WO2004020958A1 - 熱式流量計 - Google Patents

熱式流量計 Download PDF

Info

Publication number
WO2004020958A1
WO2004020958A1 PCT/JP2003/011096 JP0311096W WO2004020958A1 WO 2004020958 A1 WO2004020958 A1 WO 2004020958A1 JP 0311096 W JP0311096 W JP 0311096W WO 2004020958 A1 WO2004020958 A1 WO 2004020958A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pipe
flow rate
fluid
difference
Prior art date
Application number
PCT/JP2003/011096
Other languages
English (en)
French (fr)
Inventor
Katsusuke Shimada
Manabu Muraoka
Minoru Seto
Mitsunori Komaki
Takashi Tashiro
Eiichi Oshima
Satoshi Ishitani
Original Assignee
Yamatake Corporation
Tokyo Gas Co., Ltd.
Takenaka Seisakusho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation, Tokyo Gas Co., Ltd., Takenaka Seisakusho Co., Ltd. filed Critical Yamatake Corporation
Priority to DE10393185T priority Critical patent/DE10393185B4/de
Priority to AU2003257603A priority patent/AU2003257603A1/en
Publication of WO2004020958A1 publication Critical patent/WO2004020958A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction

Definitions

  • the present invention relates to a flow meter, and more particularly to a thermal flow meter that can accurately measure a flow rate of a fluid flowing in a pipe without being affected by an external environment.
  • the integrating flow meter is equipped with a flow rate sensor that measures the instantaneous flow rate of the fluid flowing through the fluid passage, and measures the integrated flow rate from the instantaneous flow rate. It is desirable that the measuring accuracy is high.
  • the gas meter measures the instantaneous flow rate of the gas flowing through the gas pipe, for example.
  • the thermal type flow sensor has a pair of temperature detecting elements Ru and Rd each composed of a resistance temperature sensor provided on a silicon base B and separated from each other in a fluid flow direction F.
  • the sensor element 1 is configured as a sensor chip 1, and a heating element Rh composed of a heating resistor is provided between the temperature detecting elements Ru and Rd on the silicon base B, and a temperature detecting element Rr composed of a temperature measuring resistor is provided. Is provided separately from the heater element Rh.
  • the sensor chip 1 is attached to a pipe 10 as illustrated in FIG. 6, and at this time, the temperature detecting elements Ru, Rd, Rr and the heater element Rh are arranged facing a fluid passage defined by the pipe 10. Is done.
  • the temperature of the fluid passing therethrough is detected by the temperature detecting elements Ru, Rd, and Rr. Also, during temperature detection, the heater element Rh is energized.
  • a bridge circuit including a heater element Rh and a temperature detection element Rr as described in JP-A-2003-121232 is disclosed. 2003/011096
  • the heater drive circuit performs feedback control of the voltage applied to the bridge circuit based on the bridge output voltage, so that the heat generation temperature of the heater element Rh is more constant than the fluid temperature (ambient temperature) detected by the temperature detection element Rr. The temperature is kept high.
  • the heat generated from the heating element Rh is transmitted to the temperature detecting elements Ru and Rd via the silicon base B and the fluid flowing along the silicon base B.
  • the amount of heat transferred to the temperature detecting element R d downstream of the heater element R in the fluid flow direction F is larger than the amount of heat transferred to the upstream temperature detecting element Ru, and the difference in the amount of heat transferred is It increases as the fluid flow rate increases. Therefore, the fluid temperature detected by the temperature detecting element Rd is higher than the fluid temperature detected by the temperature detecting element Ru, and the difference between the two detected temperatures increases as the fluid flow rate increases.
  • the thermal flow meter equipped with the thermal flow sensor shown in FIG. 5 utilizes the fact that the difference between the detected temperatures of the temperature detecting elements Ru and Rd changes according to the fluid flow rate as described above. The flow rate is measured based on the detected temperature difference.
  • the sensor chip 1 constituting the thermal type flow sensor is used by being attached to the pipe 10 as described above.
  • the sensor chip 1 is made of, for example, a pedestal 2 made of Kovar and glass to thermally insulate the sensor chip 1 from the pipe 10. It is fixed to the pipe 10 via the heat insulator 3.
  • reference numeral 4 denotes a sensor circuit board (sensor bracket) on which the above-described heater drive circuit and the like are mounted
  • 5 denotes an O-ring that seals between the sensor circuit board 4 and the piping 10
  • Reference numeral 6 denotes a fixing screw of the sensor circuit board 4.
  • the temperature of the pedestal 2 changes due to the influence of the external environment such as the outside air temperature and the sunshine. Therefore, the temperature of the sensor chip 1 fixed to the pedestal 2 may change depending on the external environment, which may affect the temperature detected by the temperature detecting element Rr on the sensor chip 1.
