WO2007023614A1 - 半導体製造装置,半導体製造装置の流量補正方法,プログラム - Google Patents

半導体製造装置,半導体製造装置の流量補正方法,プログラム Download PDF

Info

Publication number
WO2007023614A1
WO2007023614A1 PCT/JP2006/312863 JP2006312863W WO2007023614A1 WO 2007023614 A1 WO2007023614 A1 WO 2007023614A1 JP 2006312863 W JP2006312863 W JP 2006312863W WO 2007023614 A1 WO2007023614 A1 WO 2007023614A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
gas
zero point
point shift
controller
Prior art date
Application number
PCT/JP2006/312863
Other languages
English (en)
French (fr)
Inventor
Shuji Moriya
Tsuneyuki Okabe
Hiroyuki Ebi
Tetsuo Shimizu
Hitoshi Kitagawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US11/817,104 priority Critical patent/US7682843B2/en
Publication of WO2007023614A1 publication Critical patent/WO2007023614A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0658Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a single flow from a plurality of converging flows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the present invention relates to a semiconductor manufacturing apparatus, a flow correction method, and a program for performing predetermined processing on a substrate by controlling the flow rate of gas or liquid by a flow controller such as a mass flow controller.
  • a flow controller such as a mass flow controller (MFC) is installed in the supply flow path to control the flow rate! /
  • this mass flow controller uses a supply flow path as a flow rate sensor and splits it into a measurement flow path provided with an upstream sensor and a downstream sensor consisting of a heating resistance wire and a main flow path in parallel therewith. Configured. When fluid flows in the upstream sensor, the heat is taken away and the temperature drops, and conversely, the downstream sensor gives heat and the temperature rises. As a result, a temperature difference occurs between the upstream sensor and the downstream sensor, and the flow rate in the supply flow path can be detected by detecting this temperature difference.
  • the mass flow controller (MFC) adjusts the flow rate of the supply flow path to the set flow rate by controlling the opening of the flow rate adjustment valve according to the output from such a flow rate sensor.
  • the mass flow controller (MFC) may cause a zero point shift (zero point shift) depending on the gas molecular weight and pressure depending on the installation posture. Due to downsizing of semiconductor manufacturing equipment, piping system configuration, installation space, etc., the side flow section (part parallel to this flow path) where the mass flow controller (MFC) flow sensor is installed is vertical. Sometimes it must be installed in a state (vertical position).
  • the actual zero point shift amount is obtained by adding the first zero point shift amount to the second zero point shift amount.
  • the zero point shift of the mass flow controller may include not only the first zero point shift but also the second zero point shift.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-38058
  • Patent Document 2 Japanese Patent Laid-Open No. 11-64060
  • Patent Document 1 when the shutoff valves provided on the upstream side and downstream side of the mass flow controller (MFC) are closed, that is, the actual gas (the gas that actually passes through the mass flow controller) does not flow.
  • the technology describes how to control the gas supply flow rate with higher accuracy by detecting the output voltage (MFC output voltage) of the mass flow controller (MFC) in the state and correcting it.
  • MFC output voltage the output voltage of the mass flow controller (MFC) in the state and correcting it.
  • the shutoff valves provided on the upstream side and the downstream side of the mass flow controller (MFC) are closed when the zero point shift is detected. Even if it does not flow, if the thermal siphon phenomenon occurs, the second outlet point shift occurs.
  • the amount of the second zero point shift varies depending on the presence or absence of fluid remaining in the mass flow controller (MFC), the type of fluid remaining (molecular weight), and pressure. For this reason, even if a zero point shift is detected with the shut-off valve closed, for example, if a zero point shift is detected in a state where a gas different from the gas used during substrate processing remains, the zero point shift is detected.
  • the second zero point shift amount included in the quantity is different from the second zero point shift amount that can actually occur during substrate processing, so the zero point shift that can actually occur during substrate processing cannot be detected accurately, and Correct zero point correction may not be possible.
  • Patent Document 2 in addition to the side flow section of the mass flow controller (MFC) and the main flow path, a parallel flow path parallel to the side flow section is provided, and the parallel flow path is heated by a heater. Describes technology to prevent the flow inside the mass flow controller (MFC) due to the thermal siphon phenomenon.
  • force mass flow controllers (MFC) have been released by various manufacturers, and when a production line is configured by applying a mass flow controller (MFC) from a specific manufacturer, the mass flow controller (MFC) can be obtained from another company.
  • MFC mass flow controller
  • Mass flow controller (MF The parallel flow path parallel to the side flow part of c) is provided, and the heater is complicated because the internal configuration is complicated, and the heater temperature corresponding to the installation environment and usage conditions of the mass flow controller (MFC) There is a risk that the control of the mass flow controller (MFC) itself may become complicated, such as when control is required.
  • the present invention has been made in view of such problems, and its object is to accurately detect the zero point shift amount based on the thermal siphon phenomenon that can actually occur during substrate processing. It is to provide a semiconductor manufacturing apparatus, a flow correction method for a semiconductor manufacturing apparatus, and a program capable of improving the accuracy of the flow control regardless of the installation posture of the flow controller by performing accurate correction.
  • a processing unit that performs a process for manufacturing a semiconductor device on a substrate, and a gas supply path that supplies a gas into the processing unit And an output voltage from a detection unit that is provided in the gas supply path and detects a gas flow rate in the gas supply path, and a set voltage corresponding to a preset flow rate are compared, and the gas supply path Corresponding to the gas flow rate of the gas supplied by the flow rate controller that controls the gas flow rate to the set flow rate, the shut-off valves provided on the upstream side and the downstream side of the flow rate controller, and the gas supply path, respectively.
  • a controller for setting a set voltage in the flow controller and the controller replaces each of the flow controllers with a gas used during substrate processing at least before performing substrate processing.
  • the flow rate with the shut-off valve closed When the output voltage from the controller is detected and this output voltage is stored in the storage means and the substrate processing is executed, the set voltage corresponding to the gas flow rate of the gas used during the substrate processing is stored in the storage means.
  • the set voltage of the corrected gas flow rate is set in the flow rate controller.
  • an output voltage from a detection unit that detects a gas flow rate in a gas supply path and a set voltage corresponding to a preset set flow rate are obtained.
  • gas is supplied to the processing unit using a flow controller that controls the gas flow rate in the gas supply path to be a set flow rate, and a semiconductor device is manufactured on the substrate in the processing unit.
  • the set voltage corresponding to the gas flow rate of the gas used during the substrate processing is corrected based on the zero point shift amount of the flow rate controller stored in the storage means.
  • a zero point shift amount (second zero point shift amount) based on a thermal phon phenomenon that may occur during actual substrate processing.
  • the zero point shift amount based on the thermal siphon phenomenon (second zero point) can be determined using the gas used during substrate processing. By detecting the shift amount, the zero point shift amount that can occur during actual substrate processing can be accurately detected.
  • the zero point shift amount (second zero point shift amount) based on the detected thermal siphon phenomenon is stored, and a setting corresponding to the gas flow rate used during substrate processing is performed when performing substrate processing.
  • the second zero point shift can be accurately corrected.
  • the accuracy of flow control can be further improved regardless of the installation posture of the flow controller.
  • the zero point shift based on the thermal siphon phenomenon can be accurately detected and corrected.
  • a processing unit that performs a process for manufacturing a semiconductor device on a substrate, and a plurality of types of gases in the processing unit.
  • a plurality of flow rate controllers that control the gas flow rate in the gas supply path to be a set flow rate, shut-off valves provided on the upstream side and the downstream side of the flow rate controllers, Settings corresponding to the gas flow rate of the gas supplied through the supply channel
  • a control unit for setting a constant voltage in each flow rate controller, and the control unit sets the flow rate controller for each flow rate controller at least during the substrate processing in advance before executing the substrate processing.
  • the output voltage of the flow controller force is detected with the shut-off valve closed with the gas to be used, the output voltage of each flow controller is stored in the storage means, and the substrate processing is executed.
  • the setting voltage corresponding to the gas flow rate of the gas type used for substrate processing for each flow rate controller is determined based on the output voltage stored for each flow rate controller in the storage means.
  • an output voltage from a detection unit that detects a gas flow rate in a gas supply path and a set voltage corresponding to a preset set flow rate are obtained.
  • gas is supplied to the processing unit using a flow controller that controls the gas flow rate in the gas supply path to be a set flow rate, and a semiconductor device is manufactured on the substrate in the processing unit.
  • a flow rate correction method for a semiconductor manufacturing apparatus that performs the above-described processing, wherein before the substrate processing is performed, the inside of the flow rate controller is replaced in advance with at least a gas used during substrate processing, and the upstream side of the flow rate controller and A zero point shift detection process that detects the output voltage from the flow controller with each shut-off valve provided on the downstream side closed, and stores this output voltage in the storage means as the zero point shift amount, and substrate processing When executing the board processing The set voltage corresponding to the gas flow rate of the gas to be used is corrected based on the zero point shift amount of the flow rate controller stored in the storage means, and the corrected set voltage of the gas flow rate is supplied to the flow rate controller.
  • a flow rate correction method for a semiconductor manufacturing apparatus comprising: a zero point shift correction step for setting.
  • each flow controller is connected! In addition, it is possible to accurately detect the zero point shift amount based on the thermal siphon phenomenon that can actually occur during substrate processing, and to perform accurate correction. This can improve the accuracy of flow control regardless of the installation posture of each flow controller.
  • a semiconductor device is mounted on a substrate.
  • a processing section that performs processing for manufacturing the device, a plurality of gas supply paths that respectively supply a plurality of types of gases into the processing section, and a combined flow path that joins the gas supply paths.
  • Common control for comparing the output voltage of the detection unit force that detects the gas flow rate in the supply path with the set voltage corresponding to the preset flow rate to control the gas flow rate in the gas supply path to the set flow rate.
  • a flow rate controller a downstream shut-off valve provided in each gas supply path on the downstream side of the flow rate controller, an upstream shut-off valve provided on the upstream side of the flow rate controller, and the gas supply
  • a control unit that sets a set voltage corresponding to the gas flow rate of each gas type supplied by the channel in the flow rate controller, and the control unit uses each of the units used during substrate processing in advance before performing substrate processing. Control each flow rate for each gas type
  • the output voltage from the flow rate controller is detected with at least the gas replaced inside the chamber and the shutoff valves closed, and the output voltage for each gas type is stored in the storage means to process the substrate.
  • an output voltage from a detection unit that detects a gas flow rate in a gas supply path is compared with a set voltage corresponding to a preset set flow rate.
  • the output voltage of the flow controller force is detected with the shut-off valves provided upstream and downstream of the detector closed, and the output voltage for each gas type is stored in the storage means as the zero point shift amount.
  • Point shift detection process and substrate When executing the processing, the set voltage corresponding to the gas flow rate of each gas type used for substrate processing is applied to each gas type stored in the storage means, based on the previous zero point shift amount. And a zero point shift correction step of correcting each of the corrected gas flow rate setting voltages in the flow rate controller, respectively. Law is provided.
  • each gas type is used during substrate processing.
  • a processing unit that performs a process for manufacturing a semiconductor device on a substrate, and a gas supply that supplies a gas into the processing unit
  • the gas supply path is compared with an output voltage from a detector provided in the gas supply path for detecting the gas flow rate of the gas supply path and a set voltage corresponding to a preset flow rate.
  • a flow rate controller for controlling the gas flow rate of the passage to a set flow rate, shut-off valves provided on the upstream side and the downstream side of the flow rate controller, and a vacuum exhaust means capable of evacuating the flow rate controller.
  • a control unit that sets a set voltage corresponding to the gas flow rate of the gas supplied through the gas supply path in the flow rate controller, and the control unit preliminarily performs the flow rate before executing the substrate processing.
  • the controller is evacuated by the evacuation means.
  • the output voltage of the flow controller is detected as the first zero point shift amount with each shut-off valve closed, and the zero point correction is performed based on the first zero point shift amount.
  • the flow controller is replaced with at least the same gas used during substrate processing, and the output voltage from the flow controller is detected with each shut-off valve closed, and this output voltage is used as the second zero point shift amount.
  • the flow controller is evacuated by the vacuum evacuator and the shut-off valves are closed to output the flow controller.
  • the voltage is detected as the first zero point shift amount, and after correcting the closing point based on the first zero point shift amount, the set voltage corresponding to the gas flow rate of the gas used for substrate processing is stored in the storage means. Based on the second zero point shift amount stored in The semiconductor manufacturing apparatus of the set voltage of the correct gas flow rate and setting the flow rate controller is provided.
  • a gas flow controller that controls the gas flow rate in the gas supply path to a set flow rate, and supplies the gas to the processing unit, and manufactures the semiconductor device on the substrate in the processing unit.
  • a flow rate correction method for a semiconductor manufacturing apparatus that performs a process for performing a process in which the flow rate controller is evacuated by a vacuum evacuation means and each shut-off valve is closed before substrate processing is performed.
  • the output voltage of the flow controller is detected as the first zero point shift amount, the zero point is corrected based on the first zero point shift amount, and at least the substrate is processed in the flow controller.
  • the output voltage from the flow rate controller is detected while the shut-off valves are closed with the same gas as that in the second zero point, and this output voltage is stored in the memory means as the second zero point shift amount.
  • the output voltage of the flow controller is detected as the first zero point shift amount with the shut-off valves closed while the inside of the controller is evacuated by vacuum evacuation means, and based on this first zero point shift amount.
  • a flow rate correction method for a semiconductor manufacturing apparatus is provided.
  • the first zero point shift amount based on the use of the flow controller is detected and corrected before the second zero point shift amount based on the thermal siphon phenomenon is detected. Therefore, the second zero point shift amount based on the thermal siphon phenomenon can be accurately detected without being affected by the first zero point shift.
  • the first zero point shift amount is detected, not only the shutoff valve of the flow controller is closed and the actual gas does not flow, but also the inside of the flow controller is evacuated. There will be a vacuum in the flow controller with no fluid itself that can cause flow. As a result, the thermal siphon phenomenon does not occur, so the first zero point shift can be detected without the second zero point shift based on this thermal siphon phenomenon. This makes it possible to accurately detect the first zero point shift amount.
  • the first zero point shift based on the use of the flow controller is detected and corrected before correcting the second zero point shift amount based on the thermal siphon phenomenon. Therefore, the second phase based on the thermal siphon phenomenon is not affected by the first zero point shift.
  • the zero point shift amount can be accurately corrected. This can improve the accuracy of flow control regardless of the installation posture of the flow controller.
  • a processing unit that performs a process for manufacturing a semiconductor device on a substrate, and a gas supply that supplies a gas into the processing unit
  • the gas supply path is compared with an output voltage from a detector provided in the gas supply path for detecting the gas flow rate of the gas supply path and a set voltage corresponding to a preset flow rate.
  • a flow rate controller for controlling the gas flow rate of the passage to a set flow rate, shut-off valves provided on the upstream side and the downstream side of the flow rate controller, and a vacuum exhaust means capable of evacuating the flow rate controller.
  • a control unit that sets a set voltage corresponding to the gas flow rate of the gas supplied through the gas supply path in the flow rate controller, and the control unit preliminarily performs the flow rate before executing the substrate processing.
  • the controller is evacuated by the evacuation means.
  • the output voltage of the flow controller is detected as the first zero point shift amount with each shut-off valve closed, and the zero point correction is performed based on the first zero point shift amount.
  • the flow controller is replaced with at least the same gas used during substrate processing, and the output voltage from the flow controller is detected with each shut-off valve closed, and this output voltage is used as the second zero point shift amount.
  • the flow controller is evacuated by vacuum exhaust means and the shut-off valves are closed to output the flow controller.
  • the set voltage of the gas flow quantity and setting the flow rate controller is provide.
  • an output voltage from a detection unit that detects a gas flow rate in a gas supply path and a set voltage corresponding to a preset set flow rate are obtained.
  • gas is supplied to the processing unit using a flow controller that controls the gas flow rate in the gas supply path to be a set flow rate, and a semiconductor device is manufactured on the substrate in the processing unit.
  • the output voltage of the flow controller is detected as the first zero point shift amount, the zero point is corrected based on the first zero point shift amount, and then the flow controller
  • the inside gas is replaced with at least the same gas used during substrate processing, and the output voltage from the flow rate controller is detected with each shut-off valve closed, and this output voltage is stored as the second zero point shift amount.
  • the flow controller is evacuated by vacuum evacuation means and the shutoff valves are closed, and the output of the flow controller is closed.
  • the voltage is detected as the first zero point shift amount and the set voltage corresponding to the gas flow rate of the gas used for substrate processing is stored in the storage means, the second zero point shift amount and the substrate processing are executed. Correction based on the first zero point shift amount detected in , Flow rate correction method of a semiconductor manufacturing apparatus characterized by comprising a second zero point shift correction step of setting the set voltage of the compensation gas flow rate to the flow controller is provided.
  • the first zero point shift amount and the second zero point shift amount are detected, and the first zero point shift amount and the second zero point shift amount are detected. Since the set voltage corresponding to the gas flow used during substrate processing is corrected based on both shift amounts, the first zero point shift amount and the second zero point shift amount can be corrected simultaneously. As a result, the accuracy of flow control can be further improved regardless of the installation posture of the flow controller.
  • the storage means also stores the first zero point shift amount accumulated every time the first zero point shift amount is detected.
  • the storage unit stores the first zero point shift amount.
  • the notification process may be performed when the value obtained by adding the one zero point shift amount to the first zero point shift amount accumulated so far exceeds a predetermined threshold. In this way, it is possible to inform about the failure of the flow controller and the replacement timing.
  • an output voltage from a detection unit that detects a gas flow rate in a gas supply path and a set voltage corresponding to a preset set flow rate are obtained.
  • gas is supplied to the processing unit using a flow controller that controls the gas flow rate in the gas supply path to be a set flow rate, and a semiconductor device is manufactured on the substrate in the processing unit.
  • This is a program for executing the flow rate correction processing of the semiconductor manufacturing apparatus that performs the above processing, and before the substrate processing is executed by the computer, at least the gas inside the flow rate controller is used with the gas used during the substrate processing.
  • Replace upstream and downstream of the flow controller Detects the output voltage from the flow controller with each shut-off valve provided on the side closed, and executes zero point shift detection processing for storing this output voltage in the storage means as the zero point shift amount, and substrate processing
  • the set voltage corresponding to the gas flow rate of the gas used during substrate processing is corrected based on the zero point shift amount of the flow rate controller stored in the storage means, and the corrected gas flow rate set voltage is corrected.
  • a program for executing the zero point shift correction processing set in the flow rate controller is provided.
  • a flow rate control process that can accurately detect and accurately correct the zero point shift amount (second zero point shift amount) based on the thermal siphon phenomenon that can occur during actual substrate processing. Can be executed.
  • an output voltage from a detection unit that detects a gas flow rate in a gas supply path and a set voltage corresponding to a preset set flow rate are obtained.
  • gas is supplied to the processing unit using a flow controller that controls the gas flow rate in the gas supply path to be a set flow rate, and a semiconductor device is manufactured on the substrate in the processing unit.
  • This is a program for executing the flow rate correction processing of the semiconductor manufacturing apparatus that performs the above processing, and before the substrate processing is executed in the computer, the inside of the flow rate controller is evacuated by vacuum exhaust means in advance.
  • the output voltage of the flow controller is detected as the first zero point shift amount, and after correcting for the zero point based on the first zero point shift amount, the flow controller At least the same gas as the substrate processing
  • the second zero point shift detection process in which the output voltage from the flow controller is detected with the shut-off valve closed and the output voltage is stored in the storage means as the second zero point shift amount.
  • the flow controller is evacuated by the vacuum evacuation means, and the output voltage of the flow controller is detected as the first zero point shift amount with each shut-off valve closed.
  • the second zero point shift amount stored in the storage means is set voltage corresponding to the gas flow rate of the gas used for substrate processing.
  • a program for executing the second zero point shift correction processing for correcting the corrected gas flow rate and setting the corrected gas flow rate setting voltage in the flow rate controller is provided.
  • the first zero point shift amount based on the use of the flow rate controller is calculated.
  • (2) Accurate detection and correction without being affected by the zero point shift amount, and accurately detecting and correcting the second zero point shift amount based on the thermal siphon phenomenon without being affected by the first zero point shift amount The possible flow rate control process can be executed.
  • the present invention it is possible to accurately detect the zero point shift amount based on the thermal siphon phenomenon that can actually occur during the substrate processing, and perform an accurate correction. As a result, the accuracy of flow control can be further improved regardless of the installation posture of the flow controller. Regardless of the configuration of the flow controller, the zero point shift based on the thermal siphon phenomenon can be accurately detected and corrected.
