WO2007040200A1 - 二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ - Google Patents

二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ Download PDF

Info

Publication number
WO2007040200A1
WO2007040200A1 PCT/JP2006/319692 JP2006319692W WO2007040200A1 WO 2007040200 A1 WO2007040200 A1 WO 2007040200A1 JP 2006319692 W JP2006319692 W JP 2006319692W WO 2007040200 A1 WO2007040200 A1 WO 2007040200A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
groove
land
angle
Prior art date
Application number
PCT/JP2006/319692
Other languages
English (en)
French (fr)
Inventor
Makoto Ishiyama
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to ES06811040T priority Critical patent/ES2386463T3/es
Priority to EP06811040A priority patent/EP1946942B1/en
Priority to US12/089,151 priority patent/US20100147427A1/en
Publication of WO2007040200A1 publication Critical patent/WO2007040200A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1323Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • B60C2011/0313Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation directional type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/10Tyres specially adapted for particular applications for motorcycles, scooters or the like

Definitions

  • the present invention relates to a pneumatic tire for a front wheel of a two-wheeled vehicle and a pneumatic tire for a rear wheel of a two-wheeled vehicle, and in particular, a pneumatic tire for a front wheel of a two-wheeled vehicle capable of improving turning performance on a wet road surface, and
  • the present invention relates to a pneumatic tire for a rear wheel of a motorcycle.
  • the groove disposed in the tire tread portion serves as an escape route for the water squeezed by the tread and the road surface, and has a role of efficiently draining the water.
  • the groove arranged on the tread divides the tread into blocks of land, so that the rigidity of the tread is lowered, the road surface and the tire surface come into contact with each other, and the braking force, driving force and lateral force are reduced.
  • force When force is applied, it collapses due to shear deformation.
  • the tread itself moves and the rider immediately feels that the tires are unstable, and because the tread falls, a part of the surface of the tread rises and the contact area decreases, resulting in a grip. descend. This happens even on wet roads, but in the case of commercially available tires, you must run on both wet and dry roads, which is a big problem even on dry roads.
  • Such lift of the road force block is a serious problem because it induces uneven wear.
  • the tire pattern is determined with a good balance between the groove layout that can drain water efficiently, the groove layout that does not reduce the rigidity of the tread, and the good design.
  • motorcycle tires are characterized by the characteristics of a motorcycle that turns with the vehicle body tilted. The part of the tread that touches the ground is different from that at the time of knurling. As a result, motorcycle tires may be characterized by pattern tendencies on the center and shoulder sides.
  • the groove arrangement is strong against both the tire input in the circumferential direction (traction and brake).
  • lateral force is applied mainly when turning at a constant speed without opening the accelerator or without applying the brake, and acceleration is started from turning at a constant speed.
  • driving a driving force is applied, and both a lateral force and a driving force are applied. Therefore, the shoulder side needs to have a pattern strong against both the lateral force and the driving force.
  • the present invention has been made to solve the above problem, and in a pneumatic tire for a front wheel of a two-wheeled vehicle and a pneumatic tire for a rear wheel of a two-wheeled vehicle, the turning performance on a wet road surface is improved as compared with the prior art.
  • the first purpose is to make it happen.
  • the second objective is to improve the turning performance on dry roads.
  • a groove is arranged in the tread portion in order to obtain a good ground contact state in which the rubber on the road surface and the tread surface is not obstructed by a water film.
  • the grooves arranged in the tire tread serve as escape routes for the water squeezed by the tread and the road surface, and have a role of efficiently draining the water.
  • the groove arranged in the tread portion divides the tread into small blocks of land, the tread rigidity is lowered, and the road surface and the tire surface are brought into contact with each other, so that braking force, driving force and lateral force are generated.
  • the land is subject to shear deformation and collapses.
  • the tread itself moves and the rider immediately feels that the tire is unstable, and when the tread falls, a part of the tread surface is lifted off the road surface and the contact area is reduced, resulting in lower grip. This is a big problem even on wet roads.
  • the lift of the block with such road force is a serious problem because it induces uneven wear.
  • the tire pattern is determined while balancing the groove arrangement that can drain the groove efficiently and the groove arrangement that does not reduce the rigidity of the tread.
  • tires for motorcycles are characterized by the characteristics of a motorcycle that turns by leaning the vehicle body, so that when driving straight ahead without tilting the vehicle body and cornering when tilting the vehicle body, The part of the tread that contacts the ground is different.
  • a groove with an angle close to the direction along the tire equatorial plane is arranged on the center side of the tread, and a lateral force is applied to the shoulder side of the tread.
  • a groove close to 90 degrees (tire width direction) with respect to the equator plane is often placed (of course, “the direction along the tire equator at the center of the tread and the width along the tire at the shoulder).
  • the groove in the “direction” is a concept that prioritizes function. Actually, the groove arrangement is determined in consideration of the design of the tire, so not all tires have such a groove arrangement. ) o
  • the center side of the tread Focusing on the center side of the tread, the center side is used when the motorcycle is standing upright, and the force applied to the tire at this time is the traction (driving force) during acceleration and the brake during deceleration. It is only (braking force), and almost no force of lateral force is applied. Therefore, it is preferable that the center side of the tread has a strong pattern configuration with respect to the equator direction of the tire. That is, if a groove in the direction close to the tire equatorial plane is arranged on the center side of the tread, a tire excellent in grip can be provided.
  • the groove on the shoulder side of the tread is preferably a groove close to the tire width direction perpendicular to the tire equatorial plane.
  • a groove is preferable because a groove mainly in the width direction of 45 to 90 degrees with respect to the tire equatorial plane behaves strongly against a lateral force.
  • a longitudinal force may also be applied.
  • braking is applied to the shoulder side of the tire in addition to lateral force to brake while tilting the vehicle body.
  • Lateral force is mainly applied when turning at a constant speed without opening the accelerator and without applying the brake, but when accelerating from this state, driving force is applied.
  • the accelerator When accelerating, even if the vehicle body is tilted !, the accelerator is opened while the tread is in contact with the shoulder side of the tread. Add. In other words, on the shoulder side of the tread, a longitudinal force acting only by lateral force is applied. (Bikes do not necessarily complete braking when standing upright. In some cases, the brakes are applied in the state where the vehicle is tilted, and the vehicle body is tilted to open the accelerator in the leaning state. ).
  • motorcycles are characterized by the fact that the driving torque acts only on the rear wheels, and when braking, the front wheels of the motorcycle sink and pitching occurs (behind the front of the vehicle). Because the load acting on the wheel increases and the load acting on the rear wheel decreases, the front wheel is mainly responsible for braking. That is, lateral force and braking force are applied to the front wheels, and engine torque is not transmitted, so driving force does not act. On the other hand, lateral force and driving force are applied to the rear wheels, and the braking force is applied only very small compared to the driving force. In this way, motorcycles that always drive rear wheels are more distinctive in the roles of front and rear wheels than in four-wheeled vehicles.
  • the front wheel For the center side of the tread, the front wheel must have a strong pattern for braking, and the rear wheel must have a strong pattern for driving force. On the shoulder side of the tread, the front wheel must have strong lateral force and braking force. The wheel is strong in lateral force and driving force, and requires a pattern.
  • steering stability performance during turning is particularly important. When cornering in the rain, tires with low wet turning performance will not be able to speed up and lap times will not be shortened, and even in commercial vehicles, wet turning performance on ordinary roads will be low, and tires will not slip. There is a fear.
  • the front wheels must have good grip for lateral force and braking force, and the tires and rear wheels must have good grip for lateral force and driving force. It is.
  • the driving force is applied to the rear tire, and therefore, the rear wheel needs to be gripped particularly with respect to the driving force.
  • the front wheels do not apply driving force, but because the vehicle load is applied to the front wheels during breaking, a large braking force is applied to the tires. Therefore, the front wheels need front and rear grips that resist braking and lateral drip that resists lateral forces.
  • the invention described in claim 1 is a pneumatic tire for a front wheel of a two-wheeled vehicle having a plurality of land portions partitioned by a plurality of grooves on a tread.
  • the tire equatorial plane is the center of the tread
  • the area of 40% of the tread is the center area of the tread
  • the end force of the tread is the tread shoulder area of the tire equatorial plane up to the position of 20% of the deployment width.
  • a groove set within a range of 0 to 30 degrees with respect to the tire equatorial plane is disposed, and the tread shoulder area has an angle with respect to the tire equatorial plane of 45 to 90 degrees.
  • the land portion wall surface on the kicking side of the land portion defined by the groove is parallel to the tire radial direction or the groove bottom force to the groove opening.
  • Direction in which the groove width increases toward The land wall surface on the depression side of the groove land portion is inclined in a direction in which the groove width increases toward the groove bottom force groove opening, and at least the portion on the tread surface side is more tire than the land wall surface on the kicking side.
  • the angle with respect to the radial direction is set large, and the angle with respect to the tire radial direction is set within a range of 10 to 45 degrees.
  • the contact portion of the tire is about 1Z5 to 1Z6 of the tread deployment width, and 40% corresponds to twice the average contact width of the tire. Even when the motorcycle is completely upright, it is slightly tilted and almost no lateral force is applied, and the force in the front-rear direction is the main force. It is said.
  • the angle of the groove with respect to the tire equatorial plane is set within the range of 0 to 30 degrees.For example, in the case of 30 degrees, the groove is bent in a zigzag shape at an angle of 30 degrees, etc. Because it is possible. Also, since it is 30 degrees or less, the pattern is sufficiently strong against force in the equator direction.
  • the tread edge force is the tread shoulder area up to 20% of the deployment width toward the tire equatorial plane, and the tread shoulder area is within a range of 45 to 90 degrees to the tire equatorial plane.
  • the land wall surface on the stepping side of the land section defined by the groove is inclined in the direction in which the groove width increases toward the groove bottom force groove opening, and at least the portion on the tread surface side is larger than the land wall surface on the kicking side.
  • the step-in side here refers to the side of the land wall of the land that contacts the road surface first, and the kicking side separates the road surface force due to the rotation of the ground force that the land is in contact with the road surface. Sometimes, it refers to the last part of the land surface of the land that leaves the road surface.
  • the tread when the vehicle body is tilted to a certain extent (more specifically, when the angle of inclination of the turning motorcycle is tilted 40 to 55 degrees laterally with respect to the vertical direction)
  • the area used for the tread shoulder area if the area to be used when the vehicle body is tilted to a certain extent is defined as the tread shoulder area, and the groove angle in this part is 45 degrees or more, the pattern is strong against the lateral force of the tire. It will be. 45 degrees is an angle that is equally strong with respect to the lateral direction and the equator direction, and a larger angle means that the groove is arranged so as to be strong against the lateral force. Become.
  • the front wheel tire applies braking force in addition to lateral force.
  • the tread that is in contact with the road surface during braking is the tread surface that is in contact with the road surface behind the direction of travel of the motorcycle.
  • the portion of the tread that is in contact with the belt, which is the inner skeleton member, is subjected to shear deformation in the equatorial section so that it shifts forward in the direction of travel.
  • the slope surface portion of the land portion 100 that is in contact with the road surface 102 is rearward in the motorcycle traveling direction (arrow F direction) and the deep portion of the land portion 100 is as shown in FIG. It will fall like moving forward in the direction of travel.
  • arrow F direction the motorcycle traveling direction
  • a part of the stepped side of the land portion 100 is lifted off the road surface 102.
  • the grip is reduced because the tread cannot sufficiently transmit the force to the road surface.
  • the inclination in the groove depth direction may be set in the direction opposite to the falling.
  • an angle relative to the tire radial direction
  • the motorcycle when the motorcycle enters the straight corner, it applies braking while tilting the vehicle body.
  • the groove in the center of the tire is arranged along the equator direction. If the brake is still able to be supported even when the inclination is large, it is preferable to make an angle on the side wall of the tread shoulder area.
  • the equator direction will connect the land part indefinitely to the input of longitudinal force (in this case brake)! /, So there is no worry of falling down ! ,.
