炭 bは、 BET比表面積力 ¾00〜2500m2Zgである〔24〕〜〔31〕のいず れか一に記載の電気二重層キャパシタ用電極の製造方法。
[0017] 〔33〕 前記〔14〕〜〔17〕のいずれか一に記載の電気二重層キャパシタ用電極と、 セパレータと、電解液と、を備える電気二重層キャパシタ。
〔34〕 電気二重層キャパシタカ 積層型または卷回型である〔33〕に記載の電気二 重層キャパシタ。
〔35〕 前記〔14〕〜〔17〕のいずれか一に記載の電気二重層キャパシタ用電極と、セ パレータとを重ね合わせる工程、
重ね合わせた電極及びセパレータを電解液に浸漬する工程を含む電気二重層キ ャパシタの製造方法。
前記〔33〕または〔34)に 二重層キャパシタを含む電源システム。
〔37〕 前記〔33〕または〔34)に 二重層キャパシタを使用した自動車。
〔38〕 前記〔33〕または〔34)に 二重層キャパシタを使用した鉄道。
〔39〕 前記〔33〕または〔34)に 二重層キャパシタを使用した船舶。
〔40〕 前記〔33〕または〔34)に 二重層キャパシタを使用した航空機。
〔41〕 前記〔33〕または〔34)に 二重層キャパシタを使用した携帯機器。
〔42〕 前記〔33〕または〔34)に 二重層キャパシタを使用した事務機器。
〔43〕 前記〔33〕または〔34)に 二重層キャパシタを使用した太陽電池発 電システム。
〔44〕 前記〔33〕または〔34)に記載の電気二重層キャパシタを使用した風力発電シ ステム。
〔45〕 前記〔33〕または〔34〕に記載の電気二重層キャパシタを使用した通信機器。 〔46〕 前記〔33〕または〔34〕に記載の電気二重層キャパシタを使用した電子タグ。
[0019] なお、本明細書において「x以上」及び「y以下」と示しているときにはその境界値 X 及び yを含む。「χ未満」及び「y超」と示して 、るときはその境界値 X及び yを含まな ヽ 。また「x〜y」で示された範囲の境界値 X及び yはその範囲に含む。
発明の効果
[0020] 本発明における電気二重層キャパシタ用集電体、該集電体に電極層(皮膜 b)を設 けた電気二重層キャパシタ用電極を用いた電気二重層キャパシタは、低インピーダ ンス且つ高容量で、高 ヽ充放電電流で急速充放電ができる。
本発明における製造方法によって、上記電気二重層キャパシタ用集電体、電気二 重層キャパシタ用電極及び電気二重層キャパシタを容易に得ることができる。 図面の簡単な説明 [0021] [図 1]実施例 1で得られた電気二重層キャパシタ用集電体の断面構造を示す概念図 である。
[図 2]実施例 2で得られた電気二重層キャパシタ用電極の断面構造を示す概念図で ある。
[図 3]フッ素イオン透過度を測定するために用いたガラスセルを示す図である。
符号の説明
1 · 'アルミニウム箔、
2 · '皮膜 a、
3 · •炭素微粒子、
4 · •イオン導電性化合物、
5 · '活性炭 bゝ
6 · '皮膜 b (分極性電極層)、
7 · 'バインダー
発明を実施するための最良の形態
[0023] 〔電気二重層キャパシタ用集電体〕
本発明の好ましい実施態様における電気二重層キャパシタ用集電体は、導電性シ ートと、その上に備えたイオン透過性ィ匕合物及び炭素微粒子 aを含む皮膜 aとを有す るものである。
[0024] 本発明の好ましい実施態様における電気二重層キャパシタ用集電体を構成する導 電性シートは、孔の開いていない箔だけでなぐパンチングメタル箔ゃ網のような孔の 開!ヽた箔などを含む。導電性シートは導電性材料で構成されるものであれば特に制 限されず、導電性金属製のものや導電性榭脂製のものが挙げられる。特にアルミ- ゥム製、アルミニウム合金製のものが好ましいものとして挙げられる。アルミニウム箔と しては A1085材、 A3003材などの箔が通常用いられる。
[0025] 導電性シートは、表面が平滑なものでもよ!/、が、電気的又は化学的なエッチング処 理などによって表面が粗面化されたもの(エッチング箔)が好適である。
[0026] 導電性シートは、厚さによって特に制限されないが、通常、 5 μ m〜100 μ mのもの が好ましい。厚さが薄すぎると機械的強度が不足するようになり、導電性シートの破 断などが生じやすくなる。逆に厚さが厚すぎると、電気二重層キャパシタの体積中の 導電性シートの占める体積が無駄に大きくなり、キャパシタの体積あたりの電気容量 が低くなりやすい。
[0027] 本発明の好ましい実施態様における集電体を構成する皮膜 aは、炭素微粒子 aと、 イオン透過性ィ匕合物とを含むものである。
[0028] 本発明に用いられる炭素微粒子 aは、炭素を主構成成分とする導電性の微粒子で ある。炭素微粒子 aとしては、アセチレンブラック、ケッチェンブラック、気相法炭素繊 維、グラフアイト (黒鉛)などが好適である。
炭素微粒子 aは、粉体での電気抵抗が 100%の圧粉体で 1 X 10— 1 Ω 'cm以下の ものが好ましい。炭素微粒子 aは一種単独で又は 2種以上を組み合わせて用いること ができる。
[0029] 炭素微粒子 aは、その粒子サイズによって特に制限されな 、が、体積基準の平均粒 径が 10nm〜50 μ mのものが好ましぐ 10nm〜100nmのものがより好ましい。 炭素微粒子 aは、形状が球状のものであってもよいが、針状若しくは棒状のもの (異 方形状のもの)が好ましい。異方形状の炭素微粒子 aは重量あたりの表面積が大きく 、導電性シートや後述の活性炭 b等との接触面積が大きくなるので、少量の添加量で もアルミニウム箔と活性炭 b間の導電性を高くすることができる。異方形状の炭素微粒 子 aとしては、カーボンナノチューブやカーボンナノファイバーが挙げられる。カーボ ンナノチューブやカーボンナノファイバ一は繊維径が通常 0. 001〜0. 、好ま しく ίま 0. 003〜0. 2 111でぁり、繊維長カ¾1常1〜100 111、好ましく【ま1〜30 111 であるものが導電性向上において好適である。また、金属炭化物や金属窒化物など の導電性微粒子を炭素微粒子 aと併用することができる。
[0030] 本発明に用いられるイオン透過性ィ匕合物は、イオンが透過できる性能を有するもの であれば特に制限されな!、。
イオン透過性ィ匕合物は、イオン透過度の大きいものが好ましい。具体的にはフッ素 イオン透過度が I X 10—2 SZcm以上を有する化合物が好適である。フッ素イオン透 過度は、次のようにして求めることができる。イオン透過性ィ匕合物を水又は n—メチル ピロリドンに溶解し、粘度調整して、基材に塗布し乾燥させ、空気雰囲気下 150°Cで 5分間放置して薄膜 (イオン透過膜)を得た。薄膜を基材力 剥がし、厚さ d^ m]を 測定した。図 3に示すような、内寸の直径 6cm、深さ 7. 5cmのガラスセルに温度 25 °C、電気伝導度 σ [S/cm]の純水 212cm3を満たし、前記薄膜でガラスセルを密
0
封した。温度 25°C、濃度 0. 005質量%のフッ化水素の水溶液 3. 18cm3 (直径 4. 5 cm,高さ 2mm)を前記薄膜の表面に接触面積 15. 9cm2で 60秒間接触させた。次 いで薄膜をガラスセルから取り除き、ガラスセル中の純水の電気伝導度 σ [S/cm]
1 を測定した。密封時の純水の電気伝導度 σ と、フッ化水素の水溶液に接触させた後
0
の純水の電気伝導度 σ から、次式により、イオン透過度 T[SZcm]を求めた。
1
Τ= ( σ - σ ) X d/0. 1
1 o
また、イオン透過性化合物は数平均分子量が 5万以下であるものが好ま 、。
[0031] 本発明に用いられるイオン透過性ィ匕合物は、有機溶媒に対して膨潤性の無 ヽィ匕合 物であることが好ましい。また、本発明に用いられるイオン透過性ィ匕合物は、有機溶 媒による摩擦剥離試験にぉ 、て剥がれの生じな!/、ィ匕合物であることが好ま 、。電 気二重層キャパシタの電解液に有機溶媒を用いることがあるので、電解液によって皮 膜が膨潤又は溶解しな 、ことが好ま U、からである。
