WO2007023746A1 - 半導体ウェハ用搬送トレイ - Google Patents

半導体ウェハ用搬送トレイ Download PDF

Info

Publication number
WO2007023746A1
WO2007023746A1 PCT/JP2006/316259 JP2006316259W WO2007023746A1 WO 2007023746 A1 WO2007023746 A1 WO 2007023746A1 JP 2006316259 W JP2006316259 W JP 2006316259W WO 2007023746 A1 WO2007023746 A1 WO 2007023746A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
region
tray
base portion
transfer tray
Prior art date
Application number
PCT/JP2006/316259
Other languages
English (en)
French (fr)
Inventor
Akiko Kamigori
Masami Yakabe
Takanori Hyakudomi
Masato Hayashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007023746A1 publication Critical patent/WO2007023746A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Definitions

  • the present invention relates to a semiconductor wafer transfer tray, and more particularly to a semiconductor wafer transfer tray for transferring a semiconductor wafer formed with a microstructure such as MEMS (Micro Electro Mechanical Systems).
  • MEMS Micro Electro Mechanical Systems
  • MEMS which is a device that integrates various functions such as mechanical / electronic 'optical' chemistry, especially using semiconductor microfabrication technology
  • MEMS technology that has been put into practical use, MEMS devices have been mounted on accelerometers, pressure sensors, airflow sensors, etc., which are microsensors, for example, as various sensors for automobiles and medical use.
  • MEMS technology for inkjet printer heads, it is possible to increase the number of nozzles that eject ink and to accurately eject ink, thereby improving image quality and increasing printing speed.
  • a micromirror array or the like used for a reflection type projector is also known as a general MEMS device.
  • Non-Patent Document 1 Technology Research Report No. 3 (issued by the Ministry of Economy, Trade and Industry, Industrial Technology and Environment Bureau, Technology Research Office, Manufacturing Industries Bureau, Industrial Machinery Division, March 28, 2003)
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a transport tray for a semiconductor wafer capable of stably transporting a semiconductor wafer on which a MEMS device is molded.
  • a transport tray for a semiconductor wafer according to the present invention is a transport tray for a semiconductor wafer on which a semiconductor wafer on which at least one microstructure having a movable portion is formed is placed, and the semiconductor wafer is offset.
  • a mechanism for preventing misalignment is provided on the front surface side on which the semiconductor wafer is placed, and a base portion is provided on the back surface side that is vacuum-sucked during transport.
  • the base portion has a penetrating portion provided in the peripheral region where the microstructure of the semiconductor wafer is not molded.
  • the semiconductor wafer is vacuum-adsorbed together with the base portion through the penetration portion.
  • the semiconductor wafer has a hole.
  • a holding projection that is provided on the surface side of the base and that fits into a hole that forms the misalignment prevention mechanism is further provided.
  • the hole is provided in a region where the microstructure is not molded.
  • the semiconductor wafer has a plurality of holes.
  • the base further includes a plurality of holding projections provided corresponding to the plurality of holes, respectively.
  • the cross sections of the hole and the holding protrusion are formed in a polygonal shape.
  • the surface side of the base portion is provided so as to face a region inside the peripheral region of the semiconductor wafer where the microstructure is not molded, and has a saddle region having a predetermined depth that is formed into a concave shape by sanding.
  • the saddle region formed on the surface side of the base portion is provided opposite to the region where the movable portion of the microstructure is formed on the semiconductor wafer.
  • At least one micro structure having a movable portion provided with a penetrating region serving as a movable region is molded, and the hole portion is formed by a step of forming the penetrating region. Molded at the same time.
  • the transport tray for a semiconductor wafer is larger than a region where a micro structure smaller than the semiconductor wafer is formed.
  • the semiconductor wafer transport tray is vacuum-sucked along the shape of a vacuum suction guide for performing vacuum suction.
  • the back surface of the base has a recess provided corresponding to the vacuum suction guide in order to widen the suction area to be vacuum-sucked between the vacuum suction guide and the back surface.
  • the apparatus further includes an outer wall portion that is connected to the base portion and constitutes a displacement prevention mechanism provided along at least a partial region of the outer peripheral end portion of the semiconductor wafer on a surface on which the semiconductor wafer is placed.
  • the surface side of the base portion is provided opposite to a region on the inner side of the peripheral region of the semiconductor wafer on which the microstructure is not molded, and is a saddle region having a predetermined depth that is formed into a concave shape by the saddle processing.
  • the saddle region formed on the surface side of the base portion is provided to face the region where the movable portion of the microstructure is formed on the semiconductor wafer.
  • the semiconductor wafer has an orientation flat or notch region
  • the outer wall is the orientation flat of the semiconductor wafer or the outer peripheral edge of the notch area Are provided corresponding to at least a part of.
  • Another semiconductor wafer transport tray is a semiconductor wafer transport tray on which a semiconductor wafer on which at least one microstructure having a movable portion is formed is placed, and the semiconductor wafer is It is bonded to a glass substrate provided between the semiconductor wafer transfer tray and transferred via the glass substrate.
  • the transport tray for a semiconductor wafer includes a base portion in which a porous layer is provided on the front side on which a semiconductor wafer is placed via a glass substrate, and the back side is vacuum-sucked during transport.
  • the base has a through hole that reaches the porous layer.
  • the semiconductor wafer is vacuum-adsorbed together with the base through the porous layer.
  • the semiconductor wafer transport tray is provided with a misalignment prevention mechanism for preventing misalignment of the semiconductor wafer on a surface side on which the semiconductor wafer is placed.
  • the semiconductor wafer and the glass substrate have holes.
  • the base has a holding projection that fits into the hole that forms the misalignment prevention mechanism.
  • the hole is provided in a region where the microstructure is not molded.
  • the semiconductor wafer and the glass substrate have a plurality of holes.
  • the base has a plurality of holding projections provided corresponding to the plurality of holes, respectively.
  • the cross sections of the hole and the holding projection are formed in a polygonal shape.
  • At least one micro structure having a movable portion provided with a penetrating region serving as a movable region is molded, and the hole is formed simultaneously by the step of forming the penetrating region.
  • the semiconductor wafer transport tray is smaller than the semiconductor wafer and the glass substrate and larger than the region where the microstructure is formed.
  • a misalignment prevention mechanism is provided that is connected to the base portion and provided along at least a partial region of the outer peripheral end portion of the semiconductor wafer and the glass substrate on a surface on which the semiconductor wafer is placed via the glass substrate.
  • An outer wall portion is further provided.
  • the semiconductor wafer and the glass substrate have an orientation flat or a notch region.
  • the outer wall portion is provided corresponding to at least a part of the orientation flat of the semiconductor wafer or the outer peripheral end portion of the notch region.
  • the porous layer is nanocrystalline silicon. The invention's effect
  • a transport tray for a semiconductor wafer according to the present invention includes a base portion on which a misalignment prevention mechanism for preventing misalignment of a semiconductor wafer is provided on a front surface side on which a semiconductor wafer is placed, and a back surface is vacuum-sucked during transport.
  • the base portion since the base portion has a penetrating region, it is possible to stably transport the semiconductor wafer while preventing the shift of the semiconductor wafer.
  • the transport tray for a semiconductor wafer according to the present invention vacuum-sucks the glass substrate bonded to the semiconductor wafer via the porous layer. With this configuration, even when the semiconductor wafer has a penetrating region, it is possible to stably adsorb the semiconductor wafer while preventing the semiconductor wafer from shifting.
  • FIG. 1 is a diagram illustrating an inspection device 30 according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating an inspection unit 36.
  • FIG. 3 is a diagram for explaining a transport tray for a semiconductor wafer according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a case where the wafer is transferred to the wafer holding mechanism 35 by the transfer arm 32.
  • FIG. 5 is a diagram for explaining a part of the wafer holding mechanism 35.
  • FIG. 6 is a diagram illustrating a case where the tray 2 is adsorbed by the vacuum pump 18.
  • FIG. 7 is a view of the 3-axis acceleration sensor as viewed from the top surface of the device.
  • FIG. 8 is a schematic view of a three-axis acceleration sensor.
  • FIG. 9 is a conceptual diagram for explaining deformation of a heavy cone and a beam when subjected to acceleration in each axis direction.
  • FIG. 10 is a circuit configuration diagram of a Wheatstone bridge provided for each axis.
  • FIG. 11 is a diagram illustrating a semiconductor wafer transfer tray 2 # according to the first modification of the first embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a plurality of chips TP formed on a general semiconductor wafer 1.
  • FIG. 13 is a diagram illustrating another semiconductor wafer transport tray 2 # a according to the first modification of the first embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a semiconductor wafer transfer tray according to a second modification of the first embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a semiconductor wafer transfer tray corresponding to an orientation flat type wafer.
  • FIG. 16 is a diagram illustrating a semiconductor wafer transfer tray corresponding to an orientation flat type wafer according to a fourth modification of the first embodiment of the present invention.
  • FIG. 17 is a diagram illustrating a semiconductor wafer 10 according to a second embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a semiconductor wafer transfer tray according to a second embodiment of the present invention.
  • FIG. 19 is a diagram for explaining an outline of a process for molding the triaxial acceleration sensor described in FIGS. 7 and 8.
  • FIG. 20 is a diagram illustrating another semiconductor wafer 10 # according to the second embodiment of the present invention.
  • FIG. 21 is a diagram illustrating a semiconductor wafer transport tray 27 according to a first modification of the second embodiment of the present invention.
  • FIG. 22 is a diagram illustrating another semiconductor wafer transfer tray according to the first modification of the second embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a case where a membrane structure is used for an irradiation window of an electron beam irradiator.
  • FIG. 24 is a schematic diagram of a triaxial acceleration sensor different from the triaxial acceleration sensor described in FIG.
  • FIG. 25 is a diagram illustrating a semiconductor wafer transfer tray 2 #p according to the third embodiment of the present invention.
  • FIG. 26 is a diagram illustrating a semiconductor wafer transfer tray 2 #q according to the first modification of the third embodiment of the present invention.
  • FIG. 27 is a diagram illustrating a semiconductor wafer transport tray 26 # according to the second modification of the third embodiment of the present invention.
  • FIG. 28 is a diagram for explaining the outline of the process for molding the semiconductor wafer transfer tray described in FIG. 27;
  • FIG. 29 is a diagram illustrating a semiconductor wafer transfer tray according to a fourth embodiment of the present invention.
  • FIG. 30 is a diagram for explaining the generation of a porous layer NCS.
  • FIG. 1 is a diagram for explaining an inspection apparatus 30 according to the first embodiment of the present invention.
  • inspection apparatus 30 has a rotor section 33 having a transfer arm 32 that transfers a semiconductor wafer (hereinafter also simply referred to as a wafer) that is an object to be inspected.
  • the inspection unit 36 and the wafer holding mechanism 35 constitute a main part.
  • the transfer arm 32 disposed in the rotor unit 33 is formed by an articulated link mechanism that can rotate in the horizontal direction and move in the vertical direction, and is capable of accommodating a plurality of wafers.
  • the wafer taken out from the set (not shown) is transported to the wafer holding mechanism 35 together with a semiconductor wafer transport tray, which will be described later, and the wafer inspected by the inspection unit 36 is transported again to the cassette.
  • RU semiconductor wafer
  • the wafer taken out from the cassette by the transfer arm 32 is placed on a semiconductor wafer transfer tray (hereinafter also simply referred to as a tray), which will be described later, and is transferred to the chuck 34 of the wafer holding mechanism 35 together with the tray.
  • the wafer holding mechanism 35 maintains this state and transports it to the inspection unit 36.
  • the position of the wafer transferred by the position detection camera 38 of the alignment device 37 is detected. Based on the detected position information, alignment is executed, and position adjustment for bringing a probe needle, which will be described later, into contact with a desired test pad of a device formed on the wafer is performed.
  • FIG. 2 is a schematic configuration diagram illustrating the inspection unit 36.
  • probe card 50 with probe needle 51 attached is connected to test head 55.
  • the test head 55 includes electrical equipment (not shown) such as an inspection power source applied to the wafer, an electrode pad pattern output unit, and an input unit for taking in the output of the electrode pad into the measurement unit. Formed with a self-supporting columnar body! Speak.
  • the wafer holding mechanism 35 includes a vacuum pump 18 that is a suction means connected to the chuck 34 via a flexible pipe 17.
  • the wafer and the semiconductor wafer transport tray are vacuum-sucked by the chuck 34 by the vacuum pump 18, and the state is maintained and inspected.
  • FIG. 3 is a diagram illustrating a semiconductor wafer transfer tray according to the first embodiment of the present invention.
  • FIG. 3 (a) shows the upper force of semiconductor wafer transfer tray 2 according to the first embodiment of the present invention.
  • the semiconductor wafer transfer tray 2 is formed according to the outer diameter of the wafer so as to cover the wafer 1, and is formed in a shape capable of holding the semiconductor wafer. It has been done.
  • the transfer tray 2 for a semiconductor wafer is formed in the same disk shape as the wafer having an outer diameter larger than that corresponding to the outer diameter of the wafer.
  • FIG. 3 (b) is a cross-sectional view of the lateral force when the semiconductor wafer transport tray 2 according to the first embodiment of the present invention is cut.
  • a disk-shaped base portion 2c on which the wafer is placed is connected to the base portion 2c so as to have a concave shape for the purpose of fixing the semiconductor wafer.
  • the inner peripheral surface of the outer wall 2b is provided along the shape of the semiconductor wafer, and is designed to be held when the semiconductor wafer is placed.
  • the base portion 2c has a surface on which the semiconductor wafer is placed, which is provided according to the outer diameter of the semiconductor wafer, and a back surface for vacuum suction during transportation.
  • this semiconductor wafer transfer tray is made of quartz (crystal), polyimide resin, PEEK, engineering plastics such as cerazole, ceramic (for example, alumina (Al 2 O 3),
  • Nitride (BN, PBN)), quartz, silicon, aluminum, stainless steel, etc. can be used.
  • silicon, aluminum or stainless steel since the thermal conductivity is relatively high, high-precision inspection is performed by suppressing the influence on the semiconductor wafer via silicon, aluminum or stainless steel during inspection. Is possible.
  • FIG. 4 is a diagram for explaining a case where the wafer is transferred to the wafer holding mechanism 35 by the transfer arm 32.
  • FIG. 4 (a) shows a case where the wafer described in FIG. 3 and the tray on which the wafer is placed are placed on the transfer arm 32 and are rolled!
