JP2010169657A - 質量流量計及びマスフローコントローラ - Google Patents

質量流量計及びマスフローコントローラ Download PDF

Info

Publication number
JP2010169657A
JP2010169657A JP2009264271A JP2009264271A JP2010169657A JP 2010169657 A JP2010169657 A JP 2010169657A JP 2009264271 A JP2009264271 A JP 2009264271A JP 2009264271 A JP2009264271 A JP 2009264271A JP 2010169657 A JP2010169657 A JP 2010169657A
Authority
JP
Japan
Prior art keywords
flow rate
pressure
flow
gas
sample gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009264271A
Other languages
English (en)
Inventor
Yasuhiro Isobe
泰弘 磯部
Osamu Horinouchi
修 堀之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Stec Co Ltd
Original Assignee
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec Co Ltd filed Critical Horiba Stec Co Ltd
Priority to JP2009264271A priority Critical patent/JP2010169657A/ja
Priority to US12/625,366 priority patent/US8356623B2/en
Priority to TW098140870A priority patent/TWI476377B/zh
Priority to KR1020090127950A priority patent/KR101645727B1/ko
Priority to CN200910262030.9A priority patent/CN101762299B/zh
Publication of JP2010169657A publication Critical patent/JP2010169657A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Abstract

【課題】質量流量計の測定精度を向上させる。
【解決手段】試料ガスGが流れる流路に設けられた感熱抵抗体41a、41bを有するセンサ部411、412からの出力信号を取得し、前記試料ガスGの流量Qrawを算出する流量算出部42と、前記流路2における一次側圧力Pinを測定する圧力測定部43と、前記圧力測定部43により得られた一次側圧力Pin、及び前記試料ガスGの定圧比熱Cにより決まるガス係数αを用いて、前記流量算出部42により得られた測定流量Qrawを補正する流量補正部44と、を具備する。
【選択図】図1