[0032] なお、有機溶剤に対する膨潤性は、イオン透過性ィ匕合物の膜を電解液に用いる有 機溶媒 (30°C)に 60分間浸潰し、膨潤したか否かで判断する。
有機溶剤による摩擦剥離試験は、イオン透過性ィ匕合物の膜表面を電解液に用いる 有機溶媒が浸み込んだ布で、 lOOg重の力を加えて 10回擦り、膜が剥がれるか否か を観察した。
[0033] イオン透過性ィ匕合物の好適例としては、多糖類、又は多糖類を架橋させたものが 挙げられる。
多糖類は、単糖類 (炭糖類の置換体及び誘導体を含む)が、グリコシド結合によつ て多数重合した高分子化合物のことである。加水分解によって多数の単糖類を生ず るものである。通常 10以上の単糖類が重合したものを多糖類という。多糖類は置換 基を有して 、てもよく、例えばアルコール性水酸基がァミノ基で置換された多糖類 (ァ ミノ糖)、カルボキシル基やアルキル基で置換されたもの、多糖類を脱ァセチル化し たものなどが含まれる。多糖類はホモ多糖、ヘテロ多糖のいずれでもよい。 [0034] 多糖類の具体例としては、ァガロース、アミロース、アミロぺクチン、ァラバン、ァラビ ナン、ァラガピノガラクタン、アルギン酸、ィヌリン、カラギーナン、ガラクタン、ガラタト サミン(コンドロサミン)、グルカン、キシラン、キシログルカン、カノレボキシァノレキノレキ チン、キチン、グリコーゲン、グルコマナン、ケラタン硫酸、コロミン酸、コンドロイチン 硫酸 A、コンドロイチン硫酸 B、コンドロイチン硫酸 C、セルロース、デキストラン、デン プン、ヒアルロン酸、フルクタン、ぺクチン酸、ぺクチン質、へパラン酸、へパリン、へミ セルロース、ペントザン、 /3— 1 , 4' マンナン、 α— 1 , 6 '—マンナン、リケナン、レ バン、レンチナン、キトサン等が挙げられる。これらのうち、キチン、キトサンが好ましい
[0035] 多糖類を架橋させるために用いる架橋剤としては、アクリルアミド、アクリロニトリル、 キトサンピロリドンカルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレ イン酸、無水トリメリット酸、無水ピロメリット酸、酸無水物のいずれかが好適である。
[0036] イオン透過性ィ匕合物のより具体的な例としては、セルロースのアクリルアミドによる架 橋重合体、セルロースのキトサンピロリドンカルボン酸塩による架橋重合体、キトサン 、キチン等を架橋剤で架橋したもの、多糖類をアクリル系添加剤や酸無水物で架橋 したもの、などが挙げられる。イオン透過性ィ匕合物は一種単独で又は 2種以上を組み 合わせて用いることができる。
[0037] 皮膜 a中に含まれるイオン透過性ィ匕合物と炭素微粒子 aとの質量比(=イオン透過 性化合物 Z炭素微粒子 a)は、好ましくは 20Z80〜99Zl、より好ましくは 40/60 〜90/10である。
[0038] 皮膜 aには、必要に応じて活性炭 aが含まれていてもよい。活性炭 aが皮膜 aに含ま れることによって、電気二重層キャパシタの電気容量が高くなる。なお、使用する活 性炭 aは後記の活性炭 bとして挙げたものの中から選択することができる。
[0039] 皮膜 aは、その形成方法によって特に制限されない。例えば、イオン透過性化合物 と炭素微粒子 aと、必要に応じて活性炭 aとを溶剤に分散又は溶解して塗布剤を調製 し、この塗布剤を導電性シートに塗布し乾燥することによって皮膜 aを形成できる。 塗布方法としては、キャスト法、バーコ一ター法、ディップ法、印刷法などが挙げら れる。これらの方法の内、皮膜の厚さを制御しやすい点からバーコ一ター法、キャスト 法が好適である。
[0040] 塗布剤に用いる溶剤は、イオン透過性ィ匕合物と炭素微粒子 aとを分散又は溶解で きるものであれば特に制限されな ヽ。塗布剤の粘度を調整するために塗布剤の固形 分率を 10質量%〜 100質量%になるように溶剤を添加することが好ましい。なお、溶 剤は塗布後の乾燥によってほぼ 100%が除去される。
[0041] そして、乾燥後、塗膜 aを熱硬化させることが好ま 、。多糖類又は多糖類を架橋さ せたものなど力 なるイオン透過性ィ匕合物には加熱によって硬化するものが含まれて いる。皮膜 aを熱によってさらに硬化させるために、前述の架橋剤を塗布剤に添加す ることがでさる。
[0042] 皮膜 aの厚さは、好ましくは 0. 01 m以上 50 m以下、より好ましくは 0. 1 μ以上 10 m以下である。厚みが薄すぎると内部抵抗の低下などの所望効果が得られない 傾向になる。厚みが厚すぎると電気二重層キャパシタの体積中の皮膜 aの占める体 積が無駄に大きくなり、キャパシタの体積あたりの電気容量が低くなりやすい。
[0043] 皮膜 aは、導電性シートに密着し、剥がれないものが好ましぐ具体的にはテープ剥 離試験 (JIS D0202- 1988)にお!/、て剥離しな!、ことが好まし!/、。
[0044] 〔電気二重層キャパシタ用電極〕
本発明の好ましい実施態様における電気二重層キャパシタ用電極は、前記電気二 重層キャパシタ用集電体と、該集電体の皮膜 aの上に備えたバインダー、炭素微粒 子 b及び活性炭 bを含む皮膜 bとを有するものである。
[0045] 本発明の好ましい実施態様における電気二重層キャパシタ用電極を構成する皮膜 bはノ インダー、炭素微粒子 b及び活性炭 bを含むものである。
ノインダ一は、電気二重層キャパシタ用電極に用いられる公知のバインダーである 。バインダーとしては、ポリフッ化ビ-リデン、ポリテトラフルォロエチレン、スチレンブ タジェンラバー等が挙げられる。このバインダーを、 N—メチルピロリドン、キシレン、 水などの溶剤に溶解又は分散させ液状にしたものが、後述の活性炭 b等との混合に 適している。なお、皮膜 bには前述のイオン透過性ィ匕合物を含有していてもよい。
[0046] 活性炭 bは、電気容量を高くする観点力も比表面積の大き!/、ものが好ま 、。具体 的に活性炭 bは BET比表面積が 800〜2500m2/gのものが好ましい。活性炭 bは、 平均粒径(D50)力 1 μ m〜50 μ mのものが好ましい。ここで、活性炭の平均粒径( D50)は、マイクロトラック粒度分布計により測定した 50%累積粒子径( μ m)である。
[0047] 活性炭 bは、公知のものから採用可能である。例えば、ヤシ殻活性炭、繊維状活性 炭などが挙げられる。活性炭は、その賦活方法によっても特に限定されず、水蒸気 賦活法、薬品賦活法などによって得たものが採用可能である。なお高容量のキャパ シタを得るためには、アルカリ賦活処理を施したもの(アルカリ賦活炭)が好適である。 アルカリ賦活炭は、例えば、ヤシ殻、コータス、ポリマー炭化物、難黒鉛化性炭化物、 易黒鉛化性炭化物をアルカリ金属化合物の存在下に熱処理することによって得られ る。易黒鉛ィ匕性炭化物としては、例えば、石油系ピッチ、石炭系ピッチ、及びそれら の有機溶媒可溶成分などのピッチを熱処理して得られるものや、ポリ塩ィ匕ビュル系化 合物の炭化物が用いられる。アルカリ金属化合物としては水酸ィ匕ナトリウム、水酸ィ匕 カリウム、炭酸カリウムなどが挙げられる。
[0048] 本発明に用いる活性炭 bは、固め嵩密度 (タップ密度)が、 0. 3gZcm3〜0. 9g/c m3の範囲内にあるものが好ましい。固め嵩密度が小さすぎると充てん密度が小さくな り電気二重層キャパシタの体積あたりやセルあたりの電気容量が低下傾向になる。固 め嵩密度が大きすぎると重量あたりの電気容量が低下し、電解液を保持できる量が 減少傾向になるために容量保持率が低下する場合がある。
[0049] 皮膜 b中のバインダーと活性炭 bとの質量比(=ノインダー Z活性炭 b)は、好ましく は 50Z50〜: LZ99、より好ましくは 30Z70〜3Z97である。