  • FIG. 1 is a block diagram showing a configuration example of a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration example of the mass flow controller shown in FIG.
  • FIG. 3 is a diagram showing a relationship between a second zero point shift amount and a gas type.
  • FIG. 4 is a block diagram showing a configuration example of a control unit shown in FIG.
  • FIG. 5 is a diagram showing a specific example of first zero point shift information in the same embodiment.
  • FIG. 6 is a diagram showing a specific example of second zero point shift information in the same embodiment.
  • FIG. 7 is a flowchart showing a flow rate correction process.
  • FIG. 8 is a flowchart showing a first zero point shift detection process.
  • FIG. 9 is a flowchart showing a first zero point shift correction process.
  • FIG. 10 is a flowchart showing a second zero point shift detection process.
  • FIG. 11 is a flowchart showing a second zero point shift correction process.
  • FIG. 12 is a block diagram showing an example of the configuration of a semiconductor manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 13 is a diagram showing a specific example of first zero point shift information in the same embodiment.
  • FIG. 14 is a diagram showing a specific example of second zero point shift information in the same embodiment.
  • FIG. 1 is a diagram showing a configuration example of a heat treatment apparatus that works according to the first embodiment.
  • the heat treatment apparatus 100 includes a heat treatment unit 110 as a processing unit that performs processing (for example, heat treatment) on the wafer W.
  • the heat treatment section 110 is composed of a vertical reaction tube 112 that constitutes a reaction vessel (processing vessel) or a reaction chamber (processing chamber).
  • the heat treatment section 110 is provided with an exhaust system 120 for exhausting the reaction tube 112, a gas supply system 200 for supplying a predetermined gas into the reaction tube 112, and an outside of the reaction tube 112. Heating means (for example, a heater) (not shown).
  • the heat treatment section 110 supplies a predetermined gas into the reaction tube 112 by the gas supply system 200 and carries an exhaust system 120 with the holder 114 loaded with a large number of wafers W loaded into the reaction tube 112. While evacuating the inside of the reaction tube 112 by the above, a predetermined heat treatment is performed on the wafer W by heating from outside the reaction tube 112 by the heating means.
  • the exhaust system 120 is configured by connecting, for example, a vacuum exhaust means 124 configured by a vacuum pump or the like to the ceiling of the reaction tube 112 via an exhaust pipe 122.
  • the gas supply system 200 is configured, for example, by connecting gas supply paths 210A to 210D for supplying a plurality of types of gases to the gas supply pipe 202, respectively.
  • the gas supply pipe 202 is connected to the lower side surface of the reaction tube 112 via a main valve (main valve) 204.
  • the exhaust pipe 122 of the exhaust system 120 is bypassed and connected to the gas supply pipe 202 of the gas supply system 200 via the bypass line 130.
  • the binos line 130 is configured by connecting a bypass pipe 132 to a portion downstream of the connecting portions of the gas supply paths 210A to 210D in the gas supply pipe 202 and upstream of the main valve 204.
  • An exhaust side bypass cutoff valve 134 is connected to the exhaust system 120 side of the nopass pipe 132, and a supply side bypass cutoff valve 136 is connected to the gas supply system 200 side of the bypass pipe 132.
  • the gas supply paths 210A to 210D of the gas supply system 200 will be described.
  • four gases SiH gas, Si H gas,
  • SiH gas, Si H gas, and SiH C1 gas are mainly used as reaction gases.
  • the gas is mainly used as a purge gas for purging the gas supply paths 210A to 210D or the reaction tube 110.
  • the supply paths 210A to 210C are configured similarly. That is, the gas supply paths 210A to 210C are gas supply sources 220 for SiH gas, Si H gas, and SiH C1 gas, respectively.
  • a ⁇ 220C is provided, and the gas supply sources 220A ⁇ 220C are connected to the gas supply pipe 202 via the gas supply pipes 212A ⁇ 212C. /
  • the gas supply pipes 212A to 212C of the gas supply passages 210A to 210C have mass flow controllers (MFC) 240A to 240A as an example of a flow rate controller for adjusting the flow rate of the gas from the gas supply sources 220A to 220C.
  • MFC mass flow controllers
  • the mass flow controllers (MFC) 240A to 240C may have different capacities. For example, use a mass flow controller (MFC) 240A to 240C with capacities of 500cc, 3000cc, and 2000cc, respectively.
  • the first shutoff valve (upstream shutoff valve) 230A to 230C and the second shutoff valve (downstream shutoff valve) 250A on the upstream and downstream sides of each mass flow controller (MFC) 240A to 240C, respectively 250C power is provided.
  • the fluid flow (gas flow in this specific example) in each mass flow controller (MFC) 240A to 240C can be shut off. it can.
  • the gas flow rate that actually passes through each mass flow controller (MFC) 240A to 240C can be made zero.
  • a regulator 222A to 222C and a pressure gauge (PT) 224A to 224C may be provided.
  • an N gas gas supply path 210D used as a purge gas has an N gas gas supply path.
  • a supply source 210D is provided, and N gas from this gas supply source 210D is supplied to each of the other gas supply paths 21 OA.
  • MFC mass flow controller
  • the N gas gas supply source 220D is connected to the backflow prevention valve 2 by a gas supply pipe 212D.
  • shutoff valves 262A to 262C are connected between the first shutoff valves 230A to 230C of the gas supply paths 210A to 210C and the mass flow controllers (MFC) 240A to 240C, respectively.
  • the gas supply pipe 212D of the gas supply path 210D is connected to a regenerator 222D, a pressure gauge (PT) 224D, and a first shut-off valve (upstream shut-off valve) 230D as in the other gas supply paths 210A to 210C. is doing.
  • the flow rate of N gas is the mass flow controller (MF
  • shutoff valves 262A to 262C may be controlled as the first shutoff valve (upstream shutoff valve) provided on the upstream side of the mass flow controller (MFC).
  • upstream shutoff valve upstream shutoff valve
  • FIG. 2 is a diagram showing a configuration example of a mass flow controller (MFC) that works on the present embodiment. Since the mass flow controllers (MFC) 240A to 240C have the same configuration, A to C are omitted from the reference numerals indicating the respective components, and they are typically described. Therefore, for example, the mass flow controller (MFC) 240 and! Indicate the mass flow controllers (MFC) 240A to 240C.
  • the mass flow controller (MFC) 240 includes a main flow path 241 and a side flow portion 242 that divide the gas supply pipe 212 inside. Specifically, in the mass flow controller (MFC) 240, the gas from the gas supply pipe 212 into which the gas introduction locuser is also introduced is once divided by the main flow path 241 and the side flow section 242, and then merged again, and then the flow rate is adjusted. It is led out to a gas outlet rocker gas supply pipe 212 through a control valve (flow rate adjusting valve) 246 which is a part.
  • a control valve flow rate adjusting valve
  • the side flow part 242 is provided with a flow rate sensor for measuring the flow rate in the gas supply pipe 212.
  • the flow rate sensor includes an upstream sensor 243 provided on the upstream side of the side flow portion 242 and a downstream sensor 244 provided on the downstream side of the side flow portion 242.
  • the upstream side sensor 243 and the downstream side sensor 244 are configured by, for example, heating resistance wires.
  • the main channel 241 is provided with a bypass channel 245.
  • the bypass 245 is configured so that the flow rate, temperature, pressure, etc. in the main channel 241 have the same characteristics as the side channel 242. ing. As a result, measurement errors in the flow sensors (upstream sensor 243, downstream sensor 244) can be prevented.
  • MFC mass flow controller
  • the mass flow controller (MFC) 240 is supplied with gas by controlling the opening of the control valve (flow control valve) 246 according to the output of the flow sensor (upstream sensor 243, downstream sensor 244).
  • An MFC control circuit 247 for adjusting the flow rate of the pipe 212 to the set flow rate is provided.
  • the MFC control circuit 247 includes, for example, a bridge circuit that detects a difference in resistance value between the upstream sensor 243 and the downstream sensor 244 as a voltage signal, and a flow rate detection unit that includes an amplifier circuit that amplifies the voltage signal.
  • the set signal (set voltage) received as the set flow rate is compared with the voltage from the amplifier circuit 37, and an operation signal for adjusting the opening of the control valve 246 is adjusted according to the comparison result (deviation).
  • a comparison unit for outputting to Lub 246 is provided.
  • the MFC control circuit 247 is connected to the control unit 300 of the heat treatment apparatus 100 via, for example, a signal conversion unit (not shown).
  • This signal conversion unit converts an analog signal from the mass flow controller (MFC) 240 into a digital signal and converts a digital signal from the control unit 300 into an analog signal.
  • MFC mass flow controller
  • the controller 300 of the heat treatment apparatus 100 transmits the set flow rate (set voltage) to the MFC control circuit 247 as a flow rate setting command. Then, the MFC control circuit 247 controls the flow rate of the gas supply pipe 212 so that the set signal (set voltage) is obtained. In addition, when the MFC control circuit 247 receives a zero point set command from the control unit 300 of the heat treatment apparatus 100, the MFC control circuit 247 sets the current state to zero flow rate.
  • the MFC control circuit 247 receives a flow rate detection command from the control unit 300 of the heat treatment apparatus 100, the MFC control circuit 247 detects the flow rate and uses the result as the MFC output voltage (for example, 5V as full scale (FS)). Voltage detection value) and And transmitted to the control unit 300.
  • the control unit 300 of the heat treatment apparatus 100 detects the first zero point shift and the second exit point shift based on the MFC output voltage from the MFC control circuit 247.
  • the GHOST network is a network realized by an LSI called GHOST (General High-Speed Optimum Scalable Transceiver) installed in the control unit 300.
  • GHOST General High-Speed Optimum Scalable Transceiver
  • an LSI called GHOST is mounted on the MC board of an MC (module controller), which is configured as each part controller 360 described later.
  • Multiple IZO modules can be connected to the GHOST network.
  • the GHOST network is constructed by connecting each MFC control circuit to the ⁇ part of this ⁇ module.
  • the mass flow controller may deviate from the set flow force while it is being used, as already mentioned.
  • the detected voltage value corresponding to the flow rate detected by the flow rate sensor for example, the upstream sensor 243, the downstream sensor 244.
  • the detected voltage value corresponding to the flow rate detected by the flow rate sensor for example, the upstream sensor 243, the downstream sensor 244.
  • errors occur.
  • zero point shifts zero point shifts
  • slope the output voltage change rate
  • this type of zero point shift is called zero point shift based on use (first zero point shift).
  • the causes of the first zero point shift include, for example, an error caused by the environmental temperature at the time of shipment from the manufacturer and the environmental temperature on the user side, and the coating of the coiled heating resistance wire (sensor) that is an element of the bridge circuit.
  • Possible causes include aging and peeling of the material, loosening of the heating resistance coil, circuit defects, fluctuations in the power supply voltage, and dirt (corrosion, product adhesion, etc.) on the pipe around which the sensor is wound.
  • the mass flow controller may cause a zero point shift (zero point shift) depending on the gas molecular weight or pressure depending on the installation posture.
  • the zero-point shift will not occur when installed horizontally (for example, horizontally).
  • the posture is other than horizontal, for example, if it is installed vertically (for example, vertically or L-shaped).
  • a zero point shift is referred to as a zero point shift based on the installation posture (second zero point shift), and is distinguished from the zero point shift based on the above-mentioned use (first zero point shift).
  • the upstream sensor 243 and the downstream sensor 244 of the mass flow controller (MFC) 240 are installed separately due to the downsizing of the semiconductor manufacturing equipment, the configuration of the piping system, and the installation space. It may be necessary to install the side flow section 242 (part parallel to the main flow path 241) in a vertical state (vertical posture). However, if installed in a vertical position, the second zero point shift may occur depending on the molecular weight and pressure of the gas. This phenomenon is generally called thermal siphon phenomenon.
  • the mass flow controller (MFC) 240 when the mass flow controller (MFC) 240 is installed so that its gas inlet is located below, the side flow section where the upstream sensor 243 and the downstream sensor 244 are installed If gas flows in the 242 in the forward direction and a positive output is generated, conversely, if the gas inlet is upward, a negative output is generated.
  • the mass flow controller (MFC) 240 is installed vertically! In this example, the thermal siphon phenomenon occurs. However, the mass flow controller (MFC) 240 is installed horizontally. Even in this case, the thermal siphon phenomenon can occur when the projector is installed with a horizontal force inclined due to mounting errors.
  • the zero point shift (second zero point shift) based on the installation posture of the mass flow controller (MFC) 240 is a zero point shift based on the use of the mass flow controller (MFC) described above. (1st zero point shift), the shift amount does not change with use. For example, as shown in Fig. 3, the shift amount is determined mainly by the installation position, gas type (molecular weight of gas), and pressure. Is the value of
  • FIG. 3 is a graph showing the relationship between the gas type and the second zero point shift amount in a mass flow controller (MFC) installed vertically, for example, as shown in FIG.
  • MFC mass flow controller
  • Figure 3 shows the percentage of output voltage as a percentage of full scale (FS: 5V). Therefore, the longer the bar in the bar graph, the larger the second zero point shift amount.
  • the zero-point shift (second zero-point shift) based on the installation posture increases with increasing.
  • the zero point shift (second zero point shift) based on these installation postures does not change with the use of the mass flow controller (MFC)! /.
  • the zero point shift (second zero point shift) based on the installation posture is determined by the gas type (molecular weight of the gas) and pressure. For example, when the heat treatment apparatus 100 is first installed in the factory, the pressure If the shift amount is detected when changing the conditions, it is sufficient to determine the gas flow rate in consideration of the shift amount when the heat treatment apparatus 100 is subsequently operated.
  • the second zero point shift occurs depending on the installation position of the mass flow controller (MFC) 240 in this way, even if the first zero point shift correction is performed at an appropriate timing, the second zero point shift is the cause. Therefore, there is a possibility that a deviation between the set flow rate of the gas flow and the actual flow rate occurs. If the zero point shift is detected, the shutoff valves 230, 250 provided upstream and downstream of the mass flow controller (MFC) 240 are closed, that is, the actual gas is not allowed to flow. However, if the inside of the mass flow controller (MFC) 240 is evacuated! /,! /, In some cases, a thermal siphon phenomenon may occur.
  • the second zero point shift amount varies depending on the type (molecular weight) of the fluid remaining in the mass flow controller (MFC) and the pressure. Therefore, even if a zero point shift is detected with the shut-off valves 230 and 250 closed, for example, if a zero point shift is detected with a gas remaining different from the gas used during wafer processing, In some cases, the zero point shift that can actually occur during processing cannot be detected accurately, and sufficient zero point correction cannot be performed.
  • the zero point shift amount (second zero point shift amount) based on the thermal siphon phenomenon that can actually occur during wafer processing is accurately detected by the flow rate correction processing described later, and is accurately corrected.
  • the accuracy of flow control can be further improved regardless of the installation posture of the flow controller.
  • the heat treatment apparatus 100 performs a flow rate correction process including a detection process and a correction process for such a first zero point shift and a second zero point shift.
  • the flow rate correction processing is executed based on a predetermined program by the control unit 300 that controls each unit of the heat treatment apparatus 100, for example.
  • FIG. 4 shows a configuration example of the control unit 300 that performs the flow rate correction process.
  • FIG. 4 is a block diagram illustrating a specific configuration example of the control unit 300.
  • the control unit 300 includes a CPU (central processing unit) 310 that constitutes the control unit main body, and a RAM (random access) provided with a memory area used for various data processing performed by the CPU 310.
  • CPU central processing unit
  • RAM random access
  • 'Memory' 320 display means 330 consisting of a liquid crystal display that displays the operation screen and selection screen, etc., input of various data such as process recipe input and editing by an operator, and process to a predetermined storage medium Recipe process' Input / output means 340 that can output various data such as log output, etc., Notification means 350 such as an alarm device (eg buzzer) to notify when an abnormality or the like occurs in the heat treatment apparatus 100,
  • Each unit controller 360 for controlling each unit of the heat processing apparatus 100 based on a command from the CPU 310 is provided.
  • Each controller 360 includes a flow rate controller controller that sends control signals such as a set flow rate setting command and a zero point set command to a flow rate controller such as each mass flow controller 240 based on a command from the CPU 310, for example.
  • control signals such as a set flow rate setting command and a zero point set command to a flow rate controller such as each mass flow controller 240 based on a command from the CPU 310, for example.
  • a set flow rate for example, 0 to 5V (FS: The flow rate of the mass flow controller 240 can be set from 0% to 100% by the set voltage of full scale.
  • control unit 300 stores program data storage means 370 for storing processing programs for executing various processes of the heat treatment apparatus 100, and information (data) necessary for executing the processing programs.
  • Processing data storage means 380 is provided.
  • the program data storage means 370 and the processing data storage means 380 are constructed in a storage area such as a node disk (HDD).
  • the CPU 310 reads out necessary programs and data from the program data storage means 370 and the processing data storage means 380 as necessary, and executes various processing programs.
  • the program data storage means 370 is, for example, a process processing program 371 for executing process processing on the wafer W, for example, a flow rate correction processing program for executing correction processing of the gas flow rate introduced into the reaction tube 112. 372 and so on.
  • the process processing program 371 controls each part based on a process recipe such as gas flow rate and pressure stored as process processing information 381 to be described later, introduces gas into the reaction tube 112, and performs, for example, heat treatment as a process processing. Is applied to the wafer W.
  • the flow rate correction processing program 372 is mainly composed of a first zero point shift detection processing program 373, a first zero point shift correction processing program 374, a second zero point shift detection processing program 375, and a second zero point shift correction processing program 376.
  • the first zero point shift detection processing program 373 is a program for detecting and storing a zero point shift amount (first zero point shift amount) based on the use of each mass flow controller (MFC) 240.
  • MFC mass flow controller
  • the first zero point shift correction processing program 374 is a program for performing the first zero point shift correction based on the first zero point shift amount.
  • the second zero point shift detection processing program 375 is a program for detecting and storing a zero point shift amount (second zero point shift amount) based on the installation posture of each mass flow controller (MFC) 240.
  • the second zero point shift correction processing program 376 is a program for performing the second zero point shift correction based on the second zero point shift amount.
  • first zero point shift detection processing program 373 first zero point shift correction processing program 374, second zero point shift detection processing program 375, second zero point shift correction processing program
  • the program 376 may be configured as a subroutine of a flow rate correction processing program, or may be configured as a single program.
  • the first zero point shift detection processing program 373, the first zero point shift correction processing program 374, and the second zero point shift correction processing program 376 are the process processing program 371 that controls the gas flow rate to the mass flow controller (MF C) 240. Try to run it when setting up.
  • MF C mass flow controller
  • the processing data storage means 380 stores, for example, process processing information 381 for storing information necessary for executing process processing on a wafer, and data necessary for correcting the flow rate of the gas introduced into the reaction tube 112.
  • the flow rate correction information 382 to be stored is provided.
  • the process processing information 381 stores a process recipe (for example, gas flow rate, pressure, etc.) of the process processing for the wafer.
  • the flow rate correction information 382 is based on the first zero point shift information 383 storing the shift amount of the first zero point shift based on the use of the mass flow controller (MFC) 240, based on the installation posture of the mass flow controller (MF C) 240.
  • Second zero point shift information 384 is stored for storing the shift amount of the zero point shift.
  • FIG. 5 is a diagram showing a specific example of the data table of the first zero point shift information 383.
  • the first zero point shift information 383 includes, for example, items of MFC (k) and first zero point shift amount (Ek).
  • the MFC (k) item stores the type of mass flow controller (MFC) that detects and corrects the first zero point shift.
  • MFC mass flow controller
  • the subscript k is used to identify the mass flow controller (MFC).
  • the first zero point shift amount (Ek) stores, for example, the first zero point shift amount Ek obtained by accumulating the first zero point shift amount detected by the first zero point shift detection process described later.
  • the first zero point shift information 383 includes the first zero point shift amount for each mass flow controller (MFC).
  • Memorize (Ek) For example, since the heat treatment apparatus 100 configured as shown in FIG. 1 includes the first to third mass flow controllers (MFC) 240A to 240C, each mass flow controller (MFC) 240A to 240C is also used for the first zero point shift information 383. Every The first zero point shift amount E1 to E3 is stored.
  • the items of the first zero point shift information 383 are not limited to those shown in FIG.
  • the first zero point shift amount Ek includes the first zero point shift amount item.
  • the accumulated value of the quantity is stored. That is, each time the first zero point shift amount is detected, a value obtained by adding the first zero point shift amount to the accumulated value of the first zero point shift amount until the previous time is newly updated and stored. .
  • the accumulated value of the first zero point shift amount is used for determining the abnormality of each mass flow controller (MFC) 240A, 240B, 240C, for example. For example, when the cumulative value of the first shift amount deviates from a preset threshold value, the notification process is executed as an abnormality.
  • the second zero point shift information 384 has, for example, items of MFC (k), gas type (Gk), pressure (Pk), and second zero point shift amount (Vk).
  • the MFC (k) item stores the type of mass flow controller (MFC) that detects and corrects the second zero point shift.
  • the subscript k is used to identify the mass flow controller (MFC).
  • the gas type (Gk) item stores the operating gas (gas used during wafer processing) whose flow rate is controlled by the mass flow controller (MFC).
  • the pressure (Pk) item stores the operating pressure of the operating gas whose flow rate is controlled by the mass flow controller (MFC) (pressure during wafer processing).
  • the second zero point shift amount (Vk) item stores, for example, the second zero point shift amount detected by the second zero point shift detection process described later.
  • the second zero point shift information 384 includes the gas type (Gk) for each mass flow controller (MFC). , Pressure (Pk) and second zero point shift amount (Vk) are stored.
  • the heat treatment apparatus 100 configured as shown in FIG. 1 includes the first to third mass flow controllers (MFC) 240 A to 240 C, so that the second zero point shift information 384 is also included in the first zero point shift information 383.
  • the second zero point shift amount for each mass flow controller (MFC) 240A to 240C Memorize V1 ⁇ V3.
  • the items of the second zero point shift information 384 are not limited to those shown in Fig. 6.
  • the second zero point shift amount is a unique value determined according to the installation posture of the mass flow controller (MFC) 240, the operating gas type (gas molecular weight), and the operating pressure as described above. Therefore, the second zero point shift amount (Vk) item stores the value detected by the second zero point shift detection process when the heat treatment device 100 is first installed in the factory, for example. It is also preferable to store the detected value by executing the second zero point shift detection process each time there is a change in the operating gas type, operating pressure, etc. For example, when introducing gas into the reaction tube 112, the eigenvalue of the second zero point shift amount is set when a set flow rate setting command is issued to each mass flow controller (MFC) 240A, 240B, 240C. use.