Description

本発明は、流量センサに関し、特に、試料ガス毎に高精度の流量測定を行うことができる流量センサに関するものである。
この種の質量流量計としては、試料ガスが流れるメイン流路と、メイン流路から分岐して試料ガスを分流させるものであり、試料ガスの質量流量を検出する流量検出機構が設けられるセンサ流路と、メイン流路において、センサ流路の分岐点と合流点の間に設けられるバイパス流路と、を具備する熱式質量流量計が知られている。そして、この熱式質量流量計は、流量検出機構は、センサ流路を形成する金属製の中空細管の外側に2本の感熱抵抗体をコイル状に巻いて形成した上流側センサ部及び下流側センサ部と、両センサ部に対して設けられたブリッジ回路とを備えている。
具体的に、中空細管は、感熱抵抗体により加熱されており、試料ガスが流れていないときは、中空細管の中心に対して対称的な温度分布となっている。これに対し、試料ガスが中空細管内に流れているときは、下流側センサ部には、上流側センサ部によって温められた試料ガスが流入するため、上流側センサ部と比べて温度が高くなり、上流側センサ部及び下流側センサ部間に温度差が形成される。この結果、前記温度分布が非対称となる。
このときの温度差(ΔT)と試料ガスの質量流量には一定の関係が成り立っているので、温度差をブリッジ回路により検出することで、質量流量を測定できるように構成されている(例えば、特許文献1参照)。
しかしながら、上述した質量流量計は、設置されるメイン流路においてガス供給圧力(一次側圧力)が変更されると(例えば100kPa)、測定流量に誤差が生じてしまい、流量測定精度が低下してしまうという問題がある。
また、一次側圧力の変化による測定流量の誤差が試料ガスの種類に応じて異なるという問題もある。
特開平7−271447号公報
そこで本発明は、上記問題点を一挙に解決するため、測定流量を一次側圧力を用いて補正するだけでなく、試料ガス種によって決まる係数を用いて補正するという従来には無い全く新しい発想によりなされたものである。
すなわち本発明に係る質量流量計は、試料ガスが流れる流路に設けられた感熱抵抗体を有するセンサ部からの出力信号を取得し、前記試料ガスの測定流量を算出する流量算出部と、前記流路における一次側圧力を測定する圧力測定部と、前記圧力測定部により得られた一次側圧力、及び前記試料ガスにより決まるガス係数を用いて、前記流量算出部により得られた測定流量を補正する流量補正部と、を具備することを特徴とする。
このようなものであれば、一次側圧力の変化による測定流量の誤差を可及的に小さくできるだけでなく、試料ガスにより決まるガス係数を加味して測定流量を補正するので、質量流量計の流量測定精度を向上させることができる。
一次側圧力が変更された場合に、当該変更後の一次側圧力が安定した状態において、その一次側圧力に起因する測定流量の誤差を補正して、流量測定精度を向上させるためには、流量補正部は、流量算出部により得られた測定流量を、圧力測定部により得られた一次側圧力そのものによって補正することが望ましい。
測定流量の補正を簡単にするとともに、演算処理量を可及的に小さくするためには、前記流量補正部が、前記一次側圧力をPinとし、予め設定された基準圧力をPbaseとし、前記ガス係数をαとし、前記測定流量をQrawとしたときに、下記の一次式により、補正後の流量Qoffsetを算出することが望ましい。
また、前記流量補正部が、下記の式により、補正後の流量Qoffsetを算出するものも考えられる。
ここで、Pinは一次側圧力、Pbaseは予め設定された基準圧力、定数a、bは試料ガスのガス物性値及び一次側圧力により定まる値、Pin(0)は定数a、bを求めた際の一次側圧力である。
さらに、上述した質量流量計を用いて、高精度な流量制御を可能にするためには、上述した質量流量計と、前記流路に設けられた流量制御弁と、前記質量流量計により得られる補正された測定流量値、及び目標流量である設定流量値に基づいて前記流量制御弁の弁開度を制御する弁制御部と、を具備することを特徴とする。
このように構成した本発明によれば、一次側圧力を変更して使用したときに、当該変更後の一次側圧力に起因する測定流量の誤差を可及的に小さくできるだけでなく、試料ガス毎の係数を加味して測定流量を補正するので、質量流量計の流量測定精度を向上させることができる。
本発明の第1実施形態に係る質量流量計の模式的構成図。 同実施形態におけるセンサ部の概略を示す図。 ガス係数αを決定するための実験例を示す図。 補正前の測定流量及び補正後の測定流量を示す図。 本発明の第2実施形態に係る質量流量計の模式的構成図。 基準圧力時の測定流量に対する測定流量のずれ及びその近似式を示す図。 仕様の異なる製品毎のガス物性値に対する傾きaを示す図。 仕様の異なる製品毎のガス物性値に対する切片bを示す図。 製品1を用いてSFの流量を測定した場合における、補正前後の基準圧力時の測定流量に対する測定流量の誤差を示す図。 製品1を用いてCOの流量を測定した場合における、補正前後の基準圧力時の測定流量に対する測定流量の誤差を示す図。 本発明の質量流量計を用いたマスフローコントローラの模式的構成図。
<第1実施形態>
以下に本発明に係る質量流量計100の第1実施形態について図面を参照して説明する。なお、図1は本実施形態に係る質量流量計100を示す模式的構成図である。
<装置構成>
本実施形態に係る質量流量計100は、熱式質量流量計であり、流体である試料ガス(例えばSF等の半導体処理用ガス)Gが流れるメイン流路2と、前記メイン流路2から分岐して試料ガスGを分流させるものであり、前記試料ガスGの流量Qrawを検出するためのセンサ流路3と、試料ガスGの流量Qrawを検出する流量検出機構4と、前記メイン流路2における前記センサ流路3の分岐点BPと合流点MPの間に設けられ、複数の内部流路51を有する層流素子5と、を具備する。
以下、各部2〜5について説明する。
メイン流路2は、流体入口201及び流体出口202を有する概略直管状のメイン管部200から形成されている。なお、メイン管部200の形状としては、後述する分岐点BP及び合流点MPを含む流路を形成する部分の形状が直管状であれば良く、そのため流体入口201及び流体出口202を有する曲管形状であっても良い。
センサ流路3は、メイン管部200に立設された概略逆U字形状をなす中空細管300により形成されている。本実施形態の中空細管300は、ステンレス製のものであるが、他の素材を用いて形成することができる。