  • a groove extending in the width direction is arranged to prevent the tire from falling in the front-rear direction (equator direction).
  • the tread shoulder area lateral force is applied when the vehicle is tilted. Therefore, it is effective to arrange a groove extending in the direction of the lateral force, and it is partitioned by this groove to face the braking force.
  • the land portion side wall on the stepping side of the land portion is inclined in a direction in which the groove width increases from the groove bottom toward the groove opening, and at least the portion on the tread surface side has an angle with respect to the tire radial direction relative to the land portion wall surface on the kicking side. Setting it to be large and setting the angle with respect to the tire radial direction to be within a range of 10 to 45 degrees is particularly effective for the circumferential deformation of the land when the braking force is applied. It is possible to suppress the rising of the land end caused by the falling deformation. As a result, the contact area with the road surface is ensured, coupled with the drainage effect of the groove, so that the wet road surface is better than before. This makes it possible to improve the turning performance on the road and improve the turning performance even on dry road surfaces.
  • the land side wall angle on the step-in side is within the range of 10 to 45 degrees.
  • the angle of the land portion side wall with respect to the tire radial direction is increased in order to increase the rigidity of the land portion.
  • increasing the angle of the land side wall relative to the tire radial direction means that the land side wall is inclined with reference to the end of the land portion on the tread surface side, and the land side wall angle is increased. This means that the volume on the base side of the land increases and the groove width becomes narrower on the groove bottom side. In this way, the volume on the base side of the land increases, so that the collapse of the land is suppressed.
  • the groove formed in the tread does not include a narrow sipe that is closed in the ground plane.
  • the invention according to claim 2 is the pneumatic tire for a front wheel of the motorcycle according to claim 1, wherein the land portion wall surface on the kicking side of the land portion is 20 degrees with respect to the tire radial direction. It is tilted at the following angle.
  • the vulcanized front tire can be easily removed from the vulcanization mold, and the front wheel of the present invention can be efficiently removed.
  • a pneumatic tire can be manufactured.
  • the angle of the wall surface on the kicking side with respect to the tire circumferential direction exceeds 20 degrees, the volume of the groove is unnecessarily reduced, the drainage effect is reduced, and the hydroplaning phenomenon easily occurs.
  • the wall surface on the kick-out side that does not significantly affect the rise of the land during braking, it is preferably 20 degrees or less rather than an unnecessarily large angle.
  • the invention of claim 3 is the pneumatic tire for a front wheel of a motorcycle according to claim 1 or claim 2, wherein the groove width of the groove disposed in the tread shoulder region is 3 to: LO It is set within the range of mm.
  • the groove width of the groove arranged in the shoulder area is 3 mm or more is that if it is less than 3 mm, sufficient width cannot be obtained at the bottom of the groove when the land side wall is inclined.
  • an attempt to make an angle of 20 degrees with respect to the tire radial direction for a groove width of 2 mm (measured at the opening) and a groove depth of 6 mm is not possible geometrically. It is. In other words, a large angle cannot be given to the land side wall without a certain groove width.
  • the groove width is set to 10 mm or less, if the groove width exceeds 10 mm, the area of the groove becomes too wide and the ground contact area of the land other than the groove decreases (if the rigidity of the land is insufficient). Therefore, a groove exceeding 10 mm is not realistic.
  • the invention according to claim 4 is a pneumatic tire for a rear wheel of a motorcycle having a plurality of land portions partitioned by a plurality of grooves on the tread, and the tread is developed around the tire equator plane.
  • the tire equator A groove with an angle with respect to the surface set within a range of 0 to 30 degrees is arranged, and a groove with an angle with respect to the tire equatorial plane set within a range of 45 to 90 degrees is arranged in the tread shoulder region
  • the land portion wall surface on the stepping side of the land portion defined by the grooves is parallel to the tire radial direction, or inclined in the direction in which the groove width increases toward the groove bottom force groove opening,
  • On the kicking side of the trench The land portion wall surface is inclined in the direction in which the groove width increases toward the
  • the angle of the land side wall is reversed from the pneumatic tire for a front wheel of the motorcycle according to claim 1.
  • the braking force braking force
  • the rear wheels are subject to greater traction (driving force: force in the direction opposite to the braking force) than the braking force. Therefore, the front wheel is the corner of the land side wall.
  • the way of applying the degree is reversed.
  • the groove formed in the tread does not include a narrow sipe that closes in the ground plane.
  • the invention according to claim 5 is the pneumatic tire for rear wheels of the motorcycle according to claim 4, wherein the land portion wall surface on the stepping side of the land portion is 20 degrees with respect to the tire radial direction. It is tilted at the following angle.
  • the vulcanized rear wheel pneumatic tire can be easily removed from the vulcanizing mold, and after the present invention has been efficiently performed.
  • a pneumatic tire for wheels can be manufactured.
  • the angle of the land wall surface on the stepping side with respect to the tire circumferential direction exceeds 20 degrees, the volume of the groove is unnecessarily reduced, the drainage effect is reduced, and the hydroplaning phenomenon is likely to occur.
  • the land wall surface on the step-in side that does not significantly affect the rise of the land during driving, it is preferably 20 degrees or less rather than an unnecessarily large angle.
  • the invention according to claim 6 is the pneumatic tire for a rear wheel of a motorcycle according to claim 4 or claim 5, wherein a groove width of the groove disposed in the tread shoulder region is 3 to: It is characterized by being set within the range of LO mm.
  • the turning performance on a wet road surface can be improved, and further the turning performance on a dry road surface can be improved.
  • t ⁇ ⁇ Has an excellent effect.
  • FIG. 1 is a cross-sectional view along the rotational axis of a pneumatic tire for a front wheel according to a first embodiment.
  • FIG. 2 Front tire pneumatic tire tread exhibition according to the first embodiment (Example 1 in the test). It is an open figure.
  • FIG. 3 is a cross-sectional view of a land portion defined by a lateral groove of the pneumatic tire for a front wheel according to the first embodiment.
  • FIG. 4 is a cross-sectional view of a conventional land portion.
  • FIG. 5 is a cross-sectional view of a land portion of Example 2.
  • FIG. 6 is a sectional view of a land portion of Example 3.
  • FIG. 7 is a development view of a tread of a comparative example.
  • FIG. 8 is a cross-sectional view of a land portion of a comparative example.
  • FIG. 9 is a graph showing the results of a flat belt test.
  • FIG. 12 is a cross-sectional view of a land portion defined by an inclined groove of a pneumatic tire for a rear wheel according to a second embodiment.
  • FIG. 13 is a sectional view of a conventional land portion.
  • FIG. 14 is a cross-sectional view of a land portion of a comparative example.
  • FIG. 15 is a cross-sectional view of the land portion.
  • FIG. 16 is a cross-sectional view of the land portion.
  • FIGS. 1-10 A first embodiment of a pneumatic tire for a front wheel of a motorcycle according to the present invention will be described with reference to FIGS.
  • the front-wheel pneumatic tire 10 of the present embodiment also includes the first carcass ply 12 and the second carcass ply 14 force in which cords extending in a direction intersecting the tire equatorial plane CL are embedded. It has a carcass 16 constructed.
  • the tire size of the front wheel pneumatic tire 10 of this embodiment is 120Z60R17.
  • Each of the first carcass ply 12 and the second carcass ply 14 has its both end portions wound around a bead core 20 embedded in the bead portion 18 with the tire inner force also being directed outward. Yes.
  • the first carcass ply 12 has a plurality of radially extending cords (nylons) arranged in parallel in a covered rubber.
  • the tire equator is the tire equator.
  • the angle of the cord with respect to the surface is set to 80 degrees.
  • the second carcass ply 14 is also formed by embedding a plurality of cords (nylon) extending in the radial direction in parallel in the covering rubber, and in this embodiment, the cords for the tire equator surface on the tire equator surface The angle is set to 80 degrees.
  • the cord of the first carcass ply 12 and the cord of the second force-cass ply 14 cross each other and incline in opposite directions with respect to the tire equatorial plane CL.
  • the cord angle is set to 80 degrees, but other angles such as 90 degrees may be used.
  • a main crossing layer 26 is disposed outside the carcass 16 in the tire radial direction.
  • the main crossing layer 26 of the present embodiment is composed of a first belt ply 26A and a second belt ply 26B.
  • the first belt ply 26A includes a plurality of cords (corresponding to a cord having a diameter of 0.7 mm in which aromatic polyamide fibers are twisted in this embodiment) arranged in parallel in the coated rubber, and the driving interval is 50 at Z50 mm.
  • the angle of the cord with respect to the tire equator at the tire equator is set to 33 degrees.
  • the second belt ply 26B also has a plurality of cores (In this embodiment, a cord with a diameter of 0.7 mm, twisted with aromatic polyamide fiber) is lined up in parallel and embedded at a pitch of 50 Z50 mm.
  • the tire equatorial plane is the tire equatorial plane.
  • the cord angle with respect to is set to 33 degrees.
  • the cord of the first belt ply 26A and the cord of the second belt ply 26B cross each other, and are inclined in opposite directions to the tire equatorial plane CL.
  • a tread rubber 30 forming a tread 28 is disposed outside the main crossing layer 26 in the tire radial direction.
  • the main crossing layer 26 may be constituted by a belt ply having three or more forces composed of two belt plies.
  • the main crossing layer 26 is used to reinforce the crown portion of the carcass 16, but a spiral belt layer often used in the structure of a pneumatic tire for a high-performance motorcycle in recent years is used. OK.
  • the noise belt layer is, for example, a long rubber-coated cord in which one cord is covered with an unvulcanized coating rubber, or a belt-like ply in which a plurality of cords are covered with an unvulcanized coating rubber.
  • the cord direction is substantially the tire circumferential direction.
  • the cord of the spiral belt layer may be an organic fiber cord or a steel cord.
  • the spiral belt layer is a spiral belt in which cords of 0.7 mm diameter twisted with aromatic polyamide fibers are embedded in the covered rubber so that the driving interval is 50 Z50 mm. It can be formed by winding.
  • Such a spiral belt layer may be arranged outside the main crossing layer 26 in the tire radial direction, or a spiral belt layer using a steel cord is used instead of the main crossing layer 26. Also good.
  • the tread center area 28C 40% of the tread 28 deployment width TW centered on the tire equatorial plane CL is the tread center area 28C, and the tread end 28E is also treaded to the tire equatorial plane CL side up to 20% of the deployment width TW.
  • the tread central area 28C has a groove with an angle with respect to the tire equatorial plane CL set within the range of 0 to 30 degrees
  • the tread shoulder area 28 S has the tire equatorial plane CL.
  • a groove whose angle to the angle is set within the range of 45 to 90 degrees
  • the tread 28 in the tread 28 of the present embodiment has a groove width (measured at the opening) extending in a zigzag shape in the circumferential direction on the tire equatorial plane and on both sides thereof.
  • the circumferential main groove 40 is formed.
  • the angle of one side constituting the zigzag shape of the circumferential main groove 40 (with respect to the tire equatorial plane CL) is 15 degrees, and the wavelength L of the zigzag shape is 90 mm.
  • the distance in the tire width direction between the left end of the left circumferential main groove 40 (the top portion that protrudes to the left) and the right end of the right circumferential main groove (the top portion that protrudes to the right) Is 50 mm.
  • the groove width of the groove disposed in the tread shoulder region 28S is preferably set within a range of 3 to LOmm.
  • a lateral groove 50 extending in the tire width direction is formed from a position spaced from the circumferential main groove 40 on the outer side in the tire width direction toward the tread end 28E from a position spaced outward in the tire width direction.
  • the lateral groove 50 has a groove width of 5 mm (measured at the opening), and the tread end 28E force is formed to a position of 37 mm toward the tire equator side.
  • the width of the land portion 56 divided by the horizontal groove 50 is set to 10 mm (measured at the tread edge) in the present embodiment.
  • the circumferential main grooves 40 and the lateral grooves 50 are all 6 mm deep.
  • an arrow A indicates the rotational direction of the pneumatic tire 10 for front wheels.
  • the land wall surface on the kicking side of the land section defined by the groove is parallel along the tire radial direction, or in the direction in which the groove width increases toward the groove bottom force groove opening. It is necessary to incline and incline the land wall surface on the stepping side in the direction in which the groove width increases toward the groove bottom force groove opening. Furthermore, at least the portion on the tread side of the tread side must have a larger angle with respect to the tire radial direction than the land side wall surface on the kick side, and the angle with respect to the tire radial direction should be 10 to 45 degrees. Must be set within range. In addition, when the land portion wall surface on the kick-out side is inclined, the angle is preferably 20 degrees or less with respect to the tire radial direction.
  • the land portion wall surface 56K on the kicking side of the land portion 56 partitioned by the lateral groove 50 is parallel along the tire radial direction.
  • land on the land side 56 The part wall surface 56H is inclined at a constant angle in the direction in which the groove width increases from the groove bottom toward the groove opening. Note that the land wall surface 56H on the step-in side is inclined at 35 degrees with respect to the tire radial direction in the present embodiment.