  • MFC mass flow controller
  • the flow rate obtained by correcting the set flow rate stored as the process recipe of the process processing information 381 by the amount of the second zero point shift is set as a set flow rate.
  • the actual gas flow supplied to the heat treatment section 110 can be prevented from being affected by the second zero point shift amount.
  • FIG. 7 is a flowchart showing a main flow of flow rate correction processing according to the present embodiment.
  • This flow rate correction processing is executed for each mass flow controller (MFC) 240A to 240C based on the flow rate correction processing program 372.
  • the coding power indicating each component of the gas supply system 200 shown in FIG. therefore, for example, the mass flow controller (MFC) 240 and! Indicate the mass flow controllers (MFC) 240A to 240C.
  • the flow rate correction processing according to the present embodiment is performed at the time of initial introduction when the heat treatment apparatus 100 is first installed in the factory in step S110 when the heat treatment apparatus 100 is operated. Judge whether or not. At the initial introduction of the heat treatment apparatus 100 in step S110 If it is determined, zero point shift detection processing, that is, first zero point shift detection processing (step S200), first zero point shift correction processing (step S300), and second zero point shift detection processing (step S400) is performed. Execute.
  • step S400 the first zero point shift detection process (step S200) and the first zero point shift correction process (step S300) are executed. This is to detect only the shift amount of the second zero point shift. That is, even if the first zero point shift occurs, the second zero point shift is detected in a state where the first zero point shift is corrected to zero. This makes it possible to accurately detect the second zero point shift.
  • step S110 If it is determined in step S110 that the heat treatment apparatus 100 is not initially installed, it is determined in step S120 whether or not there is a change in the MFC operating conditions.
  • the change in the MFC operating conditions here is such that the second zero point shift amount already stored in the second zero point shift information 384 cannot be used as it is in the second zero point shift correction process. Examples include changing the operating gas type, changing the operating pressure, and replacing the mass flow controller (MFC) itself. If there is a change in the MFC operating conditions at step S120, the second zero point shift is newly detected based on the changed MFC operating conditions by executing the processes of steps S200 to S400. 2 Store in zero point shift information 384.
  • MFC mass flow controller
  • step S 130 it is determined in step S 130 whether or not the power to execute wafer processing is determined. This is to correct the first zero point shift and the second zero point shift each time a wafer is processed. If it is determined in step S130 that wafer processing is to be performed, the zero point shift correction process, that is, the first zero point shift detection process (step S200), the first zero point shift correction process (step S300), and the second zero point shift The correction process (step S500) is executed, and the process returns to step S120.
  • the zero point shift correction process that is, the first zero point shift detection process (step S200), the first zero point shift correction process (step S300), and the second zero point shift The correction process (step S500) is executed, and the process returns to step S120.
  • step S500 the first zero point shift detection process (step S200) and the first zero point shift correction process (step S300) are executed. This is to correct only the shift amount of the second zero point shift. In other words, even if the first zero point shift occurs, the second zero point shift is corrected in a state where the first zero point shift is corrected to zero. This compensates for the second zero point shift without the influence of the first zero point shift. Since it can be corrected, the second zero point shift can be corrected accurately.
  • step S140 If it is determined in step S130 that the wafer processing is not to be executed, it is determined in step S140 whether or not the heat treatment apparatus 100 is stopped. If it is determined that the heat treatment apparatus 100 is stopped, step S is performed. Returning to the process of 120, if it is determined that the heat treatment apparatus 100 is not stopped, a series of flow rate correction processes are completed.
  • First zero point shift detection process (step S200), first zero point shift correction process (step S300), second zero point shift detection process (step S400), second zero point shift correction process shown in FIG. (Step S500) is based on the first zero point shift detection processing program 373, the first zero point shift correction processing program 374, the second zero point shift detection processing program 375, and the second zero point shift correction processing program 376, respectively. Executed.
  • the first zero point shift detection process (step S200) and the first zero point shift correction process (step S300) correspond to the preliminary processes of the second zero point shift detection process (step S400).
  • the first zero point shift detection process (step S200), the first zero point shift correction process (step S300), and the second zero point shift detection process (step S400) are considered as a series of second zero point shift detection processes. Also good.
  • the first zero point shift detection process (step S200) and the first zero point shift correction process (step S300) correspond to the preliminary processes of the second zero point shift correction process (step S500).
  • the first zero point shift detection process (step S200), the first zero point shift correction process (step S300), and the second zero point shift correction process (step S500) as a series of second zero point shift correction processes.
  • step S400 the second zero point shift detection process (step S400) or the second zero point shift correction process (step S500) is executed, the first zero point shift is compensated by another method or the like. Therefore, it is not always necessary to execute the first zero point shift detection process (step S200) and the first zero point shift correction process (step S300) as pre-processing! /.
  • the first zero point shift detection process (step S200), the first zero point shift correction process (step S300), the second zero point shift correction process (Step S500) has been described for the case where it is executed every time the wafer is processed.
  • the present invention is not necessarily limited to this, and may be executed every predetermined time.
  • steps S300 to S500 shown in FIG. 7 will be described in detail.
  • step S200 a specific example of the first zero point shift detection process (step S200) will be described with reference to the subroutine shown in FIG.
  • the control unit 300 first places the mass flow controller (MFC) 240 in a vacuum state in steps S210 to S240. That is, the first shutoff valve (upstream shutoff valve) 230 is closed in step S210, and the control valve 246 of the mass flow controller (MFC) 240 is forcibly opened in step S220. In this state, evacuation processing in the mass flow controller (MFC) 240 is performed in step S230. For example, by opening the exhaust side bypass cutoff valve 134 and the supply side bypass cutoff valve 136, the vacuum exhausting means 124 performs the vacuuming process via the bypass line 130. Next, in step S240, the second shutoff valve (downstream shutoff valve) 250 is closed.
  • MFC mass flow controller
  • the mass flow controller (MFC) 240 is in a vacuum state in which there is no fluid itself to generate a flow, so the second zero point shift due to the thermal siphon phenomenon does not occur.
  • the MFC output voltage is detected in the next step S250 and after that the second zero point is detected after the inside of the mass flow controller (MFC) 240 is brought into a vacuum state in which the second zero point shift does not occur.
  • the first zero point shift amount can be detected without including the point shift amount. This makes it possible to accurately detect the first zero point shift amount.
  • step S250 the MFC output voltage is detected as the current first zero point shift amount E 0 in step S250. Specifically, it sends a flow detection command to the MFC control circuit 247 and receives the MFC output voltage. In this case, the MFC output voltage is zero if the first zero point shift has not occurred, and the MFC output voltage does not become zero if the first zero point shift has occurred.
  • the current first zero point shift amount EO is added to the first zero point shift amount Ek accumulated up to the previous time stored in the first zero point shift amount Ek item of the first zero point shift information 383.
  • the obtained value is stored as a new first zero point shift amount Ek.
  • step S270 it is determined whether or not the first zero point shift amount Ek updated as described above exceeds a preset threshold value, and is determined to exceed the threshold value.
  • the notification process is performed in step S280.
  • a warning sound is generated by a notification means 350 such as an alarm, or a warning is displayed on the display means 330 such as a liquid crystal panel.
  • MFC mass flow controller
  • the threshold value for example, ⁇ 0.3 V (30 OmV) of the reference voltage value is set as the threshold value, and the notification process is executed when the accumulated value Ek of the first zero point shift amount is farther than this threshold value. . This is because a problem with the mass flow controller (MFC) 240 is considered. If it is determined in step S270 that the accumulated value Ek of the first zero point shift amount does not exceed the preset threshold value, the first zero point shift detection process is terminated.
  • the pre-check process is first performed so that the first zero point shift of the mass flow controller (MFC) 240 can be accurately detected. Also good.
  • the pre-check process includes warm-up for a predetermined time (for example, 4 hours or more) after power-on of the semiconductor manufacturing equipment, normal exhaust (for example, 2 hours) in a container (gas box) in which the gas supply system 200 is installed.
  • a predetermined time for example, 4 hours or more
  • normal exhaust for example, 2 hours
  • a container gas box
  • the temperature wait for the temperature to stabilize, and check for leaks such as the first shutoff valve (upstream shutoff valve) 230 and the second shutoff valve (downstream shutoff valve) 250. It is done. It is preferable to perform the first zero point shift detection process after confirming that there is no abnormality by such a preliminary check.
  • step S300 a specific example of the first zero point shift correction process is shown in FIG. This will be explained with reference to Chin.
  • the controller 300 first issues a zero point setting command to the mass flow controller (MFC) 240 in step S310. Specifically, the control unit 300 transmits a zero point setting command to the mass flow controller (MFC) 240 to set the current state to zero flow rate. For example, if the first zero point shift amount Ek detected in step S200 in a vacuum state with no fluid in the mass flow controller (MFC) 240 is not zero, that state is set to zero.
  • MFC mass flow controller
  • step S320 the MFC output voltage is detected and it is confirmed that the zero point is set. In other words, confirm that the MFC output voltage is zero.
  • the flow returns to the flow rate correction process shown in FIG. 7, and then the second zero point shift detection process (step S400) is executed to complete the first zero point shift correction process. .
  • step S400 a specific example of the second zero point shift detection process (step S400) will be described with reference to the subroutine shown in FIG.
  • the control unit 300 first replaces the inside of the mass flow controller (MFC) 240 with an operating gas (eg, SiH gas if the mass flow controller (MFC) 240A is used) in step S410.
  • an operating gas eg, SiH gas if the mass flow controller (MFC) 240A is used
  • the first shut-off valve top
  • Flow side shutoff valve) 230 and second shutoff valve (downstream shutoff valve) 250 are opened to introduce operating gas into the mass flow controller (MFC) 240, while exhaust side bypass shutoff valve 134 and supply side bypass shutoff valve When 136 is opened, the vacuum exhausting means 124 performs the vacuuming process via the bypass line 130. At this time, the inside of the mass flow controller (MFC) 240 may be replaced with the working gas by a cycle purge in which the operation gas introduction and the evacuation process are alternately repeated.
  • step S420 to S440 the operating gas is sealed in the mass flow controller (MFC) 240 at the operating pressure. That is, the second shut-off valve (downstream shut-off valve) 250 is closed in step S420, the control valve 246 of the mass flow controller (MFC) 240 is forcibly opened in step S430, and the mass flow controller (MFC) in step S440. ) Use 240 for operating pressure. Specifically, with the second shutoff valve (downstream shutoff valve) 250 closed, operating gas was introduced until the inside of the mass flow controller (MFC) 240 reached operating pressure. To do.
  • the first shutoff valve (upstream shutoff valve) 230 is closed in step S450, and the introduction of the working gas is stopped. As a result, the operating gas is sealed in the mass flow controller (MFC) 240 at the operating pressure.
  • step S460 Wait until the output of the MFC output voltage stabilizes in this state.
  • the MFC output voltage V is detected in step S460.
  • a flow rate detection command is sent to the MFC control circuit 247 and the MFC output voltage is received as the second zero point shift amount V.
  • the second zero point shift amount is detected without including the first zero point shift amount. Can be issued. This makes it possible to accurately detect the second zero point shift amount.
  • step S470 the second zero point shift amount V is stored as it is.
  • the second zero point shift amount Vk is stored as it is in the second zero point shift amount Vk item of the second zero point shift information 384.
  • the zero point shift amount is stored as VI.
  • step S480 it is determined whether or not the checks for all operating gases and operating pressures have been completed.
  • the second zero point shift amount differs depending on the gas type (molecular weight of gas) and pressure. Therefore, if there are multiple operating gases and operating pressures for one mass flow controller (MFC), the operating gas is This is because it is necessary to detect the second zero point shift at each operating pressure.
  • MFC mass flow controller
  • the second zero point shift is detected for each operating gas.
  • step S480 If it is determined in step S480 that the check for all operating gases and operating pressures has not been completed, the process returns to step S410, and all operating gases and operating pressures are checked. If it is determined that this check has been completed, the second zero point shift detection process is terminated.
  • the second zero point shift of the mass flow controller (MFC) 240 is accurately detected as in the case of the first zero point shift detection process described above.
  • a preliminary check process may be performed first.
  • a specific example of the pre-check process here is the same as the case of the pre-check process for the first zero shift detection process described above.
  • step S500 a specific example of the second zero point shift correction process (step S500) will be described with reference to the subroutine shown in FIG. As shown in FIG. 11, the controller 300 first performs step S51.
  • the operating gas, the operating pressure, and the operating gas flow rate V to be used for wafer processing are acquired based on the process processing information 381 of the processing data storage means 380, for example.
  • Operating pressure and operating gas flow rate V may be input by the operator by operating input / output means 340 such as touch panel.
  • the second zero point shift amount at the operating gas and operating pressure acquired at step S520 is acquired based on the second zero point shift information 394 of the processing data storage means 380.
  • the gas flow rate is controlled by multiple mass flow controllers (MFC) 240 during wafer processing
  • the second zero point shift information 394 is acquired for each mass flow controller (MFC) 240.
  • the flow rate (V V + Vk), which is obtained by adding the second zero point shift amount Vk to the operating gas flow rate V acquired in step S530, is set in the mass flow controller (MFC) 24 0 as the corrected set flow rate V To do.
  • the control unit 300 transmits a set command for the set flow rate V to the MFC control circuit 247 of the mass flow controller (MFC) 240.
  • the MFC control circuit 247 sets the flow rate at the flow rate V that has been corrected for the second zero point shift.
  • the flow rate is controlled by the corrected flow rate V for both the first zero point shift and the second zero point shift. Therefore, more accurate flow rate control can be performed without being affected by both the first zero point shift and the second zero point shift of the mass flow controller (MFC) 240.
  • MFC mass flow controller
  • step S20 when performing wafer processing, step S20 is performed.
  • the first zero point shift amount is detected at 0, the first zero point shift amount is corrected in step S300, and then the second zero point shift amount is corrected in step S500.
  • the present invention is not necessarily limited to this, and the correction of the first zero point shift amount and the correction of the second zero point shift amount may be performed simultaneously.
  • the set voltage corresponding to the gas flow rate of the gas used at the time of wafer processing is detected when the second zero point shift amount stored in the second zero point shift information 384 and the wafer processing are executed. It may be corrected based on the zero point shift amount and set to the mass flow controller (MFC) 240 with the corrected gas flow rate setting voltage. Specifically, the first zero point shift correction process (step S300) is omitted, that is, the first zero point shift amount is not performed in the second zero point correction process (step S500) without performing the zero point set command. Correction is also made in consideration of the above.
  • MFC mass flow controller
  • the heat treatment apparatus 100 accurately detects the zero point shift amount (second zero point shift amount) based on the thermal siphon phenomenon that may occur during actual wafer processing. be able to.
  • the magnitude of the zero point shift based on the thermal siphon phenomenon varies depending on the gas type (molecular weight of the gas), and therefore the zero point shift amount based on the thermal siphon phenomenon (second zero point) using the gas used during wafer processing.
  • the shift amount By detecting the shift amount, the zero point shift that can occur during actual wafer processing can be accurately detected.
  • the zero point shift amount (second zero point shift amount) based on the detected thermal siphon phenomenon is stored, and when executing wafer processing, the set voltage corresponding to the gas flow rate used during wafer processing is stored. By correcting, the second zero point shift can be accurately corrected. This makes it possible to improve the accuracy of flow control regardless of the installation posture of the mass flow controller (MFC) 240. In addition, regardless of the configuration of the mass flow controller (MFC) 240, the zero point shift amount based on the thermal siphon phenomenon is accurately detected. You can correct it.
  • each mass flow controller ( ⁇ FC) 240A to 240C included in the heat treatment apparatus 100 that is effective in the first embodiment each mass flow controller (MFC) 240A to 240C Regardless of the installation position, the flow control accuracy can be further improved.
  • the first zero point shift amount based on the use of the mass flow controller (MFC) 240 is detected and corrected before the second zero point shift amount based on the thermal siphon phenomenon is detected.
  • the second end point shift based on the thermal siphon phenomenon can be accurately detected without being affected by the point shift.
  • the first zero point shift amount is detected, not only the shutoff valves 230 and 250 of the mass flow controller (MFC) 240 are closed to prevent the actual gas from flowing, but also the mass flow controller (MFC) Since the inside of the 240 is evacuated, there is no fluid in the mass flow controller (MFC) 240 that can generate a flow! As a result, the thermal siphon phenomenon does not occur, so the first zero point shift can be detected without the second zero point shift based on this thermal siphon phenomenon. This makes it possible to accurately detect the first zero point shift amount.
  • the first zero point shift based on the use of the mass flow controller (MFC) 240 is detected before the second zero point shift amount based on the thermal siphon phenomenon is corrected. Therefore, the second zero point shift based on the thermal syphon phenomenon can be accurately corrected without being affected by the first zero point shift. This makes it possible to improve the accuracy of flow control regardless of the installation posture of the mass flow controller (MFC) 240.
  • FIG. 12 is a diagram showing a configuration example of a heat treatment apparatus that works on the second embodiment.
  • the heat treatment apparatus 100 according to the second embodiment is different from the heat treatment apparatus 100 in which the configuration of the gas supply system 200 is effective in the first embodiment. That is, the heat treatment apparatus 100 according to the first embodiment includes each SiH gas that is an operating gas. , Si H gas, SiH CI gas, 1st to 3rd mass flow controllers (MF
  • the heat treatment device 100 which is powerful in the second embodiment, has the SiH gas, Si H gas, and SiH C1 gas as the operating gas.
  • MFC mass flow controller
  • the gas supply paths 210A to 210C for SiH gas, Si H gas, and SiH C1 gas are the gas supply paths 210A to 210C for SiH gas, Si H gas, and SiH C1 gas.
  • the first shutoff valve merges downstream of 230A to 230C and is connected to the gas inlet of the mass flow controller (MFC) 240A.
  • the gas supply path 210D for N gas used as purge gas includes a backflow prevention valve 260D, a first shut-off valve (upstream side)
  • the first shutoff valve (upstream shutoff valve) merges downstream of 230A to 230C via 230D and is connected to the gas inlet of the mass flow controller (MFC) 240A.
  • MFC mass flow controller
  • the first zero point shift information 383 only needs to store the first zero point shift amount (Ek) of only the common mass flow controller (MFC) 240A as shown in FIG.
  • the second zero point shift information 384 which is useful for the second embodiment, is the gas type (Gk), pressure (Pk), and second zero point shift of only the common mass flow controller (MFC) 240A.
  • Gk gas type
  • Pk pressure
  • Vk second zero point shift of only the common mass flow controller
  • the flow rate correction process as shown in FIGS. 7 to 11 can be applied as in the heat treatment apparatus 100 according to the first embodiment. it can.
  • a common mass flow controller (MFC) 240A can be used for multiple operating gases (SiH gas, Si H gas, SiH C1 gas, N gas).
  • step S400 Control the flow rate of 4 2 6 2 2 2.
  • the second zero point shift amount is detected for each operating gas, and the second outlet point shift of each operating gas is detected.
  • the quantity is stored in advance in second zero point shift information 384 as shown in FIG.
  • a common mass flow controller (MFC) 240A is used to supply a plurality of gas types to the heat treatment unit 110, thereby performing wafer treatment. I do.
  • the present invention described in detail with reference to the above embodiments may be applied to a system constituted by a plurality of equipment units or an apparatus having a single equipment power.
  • a medium such as a storage medium storing a software program for realizing the functions of the above-described embodiment is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus stores the storage medium or the like.
  • the present invention can also be achieved by reading and executing a program stored in a medium.
  • the medium power of the storage medium and the like The read program itself realizes the functions of the above-described embodiment, and the medium such as the storage medium storing the program constitutes the present invention. It will be.
  • media such as a storage medium for supplying the program include a floppy disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM. , DVD-RW, DVD + RW, magnetic tape, non-volatile memory card, ROM, or network download.
  • the program from which the medium power such as a storage medium is read is written in the memory provided in the function expansion board inserted in the computer or the function expansion unit connected to the computer, and then the program instruction is issued.
  • the CPU on the function expansion board or function expansion unit performs part or all of the actual processing. The case where the functions of the above-described embodiment are realized is also included in the present invention.
  • the heat treatment apparatus has been described as an example of the semiconductor manufacturing apparatus.
  • the present invention is not necessarily limited to this, and a gas or liquid is controlled by a flow rate controller such as a mass flow controller.
  • a flow rate controller such as a mass flow controller.
  • it is a semiconductor manufacturing device that controls the flow rate of the substrate and performs predetermined processing on the substrate, it can be applied to various types of semiconductor manufacturing devices.
  • the semiconductor manufacturing apparatus may be applied to an etching apparatus or a film forming apparatus in addition to a heat treatment apparatus.
  • the present invention is applicable to a semiconductor manufacturing apparatus, a flow correction method for a semiconductor manufacturing apparatus, and a program for performing predetermined processing on a substrate by controlling the flow rate of a gas or a liquid with a flow controller such as a mass flow controller. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Flow Control (AREA)
  • Drying Of Semiconductors (AREA)
  • Measuring Volume Flow (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 基板処理時に実際に生じ得るサーマルサイフォン現象に基づくゼロ点シフト量を正確に検出して的確な補正をする。  熱処理部110内にガスを供給するガス供給路210と,ガス供給路のガス流量を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,ガス供給路のガス流量が設定流量になるように制御するMFC240と,制御部300とを備え,制御部は,基板処理を実行する前に予め,MFC内を少なくとも基板処理時に使用するガスで置換してMFCの上流側と下流側に設けられる遮断弁230,250を閉じた状態でMFCからの出力電圧を検出して記憶手段に記憶しておき,基板処理を実行する際には基板処理時に使用するガスのガス流量に対応する設定電圧を記憶手段に記憶されたMFCの出力電圧に基づいて補正し,補正した設定電圧をMFCに設定する。