そしてセンサ流路3は、メイン流路2を流れる試料ガスGの流量Qrawを検出するための流量検出機構4が設けられる測定路3Aと、メイン流路2及び測定路3Aを連通する接続路3Bとからなる。
測定路3Aはメイン流路2と略平行に形成されおり、接続路3Bは、メイン流路2と略直交して設けられている。つまり接続路3Bは、測定路3Aと略直交して設けられている。
そして、メイン流路2中において、センサ流路3の分岐点BPからセンサ流路3の合流点MPとの間には、層流素子5が設けられている。この層流素子5は、メイン流路2及びセンサ流路3の分流比が所定の設計値となるようにするものである。ここで、分流比とは、センサ流路3の流量に対するメイン流路2における分岐点BP及び合流点MP間の流路の流量の比である。具体的にこのものは、定流量特性を有するバイパス素子等の抵抗部材から構成されている。そして、その内部流路51が、メイン流路2の流路方向と略平行となるように設けられている。層流素子としては、複数本の細管を外管の内部に挿入して形成したもの、又は多数の貫通孔を形成した薄い円板を複数枚積層して形成したもの等を用いることができる。
流量検出機構4は、センサ流路3に分流した流量を検出するためのセンサ部41と、当該センサ部41からの出力信号を取得してメイン流路2を流れる試料ガスGの流量Qrawを算出する流量算出部42と、を備えている。
センサ部41は、特に図2に示すように、測定路3Aの上流側に設けられた上流側センサ部411と、測定路3Aの下流側に設けられた下流側センサ部412と、を備えている。
そして、上流側センサ部411及び下流側センサ部412は、温度の変化にともなって電気抵抗値が増減する感熱抵抗体が巻きつけられて形成されるものであって、測定路3Aを形成する中空細管300の直管部301に巻き付けられたコイル状の第1感熱抵抗体41aと、当該第1感熱抵抗体41aの外周に巻き付けられたコイル状の第2感熱抵抗体41bとを備えている。本実施形態では、中空細管300全体の平均温度を無用に上げることなく中空細管300中央に現れる温度分布のピークを鋭くしてセンサ感度を向上する観点から、第2感熱抵抗体41bを、各センサ部411、412間の内側端部(合い寄る内側の端部)に設けている。また、第2感熱抵抗体41bの巻幅は、第1感熱抵抗体41aの巻幅の1/2以下としている。なお、上流側センサ部411及び下流側センサ部412は、いずれも断熱材により被覆されている。
これならば、センサ部411、412全体の温度分布に現れる中央のピークを鋭くして検知時に上流側/下流側での温度差を大きくすることができ、変化を高感度に捉えることができるので、センサ感度が向上する。また、第1感熱抵抗体の巻幅を所定の範囲内で長くすることにより低蒸気圧ガスのようにその物性により、直線性の確保できる領域が狭小でフルスケールが制限される試料ガスGに対しても、直線性の確保できる領域を拡大させ且つセンサを高感度化させてフルスケールを大きくすることができ良好に流量を検知できる。
流量算出部42は、センサ部411、412の感熱抵抗体41a、41bと電気的に接続されて、当該感熱抵抗体41a、41bの電圧値を検出することにより、センサ流路3(具体的には測定路3A)中の流量を算出するとともに、分流比に基づいて、メイン流路2中の試料ガスGの流量Qrawを算出するものである。
具体的な構成としては、電気回路から形成されており、ブリッジ回路、増幅回路及び補正回路(いずれも図示しない)を備えている。そして、流量算出部42は、試料ガスGの瞬時流量をセンサ部411、412によって電気信号(電圧値)として検出し、前記電気回路によってその電気信号を増幅等して、検出流量に応じた値を有するセンサ出力信号(測定流量Qraw)として出力するものである。
しかして本実施形態の流量検出機構4は、試料ガスGの流れが定常状態の場合において、一次側圧力Pinを変更して使用したときに、当該変更後の一次側圧力Pinに起因する流量測定精度の低下を補正する機能を有しており、メイン流路2における一次側圧力Pinを測定する圧力測定部43と、当該圧力測定部43により得られた一次側圧力Pin及び試料ガスGにより決まるガス係数αを用いて、流量算出部42により得られた測定流量Qrawを補正する流量補正部44と、を備えている。
圧力測定部43は、メイン流路2において、センサ流路3の分岐点BPよりも上流側に設けられ、メイン流路2を流れる試料ガスGの一次側圧力Pinを測定するものであり、例えば、ダイアフラムに加わる圧力を静電容量の変化として検出する静電容量型圧力センサである。なお、圧力測定部43は、ひずみゲージ式センサを用いてもよい。
流量補正部44は、流量算出部42から測定流量信号を取得して、その測定流量Qrawを補正演算するものであり、その構成は、CPUやメモリ、ADコンバータ、バッファなどのデジタル乃至アナログ電子回路で構成されている。そして、流量補正部44は、圧力測定部43から得られた一次側圧力をPinとし、予め設定された基準圧力をPbaseとし、試料ガスGの圧力依存性に基づいて決定されるガス係数をαとし、流量算出部42により得られた測定流量をQrawとしたときに、下記式(1)により補正演算して、当該補正後の測定流量Qoffsetを出力信号として出力する。なお、流量補正部44は、補正に用いる一次側圧力Pinとして、圧力測定部43から出力される信号値(変換等の処理が施されていない生データ)を用いている。
ここで、一次側圧力Pinは、設定流量を一定の圧力でメイン流路2へ流している状態(安定状態)における、メイン流路2内の一次側の圧力である。
また、基準圧力Pbaseは、設定流量を一定の圧力でメイン流路2へ流している状態(安定状態)において、設定流量と流量算出部42が算出するメイン流路2内の流量とが等しくなるときのメイン流路2内の圧力(本実施形態ではゲージ圧力)である。例えば、試料ガスであるSFを、一定の設定流量を350[sccm]とした場合、基準圧力Pbaseは、流量算出部42がメイン流路2内の流量を350[sccm]と算出するときのメイン流路2内の圧力175[kpaG]となる。なお、この基準圧力Pbaseは、ユーザによって予め流量補正部44に入力される。
このように一次側圧力Pin及び基準圧力Pbaseを定めることにより、流量補正部44は、メイン流路2内の過渡的な圧力変化によって生じる流量誤差ではなく、使用する一次側圧力Pinの条件により生じる流量誤差、すなわちメイン流路2内の一次側圧力が基準圧力Pbaseである状態と、メイン流路2内の一次側圧力が基準圧力Pbaseとは異なる一次側圧力Pinである状態と、の違いにより生じる流量誤差を補正する。