  • FIG. 4B is a view of the state of being placed on the transfer arm 32 and viewed from above.
  • the tray 2 is placed on the arms 32a and 32b formed on the Y-shape.
  • a cassette (not shown) storing a semiconductor wafer transfer tray (not shown) force
  • the semiconductor wafer transfer tray 2 is taken out by using another transfer arm (not shown), and the arms 32a and 32b are first used. Placed on.
  • the tray After performing alignment adjustment using a alignment device or the like so that wafers taken out from a cassette (not shown) containing a plurality of wafers are stored in tray 2 using another transfer arm, the tray is 2 shall be placed.
  • alignment devices such as a method for performing alignment adjustment by image processing using a camera image and a method for performing alignment adjustment using a laser. Do not repeat.
  • the wafer 1 is transferred to the chuck 34 of the wafer holding mechanism 35 as described above with the wafer 1 placed on the tray 2.
  • FIG. 5 is a diagram for explaining a part of the wafer holding mechanism 35.
  • a Y stage slidably guided by a Y direction guide rail 43 arranged along the Y direction, and a direction perpendicular to the Y direction provided on the Y stage.
  • it consists of a stage that is slidably guided by an X-direction guide rail 42 provided along the X direction, and a chuck 3 4 that can be moved up and down (Z direction) and rotated with respect to this stage.
  • the chuck 34 is formed in a hollow shape having a small hole for suction, and is attached to the hollow portion of the chuck 34 by a suction means via a flexible pipe 17.
  • a vacuum pump 18 is connected!
  • FIG. 6 is a diagram for explaining a case where the tray 2 is adsorbed by the vacuum pump 18.
  • chuck 34 has a plurality of suction holes 3 on which tray 2 is placed. Then, by operating the vacuum pump 18, the inside of the hollow portion of the chuck 34 becomes negative pressure, and the tray 2 can be sucked and held. Since the tray 2 holds the wafer 1, it can be stably adsorbed in this state.
  • Fig. 7 is a diagram showing the device upper surface force of the three-axis acceleration sensor.
  • the chip TP formed on the wafer 1 has a plurality of pads PD arranged around it.
  • Metal wiring is provided to transmit an electrical signal to or from the pad.
  • four crests AR forming a clover shape are arranged!
  • FIG. 8 is a schematic diagram of a three-axis acceleration sensor.
  • this three-axis acceleration sensor is a piezoresistive type, and a piezoresistive element as a detection element is provided as a diffused resistor.
  • This piezoresistive acceleration sensor is advantageous for downsizing and cost reduction because it can use an inexpensive IC process, and even if the resistance element as the detection element is made small, the sensitivity does not decrease.
  • the central heavy cone AR is supported by four beams BM.
  • the beam BM is formed so as to be orthogonal to each other in the X-axis and Y-axis directions, and has four piezoresistive elements per axis.
  • the four piezoresistive elements for detecting the Z-axis direction are arranged beside the piezoresistive elements for detecting the X-axis direction.
  • the top shape of the heavy cone AR forms a crowbar shape, and is connected to the beam BM at the center.
  • the peripheral part of the weight body AR is a penetrating region, and the lower region of the beam BM is a hollow region.
  • the weight AR and the beam BM are movable by the penetration region and the cavity region. That is, a part of the penetration region and the cavity region is It becomes the movable area of R and beam BM!
  • the height h2 of the weight body AR is designed to be lower than the height hi of the weight body support structure (semiconductor substrate) connected to the beam BM.
  • this piezoresistive three-axis acceleration sensor is that when the heavy cone receives acceleration (inertial force), the beam BM is deformed, and the resistance value of the piezoresistive element formed on the surface changes. It is a mechanism that detects acceleration by making it. This sensor output is set to take out from the output of the Wheatstone bridge, which will be described later, incorporated independently for each of the three axes.
  • FIG. 9 is a conceptual diagram for explaining the deformation of the heavy cone and the beam when the acceleration in each axial direction is received.
  • the piezoresistive element has a property that its resistance value changes due to the applied strain (piezoresistance effect). In the case of tensile strain, the resistance value increases and the pressure value increases. In the case of shrinkage, the resistance value decreases.
  • X-axis direction detection piezoresistive element Rxl ⁇ Rx4 shown as piezoresistive elements R Z 1 ⁇ Rz4 Gurley for detection along the Y-axis piezoresistive element Ryl ⁇ Ry4 and Z-axis direction detected! /
  • FIG. 10 is a circuit configuration diagram of a Wheatstone bridge provided for each axis.
  • Fig. 10 (a) is a circuit configuration diagram of the Wheatstone bridge in the X (Y) axis.
  • the output voltages for the X and ⁇ axes are Vxout and Vyout, respectively.
  • FIG. 10 (b) is a circuit configuration diagram of the Wheatstone bridge in the Z axis.
  • the output voltage of the Z axis is Vzout.
  • each piezoresistive element is, for example, a Wheatstone bridge on the X axis and Y axis.
  • the acceleration component of each axis of the output of the formed circuit is detected as an output voltage that is independently separated. It should be noted that the above-described metal wiring as shown in FIG. 7 is connected so as to configure the above circuit, and the output voltage for each axis is detected from a predetermined pad.
  • this triaxial acceleration sensor can also detect the DC component of acceleration, it can also be used as an inclination angle sensor for detecting gravitational acceleration.
  • the tray is sucked and transported by the suction small holes of the chuck 34. That is, in the wafer on which the above-described acceleration sensor is formed, since the through region is provided as described with reference to FIG. 8, the wafer cannot be directly transferred by vacuum suction by the vacuum pump 18.
  • the tray 2 By using the tray 2 according to the first embodiment of the present invention on which a semiconductor wafer is placed, the tray 2 is adsorbed by using the suction small holes of the chuck 34 while being pressed. Since there is no part, vacuum suction is possible, and the wafer 1 can be stably adsorbed without the need for a special device. For example, a desired inspection can be easily performed in the inspection part described above. Is possible. In this example, the case where the semiconductor wafer is chucked and transported to the inspection unit 36 of the inspection apparatus 30 has been described. However, the present invention is not limited to the inspection apparatus. For example, the semiconductor wafer may be chucked to another apparatus by vacuum suction. Then, it can be easily and stably chucked and transported using the semiconductor wafer transport tray according to the first embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a semiconductor wafer transfer tray 2 # according to the first modification of the first embodiment of the present invention.
  • semiconductor wafer transfer tray 2 # is different from semiconductor wafer transfer tray 2 in that a through portion is provided in a predetermined region. Since other points are the same, detailed description thereof will not be repeated.
  • FIG. 12 is a diagram for explaining a plurality of chips TP formed on a general semiconductor wafer 1.
  • FIG. 12 here, for example, a case where a plurality of MEMS devices of a three-axis acceleration sensor are formed in a chip shape is shown.
  • wafer 1 On wafer 1, there is a formation area where a microstructured MEMS device with moving parts is formed, and nothing is formed!
  • TEG Transmission Element Group
  • a case where a plurality of MEMS device chips TP are provided in the central region excluding the outer peripheral region of the wafer 1 is shown.
  • the outer peripheral area of wafer 1 is used as the peripheral area because it is greatly affected by variations in characteristics of MEMS devices. It is often done.
  • the through region 4 is not provided in the semiconductor wafer transfer tray 2 # corresponding to a predetermined region portion of the wafer.
  • the vacuum pump 18 can directly vacuum-suck the semiconductor wafer 1 through the small suction holes 3 and the through-holes 4.
  • tray 2 # according to the above-described first embodiment has a configuration in which only tray 2 # is vacuum-sucked, but in this example, wafer 1 is also vacuum-sucked, so that it is more fixed. Therefore, it becomes possible to adsorb in a more stable state.
  • FIG. 13 shows another semiconductor wafer transfer tray 2 according to the first modification of the first embodiment of the present invention.
  • the through hole 4 is provided in the semiconductor wafer transfer tray 2 # a at a position corresponding to a predetermined area that is known to have no through area, it does not correspond to the position of the suction hole 3 Examples are given.
  • the guide through-hole 5 is provided on the semiconductor wafer transfer tray 2 to form a path between the position of the suction small hole 3 and the through-hole 4. It can also be molded to form.
  • FIG. 14 is a diagram illustrating a semiconductor wafer transfer tray according to the second modification of the first embodiment of the present invention.
  • FIG. 14 (a) is an example of a semiconductor wafer transfer tray according to the second modification of the first embodiment of the present invention.
  • FIG. 6 is a view of a semiconductor wafer transfer tray 20 according to a second modification of the first embodiment of the present invention as viewed from above.
  • the semiconductor wafer transport tray 20 is provided along at least a partial region of the base 20a on which the wafer is placed and the outer peripheral edge of the semiconductor wafer 1.
  • the outer wall 20b has a configuration in which the outer wall portion 2b is provided along the outer peripheral surface of the wafer corresponding to the entire region of the outer peripheral end portion of the semiconductor wafer 1 as compared with the outer wall portion 2b of FIG. This is a configuration provided along the outer peripheral surface of the wafer corresponding to a partial region of the outer peripheral end.
  • two outer wall portions 20b are provided, are provided so as to be opposed to each other via the base portion 20a, and are formed in a shape capable of holding the wafer.
  • the base portion 20a is provided according to the outer diameter of the semiconductor wafer, and is formed in a disk shape on which the entire wafer surface can be placed.
  • FIG. 14 (b) is an example of another semiconductor wafer transfer tray according to the second modification of the first embodiment of the present invention. It is the figure which looked at another transport tray 20 # for semiconductor wafers according to the second modification of the first embodiment of the present invention from above.
  • the semiconductor wafer transfer tray 20 # is provided along at least a partial region of the base portion 20 a on which the wafer is placed and the outer peripheral end portion of the semiconductor wafer 1.
  • the outer wall portion 20c is formed.
  • the outer wall portion 20c surrounds the outer peripheral end portion of the wafer with the four outer wall portions 20c in a configuration in which two opposed outer wall portions are provided. In this configuration, the wafer is held in a shape capable of being held.
  • four outer wall portions 20c are shown, but the present invention is not limited to this, and the outer peripheral edge of the wafer is composed of a plurality of outer wall portions along at least one region of the outer peripheral edge portion. It is also possible to provide it so as to surround the part.
  • the heavier the semiconductor wafer transfer tray the more likely it is that the transfer arm will bend and the transfer accuracy may deteriorate, but the wafer is held as in this configuration. Further, by limiting the outer wall portion to a part, the weight of the semiconductor wafer transfer tray can be reduced, and the transfer accuracy can be improved. On the other hand, it is possible to design the shape of the transport tray for semiconductor wafers in consideration of an increase in the number of processing steps and an increase in cost that can be considered for various weight reductions.
  • Embodiment 1 the description has been given in the case where the wafer has a circular shape, but the present invention is not limited to this.
  • V a so-called orientation flat (also simply referred to as an orientation flat) or a notch type wafer. Is also present.
  • a notch type wafer a part of the wafer is provided with a cut (notch) region (notch region) such as a V-shape.
  • FIG. 15 is a diagram for explaining a semiconductor wafer transfer tray corresponding to an orientation flat type wafer.
  • an outer wall portion is provided along the outer peripheral surface of the wafer corresponding to the entire region of the outer peripheral end portion of the semiconductor wafer 1 # so that the wafer can be held on this.
  • a transport tray 21 for semiconductor wafers is formed on the substrate.
  • the semiconductor wafer transfer tray 21a shown in FIG. 15 (b) is provided with an outer wall portion along the outer peripheral surface of the wafer corresponding to a partial area, not the entire area of the outer peripheral edge portion of the semiconductor wafer 1 #. It has been. Further, an outer wall portion 21b is provided corresponding to a part of a cutting region (orientation flat region) which is a characteristic of the orientation flat type wafer. The same applies to a notch type wafer.
  • the outer wall portion 21b is formed so that the center point force of the wafer and the length to the inner peripheral portion of the outer wall portion 21b are shorter than the maximum radial length of the outer peripheral end portion of the wafer. Rotation of the wafer in the area surrounded by can also be prevented.
  • FIG. 16 is a diagram illustrating a semiconductor wafer transport tray 21 # corresponding to an orientation flat wafer according to the fourth modification of the first embodiment of the present invention.
  • the semiconductor wafer transfer tray corresponding to the orientation flat type wafer described in FIG. 15A is described as an example, but the present invention is not limited to this.
  • the tray corresponding to a normal circular wafer is used. The same applies to the odor.
  • a plurality of suction small holes 3 are formed in a circular shape centered on the center point O, and a plurality of center points O are symmetrically arranged. It shall be provided. Then, in order to widen the suction area to be vacuum-sucked corresponding to the suction small holes 3, a recess 5 # is provided on the back surface of the tray. A plurality of recesses 5 # are provided in correspondence with the small holes 3 for suction along the direction of the center point O of the tray.
  • FIG. 16 (b) is a diagram of a semiconductor wafer transport tray 21 # corresponding to an orientation flat type wafer according to the fourth modification of the first embodiment of the present invention, viewed from the side.
  • a recess 5 # is provided on the back surface of the tray in order to expand the suction area corresponding to the suction hole 3. And this dent part 5 # shall be provided symmetrically about the center point O.
  • the attracting force is applied evenly around the center point o, so that the tray is fixed around the center point o, and the rotation of the tray can also be suppressed.
  • the transport tray for a semiconductor wafer in which the outer wall portion is provided and fixed so as to surround the semiconductor wafer has been described.
  • FIG. 17 is a diagram illustrating semiconductor wafer 10 according to the second embodiment of the present invention.
  • semiconductor wafer 10 has a hole 11.
  • two holes 11 are provided as an example.
  • the shape of the semiconductor wafer 10 is the same as that of a normal disk-shaped wafer in which an orientation flat type wafer is shown here.
  • a wafer has a movable part.
  • a structure having a formation region in which a MEMS device of a microstructure having a structure is formed and a peripheral region in which nothing is formed is generally used.
  • the peripheral area of the wafer can be used as the peripheral area because, for example, when a MEMS device is molded, the influence of characteristic variations is large. Therefore, when the hole 11 is provided, the peripheral region can be effectively used by providing the hole 11 in the outer peripheral region of the wafer where the MEMS device is difficult to be molded.
  • FIG. 18 is a diagram illustrating a semiconductor wafer transfer tray according to the second embodiment of the present invention. Here, a view of the semiconductor wafer transfer tray 26 as seen from the side is shown.
  • the semiconductor wafer transport tray 26 includes a protrusion 100 and a base 25.
  • the semiconductor wafer 10 is placed on the surface side of the base portion 25.