Description

明 細 書
半導体製造装置,半導体製造装置の流量補正方法,プログラム 技術分野
[0001] 本発明は,マスフローコントローラなどの流量制御器によってガスや液体の流量を 制御して基板に対して所定の処理を行う半導体製造装置,流量補正方法,プロダラ ムに関する。
背景技術
[0002] 従来より半導体デバイスなどを製造するための工程例えば成膜ガスを用いた成膜 工程,エッチングガスを用いたエッチング工程などでは,各種のガスや液体を半導体 製造装置に供給する場合それらの供給流路に流量制御器例えばマスフローコント口 ーラ(MFC)を設け,これによつて流量を制御して!/、る。
[0003] このマスフローコントローラ(MFC)は,一般に,供給流路を流量センサとして発熱 抵抗線からなる上流側センサと下流側センサを設けた測流路とこれに並行な本流路 とに分流するように構成される。上流側センサでは流体が流れると熱が奪われて温度 が下降し,逆に下流側センサでは熱が与えられ温度が上昇する。この結果上流側セ ンサと下流側センサとでは温度差が生じ,この温度差を検出することにより供給流路 の流量を検出することができる。マスフローコントローラ(MFC)は,このような流量セ ンサからの出力に応じて流量調整弁の開度を制御することによって供給流路の流量 を設定流量に調整するようになって 、る。
[0004] ところで,このようなマスフローコントローラ(MFC)は使用しているうちに,流量セン サが卷かれて!/、る管路の汚れ (腐食や生成物付着など)などによって,実流量 (マス フローコントローラを実際に通るガスの流量)が設定流量力も外れてくることがある。例 えば実流量がゼロ(0)の場合であっても,流量センサによって検出される流量に相当 する検出電圧値はゼロ(0)ではなく,僅かにずれて誤差が生じることが多い (例えば 特許文献 1参照)。このようなゼロ点のずれ (ゼロ点シフト)としては,例えば使用時間 に応じて徐々に大きくなる傾向のものと,流量に対する出力電圧の変化割合 (傾き) が変動するもの(スパンシフト)がある。本明細書においては,このようなゼロ点シフト を使用に基づくゼロ点シフト (第 1ゼロ点シフト)と称する。
[0005] さらに,マスフローコントローラ(MFC)は,その設置姿勢によってもガス分子量や圧 力などに応じたゼロ点のずれ (ゼロ点シフト)が発生する場合がある。半導体製造装 置の小型化や,配管系統の構成上または設置スペースなどの関係で,マスフローコ ントローラ (MFC)の流量センサが卷設された側流部 (本流路と平行な部分)が垂直 な状態 (垂直姿勢)になるように設置しなければならな 、ことがある。
[0006] ところが,垂直姿勢になるように設置すると,供給流路に流体を流さなくても,マスフ ローコントローラ(MFC)内で例えば側流部と本流路との間でその温度差によりガス の分子量や圧力に応じた流れが生じ,ゼロ点のずれ (ゼロ点シフト)が発生する場合 がある。この現象は一般にサーマルサイフォン現象と呼ばれている(例えば特許文献 2参照)。本明細書においては,このようなゼロ点シフトを設置姿勢に基づくゼロ点シ フト (第 2ゼロ点シフト)と称し,上述した使用に基づくゼロ点シフト (第 1ゼロ点シフト) と区別する。この第 2ゼロ点シフトが生じる場合には,その第 2ゼロ点シフト量に第 1ゼ 口点シフト量をカ卩えたものが,実際に生じ得るゼロ点シフト量となる。このように,マス フローコントローラ(MFC)のゼロ点シフトには,第 1ゼロ点シフトのみならず,第 2ゼロ 点シフトも含まれる場合がある。
特許文献 1:特開 2005 - 38058号公報
特許文献 2:特開平 11— 64060号公報
発明の開示
発明が解決しょうとする課題
[0007] このようなマスフローコントローラ(MFC)について,上述した第 1ゼロ点シフト,第 2 ゼロ点シフトなどのゼロ点シフトが生じると,供給流路におけるガスや液体の流量が 設定流量と実流量とでずれるため,そのゼロ点シフト量が大きいほど,ガスや液体な どの供給流量制御の精度が低下し,ウェハ Wの処理に与える影響も無視できなくな つてくるという問題がある。
[0008] 特に,近年では,半導体デバイスなどのパターンが益々微細化され,各膜の膜厚も より薄くなつてきていることから,成膜工程,エッチング工程などの半導体製造工程で は,ガスや液体などの供給流量をより高 、精度でコントロールできることが所望されて いる。このため,上記ゼロ点シフトに対する対策の重要性も増大している。
[0009] この点,例えば特許文献 1には,マスフローコントローラ(MFC)の上流側及び下流 側に設けた遮断弁を閉じた状態で,すなわち実ガス (マスフローコントローラを実際に 通るガス)が流れない状態でマスフローコントローラ(MFC)の出力電圧(MFC出力 電圧)を検出して,これを補正することにより,ガス供給流量をより高い精度でコント口 ールする技術が記載されている。これによれば,例えばマスフローコントローラ(MFC )が水平姿勢で設置されて 、る場合などサーマルサイフォン現象による第 2ゼロ点シ フトが発生しない場合には,第 1ゼロ点シフト量を正確に検出できる。ところが,例え ばマスフローコントローラ(MFC)が垂直姿勢で設置されて 、る場合など条件によつ てはサーマルサイフォン現象による第 2ゼロ点シフトが発生するので,十分なゼロ点 補正ができない場合がある。
[0010] すなわち,特許文献 1では,ゼロ点シフトを検出する際にマスフローコントローラ(M FC)の上流側及び下流側に設けた遮断弁を閉じた状態にしているが,このように実 ガスが流れない状態にしていても,サーマルサイフォン現象が生じる場合には第 2ゼ 口点シフトが発生する。し力もその第 2ゼロ点シフト量はマスフローコントローラ(MFC )内に残留する流体の有無,残留する流体種類 (分子量)や圧力によって異なる。こ のため,単に遮断弁を閉じた状態でゼロ点シフトを検出したとしても,例えば基板処 理時に使用するガスと異なるガスが残留した状態でゼロ点シフトを検出した場合は, そのゼロ点シフト量に含まれる第 2ゼロ点シフト量は基板処理時に実際に生じ得る第 2ゼロ点シフト量とは異なるので,基板処理時に実際に生じ得るゼロ点シフトを正確に 検出することができず,十分なゼロ点補正ができない場合がある。
[0011] また,特許文献 2には,マスフローコントローラ (MFC)の側流部と本流路の他に, 側流部と平行な平行流路を設け,この平行流路をヒータにより加熱することによって, サーマルサイフォン現象によるマスフローコントローラ(MFC)内部の流れを防止する 技術が記載されている。ところ力 マスフローコントローラ(MFC)は,種々のメーカか ら発売されており,ある特定のメーカのマスフローコントローラ(MFC)を適用して生 産ラインを構成した場合,マスフローコントローラ(MFC)を他社のものに交換した場 合には,その調整を行うことができない欠点がある。またマスフローコントローラ(MF c)の側流部と平行な平行流路を設け,ヒータを設けるのは内部の構成が複雑ィ匕する とともに,マスフローコントローラ(MFC)の設置環境や使用状況によってはそれに応 じたヒータの温度制御が必要になるなどマスフローコントローラ(MFC)自体の制御が 複雑化する虞もある。
[0012] そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは ,基板処理時に実際に生じ得るサーマルサイフォン現象に基づくゼロ点シフト量を正 確に検出して的確な補正をすることにより,流量制御器の設置姿勢に拘らず,流量 制御の精度をより向上させることができる半導体製造装置,半導体製造装置の流量 補正方法,プログラムを提供することにある。
課題を解決するための手段
[0013] 上記課題を解決するために,本発明のある観点によれば,基板に対して半導体装 置を製造するための処理を施す処理部と,前記処理部内にガスを供給するガス供給 路と,前記ガス供給路に設けられ,前記ガス供給路のガス流量を検出する検出部か らの出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,前記ガ ス供給路のガス流量が設定流量になるように制御する流量制御器と,前記流量制御 器の上流側と下流側にそれぞれ設けられる遮断弁と,前記ガス供給路により供給す るガスのガス流量に対応する設定電圧を前記流量制御器に設定する制御部とを備 え,前記制御部は,基板処理を実行する前に予め,前記流量制御器内を少なくとも 基板処理時に使用するガスで置換して前記各遮断弁を閉じた状態で前記流量制御 器からの出力電圧を検出し,この出力電圧を記憶手段に記憶しておき,基板処理を 実行する際には,基板処理時に使用するガスのガス流量に対応する設定電圧を前 記記憶手段に記憶された前記流量制御器の出力電圧に基づ 、て補正し,補正した ガス流量の設定電圧を前記流量制御器に設定することを特徴とする半導体製造装 置が提供される。
[0014] 上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部にガスを供給し,この処理部内の基板に対して半導体装置を製 造するための処理を行う半導体製造装置の流量補正方法であって,基板処理を実 行する前に予め,前記流量制御器内を少なくとも基板処理時に使用するガスで置換 して前記流量制御器の上流側及び下流側に設けられた各遮断弁を閉じた状態で前 記流量制御器からの出力電圧を検出し,この出力電圧をゼロ点シフト量として記憶 手段に記憶するゼロ点シフト検出工程と,基板処理を実行する際に,基板処理時に 使用するガスのガス流量に対応する設定電圧を前記記憶手段に記憶された前記流 量制御器のゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記 流量制御器に設定するゼロ点シフト補正工程とを有することを特徴とする半導体製 造装置の流量補正方法が提供される。
[0015] このような装置又は方法によれば,実際の基板処理時に生じ得るサーマルサイフォ ン現象に基づくゼロ点シフト量 (第 2ゼロ点シフト量)を正確に検出することができる。 すなわち,サーマルサイフォン現象に基づくゼロ点シフト量の大きさはガス種 (ガスの 分子量)によって異なるため,基板処理時に使用するガスを用いてサーマルサイフォ ン現象に基づくゼロ点シフト量 (第 2ゼロ点シフト量)を検出することによって,実際の 基板処理時に生じ得るゼロ点シフト量を正確に検出することができる。
[0016] また,検出したサーマルサイフォン現象に基づくゼロ点シフト量 (第 2ゼロ点シフト量 )を記憶しておき,基板処理を実行する際に,基板処理時に使用するガス流量に対 応する設定電圧を補正することによって,第 2ゼロ点シフト量を的確に補正することが できる。これにより,流量制御器の設置姿勢に拘らず,流量制御の精度をより向上さ せることができる。さらに,流量制御器の構成に拘らず,サーマルサイフォン現象に基 づくゼロ点シフト量を正確に検出して補正することができる。
[0017] 上記課題を解決するために,本発明の別の観点によれば,基板に対して半導体装 置を製造するための処理を施す処理部と,前記処理部内に複数種のガスをそれぞ れ供給する複数のガス供給路と,前記各ガス供給路にそれぞれ設けられ,前記ガス 供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流量に 対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になるよう に制御する複数の流量制御器と,前記各流量制御器の上流側と下流側にそれぞれ 設けられる遮断弁と,前記各ガス供給路により供給するガスのガス流量に対応する設 定電圧を前記各流量制御器に設定する制御部とを備え,前記制御部は,基板処理 を実行する前に予め,前記各流量制御器ごとに前記各流量制御器内を少なくとも基 板処理時に使用するガスで置換して前記各遮断弁を閉じた状態で前記流量制御器 力 の出力電圧を検出し,各流量制御器ごとの出力電圧を記憶手段に記憶しておき ,基板処理を実行する際には,前記各流量制御器ごとに基板処理時に使用するガス 種のガス流量に対応する設定電圧を前記記憶手段に前記各流量制御器ごとに記憶 された出力電圧に基づ!/ヽてそれぞれ補正し,補正したガス流量の設定電圧を前記 各流量制御器ごとにそれぞれ設定することを特徴とする半導体製造装置が提供され る。
[0018] 上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部にガスを供給し,この処理部内の基板に対して半導体装置を製 造するための処理を行う半導体製造装置の流量補正方法であって,基板処理を実 行する前に予め,前記流量制御器内を少なくとも基板処理時に使用するガスで置換 して前記流量制御器の上流側及び下流側に設けられた各遮断弁を閉じた状態で前 記流量制御器からの出力電圧を検出し,この出力電圧をゼロ点シフト量として記憶 手段に記憶するゼロ点シフト検出工程と,基板処理を実行する際に,基板処理時に 使用するガスのガス流量に対応する設定電圧を前記記憶手段に記憶された前記流 量制御器のゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記 流量制御器に設定するゼロ点シフト補正工程とを有することを特徴とする半導体製 造装置の流量補正方法が提供される。
[0019] このような装置又は方法によれば,複数の流量制御器を使用して処理部へ複数の ガス種を供給して基板処理を行う場合にも,各流量制御器につ!ヽて基板処理時に実 際に生じ得るサーマルサイフォン現象に基づくゼロ点シフト量を正確に検出して的確 な補正をすることができる。これにより,各流量制御器の設置姿勢に拘らず,流量制 御の精度をより向上させることができる。
[0020] 上記課題を解決するために,本発明の別の観点によれば,基板に対して半導体装 置を製造するための処理を施す処理部と,前記処理部内に複数種のガスをそれぞ れ供給する複数のガス供給路と,前記各ガス供給路が合流する合流路に設けられ, 前記ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設 定流量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量 になるように制御する共通の流量制御器と,前記流量制御器の下流側の前記各ガス 供給路にそれぞれ設けられる下流側遮断弁と,前記流量制御器の上流側に設けら れる上流側遮断弁と,前記各ガス供給路により供給する各ガス種のガス流量に対応 する設定電圧を前記流量制御器にそれぞれ設定する制御部とを備え,前記制御部 は,基板処理を実行する前に予め,基板処理時に使用する各ガス種ごとに前記各流 量制御器内を少なくとも前記ガスで置換して前記各遮断弁を閉じた状態で前記流量 制御器からの出力電圧を検出し,各ガス種ごとの出力電圧を記憶手段に記憶してお き,基板処理を実行する際には,基板処理に使用する各ガス種のガス流量に対応す る設定電圧を前記記憶手段に記憶された各ガス種についての前記流量制御器の出 力電圧に基づ ヽてそれぞれ補正し,補正したガス流量の設定電圧を前記流量制御 器にそれぞれ設定することを特徴とする半導体製造装置が提供される。
上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部に複数種のガスを供給し,この処理部内の基板に対して半導体 装置を製造するための処理を行う半導体製造装置の流量補正方法であって,基板 処理を実行する前に予め,基板処理時に使用する各ガス種ごとに前記各流量制御 器内を少なくとも前記ガスで置換して前記流量制御器の上流側と下流側に設けられ た各遮断弁を閉じた状態で前記流量制御器力 の出力電圧を検出し,各ガス種ごと の出力電圧をゼロ点シフト量として記憶手段に記憶するゼロ点シフト検出工程と,基 板処理を実行する際に,基板処理に使用する各ガス種のガス流量に対応する設定 電圧を前記記憶手段に記憶された各ガス種につ!、てのゼロ点シフト量に基づ!、てそ れぞれ補正し,補正したガス流量の設定電圧を前記流量制御器にそれぞれ設定す るゼロ点シフト補正工程とを有することを特徴とする半導体製造装置の流量補正方 法が提供される。
[0022] このような装置又は方法によれば,共通の流量制御器を使用して処理部へ複数の ガス種をそれぞれ供給して基板処理を行う場合にも,基板処理時に各ガス種を使用 する際に実際に生じ得るサーマルサイフォン現象に基づくゼロ点シフト量を正確に検 出して的確な補正をすることができる。これにより,流量制御器の設置姿勢に拘らず, 流量制御の精度をより向上させることができる。
[0023] 上記課題を解決するために,本発明の別の観点によれば,基板に対して半導体装 置を製造するための処理を施す処理部と,前記処理部内にガスを供給するガス供給 路と,前記ガス供給路に設けられ,前記ガス供給路のガス流量を検出する検出部か らの出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,前記ガ ス供給路のガス流量が設定流量になるように制御する流量制御器と,前記流量制御 器の上流側と下流側にそれぞれ設けられる遮断弁と,前記流量制御器内を真空排 気可能な真空排気手段と,前記ガス供給路により供給するガスのガス流量に対応す る設定電圧を前記流量制御器に設定する制御部とを備え,前記制御部は,基板処 理を実行する前に予め,前記流量制御器内を前記真空排気手段により真空排気し て前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量と して検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,前記流量 制御器内を少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じた状 態で前記流量制御器からの出力電圧を検出し,この出力電圧を第 2ゼロ点シフト量と して記憶手段に記憶しておき,基板処理を実行する際には,前記流量制御器内を前 記真空排気手段により真空排気して前記各遮断弁を閉じた状態で前記流量制御器 の出力電圧を第 1ゼロ点シフト量として検出し,この第 1ゼロ点シフト量に基づいてゼ 口点補正を行った上で,基板処理に使用するガスのガス流量に対応する設定電圧を 前記記憶手段に記憶された前記第 2ゼロ点シフト量に基づ 、て補正し,補正したガス 流量の設定電圧を前記流量制御器に設定することを特徴とする半導体製造装置が 提供される。
[0024] 上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部にガスを供給し,この処理部内の基板に対して半導体装置を製 造するための処理を行う半導体製造装置の流量補正方法であって,基板処理を実 行する前に予め,前記流量制御器内を真空排気手段により真空排気して前記各遮 断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量として検出し, この第 1ゼロ点シフト量に基づ 、てゼロ点補正を行った上で,前記流量制御器内を 少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じた状態で前記流 量制御器からの出力電圧を検出し,この出力電圧を第 2ゼロ点シフト量として記憶手 段に記憶する第 2ゼロ点シフト検出工程と,基板処理を実行する際に,前記流量制 御器内を真空排気手段により真空排気して前記各遮断弁を閉じた状態で前記流量 制御器の出力電圧を第 1ゼロ点シフト量として検出し,この第 1ゼロ点シフト量に基づ V、てゼロ点補正を行った上で,基板処理に使用するガスのガス流量に対応する設定 電圧を前記記憶手段に記憶された前記第 2ゼロ点シフト量に基づ 、て補正し,補正 したガス流量の設定電圧を前記流量制御器に設定する第 2ゼロ点シフト補正工程と を有することを特徴とする半導体製造装置の流量補正方法が提供される。
[0025] このような装置又は方法によれば,サーマルサイフォン現象に基づく第 2ゼロ点シフ ト量を検出する前に,流量制御器の使用に基づく第 1ゼロ点シフト量を検出して補正 するので,第 1ゼロ点シフトに影響されることなく,サーマルサイフォン現象に基づく第 2ゼロ点シフト量を正確に検出することができる。し力も,第 1ゼロ点シフト量を検出す る際には,流量制御器の各遮断弁を閉じて実ガスが流れな 、状態にするだけではな く,流量制御器内を真空排気するので流量制御器内には流れを生じ得る流体自体 がない真空状態になる。このため,サーマルサイフォン現象が発生しないので,この サーマルサイフォン現象に基づく第 2ゼロ点シフトもない状態で第 1ゼロ点シフト量を 検出することができる。これにより,正確に第 1ゼロ点シフト量を検出することができる
[0026] また,基板処理を実行する際にも,サーマルサイフォン現象に基づく第 2ゼロ点シフ ト量を補正する前に,流量制御器の使用に基づく第 1ゼロ点シフトを検出して補正す るので,第 1ゼロ点シフトに影響されることなく,サーマルサイフォン現象に基づく第 2 ゼロ点シフト量を的確に補正することができる。これにより,流量制御器の設置姿勢に 拘らず,流量制御の精度をより向上させることができる。
[0027] 上記課題を解決するために,本発明の別の観点によれば,基板に対して半導体装 置を製造するための処理を施す処理部と,前記処理部内にガスを供給するガス供給 路と,前記ガス供給路に設けられ,前記ガス供給路のガス流量を検出する検出部か らの出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,前記ガ ス供給路のガス流量が設定流量になるように制御する流量制御器と,前記流量制御 器の上流側と下流側にそれぞれ設けられる遮断弁と,前記流量制御器内を真空排 気可能な真空排気手段と,前記ガス供給路により供給するガスのガス流量に対応す る設定電圧を前記流量制御器に設定する制御部とを備え,前記制御部は,基板処 理を実行する前に予め,前記流量制御器内を前記真空排気手段により真空排気し て前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量と して検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,前記流量 制御器内を少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じた状 態で前記流量制御器からの出力電圧を検出し,この出力電圧を第 2ゼロ点シフト量と して記憶手段に記憶しておき,基板処理を実行する際には,前記流量制御器内を真 空排気手段により真空排気して前記各遮断弁を閉じた状態で前記流量制御器の出 力電圧を第 1ゼロ点シフト量として検出し,基板処理に使用するガスのガス流量に対 応する設定電圧を前記記憶手段に記憶された前記第 2ゼロ点シフト量及び基板処理 を実行する際に検出した前記第 1ゼロ点シフト量に基づ 、て補正し,補正したガス流 量の設定電圧を前記流量制御器に設定することを特徴とする半導体製造装置が提 供される。