[0050] 炭素微粒子 bとしては、上述の炭素微粒子 aとして例示したものと同じもの、具体的 には、アセチレンブラック、ケッチェンブラック、気相法炭素繊維、グラフアイト(黒鉛) などが用いられる。炭素微粒子 bは皮膜 b中に 2〜10質量%の範囲内で含有させる ことが好ましい。
[0051] 皮膜 bの厚さは、所望する電気容量に応じて適宜調整できるが、好ましくは 10 m 以上 500 μ m以下である。
[0052] 皮膜 bは、その形成方法によって特に制限されない。例えば、バインダーと炭素微 粒子 bと活性炭 bとを溶剤に分散又は溶解して塗布剤を調製し、この塗布剤を皮膜 a の上に塗布し乾燥することによって皮膜 bを形成できる。 塗布方法としては、キャスト法、バーコ一ター法、ディップ法、印刷法などが挙げら れるが特に限定されず、公知の方法が採用可能である。これらの方法の内、皮膜の 厚さを制御しやす 、点からバーコ一ター法、キャスト法が好適である。
[0053] 塗布剤に用いる溶剤はバインダー、活性炭 b及び炭素微粒子 bを分散又は溶解で きるものであれば特に制限されな ヽ。塗布剤の粘度を調整するために塗布剤に溶剤 を適量添加することが好ましい。なお、溶剤は塗布後の乾燥及び熱処理によってほ ぼ 100%が除去される。
[0054] 〔電気二重層キャパシタ〕
本発明の好ましい実施態様における電気二重層キャパシタは、前記の電気二重層 キャパシタ用電極と、該電極と重ね合わせられたセパレータと、前記電極及びセパレ ータを浸漬する電解液とを備えるものである。
[0055] 電気二重層キャパシタの電解液としては公知の非水溶媒電解質溶液、水溶性電解 質溶液のいずれも使用可能であり、さらに他の電解液の他に、非水系電解質である 高分子固体電解質及び高分子ゲル電解質、イオン性液体も使用することができる。 水系(水溶性電解質溶液)のものとしては、硫酸水溶液、硫酸ナトリウム水溶液、水 酸ィ匕ナトリウム水溶液等が挙げられる。
[0056] また非水系(非水溶媒電解質溶液)のものとしては、 Ι^Κ 4Ν+または Ι^ΐΛΛ^Ρ +で表されるカチオン (R1, R2, R3, R4はそれぞれ独立に炭素数 1〜: LOのアルキル基 またはァリル基である)と、 BF―、 PF―、 CIO—等のァ-オンと力 なる 4級アンモ-ゥム
4 6 4
塩または 4級ホスホ-ゥム塩を電解質として用い、エチレンカーボネート、プロピレン カーボネート等のカーボネート系非水溶媒を溶媒として用いたものが挙げられる。ま た、電解質または溶媒は、それぞれ二種類以上を組み合わせて用いることもできる。
[0057] 電極と重ね合わされるセパレータは、イオンを透過する多孔質セパレータであれば 良ぐ例えば、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、エチレン 不織布、ポリプロピレン不織布、ガラス繊維混抄不織布などが好ましく使用できる。
[0058] 本発明の電気二重層キャパシタは、一対のシート状電極の間にセパレータを介し て電解液と共に金属ケースに収納したコイン型、一対の電極をセパレータを介して卷 回してなる卷回型、セパレータと電極とを複数積み重ねた積層型などの ヽずれの構 成のものであってもよ 、。
[0059] 本発明の好ましい実施態様における電気二重層キャパシタは電源システムに適用 することができる。また、本発明の電気二重層キャパシタは、自動車、鉄道などの車 両用電源システム;船舶用電源システム;航空機用電源システム;携帯電話、携帯情 報端末、携帯電子計算機などの携帯電子機器用電源システム;事務機器用電源シ ステム;太陽電池発電システム、風力発電システム、燃料電池システムなどの発電シ ステム用電源システム;通信機器、電子タグなどに適用することができる。
実施例
[0060] 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記 実施例に限定されるものではな 、。
[0061] (実施例 1)
厚さ 30 μ mの A1085材からなるアルミニウム箔を用意した。
イオン透過性ィ匕合物として、多糖類であるキトサンを無水ピロメリット酸で架橋したも のを用意した。このイオン透過性ィ匕合物の数平均分子量はゲルパーミエーシヨンクロ マトグラフィー(GPC)の測定により 35000であった。また、このイオン透過性ィ匕合物 のイオン透過度は 2. 05 X 10"2S/cm ( a =4. 54 X 10"6S/cm, σ = 33. 5 X 10 o 1
6SZcm、膜厚 d= 71 μ m)であった。
このイオン透過性ィ匕合物と、炭素微粒子 a (アセチレンブラック:平均粒子径 40nm) と、水とを、質量比率で 40 :40 : 20で混合し練り合わせてペーストを得た。
[0062] アプリケーター(隙間: 10 m)を用いて、キャスト法によりアルミニウム箔に前記の ペーストを塗布し、次いで 180°Cの空気中で 3分間乾燥させ、アルミニウム箔の上に イオン透過性ィ匕合物と炭素微粒子 aを含む皮膜 aを形成し、電気二重層キャパシタ用 集電体を得た。
乾燥後の皮膜 aの厚さは 5 mであり、皮膜 a中の炭素微粒子 aの含有率は 60質量 %であった。通常のテスターにて電気伝導度を測定したところ十分な通電があること が確認された。
[0063] 図 1は上記で得られた集電体の断面構造を概念的に示した図である。図 1に示すよ うに本発明の電気二重層キャパシタ用集電体は、アルミニウム箔(1)の上に皮膜 a (2 )が積層されて!ヽる。皮膜 a (2)中には炭素微粒子 (3)とイオン透過性ィ匕合物 (4)が 含まれている。
[0064] (実施例 2)
実施例 1で得られた集電体上に、下記処方の活性炭、炭素微粒子 b、バインダー及 び溶剤からなるペーストを塗布し、厚さ 200 mの活性炭を主成分とする分極性電極 層(皮膜 b)を形成し、電気二重層キャパシタ用電極を作成した。
[0065] 活性炭:比表面積 1500m2,gのアルカリ賦活活性炭 85質量部
炭素微粒子 b:アセチレンブラック(平均粒子径 40nm) 5質量部
ノインダー:ポリフッ化ビ-リデン(PVDF) 10質量部
溶剤: N—メチルー 2—ピロリドン(NMP) 8. 5質量部
(活性炭の 10質量0 /0)
[0066] 次に、電気二重層キャパシタ用電極を、評価用キャパシタ容器の大きさに合わせて 、直径 20mm φで 2枚打ち抜いた。セパレータを間に挟んで 2枚の電極を重ね合わ せ、評価用キャパシタ容器に収め、有機電解液を該容器に注ぎ入れ、電極等を浸漬 させ、最後に容器に蓋をして、評価用の電気二重層キャパシタを作成した。
有機電解液は、溶媒がプロピレンカーボネート、電解質が(C H ) NBF
2 5 4 4である富 山薬品工業 (株)製の商品名 LIPASTE - P/EAFIN ( 1モル Zリットル)を使用した
[0067] 図 2は、上記で得られた電極の断面構造を概念的に示した図である。図 2に示すよ うに、本発明の電気二重層キャパシタ用電極は、アルミニウム箔(1)の上に皮膜 a (2) が積層され、その皮膜 aの上に皮膜 b (6)がさらに積層されている。皮膜 b (6)中には 、 ノインダー(7)、活性炭 (5)、及び炭素微粒子 b (3)が含まれて 、る。
[0068] 上記で得られた電気二重層キャパシタのインピーダンス及び電気容量を測定した。
結果を表 1に示した。
インピーダンスの測定は、 KIKUSUI社製のインピーダンス測定器 (PAN110- 5 AM)を用い、 1kHzの条件で行った。電気容量の測定は、北斗電工 (株)製充放電 試験装置(HJ— 101SM6)を用い、電流密度 1. 59mAZcm2で 0〜2. 5Vで充放電 を行った。 2回目の定電流放電時に測定した放電曲線力 電気二重層キャパシタの セルあたりの電気容量 (FZセル)を算出した。容量保持率 (%)は(20サイクル目の 電気容量) / (2サイクル目の電気容量) X 100として算出した。