  • the protrusion 100 provided on the surface of the base 25 passes through the hole 11 provided in the semiconductor wafer 10 to fix the semiconductor wafer 10 and the base 25.
  • the vacuum can be stably held by vacuum suction of the tray through the suction hole 3 by the vacuum pump 18 described above, and the semiconductor wafer can be sucked in a stable state.
  • the hole 11 described above can also be formed in a process step of a force device that can be drilled.
  • FIG. 19 is a diagram for explaining an outline of the process when the triaxial acceleration sensor described in FIGS. 7 and 8 is molded.
  • an SOI wafer (SOI) having an SOI layer 300 (SOI), a buried oxide film 30 1 (BOX), and a Si substrate 302 (Si-Sub). Wafer) is shown.
  • the circuit pattern of the sensor is formed by the photolithography process. In general, photo resist is dropped on the wafer surface, and ultraviolet light is irradiated to the photoresist through a mask and developed. Etching is then performed, and a circuit pattern is formed by repeating steps such as resist stripping.
  • FIG. 19B after forming an insulating film 305 on the SOI layer, a piezoresistor 306 is formed by ion implantation and patterning of the insulating film.
  • the weight body, the beam, and the fixed frame portion shown in FIG. 8 are molded.
  • the hole 11 is also formed at the same time as the acceleration sensor is molded without the need for a special device or a special process for providing the hole, the hole 11 can be easily formed. Is possible. Moreover, the shape of the hole 11 with high accuracy can be formed by the Si Deep RIE technology, which is advantageous in terms of cost.
  • the force described as an example of the case where the penetrating hole 11 and the protrusion 100 are fitted may not be penetrating.
  • the shape of the hole 11 and the protrusion 100 is a force that can form the circular hole 11 and the protrusion 100.
  • the shape of the hole 11 and the protrusion 100 can also be a polygon.
  • FIG. 20 is a diagram illustrating another semiconductor wafer 10 # according to the second embodiment of the present invention.
  • semiconductor wafer 10 # according to the second embodiment of the present invention includes a hole portion. Have 11 #.
  • two holes 11 # are provided as an example.
  • the hole 11 # has a triangular cross-sectional shape as an example of a polygonal shape. Typed.
  • the protrusions shall be molded with a triangular cross-sectional shape so as to mate with the hole 11 #.
  • the size of the base portion 25 can be made smaller than the size of the semiconductor wafer. Specifically, it can be designed to be smaller than the area of the semiconductor wafer, for example, larger than the region where the microstructure is formed. As a result, the alignment of the semiconductor wafer can be easily performed using the notch or the so-called orientation flat of the semiconductor wafer.
  • the positions of the holes 11 and 11 # are optional. It is also possible to obtain the same effect as described above by forming the corresponding protrusions in the regions. It is also possible to design a part of the region where the device is to be molded so that a part of the region is provided with a hole and a corresponding protrusion.
  • FIG. 21 is a diagram illustrating a semiconductor wafer transport tray 27 according to the first modification of the second embodiment of the present invention.
  • semiconductor wafer transport tray 27 differs from semiconductor wafer transport tray 26 in that base portion 25 is replaced with base portion 25 #.
  • the base portion 25 # is different from the base portion 25 in that a penetrating portion is provided in a predetermined region. Since other points are the same, detailed description thereof will not be repeated.
  • the through portion 4 is provided in the semiconductor wafer transport tray 27 corresponding to a predetermined region portion of the wafer in which no through region is provided.
  • the vacuum pump 18 is connected to the semiconductor wafer via the suction small hole 3 and the through-hole 4. 1 # can be vacuum-adsorbed directly.
  • FIG. 22 is a diagram illustrating another semiconductor wafer transport tray 28 according to the first modification of the second embodiment of the present invention.
  • the through-hole 4 is provided in the semiconductor wafer transfer tray 28 at a position corresponding to a predetermined area that is known to have no through-area, it does not correspond to the position of the suction small hole 3.
  • the guide through-hole 5 in the semiconductor wafer transport tray 28 is formed so as to form a path between the position of the suction small hole 3 and the through-hole 4 on the back side of the base 25 #a. It is also possible to mold so as to form.
  • the MEMS device of the three-axis acceleration sensor has been mainly described.
  • the present invention is not limited to this.
  • the MEMS device has a penetrating region and can be similarly applied to a MEMS device. Is possible.
  • FIG. 23 is a diagram illustrating a case where a membrane structure is used for the irradiation window of the electron beam irradiator.
  • FIG. 23 a part of the irradiation window 80 through which the electron beam EB is emitted from the vacuum tube 81 to the atmosphere is shown, and as shown in the enlarged sectional structure A thin membrane structure is used. Note that in FIG. 23, a membrane is formed on a single material and only one membrane structure is shown. When multiple layers are formed as a multilayer film structure, or multiple membrane structures are arrayed. It is also possible to use irradiation windows arranged in a shape.
  • the thin film When a semiconductor wafer on which a MEMS device having such a thin-film membrane structure is vacuum-adsorbed, the thin film may be adsorbed more than the movable area of the thin film due to the adsorbing force, and a crack may be generated.
  • the semiconductor wafer transfer tray has been described in which the holding projection and the hole are fitted to each other and the wafer can be stably transferred.
  • the present invention is not limited to this.
  • the wafer can be transported more stably.
  • FIG. 24 is a schematic diagram of a triaxial acceleration sensor different from the triaxial acceleration sensor described in FIG.
  • the three-axis acceleration sensor shown here is connected to the beam BM in the height h2 of the weight AR compared to the three-axis acceleration sensor described in FIG. The difference is that it is designed to have the same height as the height hi of the support structure (semiconductor substrate) of the weight body AR.
  • the other parts are the same.
  • the height of the support structure of the weight body AR and the height of the weight body AR, which is a movable part are designed to be about the same height.
  • the weight body AR, which is a movable part may be close to or in contact with the semiconductor wafer transport tray.
  • the above-described inspection is performed while the weight AR is placed on the semiconductor wafer transport tray.
  • the apparatus 30 is inspected, there is a possibility that the movable part does not move normally and a desired inspection cannot be performed.
  • FIG. 25 illustrates a semiconductor wafer transfer tray 2 #p according to the third embodiment of the present invention.
  • the transport tray 2 # p for semiconductor wafer is compared with the transport tray 2 # for semiconductor wafer described in FIG. 11 on the basis on which the semiconductor wafer is placed. It differs in that it is molded into a shape that has been subjected to the saddle processing (saddle region) on the surface part of the part. Since the other points are the same as those described in FIG. 11, detailed description thereof will not be repeated.
  • the weight AR which is the movable part of the three-axis acceleration sensor, is subjected to saddle processing on the semiconductor wafer transfer tray 2 # p. Since the gaps are provided at regular intervals, it is possible to avoid contact with the surface of the semiconductor wafer transfer tray 2 # p. Therefore, the above-described inspection apparatus 30 can also perform a desired inspection.
  • the semiconductor wafer transport tray 2 # p is provided with a through portion in a region facing the outer peripheral region where the through region of the semiconductor wafer is not provided, and the semiconductor wafer is directly vacuum-sucked. It is possible to adsorb the semiconductor wafer stably.
  • FIG. 26 is a diagram illustrating a semiconductor wafer transfer tray 2 # q according to the first modification of the third embodiment of the present invention.
  • the surface portion of the base portion on which the semiconductor wafer is placed is subjected to the saddle processing according to a predetermined pattern.
  • the entire surface where the chip TP is provided for example, the central region is opposed to the surface portion of the base portion on which the semiconductor wafer is placed.
  • Zadari processing is applied to the entire part In this configuration, in particular, the surface portion of the base portion facing the movable portion in the region where the chip TP is provided is subjected to the saddle processing.
  • the semiconductor wafer transfer tray has been described as being configured to perform the saddle processing using the semiconductor wafer transfer tray described in the first embodiment.
  • the semiconductor wafer transfer tray described in the second embodiment can be used to perform the saddle processing.
  • FIG. 27 is a diagram illustrating a semiconductor wafer transport tray 26 # according to the second modification of the third embodiment of the present invention.
  • a semiconductor wafer transport tray 26 # is constituted by a projecting portion 100 and a base portion 25p.
  • the semiconductor wafer 10 described in FIG. 17 is placed on the base portion 25p.
  • the protrusion 100 provided on the surface of the base 25p passes through the hole 11 provided in the semiconductor wafer 10, and the semiconductor wafer 10 and the base 25p are fixed as described above. .
  • the surface processing of the base portion 25p on which the semiconductor wafer is placed is performed according to a predetermined pattern.
  • the surface portion of the base portion facing the weight body AR is subjected to sanding.
  • the support structure portion of the weight body AR is in proximity to or in contact with the surface portion of the base portion. Therefore, as described above, the semiconductor wafer can be conveyed while suppressing the deflection of the semiconductor wafer according to its own weight.
  • FIG. 21 and FIG. 22 a case is shown in which the through portion 4 is provided in the base portion 25p and the semiconductor wafer: L is directly vacuum-adsorbed by the vacuum pump. .
  • a configuration in which a guide through portion 5 is provided so as to form a path between the through portion 4 is shown.
  • the above-described vacuum pump 18 can stably hold the semiconductor wafer transport tray by vacuum suction through the suction small holes 3 to suck the semiconductor wafer in a stable state. it can.
  • the semiconductor wafer transfer tray described in the above embodiment can be formed using a mechanical device process such as a drill with respect to processing of the penetrating portion or the like using a process step of a force device. It is also possible to do.
  • FIG. 28 is a diagram for explaining the outline of the process for molding the semiconductor wafer transfer tray described in FIG.
  • the Si substrate in order to cover the back side of the tray, the Si substrate
  • Etching is performed with (Si-Sub) protected by two masks. Specifically, the base portion 25p is covered with a mask MSK1 for forming the penetrating portion 4 and a mask MSK2 for forming the guide penetrating portion.
  • the Si substrate is thermally oxidized to cover the entire base portion 25 P with a silicon oxide film. Then, the processing is performed on the surface of the base portion 25p.
  • the silicon oxide film is etched by wet etching while being protected by a resist mask (not shown) except for the region where the saddle region is formed.
  • the base portion 25p which is a Si substrate, is wet-etched using a so-called TMAH aqueous solution using the silicon oxide film as a mask, and the base portion facing the movable portion. Mold the dead area to the surface of 25p.
  • the semiconductor wafer transport tray 26 # can be molded.
  • the semiconductor wafer according to the fourth embodiment of the present invention has a structure in which a glass substrate is bonded, unlike the semiconductor wafer described in the first to third embodiments.
  • a glass substrate or the like may be bonded to maintain the strength of the device. Therefore, this 4th embodiment! First, a semiconductor wafer transfer tray for transferring a semiconductor wafer having a structure in which a glass substrate is bonded will be described.
  • FIG. 29 is a diagram illustrating a semiconductor wafer transport tray according to the fourth embodiment of the present invention.
  • glass substrate la is sandwiched between semiconductor wafer 1 and semiconductor wafer transfer tray 2r, and semiconductor wafer 1 and glass substrate la are joined.
  • the glass substrate la to be bonded here has the same shape and the same size as the semiconductor wafer 1. Therefore, for example, when the shape of the semiconductor wafer is circular, the same shape is used for the glass substrate, and when the shape of the semiconductor wafer is orientation flat or notch type, the corresponding glass substrate is used. However, the same shape is used.
  • the semiconductor wafer transport tray 2r according to the fourth embodiment of the present invention further includes a porous layer to be described later on the surface side of the base portion, as compared to the semiconductor wafer transport tray 2 described in FIG. Penetration between the point of the installed structure and the porous layer from the back side of the base part Part 4 # is different in that it is provided. Then, the glass substrate la can be vacuum-adsorbed through the porous layer.
  • a through region is provided, and in the region where the MEMS device is molded, the semiconductor wafer is formed by the through region.
  • vacuum adsorption is possible through the glass substrate, so that the problem of transportation is solved. Can be considered.
  • a very thin glass substrate is usually used.
  • the glass substrate follows the pattern of suction holes on the mounting table. There is a problem that the substrate and the wafer are deformed and an accurate test of the device cannot be obtained.
  • by performing vacuum suction through a tray having a porous layer the difference in suction force depending on the pattern of the suction holes is made uniform.
  • FIG. 30 is a diagram for explaining the generation of the porous layer NCS.
  • an outer wall 41 is provided around the surface portion of the substrate 2r to be anodized using a sealing material, and the outer wall 41 is provided inside the outer wall.
  • the electrolytic solution 45 is injected so that the surface portion of the treatment target touches the electrolytic solution 45.
  • the platinum electrode 44 is disposed so as to face the surface of the substrate portion 2r. Furthermore, the current-carrying electrode 42 is attached to the back side of the board 2r, and the lead wire connected to the current-carrying electrode 42 is connected to the positive side of the current source 200, and the platinum electrode 44 is connected to the negative side of the current source 200. To do. Using the energizing electrode 42 as an anode and the platinum electrode 44 as a cathode, a current having a predetermined current density is allowed to flow from the current source 200 between the energizing electrode 42 and the platinum electrode 44 for a predetermined energizing time.
  • a thermal insulating layer NCS having a substantially constant thickness is formed inside the outer wall 41 at the surface portion of the substrate portion 2r.
  • the electrolytic solution 45 used for anodizing treatment For example, a mixed solution (HFZ ethanol solution) in which a 55 wt% hydrogen fluoride aqueous solution and ethanol are mixed 1: 1 is used.
  • a sealing material for example, a sealing material made of fluorine resin can be used.
  • a porous nanocrystalline silicon layer can be formed on the surface side of the substrate portion 2r.
  • the glass substrate in contact with the porous layer is uniformly chucked.
  • the vacuum suction is performed on the entire surface of the glass substrate that is in contact with the porous layer of the glass substrate rather than the vacuum suction is performed on one point of the glass substrate.
  • Unintentional displacement does not occur for the glass substrate and the semiconductor wafer due to the difference in adsorption force depending on the. Therefore, the individual microstructures formed on the semiconductor wafer are unintentionally unaffected by the displacement, and the entire surface of the semiconductor wafer can be obtained with stable and reliable test results. It is possible.
  • an outer wall portion may be provided as described in the first embodiment, and the semiconductor wafer may be transported more stably.
  • the glass substrate also needs to be provided with a hole similar to that of the semiconductor wafer and fitted with a protrusion provided on the semiconductor wafer transfer tray side.