  • the pneumatic tire 10 for front wheels of the present embodiment is used for the front wheels of two-wheeled vehicles.
  • the front-wheel pneumatic tire 10 is mainly subjected to the force in the front-rear direction with almost no lateral force applied even when the vehicle body is tilted slightly, not only when it is completely upright.
  • the pneumatic tire 10 for a front wheel has a zigzag circumferential direction in which the angle with respect to the tire equatorial plane CL is set to 30 degrees or less in the central region 28C of the tread which is 40% of the development width TW of the tread 28 Since the main groove 40 is arranged, the land portion 58 divided by the circumferential main groove 40 continuously extends in the tire circumferential direction, and is sufficiently equator force, that is, input during braking. It is a strong pattern.
  • a region used when the vehicle body is largely tilted is a tread shoulder region 28S. Since the tread shoulder region 28S is formed with a lateral groove 50 extending in the tire width direction, the pattern is stronger against the force in the lateral direction than the force in the tire circumferential direction.
  • the land side wall 56 6H on the stepping side of the land portion 56 defined by the horizontal groove 50 is inclined at 35 degrees in the direction in which the groove width expands toward the groove opening, so that the groove wall surface on the kicking side Since the angle with respect to the tire radial direction is set to be larger than 56K, it is particularly effective for the circumferential deformation of the land portion 56 when a braking force is applied, and the stepping side (progression caused by the falling deformation) It is possible to suppress the floating of the land edge on the rear side. As a result, the contact area with the road surface 60 is secured, and coupled with the drainage effect of the lateral grooves 50, it is possible to improve the turning performance on wet road surfaces than before, and also improve the turning performance on dry road surfaces. Is possible.
  • the angle of the land side wall 56H on the step-in side is less than 10 degrees, the effect on the falling deformation is too small.
  • the angle of the land side wall 56H on the step-in side exceeds 45 degrees, the effect of suppressing the lift does not increase, and it reaches a peak, and the groove volume of the lateral groove 50 is unnecessarily reduced, and the drainage effect is reduced.
  • the groove width of the lateral groove 50 is less than 3 mm, the land portion side wall 56H on the stepping side is inclined, so that a sufficient width cannot be obtained at the bottom portion of the lateral groove 50.
  • the groove width of the horizontal groove 50 exceeds 1 Omm, the area of the horizontal groove 50 becomes too large, the area of the land portion 56 defined by the horizontal groove 50 decreases, and the ground contact area becomes insufficient.
  • the braking performance of the tire was evaluated using a flat belt testing machine in the room described below.
  • test tire will be described below.
  • the land side wall 56H on the step-in side and the land side wall 56K on the kick-out side are parallel to the tire radial direction.
  • the angle of the land side wall 56H on the tire depression side of the embodiment is changed to 15 degrees.
  • the land side wall 56H on the step-in side is bent in the depth direction.
  • the tread surface is inclined at 35 degrees up to a depth of 3 mm, and the depth from 3 mm to the groove bottom is parallel to the tire radial direction.
  • an inclined groove 62 is formed instead of the circumferential main groove 40, and the tread pattern is different from that of the conventional example and Examples 1 to 3.
  • the angle of the inclined groove 62 with respect to the tire equatorial plane is 65 degrees.
  • the same negative rate as in the example is set.
  • the angle setting of the land side wall 56K on the kicking side of the land portion 56 partitioned by the horizontal groove 50 and the angle setting of the land side wall 56H on the stepping side are opposite to those in the first embodiment. It has become.
  • the test method will be described below.
  • the flat belt tester used for the test is a steel belt-like thin plate made into a ring like a belt conveyor, and is applied to two cylinders to apply tension and rotate. Is a device that measures the 6 component force of a tire while rolling the tire. Using this flat belt tester, the tire is pressed at a camber angle of 45 degrees and a load of 1.5 kN, and rolled at a speed of 50 km / h. Then, the lateral force Fy and the longitudinal force Fx were measured when the tire slip rate was kept at 0% and a slip rate of 30% was applied from 0% to the braking direction.
  • Figure 9 shows the results of plotting the longitudinal force Fx on the horizontal axis and the lateral force Fy on the vertical axis.
  • the transfer is performed with a slip rate of 0%, and by adding the slip rate, a negative component of the longitudinal force Fx is generated.
  • the longitudinal force Fx When the longitudinal force Fx is generated, the lateral force Fy starts to decrease, and the longitudinal force Fx and the lateral force Fy draw a trajectory just like an ellipse.
  • the minimum negative value of the longitudinal force Fx at this time is considered as the limit performance of the brake.
  • the flat belt testing machine evaluates dry road surfaces and does not spray water.
  • the brake marginal performance slightly improved compared to the conventional example.
  • the result was almost the same (the tread shoulder area was used, and in the tread shoulder area, the land side 56H Because the angle is the same.)
  • Example 2 In the tires of Example 2 and Example 3, the limit performance of the brake was improved by about 3 to 5% compared to the conventional example. [0075] (Front tire test 2)
  • the front test tires (the same as those used in the front tire test 1) were prepared, and the actual vehicle test was performed with the front tires replaced.
  • the rear tires were always fixed with conventional ones.
  • test tire was mounted on the front wheel of a sports type motorcycle of lOOOOcc, and the vehicle was run on a test track quite intensely (close to the limit) on a rainy day.
  • the rainfall was stable all day and was always in a uniform wet state.
  • the test course was run 4 laps, and the average lap time for 4 laps was obtained.
  • the test rider's evaluation comments are added and the results are shown.
  • in order to check the stability of dry maneuvering ask the rider to run the same test course on another sunny day, and ask for the average lap time of 4 laps and the rider's comments.
  • Example 1 and Example 3 the effect of the present invention was proved even on a wet road surface.
  • Example 1 and Example 3 the no-or-id-planing phenomenon occurred. If the angle is set too far on the land side wall, the volume of the groove will be reduced and the drainage effect will be reduced, and the tires will likely slip easily due to the deep water pool.
  • Example 1 and Example 2 are superior to Example 1 in terms of land fall-down.
  • Example 2 is superior in drainage performance. As for wet performance, it is necessary to design tires in terms of both the land side wall angle and drainage performance.
  • Example 2 and Example 3 had almost the same performance. However, in terms of dry performance, Example 1 with a land side wall angle is better than Examples 2 and 3.
  • Example 1 The force apparent from the comparison between Example 1 and the comparative example is meaningless unless an angle is given to the portion that works effectively against the brake as in the present invention.
  • the comparison with the comparative example shows that the groove arranged in the center portion is effective along the equator direction.
  • the pneumatic tire 11 for rear wheels of the present embodiment has a tire size of 190Z50ZR17.
  • the spiral belt layer 22 is disposed on the outer side in the tire radial direction of the carcass 16.
  • the spiral belt layer 22 of the present embodiment is made of a long rubber-coated cord in which two cords of a single steel wire having a diameter of 0.3 mm are twisted and covered with an unvulcanized coating rubber. It is formed by winding it in a spiral with a book Z50mm. Note that only the spiral belt layer 22 without the main crossing layer is disposed outside the carcass 16 in the tire radial direction.
  • the tread 28 has two linear circumferential main grooves 41 each having a groove width of 7 mm extending in the circumferential direction on both sides of the tire equatorial plane CL.
  • Sarako, Toretsu An inclined groove 51 having a groove width of 3.5 mm is formed in the wheel 28 from a position spaced from the circumferential main groove 41 on the outer side in the tire width direction toward the tread end 28E from a position spaced outward in the tire width direction.
  • the development width TW of the tread 28 of the present embodiment is 240 mm.
  • the inclined groove 51 has a tread end 28E force within the range of 65 mm toward the tire equator side.
  • the inclined groove 51 is inclined so that the tire equatorial plane side is closer to the tire rotation direction side (arrow A direction side) than the tread end side, and the angle with respect to the tire circumferential direction is 60 degrees.
  • the width of the land portion 56 divided by the inclined groove 51 is set to 10 mm at the tread end 28E in this embodiment. Further, the groove depths of the circumferential main groove 41 and the inclined groove 51 are all 6 mm in the present embodiment.
  • the land portion wall surface 56H on the stepping side of the land portion 56 partitioned by the inclined groove 51 is parallel along the tire radial direction.
  • the land portion wall surface 56K on the kicking side of the land portion 56 is inclined at a certain angle in the direction in which the groove width increases from the groove bottom toward the groove opening.
  • the land wall 56K on the kicking side is inclined at 35 degrees with respect to the tire radial direction in this embodiment.
  • the pneumatic tire 11 for rear wheels of the present embodiment is used for the rear wheel of a motorcycle.
  • the rear-wheel pneumatic tire 11 is mainly subjected to the force in the front-rear direction, with almost no lateral force applied even when the vehicle body is tilted slightly, not only when it is completely upright.
  • the pneumatic tire 11 for rear wheels of the present embodiment has a circumferential main groove 41 extending linearly along the tire equatorial plane CL in the tread central region 28C, which is a region of 40% of the development width TW of the tread 28.
  • the land 58 separated by the circumferential main groove 41 extends linearly continuously in the tire circumferential direction, and is sufficiently strong against equator force, that is, input during traction. It is a pattern.
  • a region used when the vehicle body is largely tilted is a tread shoulder region 28S.
  • the tread shoulder region 28S has an inclined groove 51 that is inclined so that the tire equatorial plane side is closer to the tire rotation direction side (arrow A direction side) than the tread end side. (Traction) and strong against lateral force It is.
  • the land portion side wall 56K on the kicking side of the land portion 56 defined by the inclined groove 51 is inclined at 35 degrees in the direction in which the groove width increases from the groove bottom toward the groove opening, Since the angle with respect to the tire radial direction is set to be larger than the land wall 56 H, it is particularly effective for the circumferential deformation of the land 56 when traction acts, and the kick caused by the falling deformation is caused. It is possible to suppress the floating of the land portion end on the side. As a result, a contact area with the road surface is ensured, and combined with the drainage effect by the inclined groove 51, it is possible to improve the turning performance on the wet road surface than before, and also improve the turning performance on the dry road surface. Is possible.
  • the groove width of the inclined groove 51 is less than 3 mm, the land side wall 56K on the kicking side is inclined, so that a sufficient width cannot be obtained at the bottom portion of the inclined groove 51.
  • the groove width of the inclined groove 51 exceeds 10 mm, the area of the inclined groove 51 becomes too wide, the area of the land portion 56 defined by the inclined groove 51 decreases, and the ground contact area becomes insufficient. .
  • test tire was mounted on the rear wheel of a sport type motorcycle of lOOOcc, and the vehicle was run quite intense (close to the limit) on the test course on a rainy day. The rainfall was stable all day and was always in a uniform wet state.
  • the test course was run 4 laps, and the average lap time for 4 laps was calculated. Since the center part of these tires had the same pattern, the difference was the cornering performance. It was.
  • the cross-sectional shape of the land portion 56 defined by the inclined groove 51 is different as shown in FIG.
  • the land side wall 56K on the kicking side of the land part 56 on the shoulder side and the land side wall 56H on the stepping side are both parallel to the tire radial direction (perpendicular to the tread surface).
  • the cross-sectional shape of the land portion 56 defined by the inclined groove 51 is different as shown in FIG.
  • the land side wall 56K on the kicking side of the land part 56 on the shoulder side is parallel to the tire radial direction, and the land side wall 56H on the stepping side is inclined at 25 degrees with respect to the tire radial direction. That is, the cross-sectional shape is opposite to that of the embodiment.
  • the tires of the examples having the present invention were confirmed to have significantly improved wet steering stability performance as compared with the tires of the conventional example and the comparative example.
  • the land side wall 56H on the step-in side of the pneumatic tire 10 for front wheels may be inclined at a constant angle as shown in FIG. 3 and is bent once in the middle as shown in FIG. Although not shown in the figure, it may be bent several times or may be curved.
  • the treading force is also the average of up to 50% of D to the bottom of the land side wall 56H. It is necessary to set the inclination angle ⁇ h of the slope to be larger than the inclination angle of the land side wall 56K on the kicking side (average value from the groove bottom to the tread) ⁇ k.
  • the inclination angle ⁇ h is 10 degrees or more larger than the inclination angle ⁇ k, and it is more preferable to set it to 20 degrees or more. From the tread surface to the groove bottom side, the position from 50% of D to the groove bottom may be 0 ° or more with respect to the tire radial direction.
  • the inclination angle is also set on the land side wall of the pneumatic tire 10 for the rear wheel based on the same technical concept as the pneumatic tire 10 for the front wheel (the land side wall 56 H on the stepping side) The way to set the inclination angle of the land side wall 56K on the kicking side is opposite to the pneumatic tire 10 for the front wheels.
  • the turning performance on a wet road surface can be improved, and further the turning performance on a dry road surface can be improved. And became possible.