また、ガス係数αは、試料ガスGの圧力依存性に基づいて決定されるものであり、試料ガスG固有のもので、試料ガスGの種類に応じてそれぞれ決定される。例えば、試料ガスの定圧比熱C又は定圧モル比熱Cにより決定される。決定方法としては、試料ガスG毎に実験(後述)より求めても良いし、1つの試料ガスGについて実験によりそのガス係数αを求めた後、他の試料ガスGのガス係数αについては、それら試料ガスGの定圧比熱Cの比により、他の試料ガスGのガス係数αを計算により算出するようにしても良い。なお、このガス係数αもユーザにより予め流量補正部44に入力される。このとき、複数種類の試料ガスGのガス係数αを入力して、データベースとして質量流量計100に持たせても良い。
ここでガス係数αの決定方法について図3を参照して説明する。図3において、流路上に流量制御弁、圧力センサ、マスフローコントローラ(MFC)及び流量センサを上流側からこの順番で設置する。
このような構成において、MFCの一次側圧力を50[kpaG]から300[kpaG]の間で、10[kpaG]毎に変化させたときに、目標流量が設定されたMFCから出る流量を流量センサにより測定する。次に、一次側圧力及び流量センサの測定流量(実流量)の関係を近似式により求める。そして、その近似式より予め定められた基準圧力Pbase時の流量センサの出力に対する、その他の圧力時の出力の変化量をガス係数αとする。これにより、ガス種及び設定流量固有のガス係数αが決定される。以上の手順を用いて、ガス種及び設定流量毎にガス係数αが決定される。
この流量補正部44により流量補正を行った場合と、流量補正を行わない場合との比較結果を図4に示す。図4は、試料ガスGであるSFを、一定の設定流量350[sccm]で流した場合の補正前及び補正後の測定流量Qraw、Qoffsetを示す図である。この図4から分かるように、一次側圧力Pinを用いて流量補正を行わない場合には、一次側圧力Pinが基準圧力Pbase(175kpaG)から小さくなる方向に変更されると、測定誤差(%R.S)が徐々にプラス(+)に大きくなる。例えば一次側圧力Pinが50[kpaG]の場合、流量誤差は0.8[%R.S]である。一方、一次側圧力Pinが基準圧力Pbase(175kpaG)から大きくなる方向に変更されると、測定誤差(%R.S)が徐々にマイナス(−)に大きくなる。例えば、一次側圧力Pinが400[kpaG]の場合、流量誤差は−1.7[%R.S]である。これに対して、一次側圧力Pinを用いて流量補正を行った場合には、一次側圧力Pinが基準圧力Pbaseに対して変化しても流量誤差は、±0.1[%R.S]の範囲内に収まっていることが分かる。
<第1実施形態の効果>
このように構成した本実施形態に係る質量流量計100によれば、一次側圧力Pinを変更して使用したときに、当該変更後の一次側圧力に起因する測定流量Qrawの誤差を可及的に小さくできるだけでなく、試料ガスGの定圧比熱Cを加味して測定流量Qrawを補正するので、質量流量計100の流量測定精度を向上させることができる。
<第2実施形態>
次に本発明に係る質量流量計100の第2実施形態について説明する。本実施形態に係る質量流量計100は、図5に示すように、関数データ格納部D1をさらに備え、流量補正部44の機能が前記実施形態とは異なる。
関数データ格納部D1は、基準圧力Pbaseにおける流量からの誤差[%]を所定の関数(本実施形態では一次式)で近似させた以下の近似式(2)において、係数a(傾きa)及び係数b(切片b)のガス物性値に対する関係式を示す関係式データを格納している。この関係式データは、予め入力手段によりユーザ等により入力される。
ここで、傾きa、切片bは、質量流量計100の仕様が同じであれば試料ガスGのガス種に依存する。
なお、ガス物性値とは、ガス種の定圧モル比熱Cの圧力影響を示す値であり、本実施形態では、基準圧力Pbaseにおける定圧モル比熱Cの逆数と、近似式を求めた際の一次側圧力Pin(0)(例えば50kPa))における定圧モル比熱C及び逆数と基準圧力Pbaseにおける定圧モル比熱Cの逆数の差との比である。具体的には、
である。
具体的な傾きa、切片bのガス物性値に対する関係式の求め方について説明する。
補正機能を付加されるべき仕様の質量流量計100において、複数のガス種(本実施形態では3種類)を用いて実際に、基準圧力Pbaseにおける流量との誤差[%]を求める。そして、図6に示すように、当該誤差を一次式で近似させて、ガス種毎に傾きa及び切片bを求める。なお、図6においては、基準圧力Pbase(175kPa)からの差の絶対値が等しい圧力(50kPa及び300kPa)それぞれについて誤差[%]及びその近似式を求めた図を示している。
その後、図7に示すように、ガス物性値(例えば0〜2)を横軸、傾きaを縦軸として物性値に対する傾きaの関係をプロットして、所定の関係式(本実施形態では2次式)で近似することによりガス物性値に対する傾き関係式を求める。なお、図7においては、試料ガスGとしてCF、SF、CHF及びCHを用いて誤差[%]の近似式を求めた際の傾きaをプロットした図を示している。また、図7は、異なる4種類の製品1〜4において求めた傾き関係式を示している。
また、図8に示すように、ガス物性値(例えば0〜2)を横軸、切片bを縦軸として物性値に対する切片bの関係をプロットして、所定の関係式(本実施形態では2次式)で近似することにより、ガス物性値に対する切片関係式を求める。なお、図8も図7と同様に、試料ガスとしてCF、SF、CHF及びCHを用いて誤差[%]の近似式を求めた際の切片bをプロットした図を示し、また、異なる4種類の製品1〜4において求めた切片関係式を示している。
上記のように求めた傾き関係式を示す傾き関係式データ及び切片関係式を示す切片関係式データを関係式データ格納部D1に格納させる。なお、傾き関係式データ及び切片関係式データには、当該傾き関係式データ及び切片関係式データを作成した時の一次側圧力Pin(0)を示す圧力データが関連付けられている。
このようにして、3種類のガス種で実験的に傾きaの関係式及び切片bの関係式を求めておくことにより、他のガス種に対応する定数a、bは、当該他のガス種のガス物性値を代入することにより前記関係式から得ることができ、ガス種変更に対して当該ガス物性値により近似式(又は以下の補正式(3))を変更することができる。