Description

明 細 書
半導体ウェハ用搬送トレィ
技術分野
[0001] 本発明は、半導体ウェハ用搬送トレイに関し、特に、微小構造体たとえば MEMS ( Micro Electro Mechanical Systems)が成型された半導体ウェハを搬送する半導体 ウェハ用搬送トレイに関する。
背景技術
[0002] 近年、特に半導体微細加工技術等を用いて、機械 ·電子 '光'化学等の多用な機 能を集積ィ匕したデバイスである MEMSが注目されている。これまでに実用化された MEMS技術としては、たとえば自動車'医療用の各種センサとして、マイクロセンサ である加速度センサや圧力センサ、エアーフローセンサ等に MEMSデバイスが搭載 されてきている。また、インクジェットプリンタヘッドにこの MEMS技術を採用すること によりインクを噴出するノズル数の増加と正確なインクの噴出が可能となり画質の向 上と印刷スピードの高速ィ匕を図ることが可能となっている。さらには、反射型のプロジ ェクタにぉ 、て用いられて 、るマイクロミラーアレイ等も一般的な MEMSデバイスとし て知られている。
[0003] また、今後 MEMS技術を利用したさまざまなセンサゃァクチユエータが開発される ことにより光通信'モパイル機器への応用、計算機の周辺機器への応用、さらにはバ ィォ分析や携帯用電源への応用へと展開することが期待されている。技術調査レポ ート第 3号 (経済産業省産業技術環境局技術調査室 製造産業局産業機械課 発 行 平成 15年 3月 28日)には、 MEMSに関する技術の現状と課題という議題で種々 の MEMS技術が紹介されて!、る。
[0004] 一方で、 MEMSデバイスは、微細な構造体であるがゆえにそれを搬送する手段も 重要となってくる。特に可動部を有する MEMSデバイスがウェハに成型されている状 態においてはパッケージ前であるため可動部等が剥き出しの状態であり、所望のデ バイス特性に影響を与えな 、ように搬送の際にお ヽても十分に注意する必要がある 非特許文献 1:技術調査レポート第 3号 (経済産業省産業技術環境局技術調査室 製造産業局産業機械課 発行 平成 15年 3月 28日)
発明の開示
発明が解決しょうとする課題
[0005] 一般的に、半導体ウェハの搬送に際しては、真空吸着により半導体ウェハを吸着し て搬送する方式が用いられて 、るが、 MEMSデバイスの構造にお!、ては当該方式 が採用しにくい場合がある。
[0006] たとえば、半導体ウェハに成型された MEMSデバイスにおいて可動部を形成する ための貫通領域が設けられている場合、当該貫通領域により真空吸着が不可能とな る可能性がある。また、薄膜のメンブレン構造を有する MEMSデバイスにおいては、 可動部となるメンブレン構造を真空吸着した場合、真空吸着により可動部となる薄膜 のメンブレン構造が吸着されるため吸着力が強い場合には薄膜部分が破壊される可 能性がある。
[0007] したがって、特に MEMSデバイスの場合には、真空吸着により半導体ウェハを搬 送する際には、半導体ウェハを搬送するための搬送トレィを用いて安定的に搬送す ることが望ましい。
[0008] 本発明は上記のような問題を解決するためになされたものであって、 MEMSデバ イスが成型された半導体ウェハを安定的に搬送可能な半導体ウェハ用搬送トレィを 提供することを目的とする。
課題を解決するための手段
[0009] 本発明に係る半導体ウェハ用搬送トレィは、可動部を有する微小構造体が少なくと も 1つ成型される半導体ウェハを載せる半導体ウェハ用搬送トレイであって、半導体ゥ ェハのズレを防止するためのズレ防止機構が半導体ウェハを載せる表面側に設けら れ、搬送に際し裏面側が真空吸着される基底部を備える。基底部は、半導体ウェハ の微小構造体が成型されな 、周辺領域に設けられた貫通部を有する。半導体ウェハ は、貫通部を介して基底部とともに真空吸着される。
[0010] 好ましくは、半導体ウェハは、穴部を有する。基底部の表面側に設けられ、ズレ防 止機構を構成する穴部に嵌合する保持突起部をさらに備える。 [0011] 特に、穴部は、微小構造体が成型されない領域に設けられる。
特に、半導体ウェハは、複数の穴部を有する。基底部は、複数の穴部にそれぞれ 対応して設けられる複数の保持突起部をさらに備える。
[0012] 特に、穴部および保持突起部の形状断面は、多角形状に形成される。
好ましくは、基底部の表面側は、微小構造体が成型されない半導体ウェハの周辺 領域より内側の領域に対向して設けられ、ザダリ加工により凹型に形成される所定の 深さのザダリ領域を有する。
[0013] 特に、基底部の表面側に形成されるザダリ領域は、半導体ウェハにおいて微小構 造体の可動部が成型された領域に対向して設けられる。
[0014] 特に、半導体ウェハは、可動領域となる貫通領域が設けられた可動部を有する微 小構造体が少なくとも 1つ成型されており、穴部は、貫通領域を形成する工程によつ て同時に成型される。
[0015] 好ましくは、半導体ウェハ用搬送トレィは、半導体ウェハよりも小さぐ微小構造体が 形成される領域よりも大き ヽ。
[0016] 好ましくは、半導体ウェハ用搬送トレィは、真空吸着を実行するための真空吸着ガ イドの形状に沿って真空吸着される。基底部の裏面は、真空吸着ガイドと裏面との間 に真空吸着される吸着面積を広げるために真空吸着ガイドに対応して設けられた凹 み部を有する。
[0017] 好ましくは、基底部と連結され、半導体ウェハを載せる面に半導体ウェハの外周端 部の少なくとも一部領域に沿って設けられたズレ防止機構を構成する外壁部をさらに 備える。
[0018] 特に、基底部の表面側は、微小構造体が成型されない半導体ウェハの周辺領域よ り内側の領域に対向して設けられ、ザダリ加工により凹型に形成される所定の深さの ザダリ領域を有する。
[0019] 特に、基底部の表面側に形成されるザダリ領域は、半導体ウェハにおいて微小構 造体の可動部が成型された領域に対向して設けられる。
[0020] 特に、半導体ウェハは、オリエンテーションフラットまたはノッチ領域を有し、
外壁部は、半導体ウェハのオリエンテーションフラットまたはノッチ領域の外周端部 の少なくとも一部に対応して設けられる。
[0021] 本発明に係る別の半導体ウェハ用搬送トレィは、可動部を有する微小構造体が少 なくとも 1つ成型される半導体ウェハを載せる半導体ウェハ用搬送トレイであって、半 導体ウェハは、半導体ウェハ用搬送トレイとの間に設けられるガラス基板と接合される とともに、ガラス基板を介して搬送される。半導体ウェハ用搬送トレィは、多孔質層が ガラス基板を介する半導体ウェハを載せる表面側に設けられ、搬送に際し裏面側が 真空吸着される基底部を備える。基底部は、多孔質層に達する貫通孔を有する。半 導体ウェハは、多孔質層を介して基底部とともに真空吸着される。
[0022] 好ましくは、半導体ウェハ用搬送トレィは、半導体ウェハのズレを防止するズレ防止 機構が半導体ウェハを載せる表面側に設けられている。
[0023] 好ましくは、半導体ウェハおよびガラス基板は、穴部を有する。基底部は、ズレ防止 機構を構成する穴部に嵌合する保持突起部を有する。
[0024] 特に、穴部は、微小構造体が成型されない領域に設けられている。
特に、半導体ウェハおよびガラス基板は、複数の穴部を有する。基底部は、複数の 穴部にそれぞれ対応して設けられる複数の保持突起部を有する。
[0025] 特に、穴部および保持突起部の形状断面は、多角形状に形成される。
特に、半導体ウェハは、可動領域となる貫通領域が設けられた可動部を有する微 小構造体が少なくとも 1つ成型されており、穴部は、貫通領域を形成する工程によつ て同時に形成される。
[0026] 好ましくは、半導体ウェハ用搬送トレィは、半導体ウェハおよびガラス基板よりも小さ く微小構造体が形成される領域よりも大き ヽ。
[0027] 好ましくは、基底部と連結され、ガラス基板を介して半導体ウェハを載せる面に半導 体ウェハおよびガラス基板の外周端部の少なくとも一部領域に沿って設けられたズレ 防止機構を構成する外壁部をさらに備える。
[0028] 特に、半導体ウェハおよびガラス基板は、オリエンテーションフラットまたはノッチ領 域を有する。外壁部は、半導体ウェハのオリエンテーションフラットまたはノッチ領域 の外周端部の少なくとも一部に対応して設けられる。
[0029] 好ましくは、多孔質層は、ナノ結晶シリコンである。 発明の効果
[0030] 本発明に係る半導体ウェハ用搬送トレィは、半導体ウェハのズレを防止するための ズレ防止機構が半導体ゥ ハを載せる表面側に設けられ、搬送に際し裏面側が真空 吸着される基底部を備え、基底部は貫通領域を有するため半導体ゥ ハのズレを防 止しつつ安定的に搬送することが可能となる。
[0031] また、本発明に係る半導体ウェハ用搬送トレィは、半導体ウェハと接合されたガラス 基板について多孔質層を介して真空吸着する。当該構成により、半導体ウェハに貫 通領域がある場合においても半導体ウェハのズレを防止しつつ安定的に吸着するこ とが可能となる。
図面の簡単な説明
[0032] [図 1]本発明の実施の形態 1に従う検査装置 30を説明する図である
[図 2]検査部 36を説明する概略構成図である。
[図 3]本発明の実施の形態 1に従う半導体ウェハ用搬送トレィを説明する図である。
[図 4]搬送アーム 32によりウェハ保持機構 35に搬送される場合を説明する図である。
[図 5]ウェハ保持機構 35の一部を説明する図である。
[図 6]真空ポンプ 18によってトレイ 2が吸着される場合を説明する図である。
[図 7]3軸加速度センサのデバイス上面から見た図である。
[図 8]3軸加速度センサの概略図である。
[図 9]各軸方向の加速度を受けた場合の重錐体とビームの変形を説明する概念図で ある。
[図 10]各軸に対して設けられるホイートストンブリッジの回路構成図である。
[図 11]本発明の実施の形態 1の変形例 1に従う半導体ウェハ用搬送トレィ 2 #を説明 する図である。
[図 12]—般的な半導体ウェハ 1に成型される複数のチップ TPを説明する図である。
[図 13]本発明の実施の形態 1の変形例 1に従う別の半導体ウェハ用搬送トレィ 2 # a を説明する図である。
[図 14]本発明の実施の形態 1の変形例 2に従う半導体ウェハ用搬送トレィを説明する 図である。 [図 15]オリフラ型のウェハに対応する半導体ウェハ用搬送トレィを説明する図である。
[図 16]本発明の実施の形態 1の変形例 4に従うオリフラ型のウェハに対応する半導体 ウェハ用搬送トレィを説明する図である。
[図 17]本発明の実施の形態 2に従う半導体ウェハ 10を説明する図である。
[図 18]本発明の実施の形態 2に従う半導体ウェハ用搬送トレィを説明する図である。
[図 19]図 7および図 8で説明した 3軸加速度センサを成型する際のプロセスの概略を 説明する図である。
[図 20]本発明の実施の形態 2に従う別の半導体ウェハ 10 #を説明する図である。
[図 21]本発明の実施の形態 2の変形例 1に従う半導体ウェハ用搬送トレィ 27を説明 する図である。
[図 22]本発明の実施の形態 2の変形例 1に従う別の半導体ウェハ用搬送トレィ 28を 説明する図である。
[図 23]電子ビーム照射器の照射窓にメンブレン構造が用いられている場合を説明す る図である。
[図 24]図 8で説明した 3軸加速度センサとは別の 3軸加速度センサの概略図である。
[図 25]本発明の実施の形態 3に従う半導体ウェハ用搬送トレィ 2 # pを説明する図で ある。
[図 26]本発明の実施の形態 3の変形例 1に従う半導体ウェハ用搬送トレィ 2 # qを説 明する図である。
[図 27]本発明の実施の形態 3の変形例 2に従う半導体ウェハ用搬送トレィ 26 #を説 明する図である。
[図 28]図 27で説明した半導体ウェハ用搬送トレィを成型するプロセスの概略を説明 する図である。
[図 29]本発明の実施の形態 4に従う半導体ウェハ用搬送トレィを説明する図である。
[図 30]多孔質層 NCSの生成について説明する図である。
符号の説明
1, 1 # , 10, 10 # 半導体ウエノヽ、 2, 2 # , 2 # a, 2 # p, 2 # q, 2r、 20, 21, 25p , 26〜28 半導体ウェハ用搬送トレイ、 3 吸引用小孔、 4, 11, 11 # 穴部、 17 管 路、 18 真空ポンプ、 30 検査装置、 32 搬送アーム、 33 ロータ部、 34 チャック、 35 ウェハ保持機構、 36 検査部、 37 ァライメント装置、 50 プローブカード、 51 プローブ針、 55 テストヘッド、 80 照射窓、 100 突起部。
発明を実施するための最良の形態
[0034] 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。なお、 図中同一または相当部分には同一符号を付しその説明は繰返さな!/、。
[0035] (実施の形態 1)
図 1は、本発明の実施の形態 1に従う検査装置 30を説明する図である。
[0036] 図 1を参照して、本発明の実施の形態 1に従う検査装置 30は、被検査体である半 導体ウェハ(以下、単にウェハとも称する)を搬送する搬送アーム 32を有するロータ部 33と、検査部 36と、ウェハ保持機構 35とで主要部が構成されている。この場合、ロー タ部 33に配設された搬送アーム 32は、水平方向に回転可能でかつ垂直方向に移 動可能な多関節のリンク機構によって形成されており、複数枚のウェハを収容する力 セット(図示せず)内から取出したウェハを後述する半導体ウェハ用搬送トレイとともに ウェハ保持機構 35に搬送するとともに、検査部 36において検査されたウェハをカセ ットに再び搬入するように構成されて 、る。
[0037] 搬送アーム 32によってカセットから取出されたウェハは、後述する半導体ウェハ用 搬送トレィ (以下、単にトレイとも称する)に載置されてトレイとともにウェハ保持機構 3 5のチャック 34へ搬送される。ウェハ保持機構 35は、この状態を維持して検査部 36 に搬送する。そして、検査部 36において、ァライメント装置 37の位置検出カメラ 38等 によって搬送されたウェハの位置を検出する。この検出された位置情報に基づ!/、て ァライメントが実行され、後述するプローブ針をウェハに成型されたデバイスの所望の テストパッドと接触させるための位置調整等が行なわれる。
[0038] 図 2は、検査部 36を説明する概略構成図である。
図 2を参照して、プローブ針 51が装着されたプローブカード 50は、テストヘッド 55と 接続されている。
[0039] テストヘッド 55は、ウェハに印加する検査用電源や電極パッドのパターン出力部や 電極バッドの出力を測定部に取り込むための入力部等の電気機器(図示せず)を搭 載した自立する柱状体にて形成されて!ヽる。
[0040] ウェハ保持機構 35は、可撓性の管路 17を介してチャック 34と接続された吸着手段 である真空ポンプ 18を含む。
[0041] この真空ポンプ 18によりウェハおよび半導体ウェハ用搬送トレィはチャック 34により 真空吸着されて状態が維持されて検査されることになる。
[0042] 図 3は、本発明の実施の形態 1に従う半導体ウェハ用搬送トレィを説明する図であ る。
図 3 (a)は、本発明の実施の形態 1に従う半導体ウェハ用搬送トレィ 2を上部力 見 た図である。
[0043] 図 3 (a)を参照して、ウェハ 1を覆うようにして半導体ウェハ用搬送トレィ 2はそのゥ ハの外径に応じて設けられ半導体ウェハを保持することが可能な形状に形成されて いる。本例においては、一例としてウェハの外径に対応してそれよりも大きな外径とな るウェハと同様の円板状の形状で半導体ウェハ用搬送トレィ 2が形成されている。
[0044] 図 3 (b)は、本発明の実施の形態 1に従う半導体ウェハ用搬送トレィ 2を切断した場 合の横力 見た断面図である。
[0045] 図 3 (b)に示されるようにウェハが載置される円板状の形状の基底部 2cと、基底部 2 cと連結され、半導体ウェハを固定する目的で凹部形状となるように形成された外壁 部 2bとが設けられている。この外壁部 2bの内周面は半導体ウェハの形状に沿って設 けられており、半導体ウェハを載置した際に保持されるように設計されているものとす る。なお、基底部 2cは、半導体ウェハの外径に応じて設けられ半導体ウェハを載せる 表面と、搬送に際し真空吸着するための裏面とを有する。
[0046] なお、この半導体ウェハ用搬送トレィは、クォーツ (水晶)やポリイミド榭脂、 PEEK, セラゾール等のエンジニアリングプラスチック、セラミック(例えば、アルミナ(Al O )、
2 3 チッカアルミニウム(A1N)、酸化ジルコニウム(ZrO )、酸化亜鉛 (ZnO)、及びボロン
2
ナイトライド(BN, PBN) )、石英、シリコン、アルミニウム、ステンレススチール等を用 いることが可能である。特にシリコン、アルミニウムあるいはステンレススチールにおい ては、熱伝導率が比較的高いため検査の際にシリコン、アルミニウムあるいはステン レススチールを介して半導体ウェハに与える影響を抑制して精度の高い検査を実行 することが可能である。