  • the detected temperature of the temperature detection element Rr is used for controlling the energization to make the heat generation temperature of the heater element Rh a fixed temperature higher than the fluid temperature, and thus accurately represents the fluid temperature. Must be something. Nevertheless, if the detected temperature of the temperature detecting element Rr is affected by the external environment as described above, the detected temperature
  • the heat generation temperature of the heater element Rh will deviate from a specified temperature that is a certain temperature higher than the fluid temperature.
  • the heating temperature of the heater element Rh is controlled to a specified temperature (for example, 65 ° C) higher than the fluid temperature (for example, 20 ° C) by a certain temperature (for example, 45 t :).
  • the detected temperature of the temperature detecting element Rr has become higher than the fluid temperature by, for example, 1 ° C. due to the influence of the outside air temperature, the sunshine, and the like in the thermal flow meter configured to perform the measurement.
  • the power supply to the heater element Rh is controlled so that the heat generation temperature of the heater element Rh becomes higher than the detection temperature of the temperature detection element Rr by a certain temperature.
  • the temperature becomes 66, for example, one higher than the specified temperature.
  • the flow measurement by the thermal flow meter is performed on the premise that the heater element R h is in a heat-generating state at a specified temperature. Therefore, if the temperature of the heater element R h deviates from the specified temperature due to the inaccurate detection temperature of the temperature detection element R r due to the external environment, the thermal flow meter Error occurs in flow measurement due to
  • An object of the present invention is to provide a thermal flow meter that can accurately measure a fluid flow rate without being affected by an external environment and has a simple configuration.
  • the first and second temperature detecting elements provided apart from each other in the fluid flow direction and the heater element provided between the temperature detecting elements are provided.
  • Thermal flow sensor mounted on piping containing and flowing fluid force
  • a thermal flow meter that measures a fluid flow rate based on the temperatures detected by the first and second temperature detecting elements while the heater element is driven.
  • This thermal flow meter has a first temperature sensor for detecting the temperature of the fluid flowing in the pipe, a second temperature sensor for detecting the temperature of the pipe, a fluid temperature detected by the first temperature sensor, and a second temperature sensor.
  • Temperature difference correction means for obtaining a correction amount in accordance with a difference from the pipe temperature detected by the sensor.
  • the heater element is driven so that the heat generation temperature thereof is higher than the fluid temperature detected by the temperature detection element Rr or the first temperature sensor in FIG.
  • the temperature detecting element Rr can be removed, but may be used together with the first temperature sensor.
  • the temperature detected by the temperature detecting element Rr or the first temperature sensor may be affected by an external environment such as an outside temperature or sunshine.
  • a flow measurement error occurs due to the influence of the external environment.
  • an error occurs in the temperature detected by the temperature detection element Rr and the first temperature sensor due to the influence of the external environment. Even in the case of occurrence, it is possible to eliminate the effect of the external environment on flow measurement based on the correction amount obtained from the difference between the detected temperature (fluid temperature) and the piping temperature detected by the second temperature sensor. it can.
  • the external environment such as the outside air temperature or sunshine
  • acts on the pipe to which the thermal flow sensor is attached and further affects the flow measurement through the action on this pipe.
  • the present invention uses the correction amount in consideration of the pipe temperature, it is possible to eliminate the influence of the external environment on the flow rate measurement.
  • the correction amount is determined from the difference between the fluid temperature (detected temperature of the first temperature sensor) and the pipe temperature, it is possible to eliminate the influence of the external environment on the detected temperature of the first temperature sensor. Can be performed accurately without being affected by the external environment.
  • the thermal flow meter according to the present invention adds a second temperature sensor and a temperature difference correction means to a conventional thermal flow meter. JP2003 / 011096
  • the temperature difference correction means determines a flow rate correction amount as the correction amount according to a difference between the fluid temperature detected by the first temperature sensor and the pipe temperature detected by the second temperature sensor. Then, using this flow rate correction amount, the fluid flow rate measured based on the temperatures detected by the first and second temperature detecting elements is corrected.
  • the fluid flow rate can be accurately and easily obtained.
  • the temperature difference correction means includes a temperature difference correction table representing the flow rate correction amount as a function of the difference between the fluid temperature and the pipe temperature and the fluid flow rate, and the fluid temperature detected by the first temperature sensor and the second temperature A flow rate correction amount is obtained from a temperature difference correction table according to the fluid flow rate measured based on the pipe temperature detected by the sensor and the temperature detected by the first and second temperature detecting elements.
  • the relationship between the temperature difference (difference between the fluid temperature and the pipe temperature), the fluid flow rate, and the flow rate correction amount is obtained in advance by, for example, an experiment, and the flow rate correction amount is determined by a function of the temperature difference and the fluid flow rate.