[0069] 表 1から、本発明の集電体を用いて得られた電気二重層キャパシタはインピーダン スが低ぐセルあたりの電気容量が高ぐ容量保持率も良好であることがわかる。
[0070] (実施例 3)
実施例 1で用いた炭素微粒子 a (アセチレンブラック)を気相法炭素繊維 (VGCF ( 登録商標) 昭和電工社製、繊維長 20 μ m)に換えた他は実施例 1と同様にして電 気二重層キャパシタ用集電体を得た。この集電体を用いた他は実施例 2と同様にし て電気二重層キャパシタ用電極、及び電気二重層キャパシタを得た。評価結果を表 1に示した。
[0071] (実施例 4)
実施例 2で用いた炭素微粒子 b (アセチレンブラック)を気相法炭素繊維 (VGCF 昭和電工社製、繊維長 20 m)に換えた他は実施例 2と同様にして電気二重層キヤ パシタ用電極、及び電気二重層キャパシタを得た。評価結果を表 1に示した。
[0072] (実施例 5)
イオン透過性ィ匕合物として、多糖類であるキチンを無水マレイン酸で架橋したもの を用意した。この数平均分子量は GPC測定により 30000であった。これを用いて実 施例 1と同様にしてペーストを作成し、イオン透過性化合物及び炭素微粒子を含む 皮膜と、アルミニウム箔とからなる集電体を得た。
そして、この集電体を用いて実施例 2と同様の工程により、電気二重層キャパシタを 得た。同様に電気容量、容量保持率、内部抵抗、インピーダンスを測定して、結果を ¾klに した。
[0073] (実施例 6)
実施例 1において、アルミニウム箔の材料を A1085材から A3003材に変更し、ィ オン透過性ィ匕合物を多糖類であるキトサンをアクリロニトリルで架橋したもの (数平均 分子量は GPC測定により 31000であった。 )に変更した他は実施例 1と同様にして ペーストを作成し、イオン透過性ィ匕合物及び炭素微粒子を含む皮膜と、アルミニウム 箔とからなる集電体を得た。 そして、この集電体を用いて実施例 2と同様の工程により、電気二重層キャパシタを 得た。同様に電気容量、容量保持率、内部抵抗、インピーダンスを測定して、結果を ¾klに した。
[0074] (実施例 7)
実施例 1において、イオン透過性ィ匕合物を、多糖類であるキトサンを無水トリメリット 酸で架橋したもの(この数平均分子量は GPC測定により 22000であった。 )に変更し た他は実施例 1と同様にしてペーストを作成し、イオン透過性ィ匕合物及び炭素微粒 子を含む皮膜と、アルミニウム箔とからなる集電体を得た。
そして、この集電体を用いて実施例 2と同様の工程により、電気二重層キャパシタを 得た。同様に電気容量、容量保持率、内部抵抗、インピーダンスを測定して、結果を
^: ^した ο
[0075] (実施例 8)
イオン透過性ィ匕合物として、多糖類であるキトサンをアクリロニトリルで架橋したもの を用意した。この化合物を 0. 5 /z mの厚さにして成膜してテープ剥離試験を行った。 100マスの全てに剥離は認められな力つた。また、この化合物の数平均分子量は GP C測定により 26000であった。
このキトサンをアクリロニトリルで架橋したものと、キトサンを無水トリメリット酸で架橋 したもの (数平均分子量は GPC測定により 22000であった。 )とを併せて用いた以外 は、実施例 1と同様にしてペーストを作成し、イオン透過性化合物及び炭素微粒子を 含む皮膜と、アルミニウム箔とからなる集電体を得た。
そして、実施例 2と同様の工程により、電気二重層キャパシタを得た。同様に電気容 量、容量保持率、内部抵抗、インピーダンスを測定して、結果を表 2に示した。
[0076] (比較例 1)
炭素微粒子 aを使用しな力つた、すなわち、実施例 1で用いたペーストに換えてィォ ン透過性ィ匕合物及び水のみを含有する液を用いた他は実施例 1と同様にして、電気 二重層キャパシタ用集電体を得た。評価結果を表 2に示した。通常のテスターにて電 気伝導度を測定したが、電流が流れな力つた。
[0077] (比較例 2) 実施例 2で用いた集電体を、表面がエッチング処理された A1085材カもなるアルミ 箔に換えた他は実施例 2と同様にして電気二重層キャパシタ用電極、及び電気二重 層キャパシタを得た。評価結果を表 2に示した。
[0078] (比較例 3)
イオン透過性ィ匕合物を PVDFに換えた以外は実施例 1及び実施例 2と同様にして 電気二重層キャパシタを作成した。 PVDFのイオン透過度は 0. 81 X 10"2S/cm ( a =4. 54 X 10— 6SZcm、 σ =6. 42 Χ 10— 6SZcm、膜厚 d=433 /z m)であった。容 o 1
量保持率、内部抵抗を実施例 2と同じ条件にて測定した。結果を表 2に示した。電気 二重層キャパシタの製造は可能であった力 プロピレンカーボネートを浸漬させた布 で集電体表面をこすると大きく剥離を生じた。比較例 3で得られた電気二重層キャパ シタは初期特性がたとえ良好であっても、長期間の使用には耐えられないと考えられ る。
[0079] (比較例 4)
イオン透過性ィ匕合物を PVA (ポリビュルアルコール)バインダーに換えた以外は実 施例 1及び実施例 2と同様にして電気二重層キャパシタを作成した。容量保持率、内 部抵抗を実施例 2と同じ条件にて測定した。結果を表 2に示した。電気二重層キャパ シタの製造は可能であつたが、集電体の段階で、比較例 3と同様のテープ剥離試験 を実施したところ集電体表面が大きく剥離した。比較例 4で得られた電気二重層キヤ パシタは初期の特性がたとえ良好であっても、長期間の使用には耐えられないと考 えられる。
[0080] [表 1]
表 1
Figure imgf000021_0001
[表 2]
Figure imgf000021_0002
表 1及び表 2によれば、比較例に比べ、本発明の電気二重層キャパシタ用集電体 を用いた電気二重層キャパシタ(実施例)は、どれもインピーダンスが低く、電気容量 が大きぐ容量保持率にも優れていることがわかる。すなわち、大電流による充放電( 急速充放電)が可能であり、従来の電気二重層キャパシタよりも高性能であると結論 づけられる。
本発明の電気二重層キャパシタカ 低インピーダンスで且つ高電気容量になる原 理の詳細は判っていないが、皮膜 a中のイオン透過性ィ匕合物及び導電性の炭素微 粒子 aが、イオン及び電子の移動をそれぞれ分担し、分極性電極層(皮膜 b)と導電 性シート(アルミニウム箔)との間のイオン及び電子のやり取りを円滑に行わせるから であると推察される。

Claims

請求の範囲
[I] 導電性シートと、その上に備えたイオン透過性化合物及び炭素微粒子 aを含む皮 膜 aと、を有する電気二重層キャパシタ用集電体。
[2] 導電性シートが、アルミニウム箔、アルミニウムエッチング箔またはアルミニウムパン チング箔である請求項 1に記載の電気二重層キャパシタ用集電体。
[3] イオン透過性ィ匕合物が、有機溶媒に対して膨潤性のな 、ィ匕合物である、請求項 1 又は 2に記載の電気二重層キャパシタ用集電体。
[4] イオン透過性ィ匕合物が、有機溶媒による摩擦剥離試験にぉ ヽて剥がれの生じな ヽ 化合物である請求項 1〜3のいずれか一に記載の電気二重層キャパシタ用集電体。
[5] イオン透過性ィ匕合物は、フッ素イオンの透過度が、 1 X 10— 2 SZcm以上である請 求項 1〜4のいずれか一に記載の電気二重層キャパシタ用集電体。
[6] イオン透過性ィ匕合物は、平均分子量が 5万以下である請求項 1〜5のいずれか一 に記載の電気二重層キャパシタ用集電体。
[7] イオン透過性ィ匕合物が、多糖類又は多糖類を架橋させた化合物である請求項 1〜