[0028] 上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部にガスを供給し,この処理部内の基板に対して半導体装置を製 造するための処理を行う半導体製造装置の流量補正方法であって,基板処理を実 行する前に予め,前記流量制御器内を真空排気手段により真空排気して前記各遮 断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量として検出し, この第 1ゼロ点シフト量に基づ 、てゼロ点補正を行った上で,前記流量制御器内を 少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じた状態で前記流 量制御器からの出力電圧を検出し,この出力電圧を第 2ゼロ点シフト量として記憶手 段に記憶する第 2ゼロ点シフト検出工程と,基板処理を実行する際に,前記流量制 御器内を真空排気手段により真空排気して前記各遮断弁を閉じた状態で前記流量 制御器の出力電圧を第 1ゼロ点シフト量として検出し,基板処理に使用するガスのガ ス流量に対応する設定電圧を前記記憶手段に記憶された前記第 2ゼロ点シフト量及 び基板処理を実行する際に検出した前記第 1ゼロ点シフト量に基づいて補正し,補 正したガス流量の設定電圧を前記流量制御器に設定する第 2ゼロ点シフト補正工程 と有することを特徴とする半導体製造装置の流量補正方法が提供される。
[0029] このような装置又は方法によれば,基板処理を実行する際に,第 1ゼロ点シフト量と 第 2ゼロ点シフト量とを検出し,第 1ゼロ点シフト量と第 2ゼロ点シフト量の両方に基づ いて基板処理時に使用するガス流量に対応する設定電圧を補正するため,第 1ゼロ 点シフト量と第 2ゼロ点シフト量とを同時に補正することができる。これにより,流量制 御器の設置姿勢に拘らず,流量制御の精度をより向上させることができる。
[0030] また,上記記憶手段に,第 1ゼロ点シフト量を検出するごとに累積した第 1ゼロ点シ フト量についても記憶し,前記第 1ゼロ点シフト量を検出したときに,その第 1ゼロ点シ フト量を前回までに累積された第 1ゼロ点シフト量に加えた値が,予め定めた閾値を 外れた場合に報知処理を行うようにしてもよい。これにより,流量制御器の故障や交 換時期などを知らせることができる。
[0031] 上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部にガスを供給し,この処理部内の基板に対して半導体装置を製 造するための処理を行う半導体製造装置の流量補正処理を実行するためのプロダラ ムであって,コンピュータに,基板処理を実行する前に予め,前記流量制御器内を少 なくとも基板処理時に使用するガスで置換して前記流量制御器の上流側及び下流 側に設けられた各遮断弁を閉じた状態で前記流量制御器からの出力電圧を検出し, この出力電圧をゼロ点シフト量として記憶手段に記憶するゼロ点シフト検出処理と, 基板処理を実行する際に,基板処理時に使用するガスのガス流量に対応する設定 電圧を前記記憶手段に記憶された前記流量制御器のゼロ点シフト量に基づいて補 正し,補正したガス流量の設定電圧を前記流量制御器に設定するゼロ点シフト補正 処理とを実行させるためのプログラムが提供される。
[0032] このようなプログラムによれば,実際の基板処理時に生じ得るサーマルサイフォン現 象に基づくゼロ点シフト量 (第 2ゼロ点シフト量)を正確に検出でき,的確に補正でき る流量制御処理を実行させることができる。
[0033] 上記課題を解決するために,本発明の別の観点によれば,ガス供給路のガス流量 を検出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧 とを比較して,前記ガス供給路のガス流量が設定流量になるように制御する流量制 御器を用いて処理部にガスを供給し,この処理部内の基板に対して半導体装置を製 造するための処理を行う半導体製造装置の流量補正処理を実行するためのプロダラ ムであって,コンピュータに,基板処理を実行する前に予め,前記流量制御器内を真 空排気手段により真空排気して前記各遮断弁を閉じた状態で前記流量制御器の出 力電圧を第 1ゼロ点シフト量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点 補正を行った上で,前記流量制御器内を少なくとも基板処理時と同様のガスで置換 して前記各遮断弁を閉じた状態で前記流量制御器からの出力電圧を検出し,この出 力電圧を第 2ゼロ点シフト量として記憶手段に記憶する第 2ゼロ点シフト検出処理と, 基板処理を実行する際に,前記流量制御器内を真空排気手段により真空排気して 前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量とし て検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,基板処理に 使用するガスのガス流量に対応する設定電圧を前記記憶手段に記憶された前記第 2ゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記流量制御 器に設定する第 2ゼロ点シフト補正処理とを実行させるためのプログラムが提供され る。
[0034] このようなプログラムによれば,流量制御器の使用に基づく第 1ゼロ点シフト量を第 2ゼロ点シフト量の影響がない状態で正確に検出して補正できるとともに,サーマル サイフォン現象に基づく第 2ゼロ点シフト量を第 1ゼロ点シフト量の影響がない状態で 正確に検出して補正できる流量制御処理を実行させることができる。
発明の効果
[0035] 本発明によれば,基板処理時に実際に生じ得るサーマルサイフォン現象に基づく ゼロ点シフト量を正確に検出して的確な補正をすることができる。これにより,流量制 御器の設置姿勢に拘らず,流量制御の精度をより向上させることができる。また,流 量制御器の構成に拘らず,サーマルサイフォン現象に基づくゼロ点シフト量を正確に 検出して補正することができる。
図面の簡単な説明
[0036] [図 1]本発明の第 1実施形態に力かる半導体製造装置の構成例を示すブロック図で ある。
[図 2]図 1に示すマスフローコントローラの構成例を示す図である。
[図 3]第 2ゼロ点シフト量とガス種との関係を示す図である。
[図 4]図 1に示す制御部の構成例を示すブロック図である。
[図 5]同実施形態における第 1ゼロ点シフト情報の具体例を示す図である。
[図 6]同実施形態における第 2ゼロ点シフト情報の具体例を示す図である。
[図 7]流量補正処理を示すフローチャートである。
[図 8]第 1ゼロ点シフト検出処理を示すフローチャートである。
[図 9]第 1ゼロ点シフト補正処理を示すフローチャートである。
[図 10]第 2ゼロ点シフト検出処理を示すフローチャートである。
[図 11]第 2ゼロ点シフト補正処理を示すフローチャートである。
[図 12]本発明の第 2実施形態に力かる半導体製造装置の構成例を示すブロック図で ある。
[図 13]同実施形態における第 1ゼロ点シフト情報の具体例を示す図である。
[図 14]同実施形態における第 2ゼロ点シフト情報の具体例を示す図である。
符号の説明
[0037] 100 熱処理装置 110 熱処理部
112 反応チューブ
114 保持具
120 排気系
122 排気管
124 真空排気手段
130 バイパスライン
132 バイパス管
134 排気側バイパス遮断弁
136 供給側バイパス遮断弁
200 ガス供給系
202 ガス供給管
204 主弁
210 (210A〜210D) ガス供給路
212 (212A〜212D) ガス供給管
220 (220A〜220D) ガス供給源
222 (222A〜222D) レギユレータ
224 (224A〜224D) 圧力計
230 (230A〜230D) 第 1遮断弁 (上流側遮断弁) 240 (240A〜240C) マスフローコントローラ(MFC) 241 本流路
242 側流路
243 上流側センサ
244 下流側センサ
245 バイパス路
246 コントロールバルブ (流量調整弁)
247 MFC制御回路
250 (250A〜250C) 第 2遮断弁(下流側遮断弁) 260 (260A〜260D) 逆流防止弁
262 (262A〜262C) 遮断弁
300 制御部
310 CPU
320 RAM
330 表示手段
340 入出力手段
350 報知手段
360 各部コントローラ
370 プログラムデータ記憶手段
371 プロセス処理プログラム
372 流量補正処理プログラム
373 第 1ゼロ点シフト検出処理プログラム
374 第 1ゼロ点シフト補正処理プログラム
375 第 2ゼロ点シフト検出処理プログラム
376 第 2ゼロ点シフト補正処理プログラム
380 処理データ記憶手段
381 プロセス処理情報
382 流量補正情報
W ウェハ
発明を実施するための最良の形態
[0038] 以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説 明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構 成要素については,同一の符号を付することにより重複説明を省略する。
[0039] (第 1実施形態にかかる半導体製造装置の構成例)
まず,本発明を第 1実施形態にかかる半導体製造装置について図面を参照しなが ら説明する。ここでは,半導体製造装置として,基板例えば半導体ウェハ (以下,単 に「ウェハ」とも称する。 )に対して所定の熱処理を行う熱処理装置を例に挙げて説明 する。図 1は,第 1実施形態に力かる熱処理装置の構成例を示す図である。熱処理 装置 100は,ウェハ Wに対して処理 (例えば熱処理)を行う処理部としての熱処理部 110を備える。熱処理部 110は例えば図 1に示すように反応容器 (処理容器)又は反 応室 (処理室)を構成する縦型の反応チューブ 112で構成される。この反応チューブ 112内にはウエノ、 Wを多数枚搭載した保持具 114を搬入できるようになって 、る。熱 処理部 110には,反応チューブ 112内の排気を行う排気系 120と,反応チューブ 11 2内に所定のガスを供給するためのガス供給系 200と,反応チューブ 112の外側に 配設された図示しない加熱手段 (例えばヒータ)とを備える。
[0040] 熱処理部 110は,反応チューブ 112内にウェハ Wを多数枚搭載した保持具 114を 搬入した状態で,ガス供給系 200により反応チューブ 112内に所定のガスを供給す るとともに排気系 120により反応チューブ 112内の排気を行 、ながら,加熱手段によ り反応チューブ 112の外側から加熱することによりウェハ Wに対して所定の熱処理を 行うようになっている。
[0041] 排気系 120は,例えば真空ポンプなどで構成される真空排気手段 124を反応チュ ーブ 112の天井に排気管 122を介して接続して構成される。ガス供給系 200は,例 えばガス供給管 202に複数種のガスをそれぞれ供給するための各ガス供給路 210A 〜210Dを接続して構成される。ガス供給管 202は,主弁(主バルブ) 204を介して反 応チューブ 112の下方側面に接続して 、る。
[0042] また,排気系 120の排気管 122は,バイパスライン 130を介してガス供給系 200の ガス供給管 202に迂回して接続している。バイノスライン 130は,ガス供給管 202に おける各ガス供給路 210A〜210Dの接続部より下流側であって主弁 204よりも上流 側の部位にバイパス管 132を接続して構成される。ノ ィパス管 132の排気系 120側 には排気側バイパス遮断弁 134が接続しており,バイパス管 132のガス供給系 200 側には供給側バイパス遮断弁 136が接続している。
[0043] ここで,ガス供給系 200の各ガス供給路 210A〜210Dについて説明する。図 1に 示す熱処理装置 100では,反応チューブ 112に 4種のガス(SiHガス, Si Hガス,
4 2 6
SiH C1ガス, Nガス)を供給可能に構成した場合を例に挙げている。これらのガス
2 2 2
のうち, SiHガス, Si Hガス, SiH C1ガスは主として反応ガスとして使用され, N ガスは主として各ガス供給路 210A〜210D又は反応チューブ 110をパージするた めのパージガスとして使用される。
[0044] このように反応ガスとして使用される SiHガス, Si Hガス, SiH C1ガスのガス供
4 2 6 2 2
給路 210A〜210Cについては,同様に構成される。すなわち,各ガス供給路 210A 〜210Cはそれぞれ SiHガス, Si Hガス, SiH C1ガスについてのガス供給源 220
4 2 6 2 2
A〜220Cを備え,各ガス供給源 220A〜220Cはそれぞれガス供給管 212A〜21 2Cを介してガス供給管 202に合流するように接続して!/、る。
[0045] 各ガス供給路 210A〜210Cのガス供給管 212A〜212Cにはガス供給源 220A 〜220Cからのガスの流量を調整するための流量制御器の 1例としてマスフローコン トローラ(MFC) 240A〜240Cが設けられて!/、る。ここでのマスフローコントローラ(M FC) 240A〜240Cはそれぞれ容量が異なるものを使用してもよい。例えばマスフ口 一コントローラ(MFC) 240A〜240Cをそれぞれ 500cc, 3000cc, 2000ccの容量 のものを使用する。
[0046] 各マスフローコントローラ(MFC) 240A〜240Cの上流側及び下流側にはそれぞ れ第 1遮断弁 (上流側遮断弁) 230A〜230C,第 2遮断弁(下流側側遮断弁) 250A 〜250C力設けられている。第 1遮断弁 230A〜230C,第 2遮断弁 250A〜250C の双方を閉じることで,各マスフローコントローラ(MFC) 240A〜240Cにおける流 体の流れ (本具体例ではガスの流れ)を遮断することができる。すなわち各マスフロー コントローラ(MFC) 240A〜240Cを実際に通るガスの流量を 0とすることができるよ うになつている。
[0047] なお,図 1に示すようにガス供給源 220A〜220Cと第 1遮断弁(上流側遮断弁) 23 OA〜230Cとの間には,レギユレータ 222A〜222Cと圧力計(PT) 224A〜224Cと を設けるようにしてもよい。
[0048] 一方,パージガスとして使用される Nガスのガス供給路 210Dは, Nガスのガス供
2 2
給源 210Dを備え,このガス供給源 210Dからの Nガスを他の各ガス供給路 21 OA
2
〜210Cのマスフローコントローラ(MFC) 240A〜240C,第 2遮断弁 250A〜250 Cを介して反応チューブ 112へ供給できるようになつている。これにより, Nガスにつ
2 いてはマスフローコントローラ(MFC) 240A〜240Cを禾 IJ用できるため,個別にマス フローコントローラ(MFC)を設ける必要がなくなる。
[0049] 具体的には, Nガスのガス供給源 220Dは,ガス供給管 212Dにより逆流防止弁 2
2
60A〜260C,遮断弁 262A〜262Cをそれぞれ介して各ガス供給路 210A〜210 Cの第 1遮断弁 230A〜230Cとマスフローコントローラ(MFC) 240A〜240Cとの間 に接続している。また,ガス供給路 210Dのガス供給管 212Dには,他のガス供給路 210A〜210Cと同様〖こ,レギユレータ 222D,圧力計(PT) 224D,第 1遮断弁(上流 側遮断弁) 230Dが接続している。なお, Nガスの流量をマスフローコントローラ(MF
2
C) 240A〜240Cで制御する場合には,上記遮断弁 262A〜262Cをマスフローコ ントローラ (MFC)の上流側に設けられる第 1遮断弁 (上流側遮断弁)として制御する ようにしてもよい。
[0050] ここで,マスフローコントローラ(MFC)について図面を参照しながら説明する。図 2 は,本実施形態に力かるマスフローコントローラ(MFC)の構成例を示す図である。マ スフローコントローラ(MFC) 240A〜240Cは同様の構成であるため,各構成要素を 示す符号から A〜Cを省略して代表的に説明する。従って,例えばマスフローコント口 ーラ(MFC) 240と!、う場合は各マスフローコントローラ(MFC) 240A〜240Cを示 す。
[0051] 図 2に示すように,マスフローコントローラ(MFC) 240は,その内部でガス供給管 2 12を分流する本流路 241と側流部 242とを備える。具体的にはマスフローコントロー ラ(MFC) 240内において,ガス導入ロカも導入されるガス供給管 212からのガスは 本流路 241と側流部 242によっていったん分流し,再び合流してから,流量調整部 であるコントロールバルブ(流量調整バルブ) 246を介してガス導出ロカ ガス供給 管 212へ導出される。
[0052] 側流部 242には,ガス供給管 212内における流量を計測するための流量センサが 設けられている。流量センサは,側流部 242の上流側に設けられる上流側センサ 24 3と,側流部 242の下流側に設けられる下流側センサ 244によりなる。上流側センサ 2 43と下流側センサ 244は例えば発熱抵抗線により構成される。
[0053] 本流路 241にはバイパス路 245が設けられている。このバイパス路 245は,本流路 241における流量,温度,圧力などを側流路 242と同様の特性となるように構成され ている。これにより,流量センサ(上流側センサ 243,下流側センサ 244)における測 定誤差を防止することができる。
[0054] このようなマスフローコントローラ(MFC) 240の流量検出原理は次の通りである。す なわち,上流側センサ 243では流体が流れると熱が奪われて温度が下降し,逆に下 流側センサ 244では熱が与えられ温度が上昇する。この結果,上流側センサ 243と 下流側センサ 244とでは温度差が生じ,この温度差に応じた出力電圧 (MFC出力電 圧)を検出することによって流量を検出できるようになって 、る。
[0055] マスフローコントローラ(MFC) 240には,流量センサ(上流側センサ 243,下流側 センサ 244)力もの出力に応じてコントロールバルブ (流量調整弁) 246の開度を制 御することによってガス供給管 212の流量を設定流量に調整する MFC制御回路 24 7が設けられている。 MFC制御回路 247は,図示はしないが,例えば上流側センサ 243と下流側センサ 244の抵抗値の差を電圧信号として検出するブリッジ回路及び その電圧信号を増幅する増幅回路からなる流量検出部の他,設定流量として受信す る設定信号 (設定電圧)と増幅回路 37からの電圧とを比較し,その比較結果 (偏差) に応じてコントロールバルブ 246の開度を調整するための操作信号をコントロールバ ルブ 246に出力する比較部などを備える。
[0056] MFC制御回路 247は,例えば信号変換部 (図示しない)を介して熱処理装置 100 の制御部 300に接続している。この信号変換部は,マスフローコントローラ(MFC) 2 40からのアナログ信号をデジタル信号に変換し,制御部 300からのデジタル信号を アナログ信号に変換するためのものである。
[0057] このようなマスフローコントローラ(MFC) 240により流量制御を行う場合,熱処理装 置 100の制御部 300は,設定流量 (設定電圧)を流量設定指令として MFC制御回 路 247へ送信する。すると, MFC制御回路 247は,上記設定信号 (設定電圧)にな るようにガス供給管 212の流量を制御するようになっている。また, MFC制御回路 24 7は,熱処理装置 100の制御部 300からゼロ点セット指令を受信すると,現在の状態 を流量ゼロにセットするようになっている。さらに, MFC制御回路 247は,熱処理装 置 100の制御部 300からの流量検出指令を受信すると,流量検出を行いその結果を 流量に応じた MFC出力電圧 (例えば 5Vをフルスケール (FS)とする電圧検出値)と して制御部 300へ送信するようになっている。例えば熱処理装置 100の制御部 300 は MFC制御回路 247からの MFC出力電圧に基づいて第 1ゼロ点シフト及び第 2ゼ 口点シフトを検出する。
[0058] このような MFC制御回路 247と熱処理装置 100の制御部 300との間のデータのや り取りは,例えば GHOSTネットワークを介して行われる。 GHOSTネットワークは,制 御部 300に設けられる GHOST (General High-Speed Optimum Scalable Transceiver )と称される LSIによって実現されるネットワークである。 GHOSTと称される LSIは, 具体的には例えば後述の各部コントローラ 360として構成される MC (モジュールコン トローラ)の MCボードに搭載される。 GHOSTネットワークには複数の IZOモジユー ルを接続することができる。この ΙΖΟモジュールの ΙΖΟ部に各 MFC制御回路を接 続することによって, GHOSTネットワークが構築される。
[0059] ところで,一般に,マスフローコントローラ(MFC)は,既に述べた通り,使用してい るうちに実流量が設定流量力 外れてくることがある。例えば実流量がゼロ(0)の場 合であっても,流量センサ(例えば上流側センサ 243,下流側センサ 244)によって 検出される流量に相当する検出電圧値はゼロ(0)ではなく,僅かにずれて誤差が生 じることが多い。このようなゼロ点のずれ (ゼロ点シフト)は,例えば使用時間に応じて 徐々に大きくなる傾向のものと,流量に対する出力電圧の変化割合 (傾き)が変動す るもの(スパンシフト)がある。ここでは,このようなゼロ点シフトを使用に基づくゼロ点 シフト (第 1ゼロ点シフト)と称する。
[0060] 第 1ゼロ点シフトが生じる要因としては,例えばメーカ出荷時の環境温度とユーザ側 の環境温度により誤差が生じること,ブリッジ回路の要素であるコイル状の発熱抵抗 線 (センサ)のコーティング材の経時劣化や剥離,発熱抵抗線のコイルの緩み,回路 部分の不具合,電源電圧の変動,センサが巻かれている管路の汚れ (腐食や生成物 付着など)などが考えられる。
[0061] このような第 1ゼロ点シフトが生じると,ガスの流量が設定流量と実流量とでずれが 生じることになるので,第 1ゼロ点シフトのシフト量が大きいほど,ウェハ Wの処理に与 える影響も大きい。このため,本実施形態では,このような第 1ゼロ点シフトを定期的 に検出して補正する処理を行うようになって!/、る。 [0062] また,マスフローコントローラ(MFC)は,一般に,その設置姿勢によってもガス分子 量や圧力などに応じたゼロ点のずれ (ゼロ点シフト)が発生する場合がある。この場合 のゼロ点シフトは水平に設置 (例えば横置き)されている場合には発生することはな い。ところが,水平以外の姿勢,例えば垂直に設置 (例えば縦置き, L字置き)される と発生するおそれがある。本明細書においては,このようなゼロ点シフトを設置姿勢 に基づくゼロ点シフト(第 2ゼロ点シフト)と称し,上述した使用に基づくゼロ点シフト( 第 1ゼロ点シフト)と区別する。
[0063] 半導体製造装置の小型化や,配管系統の構成上または設置スペースなどの関係 で,例えば図 2に示すようにマスフローコントローラ(MFC) 240の上流側センサ 243 ,下流側センサ 244が卷設された側流部 242 (本流路 241と平行な部分)が垂直な 状態 (垂直姿勢)になるように設置しなければならないことがある。ところが,垂直姿勢 になるように設置すると,ガスの分子量や圧力に応じて第 2ゼロ点シフトが発生する場 合がある。この現象は一般にサーマルサイフォン現象と呼ばれて 、る。