  • the flow rate correction amount can be easily obtained from the temperature difference correction table according to the fluid temperature, the pipe temperature, and the measured fluid flow rate. Then, the measured fluid flow rate is corrected using the flow rate correction amount, and the accurate fluid flow rate can be quickly measured. Therefore, the instantaneous flow rate is measured at short intervals, and the integrated flow rate can be measured more accurately.
  • the temperature difference correction means includes a temperature difference correction table indicating a flow rate correction amount per unit temperature difference as a function of a difference between the fluid temperature and the pipe temperature and a fluid flow rate, and the fluid temperature detected by the first temperature sensor; Piping detected by the second temperature sensor 3 011096
  • a flow rate correction amount per unit temperature difference is obtained from the temperature difference correction table in accordance with the temperature and the fluid flow rate measured based on the temperatures detected by the first and second temperature detecting elements. Then, a difference between the fluid temperature detected by the first temperature sensor and the pipe temperature detected by the second temperature sensor is multiplied by a flow correction amount per unit temperature difference to obtain a flow correction amount.
  • the principle of flow rate correction in this preferred embodiment is as follows. That is, the output of the thermal flow sensor when there is a difference between the fluid temperature and the pipe temperature fluctuates from the sensor output when there is no such temperature difference. For example, although the output fluctuation of the thermal flow sensor changes according to the temperature difference, the output fluctuation per unit temperature difference is almost constant without much dependence on the temperature difference.
  • the flow rate correction is performed using the flow rate correction amount having the same magnitude and the opposite sign as the output fluctuation amount.
  • the flow rate correction amount can be obtained by a simple method of multiplying the difference between the fluid temperature and the piping temperature by the flow rate correction amount per unit temperature difference. .
  • the temperature difference correction means may calculate the temperature correction amount according to the difference between the fluid temperature and the pipe temperature.
  • the target heating temperature of the heater element obtained according to the temperature detected by the first temperature sensor is corrected by the temperature correction amount, and the heater element is driven so as to become the corrected target heating temperature. Is done.
  • the deviation of the heat generation temperature from the specified temperature due to the influence of the external environment is prevented, so that errors occurring in the detection temperatures of the first and second temperature detecting elements due to the heat generation temperature deviation are eliminated, and the fluid flow rate is reduced. Can be measured accurately.
  • the first temperature sensor is provided so as to detect a fluid temperature at a central portion in the pipe.
  • the thermal flow meter can measure the flow rate by detecting the fluid temperature at the center of the pipe.
  • the first temperature sensor has the function of detecting the ambient temperature of the conventional temperature detection element Rr in the first temperature sensor, so that the fluid temperature and the piping temperature can be reduced.
  • the flow rate measurement accuracy can be improved.
  • the second temperature sensor is provided to detect a wall surface temperature of the pipe. Since the external environment affects the flow measurement through the action on the pipe as described above, the influence of the external environment appears as a change in the pipe wall temperature. According to this preferred embodiment, the correction amount is obtained based on the pipe wall temperature that indicates the degree of the influence of the external environment, and by using such a correction amount, the influence of the external environment on the flow rate measurement is reliably removed. can do. In addition, it is relatively easy to install the second temperature sensor so as to detect the pipe wall temperature, which contributes to the simplification of the configuration of the thermal flow meter.
  • the thermal flow meter includes a plurality of second temperature sensors (for example, two second temperature sensors provided on both sides of a vertical line passing through the center of the cross section of the pipe). Temperature sensor).
  • the temperature difference correction means averages a plurality of pipe temperatures detected by the plurality of second temperature sensors to obtain an average pipe temperature, and calculates a difference between the fluid temperature detected by the first temperature sensor and the average pipe temperature. Find the correction amount according to the difference.
  • the external environment does not always work uniformly over the entire circumference of the pipe where the thermal flow sensor is mounted.
  • the temperature of the piping differs between the part exposed to direct sunlight and the part not exposed to direct sunlight.
  • the thermal flow meter according to this preferred embodiment is provided with a plurality of second temperature sensors to obtain an average pipe temperature that favorably reflects the pipe temperature over the entire circumference of the pipe. Flow rate measurement using the correction amount appropriately obtained from the temperature , The influence of the external environment can be satisfactorily removed.
  • the second temperature sensors are provided on both sides of a vertical line passing through the center of the cross section of the pipe, a portion of the pipe exposed and installed outdoors is exposed to direct sunlight, and the pipe temperature at that portion is reduced. Even in a rising environment, use the correction amount corresponding to the average pipe temperature obtained from the pipe temperature in the part exposed to direct sunlight and the pipe temperature in the part not exposed to direct sunlight, and adjust the The effects can be eliminated.