Description

明 細 書
二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ 技術分野
[0001] 本発明は、二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ にかかり、特に、ウエット路面での旋回性能を向上することのできる二輪車の前輪用 空気入りタイヤ、及び二輪車の後輪用空気入りタイヤに関する。
背景技術
[0002] タイヤは、濡れた路面を走行するときに、路面とトレッド表面のゴムが水膜によって 邪魔されることなぐ良好な接地状態を得るために、トレッド部に溝を配置している (例 えば、特開 2003— 211917号公報参照。;)。
即ち、タイヤトレッド部に配置した溝は、トレッドと路面によって搾り出された水の逃 げ道となり、これらの水を効率的に排水する役目を持つ。
[0003] また、一方で、トレッドに配置された溝は、トレッドを陸の固まりに分割するため、トレ ッド剛性を低下させて、路面とタイヤ表面が接地して制動力、駆動力や横力が加わつ たときに剪断変形を受けて倒れこむ。このような倒れ込みが起こると、トレッド自体が 動きやすぐライダーがタイヤが不安定と感じると共に、トレッドの倒れ込みにより、トレ ッド表面の一部が路面力 浮き上がり、接触面積が低下するためにグリップが低下す る。これは、濡れた路面でも起こるが、市販のタイヤの場合は濡れた路面と乾いた路 面の両方を走らなければならず、乾いた路面でも大きな問題となる。このような路面 力ものブロックの浮き上がりは、偏摩耗も誘発するので、大きな問題である。
[0004] 二輪車のトレッドパターンについては、溝の配置の仕方が技術的な難しさであり、ま た、ウエット性能を左右する大きな要因である。
それゆえ、水を効率的に排水できる溝配置と、トレッドの剛性を低下させないような 溝配置、そしてデザイン的な良さなどのバランスを上手く取りながらタイヤのパターン は決定されている。
[0005] また、自動二輪車用のタイヤでは、乗用車用やトラック用のタイヤと異なり、車体を 傾けて旋回するバイクの特性から、車体を傾けない直進走行時と、車体を傾けるコー ナリング時とでは、地面に接地するトレッドの部位が異なる。そのため、 自動二輪車用 のタイヤでは、センター側とショルダー側でパターンの傾向に特徴を持たせる場合が ある。
[0006] 即ち、センター側はタイヤの前後方向(=赤道方向 =周方向)の入力に対してトレツ ドが強くなるような溝配置にし、ショルダー側はタイヤの幅方向の入力(横力)とタイヤ の周方向の入力(トラクシヨン、ブレーキ)の両方に対して強い溝配置とするわけであ る。
ショルダー側に対しては、車体を傾けて旋回することを考えると、アクセルを開けず に、またはブレーキをかけずに一定速度で旋回するときには横力が主体的に掛かり、 一定速度の旋回から加速するときには駆動力が掛かり、横力と駆動力の両方が掛か るわけであるから、ショルダー側は横力と駆動力の両方に強いパターンである必要が あるわけである。
特に自動二輪車のレースの場合は、特に旋回時の操縦安定性能が重要となる。
[0007] 雨天のコーナリング時において、ウエット旋回性能が低いタイヤではスピードが出せ ずにラップタイムを縮めることが出来ない。また、市販車においても、一般道路のゥェ ット旋回性能が低いタイヤはスリップの虞がある。
発明の開示
[0008] 本発明は、上記問題を解決すべく成されたもので、二輪車の前輪用空気入りタイヤ 、及び二輪車の後輪用空気入りタイヤにおいて、従来よりもウエット路面での旋回性 能を向上させることを第 1の目的としている。また、一般公道用では、さらに、乾燥路 面での旋回性能をも向上させることを第 2の目的としている。
[0009] タイヤは、濡れた路面を走行するときに、路面とトレッド表面のゴムが水膜によって 邪魔されることなぐ良好な接地状態を得るために、トレッド部に溝を配置している。 即ち、タイヤトレッドに配置した溝は、トレッドと路面によって搾り出された水の逃げ道 となり、これらの水を効率的に排水する役割を持つ。
[0010] また一方で、トレッド部に配置された溝はトレッドを小さな陸の固まりに分割するため 、トレッド剛性を低下させて、路面とタイヤ表面が接地して制動力、駆動力や横力が 加わったときには陸部は剪断変形を受けて倒れこむ。このような倒れ込みが起こると 、トレッド自体が動きやすぐライダーがタイヤが不安定と感じると共に、トレッドの倒れ 込みにより、トレッド表面の一部が路面から浮き上がり、接触面積が低下するために グリップが低下する。これは、濡れた路面でも大きな問題となる。また、このような路面 力ものブロックの浮き上がりは、偏摩耗も誘発するので、大きな問題である。
[0011] 自動二輪車のパターンについては、溝の配置の仕方が技術的な難しさであり、また
、ウエット性能を左右する大きな要因である。それゆえ、溝を効率的に排水できる溝 配置と、トレッドの剛性を低下させないような溝配置のバランスを上手く取りながらタイ ャのパターンは決定されて 、る。
[0012] また、自動二輪車用タイヤでは、乗用車用やトラック用のタイヤと異なり、車体を傾 けて旋回するバイクの特性から、車体を傾けない直進走行時と、車体を傾けるコーナ リング時では、地面に接地するトレッドの部位が異なる。そのため、自働二輪車用のタ ィャでは、トレッドのセンター側とショルダー側でパターンの傾向に特徴を持たせる場 合がある。即ち、センター側はタイヤの前後方向(タイヤ赤道面方向 =タイヤ周方向) の入力と、タイヤの周方向の入力の両方に対して強い溝配置とされるわけである。そ のため、トレッドのセンター側は、タイヤ赤道面に沿う方向に近い角度の溝が配置さ れ、トレッドのショルダー側には横方向の力が掛かるのでこの力の向きに沿う方向、 即ち、タイヤ赤道面に対して 90度 (タイヤ幅方向)の方向に近い溝が配置されること が多い (勿論、「トレッドのセンター側でタイヤ赤道面に沿った方向に、ショルダー側 でタイヤ幅方向に沿った方向に」という溝は、あくまでも機能を優先させた概念であり 、実際はタイヤのデザイン性も考えて溝配置が決定されるので全てのタイヤがこのよ うな溝配置をしているわけではない。 ) o
[0013] トレッドのセンター側について着目すると、センター側が使用されるのはバイクが直 立している場合であり、このときにタイヤに加わる力は加速時のトラクシヨン (駆動力)と 減速時のブレーキ (制動力)だけであり、横方向力もの力はほぼ加わらない。それゆ え、トレッドのセンター側は、タイヤの赤道方向に対して強いパターン構成が好ましい 。即ち、トレッドのセンター側でタイヤ赤道面の方向に近い方向の溝を配置すればグ リップに優れるタイヤを提供することができる。
[0014] 次に、トレッドのショルダー側に対して着目すると、車体を傾けて旋回するときにショ ルダー側が路面と接地するため、旋回時にショルダー側のパターンが重要となる。 自 動二輪車用のタイヤは、キャンバースラストによって横力を発生させるため、タイヤの ショルダー側には横方向の力が主体的に加わる。そのため、トレッドのショルダー側 の溝は、タイヤ赤道面に対して垂直なタイヤ幅方向に近い方向の溝が望ましい。タイ ャ赤道面に対して 45度から 90度の幅方向主体の溝が横方向の力に対して強く振舞 うため、このような溝が好ましい。ところが、トレッドのショルダー側については、純粋な 横方向の力の他に、前後方向の力も加わる場合もある。バイクが直線力も減速してコ ーナ一に侵入するときに、車体を傾けながら制動するために、タイヤのショルダー側 には横力に加えて制動力も加わる。アクセルを開けずにブレーキをかけずに一定速 度で旋回するときには横力が主体的に加わるが、この状態から加速するときには駆 動力が掛カる。
[0015] 加速するときにお!/、ても、車体が傾!、た状態でアクセルを開くため、トレッドのショル ダー側が路面に接地し、横力を発生させている状態で、加速力を加える。即ち、トレ ッドのショルダー側については、横力だけでなぐ前後力が作用する (バイクは、直立 時にブレーキを完了させるわけではなぐ車体を傾けながらブレーキをかける動作も 含まれるので、車体が傾いた状態でブレーキを作動させる場合もある。また、加速時 も傾 、た状態でアクセルを開けるため車体が傾 、た状態 =トレッドのショルダー側が 接地して!/、る状態でトラクシヨンが力かる場合がある。 )。
[0016] さらに、自動二輪車の特徴は、駆動トルクは後輪のみに作用すること、また、制動時 にはバイクの前輪が沈み込むようなピッチング (車体の前方が沈み込む挙動)が起こ つて前輪に作用する荷重が増して後輪に作用する荷重が減るため、前輪が主体的 に制動を担当すること、が挙げられる。即ち、前輪は横力と制動力が加わり、エンジン トルクは伝わらないので駆動力は作用しない。逆に後輪は横力と駆動力が加わり、制 動力は駆動力に比べると非常に小さく加わるに過ぎない。このように常に後輪駆動に 自動二輪車は、 4輪車と比較して、前輪と後輪の役割がはっきりしている。
[0017] トレッドのセンター側については、前輪は制動に強いパターン、後輪は駆動力に強 いパターンが必要となり、トレッドのショルダー側については、前輪は横力と制動力に 強 、パターン、後輪は横力と駆動力に強 、パターンが必要となる。 [0018] 特に、自動二輪車のレースの場合は、特に旋回時の操縦安定性能が重要となる。 雨天のコーナリング時において、ウエット旋回性能が低いタイヤではスピードが出せ ずに、ラップタイムを縮めることが出来ない、また、巿販車においても、一般道でのゥ エツト旋回性能が低 、タイヤは、スリップの虞がある。
[0019] 一方、より一般的な市販車の場合は、前述した通り、市販車用タイヤは、雨天と晴 天の両方を走らなくてはならないため、雨天の性能だけでなぐより摩擦係数の高くな る乾 、た路面でのブレーキやトラクシヨンと!/、つた操縦安定性能が大切になる。乾 ヽ た路面では、特にパターンの剛性は重要となる。
自動二輪車のトレッドのショルダー側については、前述したように、前輪は横力と制 動力に対してグリップの良 、タイヤ、後輪は横力と駆動力に対してグリップの良 、タイ ャが必要である。
[0020] 車体の特性を考えると、駆動力が掛カるのは後輪タイヤのため、後輪は特に駆動 力に対してグリップすることが必要である。一方、前輪は、駆動力は掛カもないが、ブ レーキング時に車体荷重が前輪に掛カるため、大きなブレーキ力がタイヤに掛かる。 よって、前輪はブレーキに抵抗する前後のグリップと、横力に抵抗する横方向のダリ ップが必要である。
[0021] 車両旋回時のウエット性能に注目すると、トレッドのショルダー側が路面と接地する 。トレッドのショルダー側の溝形状について考えると、溝を全く設けないと排水性能が 確保できないため溝を配置する必要がある。その理由は、陸部にあまり溝を配置しな いと、水が流れ難くなり、ハイドロプレーニング現象が起こる力もである。しかし、溝を 配置すると、トレッド剛性が低下してしまい、トレッドが柔ら力べ振舞って剛性感が無い と共に、図 15に示すように、倒れこんだ陸部 100の一部が路面 102から浮き上がり接 地面積が減ってグリップ力が低下する。
[0022] 即ち、溝を配置したタイヤにぉ 、て、トレッド剛性を確保する(陸部が倒れこまな 、よ うにする)ことが重要となる。ここで、タイヤのセンター側については、横方向の力が主 体的ではあるが、前後方向の力も加わるため、溝の方向だけでは解決できない。そこ でショルダー側については、溝の方向をタイヤ赤道面に対して 45〜90度と横方向( タイヤ幅方向)に近い方向とし、横力に対抗できるようにし、かつ、前後方向の力が加 わったときに、溝で囲まれた陸部が倒れこむ挙動をできるだけ抑制できる開発が必要 であった。横力に沿ったタイヤ幅方向に近 、傾斜のショルダー側の陸部にっ ヽて、 前後方向の力(制動力、駆動力)が加わったときに前後方向に倒れこむ現象を低減 させる方法にっ 、て鋭意研究を行った結果、ウエット路面での旋回性能を向上でき る溝の深さ方向の形状を見出した。
[0023] 請求項 1に記載の発明は、上記事実に鑑みてなされたものであって、トレッドに複 数の溝で区画された複数の陸部を有する二輪車の前輪用空気入りタイヤであって、 タイヤ赤道面を中心としてトレッドの展開幅の 40%の領域をトレッド中央域、前記トレ ッドの端部力 タイヤ赤道面側へ前記展開幅の 20%の位置までをトレッドショルダー 域としたときに、前記トレッド中央域には、タイヤ赤道面に対する角度が 0〜30度の範 囲内に設定された溝が配置され、前記トレッドショルダー域には、タイヤ赤道面に対 する角度が 45〜90度の範囲内に設定された溝が配置され、前記トレッドショルダー 域において、前記溝によって区画される陸部の蹴り出し側の陸部壁面はタイヤ径方 向に沿って平行、又は溝底力 溝開口へ向けて溝幅が拡大する方向に傾斜しており 、前記溝陸部の踏込み側の陸部壁面は、溝底力 溝開口へ向けて溝幅が拡大する 方向に傾斜し、少なくとも踏面側の部分が蹴り出し側の陸部壁面よりもタイヤ径方向 に対する角度が大きく設定されていると共に、タイヤ径方向に対する角度が 10〜45 度の範囲内に設定されている、ことを特徴としている。
[0024] 次に、請求項 1に記載の二輪車の前輪用空気入りタイヤの作用を説明する。先ず、 タイヤ赤道面を中心としてトレッドの展開幅の 40%の領域をトレッド中央域とし、このト レッド中央域に、タイヤ赤道面に対する角度が 0〜30度の範囲内に設定された溝を 配置した理由を以下に説明する。