[0064] ここで,サーマルサイフォン現象が発生する原因を図 2を参照しながら説明する。マ スフローコントローラ(MFC) 240の側流部 242を通るガスが上流側センサ 243,下 流側センサ 244によって温められると,温められたガスは側流部 242内を上昇し,次 いで,本流路 241のバイパス路 245で冷却されて降下し,再び側流部 242へ戻る。こ のため,側流部 242と本流路 241との間でガスの循環流が生じる。従って,例えば図 2に示すようにマスフローコントローラ(MFC) 240がそのガス導入口が下方になるよ うに設置されている場合は,上流側センサ 243,下流側センサ 244が卷設された側 流部 242内をガスが順方向に流れてプラスの出力が発生し,逆にガス導入口が上方 になっている場合は,マイナスの出力が発生することになる。ここではマスフローコン トローラ(MFC) 240が縦置きに設置されて!、る場合にサーマルサイフォン現象が生 じる例を挙げて説明したが,マスフローコントローラ(MFC) 240が横置きに設置され ている場合であっても,例えば取付誤差などにより水平力 傾いて設置されている場 合にはサーマルサイフォン現象が発生し得る。
[0065] このようなマスフローコントローラ(MFC) 240の設置姿勢に基づくゼロ点シフト(第 2 ゼロ点シフト)は,上述したマスフローコントローラ(MFC)の使用に基づくゼロ点シフ ト(第 1ゼロ点シフト)とは異なり,使用によってシフト量が変動するものではなく,例え ば図 3に示すように主として設置姿勢,ガス種 (ガスの分子量),圧力によって決まつ てくる固有の値である。
[0066] 図 3は例えば図 2に示すように縦置きに設置したマスフローコントローラ(MFC)に おけるガス種と第 2ゼロ点シフト量との関係を示すグラフである。ここでは,次のような 実験により,図 3に示すグラフによる実験結果が得られた。先ずマスフローコントロー ラ (MFC)内に流れを生じ得る流体自体がな!ヽ真空状態,すなわちサーマルサイフ オン現象による第 2ゼロ点シフトが生じない状態にしてゼロ点位置の出力電圧を確認 した。次いでマスフローコントローラ(MFC)内に分子量の異なるガス(例えば SFガ
6 ス, SiH C1ガス, Fガス, NHガス)をそれぞれ供給後,第 2ゼロ点シフト量を上記
2 2 2 3
出力電圧の増加量として測定した。図 3はフルスケール (FS : 5V)に対する出力電圧 の割合を百分率で示したものである。従って,棒グラフの棒が長いほど第 2ゼロ点シ フト量が大き 、ことを示して 、る。
[0067] 図 3によれば, NHガス, Fガス, SiH C1ガス, SFガスの順に,すなわち分子量
3 2 2 2 6
が大きくなるに連れて,設置姿勢に基づくゼロ点シフト (第 2ゼロ点シフト)も大きくなる ことがわかる。しかも,これらの設置姿勢に基づくゼロ点シフト(第 2ゼロ点シフト)はマ スフローコントローラ(MFC)の使用により変動するものではな!/、。
[0068] このように,設置姿勢に基づくゼロ点シフト(第 2ゼロ点シフト)はガス種 (ガスの分子 量)や圧力によって決まるので,例えば熱処理装置 100を工場に最初に設置したとき や圧力条件などを変えるときにシフト量を検出すれば,その後に熱処理装置 100を 稼働する際に,そのシフト量を考慮してガスの流量を決めれば足りる。
[0069] このようにマスフローコントローラ(MFC) 240の設置姿勢によっては第 2ゼロ点シフ トが生じるため,たとえ適切なタイミングで第 1ゼロ点シフト補正を行っても,第 2ゼロ 点シフトが原因でガスの流量の設定流量と実流量とのずれが生じる虞がある。し力も ,もしゼロ点シフトを検出する際に,マスフローコントローラ(MFC) 240の上流側及び 下流側に設けた遮断弁 230, 250を閉じた状態,すなわち実ガスが流れない状態に して 、たとしても,マスフローコントローラ(MFC) 240内を真空排気して!/、な!/、場合 には,サーマルサイフォン現象が生じる場合がある。 [0070] この場合,上述したようにマスフローコントローラ(MFC)内に残留する流体の種類 ( 分子量)や圧力によっては第 2ゼロ点シフト量も異なる。従って,単に遮断弁 230, 25 0を閉じた状態でゼロ点シフトを検出したとしても,例えばウェハ処理時に使用するガ スと異なるガスが残留した状態でゼロ点シフトを検出した場合には,ウェハ処理時に 実際に生じ得るゼロ点シフトを正確に検出できず,十分なゼロ点補正ができない場合 がある。
[0071] そこで,本発明では,後述する流量補正処理によってウェハ処理時に実際に生じ 得るサーマルサイフォン現象に基づくゼロ点シフト量 (第 2ゼロ点シフト量)を正確に 検出して的確な補正をすることにより,流量制御器の設置姿勢に拘らず,流量制御 の精度をより向上させることができるものである。
[0072] 本実施形態にかかる熱処理装置 100は,このような第 1ゼロ点シフト及び第 2ゼロ点 シフトについての検出処理及び補正処理を含む流量補正処理を実行するようになつ ている。上記流量補正処理は,例えば熱処理装置 100の各部を制御する制御部 30 0によって所定のプログラムに基づいて実行される。
[0073] (制御部の構成例)
上記流量補正処理を行う制御部 300の構成例を図 4に示す。図 4は,制御部 300 の具体的な構成例を示すブロック図である。図 4に示すように,制御部 300は,制御 部本体を構成する CPU (中央処理装置) 310, CPU310が行う各種データ処理のた めに使用されるメモリエリア等を設けた RAM (ランダム ·アクセス 'メモリ) 320,操作画 面や選択画面などを表示する液晶ディスプレイなどで構成される表示手段 330,ォ ペレータによるプロセスレシピの入力や編集など種々のデータの入力及び所定の記 憶媒体へのプロセスレシピゃプロセス 'ログの出力など種々のデータの出力などを行 うことができる入出力手段 340,熱処理装置 100に異常等が発生した際に報知する 警報器 (例えばブザー)などの報知手段 350, CPU310からの指令に基づいて熱処 理装置 100の各部を制御するための各部コントローラ 360を備える。各部コントローラ 360は,例えば CPU310の指令に基づいて各マスフローコントローラ 240などの流 量制御器に例えば設定流量の設定指令,ゼロ点セット指令等などの制御信号を送 信する流量制御器コントローラを備える。設定流量については,例えば 0〜5V (FS : フルスケール)の設定電圧によりマスフローコントローラ 240の流量を 0%〜100%に 設定できるようになって 、る。
[0074] また,制御部 300は,熱処理装置 100の種々の処理を実行するための処理プログ ラムを記憶するプログラムデータ記憶手段 370,処理プログラムを実行するために必 要な情報 (データ)が記憶される処理データ記憶手段 380を備える。プログラムデー タ記憶手段 370,処理データ記憶手段 380は例えばノヽードディスク (HDD)などの記 憶領域に構築される。 CPU310は必要に応じてプログラムデータ記憶手段 370,処 理データ記憶手段 380から必要なプログラム,データ等を読み出して,各種の処理 プログラムを実行する。
[0075] プログラムデータ記憶手段 370は,例えばウェハ Wに対するプロセス処理を実行す るためのプロセス処理プログラム 371,例えば反応チューブ 112内に導入するガス流 量の補正処理を実行するための流量補正処理プログラム 372などを備える。プロセス 処理プログラム 371は,例えば後述するプロセス処理情報 381として記憶されるガス 流量,圧力等のプロセスレシピに基づいて各部を制御しつつ,反応チューブ 112内 にガスを導入しつつ,プロセス処理として例えば熱処理をウェハ Wに施すものである
[0076] 流量補正処理プログラム 372は,主として第 1ゼロ点シフト検出処理プログラム 373 ,第 1ゼロ点シフト補正処理プログラム 374,第 2ゼロ点シフト検出処理プログラム 375 ,第 2ゼロ点シフト補正処理プログラム 376を有する。第 1ゼロ点シフト検出処理プロ グラム 373は,各マスフローコントローラ(MFC) 240の使用に基づくゼロ点シフト量( 第 1ゼロ点シフト量)を検出して記憶するためのプログラムである。第 1ゼロ点シフト補 正処理プログラム 374は,第 1ゼロ点シフト量に基づいて第 1ゼロ点シフト補正を行う ためのプログラムである。第 2ゼロ点シフト検出処理プログラム 375は各マスフローコ ントローラ(MFC) 240の設置姿勢に基づくゼロ点シフト量 (第 2ゼロ点シフト量)を検 出して記憶するためのプログラムである。第 2ゼロ点シフト補正処理プログラム 376は ,第 2ゼロ点シフト量に基づ 、て第 2ゼロ点シフト補正を行うためのプログラムである。
[0077] これら第 1ゼロ点シフト検出処理プログラム 373,第 1ゼロ点シフト補正処理プロダラ ム 374,第 2ゼロ点シフト検出処理プログラム 375,第 2ゼロ点シフト補正処理プロダラ ム 376は例えば流量補正処理プログラムのサブルーチンとして構成するようにしても よく,また単独のプログラムとして構成するようにしてもよい。さらに,第 1ゼロ点シフト 検出処理プログラム 373,第 1ゼロ点シフト補正処理プログラム 374,第 2ゼロ点シフト 補正処理プログラム 376はプロセス処理プログラム 371でマスフローコントローラ(MF C) 240に対してガス流量を設定する際に実行するようにしてもょ 、。
[0078] 処理データ記憶手段 380は,例えばウェハに対するプロセス処理を実行するのに 必要な情報を記憶するプロセス処理情報 381,反応チューブ 112に導入するガスの 流量補正処理を行うのに必要なデータを記憶する流量補正情報 382などを備える。 プロセス処理情報 381はウェハに対するプロセス処理のプロセスレシピ(例えばガス 流量,圧力等)を記憶する。
[0079] 流量補正情報 382は,マスフローコントローラ(MFC) 240の使用に基づく第 1ゼロ 点シフトのシフト量を記憶する第 1ゼロ点シフト情報 383,マスフローコントローラ(MF C) 240の設置姿勢に基づくゼロ点シフトのシフト量を記憶する第 2ゼロ点シフト情報 384を有する。
[0080] (第 1ゼロ点シフト情報の具体例)
ここで,先ず第 1ゼロ点シフト情報 383の具体例を図 5を参照しながら説明する。図 5は,第 1ゼロ点シフト情報 383のデータテーブルの具体例を示す図である。第 1ゼロ 点シフト情報 383は,例えば MFC (k) ,第 1ゼロ点シフト量 (Ek)の項目を有する。
[0081] MFC (k)の項目には,第 1ゼロ点シフトの検出及び補正を行うマスフローコントロー ラ(MFC)の種別を記憶する。添字 kは,マスフローコントローラ (MFC)を特定するた めのものである。第 1ゼロ点シフト量 (Ek)の項目には,例えば後述する第 1ゼロ点シ フト検出処理によって検出された第 1ゼロ点シフト量を累積した第 1ゼロ点シフト量 Ek を記憶する。
[0082] また,第 1ゼロ点シフトの検出及び補正を行うマスフローコントローラ(MFC)が複数 ある場合,第 1ゼロ点シフト情報 383には,各マスフローコントローラ (MFC)ごとの第 1ゼロ点シフト量 (Ek)を記憶する。例えば図 1に示すような構成の熱処理装置 100で は,第 1〜第 3マスフローコントローラ(MFC) 240A〜240Cを備えるので,第 1ゼロ 点シフト情報 383についても各マスフローコントローラ(MFC) 240A〜240Cごとに 第 1ゼロ点シフト量 E1〜E3を記憶する。なお,第 1ゼロ点シフト情報 383の項目は図 5に示すものに限られるものではない。
[0083] 第 1ゼロ点シフト量は,上述したようにマスフローコントローラ(MFC) 240の使用時 間に応じて大きくなるので,例えば上記第 1ゼロ点シフト量 Ekの項目には第 1ゼロ点 シフト量の累積値を記憶しておく。すなわち,第 1ゼロ点シフト量を検出するごとにそ の第 1ゼロ点シフト量を前回までの第 1ゼロ点シフト量の累積値にカ卩えた値を新たに 累積値として更新して記憶する。このような第 1ゼロ点シフト量の累積値は例えば各マ スフローコントローラ(MFC) 240A, 240B, 240Cの異常判断に使用する。例えば 第 1シフト量の累積値が予め設定した閾値を外れると異常として報知処理を実行する
[0084] (第 2ゼロ点シフト情報の具体例)
次に,上記第 2ゼロ点シフト情報 384の具体例を図 6を参照しながら説明する。図 6 は,第 2ゼロ点シフト情報 384のデータテーブルの具体例を示す図である。第 2ゼロ 点シフト情報 384は,例えば MFC (k) ,ガス種 (Gk) ,圧力(Pk) ,第 2ゼロ点シフト量 (Vk)の項目を有する。
[0085] MFC (k)の項目には,第 2ゼロ点シフトの検出及び補正を行うマスフローコントロー ラ(MFC)の種別を記憶する。添字 kは,マスフローコントローラ (MFC)を特定するた めのものである。ガス種(Gk)の項目には,マスフローコントローラ(MFC)により流量 制御される運用ガス(ウェハ処理時に使用するガス)を記憶する。圧力(Pk)の項目に は,マスフローコントローラ(MFC)により流量制御される運用ガスの運用圧力(ゥェ ハ処理時の圧力)を記憶する。第 2ゼロ点シフト量 (Vk)の項目には,例えば後述す る第 2ゼロ点シフト検出処理によって検出された第 2ゼロ点シフト量を記憶する。
[0086] また,第 2ゼロ点シフトの検出及び補正を行うマスフローコントローラ(MFC)が複数 ある場合,第 2ゼロ点シフト情報 384には,各マスフローコントローラ(MFC)ごとのガ ス種 (Gk) ,圧力(Pk) ,第 2ゼロ点シフト量 (Vk)を記憶する。例えば図 1に示すような 構成の熱処理装置 100では,第 1〜第 3マスフローコントローラ(MFC) 240 A~ 240 Cを備えるので,第 2ゼロ点シフト情報 384についても第 1ゼロ点シフト情報 383の場 合と同様に各マスフローコントローラ(MFC) 240A〜240Cごとに第 2ゼロ点シフト量 V1〜V3を記憶する。なお,第 2ゼロ点シフト情報 384の項目は図 6に示すものに限 られるものではない。
[0087] このような第 2ゼロ点シフト量は上述したようにマスフローコントローラ(MFC) 240の 設置姿勢,運用ガス種 (ガスの分子量),運用圧力に応じて決ってくる固有の値となる 。従って,上記第 2ゼロ点シフト量 (Vk)の項目には,例えば熱処理装置 100を工場 に最初に設置した初期導入時に第 2ゼロ点シフト検出処理によって検出された値を 記憶する。また,その後に例えば運用ガス種,運用圧力などの変更があった場合に はその都度第 2ゼロ点シフト検出処理を実行して検出された値を記憶することが好ま しい。このような第 2ゼロ点シフト量の固有値は,例えば反応チューブ 112内にガスを 導入する場合に,各マスフローコントローラ(MFC) 240A, 240B, 240Cに対して設 定流量の設定指令を行う際に使用する。すなわち,プロセス処理情報 381のプロセ スレシピとして記憶されている設定流量を第 2ゼロ点シフト量の分だけ補正した流量 を設定流量として設定指令する。これにより,熱処理部 110に供給される実ガス流量 に第 2ゼロ点シフト量の影響を与えな 、ようにすることができる。
[0088] (流量補正処理の具体例)
次に,マスフローコントローラ (MFC)を利用して流量制御を行う場合における流量 補正処理の具体例につ!、て説明する。図 7は本実施形態にかかる流量補正処理の メインフローを示すフローチャートである。本実施形態に力かる流量補正処理では, マスフローコントローラ (MFC)の使用に基づく第 1ゼロ点シフト及び設置姿勢に基づ く第 2ゼロ点シフトの両方に起因する設定流量と実流量とのずれを補正する。この流 量補正処理は,流量補正処理プログラム 372に基づいて各マスフローコントローラ( MFC) 240A〜240Cごとに実行される。ここでは,図 1に示すガス供給系 200の各 構成要素を示す符号力も A〜Cを省略して代表的に説明する。従って,例えばマス フローコントローラ(MFC) 240と!、う場合は各マスフローコントローラ(MFC) 240A 〜240Cを示す。
[0089] 図 7に示すように,本実施形態にかかる流量補正処理は,熱処理装置 100が稼働 されると,先ずステップ S 110にて熱処理装置 100を工場に最初に設置した初期導 入時か否かを判断する。ステップ S110にて熱処理装置 100の初期導入時であると 判断した場合は,ゼロ点シフト検出処理,すなわち第 1ゼロ点シフト検出処理 (ステツ プ S200) ,第 1ゼロ点シフト補正処理 (ステップ S 300) ,第 2ゼロ点シフト検出処理( ステップ S400)を実行する。
[0090] ここで,第 2ゼロ点シフト検出処理 (ステップ S400)に先立って,第 1ゼロ点シフト検 出処理 (ステップ S200)及び第 1ゼロ点シフト補正処理 (ステップ S300)を実行する のは,第 2ゼロ点シフトのシフト量のみを検出するためである。すなわち第 1ゼロ点シ フトが生じていてもそれが流量ゼロに補正された状態で第 2ゼロ点シフトを検出する ためである。これにより,第 2ゼロ点シフトを正確に検出することができる。
[0091] ステップ S110にて熱処理装置 100の初期導入時でな 、と判断した場合はステップ S120にて MFC運用条件に変更があった力否かを判断する。ここでの MFC運用条 件の変更は,第 2ゼロ点シフト情報 384に既に記憶されている第 2ゼロ点シフト量を第 2ゼロ点シフト補正処理でそのまま利用できな 、ような条件に変更した場合であり,例 えば運用ガス種の変更,運用圧力の変更,マスフローコントローラ (MFC)自体の交 換などが挙げられる。ステップ S120にて MFC運用条件に変更があった場合には, ステップ S200〜ステップ S400の処理を実行することにより,変更された MFC運用 条件に基づいて第 2ゼロ点シフトを新たに検出して第 2ゼロ点シフト情報 384に記憶 する。
[0092] ステップ S 120にて MFC運用条件に変更がないと判断した場合はステップ S 130に てウェハ処理を実行する力否かを判断する。ウェハの処理を行うごとにそのウェハ処 理前に第 1ゼロ点シフト及び第 2ゼロ点シフトを補正するためである。ステップ S130 にてウェハ処理を実行すると判断した場合はゼロ点シフト補正処理,すなわち第 1ゼ 口点シフト検出処理 (ステップ S200) ,第 1ゼロ点シフト補正処理 (ステップ S300) , 第 2ゼロ点シフト補正処理 (ステップ S500)を実行してステップ S120の処理に戻る。
[0093] ここで,第 2ゼロ点シフト補正処理 (ステップ S500)に先立って,第 1ゼロ点シフト検 出処理 (ステップ S200)及び第 1ゼロ点シフト補正処理 (ステップ S300)を実行する のは,第 2ゼロ点シフトのシフト量のみを補正するためである。すなわち第 1ゼロ点シ フトが生じていてもそれが流量ゼロに補正された状態で第 2ゼロ点シフトを補正する ためである。これにより,第 1ゼロ点シフトの影響がない状態で,第 2ゼロ点シフトを補 正することができるので,第 2ゼロ点シフトの補正も正確に行うことができる。
[0094] ステップ S130にてウェハ処理を実行しないと判断した場合は,ステップ S140にて 熱処理装置 100の稼働停止か否かを判断し,熱処理装置 100の稼働停止であると 判断した場合はステップ S 120の処理に戻り,熱処理装置 100の稼働停止でない判 断した場合は一連の流量補正処理を終了する。
[0095] 図 7に示す第 1ゼロ点シフト検出処理 (ステップ S200) ,第 1ゼロ点シフト補正処理( ステップ S300) ,第 2ゼロ点シフト検出処理 (ステップ S400) ,第 2ゼロ点シフト補正 処理 (ステップ S500)はそれぞれ,第 1ゼロ点シフト検出処理プログラム 373,第 1ゼ 口点シフト補正処理プログラム 374,第 2ゼロ点シフト検出処理プログラム 375,第 2ゼ 口点シフト補正処理プログラム 376に基づいて実行される。
[0096] なお,第 1ゼロ点シフト検出処理 (ステップ S200)及び第 1ゼロ点シフト補正処理 (ス テツプ S300)は,第 2ゼロ点シフト検出処理 (ステップ S400)の事前処理に相当する ので,これら第 1ゼロ点シフト検出処理 (ステップ S200) ,第 1ゼロ点シフト補正処理( ステップ S300) ,第 2ゼロ点シフト検出処理 (ステップ S400)を一連の第 2ゼロ点シフ ト検出処理として考えてもよい。同様に,第 1ゼロ点シフト検出処理 (ステップ S 200) 及び第 1ゼロ点シフト補正処理 (ステップ S300)は,第 2ゼロ点シフト補正処理 (ステツ プ S500)の事前処理に相当するので,これら第 1ゼロ点シフト検出処理 (ステップ S2 00) ,第 1ゼロ点シフト補正処理 (ステップ S300) ,第 2ゼロ点シフト補正処理 (ステツ プ S500)を一連の第 2ゼロ点シフト補正処理として考えてもょ 、。
[0097] また,第 2ゼロ点シフト検出処理 (ステップ S400)又は第 2ゼロ点シフト補正処理 (ス テツプ S500)を実行する際に,第 1ゼロ点シフトについて他の方法などで補償されて V、れば,必ずしも第 1ゼロ点シフト検出処理 (ステップ S200)及び第 1ゼロ点シフト補 正処理 (ステップ S300)を事前処理として実行する必要はな!/、。
[0098] さらに,図 7に示す流量補正処理の具体例では,第 1ゼロ点シフト検出処理 (ステツ プ S200) ,第 1ゼロ点シフト補正処理 (ステップ S 300) ,第 2ゼロ点シフト補正処理( ステップ S500)については,ウェハ処理時ごとに実行する場合について説明したが ,必ずしもこれに限定されるものではなく,所定時間経過ごとに実行するようにしても よい。以下に,図 7に示すステップ S300〜S500の処理について詳細に説明する。 [0099] (第 1ゼロ点シフト検出処理の具体例)
先ず第 1ゼロ点シフト検出処理 (ステップ S200)の具体例を図 8に示すサブルーチ ンを参照しながら説明する。図 8に示すように,制御部 300は,先ずステップ S210〜 S240によって,マスフローコントローラ(MFC) 240内を真空状態にする。すなわち, ステップ S210にて第 1遮断弁(上流側遮断弁) 230を閉じて,ステップ S220にてマ スフローコントローラ(MFC) 240のコントロールバルブ 246を強制開放する。この状 態で,ステップ S230にてマスフローコントローラ(MFC) 240内の真空引き処理を行 う。例えば排気側バイパス遮断弁 134及び供給側バイパス遮断弁 136を開放するこ とによりバイパスライン 130を介して真空排気手段 124によって真空引き処理を行う。 次いでステップ S 240にて第 2遮断弁(下流側遮断弁) 250を閉じる。
[0100] このようなステップ S210〜S240によって,マスフローコントローラ(MFC) 240内は 流れを生じる流体自体がない真空状態になるので,サーマルサイフォン現象による 第 2ゼロ点シフトが生じることはない。