[0047] 図 4は、搬送アーム 32によりウェハ保持機構 35に搬送される場合を説明する図で ある。
[0048] 図 4 (a)は、図 3で説明したウェハおよびウェハを載置したトレイが搬送アーム 32に 載置されて!ヽる場合が示されて!/、る。
[0049] 図 4 (b)は、搬送アーム 32に載置されて 、る状態を上から見た図である。
図 4 (b)に示されるように Y字形上に形成されたアーム 32aおよび 32bの上にトレィ 2 が載置されている。
[0050] 本例においては、一例としてこの搬送アーム 32への載置の際に、トレイ 2にウェハ 1 が載置される場合にっ 、て説明する。
[0051] たとえば、図示しない半導体ウェハ用搬送トレィを格納しているカセット(図示せず) 力 図示しない別の搬送アームを用いて当該半導体ウェハ用搬送トレィ 2が取出され てまずこのアーム 32aおよび 32bに載置される。
[0052] そして、複数枚のウェハを収容するカセット(図示せず)内から取出したウェハが別 の搬送アームを用いてトレイ 2に収まるようにァライメント装置等を用いてァライメント 調整を実行した後トレイ 2に載置されるものとする。なお、ァライメント装置としてはカメ ラ画像を用いて画像処理によりァライメント調整を実行する方式や、レーザを用いて ァライメント調整を実行する方式等種々あるが、一般的な技術であるためその詳細な 説明は繰り返さない。
[0053] そして、ウェハ 1がトレイ 2に載置された状態で上述したようにウェハ保持機構 35の チャック 34に搬送される。
[0054] 図 5は、ウェハ保持機構 35の一部を説明する図である。
図 5に示されるように、 Y方向に沿って配設される Y方向案内レール 43に摺動自在 に案内される Yステージと、この Yステージに設けられた Y方向と直交する方向すな わち X方向に沿って設けられた X方向案内レール 42に摺動自在に案内される テ ージと、この テージに対して昇降 (Z方向)および回転可能に装着されるチャック 3 4とで構成されている。この場合、後述するがチャック 34は、吸引用小孔を有する中 空状に形成されており、チャック 34の中空部に可撓性の管路 17を介して吸着手段で ある真空ポンプ 18が接続されて!、る。
[0055] 図 6は、真空ポンプ 18によってトレイ 2が吸着される場合を説明する図である。
図 6を参照して、チャック 34は、複数の吸引用小孔 3を有しており、その上にトレイ 2 が載置される。そして、真空ポンプ 18を作動させることによってチャック 34の中空部 内が負圧となってトレイ 2を吸引保持することができる。トレイ 2は、ウェハ 1を保持して いるため安定的にこの状態で吸着することが可能となる。
[0056] ここで、一例としてウェハ 1に成型された MEMSデバイスである 3軸加速度センサに ついて説明する。
[0057] 図 7は、 3軸加速度センサのデバイス上面力も見た図である。
図 7に示されるように、ウェハ 1に形成されるチップ TPには、複数のパッド PDがその 周辺に配置されている。そして、電気信号をパッドに対して伝達あるいはパッドから伝 達するために金属配線が設けられている。そして、中央部には、クローバ型を形成す る 4つの重錐体 ARが配置されて!、る。
[0058] 図 8は、 3軸加速度センサの概略図である。
図 8を参照して、この 3軸加速度センサはピエゾ抵抗型であり検出素子であるピエゾ 抵抗素子が拡散抵抗として設けられて 、る。このピエゾ抵抗型の加速度センサは、 安価な ICプロセスを利用することができるとともに、検出素子である抵抗素子を小さく 形成しても感度低下がないため、小型化 ·低コスト化に有利である。
[0059] 具体的な構成としては、中央の重錐体 ARは 4本のビーム BMで支持した構造とな つている。ビーム BMは X, Yの 2軸方向で互いに直交するように形成されており、 1軸 当りに 4つのピエゾ抵抗素子を備えて 、る。 Z軸方向検出用の 4つのピエゾ抵抗素子 は、 X軸方向検出用ピエゾ抵抗素子の横に配置されている。重錐体 ARの上面形状 はクローバ型を形成し、中央部でビーム BMと連結されている。このクローバ型構造を 採用することにより、重錐体 ARを大きくすると同時にビーム長も長くすることができる ため小型であっても高感度な加速度センサを実現することが可能である。なお、重錘 体 ARの周辺部は貫通領域となっており、ビーム BMの下側領域は空洞領域となって V、る。当該貫通領域および空洞領域により重錘体 ARおよびビーム BMは可動可能 な状態となっている。すなわち、当該貫通領域および空洞領域の一部は、重錘体 A Rおよびビーム BMの可動領域となって!/、る。
[0060] なお、この重錘体 ARの高さ h2は、ビーム BMと連結される重錘体の支持構造(半 導体基板)の高さ hiよりも低く設計されているものとする。
[0061] このピエゾ抵抗型の 3軸加速度センサの動作原理は、重錐体が加速度 (慣性力)を 受けると、ビーム BMが変形し、その表面に形成されたピエゾ抵抗素子の抵抗値の変 化により加速度を検出するメカニズムである。そしてこのセンサ出力は、 3軸それぞれ 独立に組込まれた後述するホイートストンブリッジの出力から取り出す構成に設定さ れている。
[0062] 図 9は、各軸方向の加速度を受けた場合の重錐体とビームの変形を説明する概念 図である。
[0063] 図 9に示されるようにピエゾ抵抗素子は、加えられた歪みによってその抵抗値が変 化する性質 (ピエゾ抵抗効果)を持っており、引張歪みの場合は抵抗値が増加し、圧 縮歪みの場合は抵抗値が減少する。本例においては、 X軸方向検出用ピエゾ抵抗 素子 Rxl〜Rx4、 Y軸方向検出用ピエゾ抵抗素子 Ryl〜Ry4および Z軸方向検出 用ピエゾ抵抗素子 RZ 1〜Rz4がー例として示されて!/、る。
[0064] 図 10は、各軸に対して設けられるホイートストンブリッジの回路構成図である。
図 10 (a)は、 X(Y)軸におけるホイートストンブリッジの回路構成図である。 X軸およ ひ Ύ軸の出力電圧としてはそれぞれ Vxoutおよび Vyoutとする。
[0065] 図 10 (b)は、 Z軸におけるホイートストンブリッジの回路構成図である。 Z軸の出力 電圧としては Vzoutとする。
[0066] 上述したようにカ卩えられた歪みによって各軸 4つのピエゾ抵抗素子の抵抗値は変化 し、この変化に基づいて各ピエゾ抵抗素子は例えば X軸 Y軸においては、ホイートス トンブリッジで形成される回路の出力各軸の加速度成分が独立に分離された出力電 圧として検出される。なお、上記の回路が構成されるように図 7で示されるような上述 した金属配線等が連結され、所定のパッドから各軸に対する出力電圧が検出される ように構成されている。
[0067] また、この 3軸加速度センサは、加速度の DC成分も検出することができるため重力 加速度を検出する傾斜角センサとしても用いることが可能である。 [0068] 本実施の形態の構成においては、ウェハ保持機構 35において、真空吸着する際、 トレィをチャック 34の吸引用小孔により吸着して搬送する。すなわち上述した加速度 センサが形成されるウェハにおいては、図 8で説明したように貫通領域が設けられて いるため真空ポンプ 18による真空吸着によりウェハを直接搬送することはできない。
[0069] し力しながら、半導体ウェハを載置した本発明の実施の形態 1に従うトレィ 2を用い て、トレイ 2をチャック 34の吸引用小孔を用いて吸着することによりトレイ 2においては 貫通部を有しないため、真空吸着が可能となり特別な装置を必要とすることなくゥェ ハ 1を安定的に吸着し、例えば上記の検査部にお 、て所望の検査を簡易に実行す ることが可能となる。なお、本例においては、検査装置 30の検査部 36に半導体ゥヱ ハをチヤッキングして搬送する場合について説明したが、特に検査装置に限られず、 例えば他の装置に半導体ウェハを真空吸着によりチヤッキングして搬送する場合に、 本発明の実施の形態 1に従う半導体ウェハ用搬送トレィを用いて簡易かつ安定的に チヤッキングして搬送することが可能である。
[0070] (実施の形態 1の変形例 1)
図 11は、本発明の実施の形態 1の変形例 1に従う半導体ウェハ用搬送トレィ 2 #を 説明する図である。
[0071] 図 11を参照して、半導体ウェハ用搬送トレィ 2 #は、半導体ウェハ用搬送トレィ 2と 比較して、所定領域に貫通部が設けられる点が異なる。その他の点は同様であるの でその詳細な説明は繰り返さない。
[0072] 図 12は、一般的な半導体ウェハ 1に成型される複数のチップ TPを説明する図であ る。
[0073] 図 12を参照して、ここでは、例えば 3軸加速度センサの MEMSデバイスが複数個 チップ状に形成された場合が示されている。ウェハ 1には、可動部を有する微小構造 体の MEMSデバイスが形成される形成領域と、何も形成されな!ヽある!/ヽは半導体デ バイスの検査用のいわゆる TEG (Test Element Group)パターンが設けられる周辺領 域とを有する構成が一般的である。ここでは、ウェハ 1の外周領域を除く中央領域に MEMSデバイスのチップ TPが複数個設けられた場合が示されている。ウェハ 1の外 周領域は、 MEMSデバイスの特性ばらつきの影響が大きいため周辺領域として用い られる場合が多い。したがって、このような場合、すなわちウェハの外周領域には ME MSデバイスを成型する場合における貫通領域は設けられていないことになる。した がって、ウェハのある所定領域には、予め貫通領域がないことが判明している場合に は、そのウェハの当該所定領域を直接真空吸着により吸引することは可能である。
[0074] 本発明の実施の形態 1の変形例 1においては、たとえば貫通領域が設けられてい な 、ウェハの所定領域部分に対応して半導体ウェハ用搬送トレィ 2 #に貫通部 4を設 ける。
[0075] これに伴い、真空ポンプ 18は、吸引用小孔 3および貫通部 4を介して半導体ウェハ 1を直接真空吸着することが可能である。
[0076] したがって、上記の実施の形態 1に従うトレィ 2#は、トレイ 2 #のみ真空吸着する構 成であつたが、本例は、ウェハ 1も真空吸着する構成であるためより固定される。それ ゆえ、より安定した状態で吸着することが可能となる。
[0077] なお、ここでは、一例としてウェハの外周領域に貫通領域がないことが判明している 場合に外周領域に貫通部を設けて半導体ウェハを直接真空吸着する場合について 説明したがこれに限られず、他の所定領域 (形成領域を含む)に貫通領域がないこと が判明しているような場合には、当該他の所定領域部分に貫通部を設けて上記と同 様の方式にしたがって、半導体ウェハを直接真空吸着するようにすることも当然に可 能である。
[0078] 図 13は、本発明の実施の形態 1の変形例 1に従う別の半導体ウェハ用搬送トレィ 2
# aを説明する図である。ここでは、貫通領域がないことが判明している所定領域に 対応する位置に半導体ウェハ用搬送トレィ 2#aに貫通部 4を設けた場合に吸引用小 孔 3の位置と対応していない場合の例が挙げられている。このような場合には、トレイ 2 # aの裏面側において、吸引用小孔 3の位置と貫通部 4との間の経路を形成するた めに半導体ウェハ用搬送トレィ 2にガイド貫通部 5を形成するように成型することも可 能である。
[0079] (実施の形態 1の変形例 2)
上記の実施の形態 1においては、ウェハの外径に対応してそれよりも大きな外径と なるウェハと同様の円板状の形状の半導体ウェハ用搬送トレィを形成する場合につ いて説明した。具体的には、ウェハが載置される円板状の形状の基底部 2cと、内周 面について半導体ウェハの形状に沿って設けられた外壁部 2bとで構成されるトレイ について説明した力 本実施の形態 1の変形例 2においては、他の形状のトレイにつ いて説明する。
[0080] 図 14は、本発明の実施の形態 1の変形例 2に従う半導体ウェハ用搬送トレィを説明 する図である。
[0081] 図 14 (a)は、本発明の実施の形態 1の変形例 2に従う半導体ウェハ用搬送トレイの 一例図である。本発明の実施の形態 1の変形例 2に従う半導体ウェハ用搬送トレィ 20 を上部から見た図である。
[0082] 図 14 (a)に示されるように、半導体ウェハ用搬送トレィ 20は、ウェハが載置される基 底部 20aと、半導体ウェハ 1の外周端部の少なくとも一部領域に沿って設けられた外 壁部 20bとで構成される。ここでは、外壁部 20bは、図 3の外壁部 2bと比較して、半 導体ウェハ 1の外周端部の全領域に対応してウェハの外周面に沿って外壁部 2bを 設けた構成ではなぐ外周端部の一部領域に対応してウェハの外周面に沿って設け られた構成である。なお、ここでは、 2つの外壁部 20bが設けられ、基底部 20aを介し て互いに相対するように設けられ、これにウェハを保持することが可能な形状に形成 されている。なお、ここでは、基底部 20aは、半導体ウェハの外径に応じて設けられ、 ウェハ全面を載置可能な円板状の形状に形成されているものとする。
[0083] 図 14 (b)は、本発明の実施の形態 1の変形例 2に従う別の半導体ウェハ用搬送トレ ィの一例図である。本発明の実施の形態 1の変形例 2に従う別の半導体ウェハ用搬 送トレイ 20 #を上部から見た図である。
[0084] 図 14 (b)に示されるように、半導体ウェハ用搬送トレィ 20 #は、ウェハが載置される 基底部 20aと、半導体ウェハ 1の外周端部の少なくとも一部領域に沿って設けられた 外壁部 20cとで構成される。ここでは、外壁部 20cは、図 14 (a)の外壁部 20bと比較 して、 2つの互いに相対する外壁部を設けた構成ではなぐ 4つの外壁部 20cでゥェ ハの外周端部を囲むように設けた構成であり、これにウェハを保持することが可能な 形状に形成されている。なお、ここでは、 4つの外壁部 20cが示されているがこれに限 られず、外周端部の少なくとも 1部領域に沿って複数個の外壁部でウェハの外周端 部を囲むようにして設けることも可能である。
[0085] なお、半導体ウェハ用搬送トレイの重量が重ければ重いほど搬送アーム等のたわ みの原因となり搬送精度が悪ィ匕する可能性があるが、当該構成のようにウェハを保持 するために外壁部を一部に限定することにより半導体ウェハ用搬送トレイの軽量ィ匕を 図ることができ、搬送精度を向上させることができる。一方、軽量化を図るための様々 な工夫が考えられる力 加工手順の増加およびコストの増加等を鑑みて半導体ゥェ ハ用搬送トレイの形状を設計することが可能である。
[0086] (実施の形態 1の変形例 3)
上記の実施の形態 1にお 、ては、ウェハの形状が円形状である場合にっ 、て説明 したがこれに限られず、 V、わゆるオリエンテーションフラット(単にオリフラとも称する) またはノッチ型のウェハも存在する。なお、ノッチ型のウェハの場合には、ウェハの一 部が V字形等の切断 (切り欠き)領域 (ノッチ領域)が設けられて 、る。
[0087] 図 15は、オリフラ型のウェハに対応する半導体ウェハ用搬送トレィを説明する図で ある。
[0088] 図 15 (a)には、半導体ウェハ 1 #の外周端部の全領域に対応してウェハの外周面 に沿って外壁部が設けられ、これにウェハを保持することが可能なように半導体ゥェ ハ用搬送トレィ 21が形成されている。
[0089] 図 15 (b)に示される半導体ウェハ用搬送トレィ 21aは、半導体ウェハ 1 #の外周端 部の全領域ではなく一部領域に対応してウェハの外周面に沿って外壁部が設けられ ている。また、オリエンテーションフラット型のウェハの特徴である切断領域 (オリエン テーシヨンフラット領域)の一部に対応してさらに外壁部 21bが設けられている。なお 、ノッチ型のウェハにつ 、ても同様に適用可能である。
[0090] この外壁部 21bは、ウェハの中心点力も外壁部 21bの内周部までの長さがウェハの 外周端部の半径長さの最大値よりも短くなるように形成されるため外壁部に囲まれた 領域内におけるウェハの回転も防止することができる。
[0091] (実施の形態 1の変形例 4)
本実施の形態 1の変形例 4においては、真空吸着により半導体ウェハ用搬送トレィ をより安定的に保持する方式について説明する。 [0092] 図 16は、本発明の実施の形態 1の変形例 4に従うオリフラ型のウェハに対応する半 導体ウェハ用搬送トレィ 21 #を説明する図である。なお、ここでは、一例として図 15 ( a)で説明したオリフラ型のウェハに対応する半導体ウェハ用搬送トレイについて説明 しているが、これに限られず、例えば通常の円形状のウェハに対応するトレイにおい ても同様に適用可能である。