6のいずれか一に記載の電気二重層キャパシタ用集電体。
[8] イオン透過性ィ匕合物力 多糖類をアクリルアミド、アクリロニトリル、キトサンピロリドン カルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレイン酸、無水トリメ リット酸、無水ピロメリット酸、酸無水物、のいずれかで架橋させたィ匕合物である請求 項 1〜6のいずれか一に記載の電気二重層キャパシタ用集電体。
[9] 多糖類が、キトサンもしくはキチンである請求項 7又は 8に記載の電気二重層キャパ シタ用集電体。
[10] 皮膜 aがテープ剥離試験 (JIS D0202— 1988)において剥離しない請求項 1〜9 のいずれか一に記載の電気二重層キャパシタ用集電体。
[II] 皮膜 aが熱硬化によって得られたものである請求項 1〜10のいずれか一に記載の 電気二重層キャパシタ用集電体。
[12] 皮膜 aにさらに活性炭 aが含まれる請求項 1〜11のいずれか一に記載の電気二重 層キャパシタ用集電体。
[13] 炭素微粒子 aが針状若しくは棒状である請求項 1〜 12の 、ずれか一に記載の電気 二重層キャパシタ用集電体。
[14] 請求項 1〜13のいずれか一に記載の電気二重層キャパシタ用集電体と、該集電 体の皮膜 aの上に備えたノインダー、炭素微粒子 b及び活性炭 bを含む皮膜 bと、を 有する電気二重層キャパシタ用電極。
[15] 炭素微粒子 bが針状若しくは棒状である請求項 14に記載の電気二重層キャパシタ 用電極。
[16] 活性炭 bは、 BET比表面積が 800〜2500m2/gである請求項 14又は 15に記載 の電気二重層キャパシタ用電極。
[17] バインダーがイオン透過性ィ匕合物を含む請求項 14〜 16の 、ずれか一に記載の電 気二重層キャパシタ用電極。
[18] イオン透過性化合物と、炭素微粒子 aと、を溶剤に分散又は溶解したものを、導電 性シートに塗布し乾燥して皮膜 aを形成する工程を含む電気二重層キャパシタ用集 電体の製造方法。
[19] イオン透過性ィ匕合物は、フッ素イオンの透過度が、 1 X 10— 2 SZcm以上である請 求項 18に記載の電気二重層キャパシタ用集電体の製造方法。
[20] イオン透過性ィ匕合物は、平均分子量が 5万以下である請求項 18又は 19に記載の 電気二重層キャパシタ用集電体の製造方法。
[21] イオン透過性ィ匕合物が、多糖類又は多糖類を架橋させた化合物である請求項 18 〜20のいずれか一に記載の電気二重層キャパシタ用集電体の製造方法。
[22] イオン透過性ィ匕合物力 多糖類をアクリルアミド、アクリロニトリル、キトサンピロリドン カルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレイン酸、無水トリメ リット酸、無水ピロメリット酸、酸無水物、のいずれかで架橋させたィ匕合物である請求 項 18〜20のいずれか一に記載の電気二重層キャパシタ用集電体の製造方法。
[23] 炭素微粒子 aが針状若しくは棒状である請求項 18〜22のいずれか一に記載の電 気二重層キャパシタ用集電体の製造方法。
[24] バインダーと、炭素微粒子 bと、活性炭 bと、を溶剤に分散又は溶解したものを、請 求項 1〜13のいずれか一に記載の電気二重層キャパシタ用集電体の皮膜 aの上に 、塗布し乾燥して皮膜 bを形成する工程を含む電気二重層キャパシタ用電極の製造 方法。
[25] イオン透過性化合物と、炭素微粒子 aと、を溶剤に分散又は溶解したものを、導電 性シートに塗布し乾燥して皮膜 aを形成し、
バインダーと、炭素微粒子 bと、活性炭 bと、を溶剤に分散又は溶解したものを、皮 膜 aの上に塗布し乾燥して皮膜 bを形成する工程を含む電気二重層キャパシタ用電 極の製造方法。
[26] イオン透過性ィ匕合物は、フッ素イオンの透過度力 1 X 10— 2 SZcm以上である請 求項 25に記載の電気二重層キャパシタ用電極の製造方法。
[27] イオン透過性ィ匕合物は、平均分子量が 5万以下である請求項 25又は 26に記載の 電気二重層キャパシタ用電極の製造方法。
[28] イオン透過性ィ匕合物が、多糖類又は多糖類を架橋させた化合物である請求項 25
〜27のいずれか一に記載の電気二重層キャパシタ用電極の製造方法。
[29] イオン透過性ィ匕合物力 多糖類をアクリルアミド、アクリロニトリル、キトサンピロリドン カルボン酸塩、ヒドロキシプロピルキトサン、無水フタル酸、無水マレイン酸、無水トリメ リット酸、無水ピロメリット酸、酸無水物、のいずれかで架橋させたィ匕合物である請求 項 25〜28のいずれか一に記載の電気二重層キャパシタ用電極の製造方法。
[30] 炭素微粒子 aが針状若しくは棒状である請求項 25〜29のいずれか一に記載の電 気二重層キャパシタ用電極の製造方法。
[31] 炭素微粒子 bが針状若しくは棒状である請求項 24〜30のいずれか一に記載の電 気二重層キャパシタ用電極の製造方法。
[32] 活性炭 bは、 BET比表面積力 ¾00〜2500m2Zgである請求項 24〜31のいずれ か一に記載の電気二重層キャパシタ用電極の製造方法。
[33] 請求項 14〜17のいずれか一に記載の電気二重層キャパシタ用電極と、
セパレータと、電解液と、を備える電気二重層キャパシタ。
[34] 電気二重層キャパシタカ 積層型または卷回型である請求項 33に記載の電気二 重層キャパシタ。
[35] 請求項 14〜 17の 、ずれか一に記載の電気二重層キャパシタ用電極とセパレータ とを重ねる工程、 重ね合わせた電極及びセパレータを電解液に浸漬する工程を含む電気二重層キ ャパシタの製造方法。
[36] 請求項 33または 34に 二重層キャパシタを含む電源システム。
[37] 請求項 33または 34に 二重層キャパシタを使用した自動車。
[38] 請求項 33または 34に 二重層キャパシタを使用した鉄道。
[39] 請求項 33または 34に 二重層キャパシタを使用した船舶。
[40] 請求項 33または 34に 二重層キャパシタを使用した航空機。
[41] 請求項 33または 34に 二重層キャパシタを使用した携帯機器。
[42] 請求項 33または 34に 二重層キャパシタを使用した事務機器。
[43] 請求項 33または 34に 二重層キャパシタを使用した太陽電池発電シス テム。
[44] 請求項 33または 34に 二重層キャパシタを使用した風力発電システム。
[45] 請求項 33または 34に 二重層キャパシタを使用した通信機器。
[46] 請求項 33または 34に 二重層キャパシタを使用した電子タグ。
PCT/JP2006/320194 2005-10-11 2006-10-10 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法 WO2007043515A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137005889A KR101296183B1 (ko) 2005-10-11 2006-10-10 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용 전극, 전기 이중층 커패시터, 및 그들의 제조 방법
KR1020087007175A KR101287435B1 (ko) 2005-10-11 2006-10-10 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용전극, 전기 이중층 커패시터, 및 그들의 제조 방법
EP06811507.0A EP1936642B1 (en) 2005-10-11 2006-10-10 Electric double layer capacitor