[0101] この場合,もし仮にマスフローコントローラ(MFC) 240内を真空引きしない場合に は,たとえ第 1遮断弁 (上流側遮断弁) 230と第 2遮断弁(下流側遮断弁) 250を閉じ たとしても,マスフローコントローラ(MFC) 240内に流体が存在している限り,サーマ ルサイフォン現象により流体の流れが生じ得る。従って,このような状態で MFC出力 電圧を検出しても,その出力電圧には第 1ゼロ点シフト量のみならず第 2ゼロ点シフト 量も含んだものとなる。これでは第 1ゼロ点シフトを正確に検出することができない。
[0102] この点,本実施形態ではマスフローコントローラ(MFC) 240内を第 2ゼロ点シフトが 生じない真空状態にした上で,次のステップ S250以降で MFC出力電圧を検出する ので,第 2ゼロ点シフト量を含まない状態で第 1ゼロ点シフト量を検出することができ る。これにより,第 1ゼロ点シフト量を正確に検出することができる。
[0103] この状態で MFC出力電圧の出力が安定するまで待つ。そして, MFC出力電圧の 出力が安定すると,ステップ S250にて MFC出力電圧を今回の第 1ゼロ点シフト量 E 0として検出する。具体的には, MFC制御回路 247に流量検出指令を送信して MF C出力電圧を受信する。この場合,第 1ゼロ点シフトが生じていなければ MFC出力電 圧はゼロになり,第 1ゼロ点シフトが生じていれば MFC出力電圧はゼロにならない。 [0104] 次いでステップ S260にて前回までに累積された第 1ゼロ点シフト量 Ekを Ek=Ek +EOにより更新して記憶する。すなわち,第 1ゼロ点シフト情報 383の第 1ゼロ点シフ ト量 Ekの項目に記憶されている前回までに累積された第 1ゼロ点シフト量 Ekに今回 の第 1ゼロ点シフト量 EOをカ卩えたものを新たな第 1ゼロ点シフト量 Ekとして記憶する。 例えば図 5に示す第 1ゼロ点シフト情報 383において第 1マスフローコントローラ(MF C) 240Aの前回までに累積された第 1ゼロ点シフト量が E1であるとすれば,第 1ゼロ 点シフト量 E1を El =E1 + EOにより更新して記憶する。
[0105] 次にステップ S270にて上記のように更新された第 1ゼロ点シフト量 Ekが予め設定 された閾値を越えて 、る力否かを判断し,閾値を越えて 、ると判断した場合はステツ プ S280にて報知処理を行う。報知処理としては,例えばアラームなどの報知手段 35 0によって警告音を発生させたり,液晶パネルなどの表示手段 330に警告表示を行 つたりする。これにより,マスフローコントローラ(MFC) 240の故障や交換時期などを 知らせることができる。上記閾値としては,例えば基準値となる電圧値の ±0. 3V(30 OmV)を閾値とし,第 1ゼロ点シフト量の累積値 Ekがこの閾値よりも離れている場合 に報知処理を実行する。このような場合には,マスフローコントローラ(MFC) 240の 不具合が考えられるためである。ステップ S270にて第 1ゼロ点シフト量の累積値 Ek が予め設定された閾値を越えていないと判断した場合は,第 1ゼロ点シフト検出処理 を終了する。
[0106] なお,第 1ゼロ点シフト検出処理を行う場合には,マスフローコントローラ(MFC) 24 0の第 1ゼロ点シフトが的確に検出できるように,最初に事前チヱック処理を行うように してもよい。事前チェック処理としては,例えば半導体製造装置の電源投入後であれ ば所定時間(例えば 4時間以上)の暖気運転,ガス供給系 200を配設する容器 (ガス ボックス)内の通常排気 (例えば 2時間以上),ヒータにより温度調整する場合にはそ の温度の安定待ち,第 1遮断弁 (上流側遮断弁) 230及び第 2遮断弁(下流側側遮 断弁) 250などのリークチェックなどが挙げられる。このような事前チェックで異常がな いことを確認して力も第 1ゼロ点シフト検出処理を行うことが好ましい。
[0107] (第 1ゼロ点シフト補正処理の具体例)
次に,第 1ゼロ点シフト補正処理 (ステップ S300)の具体例を図 9に示すサブルー チンを参照しながら説明する。図 9に示すように,制御部 300は,先ずステップ S310 にてマスフローコントローラ(MFC) 240に対してゼロ点セット指令を行う。具体的に は制御部 300はゼロ点セット指令をマスフローコントローラ(MFC) 240へ送信して現 在の状態を流量ゼロにセットさせる。例えばステップ S200でマスフローコントローラ( MFC) 240内に流体がない真空状態で検出された第 1ゼロ点シフト量 Ekがゼロでな い場合,その状態が流量ゼロにセットされる。
[0108] 続いてステップ S320にて MFC出力電圧を検出してゼロ点セットされていることを 確認する。すなわち, MFC出力電圧がゼロになっていることを確認する。こうして,第 1ゼロ点シフト補正処理が終了すると,図 7に示す流量補正処理に戻り,続いて第 2 ゼロ点シフト検出処理 (ステップ S400)を実行して第 1ゼロ点シフト補正処理を終了 する。
[0109] (第 2ゼロ点シフト検出処理の具体例)
次に,第 2ゼロ点シフト検出処理 (ステップ S400)の具体例を図 10に示すサブルー チンを参照しながら説明する。図 10に示すように,制御部 300は,先ずステップ S41 0にてマスフローコントローラ(MFC) 240内を運用ガス(例えばマスフローコントロー ラ(MFC) 240Aであれば SiHガス)に置換する。具体的には例えば第 1遮断弁(上
4
流側遮断弁) 230及び第 2遮断弁(下流側遮断弁) 250を開放して運用ガスをマスフ ローコントローラ(MFC) 240内に導入するとともに,排気側バイパス遮断弁 134及び 供給側バイパス遮断弁 136を開放することによりバイパスライン 130を介して真空排 気手段 124によって真空引き処理を行う。このとき運用ガスの導入と真空引き処理と を交互に繰返すサイクルパージによってマスフローコントローラ(MFC) 240内を運 用ガスに置換するようにしてもよ 、。
[0110] 次に,ステップ S420〜ステップ S440によって運用ガスを運用圧力にてマスフロー コントローラ(MFC) 240内に封入する。すなわち,ステップ S420にて第 2遮断弁(下 流側遮断弁) 250を閉じて,ステップ S430にてマスフローコントローラ(MFC) 240の コントロールバルブ 246を強制開放し,ステップ S440にてマスフローコントローラ(M FC) 240内を運用圧力にする。具体的には,第 2遮断弁(下流側遮断弁) 250を閉じ たまま,マスフローコントローラ(MFC) 240内が運用圧力になるまで運用ガスを導入 する。そして,マスフローコントローラ(MFC) 240内が運用圧力になると,ステップ S4 50にて第 1遮断弁 (上流側遮断弁) 230を閉じて,運用ガスの導入を停止する。これ により,運用ガスが運用圧力にてマスフローコントローラ(MFC) 240内に封入される
[0111] この状態で MFC出力電圧の出力が安定するまで待つ。そして, MFC出力電圧の 出力が安定すると,ステップ S460にて MFC出力電圧 Vを検出する。具体的には, MFC制御回路 247に流量検出指令を送信して MFC出力電圧を第 2ゼロ点シフト量 Vとして受信する。この場合,第 2ゼロ点シフトが生じていなければ MFC出力電圧は ゼロになり,第 2ゼロ点シフトが生じていれば MFC出力電圧はゼロにならない。また, 本実施形態では既に第 1ゼロ点シフトの検出 (ステップ S200)及び補正 (ステップ S3 00)がされているため,第 1ゼロ点シフト量を含まない状態で第 2ゼロ点シフト量を検 出することができる。これにより,第 2ゼロ点シフト量を正確に検出することができる。
[0112] 次いでステップ S470にて第 2ゼロ点シフト量 Vをそのまま記憶する。すなわち,第 2 ゼロ点シフト情報 384の第 2ゼロ点シフト量 Vkの項目に第 2ゼロ点シフト量 Vをそのま ま記憶する。例えば図 6に示す第 2ゼロ点シフト情報 384において第 1マスフローコン トローラ(MFC) 240Aの SiHガスについて,検出された第 2ゼロ点シフト量 Vを第 2
4
ゼロ点シフト量は VI として記憶する。
SiH4
[0113] 次にステップ S480にてすべての運用ガス及び運用圧力でのチェックが終了したか 否かを判断する。上述したように第 2ゼロ点シフト量は,ガス種 (ガスの分子量)と圧力 によっても異なるため, 1つのマスフローコントローラ(MFC)について運用ガスと運用 圧力が複数ある場合には,各運用ガスについて各運用圧力でそれぞれ第 2ゼロ点シ フトを検出する必要があるからである。
[0114] 例えば図 1に示す構成例では,第 1マスフローコントローラ(MFC) 240Aについて の運用ガスは SiHガスと Nガスであるため,各運用ガスごとに第 2ゼロ点シフトを検
4 2
出する。このとき, 1種類のガスに複数の運用圧力がある場合には各運用ガスごとに 第 2ゼロ点シフトを検出する。
[0115] ステップ S480にてすべての運用ガス及び運用圧力でのチェックが終了していない と判断した場合はステップ S410の処理に戻り,すべての運用ガス及び運用圧力で のチェックが終了したと判断した場合は第 2ゼロ点シフト検出処理を終了する。
[0116] なお,第 2ゼロ点シフト検出処理を行う場合には,上述した第 1ゼロ点シフト検出処 理の場合と同様に,マスフローコントローラ(MFC) 240の第 2ゼロ点シフトが的確に 検出できるように,最初に事前チェック処理を行うようにしてもよい。ここでの事前チェ ック処理の具体例は,上述した第 1ゼロ点シフト検出処理についての事前チェック処 理場合の同様である。
[0117] (第 2ゼロ点シフト補正処理の具体例)
次に,第 2ゼロ点シフト補正処理 (ステップ S500)の具体例を図 11に示すサブルー チンを参照しながら説明する。図 11に示すように,制御部 300は,先ずステップ S51
0にてこれからウェハ処理を行う運用ガス,運用圧力,運用ガス流量 Vを例えば処理 データ記憶手段 380のプロセス処理情報 381に基づいて取得する。なお,運用ガス
,運用圧力,運用ガス流量 Vはタツチパネルなどの入出力手段 340の操作によって オペレータが入力するようにしてもょ 、。
[0118] 続いてステップ S520にて取得した運用ガス及び運用圧力における第 2ゼロ点シフ ト量を処理データ記憶手段 380の第 2ゼロ点シフト情報 394に基づいて取得する。こ の場合,ウェハ処理を行う際に複数のマスフローコントローラ(MFC) 240によりガス 流量を制御する場合には,各マスフローコントローラ(MFC) 240ごとに第 2ゼロ点シ フト情報 394を取得する。
[0119] 次いでステップ S530にて取得した運用ガス流量 Vに第 2ゼロ点シフト量 Vkを加え た流量 (V=V+Vk)を補正後の設定流量 Vとしてマスフローコントローラ(MFC) 24 0に設定する。具体的には制御部 300は設定流量 Vの設定指令をマスフローコント口 ーラ(MFC) 240の MFC制御回路 247へ送信する。すると, MFC制御回路 247は, 第 2ゼロ点シフト補正がされた流量 Vで流量設定を行う。
[0120] これにより,ウェハ処理時には第 1ゼロ点シフトと第 2ゼロ点シフトとの両方が補正さ れた流量 Vにより流量制御される。従って,マスフローコントローラ(MFC) 240の第 1 ゼロ点シフト及び第 2ゼロ点シフトの両方の影響を受けることなく,より精度の高い流 量制御を行うことができる。
[0121] なお,図 7に示す流量補正処理では,ウェハ処理を実行する際には,ステップ S20 0にて第 1ゼロ点シフト量を検出して,ステップ S300にて第 1ゼロ点シフト量を補正し た上で,ステップ S500にて第 2ゼロ点シフト量を補正する場合を例に挙げているが, 必ずしもこれに限定されるものではなく,第 1ゼロ点シフト量の補正と第 2ゼロ点シフト 量の補正は同時に行うようにしてもよい。
[0122] すなわち,ウェハ処理時に使用するガスのガス流量に対応する設定電圧を第 2ゼロ 点シフト情報 384に記憶された第 2ゼロ点シフト量及びウェハ処理を実行する際に検 出した第 1ゼロ点シフト量に基づ!/、て補正し,補正したガス流量の設定電圧をマスフ ローコントローラ(MFC) 240に設定するようにしてもよい。具体的には第 1ゼロ点シフ ト補正処理 (ステップ S300)を省略し,すなわちゼロ点セット指令を行うことなく,第 2 ゼロ点補正処理 (ステップ S500)にお 、て第 1ゼロ点シフト量も考慮した補正を行う。 例えば図 11に示すステップ S530にて取得した運用ガス流量 Vに第 2ゼロ点シフト量 Vk及び直前で検出した第 1ゼロ点シフト量 Eをカ卩えた流量 ( V = V + Vk + E)を補正 後の設定流量 Vとしてマスフローコントローラ(MFC) 240に設定するようにしてもょ ヽ 。これにより,第 1ゼロ点シフト量の補正と第 2ゼロ点シフト量の補正を同時に行うこと ができる。
[0123] このような構成の第 1実施形態に力かる熱処理装置 100においては,実際のウェハ 処理時に生じ得るサーマルサイフォン現象に基づくゼロ点シフト量 (第 2ゼロ点シフト 量)を正確に検出することができる。すなわち,サーマルサイフォン現象に基づくゼロ 点シフト量の大きさはガス種 (ガスの分子量)によって異なるため,ウェハ処理時に使 用するガスを用いてサーマルサイフォン現象に基づくゼロ点シフト量 (第 2ゼロ点シフ ト量)を検出することによって,実際のウェハ処理時に生じ得るゼロ点シフト量を正確 に検出することができる。
[0124] また,検出したサーマルサイフォン現象に基づくゼロ点シフト量 (第 2ゼロ点シフト量 )を記憶しておき,ウェハ処理を実行する際に,ウェハ処理時に使用するガス流量に 対応する設定電圧を補正することによって,第 2ゼロ点シフト量を的確に補正すること ができる。これにより,マスフローコントローラ(MFC) 240の設置姿勢に拘らず,流量 制御の精度をより向上させることができる。さらに,マスフローコントローラ(MFC) 24 0の構成に拘らず,サーマルサイフォン現象に基づくゼロ点シフト量を正確に検出し てネ ΐ正することができる。
[0125] また,第 1実施形態に力かる熱処理装置 100が備える各マスフローコントローラ (Μ FC) 240A〜240Cについて上述したような流量補正処理を実行するため,各マスフ ローコントローラ(MFC) 240A〜240Cの設置姿勢に拘らず,流量制御の精度をより 向上させることができる。
[0126] また,サーマルサイフォン現象に基づく第 2ゼロ点シフト量を検出する前に,マスフ ローコントローラ(MFC) 240の使用に基づく第 1ゼロ点シフト量を検出して補正する ので,第 1ゼロ点シフトに影響されることなく,サーマルサイフォン現象に基づく第 2ゼ 口点シフト量を正確に検出することができる。し力も,第 1ゼロ点シフト量を検出する際 には,マスフローコントローラ(MFC) 240の各遮断弁 230, 250を閉じて実ガスが流 れない状態にするだけではなく,マスフローコントローラ(MFC) 240内を真空排気す るのでマスフローコントローラ(MFC) 240内には流れを生じ得る流体自体がな!、真 空状態になる。このため,サーマルサイフォン現象が発生しないので,このサーマル サイフォン現象に基づく第 2ゼロ点シフトもない状態で第 1ゼロ点シフト量を検出する ことができる。これにより,正確に第 1ゼロ点シフト量を検出することができる。
[0127] また,ウェハ処理を実行する際にも,サーマルサイフォン現象に基づく第 2ゼロ点シ フト量を補正する前に,マスフローコントローラ(MFC) 240の使用に基づく第 1ゼロ 点シフトを検出して補正するので,第 1ゼロ点シフトに影響されることなく,サーマルサ ィフォン現象に基づく第 2ゼロ点シフト量を的確に補正することができる。これにより, マスフローコントローラ(MFC) 240の設置姿勢に拘らず,流量制御の精度をより向 上させることができる。
[0128] (第 2実施形態にかかる半導体製造装置の構成例)
次に,本発明を第 2実施形態に力かる半導体製造装置について図面を参照しなが ら説明する。ここでは,第 1実施形態の場合と同様に,半導体製造装置として,ウェハ に対して所定の熱処理を行う熱処理装置を例に挙げて説明する。図 12は,第 2実施 形態に力かる熱処理装置の構成例を示す図である。第 2実施形態にかかる熱処理 装置 100は,ガス供給系 200の構成が第 1実施形態に力かる熱処理装置 100と異な る。すなわち,第 1実施形態にかかる熱処理装置 100は,運用ガスである各 SiHガス , Si Hガス, SiH CIガスについてそれぞれ第 1〜第 3マスフローコントローラ(MF
2 6 2 2
C) 240A〜240Cで流量制御を行うように構成されているのに対して,第 2実施形態 に力かる熱処理装置 100は,運用ガスである各 SiHガス, Si Hガス, SiH C1ガス
4 2 6 2 2 を共通の 1つの第 1マスフローコントローラ(MFC) 240Aで流量制御を行うように構 成されて!/ヽる点で相違する。
[0129] 具体的には, SiHガス, Si Hガス, SiH C1ガスのガス供給路 210A〜210Cは
4 2 6 2 2
それぞれ第 1遮断弁(上流側遮断弁) 230A〜230Cの下流側で合流し,マスフロー コントローラ(MFC) 240Aのガス導入口に接続して 、る。また,例えばパージガスと して使用される Nガスのガス供給路 210Dは逆流防止弁 260D,第 1遮断弁(上流側
2
遮断弁) 230Dを介して第 1遮断弁(上流側遮断弁) 230A〜230Cの下流側で合流 し,マスフローコントローラ(MFC) 240Aのガス導入口に接続して 、る。
[0130] 第 2実施形態にかかる第 1ゼロ点シフト情報 383は,図 13に示すように共通のマス フローコントローラ(MFC) 240Aのみの第 1ゼロ点シフト量 (Ek)を記憶すれば足りる 。また第 2実施形態に力かる第 2ゼロ点シフト情報 384は,図 14に示すように共通の マスフローコントローラ(MFC) 240Aのみのガス種(Gk) ,圧力(Pk) ,第 2ゼロ点シ フト量 (Vk)を記憶する。
[0131] このような第 2実施形態に力かる熱処理装置 100においても,第 1実施形態にかか る熱処理装置 100と同様に図 7〜図 11に示すような流量補正処理を適用することが できる。例えば図 12に示す熱処理装置 100では, 1つの共通のマスフローコントロー ラ(MFC) 240Aで複数の運用ガス(SiHガス, Si Hガス, SiH C1ガス, Nガス)
4 2 6 2 2 2 の流量を制御する。このため,第 2実施形態に力かる第 2ゼロ点シフト検出処理 (ステ ップ S400)では,各運用ガスごとに第 2ゼロ点シフト量を検出し,各運用ガスの第 2ゼ 口点シフト量を図 14に示すような第 2ゼロ点シフト情報 384に予め記憶しておく。
[0132] そして,ウェハ処理時には,第 1ゼロ点シフト検出処理 (ステップ S200)及び第 1ゼ 口点シフト補正処理 (ステップ S300)を実行した上で,第 2ゼロ点シフト補正処理 (ス テツプ S500)によって第 2ゼロ点シフト情報 384に基づいて各運用ガスについての 設定流量を補正する。これにより,ウェハ処理時には第 1ゼロ点シフトと第 2ゼロ点シ フトとの両方が補正された流量 Vにより流量制御される。 [0133] このような第 2実施形態に力かる熱処理装置 100によれば,共通のマスフローコント ローラ(MFC) 240Aを使用して熱処理部 110へ複数のガス種をそれぞれ供給してゥ ェハ処理を行う。このような場合にも,第 1実施形態と同様の流量補正処理を行うこと により,ウェハ処理時に各ガス種を使用する際に実際に生じ得るサーマルサイフォン 現象に基づくゼロ点シフト量を正確に検出して的確な補正をすることができる。これ により,マスフローコントローラ(MFC) 240Aの設置姿勢に拘らず,流量制御の精度 をより向上させることができる。
[0134] なお,上記実施形態により詳述した本発明については,複数の機器カゝら構成される システムに適用しても, 1つの機器力もなる装置に適用してもよい。上述した実施形 態の機能を実現するソフトウェアのプログラムを記憶した記憶媒体等の媒体をシステ ム或 、は装置に供給し,そのシステム或いは装置のコンピュータ(または CPUや MP U)が記憶媒体等の媒体に格納されたプログラムを読み出して実行することによって も,本発明が達成されることは言うまでもない。
[0135] この場合,記憶媒体等の媒体力 読み出されたプログラム自体が上述した実施形 態の機能を実現することになり,そのプログラムを記憶した記憶媒体等の媒体は本発 明を構成することになる。プログラムを供給するための記憶媒体等の媒体としては, 例えば,フロッピー(登録商標)ディスク,ハードディスク,光ディスク,光磁気ディスク , CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW,磁気テープ,不揮発性のメモリカード, ROM,或いはネットワークを介 したダウンロードなどを用いることができる。
[0136] なお,コンピュータが読み出したプログラムを実行することにより,上述した実施形 態の機能が実現されるだけでなく,そのプログラムの指示に基づき,コンピュータ上で 稼動して!/、る OSなどが実際の処理の一部または全部を行 、,その処理によって上 述した実施形態の機能が実現される場合も,本発明に含まれる。
[0137] さらに,記憶媒体等の媒体力も読み出されたプログラムが,コンピュータに挿入され た機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書 き込まれた後,そのプログラムの指示に基づき,その機能拡張ボードや機能拡張ュ ニットに備わる CPUなどが実際の処理の一部または全部を行い,その処理によって 上述した実施形態の機能が実現される場合も,本発明に含まれる。
[0138] 以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本 発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範 囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明 らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される
[0139] 例えば上記第 1及び第 2実施形態では,半導体製造装置として熱処理装置を例に 挙げて説明したが,必ずしもこれに限定されるものではなく,マスフローコントローラな どの流量制御器によってガスや液体の流量を制御して基板に対して所定の処理を行 う半導体製造装置であれば,様々な種類の半導体製造装置に適用することができる
。例えば半導体製造装置として熱処理装置の他に,エッチング装置や成膜装置など に適用してもよい。
産業上の利用可能性
[0140] 本発明は,マスフローコントローラなどの流量制御器によってガスや液体の流量を 制御して基板に対して所定の処理を行う半導体製造装置,半導体製造装置の流量 補正方法,プログラムに適用可能である。