[0093] 図 16 (a)を参照して、半導体ウェハ用搬送トレィ 21 #の裏面には、たとえば吸着用 小孔 3が円形状に中心点 Oを中心にかつ、中心点 Oを対称に複数個設けられている ものとする。そして、この吸着用小孔 3に対応して真空吸着される吸着面積を広げる ためにトレイの裏面に凹み部 5 #を設ける。凹み部 5 #は、トレイの中心点 O方向に沿 つて複数個吸着用小孔 3に対応して設けられるものとする。
[0094] 図 16 (b)は、本発明の実施の形態 1の変形例 4に従うオリフラ型のウェハに対応す る半導体ウェハ用搬送トレィ 21 #を側面方向から見た図である。
[0095] 本例の半導体ウェハ用搬送トレィ 21 #には、吸着用小孔 3に対応して吸着面積を 広げるためにトレイの裏面に凹み部 5 #を設ける。そして、この凹み部 5 #は、中心点 Oを対称に設けられて 、るものとする。
[0096] そうすると、凹み部 5 #を介して真空ポンプにより真空吸着が実行されるが、その際
、吸着力は、中心点 oを中心に均等に掛カるためトレイは中心点 oを中心に固定さ れることになり、トレイの回転も抑制することができる。
[0097] (実施の形態 2)
上記の実施の形態 1においては、半導体ウェハを囲むように外壁部を設けて固定 する半導体ウェハ用搬送トレイについて説明した。
[0098] 本実施の形態 2においては、別な方式で半導体ウェハを固定する場合について説 明する。
[0099] 図 17は、本発明の実施の形態 2に従う半導体ウェハ 10を説明する図である。
図 17を参照して、本発明の実施の形態 2に従う半導体ウェハ 10は、穴部 11を有す る。ここでは、 2つの穴部 11がー例として設けられている。なお、半導体ウェハ 10の 形状としてここでは、オリフラ型のウェハが示されている力 通常の円板状のウェハに おいても同様に適用可能である。また、上述したように一般的に、ウェハは、可動部を 有する微小構造体の MEMSデバイスが形成される形成領域と、何も形成されな!ヽ周 辺領域とを有する構成が一般的である。たとえば、ウェハの外周領域は、たとえば M EMSデバイスを成型した場合特性ばらつきの影響が大きいため周辺領域として用い ることが考えられる。したがって、穴部 11を設けるにあたり、 MEMSデバイスが成型さ れにくいウェハの外周領域に穴部 11を設けることにより周辺領域を有効に利用する ことが可能である。
[0100] 図 18は、本発明の実施の形態 2に従う半導体ウェハ用搬送トレィを説明する図であ る。ここでは、半導体ウェハ用搬送トレィ 26を側面方向から見た図が示されている。
[0101] 図 18を参照して、半導体ウェハ用搬送トレィ 26は、突起部 100と基底部 25とにより 構成される。基底部 25の表面側上に半導体ウェハ 10が載置されている。そして、そ の際、基底部 25の表面に設けられた突起部 100が半導体ウェハ 10に設けられた穴 部 11を貫通して半導体ウェハ 10と基底部 25とが固定される。
[0102] これに伴い、上述した真空ポンプ 18により吸引用小孔 3を介してトレィを真空吸着 することにより安定的に保持し、安定した状態で半導体ウェハを吸着することができる
[0103] なお、ここで、上述した穴部 11は、ドリルであけることも可能である力 デバイスのプ ロセス工程で作りこむことも可能である。
[0104] 図 19は、図 7および図 8で説明した 3軸加速度センサを成型する際のプロセスの概 略を説明する図である。
[0105] 図 19 (a)に示されるようにまず、ここでは、 SOI層 300 (SOI)と、埋め込み酸化膜 30 1 (BOX)と、 Si基板 302 (Si-Sub)を持つ SOIウェハ(SOI Wafer)が示される。そして、 フォトリソグラフイエ程によりセンサの回路パターンを形成する。一般的には、フオトレ ジストをウェハ表面に滴下し、マスクを通して紫外光をフォトレジストに照射して露光 現像する。そして、エッチングし、レジスト剥離等の工程を繰り返して回路パターンを 形成する。図 19 (b)において、 SOI層上に絶縁膜 305を形成後、イオン注入法およ び絶縁膜のパターユングにより、ピエゾ抵抗 306を形成する。そして、アルミ配線 304 を形成し、表面をパッシベーシヨン膜 303 (SiN)で保護した場合が示されている。そし て、ここでは、図 19 (c)において、次いで SOI層の重錘体とビーム及び固定枠部との ギャップ部分を Si Deep RIE技術により BOX層まで上部側をエッチングする。次に 、図 19 (d)において、 Si基板のギャップ部及びビーム下部を裏面から Si Deep RI E技術により BOX層まで基板側をエッチングし、最後に BOX層をエッチングすること で、構造体をリリースする場合が示されている。
[0106] 上記プロセスに従い、図 8で示される重錘体およびビームおよび固定枠部が成型さ れる。
[0107] この Si Deep RIE技術を用いて半導体ウェハの何も形成されない周辺領域にお V、て、表面および裏面力 エッチングして上述した重錘体およびビームおよび固定 枠部とともに上記の穴部 11を成型することが可能である。具体的には、フォトリソダラ フイエ程において、マスク上に穴部 11と同一の形状を作成しておき、フォトリソグラフ イエ程において、穴部 11と同一形状を基板に添付したレジストに焼き付けて、レジス トを現像した後に、 Si Deep RIE技術により基板を表面および裏面力もエッチング して、穴部 11を精度良く形成することが可能である。これにより、特別な装置あるいは 穴部を設けるための特別なプロセスを設ける必要が無ぐ加速度センサの成型と同 時に一括して穴部 11も成型されるため簡易に穴部 11を成型することが可能である。 また、 Si Deep RIE技術により精度の高い穴部 11の形状を形成することが可能で あり、コスト面でも有利である。
[0108] なお、ここでは、貫通した穴部 11と、突起部 100とが嵌合する場合について一例と して説明した力 貫通していない場合でも良い。たとえば、未貫通の穴部 11と突起部 100とが嵌合していれば同様の効果を期待することが可能である。また、穴部 11の 穴の形状と突起部 100の形状については、一例として円形状の穴部 11および突起 部 100を形成することが可能である力 たとえば、穴部 11および突起部 100の形状 を多角形とすることも可能である。
[0109] 図 20は、本発明の実施の形態 2に従う別の半導体ウェハ 10 #を説明する図である 図 20を参照して、本発明の実施の形態 2に従う半導体ウェハ 10 #は、穴部 11 #を 有する。ここでは、 2つの穴部 11 #が一例として設けられている。この穴部 11 #は、 図 17で説明した穴部 11とは異なり、多角形状の一例として三角形の断面形状で成 型される。また、穴部 11 #と嵌合するように三角形の断面形状で突起部が成型され るものとする。これにより、突起部と穴部とで嵌合した際、円形の形状と比較して多角 形の角部分で引っ掛力りが生じるため半導体ウェハ 10と基底部 25との関係における 回転をさらに抑制することができる。
[0110] なお、基底部 25の大きさは、半導体ウェハの大きさよりも小さくすることができる。具 体的には、半導体ウェハの面積よりも小さぐたとえば微小構造体が形成されている 領域よりも大きい面積となるように設計することが可能である。これにより、半導体ゥェ ハのノッチあるいは 、わゆるオリフラを用いて半導体ウェハのァライメント調整を容易 に実行することが可能となる。
[0111] なお、上記においては、穴部 11および 11 #をデバイスが成型される中央領域を除 く外周領域に設ける場合について説明した力 この穴部 11および 11 #の位置につ いては、任意の領域に形成し、対応する突起部を設けることにより上記と同様の効果 を得ることも可能である。また、デバイスが成型される領域においても一部の領域を用 V、て穴部および対応する突起部を設けるように設計することも可能である。
[0112] (実施の形態 2の変形例 1)
図 21は、本発明の実施の形態 2の変形例 1に従う半導体ウェハ用搬送トレィ 27を 説明する図である。
[0113] 図 21を参照して、半導体ウェハ用搬送トレィ 27は、半導体ウェハ用搬送トレィ 26と 比較して、基底部 25を基底部 25 #に置換した点が異なる。基底部 25 #は、基底部 25と比較して所定領域に貫通部が設けられる点が異なる。その他の点は同様である のでその詳細な説明は繰り返さない。
[0114] 上述したように、ウェハのある所定領域には、予め貫通領域がないことが判明してい る場合には、そのウェハの当該所定領域を真空吸着により吸引することは可能である
[0115] 本発明の実施の形態 2の変形例 1においては、たとえば貫通領域が設けられてい ないウェハの所定領域部分に対応して半導体ウェハ用搬送トレィ 27に貫通部 4を設 ける。
[0116] これに伴い、真空ポンプ 18は、吸引用小孔 3および貫通部 4を介して半導体ウェハ 1 #を直接真空吸着することが可能である。
[0117] したがって、上記の実施の形態 2よりも安定的に保持することが可能となり、より安定 した状態で吸着することが可能となる。
[0118] なお、ここでは、一例としてウェハの外周領域に貫通領域がないことが判明している 場合に外周領域に貫通領域を設けて半導体ウェハを直接真空吸着する場合につい て説明したがこれに限られず、他の所定領域 (形成領域を含む)に貫通領域がないこ とが判明しているような場合には、当該他の所定領域部分に貫通領域を設けて上記 と同様の方式にしたがって、半導体ウェハを直接真空吸着することも当然に可能であ る。
[0119] 図 22は、本発明の実施の形態 2の変形例 1に従う別の半導体ウェハ用搬送トレィ 2 8を説明する図である。ここでは、貫通領域がないことが判明している所定領域に対 応する位置に半導体ウェハ用搬送トレィ 28に貫通部 4を設けた場合に吸引用小孔 3 の位置と対応していない場合の例が挙げられている。このような場合には、基底部 25 # aの裏面側において、吸引用小孔 3の位置と、貫通部 4との間の経路を形成するよ うに半導体ウェハ用搬送トレィ 28にガイド貫通部 5を形成するように成型することも可 能である。
[0120] 上記の実施の形態においては、主に 3軸加速度センサの MEMSデバイスについ て説明してきたが、これに限られず例えば貫通領域を有して 、な 、MEMSデバイス に対しても同様に適用可能である。
[0121] たとえば、メンブレン構造の薄膜の可動部を有する微小構造体について説明する。
図 23は、電子ビーム照射器の照射窓にメンブレン構造が用いられている場合を説 明する図である。
[0122] 図 23に示されているように、真空管 81から大気中に対して電子ビーム EBが出射さ れる照射窓 80の一部が示されており、その拡大した断面構造に示されるように薄膜 のメンブレン構造が採用されている。なお、図 23では単一材料にメンブレンが形成さ れ、かつ 1つのメンブレン構造のみが図示されている力 複数の材料で多層膜構造と して形成される場合や、あるいは複数のメンブレン構造がアレイ状に配置された照射 窓とすることも可能である。 [0123] このような薄膜のメンブレン構造の MEMSデバイスが成型された半導体ウェハを真 空吸着した場合、その吸着力により薄膜の可動領域以上に薄膜が吸着されてクラッ クが生じる可能性がある。
[0124] したがって、本発明の実施の形態の如く直接薄膜部分が真空吸着されないようにト レイを設けることにより安定的に保持し、かつ半導体ウェハを安全に搬送することがで きる。
[0125] 上記の実施の形態 2においては、保持突起部と穴部とが嵌合して安定的にウェハ を搬送可能な半導体ウェハ用搬送トレイについて説明したが、これに限られず、上記 の実施の形態 1およびその変形例で説明した方式を組み合わせて例えば、ウェハの 外周面に沿って外壁部を設けた構成とすることによりさらに安定的にウェハを搬送す ることが可能である。
[0126] (実施の形態 3)
上記の実施の形態 1および 2においては、半導体ウェハと、半導体ウェハ用搬送ト レイの表面とがほぼ全領域にわたって密着して載置される構成について説明したが 、半導体ウェハに成型される MEMSデバイスの構造によっては、さらに工夫する必 要がある。
[0127] 図 24は、図 8で説明した 3軸加速度センサとは別の 3軸加速度センサの概略図であ る。
[0128] 図 24を参照して、ここで示される 3軸加速度センサは、図 8で説明した 3軸加速度セ ンサと比較して、この重錘体 ARの高さ h2がビーム BMと連結される重錘体 ARの支 持構造 (半導体基板)の高さ hiと同じ高さ程度に設計されている点が異なる。その他 の部分については同様である。当該構造の 3軸加速度センサの場合、重錘体 ARの 支持構造の高さと可動部である重錘体 ARの高さが同じ高さ程度に設計されている ため半導体ウェハ用搬送トレイに載置した場合、可動部となる重錘体 ARが半導体ゥ ェハ用搬送トレイと近接あるいは接触した状態となる可能性があり、例えば半導体ゥ ェハ用搬送トレイに載置した状態で、上記した検査装置 30にお 、て検査した場合、 可動部が正常に可動せず所望の検査を実行することができない可能性がある。
[0129] 図 25は、本発明の実施の形態 3に従う半導体ウェハ用搬送トレィ 2 # pを説明する 図である。
[0130] 図 25 (a)を参照して、半導体ウェハ用搬送トレィ 2 # pは、図 11で説明した半導体ゥ ェハ用搬送トレィ 2 #と比較して、半導体ウェハが載置される基底部の表面部分に対 してザダリ加工が施された形状 (ザダリ領域)に成型されている点で異なる。その他の 点については、図 11で説明したのと同様であるのでその詳細な説明は繰り返さない
[0131] 再び、図 25 (a)を参照して、本例においては、図 12で説明したように半導体ウェハ において、チップ TPが中央領域等に設けられる場合、それと対向するトレイ 2 # の 表面においては、凹型に形成される所定の深さのザダリ領域を形成し、チップ TPが 設けられな 、外周領域すなわち周辺領域に対向するトレイ 2 # pの表面にお 、ては、 ザダリ領域を形成しない構成とする。すなわち、周辺領域よりも内側の領域に対向す るトレイ 2 # pの表面にザダリ領域が形成される。
[0132] 当該構成により、図 25 (b)に示されるように一例として 3軸加速度センサの可動部 である重錘体 ARは、ザダリ加工を半導体ウェハ用搬送トレィ 2 # pに施すことにより所 定間隔空隙が設けられた状態となるため半導体ウェハ用搬送トレィ 2 # pの表面に接 触することを回避することができる。それゆえ、上記した検査装置 30においても所望 の検査を実行することが可能となる。
[0133] なお、当該構成においても、半導体ウェハの貫通領域が設けられない外周領域に 対向する領域に半導体ウェハ用搬送トレィ 2 # pに貫通部を設けて半導体ウェハを直 接真空吸着することにより安定的に半導体ウェハを吸着することが可能である。
[0134] (実施の形態 3の変形例 1)
図 26は、本発明の実施の形態 3の変形例 1に従う半導体ウェハ用搬送トレィ 2 # q を説明する図である。
[0135] 図 26 (a)を参照して、ここでは、半導体ウェハ用搬送トレィ 2 # qは、半導体ウェハが 載置される基底部の表面部分に対してザダリ加工が所定のパターンに従って施され た場合が示されて 、る。上記下図 25 (a)で説明した半導体ウェハ用搬送トレィ 2 # p の構成においては、半導体ウェハが載置される基底部の表面部分に対してチップ T Pが設けられる全領域たとえば中央領域に対向する部分全体に対してザダリ加工が 施された構成であつたが、当該構成は、チップ TPが設けられる領域のうち特に可動 部に対向する基底部の表面部分に対してザダリ加工を施したものである。
[0136] 当該構成により、 MEMSデバイスが 3軸加速度センサである場合には、図 26 (b)に 示されるように重錘体 ARに対向する基底部の表面部分にっ 、てザダリ加工が施さ れることになる。これにより、重錘体 ARの支持構造の部分については、基底部の表 面部分と近接あるいは接触した状態となる。それゆえ、図 25の構成と比べて半導体 ウェハの自重に従う半導体ウェハのたわみを抑制して搬送することが可能となる。
[0137] その他の点については、図 25と同様である。
(実施の形態 3の変形例 2)
上記の実施の形態 3およびその変形例においては、半導体ウェハ用搬送トレイに おいては、実施の形態 1で説明した半導体ウェハ用搬送トレィを用いてザダリ加工を 施す構成について説明したが、これに限られず、実施の形態 2で説明した半導体ゥ ェハ用搬送トレィを用いてザダリ加工を施す構成とすることも当然に可能である。
[0138] 図 27は、本発明の実施の形態 3の変形例 2に従う半導体ウェハ用搬送トレィ 26 # を説明する図である。