流量補正部44は、流量算出部42からの測定流量信号を取得して、その測定流量Qrawを以下の式(3)により補正演算するものである。
ここで、Pinは圧力測定部43から得られた一次側圧力、Pbaseは予め設定された基準圧力、aは試料ガスGのガス物性値及び傾き関係式から算出した値、bは試料ガスGのガス物性値及び切片関係式から算出した値、Pin(0)は傾き関係式及び切片関係式作成時の一次側圧力である。なお、前記第1実施形態との関係でいうと、前記実施形態のガス係数αを(a×Qraw+b)/(Pin(0)−Pbase)としている。
より詳細に流量補正部44は、以下の式(4)により測定流量Qrawを補正演算する。
ここで、ΔPは、誤差の近似式を作成した圧力において、基準圧力Pbaseとの差の絶対値が等しい圧力の差であり、具体的には300[kPa]−50[kPa]=250[kPa]である。このように本実施形態では、基準圧力Pbaseからの絶対値が等しい一次側圧力(本実施形態では300kPaと50kPa)での誤差の近似式が基準圧力Pbaseに対して対称に表れる(図6参照)ことに着目して、補正精度の向上を図るために、300kPa時の近似式及び50kPa時の近似式の両方を加味している。
次に流量補正部44の作用について説明する。
流量補正部44は、流量算出部42から測定流量データを取得し、関係式データ格納部D1から傾き関係式データ及び切片関係式データを取得し、圧力測定部43から一次側圧力Pinを取得する。そして、予め入力された試料ガスGのガス物性値に基づいて、試料ガスGの近似式の傾きa及び切片bを算出する。その後、算出した傾きa及び切片b、一次側圧力Pin、基準圧力Pbase、近似式作成時の圧力Pin(0)により上記補正式によって測定流量Qrawを補正演算して、当該補正後の測定流量Qoffsetを出力信号として出力する。
次に、本実施形態に係る質量流量計100を用いた場合の実験結果を図9及び図10に示す。図9は、製品1を用いて実際に基準圧力Pbaseにおける流量との誤差[%]及びその近似式を求めたガス種であるSFの補正前の測定流量Qraw及び補正後の測定流量Qoffsetを示す図であり、図10は、実際に誤差[%]及び近似式を求めていないガス種であって、傾き関係式及び切片関係式により傾きa及び切片bを求めたガス種であるCOの補正前の測定流量及び補正後の測定流量を示す図である。なお、図9及び図10のおける基準圧力Pbaseは171.6[kPa]である。
これらの図から分かるように、実際に近似式を求めて傾き関係式及び切片関係式を作成した際に用いたガス種だけでなく、傾き関係式及び切片関係式にガス物性値を代入することにより得られた傾きa及び切片bを用いて補正した場合にも誤差が低減されていることが分かる。すなわち、実際に近似式を求めていないガス種であっても誤差が低減できるため、ガス種毎に近似式を求める手間を削減することができる。
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。以下の説明において前記実施形態に対応する部材には同一の符号を付すこととする。
例えば、誤差[%]の近似式は一次式に限られず、二次以上の多項式により近似するものであっても良いし、傾きa及び切片bの関数は二次式に限られず、一次式又は三次以上の多項式により近似するものであっても良い。
前記第1実施形態の質量流量計100を組み込むマスフローコントローラZの具体的態様としては、例えば、図11に示すように、前記実施形態の質量流量計100と、メイン流路2の合流点MPより下流側に設けた流量制御バルブZ1と、質量流量計100の出力する補正後の流量測定信号の示す信号値(補正後の測定流量Qoffset)及び入力手段(図示しない)により入力される流量設定信号の示す目標流量である設定流量値に基づいて流量制御バルブZ1の弁開度を制御する弁制御部Z2と、を具備する。なお、流量制御バルブZ1は、合流点MPより上流側に設けてもよい。なお、第2実施形態の質量流量計100をマスフローコントローラに組み込んでも良い。
さらに、前記実施形態の熱式質量流量センサは、定電流型のものに適用できるに限らず、定温度型のものにも適用することができる。
前記各実施形態では、一次側圧力Pinを圧力センサにより測定し、刻々と変化する圧力値を用いて流量の補正を行うようにしていたが、Pinを定数として定めてしてしまい、略常に使用しているガス供給圧力を代入しておき、圧力センサを用いずに流量補正を行うように構成しても構わない。このような構成は、例えばあるプロセスにおいて、1次側においてガス供給圧力を大きく変更することがないため圧力変動がそれほど生じず、1次側圧力Pin値がほぼ一定の値を取ることが分かっている場合等に適用することができる。このようなものであっても、検定を行った近似式作成時の圧力Pin(0)や基準圧力Pbaseとの圧力差を略反映させて流量の補正することができるので流量を精度良く出力することができるようになる。また、この場合、圧力センサを省略することができるので、部品点数の低減によりコストを下げることができるようになる。
前記各実施形態では、流量算出部が、当該感熱抵抗体の電圧値を用いて、測定流量Qrawの値を算出した後に、圧力変動による誤差を補正するように構成してあったが、流量算出部が使用する測定流量を算出するための式や検量線等を現在の一次側圧力と基準圧力から補正するようにしておき、予め補正された式で測定流量Qrawを算出するように構成してもかまわない。このようなものであっても、前記実施形態と同様に一次側の圧力変化による測定精度の低下を防ぐことができる。
前記実施形態の質量流量計及びマスフローコントローラを半導体製造プロセス又は半導体製造プロセス以外にも用いることができる。
その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
100・・・質量流量計
G ・・・試料ガス
2 ・・・メイン流路
3 ・・・センサ流路
4 ・・・流量検出機構
411・・・上流側センサ部
412・・・下流側センサ部
41a・・・第1感熱抵抗体
41b・・・第2感熱抵抗体
42 ・・・流量算出部
43 ・・・圧力測定部
44 ・・・流量補正部
in ・・・一次側圧力
α ・・・ガス係数
raw・・・測定流量
base・・・基準圧力
offset・・・補正後の流量