Claims

請求の範囲
[1] 基板に対して半導体装置を製造するための処理を施す処理部と,
前記処理部内にガスを供給するガス供給路と,
前記ガス供給路に設けられ,前記ガス供給路のガス流量を検出する検出部からの 出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,前記ガス供 給路のガス流量が設定流量になるように制御する流量制御器と,
前記流量制御器の上流側と下流側にそれぞれ設けられる遮断弁と,
前記ガス供給路により供給するガスのガス流量に対応する設定電圧を前記流量制 御器に設定する制御部とを備え,
前記制御部は,基板処理を実行する前に予め,前記流量制御器内を少なくとも基 板処理時に使用するガスで置換して前記各遮断弁を閉じた状態で前記流量制御器 力 の出力電圧を検出し,この出力電圧を記憶手段に記憶しておき,
基板処理を実行する際には,基板処理時に使用するガスのガス流量に対応する設 定電圧を前記記憶手段に記憶された前記流量制御器の出力電圧に基づいて補正 し,補正したガス流量の設定電圧を前記流量制御器に設定することを特徴とする半 導体製造装置。
[2] 基板に対して半導体装置を製造するための処理を施す処理部と,
前記処理部内に複数種のガスをそれぞれ供給する複数のガス供給路と, 前記各ガス供給路にそれぞれ設けられ,前記ガス供給路のガス流量を検出する検 出部からの出力電圧と予め設定された設定流量に対応する設定電圧とを比較して, 前記ガス供給路のガス流量が設定流量になるように制御する複数の流量制御器と, 前記各流量制御器の上流側と下流側にそれぞれ設けられる遮断弁と, 前記各ガス供給路により供給するガスのガス流量に対応する設定電圧を前記各流 量制御器に設定する制御部とを備え,
前記制御部は,基板処理を実行する前に予め,前記各流量制御器ごとに前記各 流量制御器内を少なくとも基板処理時に使用するガスで置換して前記各遮断弁を閉 じた状態で前記流量制御器力 の出力電圧を検出し,各流量制御器ごとの出力電 圧を記憶手段に記憶しておき, 基板処理を実行する際には,前記各流量制御器ごとに基板処理時に使用するガス 種のガス流量に対応する設定電圧を前記記憶手段に前記各流量制御器ごとに記憶 された出力電圧に基づ!/ヽてそれぞれ補正し,補正したガス流量の設定電圧を前記 各流量制御器ごとにそれぞれ設定することを特徴とする半導体製造装置。
[3] 基板に対して半導体装置を製造するための処理を施す処理部と,
前記処理部内に複数種のガスをそれぞれ供給する複数のガス供給路と, 前記各ガス供給路が合流する合流路に設けられ,前記ガス供給路のガス流量を検 出する検出部からの出力電圧と予め設定された設定流量に対応する設定電圧とを 比較して,前記ガス供給路のガス流量が設定流量になるように制御する共通の流量 制御器と,
前記流量制御器の下流側の前記各ガス供給路にそれぞれ設けられる下流側遮断 弁と,
前記流量制御器の上流側に設けられる上流側遮断弁と,
前記各ガス供給路により供給する各ガス種のガス流量に対応する設定電圧を前記 流量制御器にそれぞれ設定する制御部とを備え,
前記制御部は,基板処理を実行する前に予め,基板処理時に使用する各ガス種ご とに前記各流量制御器内を少なくとも前記ガスで置換して前記各遮断弁を閉じた状 態で前記流量制御器からの出力電圧を検出し,各ガス種ごとの出力電圧を記憶手 段に記憶しておき,
基板処理を実行する際には,基板処理に使用する各ガス種のガス流量に対応する 設定電圧を前記記憶手段に記憶された各ガス種についての前記流量制御器の出力 電圧に基づ ヽてそれぞれ補正し,補正したガス流量の設定電圧を前記流量制御器 にそれぞれ設定することを特徴とする半導体製造装置。
[4] 基板に対して半導体装置を製造するための処理を施す処理部と,
前記処理部内にガスを供給するガス供給路と,
前記ガス供給路に設けられ,前記ガス供給路のガス流量を検出する検出部からの 出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,前記ガス供 給路のガス流量が設定流量になるように制御する流量制御器と, 前記流量制御器の上流側と下流側にそれぞれ設けられる遮断弁と, 前記流量制御器内を真空排気可能な真空排気手段と,
前記ガス供給路により供給するガスのガス流量に対応する設定電圧を前記流量制 御器に設定する制御部とを備え,
前記制御部は,基板処理を実行する前に予め,前記流量制御器内を前記真空排 気手段により真空排気して前記各遮断弁を閉じた状態で前記流量制御器の出力電 圧を第 1ゼロ点シフト量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正 を行った上で,前記流量制御器内を少なくとも基板処理時と同様のガスで置換して 前記各遮断弁を閉じた状態で前記流量制御器からの出力電圧を検出し,この出力 電圧を第 2ゼロ点シフト量として記憶手段に記憶しておき,
基板処理を実行する際には,前記流量制御器内を前記真空排気手段により真空 排気して前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シ フト量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,基 板処理に使用するガスのガス流量に対応する設定電圧を前記記憶手段に記憶され た前記第 2ゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記 流量制御器に設定することを特徴とする半導体製造装置。
[5] 基板に対して半導体装置を製造するための処理を施す処理部と,
前記処理部内にガスを供給するガス供給路と,
前記ガス供給路に設けられ,前記ガス供給路のガス流量を検出する検出部からの 出力電圧と予め設定された設定流量に対応する設定電圧とを比較して,前記ガス供 給路のガス流量が設定流量になるように制御する流量制御器と,
前記流量制御器の上流側と下流側にそれぞれ設けられる遮断弁と,
前記流量制御器内を真空排気可能な真空排気手段と,
前記ガス供給路により供給するガスのガス流量に対応する設定電圧を前記流量制 御器に設定する制御部とを備え,
前記制御部は,基板処理を実行する前に予め,前記流量制御器内を前記真空排 気手段により真空排気して前記各遮断弁を閉じた状態で前記流量制御器の出力電 圧を第 1ゼロ点シフト量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正 を行った上で,前記流量制御器内を少なくとも基板処理時と同様のガスで置換して 前記各遮断弁を閉じた状態で前記流量制御器からの出力電圧を検出し,この出力 電圧を第 2ゼロ点シフト量として記憶手段に記憶しておき,
基板処理を実行する際には,前記流量制御器内を真空排気手段により真空排気し て前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量と して検出し,基板処理に使用するガスのガス流量に対応する設定電圧を前記記憶手 段に記憶された前記第 2ゼロ点シフト量及び基板処理を実行する際に検出した前記 第 1ゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記流量制 御器に設定することを特徴とする半導体製造装置。
[6] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する流量制御器を用いて処理部にガスを供給し,この処理部内の基板に 対して半導体装置を製造するための処理を行う半導体製造装置の流量補正方法で あって,
基板処理を実行する前に予め,前記流量制御器内を少なくとも基板処理時に使用 するガスで置換して前記流量制御器の上流側及び下流側に設けられた各遮断弁を 閉じた状態で前記流量制御器からの出力電圧を検出し,この出力電圧をゼロ点シフ ト量として記憶手段に記憶するゼロ点シフト検出工程と,
基板処理を実行する際に,基板処理時に使用するガスのガス流量に対応する設定 電圧を前記記憶手段に記憶された前記流量制御器のゼロ点シフト量に基づいて補 正し,補正したガス流量の設定電圧を前記流量制御器に設定するゼロ点シフト補正 工程と,
を有することを特徴とする半導体製造装置の流量補正方法。
[7] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する複数の流量制御器を用いて処理部に複数種のガスを供給し,この処 理部内の基板に対して半導体装置を製造するための処理を行う半導体製造装置の 流量補正方法であって, 基板処理を実行する前に予め,前記各流量制御器ごとに前記各流量制御器内を 少なくとも基板処理時に使用するガスで置換して前記流量制御器の上流側及び下 流側に設けられた各遮断弁を閉じた状態で前記流量制御器からの出力電圧を検出 し,これら各流量制御器ごとの出力電圧をゼロ点シフト量として記憶手段に記憶する ゼロ点シフト検出工程と,
基板処理を実行する際に,前記各流量制御器ごとに基板処理時に使用するガス種 のガス流量に対応する設定電圧を前記記憶手段に前記各流量制御器ごとに記憶さ れた出力電圧に基づ ヽてそれぞれ補正し,補正したガス流量の設定電圧を前記各 流量制御器ごとにそれぞれ設定するゼロ点シフト補正工程と,
を有することを特徴とする半導体製造装置の流量補正方法。
[8] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する流量制御器を用いて処理部に複数種のガスを供給し,この処理部内 の基板に対して半導体装置を製造するための処理を行う半導体製造装置の流量補 正方法であって,
基板処理を実行する前に予め,基板処理時に使用する各ガス種ごとに前記各流量 制御器内を少なくとも前記ガスで置換して前記流量制御器の上流側と下流側に設け られた各遮断弁を閉じた状態で前記流量制御器からの出力電圧を検出し,各ガス種 ごとの出力電圧をゼロ点シフト量として記憶手段に記憶するゼロ点シフト検出工程と 基板処理を実行する際に,基板処理に使用する各ガス種のガス流量に対応する設 定電圧を前記記憶手段に記憶された各ガス種にっ 、てのゼロ点シフト量に基づ 、て それぞれ補正し,補正したガス流量の設定電圧を前記流量制御器にそれぞれ設定 するゼロ点シフト補正工程と,
を有することを特徴とする半導体製造装置の流量補正方法。
[9] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する流量制御器を用いて処理部にガスを供給し,この処理部内の基板に 対して半導体装置を製造するための処理を行う半導体製造装置の流量補正方法で あって,
基板処理を実行する前に予め,前記流量制御器内を真空排気手段により真空排 気して前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト 量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,前記 流量制御器内を少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じ た状態で前記流量制御器力 の出力電圧を検出し,この出力電圧を第 2ゼロ点シフ ト量として記憶手段に記憶する第 2ゼロ点シフト検出工程と,
基板処理を実行する際に,前記流量制御器内を真空排気手段により真空排気して 前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量とし て検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,基板処理に 使用するガスのガス流量に対応する設定電圧を前記記憶手段に記憶された前記第 2ゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記流量制御 器に設定する第 2ゼロ点シフト補正工程と,
を有することを特徴とする半導体製造装置の流量補正方法。
[10] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する流量制御器を用いて処理部にガスを供給し,この処理部内の基板に 対して半導体装置を製造するための処理を行う半導体製造装置の流量補正方法で あって,
基板処理を実行する前に予め,前記流量制御器内を真空排気手段により真空排 気して前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト 量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,前記 流量制御器内を少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じ た状態で前記流量制御器力 の出力電圧を検出し,この出力電圧を第 2ゼロ点シフ ト量として記憶手段に記憶する第 2ゼロ点シフト検出工程と,
基板処理を実行する際に,前記流量制御器内を真空排気手段により真空排気して 前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量とし て検出し,基板処理に使用するガスのガス流量に対応する設定電圧を前記記憶手 段に記憶された前記第 2ゼロ点シフト量及び基板処理を実行する際に検出した前記 第 1ゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記流量制 御器に設定する第 2ゼロ点シフト補正工程と,
を有することを特徴とする半導体製造装置の流量補正方法。
[11] 前記記憶手段に,前記第 1ゼロ点シフト量を検出するごとに累積した第 1ゼロ点シフト 量についても記憶し,
前記第 1ゼロ点シフト量を検出したときに,その第 1ゼロ点シフト量を前回までに累 積された第 1ゼロ点シフト量に加えた値が,予め定めた閾値を外れた場合に報知処 理を行うことを特徴とする請求項 9又は 10に記載の半導体製造装置の流量補正方法
[12] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する流量制御器を用いて処理部にガスを供給し,この処理部内の基板に 対して半導体装置を製造するための処理を行う半導体製造装置の流量補正処理を 実行するためのプログラムであって,
コンピュータに,
基板処理を実行する前に予め,前記流量制御器内を少なくとも基板処理時に使用 するガスで置換して前記流量制御器の上流側及び下流側に設けられた各遮断弁を 閉じた状態で前記流量制御器からの出力電圧を検出し,この出力電圧をゼロ点シフ ト量として記憶手段に記憶するゼロ点シフト検出処理と,
基板処理を実行する際に,基板処理時に使用するガスのガス流量に対応する設定 電圧を前記記憶手段に記憶された前記流量制御器のゼロ点シフト量に基づいて補 正し,補正したガス流量の設定電圧を前記流量制御器に設定するゼロ点シフト補正 処理と,
を実行させるためのプログラム。
[13] ガス供給路のガス流量を検出する検出部力 の出力電圧と予め設定された設定流 量に対応する設定電圧とを比較して,前記ガス供給路のガス流量が設定流量になる ように制御する流量制御器を用いて処理部にガスを供給し,この処理部内の基板に 対して半導体装置を製造するための処理を行う半導体製造装置の流量補正処理を 実行するためのプログラムであって,
コンピュータに,
基板処理を実行する前に予め,前記流量制御器内を真空排気手段により真空排 気して前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト 量として検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,前記 流量制御器内を少なくとも基板処理時と同様のガスで置換して前記各遮断弁を閉じ た状態で前記流量制御器力 の出力電圧を検出し,この出力電圧を第 2ゼロ点シフ ト量として記憶手段に記憶する第 2ゼロ点シフト検出処理と,
基板処理を実行する際に,前記流量制御器内を真空排気手段により真空排気して 前記各遮断弁を閉じた状態で前記流量制御器の出力電圧を第 1ゼロ点シフト量とし て検出し,この第 1ゼロ点シフト量に基づいてゼロ点補正を行った上で,基板処理に 使用するガスのガス流量に対応する設定電圧を前記記憶手段に記憶された前記第 2ゼロ点シフト量に基づ 、て補正し,補正したガス流量の設定電圧を前記流量制御 器に設定する第 2ゼロ点シフト補正処理と,
を実行させるためのプログラム。
PCT/JP2006/312863 2005-08-25 2006-06-28 半導体製造装置,半導体製造装置の流量補正方法,プログラム WO2007023614A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/817,104 US7682843B2 (en) 2005-08-25 2006-06-28 Semiconductor fabrication system, and flow rate correction method and program for semiconductor fabrication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005243970A JP4718274B2 (ja) 2005-08-25 2005-08-25 半導体製造装置,半導体製造装置の流量補正方法,プログラム
JP2005-243970 2005-08-25

Publications (1)

Publication Number Publication Date
WO2007023614A1 true WO2007023614A1 (ja) 2007-03-01

Family

ID=37771366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312863 WO2007023614A1 (ja) 2005-08-25 2006-06-28 半導体製造装置,半導体製造装置の流量補正方法,プログラム

Country Status (6)

Country Link
US (1) US7682843B2 (ja)
JP (1) JP4718274B2 (ja)
KR (1) KR100915723B1 (ja)
CN (1) CN100495659C (ja)
TW (1) TWI404115B (ja)
WO (1) WO2007023614A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201646A (ja) * 2014-04-07 2015-11-12 ラム リサーチ コーポレーションLam Research Corporation 構成独立型のガス供給システム
US10794519B2 (en) 2016-01-15 2020-10-06 Lam Research Corporation Additively manufactured gas distribution manifold
US10914003B2 (en) 2014-10-17 2021-02-09 Lam Research Corporation Monolithic gas distribution manifold and various construction techniques and use cases therefor
WO2022004001A1 (ja) * 2020-07-02 2022-01-06 株式会社堀場エステック 熱式流量計、流量制御装置、熱式流量測定方法、及び、熱式流量計用プログラム

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718274B2 (ja) * 2005-08-25 2011-07-06 東京エレクトロン株式会社 半導体製造装置,半導体製造装置の流量補正方法,プログラム
JP2009004479A (ja) * 2007-06-20 2009-01-08 Panasonic Corp 装置状態監視方法および装置状態監視装置
WO2010011013A1 (en) * 2008-07-23 2010-01-28 New Power Plasma Co., Ltd. Multi-workpiece processing chamber and workpiece processing system including the same
JP4705140B2 (ja) * 2008-10-06 2011-06-22 株式会社堀場エステック 質量流量計及びマスフローコントローラ
JP2010169657A (ja) 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
KR20130051013A (ko) 2010-06-09 2013-05-16 솔렉셀, 인크. 고생산성 박막 증착 방법 및 시스템
EP2659504A4 (en) * 2010-12-31 2014-05-07 Solexel Inc SYSTEMS AND METHODS OF DEPOSIT
KR101235998B1 (ko) * 2011-03-15 2013-02-21 지이센싱코리아(주) 초소형 절대압용 압력센서의 제조 방법
JP5723678B2 (ja) * 2011-05-31 2015-05-27 東京エレクトロン株式会社 プラズマ処理装置及びそのガス供給方法
KR101427726B1 (ko) * 2011-12-27 2014-08-07 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법
JP5887201B2 (ja) * 2012-05-14 2016-03-16 東京エレクトロン株式会社 基板処理方法、基板処理装置、基板処理プログラム、及び記憶媒体
JP6047308B2 (ja) * 2012-05-28 2016-12-21 日精エー・エス・ビー機械株式会社 樹脂容器用コーティング装置
US9090972B2 (en) * 2012-12-31 2015-07-28 Lam Research Corporation Gas supply systems for substrate processing chambers and methods therefor
US10108205B2 (en) 2013-06-28 2018-10-23 Applied Materials, Inc. Method and system for controlling a flow ratio controller using feed-forward adjustment
US10114389B2 (en) * 2013-06-28 2018-10-30 Applied Materials, Inc. Method and system for controlling a flow ratio controller using feedback
KR20160012302A (ko) * 2014-07-23 2016-02-03 삼성전자주식회사 기판 제조 방법 및 그에 사용되는 기판 제조 장치
JP6460911B2 (ja) * 2015-05-18 2019-01-30 アズビル株式会社 熱式マスフローコントローラ及びその傾斜誤差改善方法
JP6573559B2 (ja) * 2016-03-03 2019-09-11 東京エレクトロン株式会社 気化原料供給装置及びこれを用いた基板処理装置
KR102326377B1 (ko) * 2016-06-07 2021-11-15 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP6960278B2 (ja) * 2017-08-31 2021-11-05 東京エレクトロン株式会社 流量測定システムを検査する方法
US10947621B2 (en) * 2017-10-23 2021-03-16 Applied Materials, Inc. Low vapor pressure chemical delivery
KR102101068B1 (ko) * 2017-12-11 2020-04-14 조북룡 통합 분석기에 의한 질량 유량 최적화 제어 시스템
KR102066776B1 (ko) * 2017-12-11 2020-01-15 임용일 통합 분석 제어기에 의한 질량 유량 제어기 최적화 통합 시스템
US10725484B2 (en) * 2018-09-07 2020-07-28 Mks Instruments, Inc. Method and apparatus for pulse gas delivery using an external pressure trigger
JP7130524B2 (ja) * 2018-10-26 2022-09-05 東京エレクトロン株式会社 基板処理装置の制御装置および基板処理装置の制御方法
JP7215366B2 (ja) * 2019-07-17 2023-01-31 株式会社島津製作所 非対称流流動場分画装置
CN112899663B (zh) * 2021-01-15 2022-12-02 长鑫存储技术有限公司 气体传输设备的检测方法、检测装置与气体传输设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003957A (ja) * 2002-04-22 2004-01-08 Tokyo Electron Ltd 処理システム及び流量測定方法
JP2005038058A (ja) * 2003-07-16 2005-02-10 Tokyo Electron Ltd 半導体製造装置及び半導体製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340739A (ja) * 1986-08-06 1988-02-22 Sumitomo Electric Ind Ltd 質量流量制御器の校正方法及びその装置
WO2006107044A1 (ja) * 2005-04-04 2006-10-12 Matsushita Electric Industrial Co., Ltd. プラズマ処理方法及び装置
JP4718274B2 (ja) * 2005-08-25 2011-07-06 東京エレクトロン株式会社 半導体製造装置,半導体製造装置の流量補正方法,プログラム
JP5054500B2 (ja) * 2007-12-11 2012-10-24 株式会社フジキン 圧力制御式流量基準器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003957A (ja) * 2002-04-22 2004-01-08 Tokyo Electron Ltd 処理システム及び流量測定方法
JP2005038058A (ja) * 2003-07-16 2005-02-10 Tokyo Electron Ltd 半導体製造装置及び半導体製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201646A (ja) * 2014-04-07 2015-11-12 ラム リサーチ コーポレーションLam Research Corporation 構成独立型のガス供給システム
US10914003B2 (en) 2014-10-17 2021-02-09 Lam Research Corporation Monolithic gas distribution manifold and various construction techniques and use cases therefor
US10794519B2 (en) 2016-01-15 2020-10-06 Lam Research Corporation Additively manufactured gas distribution manifold
WO2022004001A1 (ja) * 2020-07-02 2022-01-06 株式会社堀場エステック 熱式流量計、流量制御装置、熱式流量測定方法、及び、熱式流量計用プログラム

Also Published As

Publication number Publication date
CN101032008A (zh) 2007-09-05
CN100495659C (zh) 2009-06-03
JP4718274B2 (ja) 2011-07-06
TW200725685A (en) 2007-07-01
JP2007058635A (ja) 2007-03-08
US7682843B2 (en) 2010-03-23
KR20070104634A (ko) 2007-10-26
KR100915723B1 (ko) 2009-09-04
TWI404115B (zh) 2013-08-01
US20090061541A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2007023614A1 (ja) 半導体製造装置,半導体製造装置の流量補正方法,プログラム
JP4502590B2 (ja) 半導体製造装置
US7751921B2 (en) Semiconductor manufacturing apparatus, method of detecting abnormality, identifying cause of abnormality, or predicting abnormality in the semiconductor manufacturing apparatus, and storage medium storing computer program for performing the method
JP2692770B2 (ja) マスフローコントローラ流量検定システム
TWI541626B (zh) Gas flow test system and gas flow test unit
US8606412B2 (en) Method for detecting malfunction of valve on the downstream side of throttle mechanism of pressure type flow control apparatus
JP3872776B2 (ja) 半導体製造装置及び半導体製造方法
KR101443493B1 (ko) 처리 장치 및 프로세스 상태의 확인 방법
JP2635929B2 (ja) マスフローコントローラ絶対流量検定システム
JP6037707B2 (ja) プラズマ処理装置及びプラズマ処理装置の診断方法
US10860005B2 (en) Substrate processing apparatus and non-transitory computer-readable recording medium
US6098964A (en) Method and apparatus for monitoring the condition of a vaporizer for generating liquid chemical vapor
JP2017167102A (ja) 圧力測定装置及びこれを用いた排気システム、並びに基板処理装置
JP2007214406A (ja) 流量検定機能付質量流量制御装置を搭載した半導体製造装置
TW202227661A (zh) 基板處理裝置、半導體裝置之製造方法、基板處理方法及程式
US8112183B2 (en) Substrate processing apparatus and substrate processing method
CN116745897A (zh) 用于基板处理装置的气体供应装置
TWI780625B (zh) 液體供應系統及液量輔助判斷方法
JP5198988B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680000931.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077019504

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11817104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767480

Country of ref document: EP

Kind code of ref document: A1