[0139] 図 27を参照して、半導体ウェハ用搬送トレィ 26 #は、突起部 100と基底部 25pとに より構成される。基底部 25pの上に図示しないが一例として図 17で説明した半導体 ウェハ 10が載置されるものとする。そして、その際、基底部 25pの表面に設けられた 突起部 100が半導体ウェハ 10に設けられた穴部 11を貫通して上述したように半導 体ウェハ 10と基底部 25pとが固定される。
[0140] そして、半導体ウェハが載置される基底部 25pの表面部分に対してザダリ加工が所 定のパターンに従って施された場合が示されている。具体的には、図 26 (b)で説明 したように重錘体 ARに対向する基底部の表面部分にっ ヽてザダリ加工を施す。これ により、重錘体 ARの支持構造の部分については、基底部の表面部分と近接あるい は接触した状態となる。それゆえ、上述したように半導体ウェハの自重に従う半導体 ウェハのたわみを抑制して搬送することが可能となる。
[0141] また、図 21および図 22で説明したように、基底部 25pに対して貫通部 4を設けて、 真空ポンプにより半導体ウェハ :Lが直接真空吸着する構成とした場合が示されている 。また、貫通部 4との間の経路を形成するようにガイド貫通部 5を設けた構成が示され ている。
[0142] これに伴い、上述した真空ポンプ 18により吸引用小孔 3を介して半導体ウェハ用搬 送トレイを真空吸着することにより安定的に保持し、安定した状態で半導体ウェハを 吸着することができる。
[0143] なお、上記の実施の形態において説明した半導体ウェハ用搬送トレィは、貫通部 等の加工に関してドリル等の機械カ卩ェにより成型することも可能である力 デバイスの プロセス工程を用いて成型することも可能である。
[0144] 図 28は、図 27で説明した半導体ウェハ用搬送トレィを成型するプロセスの概略を 説明する図である。
[0145] ここでは、半導体ウェハ用搬送トレイの裏面側をカ卩ェするためのプロセスが示され ている。
[0146] 具体的には、図 28 (a)を参照して、トレイの裏面側に対してカ卩ェするために Si基板
(Si-Sub)に対して、 2つのマスクで保護してエッチングが実行される。具体的には、貫 通部 4を形成するためのマスク MSK1と、ガイド貫通部を形成するためのマスク MSK 2とにより基底部 25pが覆われる。
[0147] 次に、図 28 (b)を参照して、ここでは、マスク MSK1およびマスク MSK2で覆われ て!、な ヽ Si基板である基底部 25pの領域に対してドライエッチングが行なわれて貫 通部 4が成型される。そして、マスク MSK1が除去される。
[0148] 次に、図 28 (c)を参照して、ここでは、マスク MSK2で覆われていない Si基板であ る基底部 25pの領域に対してドライエッチングが行なわれてガイド貫通部が形成され ることになる。これら、 2つのマスクの例としては、マスク MSK1には通常のフォトレジ ストを用いることができる。また、マスク MSK2としては、ポリイミド等の永久レジストの 他、 SiO、 SiN、 Ti等のハードマスクを用いることも可能である。
2
[0149] そして、次に図 28 (d)を参照して、 Si基板を熱酸化してシリコン酸化膜で基底部 25 P全体を覆う。そして次に基底部 25pの表面に対して加工処理を実行する。
[0150] 図 28 (e)を参照して、ザダリ領域を形成する領域以外について図示しないがレジス トマスクで保護してウエットエッチングによりシリコン酸ィ匕膜をエッチングする。 [0151] 次に、図 28 (f)を参照して、さらに、シリコン酸化膜をマスクとして、いわゆる TMAH 水溶液を用いて Si基板である基底部 25pをウエットエッチングし、可動部に対向する 基底部 25pの表面に対してザダリ領域を成型する。
[0152] そして、次に図 28 (g)を参照して、シリコン酸化膜をフッ酸で剥離して図 27で説明 した半導体ウェハ用搬送トレイの基底部 25pを成型することが可能となる。
[0153] そして、突起部 100を基底部 25pと接着して設けることにより半導体ウェハ用搬送ト レイ 26 #を成型することが可能となる。
[0154] 当該プロセスにより半導体ウェハ用搬送トレィを成型することにより、加工精度を向 上させることが可能となるとともに、簡易にトレィを成型することが可能となる。
[0155] (実施の形態 4)
本発明の実施の形態 4に従う半導体ウェハは、上記の実施の形態 1〜3で説明した 半導体ウェハとは異なり、ガラス基板が接合された構造を有するものとする。上述した 加速度センサのような貫通孔が多く設けられるデバイスにおいては、デバイスの強度 を保持するためにガラス基板等が接合される場合がある。それで、本実施の形態 4〖こ お!ヽては、ガラス基板が接合された構造を有する半導体ウェハを搬送する半導体ゥ ェハ用搬送トレイにっ 、て説明する。
[0156] 図 29は、本発明の実施の形態 4に従う半導体ウェハ用搬送トレィを説明する図であ る。
[0157] 図 29を参照して、まず、半導体ウェハ 1と、半導体ウェハ用搬送トレィ 2rとの間にお いてガラス基板 laが挟まれ、半導体ウェハ 1とガラス基板 laとが接合されているものと する。なお、ここで接合されるガラス基板 laは、半導体ウェハ 1と同じ形状および同じ 大きさのものが用いられるものとする。したがって、例えば、半導体ウェハの形状が円 形状である場合には、ガラス基板の形状も同様の形状が用いられ、半導体ウェハの 形状がオリエンテーションフラットまたはノッチ型である場合には、対応するガラス基 板にっ ヽても同様の形状であるものが用いられる。
[0158] 本発明の実施の形態 4に従う半導体ウェハ用搬送トレィ 2rは、図 6で説明した半導 体ウェハ用搬送トレィ 2と比較して、基底部の表面側に後述する多孔質層がさらに設 けられた構成である点と、さらに、基底部の裏面側から多孔質層との間において貫通 部 4 #が設けられた構成である点で異なる。そして、この多孔質層を介してガラス基 板 laを真空吸着することが可能となる。
[0159] 上記で説明した半導体ウェハ 1に成型される例えば 3軸加速度センサの MEMSデ バイスにおいては貫通領域が設けられており、 MEMSデバイスが成型される領域に おいては当該貫通領域により半導体ウェハ 1を直接真空吸着することが困難である 点について説明したが、ガラス基板を接合した本仕様においては、ガラス基板を介す ることによって真空吸着が可能であり、搬送上の問題は解決するように考えられる。し 力しながら、ガラス基板は、通常非常に薄いものが用いられ、ウェハをガラス基板を介 して直接載置台に載せて吸着すると、載置台上の吸引用小孔のパターンに沿って、 ガラス基板およびウェハが変形し、デバイスの正確なテストが得られな 、と ヽぅ問題が ある。しかし、多孔質層を持つトレィを介して真空吸着を行うことにより、吸引用小孔 のパターンに依存する吸着力の差が均一にされる。
[0160] ここで多孔質層の生成について説明する。
図 30は、多孔質層 NCSの生成について説明する図である。
[0161] 単結晶のシリコン基板である基板部 2rの一表面側に、多孔質層 NCSである多孔質 ナノ結晶シリコン層を形成するには、陽極酸化処理を行なう。
[0162] 図 30を参照して、陽極酸ィ匕処理にあたっては、基板部 2rの陽極酸化処理の対象と なる表面の部位の周囲にシール材を用いて外壁 41を設け、その外壁の内側に電解 液 45を注入して、当該処理対象の表面の部位が電解液 45に触れるように構成され る。
[0163] 次に、電解液 45中において、白金電極 44を基板部 2rの表面に対向するように配 置する。さらに、基板部 2rの裏面側に通電用電極 42を取り付けて、通電用電極 42と 接続されたリード線を電流源 200のプラス側に、白金電極 44を電流源 200のマイナ ス側にそれぞれ接続する。通電用電極 42を陽極、白金電極 44を陰極として、電流 源 200から通電用電極 42と白金電極 44との間に所定の電流密度の電流を所定の 通電時間だけ流す。
[0164] このような陽極酸ィ匕処理により、基板部 2rの表面の部位の外壁 41の内側に厚さが ほぼ一定な熱絶縁層 NCSが形成される。また、陽極酸ィ匕処理に用いる電解液 45と しては、例えば、 55wt%のフッ化水素水溶液とエタノールとを 1: 1で混合した混合液 (HFZエタノール溶液)を用いる。シール材としては、例えばフッ素榭脂からなるシー ル材を用いることが可能である。
[0165] 当該方式に従って基板部 2rの表面側に多孔質ナノ結晶シリコン層を形成すること ができる。
[0166] この多孔質ナノシリコン層を介してガラス基板 laを真空吸着することにより、多孔質 層と接触しているガラス基板は均一にチヤッキングされることになる。すなわち、ガラス 基板の一点に対して真空吸着が実行されるのではなぐガラス基板の多孔質層と接 触している全面に対して真空吸着が行われるためチャック上の吸引用小孔のパター ンに依存する吸着力の差異に起因してガラス基板および半導体ウェハに対して意図 しない変位が生じることはない。したがって、半導体ウェハ上に形成された個々の微 小構造体が意図しな 、変位による影響を受けることがなく、半導体ウェハ全面にお!、 て、安定的で信頼性の高 、テスト結果を得ることが可能である。
[0167] なお、ここでは、貫通領域を有する 3軸加速度センサの MEMSデバイスについて 例として説明した力 別の MEMSデバイスについても同様に適用可能である。
[0168] なお、当該実施の形態 4で説明した構成に対して、実施の形態 1で説明したように 外壁部を設けて、さらに安定的に半導体ウェハを搬送することも可能であるし、実施 の形態 2で説明したように穴部と突起部とを設けて半導体ウェハと半導体ウェハ用搬 送トレイとを嵌合して搬送することも可能である。なお、この場合には、ガラス基板に ついても半導体ウェハと同様の穴部を設けて半導体ウェハ用搬送トレィ側に設けられ た突起部と嵌合する必要がある。
[0169] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 可動部を有する微小構造体が少なくとも 1つ成型される半導体ウェハを載せる半導 体ウェハ用搬送トレイであって、
前記半導体ウェハのズレを防止するためのズレ防止機構が前記半導体ウェハを載 せる表面側に設けられ、搬送に際し裏面側が真空吸着される基底部を備え、 前記基底部は、前記半導体ウェハの微小構造体が成型されな!、周辺領域に設け られた貫通部を有し、
前記半導体ウェハは、前記貫通部を介して前記基底部とともに真空吸着される、半 導体ゥ ハ用搬送トレイ。
[2] 前記半導体ウェハは、穴部を有し、
前記基底部の表面側に設けられ、前記ズレ防止機構を構成する前記穴部に嵌合 する保持突起部をさらに備える、請求項 1に記載の半導体ウェハ用搬送トレイ。
[3] 前記穴部は、前記微小構造体が成型されな!、領域に設けられる、請求項 2記載の 半導体ゥ ハ用搬送トレイ。
[4] 前記半導体ウェハは、複数の前記穴部を有し、
前記基底部は、前記複数の穴部にそれぞれ対応して設けられる複数の前記保持 突起部をさらに備える、請求項 2記載の半導体ウェハ用搬送トレイ。
[5] 前記穴部および前記保持突起部の形状断面は、多角形状に形成される、請求項 2 記載の半導体ゥ ハ用搬送トレイ。
[6] 前記基底部の表面側は、前記微小構造体が成型されな!、前記半導体ウェハの周 辺領域より内側の領域に対向して設けられ、ザダリ加工により凹型に形成される所定 の深さのザダリ領域を有する、請求項 1〜5のいずれか一項に記載の半導体ウェハ 用搬送トレイ。
[7] 前記基底部の表面側に形成されるザダリ領域は、前記半導体ウェハにおいて前記 微小構造体の可動部が成型された領域に対向して設けられる、請求項 6記載の半導 体ウェハ用搬送トレイ。
[8] 前記半導体ウェハは、可動領域となる貫通領域が設けられた可動部を有する微小 構造体が少なくとも 1つ成型されており、前記穴部は、貫通領域を形成する工程によ つて同時に成型される、請求項 2記載の半導体ウェハ用搬送トレイ。
[9] 前記半導体ウェハ用搬送トレイの大きさは、前記半導体ウェハよりも小さぐ前記微 小構造体が形成される領域よりも大きい、請求項 1記載の半導体ウェハ用搬送トレィ
[10] 前記半導体ウェハ用搬送トレィは、真空吸着を実行するための真空吸着ガイドの形 状に沿って真空吸着され、
前記基底部の裏面は、前記真空吸着ガイドと前記裏面との間に真空吸着される吸 着面積を広げるために前記真空吸着ガイドに対応して設けられた凹み部を有する、 請求項 1記載の半導体ウェハ用搬送トレイ。
[11] 前記基底部と連結され、前記半導体ゥ ハを載せる面に前記半導体ゥ ハの外周 端部の少なくとも一部領域に沿って設けられた前記ズレ防止機構を構成する外壁部 をさらに備える、請求項 1記載の半導体ウェハ用搬送トレイ。
[12] 前記基底部の表面側は、前記微小構造体が成型されな!、前記半導体ウェハの周 辺領域より内側の領域に対向して設けられ、ザダリ加工により凹型に形成される所定 の深さのザダリ領域を有する、請求項 11記載の半導体ウェハ用搬送トレイ。
[13] 前記基底部の表面側に形成されるザダリ領域は、前記半導体ウェハにおいて前記 微小構造体の可動部が成型された領域に対向して設けられる、請求項 12記載の半 導体ゥ ハ用搬送トレイ。
[14] 前記半導体ウェハは、オリエンテーションフラットまたはノッチ領域を有し、
前記外壁部は、前記半導体ウェハの前記オリエンテーションフラットまたはノッチ領 域の外周端部の少なくとも一部に対応して設けられる、請求項 11〜 13のいずれか 一項に記載の半導体ゥ ハ用搬送トレイ。
[15] 可動部を有する微小構造体が少なくとも 1つ成型される半導体ウェハを載せる半導 体ウェハ用搬送トレイであって、
前記半導体ウェハは、前記半導体ウェハ用搬送トレイとの間に設けられるガラス基 板と接合されるとともに、前記ガラス基板を介して搬送され、
前記半導体ウェハ用搬送トレィは、多孔質層が前記ガラス基板を介する前記半導 体ゥ ハを載せる表面側に設けられ、搬送に際し裏面側が真空吸着される基底部を 備え、
前記基底部は、前記多孔質層に達する貫通孔を有し、
前記半導体ウェハは、前記多孔質層を介して前記基底部とともに真空吸着される、 半導体ゥ ハ用搬送トレイ。
[16] 前記半導体ゥ ハ用搬送トレィは、前記半導体ウェハのズレを防止するズレ防止機 構が前記半導体ウェハを載せる表面側に設けられている、請求項 15記載の半導体 ウェハ用搬送トレイ。
[17] 前記半導体ウェハおよびガラス基板は、穴部を有し、
前記基底部は、前記ズレ防止機構を構成する前記穴部に嵌合する保持突起部を 有する、請求項 15記載の半導体ゥ ハ用搬送トレイ。
[18] 前記穴部は、前記微小構造体が成型されない領域に設けられている、請求項 17 記載の半導体ゥ ハ用搬送トレイ。
[19] 前記半導体ウェハおよびガラス基板は、複数の前記穴部を有し、
前記基底部は、前記複数の穴部にそれぞれ対応して設けられる複数の前記保持 突起部を有する、請求項 17記載の半導体ゥ ハ用搬送トレイ。
[20] 前記穴部および前記保持突起部の形状断面は、多角形状に形成される、請求項 1
7記載の半導体ゥ ハ用搬送トレイ。
[21] 前記半導体ウェハは、可動領域となる貫通領域が設けられた可動部を有する微小 構造体が少なくとも 1つ成型されており、前記穴部は、貫通領域を形成する工程によ つて同時に形成される、請求項 17記載の半導体ウェハ用搬送トレイ。
[22] 前記半導体ウェハ用搬送トレィは、前記半導体ウェハおよびガラス基板よりも小さく 前記微小構造体が形成される領域よりも大きい、請求項 15〜21のいずれか一項に 記載の半導体ゥ ハ用搬送トレイ。
[23] 前記基底部と連結され、前記ガラス基板を介して前記半導体ウェハを載せる面に 前記半導体ウェハおよびガラス基板の外周端部の少なくとも一部領域に沿って設け られた前記ズレ防止機構を構成する外壁部をさらに備える、請求項 15記載の半導体 ウェハ用搬送トレイ。
[24] 前記半導体ウェハおよびガラス基板は、オリエンテーションフラットまたはノッチ領域 を有し、
前記外壁部は、前記半導体ウェハの前記オリエンテーションフラットまたはノッチ領 域の外周端部の少なくとも一部に対応して設けられる、請求項 23記載の半導体ゥ ハ用搬送トレイ。
前記多孔質層は、ナノ結晶シリコンである、請求項 15記載の半導体ウェハ用搬送ト レイ。
PCT/JP2006/316259 2005-08-22 2006-08-18 半導体ウェハ用搬送トレイ WO2007023746A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-239965 2005-08-22
JP2005239965 2005-08-22
JP2006-116880 2006-04-20
JP2006116880A JP4020938B2 (ja) 2005-08-22 2006-04-20 半導体ウェハ用搬送トレイおよび半導体ウェハ搬送システム