CN2006800375665A CN101283420B (zh) 2005-10-11 2006-10-10 双电层电容器用集电体、双电层电容器用电极、以及双电层电容器及其制造方法
JP2007539939A JP4499795B2 (ja) 2005-10-11 2006-10-10 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005296444 2005-10-11
JP2005-296444 2005-10-11
US72754805P 2005-10-18 2005-10-18
US60/727548 2005-10-18
JP2006216299 2006-08-08
JP2006-216299 2006-08-08

Publications (1)

Publication Number Publication Date
WO2007043515A1 true WO2007043515A1 (ja) 2007-04-19

Family

ID=37942751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320194 WO2007043515A1 (ja) 2005-10-11 2006-10-10 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法

Country Status (6)

Country Link
US (3) US7646587B2 (ja)
EP (2) EP1936642B1 (ja)
JP (1) JP4499795B2 (ja)
KR (2) KR101287435B1 (ja)
CN (2) CN101283420B (ja)
WO (1) WO2007043515A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015828A1 (fr) * 2006-08-04 2008-02-07 Kyoritsu Chemical & Co., Ltd. Liquide de revêtement pour la fabrication d'une plaque d'électrode, agent de sous-couche, et utilisation de ceux-ci
JP2011097036A (ja) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd キャパシタ
WO2012029328A2 (en) 2010-09-02 2012-03-08 Showa Denko K.K. Coating solution, electric collector, and method for producing electric collector
JP2012072396A (ja) * 2010-09-02 2012-04-12 Showa Denko Kk 塗工液、集電体および集電体の製造方法
JP2013030671A (ja) * 2011-07-29 2013-02-07 Nichicon Corp 電気二重層コンデンサ用電極、当該電極の製造方法、および当該電極を用いた電気二重層コンデンサ
JPWO2013018687A1 (ja) * 2011-07-29 2015-03-05 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
JPWO2013018684A1 (ja) * 2011-07-29 2015-03-05 株式会社Uacj 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
JP2020529608A (ja) * 2018-07-06 2020-10-08 エルジー・ケム・リミテッド 伝導性物質の比表面積測定方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085691A1 (en) 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2007005717A (ja) * 2005-06-27 2007-01-11 Sanyo Electric Co Ltd 電気化学素子
KR101287435B1 (ko) * 2005-10-11 2013-07-19 쇼와 덴코 가부시키가이샤 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용전극, 전기 이중층 커패시터, 및 그들의 제조 방법
JP4878881B2 (ja) * 2006-03-17 2012-02-15 日本ゴア株式会社 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2007291346A (ja) * 2006-03-31 2007-11-08 Toyoda Gosei Co Ltd 低電気伝導性高放熱性高分子材料及び成形体
US20080165470A1 (en) * 2007-01-09 2008-07-10 Korea Electronics Technology Institute Functional Carbon Material and Method of Producing the Same
WO2008123527A1 (ja) * 2007-03-27 2008-10-16 Sumitomo Chemical Company, Limited 固体微粒子分散液、電極および電気二重層キャパシタの製造方法
US20110043037A1 (en) * 2008-01-22 2011-02-24 Mcilroy David N Nanostructured high surface area electrodes for energy storage devices
WO2010028439A1 (en) * 2008-09-09 2010-03-18 Cap-Xx Limited A charge storage device
US8945767B2 (en) 2009-08-27 2015-02-03 Dainichiseika Color & Chemicals Mfg. Co., Ltd Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
CN102044345A (zh) * 2009-10-13 2011-05-04 上海空间电源研究所 一种双电层电容器用活性炭电极的制备方法
US9053870B2 (en) * 2010-08-02 2015-06-09 Nanotek Instruments, Inc. Supercapacitor with a meso-porous nano graphene electrode
KR101109747B1 (ko) * 2011-04-06 2012-02-15 (주)신행건설 분진 및 가스상의 대기오염물질 동시 제거를 위한 활성탄 및 이를 이용한 박판 전극의 제조방법
JP6140073B2 (ja) * 2011-07-29 2017-05-31 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
KR101907449B1 (ko) * 2011-07-29 2018-10-12 가부시키가이샤 유에이씨제이 집전체, 전극 구조체, 비수전해질 전지, 축전 부품
CN102426924B (zh) * 2011-10-13 2014-05-14 李荐 一种高性能铝/碳复合电极箔及其制备方法
KR101843194B1 (ko) * 2011-10-21 2018-04-11 삼성전기주식회사 전기 이중층 캐패시터