Claims (2)

  1. 試料ガスが流れる流路に設けられた感熱抵抗体を有するセンサ部からの出力信号を取得し、前記試料ガスの測定流量を算出する流量算出部と、
    前記流路における一次側圧力を測定する圧力測定部と、
    前記圧力測定部により得られた一次側圧力、及び前記試料ガスにより決まるガス係数を用いて、前記流量算出部により得られた測定流量を補正する流量補正部と、を具備し、
    前記流量補正部が、下記の式により、補正後の流量Qoffsetを算出する質量流量計。
    ここで、Pinは一次側圧力、Pbaseは予め設定された基準圧力、定数a、bは試料ガスのガス物性値及び一次側圧力により定まる値、Pin(0)は定数a、bを求めた際の一次側圧力である。
  2. 請求項1記載の質量流量計と、
    前記流路に設けられた流量制御弁と、
    前記質量流量計により得られる補正された測定流量値、及び目標流量である設定流量値に基づいて前記流量制御弁の弁開度を制御する弁制御部と、を具備するマスフローコントローラ。
JP2009264271A 2008-12-25 2009-11-19 質量流量計及びマスフローコントローラ Pending JP2010169657A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009264271A JP2010169657A (ja) 2008-12-25 2009-11-19 質量流量計及びマスフローコントローラ
US12/625,366 US8356623B2 (en) 2008-12-25 2009-11-24 Mass flow meter and mass flow controller
TW098140870A TWI476377B (zh) 2008-12-25 2009-11-30 質量流量計及質量流量控制器
KR1020090127950A KR101645727B1 (ko) 2008-12-25 2009-12-21 질량 유량계 및 매스 플로우 컨트롤러
CN200910262030.9A CN101762299B (zh) 2008-12-25 2009-12-23 质量流量计及质量流量控制器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008331541 2008-12-25
JP2009264271A JP2010169657A (ja) 2008-12-25 2009-11-19 質量流量計及びマスフローコントローラ