Publications (1)

Publication Number Publication Date
WO2007023746A1 true WO2007023746A1 (ja) 2007-03-01

Family

ID=37771494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316259 WO2007023746A1 (ja) 2005-08-22 2006-08-18 半導体ウェハ用搬送トレイ

Country Status (3)

Country Link
JP (1) JP4020938B2 (ja)
TW (1) TW200719424A (ja)
WO (1) WO2007023746A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412176A (zh) * 2010-09-26 2012-04-11 北京北方微电子基地设备工艺研究中心有限责任公司 托盘及具有其的晶片处理设备
US20140009183A1 (en) * 2012-07-04 2014-01-09 Mitsubishi Electric Corporation Semiconductor testing jig and semiconductor testing method performed by using the same
CN106340483A (zh) * 2015-07-06 2017-01-18 株式会社迪思科 卡盘工作台和清洗装置
CN111554603A (zh) * 2020-06-02 2020-08-18 江西维易尔半导体设备有限公司 一种带孔方形硅片加工传送系统
US11201078B2 (en) 2017-02-14 2021-12-14 Applied Materials, Inc. Substrate position calibration for substrate supports in substrate processing systems
FR3125355A1 (fr) * 2021-07-19 2023-01-20 Soitec Agencement de dispositif de maintien pour une utilisation dans un processus d'implantation d'un substrat piézoélectrique

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011066B (zh) * 2011-09-21 2014-03-19 叶哲良 芯片
JP6424719B2 (ja) * 2015-04-06 2018-11-21 三菱電機株式会社 半導体試験治具、半導体装置の試験方法
KR101732307B1 (ko) * 2016-04-01 2017-05-02 한양대학교 산학협력단 기판 처리 장치
JP6626413B2 (ja) * 2016-06-29 2019-12-25 東京応化工業株式会社 支持体分離方法、および基板処理方法
KR102203726B1 (ko) * 2018-12-12 2021-01-15 주식회사 선익시스템 테스트 기판 수납용 트레이 및 이를 포함하는 기판 처리 장치
CN111613562B (zh) * 2019-02-25 2023-04-18 启端光电股份有限公司 真空转移装置及其形成方法
JP7419030B2 (ja) * 2019-11-18 2024-01-22 キヤノン株式会社 保持装置、露光装置、及び物品の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102849A (ja) * 1989-09-14 1991-04-30 Fujitsu Ltd ウェハアダプタ及び露光装置
JPH06120131A (ja) * 1992-10-08 1994-04-28 Sumitomo Electric Ind Ltd ウエハアダプター
JP2001338952A (ja) * 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd ウェハカセット装置
JP2002173250A (ja) * 2000-12-07 2002-06-21 Nitto Denko Corp 吸着搬送方法および吸着加工方法
JP2003124294A (ja) * 2001-10-11 2003-04-25 Hitachi Ltd 半導体ウエハおよび半導体装置の製造方法
JP2004342834A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp 基板載置トレイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102849A (ja) * 1989-09-14 1991-04-30 Fujitsu Ltd ウェハアダプタ及び露光装置
JPH06120131A (ja) * 1992-10-08 1994-04-28 Sumitomo Electric Ind Ltd ウエハアダプター
JP2001338952A (ja) * 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd ウェハカセット装置
JP2002173250A (ja) * 2000-12-07 2002-06-21 Nitto Denko Corp 吸着搬送方法および吸着加工方法
JP2003124294A (ja) * 2001-10-11 2003-04-25 Hitachi Ltd 半導体ウエハおよび半導体装置の製造方法
JP2004342834A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp 基板載置トレイ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412176A (zh) * 2010-09-26 2012-04-11 北京北方微电子基地设备工艺研究中心有限责任公司 托盘及具有其的晶片处理设备
US20140009183A1 (en) * 2012-07-04 2014-01-09 Mitsubishi Electric Corporation Semiconductor testing jig and semiconductor testing method performed by using the same
US9347988B2 (en) * 2012-07-04 2016-05-24 Mitsubishi Electric Corporation Semiconductor testing jig and semiconductor testing method performed by using the same
CN106340483A (zh) * 2015-07-06 2017-01-18 株式会社迪思科 卡盘工作台和清洗装置
CN106340483B (zh) * 2015-07-06 2021-11-19 株式会社迪思科 卡盘工作台和清洗装置
US11201078B2 (en) 2017-02-14 2021-12-14 Applied Materials, Inc. Substrate position calibration for substrate supports in substrate processing systems
CN111554603A (zh) * 2020-06-02 2020-08-18 江西维易尔半导体设备有限公司 一种带孔方形硅片加工传送系统
CN111554603B (zh) * 2020-06-02 2023-04-28 江西维易尔半导体设备有限公司 一种带孔方形硅片加工传送系统
FR3125355A1 (fr) * 2021-07-19 2023-01-20 Soitec Agencement de dispositif de maintien pour une utilisation dans un processus d'implantation d'un substrat piézoélectrique
WO2023001824A1 (en) * 2021-07-19 2023-01-26 Soitec Holding device arrangement for use in an implantation process of a piezoelectric substrate

Also Published As

Publication number Publication date
TW200719424A (en) 2007-05-16
JP4020938B2 (ja) 2007-12-12
TWI309447B (ja) 2009-05-01
JP2007088416A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4020938B2 (ja) 半導体ウェハ用搬送トレイおよび半導体ウェハ搬送システム
US8841734B2 (en) Sensor element
KR101191594B1 (ko) 검사용 유지 부재 및 검사용 유지 부재의 제조 방법
WO2014084229A1 (ja) 搬送システム、露光装置、搬送方法、露光方法及びデバイス製造方法、並びに吸引装置
TW200813431A (en) Multi-range three-axis acceleration sensor device
JPWO2008053929A1 (ja) 微小構造体の検査装置、微小構造体の検査方法及び基板保持装置
JP5240185B2 (ja) 露光機のワークステージ、露光方法及び構造体の製造方法
TW201510536A (zh) 探針導引板及其製造方法、半導體檢測裝置
JP2014532889A (ja) マイクロ電気機械システム(mems)
JP6258977B2 (ja) センサおよびその製造方法
KR101931358B1 (ko) 지그 및 그 제작방법과 지그를 이용한 초음파 프로브용 칩의 플립 칩 본딩방법
JP2006349563A (ja) 慣性力センサ
JP2002305138A (ja) 露光装置および露光方法
JP2008170160A (ja) 曲げ疲労検出用試験体並びに曲げ疲労試験方法
JP2006098321A (ja) 半導体型3軸加速度センサ
JP4269292B2 (ja) 3軸加速度センサー
JP4578251B2 (ja) 微小構造体を有する半導体装置および微小構造体の製造方法
JP2750554B2 (ja) 真空吸着装置
JP2006098323A (ja) 半導体型3軸加速度センサ
JP2010139313A (ja) センサ装置の製造方法
JP6874314B2 (ja) 物体保持装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
US20080211041A1 (en) Micro electrical mechanical system device
JP7415911B2 (ja) 微小振動体の位置決め構造、慣性センサの製造方法
JPH07128365A (ja) 半導体加速度センサとその製造方法
JP2010008128A (ja) Mems

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796562

Country of ref document: EP

Kind code of ref document: A1