JPWO2013153916A1 (ja) * 2012-04-09 2015-12-17 昭和電工株式会社 電気化学素子用集電体の製造方法、電気化学素子用電極の製造方法、電気化学素子用集電体、電気化学素子、及び、電気化学素子用集電体を作製するための塗工液
JPWO2016068156A1 (ja) * 2014-10-29 2017-08-17 昭和電工株式会社 電極用集電体、電極用集電体の製造方法、電極、リチウムイオン二次電池、レドックスフロー電池、電気二重層キャパシタ
US20160161437A1 (en) * 2014-12-03 2016-06-09 General Electric Company High capacity redox electrodes
US11165053B2 (en) * 2016-10-28 2021-11-02 Adven Industries Inc. Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing
US10090117B1 (en) * 2018-01-16 2018-10-02 King Saud University Method of making a porous nano-carbon electrode from biomass
JP7358804B2 (ja) * 2019-07-04 2023-10-11 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
KR102410038B1 (ko) 2020-10-21 2022-06-16 한국제이씨씨(주) 집전체 제조 방법
KR102438499B1 (ko) 2020-10-21 2022-08-31 한국제이씨씨(주) 전기 이중층 커패시터의 전극 제조방법
KR20240048277A (ko) 2022-10-06 2024-04-15 한국기계연구원 고성능 배터리용 이중층 전극 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794374A (ja) * 1993-05-19 1995-04-07 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JPH09183604A (ja) * 1995-12-28 1997-07-15 Kyocera Corp 固形状活性炭及びその製造方法及びこれを用いた電気二重層コンデンサー
JP2000169126A (ja) * 1998-12-10 2000-06-20 Showa Denko Kk グラファイトシート、その導電性複合シート及びそれらの製造方法
JP2002270470A (ja) * 2001-03-09 2002-09-20 Osaka Gas Co Ltd 電気二重層キャパシタ
JP2005136401A (ja) * 2003-10-10 2005-05-26 Japan Gore Tex Inc 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181307A (ja) * 1987-01-22 1988-07-26 日立マクセル株式会社 電気二重層キヤパシタ
JPH07108367B2 (ja) * 1987-04-10 1995-11-22 株式会社クラレ 除加湿法
DE69128805T2 (de) * 1990-03-29 1998-05-14 Matsushita Electric Ind Co Ltd Elektrolytischer Doppelschichtkondensator und Verfahren zu seiner Herstellung
RU2036523C1 (ru) * 1992-07-03 1995-05-27 Многопрофильное научно-техническое и производственно-коммерческое общество с ограниченной ответственностью "Эконд" Конденсатор с двойным электрическим слоем
JPH08138978A (ja) * 1994-11-02 1996-05-31 Japan Gore Tex Inc 電気二重層コンデンサとその電極の製造方法
ATE381767T1 (de) * 1999-02-05 2008-01-15 Kureha Corp Zusammensetzung zur herstellung von elektroden, aktiv-kohle elektrode und elektrischer doppelschichtkondensator
JP2001307716A (ja) * 2000-02-16 2001-11-02 Nisshinbo Ind Inc 多層電極構造体、それを用いた電池、電気二重層キャパシター及びそれらの製造方法
DE60128411T2 (de) * 2000-02-16 2008-01-17 Nisshinbo Industries, Inc. Mehrschichtelektrodenstruktur und Verfahren für ihre Herstellung
US6627252B1 (en) * 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
EP1256966A1 (en) * 2001-05-08 2002-11-13 Ness Capacitor Co., Ltd Electric double layer capacitor and method for manufacturing the same
JP3733404B2 (ja) * 2001-05-22 2006-01-11 富士重工業株式会社 リチウム二次電池用正極およびリチウム二次電池
JP2003309045A (ja) 2002-04-15 2003-10-31 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2004031468A (ja) 2002-06-24 2004-01-29 Mitsubishi Plastics Ind Ltd 電気二重層キャパシター用集電体
JP2005050669A (ja) * 2003-07-28 2005-02-24 Tdk Corp 電極、及び、それを用いた電気化学素子
JP5249258B2 (ja) * 2005-02-10 2013-07-31 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
WO2006085691A1 (en) 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
KR101287435B1 (ko) * 2005-10-11 2013-07-19 쇼와 덴코 가부시키가이샤 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용전극, 전기 이중층 커패시터, 및 그들의 제조 방법
JP5038751B2 (ja) * 2006-08-04 2012-10-03 協立化学産業株式会社 電極板製造用塗工液、アンダーコート剤およびその使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794374A (ja) * 1993-05-19 1995-04-07 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JPH09183604A (ja) * 1995-12-28 1997-07-15 Kyocera Corp 固形状活性炭及びその製造方法及びこれを用いた電気二重層コンデンサー