Publications (1)

Publication Number Publication Date
JP2010169657A true JP2010169657A (ja) 2010-08-05

Family

ID=42283439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264271A Pending JP2010169657A (ja) 2008-12-25 2009-11-19 質量流量計及びマスフローコントローラ

Country Status (5)

Country Link
US (1) US8356623B2 (ja)
JP (1) JP2010169657A (ja)
KR (1) KR101645727B1 (ja)
CN (1) CN101762299B (ja)
TW (1) TWI476377B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099019A (ja) * 2010-11-04 2012-05-24 Tokyo Gas Co Ltd 整圧装置
JP2013134231A (ja) * 2011-12-27 2013-07-08 Horiba Stec Co Ltd 熱式流量センサ
KR20160140654A (ko) 2014-03-31 2016-12-07 히타치 긴조쿠 가부시키가이샤 질량 유량의 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
US10048217B2 (en) 2016-03-11 2018-08-14 Southwest Research Institute Calibrated volume displacement apparatus and method for direct measurement of specific heat of a gas
CN114502924A (zh) * 2019-10-07 2022-05-13 恩德斯+豪斯流量技术股份有限公司 用于监测测量设备系统的方法

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940188B2 (en) 2008-02-07 2011-05-10 Veltek Associates, Inc. Air sampling system having a plurality of air sampling devices with their own flow switches
JP5250875B2 (ja) * 2009-10-20 2013-07-31 Smc株式会社 フローコントローラ
JP5650548B2 (ja) * 2009-12-25 2015-01-07 株式会社堀場エステック マスフローコントローラシステム
US9389111B2 (en) * 2010-03-11 2016-07-12 Measurement Technology Group, Inc. Dynamic-adaptive vapor reduction system and method
JP2012033150A (ja) * 2010-06-30 2012-02-16 Toshiba Corp マスフローコントローラ、マスフローコントローラシステム、基板処理装置およびガス流量調整方法
JP5058358B2 (ja) * 2010-09-30 2012-10-24 株式会社堀場エステック 診断機構
JP5915043B2 (ja) * 2011-04-01 2016-05-11 日立金属株式会社 流量制御装置
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US9157823B2 (en) * 2011-09-15 2015-10-13 Grand Mate Co., Ltd. Pressure gauge and method of measuring pressure
JP5809012B2 (ja) * 2011-10-14 2015-11-10 株式会社堀場エステック 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
JP5803552B2 (ja) * 2011-10-14 2015-11-04 東京エレクトロン株式会社 処理装置
DE102012001060A1 (de) * 2011-10-24 2013-04-25 Hydrometer Gmbh Verfahren zur Korrektur von Offset-Drift-Effekten einer thermischen Messeinrichtung, thermische Messeinrichtung und Gasdurchflussmessgerät
DE202011109511U1 (de) * 2011-12-23 2012-02-02 Bürkert Werke GmbH Massendurchflussmess- oder -regelgerät
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9846074B2 (en) * 2012-01-20 2017-12-19 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9471066B2 (en) 2012-01-20 2016-10-18 Mks Instruments, Inc. System for and method of providing pressure insensitive self verifying mass flow controller
JP5754853B2 (ja) * 2012-01-30 2015-07-29 株式会社フジキン 半導体製造装置のガス分流供給装置
US20130238102A1 (en) * 2012-03-08 2013-09-12 General Electric Company Methods And Systems For Inlet Airflow Measurement Using Inert Gas
US9777637B2 (en) * 2012-03-08 2017-10-03 General Electric Company Gas turbine fuel flow measurement using inert gas
JP5665794B2 (ja) * 2012-04-27 2015-02-04 株式会社フジキン 半導体製造装置のガス分流供給装置
US10031005B2 (en) 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
JP2014077679A (ja) * 2012-10-10 2014-05-01 Panasonic Corp 流量計
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
JP6217226B2 (ja) * 2013-08-09 2017-10-25 日立金属株式会社 熱式質量流量計、質量流量制御装置、及び熱式質量流量計の製造方法
CN103697949B (zh) * 2013-12-31 2017-02-15 长城汽车股份有限公司 流量检测装置及方法
WO2015138085A1 (en) * 2014-03-11 2015-09-17 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9970801B2 (en) * 2014-03-20 2018-05-15 Hitachi Metals, Ltd. Thermal mass-flow meter and mass-flow control device using same
CN106133484B (zh) * 2014-03-31 2019-10-15 日立金属株式会社 热式质量流量测定方法、流量计以及流量控制装置
DE102014216867A1 (de) * 2014-08-25 2016-02-25 Robert Bosch Gmbh Vorrichtung und Verfahren zum Bestimmen eines Massenstroms eines Fluids und Verfahren zum Herstellen einer solchen Vorrichtung
US9939416B2 (en) * 2014-08-28 2018-04-10 Veltek Assoicates, Inc. Programmable logic controller-based system and user interface for air sampling in controlled environments
CN104216425B (zh) * 2014-08-29 2017-07-25 湖南三德科技股份有限公司 用于电子流量控制器的载气类型自动识别方法及电子流量控制器
US10139259B2 (en) * 2014-12-05 2018-11-27 General Electric Company System and method for metering gas based on amplitude and/or temporal characteristics of an electrical signal
US10359308B2 (en) * 2014-12-12 2019-07-23 Natural Gas Solutions North America, Llc Flow meter and a method of calibration
WO2016156176A1 (en) * 2015-03-31 2016-10-06 Koninklijke Philips N.V. Flow member
CN108139760A (zh) * 2015-10-28 2018-06-08 株式会社富士金 流量信号补正方法以及使用其的流量控制装置
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
KR102208101B1 (ko) * 2016-10-14 2021-01-27 가부시키가이샤 후지킨 유체 제어 장치
JP7245600B2 (ja) * 2016-12-15 2023-03-24 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US10983537B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
WO2018180387A1 (ja) * 2017-03-30 2018-10-04 株式会社フジキン 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ
JP7164938B2 (ja) * 2017-07-31 2022-11-02 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
WO2019156243A1 (ja) * 2018-02-09 2019-08-15 オムロン株式会社 流量測定装置及び埋設型ガスメータ
JP6940441B2 (ja) * 2018-03-27 2021-09-29 アズビル株式会社 熱式フローセンサ装置および流量補正方法
JP7044629B2 (ja) * 2018-05-18 2022-03-30 株式会社堀場エステック 流体制御装置、及び、流量比率制御装置
JP7068062B2 (ja) * 2018-06-18 2022-05-16 株式会社堀場製作所 流体制御装置、及び、流量比率制御装置
CN110657346A (zh) * 2018-06-29 2020-01-07 涂宏彬 气体传输系统与方法
US20210178507A1 (en) 2019-12-13 2021-06-17 Norsk Titanium As Volumetric plasma gas flow measurement and control system for metal-based wire-plasma arc additive manufacturing applications
US11262226B2 (en) 2020-02-17 2022-03-01 GWU Design Hybrid mass flow sensor including a thermal and coriolis principle measurement arrangements
JP2021152786A (ja) * 2020-03-24 2021-09-30 株式会社フジキン 流量制御システム、流量制御システムの制御方法、流量制御システムの制御プログラム
CN111735519B (zh) * 2020-06-28 2022-11-08 国网浙江省电力有限公司电力科学研究院 质量流量转换系数确定方法及装置
WO2022186971A1 (en) 2021-03-03 2022-09-09 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly
CN113311881B (zh) * 2021-05-28 2022-12-13 北京七星华创流量计有限公司 一种质量流量控制器和流量控制方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062446A (en) * 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
US5439026A (en) * 1992-12-11 1995-08-08 Tokyo Electron Limited Processing apparatus and flow control arrangement therefor
JPH07271447A (ja) 1994-03-29 1995-10-20 Yokogawa Electric Corp マスフローコントローラ
US5911238A (en) * 1996-10-04 1999-06-15 Emerson Electric Co. Thermal mass flowmeter and mass flow controller, flowmetering system and method
US5865205A (en) * 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
US6389364B1 (en) * 1999-07-10 2002-05-14 Mykrolis Corporation System and method for a digital mass flow controller
US6360772B1 (en) * 2000-06-30 2002-03-26 Promos Technologies, Inc. Mass flow controller
US6962164B2 (en) * 2001-04-24 2005-11-08 Celerity Group, Inc. System and method for a mass flow controller
US6655408B2 (en) * 2001-06-13 2003-12-02 Applied Materials, Inc. Tunable ramp rate circuit for a mass flow controller
JP2003280745A (ja) 2002-03-25 2003-10-02 Stec Inc マスフローコントローラ
US6948508B2 (en) * 2002-06-24 2005-09-27 Mks Instruments, Inc. Apparatus and method for self-calibration of mass flow controller
CN1688948B (zh) * 2002-07-19 2010-05-26 布鲁克斯器具有限公司 在质量流动控制器中用于压力补偿的方法和装置
CN100422616C (zh) 2002-08-28 2008-10-01 霍里巴斯特克公司 高精度基于压力的流量控制器
JP4150756B2 (ja) 2002-08-29 2008-09-17 東京瓦斯株式会社 熱式流量計
KR100502217B1 (ko) * 2002-12-27 2005-07-19 태산엘시디 주식회사 컨트롤 퍼지용 질량유량 제어기 및 동작방법
KR100517405B1 (ko) * 2003-06-27 2005-09-27 삼성전자주식회사 질량 유량 제어기 및 이를 갖는 가스 공급 장치
JP3872776B2 (ja) * 2003-07-16 2007-01-24 東京エレクトロン株式会社 半導体製造装置及び半導体製造方法
KR100653710B1 (ko) * 2004-12-14 2006-12-04 삼성전자주식회사 질량 유량 제어기
JP4718274B2 (ja) 2005-08-25 2011-07-06 東京エレクトロン株式会社 半導体製造装置,半導体製造装置の流量補正方法,プログラム
US7467027B2 (en) 2006-01-26 2008-12-16 Mks Instruments, Inc. Compensation for thermal siphoning in mass flow controllers
US7409871B2 (en) * 2006-03-16 2008-08-12 Celerity, Inc. Mass flow meter or controller with inclination sensor
JP5123175B2 (ja) 2006-05-26 2013-01-16 株式会社堀場エステック サーマル式質量流量計及びサーマル式質量流量制御装置
JP2008039513A (ja) * 2006-08-03 2008-02-21 Hitachi Metals Ltd 質量流量制御装置の流量制御補正方法
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
US7826986B2 (en) * 2008-09-26 2010-11-02 Advanced Energy Industries, Inc. Method and system for operating a mass flow controller
JP5101581B2 (ja) * 2009-08-25 2012-12-19 株式会社堀場エステック 流量制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099019A (ja) * 2010-11-04 2012-05-24 Tokyo Gas Co Ltd 整圧装置
JP2013134231A (ja) * 2011-12-27 2013-07-08 Horiba Stec Co Ltd 熱式流量センサ
KR20160140654A (ko) 2014-03-31 2016-12-07 히타치 긴조쿠 가부시키가이샤 질량 유량의 측정 방법, 당해 방법을 사용하는 열식 질량 유량계 및 당해 열식 질량 유량계를 사용하는 열식 질량 유량 제어 장치
US10514289B2 (en) 2014-03-31 2019-12-24 Hitachi Metals, Ltd. Mass flow rate measurement method, thermal mass flow meter using said method, and thermal mass flow controller using said thermal mass flow meter
US10048217B2 (en) 2016-03-11 2018-08-14 Southwest Research Institute Calibrated volume displacement apparatus and method for direct measurement of specific heat of a gas
CN114502924A (zh) * 2019-10-07 2022-05-13 恩德斯+豪斯流量技术股份有限公司 用于监测测量设备系统的方法
CN114502924B (zh) * 2019-10-07 2024-04-12 恩德斯+豪斯流量技术股份有限公司 用于监测测量设备系统的方法