[0025] 通常の自動二輪車用のタイヤでは、タイヤの接地部分はトレッド展開幅の 1Z5〜1 Z6程度であり、 40%はタイヤの平均的な接地幅の 2倍にあたる。 自動二輪車が完 全に直立している場合だけでなぐ僅かに傾いている場合も殆ど横力は加わらず、前 後方向の力が主体となることから、少し幅を持たせて 40%の領域としている。また、溝 のタイヤ赤道面に対する角度を 0〜30度の範囲内に設定したのは、例えば、 30度の 場合は、 30度の角度でジグザグ状に折れ曲がりながら周方向に連続する場合など が考えられるからである。また、 30度以下としているので、十分に赤道方向の力に対 して強いパターンとなる。
[0026] 次に、トレッドの端部力 タイヤ赤道面側へ展開幅の 20%の位置までをトレッドショ ルダー域とし、トレッドショルダー域に、タイヤ赤道面に対する角度が 45〜90度の範 囲内に設定された溝を配置し、溝によって区画される陸部の蹴り出し側の陸部壁面 をタイヤ径方向に沿って平行、又は溝底力 溝開口へ向けて溝幅が拡大する方向に 傾斜させ、溝によって区画される陸部の踏込み側の陸部壁面を溝底力 溝開口へ向 けて溝幅が拡大する方向に傾斜させ、少なくとも踏面側の部分を蹴り出し側の陸部 壁面よりもタイヤ径方向に対する角度が大きくなるように設定すると共に、タイヤ径方 向に対する角度を 10〜45度の範囲内に設定した理由を以下に説明する。
なお、ここでいう踏込み側とは陸部の陸部壁面のうち最初に路面に接地する側をい い、蹴り出し側とは、陸部が路面に接地している状態力 回転により路面力 離れる ときに、陸部の陸部壁面のうち最後に路面から離れる側をいう。
[0027] トレッドのなかでも、車体をある程度大きく倒したとき (より具体的には、旋回中の二 輪車の傾斜角度が鉛直方向に対して横方向に 40〜55度倒れているとき。 )に使用 する領域が、トレッドショルダー域となる。即ち、車体をある程度大きく倒したときに使 用する領域をトレッドショルダー域と定義して、この部分の溝の角度が 45度以上であ れば、パターンはタイヤの横方向の力に対して強いことになる。 45度は、ちょうど横方 向と赤道方向に対して同等に強くなる角度であり、それよりも大きいということは横方 向の力に対して強くなるように溝を配置して 、ることになる。
[0028] タイヤのトレッドショルダー域に着目すると、前輪タイヤでは、横力の他に制動力が 掛かる。制動中の前輪のトレッドゴムの変形に注目すると、タイヤを真横力 見た場合 に、路面と接触しているトレッドは制動中は、路面と接触しているトレッド表面がバイク の進行方向後方に、トレッドの内部骨格部材であるベルトと接している部分が進行方 向前方にずれるような赤道方向断面での剪断変形を受けている。
[0029] これは、バイクが直立しているときは、横力が殆ど作用せずに前後方向のブレーキ 力のみであるから、トレッド部は幅方向には殆ど変形せずに、タイヤ赤道方向に大き な剪断変形を受ける。トレッドに、幅方向に溝が配置されている場合は、その溝と溝と に囲まれた陸部がこのような前後方向(赤道方向)の剪断を受けて倒れこむ。
[0030] つまり、倒れ込みは、図 15に示すように、路面 102と接地している陸部 100のトレツ ド表面部分がバイク進行方向(矢印 F方向)の後方へ、陸部 100の深い部分が進行 方向前方へずれるような倒れ込みとなる。この倒れ込みが起こると、陸部 100の踏込 み側の一部が路面 102から浮き上がる現象が起こる。図 15に示すように、陸部 100 の一部が路面 102から浮き上がってしまうと、トレッドが十分に路面に力を伝えられず にグリップ力が低下する。
[0031] この倒れ込みに対して、陸部が強く抵抗するためには、溝深さ方向の傾斜 (溝壁角 度))を倒れ込みと逆の方向につければ良い。即ち、陸部で考えると、タイヤが転動し たときに最初に路面に接触する陸部側壁、即ち、踏込み側の陸部側壁に角度 (タイ ャ半径方向に対して)を付ければ良 、。
[0032] また、バイクは直進時力 コーナーに侵入するときは、車体を倒しながら制動を加え るため、直立状態に近い場合はタイヤのセンターの溝を赤道方向に沿う形で配置し、 車体の傾きが大きくなつても尚ブレーキをカ卩える場合には、トレッドショルダー域の陸 部側壁に角度を付けることが好ましい。特にトレッド中央域は、赤道方向の溝を配置 すれば、赤道方向は前後力(この場合はブレーキ)の入力に対して陸部が無限につ ながって!/、るので倒れ込む心配が無!、。
[0033] これに対して、トレッドショルダー域は、先ず横力に対して強 、パターンでなければ ならないため、幅方向に延びる溝を配置しておき、タイヤの前後方向(赤道方向)の 倒れ込みに対しては陸部の側壁角度で対応する。トレッドショルダー域の場合は、車 体が傾いた場合には横力が加わるため、横力方向に延びる溝を配置することが有効 であり、かつ制動力に対向するために、この溝で区画される陸部の踏込み側の陸部 側壁を溝底から溝開口へ向けて溝幅が拡大する方向に傾斜させ、少なくとも踏面側 の部分を蹴り出し側の陸部壁面よりもタイヤ径方向に対する角度が大きくなるように 設定すると共に、タイヤ径方向に対する角度を 10〜45度の範囲内に設定することが 、制動力が作用した際の陸部の周方向の倒れ込み変形に対して特に有効となり、該 倒れ込み変形に起因する陸部端の浮き上がりを抑制することができる。これにより、 路面との接触面積が確保され、溝による排水効果と相まって、従来よりもウエット路面 での旋回性能を向上させることが可能となり、乾燥路面においても、旋回性能をも向 上させることが可會となる。
[0034] ここで、踏面側の部分の角度が 10度未満になると、倒れ込み変形に対する効果が 少なすぎる。一方、踏面側の部分の角度が 45度を超えると、浮き上がりを抑制する効 果は上がらず頭打ちになると共に、不要に溝体積を減少させてしまい、排水効果が 低下する。したがって、踏込み側の陸部側壁の角度は 10〜45度の範囲内が適切と なる。
[0035] なお、本発明において、タイヤ径方向に対する陸部側壁の角度を大とするのは、陸 部の剛性を高めるためである。本発明において、タイヤ径方向に対する陸部側壁の 角度を大とすることは、陸部の踏面側の端部を基準として陸部側壁を傾斜させること を意味し、陸部側壁の角度を大とすることは、陸部の根元側のボリュームが増加し、 溝幅が溝底側で狭くなることを意味する。このように、陸部の根元側のボリュームが増 加することで、陸部の倒れ込み変形が抑制される。
また、本発明において、トレッドに形成される溝は、接地面内で閉じる幅の狭いサイ プを含まないものとする。
[0036] 請求項 2に記載の発明は、請求項 1に記載の二輪車の前輪用空気入りタイヤにお いて、前記陸部の蹴り出し側の陸部壁面は、タイヤ径方向に対して 20度以下の角度 で傾斜している、ことを特徴としている。
[0037] 次に、請求項 2に記載の二輪車の前輪用空気入りタイヤの作用を説明する。
タイヤ周方向に対する蹴り出し側の陸部壁面の角度を 20度以下とすることで、加硫 用のモールドから加硫済みの前輪用空気入りタイヤが抜け易くなり、効率的に本発 明の前輪用空気入りタイヤを製造することが出来る。また、タイヤ周方向に対する蹴り 出し側の陸部壁面の角度が 20度を超えてしまうと、不要に溝部の体積を減少させて しまい、排水効果が低下してハイドロプレーニング現象が起こり易くなる。制動時の陸 部の浮き上がり抑制にあまり影響を与えない蹴り出し側の陸部壁面については、不 要に大きな角度をつけるのではなぐ 20度以下が好ましい。
[0038] 請求項 3に記載の発明は、請求項 1または請求項 2に記載の二輪車の前輪用空気 入りタイヤにおいて、前記トレッドショルダー域に配置される前記溝の溝幅は、 3〜: LO mmの範囲内に設定されている、ことを特徴としている。
[0039] 次に、請求項 3に記載の二輪車の前輪用空気入りタイヤの作用を説明する。トレツ ドショルダー域に配置される溝の溝幅を 3mm以上とするのは、 3mm未満では陸部 側壁を傾斜させた時に、溝の底の部分で十分な幅を取れないためである。つまり、例 えば 2mmの溝幅(開口部分で測定)、及び溝深さ 6mmに対して、タイヤ径方向に対 して 20度の角度をつけようとしても、幾何学的に不可能になるからである。即ち、ある 程度の溝幅がないと、陸部側壁に大きな角度を付けることができない。一方、溝幅を 10mm以下としたのは、 10mmを超えると、あまりにも溝の領域が広くなり過ぎ、溝以 外の陸部の接地面積が減少してしまう(陸部の剛性が不足する場合もある)ので、 10 mmを超える溝が現実的でな 、からである。
[0040] 請求項 4に記載の発明は、トレッドに複数の溝で区画された複数の陸部を有する二 輪車の後輪用空気入りタイヤであって、タイヤ赤道面を中心としてトレッドの展開幅の 40%の領域をトレッド中央域、前記トレッドの端部からタイヤ赤道面側へ前記展開幅 の 20%の位置までをトレッドショルダー域としたときに、前記トレッド中央域には、タイ ャ赤道面に対する角度が 0〜30度の範囲内に設定された溝が配置され、前記トレッ ドショルダー域には、タイヤ赤道面に対する角度が 45〜90度の範囲内に設定された 溝が配置され、前記トレッドショルダー域において、前記溝によって区画される陸部 の踏込み側の陸部壁面はタイヤ径方向に沿って平行、又は溝底力 溝開口へ向け て溝幅が拡大する方向に傾斜しており、前記溝陸部の蹴り出し側の陸部壁面は、溝 底力 溝開口へ向けて溝幅が拡大する方向に傾斜し、少なくとも踏面側の部分が踏 込み側の陸部壁面よりもタイヤ径方向に対する角度が大きく設定されていると共に、 タイヤ径方向に対する角度が 10〜45度の範囲内に設定されて!、る、ことを特徴とし ている。
[0041] 次に、請求項 4に記載の二輪車の後輪用空気入りタイヤの作用を説明する。
請求項 4に記載の二輪車の後輪用空気入りタイヤでは、陸部側壁の角度のつけ方 が請求項 1の二輪車の前輪用空気入りタイヤとは逆になつている。これは、前輪はブ レーキ力(制動力)が加わるが、後輪は、ブレーキ力よりもトラクシヨン (駆動力:制動 力と反対方向の力)が大きく加わるためである。したがって、前輪とは陸部側壁の角 度のつけ方が逆となっている。また、本発明においても、請求項 1と同様に、トレッドに 形成される溝は、接地面内で閉じる幅の狭いサイプを含まないものとする。
[0042] 請求項 5に記載の発明は、請求項 4に記載の二輪車の後輪用空気入りタイヤにお いて、前記陸部の踏込み側の陸部壁面は、タイヤ径方向に対して 20度以下の角度 で傾斜している、ことを特徴としている。
[0043] 次に、請求項 5に記載の二輪車の後輪用空気入りタイヤの作用を説明する。
タイヤ周方向に対する踏込み側の陸部壁面の角度を 20度以下とすることで、加硫 用のモールドから加硫済みの後輪用空気入りタイヤが抜け易くなり、効率的に本発 明の後輪用空気入りタイヤを製造することが出来る。また、タイヤ周方向に対する踏 込み側の陸部壁面の角度が 20度を超えてしまうと、不要に溝部の体積を減少させて しまい、排水効果が低下してハイドロプレーニング現象が起こり易くなる。駆動時の陸 部の浮き上がり抑制にあまり影響を与えない踏込み側の陸部壁面については、不要 に大きな角度をつけるのではなぐ 20度以下が好ましい。
[0044] 請求項 6に記載の発明は、請求項 4または請求項 5に記載の二輪車の後輪用空気 入りタイヤにおいて、前記トレッドショルダー域に配置される前記溝の溝幅は、 3〜: LO mmの範囲内に設定されている、ことを特徴としている。
[0045] 次に、請求項 6に記載の二輪車の後輪用空気入りタイヤの作用を説明する。
トレッドショルダー域に配置される溝の溝幅を、 3〜: LOmmの範囲内に設定した理 由は請求項 3と同様の理由であるので説明を省略する。
[0046] 以上説明したように本発明の二輪車の前輪用空気入りタイヤによれば、ウエット路 面での旋回性能を向上することができ、さらに、乾燥路面での旋回性能をも向上する ことができる、という優れた効果を有する。
[0047] また、本発明の二輪車の後輪用空気入りタイヤによれば、ウエット路面での旋回性 能を向上することができ、さらに、乾燥路面での旋回性能をも向上することができる、 t ヽぅ優れた効果を有する。
図面の簡単な説明
[0048] [図 1]第 1の実施形態に係る前輪用空気入りタイヤの回転軸に沿った断面図である。
[図 2]第 1の実施形態 (試験では実施例 1)に係る前輪用空気入りタイヤのトレッドの展 開図である。
圆 3]第 1の実施形態に係る前輪用空気入りタイヤの横溝で区画された陸部の断面 図である。
[図 4]従来例の陸部の断面図である。
[図 5]実施例 2の陸部の断面図である。
[図 6]実施例 3の陸部の断面図である。
[図 7]比較例のトレッドの展開図である。
[図 8]比較例の陸部の断面図である。
[図 9]フラットベルト試験の結果を示すグラフである。
圆 10]第 2の実施形態に係る後輪用空気入りタイヤの回転軸に沿った断面図である 圆 11]第 2の実施形態に係る後輪用空気入りタイヤのトレッドの展開図である。 圆 12]第 2の実施形態に係る後輪用空気入りタイヤの傾斜溝で区画された陸部の断 面図である。
[図 13]従来例の陸部の断面図である。
[図 14]比較例の陸部の断面図である。
[図 15]陸部の断面図である。
[図 16]陸部の断面図である。
符号の説明
10 前輪用空気入りタイヤ
11 後輪用空気入りタイヤ
28 トレッド
50 横溝
51 傾斜溝
56 陸部
56H 踏込み側の陸部側壁
56K 蹴り出し側の陸部側壁
発明を実施するための最良の形態 [0050] [第 1の実施形態]