JP2000169126A (ja) * 1998-12-10 2000-06-20 Showa Denko Kk グラファイトシート、その導電性複合シート及びそれらの製造方法
JP2002270470A (ja) * 2001-03-09 2002-09-20 Osaka Gas Co Ltd 電気二重層キャパシタ
JP2005136401A (ja) * 2003-10-10 2005-05-26 Japan Gore Tex Inc 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015828A1 (fr) * 2006-08-04 2008-02-07 Kyoritsu Chemical & Co., Ltd. Liquide de revêtement pour la fabrication d'une plaque d'électrode, agent de sous-couche, et utilisation de ceux-ci
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
US8537525B2 (en) 2006-08-04 2013-09-17 Kyoritsu Chemical & Co., Ltd. Coating liquid for manufacturing electrode plate, undercoating agent, and use therof
US9269501B2 (en) 2006-08-04 2016-02-23 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating formulation for manufacturing electrode plate and use thereof
JP2011097036A (ja) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd キャパシタ
WO2012029328A2 (en) 2010-09-02 2012-03-08 Showa Denko K.K. Coating solution, electric collector, and method for producing electric collector
JP2012072396A (ja) * 2010-09-02 2012-04-12 Showa Denko Kk 塗工液、集電体および集電体の製造方法
JP2013030671A (ja) * 2011-07-29 2013-02-07 Nichicon Corp 電気二重層コンデンサ用電極、当該電極の製造方法、および当該電極を用いた電気二重層コンデンサ
JPWO2013018687A1 (ja) * 2011-07-29 2015-03-05 株式会社Uacj 集電体、電極構造体、非水電解質電池及び蓄電部品
JPWO2013018684A1 (ja) * 2011-07-29 2015-03-05 株式会社Uacj 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
JP2020529608A (ja) * 2018-07-06 2020-10-08 エルジー・ケム・リミテッド 伝導性物質の比表面積測定方法
US11293854B2 (en) 2018-07-06 2022-04-05 Lg Chem, Ltd. Measurement method for specific surface area of conductive material

Also Published As

Publication number Publication date
EP2665072B1 (en) 2017-12-13
CN101283420B (zh) 2012-12-26
EP1936642A1 (en) 2008-06-25
KR20130042004A (ko) 2013-04-25
EP1936642B1 (en) 2014-04-30
KR20080057250A (ko) 2008-06-24
US7646587B2 (en) 2010-01-12
JPWO2007043515A1 (ja) 2009-04-16
EP2665072A2 (en) 2013-11-20
CN102097211A (zh) 2011-06-15
KR101287435B1 (ko) 2013-07-19
US20120063060A1 (en) 2012-03-15
US9025312B2 (en) 2015-05-05
US8085526B2 (en) 2011-12-27
KR101296183B1 (ko) 2013-08-13
US20070109722A1 (en) 2007-05-17
CN102097211B (zh) 2013-10-16
CN101283420A (zh) 2008-10-08
US20100015470A1 (en) 2010-01-21
EP2665072A3 (en) 2016-05-18
EP1936642A4 (en) 2013-04-17
JP4499795B2 (ja) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4499795B2 (ja) 電気二重層キャパシタ用集電体、電気二重層キャパシタ用電極、及び電気二重層キャパシタ、並びにそれらの製造方法
KR101420029B1 (ko) 전극판용의 수계 도공액, 축전 장치용 전극판, 축전 장치용 전극판의 제조방법 및 축전 장치
TWI483450B (zh) 電氣化學元件用集電體之製造方法、電氣化學元件用電極之製造方法、電氣化學元件用集電體、電氣化學元件及製作電氣化學元件用集電體之塗佈液
JP6569526B2 (ja) 電極、その電極を用いた電気二重層キャパシタ、及び電極の製造方法
JP2015079966A (ja) 伝導性高分子複合体を用いた高容量/高出力の電気化学エネルギー貯蔵素子
JP2005129924A (ja) 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ
CN115380347B (zh) 碳的稳定水性分散体
JP2012072396A (ja) 塗工液、集電体および集電体の製造方法
JP2012074369A (ja) 集電体および集電体の製造方法
JPH09270370A (ja) 電気二重層コンデンサ及びその製造方法
WO2011074270A1 (ja) 塗工液
TWI445026B (zh) 電雙層電容器用集電體、電雙層電容器用集電極、及電雙層電容器、及其製造方法
JP6848877B2 (ja) 電極、その電極を用いたキャパシタ、および電極の製造方法
JP2009224561A (ja) 金属酸化物粒子含有分極性電極およびそれを用いた電気二重層キャパシタ
JP2015046330A (ja) 電池用セパレータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037566.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539939

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006811507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087007175

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020137005889

Country of ref document: KR