Also Published As

Publication number Publication date
KR101645727B1 (ko) 2016-08-04
KR20100075740A (ko) 2010-07-05
TWI476377B (zh) 2015-03-11
US8356623B2 (en) 2013-01-22
CN101762299A (zh) 2010-06-30
US20100163119A1 (en) 2010-07-01
TW201027048A (en) 2010-07-16
CN101762299B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
JP2010169657A (ja) 質量流量計及びマスフローコントローラ
JP4705140B2 (ja) 質量流量計及びマスフローコントローラ
KR101717069B1 (ko) 향상된 동작 범위를 갖는 질량 흐름 제어기
US7363182B2 (en) System and method for mass flow detection device calibration
KR101792533B1 (ko) 향상된 동작범위를 위한 방법 및 질량 흐름 제어기
US8874387B2 (en) Air flow measurement device and air flow correction method
JP5629212B2 (ja) 流量センサ
KR102266217B1 (ko) 열식 유량계, 온도 측정 장치 및 열식 유량계용 프로그램
EP3153854B1 (en) Determination of volumetric flow rate of a gas in a gas flow
WO2004020958A1 (ja) 熱式流量計
JP5814884B2 (ja) 熱式流量測定装置及びこれを用いた制御装置
CN106802170B (zh) 流量传感器、质量流量输送测控装置及其温漂抑制方法
JPH0934556A (ja) マスフローコントローラ
JP7149347B2 (ja) 感圧熱式流量計
WO2020080189A1 (ja) 流量測定装置及び、流量測定装置の制御方法