本発明の二輪車の前輪用空気入りタイヤの第 1の実施形態を図 1乃至図 3にしたが つて説明する。
(カーカス)
図 1に示すように、本実施形態の前輪用空気入りタイヤ 10は、タイヤ赤道面 CLに 対して交差する方向に延びるコードが埋設された第 1のカーカスプライ 12及び第 2の カーカスプライ 14力も構成されたカーカス 16を備えている。なお、本実施形態の前 輪用空気入りタイヤ 10のタイヤサイズは 120Z60R17である。
[0051] 第 1のカーカスプライ 12及び第 2のカーカスプライ 14は、各々両端部分が、ビード 部 18に埋設されているビードコア 20の周りに、タイヤ内側力も外側へ向力つて巻き上 げられている。
[0052] 第 1のカーカスプライ 12は、被覆ゴム中に複数本のラジアル方向に延びるコード( ナイロン)を平行に並べて埋設したものであり、本実施形態では、タイヤ赤道面でのタ ィャ赤道面に対するコードの角度が 80度に設定されている。第 2のカーカスプライ 14 も、被覆ゴム中に複数本のラジアル方向に延びるコード(ナイロン)を平行に並べて埋 設したものであり、本実施形態では、タイヤ赤道面でのタイヤ赤道面に対するコード の角度が 80度に設定されている。なお、第 1のカーカスプライ 12のコードと第 2の力 一カスプライ 14のコードとは互 ヽに交差しており、タイヤ赤道面 CLに対して互 ヽに反 対方向に傾斜している。また、本実施形態では、コードの角度が 80度に設定されて いるが、 90度等の他の角度であっても良い。
[0053] (主交錯層)
このカーカス 16のタイヤ半径方向外側に主交錯層 26が配置されている。 本実施形態の主交錯層 26は、第 1のベルトプライ 26A及び第 2のベルトプライ 26B から構成されている。
[0054] 第 1のベルトプライ 26Aは、被覆ゴム中に複数本のコード (本実施形態では、芳香 族ポリアミド繊維を撚つた直径 0. 7mmのコード。)を平行に並べて打ち込み間隔 50 本 Z50mmで埋設したものであり、タイヤ赤道面でのタイヤ赤道面に対するコードの 角度が 33度に設定されている。第 2のベルトプライ 26Bも、被覆ゴム中に複数本のコ ード (本実施形態では、芳香族ポリアミド繊維を撚つた直径 0. 7mmのコード。)を平 行に並べて打ち込み間隔 50本 Z50mmで埋設したものであり、タイヤ赤道面でのタ ィャ赤道面に対するコードの角度が 33度に設定されている。
[0055] 第 1のベルトプライ 26Aのコードと第 2のベルトプライ 26Bのコードとは互いに交差し ており、タイヤ赤道面 CLに対して互いに反対方向に傾斜して 、る。
主交錯層 26のタイヤ径方向外側には、トレッド 28を形成するトレッドゴム 30が配置 されている。
[0056] なお、本実施形態では、主交錯層 26を 2枚のベルトプライで構成した力 3枚以上 のベルトプライで構成しても良い。また、本実施形態では、カーカス 16のクラウン部を 補強するために主交錯層 26を用いて 、るが、近年の高性能用の二輪車用空気入り タイヤの構造に良く見られるスパイラルベルト層を用いても良 、。
[0057] スノイラルベルト層は、例えば、 1本のコードを未加硫のコーティングゴムで被覆し た長尺状のゴム被覆コード、または複数本のコードを未加硫のコーティングゴムで被 覆した帯状プライを螺旋状に巻き回すことにより形成されており、コード方向が実質 的にタイヤ周方向とされている。スパイラルベルト層のコードは有機繊維コードであつ ても良く、スチールコードであっても良い。
[0058] より具体的には、スパイラルベルト層は、芳香族ポリアミド繊維を撚つた直径 0. 7m mのコードを被覆ゴム中に埋設したものを、打ち込み間隔 50本 Z50mmとなるように スパイラル状に巻き付けることで形成することができる。
[0059] このようなスパイラルベルト層を、主交錯層 26のタイヤ径方向外側に配置するような 構成としても良ぐあるいはスチールコードを用いたスパイラルベルト層を主交錯層 2 6の代わりに用いても良い。
[0060] (トレッドパターン)
ここで、タイヤ赤道面 CLを中心としてトレッド 28の展開幅 TWの 40%の領域をトレツ ド中央域 28C、トレッド端 28E力もタイヤ赤道面 CL側へ展開幅 TWの 20%の位置ま でをトレッドショルダー域 28Sとしたときに、トレッド中央域 28Cには、タイヤ赤道面 CL に対する角度が 0〜30度の範囲内に設定された溝を配置し、トレッドショルダー域 28 Sには、タイヤ赤道面 CLに対する角度が 45〜90度の範囲内に設定された溝を配置 する必要がある。本実施形態では、トレッド 28の展開幅 TWは 155mmであるので、ト レッド中央域 28Cの幅は 62mm、トレッドショルダー域 28Sの幅は 31mmとなる。
[0061] 図 2に示すように、本実施形態のトレッド 28のトレッド中央域 28Cには、タイヤ赤道 面上及びその両側に、周方向にジグザグ状に延びる溝幅(開口部で測定)が 5mm の周方向主溝 40が形成されて ヽる。周方向主溝 40のジグザグ形状を構成する 1辺 の角度 (タイヤ赤道面 CLに対して)は 15度であり、ジグザグ形状の波長 Lは 90mm である。なお、左側の周方向主溝 40の左側の端 (左側へ凸となる頂上部分)と、右側 の周方向主溝の右側の端 (右側へ凸となる頂上部分)とのタイヤ幅方向の距離は 50 mmである。
[0062] また、トレッドショルダー域 28Sに配置される溝の溝幅は、 3〜: LOmmの範囲内に設 定することが好ましい。本実施形態のトレッド 28には、タイヤ幅方向外側の周方向主 溝 40からタイヤ幅方向外側に離間した位置からトレッド端 28Eに向けて、タイヤ幅方 向に延びる横溝 50が形成されている。この横溝 50は、溝幅が 5mm (開口部で測定) であり、トレッド端 28E力もタイヤ赤道面側へ 37mmの位置まで形成されて 、る。
[0063] 横溝 50で区切られる陸部 56の幅は、本実施形態では 10mm (トレッド端で測定)に 設定されている。また、本実施形態では、周方向主溝 40、及び横溝 50の溝深さは全 て 6mmである。なお、図 2において、矢印 Aは前輪用空気入りタイヤ 10の回転方向 を示す。
[0064] トレッドショルダー域 28Sにおいては、溝によって区画される陸部の蹴り出し側の陸 部壁面はタイヤ径方向に沿って平行、又は溝底力 溝開口へ向けて溝幅が拡大す る方向に傾斜させ、踏込み側の陸部壁面は、溝底力 溝開口へ向けて溝幅が拡大 する方向に傾斜させる必要がある。さらに、踏込み側の陸部壁面は、少なくとも踏面 側の部分が蹴り出し側の陸部壁面よりもタイヤ径方向に対する角度を大きく設定する 必要があると共に、タイヤ径方向に対する角度を 10〜45度の範囲内に設定する必 要がある。なお、蹴り出し側の陸部壁面は、傾斜させる場合、タイヤ径方向に対して 2 0度以下の角度とすることが好ましい。
[0065] 図 3に示すように、本実施形態では、横溝 50で区切られる陸部 56の蹴り出し側の 陸部壁面 56Kは、タイヤ径方向に沿って平行である。一方、陸部 56の踏込み側の陸 部壁面 56Hは、溝底から溝開口へ向けて溝幅が拡大する方向に一定角度で傾斜し ている。なお、踏込み側の陸部壁面 56Hは、本実施形態ではタイヤ径方向に対して 35度で傾斜している。
[0066] (作用)
次に、本実施形態の前輪用空気入りタイヤ 10の作用を説明する。
本実施形態の前輪用空気入りタイヤ 10は、二輪車の前輪に用いられる。 前輪用空気入りタイヤ 10には、車体が完全に直立している場合だけでなぐ僅かに 傾いている場合も殆ど横力は加わらず、前後方向の力が主体となる。本実施形態の 前輪用空気入りタイヤ 10は、トレッド 28の展開幅 TWの 40%の領域であるトレッド中 央域 28Cに、タイヤ赤道面 CLに対する角度が 30度以下とされたジグザグ状の周方 向主溝 40を配置して ヽるので、周方向主溝 40で区分された陸部 58はタイヤ周方向 に連続して延び、十分に赤道方向の力、即ち、ブレーキ時の入力に対して強いパタ ーンとなっている。
[0067] 次に、トレッド 28の中でも、車体を大きく倒したときに使用する領域が、トレッドショル ダー域 28Sである。このトレッドショルダー域 28Sには、タイヤ幅方向に延びる横溝 5 0が形成されているため、パターンとしては、タイヤ周方向の力よりも横方向の力に対 して強くなつている。また、この横溝 50で区画される陸部 56の踏込み側の陸部側壁 5 6Hを溝底力も溝開口へ向けて溝幅が拡大する方向に 35度で傾斜させ、蹴り出し側 の陸部壁面 56Kよりもタイヤ径方向に対する角度を大きく設定しているので、制動力 が作用した際の陸部 56の周方向の倒れ込み変形に対して特に有効となり、該倒れ 込み変形に起因する踏込み側 (進行方向後方側)の陸部端の浮き上がりを抑制する ことができる。これにより、路面 60との接触面積が確保され、横溝 50による排水効果 と相まって、従来よりもウエット路面での旋回性能を向上させることが可能となり、乾燥 路面においても、旋回性能をも向上させることが可能となっている。
[0068] なお、踏込み側の陸部側壁 56Hの角度が 10度未満になると、倒れ込み変形に対 する効果が少なすぎる。一方、踏込み側の陸部側壁 56Hの角度が 45度を超えると、 浮き上がりを抑制する効果は上がらず頭打ちになると共に、不要に横溝 50の溝体積 を減少させてしまい、排水効果が低下する。 [0069] また、横溝 50の溝幅が 3mm未満になると、踏込み側の陸部側壁 56Hが傾斜して いるので、横溝 50の底の部分で十分な幅を取れなくなる。一方、横溝 50の溝幅が 1 Ommを超えると、横溝 50の領域が広くなり過ぎ、横溝 50で区画される陸部 56の面 積が減少してしまい、接地面積が不足してしまう。
[0070] (フロントタイヤ試験その 1)
本発明の性能を評価するために、以下に説明する室内でフラットベルト試験機を用 V、てタイヤのブレーキ性能を評価した。
[0071] 供試タイヤを以下に説明する。
(従来例のタイヤ)
図 4に示すように、踏込み側の陸部側壁 56H、及び蹴り出し側の陸部側壁 56K共 に、タイヤ半径方向に対して平行。
(実施例 1のタイヤ)
前述した実施形態のタイヤ(図 2参照)。
(実施例 2のタイヤ)
図 5に示すように、実施形態のタイヤの踏込み側の陸部側壁 56Hの角度を 15度に 変更したもの。
(実施例 3)
図 6に示すように、踏込み側の陸部側壁 56Hを、深さ方向に折り曲げたもの。踏面 カゝら深さ 3mmまでは 35度で傾斜し、深さ 3mmから溝底まではタイヤ半径方向に対 して平行となっている。
(比較例のタイヤ)
図 7に示すように、周方向主溝 40に代えて傾斜溝 62が形成されており、トレッドパ ターンが従来例、及び実施例 1〜3とは異なっている。傾斜溝 62のタイヤ赤道面に対 する角度は 65度である。なお、両方の横溝 50の間の領域においては、実施例と同じ ネガティブ率に設定してある。また、図 8に示すように、横溝 50で区画される陸部 56 の蹴り出し側の陸部側壁 56Kの角度設定と、踏込み側の陸部側壁 56Hの角度設定 とが実施例 1とは逆になつている。
[0072] 試験方法を以下に説明する。 試験に用いたフラットベルト試験機は、スチールの帯状の薄板をベルトコンベアの 様に輪とし、 2つの円筒に掛けて張力を掛けて回転を与えるものであり、上部に出来 た平坦な部分にタイヤを押し付け、タイヤを転動させながらタイヤの 6分力を測定する 装置である。このフラットベルト試験機を用いて、キャンバー角 45度、荷重 1. 5kNで タイヤを押し付け、速度 50km/hで転動させる。そして、タイヤのスリップ率を 0%に 保ち、 0%から制動方向に 30%のスリップ率を与えた時の横力 Fyと前後力 Fxを測定 した。前後力 Fxを横軸に、横力 Fyを縦軸にしてグラフを描いた結果を図 9に示す。 横軸の前後力 Fxが 0のところがスリップ率 0%で転送する状態であり、そこからスリツ プ率を加えることで前後力 Fxのマイナス成分が発生している。
[0073] 前後力 Fxが発生すると横力 Fyが低下しだし、前後力 Fxと横力 Fyはちょうど楕円の ような軌跡を描く。このときの前後力 Fxのマイナスの最小値をブレーキの限界性能と 考える。なお、フラットベルト試験機は、ドライ路面の評価を行っており、散水はしてい ない。
[0074] 以下に試験結果を示す。
なお、結果は、従来例の限界値 (前後力 Fxのマイナスの最小値)がー 1. 32Nであ り、これを指数 100として、他のタイヤの限界値を以下に示す。なお、指数の数値が 大き 、ほど性能が良 、ことを表して 、る。
[表 1]
Figure imgf000020_0001
比較例は、従来例に対してブレーキの限界性能は僅かに向上した力 ほぼ同様の 結果となった(トレッドショルダー域が使われ、トレッドショルダー域においては、陸部 の踏込み側の陸部側面 56Hの角度が同じため。 )
実施例 実施例 2、及び実施例 3のタイヤは、従来例に対し、ブレーキの限界性能 が約 3〜5%向上していた。 [0075] (フロントタイヤ試験その 2)
ウエット性能改善効果を確かめるために、実車を用いたウエット路面での操縦性能 比較試験をした結果を以下に説明する。フロント用の供試タイヤ (フロントタイヤ試験 その 1で用いたものと同じもの)を用意し、フロントのみのタイヤを交換して実車試験を 行った。リアのタイヤは常に従来のもので固定した。
[0076] 試験は、供試タイヤを lOOOccのスポーツタイプの二輪車の前輪に装着して、小雨 の日にテストコースでかなり激しい(限界に近い)実車走行を行った。雨量は終日安 定しており、常に均一なウエット状態であった。 1つのタイヤについて、テストコースを 4周走行し、 4周の平均ラップタイムを求めた。また、テストライダーのフィーリングによ るウエット時の操縦安定性能を 10点法で同時に総合評価した。また、テストライダー の評価コメントも付記して結果を示す。さらに、ドライ操縦安定性についても確認する ため、別の晴れた日に同じテストコースをライダーに走行してもらい、同じく 4周の平 均ラップタイムとライダーのコメントを聞き出し、併記する。
[0077] 以下に、試験結果を示す。
(従来例のタイヤ)
ウエットラップタイム: 53秒 7
ウエット走行評点: 6点
ライダーのコメント(ウエット路面):直進時力もブレーキを掛けたとき、車体が直立し ているときは良いが、車体を倒してブレーキを掛けるとトレッドの弱さを感じる。限界が 低いように感じた。
ドライラップタイム: 45秒 7
ドライ走行評点: 6点
ライダーのコメント(ドライ路面):車体を傾けてブレーキを掛けるとトレッドが弱く感じ る。
[0078] (実施例 1のタイヤ)
ウエットラップタイム: 52秒 7
ウエット走行評点: 8点
ライダーのコメント(ウエット路面):ブレーキ性能が飛躍的に向上した。良くグリップ している。但し、水溜りが深い部分を走行すると、少しノ、イド口プレーニングする傾向 がある。
ドライラップタイム: 44秒 1
ドライ走行評点: 9点
ライダーのコメント(ドライ路面):ブレーキをしつ力り掛けられる。制動性能が高い。 非常に良い。
[0079] (実施例 2のタイヤ)
ウエットラップタイム: 52秒 4
ウエット走行評点: 9点
ライダーのコメント(ウエット路面):ブレーキ性能が従来例よりも良い。実施例 1に比 ベて水溜りの上でハイドロプレーニングしにくい。
ドライラップタイム: 45秒 0
ドライ走行評点: 8点
ライダーのコメント(ドライ路面):ブレーキ性能が従来例よりも良い。実施例 1には及 ばない。
[0080] (実施例 3のタイヤ)
ラップタイム: 52秒 3
ウエット走行評点: 9点
ライダーのコメント(ウエット路面):ブレーキ性能が従来例よりも良い。実施例 1に比 ベて水溜りの上でハイドロプレーニングしにくい。
ドライラップタイム: 45秒 1
ドライ走行評点: 8点
ライダーのコメント(ドライ路面):ブレーキ性能が従来例よりも良い。実施例 1には及 ばない。
[0081] (比較例のタイヤ)
ゥェッ卜ラップタイム: 54禾少 7
ウエット走行評点: 4点
ライダーのコメント:直進時にブレーキを掛けたときにトレッドが非常に弱ぐバイクが 止まらない感じ。倒しながらのブレーキにおいても、限界が低いように感じた。
[0082] 効果の検証。
以上のように、濡れた路面においても、今回の発明の効果が実証された。 実施例 1と実施例 3は、ノ、イド口プレーニング現象が起こった。陸部側壁に角度をつ け過ぎると、溝の体積が減少して排水効果が低下し、水深の深い水溜りでタイヤが滑 りやすくなるようである。実施例 1と実施例 2は、陸部の倒れ込みという点では実施例 1の方が優れている力 排水性能は実施例 2の方が優れている。ウエット性能は、陸 部側壁の角度と排水性能の両面でタイヤ設計を行う必要があることが分力る。
[0083] 実施例 2と実施例 3は、ほぼ同じ性能だった。しかし、ドライ性能に関しては、陸部 側壁角度をつけた実施例 1の方が実施例 2や実施例 3よりも良好である。
実施例 1と比較例の比較をすれば明らかだ力 本発明のようにブレーキに対して有 効に働く部分に角度をつけないと意味が無い。また、比較例との比較から、センター 部分に配置する溝は、赤道方向に沿ったものが有効であることが分力る。
[0084] [第 2の実施形態]
次に、本発明の二輪車の後輪用空気入りタイヤの一実施形態を図 10乃至図 12に したがって説明する。なお、第 1の実施形態と同一構成には同一符号を付し、その説 明は省略する。
[0085] 本実施形態の後輪用空気入りタイヤ 11は、タイヤサイズが 190Z50ZR17である。
図 10に示すように、本実施形態の後輪用空気入りタイヤ 11は、カーカス 16のタイ ャ半径方向外側にスパイラルベルト層 22が配置されている。
[0086] 本実施形態のスパイラルベルト層 22は、直径 0. 3mmのスチールの単線を 2本撚 つたコードを未加硫のコーティングゴムで被覆した長尺状のゴム被覆コードを、打ち 込み間隔 70本 Z50mmでスパイラル状に巻き回すことにより形成されている。なお、 カーカス 16のタイヤ半径方向外側には、主交錯層は無ぐスパイラルベルト層 22の みが配置されている。
[0087] (トレッドパターン)
図 11〖こ示すよう〖こ、トレッド 28には、タイヤ赤道面 CLの両側に、それぞれ周方向に 延びる、溝幅が 7mmの直線状の周方向主溝 41が 2本形成されている。さら〖こ、トレツ ド 28には、タイヤ幅方向外側の周方向主溝 41からタイヤ幅方向外側に離間した位 置からトレッド端 28Eに向けて溝幅が 3. 5mmの傾斜溝 51が形成されて!、る。
[0088] 本実施形態のトレッド 28の展開幅 TWは、 240mmである。傾斜溝 51は、トレッド端 28E力もタイヤ赤道面側へ 65mmの範囲内に形成されている。傾斜溝 51は、タイヤ 赤道面側がトレッド端側よりもタイヤ回転方向側 (矢印 A方向側)とはるように傾斜して おり、タイヤ周方向に対する角度は 60度である。
傾斜溝 51で区切られる陸部 56の幅は、本実施形態ではトレッド端 28Eで 10mmに 設定されている。また、周方向主溝 41、及び傾斜溝 51の溝深さは、本実施形態では 全て 6mmである。
[0089] 図 12に示すように、本実施形態では、傾斜溝 51で区切られる陸部 56の踏込み側 の陸部壁面 56Hは、タイヤ径方向に沿って平行である。一方、陸部 56の蹴り出し側 の陸部壁面 56Kは、溝底から溝開口へ向けて溝幅が拡大する方向に一定角度で傾 斜している。なお、蹴り出し側の陸部壁面 56Kは、本実施形態ではタイヤ径方向に 対して 35度で傾斜して 、る。
[0090] (作用)
次に、本実施形態の後輪用空気入りタイヤ 11の作用を説明する。
本実施形態の後輪用空気入りタイヤ 11は、二輪車の後輪に用いられる。 後輪用空気入りタイヤ 11には、車体が完全に直立している場合だけでなぐ僅かに 傾いている場合も殆ど横力は加わらず、前後方向の力が主体となる。本実施形態の 後輪用空気入りタイヤ 11は、トレッド 28の展開幅 TWの 40%の領域であるトレッド中 央域 28Cに、タイヤ赤道面 CLに沿って直線状に延びる周方向主溝 41を配置して ヽ るので、周方向主溝 41で区分された陸部 58はタイヤ周方向に連続して直線状に延 び、十分に赤道方向の力、即ち、トラクシヨン時の入力に対して強いパターンとなって いる。
[0091] 次に、トレッド 28の中でも、車体を大きく倒したときに使用する領域が、トレッドショル ダー域 28Sである。このトレッドショルダー域 28Sには、タイヤ赤道面側がトレッド端側 よりもタイヤ回転方向側 (矢印 A方向側)となるように傾斜した傾斜溝 51が形成されて いるため、パターンとしては、タイヤ周方向(トラクシヨン)と横方向の力に対して強くな つている。
[0092] また、この傾斜溝 51で区画される陸部 56の蹴り出し側の陸部側壁 56Kを溝底から 溝開口へ向けて溝幅が拡大する方向に 35度で傾斜させ、踏込み側の陸部壁面 56 Hよりもタイヤ径方向に対する角度を大きく設定しているので、トラクシヨンが作用した 際の陸部 56の周方向の倒れ込み変形に対して特に有効となり、該倒れ込み変形に 起因する蹴り出し側の陸部端の浮き上がりを抑制することができる。これにより、路面 との接触面積が確保され、傾斜溝 51による排水効果と相まって、従来よりもウエット 路面での旋回性能を向上させることが可能となり、乾燥路面においても、旋回性能を も向上させることが可能となっている。
[0093] なお、蹴り出し側の陸部側壁 56Kの角度が 10度未満になると、倒れ込み変形に対 する効果が少なすぎる。一方、蹴り出し側の陸部側壁 56Kの角度が 45度を超えると 、浮き上がりを抑制する効果は上がらず頭打ちになると共に、不要に傾斜溝 51の溝 体積を減少させてしまい、排水効果が低下する。
[0094] また、傾斜溝 51の溝幅が 3mm未満になると、蹴り出し側の陸部側壁 56Kが傾斜し ているので、傾斜溝 51の底の部分で十分な幅を取れなくなる。一方、傾斜溝 51の溝 幅が 10mmを超えると、傾斜溝 51の領域が広くなり過ぎ、傾斜溝 51で区画される陸 部 56の面積が減少してしま 、、接地面積が不足してしまう。
[0095] (リアタイヤ試験)
本発明の性能改善効果を確かめるために、実車を用いたウエット路面での操縦性 能比較試験をした結果を以下に説明する。リア用の供試タイヤを用意し、リアのみの タイヤを交換して実車試験を行った。フロントのタイヤは常に従来のもので固定した。
[0096] 試験は、供試タイヤを lOOOccのスポーツタイプの二輪車の後輪に装着して、小雨 の日にテストコースでかなり激しい(限界に近い)実車走行を行った。雨量は終日安 定しており、常に均一なウエット状態であった。 1つのタイヤについて、テストコースを 4周走行し、 4周の平均ラップタイムを求めた、なお、これらのタイヤのセンター部分は 同じパターンであったため、違いが出たのはコーナーでの旋回性能であった。また、 テストライダーのフィーリングによるウエット時の操縦安定性能を 10点法で同時に総 合評価した。また、テストライダーの評価コメントも付記して結果を示す。 [0097] 先ず、供試タイヤに付いて説明する。
(実施例のタイヤ)
図 11のパターン、及び図 12の陸部断面形状を有する前述した第 2の実施形態の タイヤである(ショルダー側の陸部 56の蹴り出し側の陸部側壁 56K力タイヤ径方向に 対して 25度で傾斜し、踏込み側の陸部側壁 56Hがタイヤ半径方向に沿って平行。 )
(従来例のタイヤ)
実施例と同じパターンを有するが、図 13に示すように、傾斜溝 51で区画される陸部 56の断面形状が異なる。ショルダー側の陸部 56の蹴り出し側の陸部側壁 56Kと、踏 込み側の陸部側壁 56Hは、何れもタイヤ径方向に沿って平行 (踏面に対して垂直)。 (比較例のタイヤ)
実施例と同じパターンを有するが、図 14に示すように、傾斜溝 51で区画される陸部 56の断面形状が異なる。ショルダー側の陸部 56の蹴り出し側の陸部側壁 56Kはタ ィャ径方向に沿って平行であり、踏込み側の陸部側壁 56Hがタイヤ半径方向に対し て 25度で傾斜している。即ち、断面形状が実施例とは逆になつている。
[0098] 以下に、試験結果を示す。
(従来例のタイヤ)
ウエットラップタイム: 53秒 7
ウエット走行評点: 6点
ライダーのコメント:トラクシヨン時にタイヤが滑りやす 、。特に大きく倒した状態から のトラクシヨンでトレッドが動き易ぐかつ滑り易ぐアクセルを開けるときに慎重な操作 が必要と感じる。
[0099] (比較例のタイヤ)
ウエットラップタイム: 54秒 1
ウエット走行評点:5点
ライダーのコメント:従来例と同じで、トラクシヨン時にタイヤが滑りやすい。
[0100] (実施例のタイヤ)
ウエットラップタイム: 52秒 1 ウエット走行評点: 8点
ライダーのコメント:トラクシヨンがしつ力り掛かる。アクセルを思い切って開けても、タ ィャがしつ力りとしている。
[0101] 効果の検証。実施例は、従来例よりも明らかにウエット操縦安定性能(トラクシヨン) が高力 た。また、比較のために準備した比較例のタイヤは、トラクシヨン性能は従来 例とあまり変わらな力つた。陸部側壁の傾斜方向の違 、がこれらを生じさせた。
本発明を有する実施例のタイヤは、従来例、及び比較例のタイヤと比較し、大幅な ウエット操縦安定性能の向上が確認された。
[0102] [その他の実施形態]
なお、前輪用空気入りタイヤ 10の踏込み側の陸部側壁 56Hは、図 3に示すように 全体的に一定角度で傾斜していても良ぐ図 6に示すように途中で 1回折れ曲がって いても良ぐ図示はしないが複数回折れ曲がつていても良ぐまた、曲線状であっても 良い。ここで、図 16に示すように、溝深さ(=陸部高さ)を Dとしたときに、陸部側壁 56 Hの中でも、踏面力も溝底側へ Dの 50%までの間の平均の傾斜角度 Θ hを、蹴り出 し側の陸部側壁 56Kの傾斜角(溝底〜踏面までの平均値) Θ kよりも大きく設定する 必要がある。さらに、傾斜角度 Θ hは、傾斜角 Θ kよりも 10度以上大きく設定すること が好ましぐ 20度以上大きく設定することがより好ましい。踏面から溝底側へ Dの 50 %の位置〜溝底までの間は、タイヤ径方向に対して 0度以上であれば良い。なお、 後輪用空気入りタイヤ 10の陸部側壁においても、前輪用空気入りタイヤ 10と同様の 技術思想に基づき傾斜角度の設定を行うのは勿論である (踏込み側の陸部側壁 56 Hと蹴り出し側の陸部側壁 56Kの傾斜角のつけ方が前輪用空気入りタイヤ 10に対し て逆。)。
産業上の利用可能性
[0103] 以上説明したように本発明の二輪車の前輪用空気入りタイヤによれば、ウエット路 面での旋回性能を向上することができ、さらに、乾燥路面での旋回性能をも向上する ことが可能となった。
[0104] また、本発明の二輪車の後輪用空気入りタイヤによれば、ウエット路面での旋回性 能を向上することができ、さらに、乾燥路面での旋回性能をも向上することができるこ とが可能となった。

Claims

請求の範囲
[1] トレッドに複数の溝で区画された複数の陸部を有する二輪車の前輪用空気入りタイ ャであって、
タイヤ赤道面を中心としてトレッドの展開幅の 40%の領域をトレッド中央域、前記ト レッドの端部力 タイヤ赤道面側へ前記展開幅の 20%の位置までをトレッドショルダ 一城としたときに、
前記トレッド中央域には、タイヤ赤道面に対する角度が 0〜30度の範囲内に設定さ れた溝が配置され、
前記トレッドショルダー域には、タイヤ赤道面に対する角度が 45〜90度の範囲内 に設定された溝が配置され、
前記トレッドショルダー域にぉ 、て、前記溝によって区画される陸部の蹴り出し側の 陸部壁面はタイヤ径方向に沿って平行、又は溝底力 溝開口へ向けて溝幅が拡大 する方向に傾斜しており、前記陸部の踏込み側の陸部壁面は、溝底から溝開口へ 向けて溝幅が拡大する方向に傾斜し、少なくとも踏面側の部分が蹴り出し側の陸部 壁面よりもタイヤ径方向に対する角度が大きく設定されていると共に、タイヤ径方向に 対する角度が 10〜45度の範囲内に設定されている、ことを特徴とする二輪車の前輪 用空気入りタイヤ。
[2] 前記陸部の蹴り出し側の陸部壁面は、タイヤ径方向に対して 20度以下の角度で傾 斜している、ことを特徴とする請求項 1に記載の二輪車の前輪用空気入りタイヤ。
[3] 前記トレッドショルダー域に配置される前記溝の溝幅は、 3〜: LOmmの範囲内に設定 されている、ことを特徴とする請求項 1または請求項 2に記載の二輪車の前輪用空気 入りタイヤ。
[4] トレッドに複数の溝で区画された複数の陸部を有する二輪車の後輪用空気入りタイ ャであって、
タイヤ赤道面を中心としてトレッドの展開幅の 40%の領域をトレッド中央域、前記ト レッドの端部力 タイヤ赤道面側へ前記展開幅の 20%の位置までをトレッドショルダ 一城としたときに、
前記トレッド中央域には、タイヤ赤道面に対する角度が 0〜30度の範囲内に設定さ れた溝が配置され、
前記トレッドショルダー域には、タイヤ赤道面に対する角度が 45〜90度の範囲内 に設定された溝が配置され、
前記トレッドショルダー域にぉ 、て、前記溝によって区画される陸部の踏込み側の 陸部壁面はタイヤ径方向に沿って平行、又は溝底力 溝開口へ向けて溝幅が拡大 する方向に傾斜しており、前記陸部の蹴り出し側の陸部壁面は、溝底から溝開口へ 向けて溝幅が拡大する方向に傾斜し、少なくとも踏面側の部分が踏込み側の陸部壁 面よりもタイヤ径方向に対する角度が大きく設定されていると共に、タイヤ径方向に対 する角度が 10〜45度の範囲内に設定されている、ことを特徴とする二輪車の後輪用 空気入りタイヤ。
[5] 前記陸部の踏込み側の陸部壁面は、タイヤ径方向に対して 20度以下の角度で傾斜 している、ことを特徴とする請求項 4に記載の二輪車の後輪用空気入りタイヤ。
[6] 前記トレッドショルダー域に配置される前記溝の溝幅は、 3〜: LOmmの範囲内に設定 されている、ことを特徴とする請求項 4または請求項 5に記載の二輪車の後輪用空気 入りタイヤ。
PCT/JP2006/319692 2005-10-03 2006-10-02 二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ WO2007040200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES06811040T ES2386463T3 (es) 2005-10-03 2006-10-02 Cubierta neumática para rueda delantera de motocicleta y cubierta neumática para rueda trasera de motocicleta
EP06811040A EP1946942B1 (en) 2005-10-03 2006-10-02 Pneumatic tire for front wheel of bicycle, and pneumatic tire for rear wheel of bicycle
US12/089,151 US20100147427A1 (en) 2005-10-03 2006-10-02 Pneumatic tire for front wheel of motorcycle, and pneumatic tire for rear wheel of motorcycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-290290 2005-10-03
JP2005290290A JP4814603B2 (ja) 2005-10-03 2005-10-03 二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2007040200A1 true WO2007040200A1 (ja) 2007-04-12

Family

ID=37906241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319692 WO2007040200A1 (ja) 2005-10-03 2006-10-02 二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ

Country Status (6)

Country Link
US (1) US20100147427A1 (ja)
EP (1) EP1946942B1 (ja)
JP (1) JP4814603B2 (ja)
CN (1) CN101277829A (ja)
ES (1) ES2386463T3 (ja)
WO (1) WO2007040200A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028165A1 (ja) * 2007-08-27 2009-03-05 Sumitomo Rubber Industries, Ltd. 自動二輪車用タイヤ対
JP2016057233A (ja) * 2014-09-11 2016-04-21 住友ゴム工業株式会社 タイヤのハイドロプレーニング性能評価方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8056593B2 (en) * 2007-10-26 2011-11-15 Chemtura Corporation Non-pneumatic tire
US8061398B2 (en) * 2008-02-25 2011-11-22 Chemtura Corporation Non-pneumatic tire having angled tread groove wall
JP4580437B2 (ja) * 2008-06-17 2010-11-10 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5193166B2 (ja) * 2009-12-08 2013-05-08 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5760337B2 (ja) * 2010-06-18 2015-08-05 横浜ゴム株式会社 空気入りタイヤ
FR2964600B1 (fr) * 2010-09-09 2014-08-22 Michelin Soc Tech Bande de roulement pour pneumatique
FR2966772B1 (fr) * 2010-10-29 2015-01-02 Mavic Sas Pneumatique et roue pour cycle.
JP6438344B2 (ja) * 2015-05-01 2018-12-12 住友ゴム工業株式会社 自動二輪車用空気入りタイヤ
TWI690434B (zh) * 2019-04-12 2020-04-11 正新橡膠工業股份有限公司 可加強排水性能之輪胎

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174905U (ja) * 1986-04-28 1987-11-06
JPH02133206A (ja) * 1988-11-11 1990-05-22 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JPH07329514A (ja) * 1994-06-15 1995-12-19 Bridgestone Corp トレッド耐久性にすぐれる2輪車用空気入りタイヤ
JPH1067207A (ja) * 1996-07-29 1998-03-10 Pirelli Coordinamento Pneumatici Spa 二輪車用のタイヤ
JPH1081111A (ja) * 1996-07-29 1998-03-31 Pirelli Coordinamento Pneumatici Spa 二輪車用のタイヤ
JPH11208218A (ja) 1998-01-23 1999-08-03 Bridgestone Corp 二輪自動車用空気入りタイヤ
JP2003211917A (ja) 2002-01-18 2003-07-30 Bridgestone Corp 二輪車用空気入りタイヤ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537189B2 (ja) * 1985-10-25 1996-09-25 株式会社東芝 永久磁石
FR2669274A1 (fr) * 1990-11-15 1992-05-22 Michelin & Cie Bande de roulement d'enveloppe de pneumatique a carcasse radiale pour vehicules poids-lourds.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174905U (ja) * 1986-04-28 1987-11-06
JPH02133206A (ja) * 1988-11-11 1990-05-22 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JPH07329514A (ja) * 1994-06-15 1995-12-19 Bridgestone Corp トレッド耐久性にすぐれる2輪車用空気入りタイヤ
JPH1067207A (ja) * 1996-07-29 1998-03-10 Pirelli Coordinamento Pneumatici Spa 二輪車用のタイヤ
JPH1081111A (ja) * 1996-07-29 1998-03-31 Pirelli Coordinamento Pneumatici Spa 二輪車用のタイヤ
JPH11208218A (ja) 1998-01-23 1999-08-03 Bridgestone Corp 二輪自動車用空気入りタイヤ
JP2003211917A (ja) 2002-01-18 2003-07-30 Bridgestone Corp 二輪車用空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1946942A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028165A1 (ja) * 2007-08-27 2009-03-05 Sumitomo Rubber Industries, Ltd. 自動二輪車用タイヤ対
JP2009051331A (ja) * 2007-08-27 2009-03-12 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ対
JP2016057233A (ja) * 2014-09-11 2016-04-21 住友ゴム工業株式会社 タイヤのハイドロプレーニング性能評価方法

Also Published As

Publication number Publication date
CN101277829A (zh) 2008-10-01
EP1946942A4 (en) 2008-12-03
EP1946942A1 (en) 2008-07-23
JP2007099042A (ja) 2007-04-19
US20100147427A1 (en) 2010-06-17
JP4814603B2 (ja) 2011-11-16
EP1946942B1 (en) 2012-05-23
ES2386463T3 (es) 2012-08-21

Similar Documents

Publication Publication Date Title
WO2007040200A1 (ja) 二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ
JP4800709B2 (ja) 二輪車用空気入りタイヤ
JP4837969B2 (ja) 二輪車用空気入りタイヤ
JP4814980B2 (ja) 不整地走行用の空気入りタイヤ
JP4841215B2 (ja) 二輪車用空気入りタイヤ
JP4040893B2 (ja) スクーター用空気入りラジアルタイヤおよびスクーター
JP4287877B2 (ja) 不整地走行用の空気入りタイヤ
TW201141721A (en) Tire for motorcycle for irregular ground traveling
WO2007023902A1 (ja) 二輪車用空気入りタイヤ
WO2011080565A1 (en) Pneumatic tire for on road and off road use
JP5410517B2 (ja) 自動二輪車用タイヤ
JPH07108604B2 (ja) 二輪車用空気入りタイヤ
US8322388B2 (en) On/off-road tire for a motor vehicle
JP3035172B2 (ja) ラジアルタイヤ
JP4580312B2 (ja) 二輪車用空気入りタイヤ
JP2003306011A (ja) モーターサイクル用タイヤ
JP4814582B2 (ja) 二輪車用空気入りタイヤ
JPH04283106A (ja) カート用ラジアルタイヤの組合せ構造
JP2007084025A (ja) 二輪車用空気入りタイヤ
JP3377262B2 (ja) 自動二輪車用空気入りタイヤ
JP2004189193A (ja) Atv用ラジアルタイヤ
JPS6123446Y2 (ja)
JPS6033104A (ja) 不整地走行車両用空気入りタイヤ
JP4714464B2 (ja) 二輪車用空気入りラジアルタイヤ
JP3182344B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036826.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12089151

Country of ref document: US