  • FIG. 1 is a schematic diagram of a thermal flow meter according to one embodiment of the present invention
  • FIG. 2 is a graph showing an example of a correction amount per unit temperature difference according to a gas flow rate, which is registered in a temperature difference correction table provided for the temperature difference correction by the thermal flow meter shown in FIG. 1;
  • FIG. 3 is a graph showing the result of improving the flow rate measurement accuracy by temperature difference correction
  • FIG. 4 is a flow chart showing a flow rate measurement procedure in the thermal type flow meter shown in FIG. 1,
  • FIG. 5 is a schematic diagram of a sensor chip constituting the thermal type flow sensor
  • Fig. 6 is a schematic cross-sectional view showing the mounting structure of the thermal type flow sensor to the pipe
  • Fig. 7 is the deviation of the heating temperature of the heater element from the specified heating temperature, which occurs as the outside air temperature rises.
  • the thermal flow meter is configured as a gas meter that measures a flow rate of a gas flowing in a fluid passage defined by a pipe.
  • the gas flow is caused by the flow velocity of the gas flowing through the pipe 10 provided on the peripheral wall of the pipe 10.
  • the flow rate of the fluid is output from multiple thermal flow sensors 11a, lib, llc, and lid, respectively, a first temperature sensor 12a for detecting gas temperature, and piping.
  • second temperature sensors 12b and 12 for detecting the temperature of 10
  • a pressure sensor 13 for detecting the pressure of gas.
  • each of the thermal flow sensors 11a to 11d has basically the same structure as the sensor chip 1 shown in FIG.
  • each flow sensor includes a first and a second temperature detecting element Ru, Rd provided apart from each other in the gas flow direction F, and a heater element Rh provided between the two temperature detecting elements Ru, Rd. have.
  • the above-described first temperature sensor 12a is provided instead of the temperature detection element Rr in FIG.
  • the temperature detecting element Rr may be used together with the first temperature sensor 12a.
  • the flow sensors 11a and 11b and the flow sensors 11c and 11d have different distances between the heater element R and the temperature detection elements Ru and Rd, and have different flow rate measurement ranges.
  • the flow sensors 11a and 11b are configured as low-speed flow sensors for detecting a low flow area
  • the flow sensors 11c and 11d are configured as high-speed flow sensors for detecting a high flow area.
  • the low-speed flow sensors 11a and 11b or the high-speed flow sensors 11c and 11d are selectively used according to the gas flow rate.
  • the flow sensors 11a to 11d are provided at 90 ° intervals in the circumferential direction at a total of four locations on the upper left, upper right, lower left and lower right sides of the cylindrical peripheral wall of the pipe 10. .
  • the first temperature sensor 12a is composed of a thermistor or the like, and its temperature detecting end is arranged at the center of the pipe 10 so as to detect the gas temperature at the center of the pipe.
  • the second temperature sensors 12 b and 12 c are respectively provided on both sides of a perpendicular line passing through the center of the cross section of the pipe on the outer peripheral surface of the pipe 10, for example, and preferably, the high-speed flow sensors 11 c and 11 c It is provided near d.
  • the flow sensors 11 a to l 1 d are mounted on a circuit board together with a drive circuit for the heater element Rh and a bridge circuit for detecting a difference in resistance between the temperature detection elements Ru and Rd as a temperature difference, and are incorporated in the pipe 10.
  • Each of these flow sensors 11 a to l I d is connected to an interface mounted on a selector circuit board 14 attached to the outer peripheral wall of the pipe 10 and a cable 16 through a CPU of a gas meter. It is connected to the measurement unit 20 mainly composed of a sensor, and outputs the sensor output (detection signal) to the measurement unit 20. Further, the first and second temperature sensors 12 a to 12 c and the pressure sensor 13 are also connected to the measuring section 20 via the interface section of the selector circuit board 14.
  • the measuring section 20 is based on a flow rate calculating section 21 that calculates an instantaneous flow rate Q of gas flowing in the pipe 10 according to a detection signal from the flow rate sensor 11 a to 1 d, and a first temperature sensor 12 a.
  • Temperature correction table 22 used to correct the detection signal according to the detected gas temperature, and used to correct the detection signal according to the gas pressure detected by the pressure sensor 13
  • a pressure compensation table 23 is provided.
  • the characteristic of the measuring section 20 is that the temperature difference is determined by the difference between the gas temperature detected by the first temperature sensor 12a and the pipe temperature detected by the second temperature sensors 12b and 12c.
  • a function for correcting the temperature difference of the detection signals from the flow sensors 1 la to lid is provided.
  • each of the flow rate sensors 11a to 11d sends out the difference between the outputs of the first and second temperature detecting elements as a detection output while the heater element is being driven.
  • the detection output of the flow sensor is based on the degree of the influence of the external environment (gas temperature and (The difference from the pipe temperature).
  • gas temperature and the difference from the pipe temperature the difference between the gas temperature and the pipe temperature
  • the amount of force fluctuation is referred to as the output fluctuation of the flow sensor.
  • the detection output of the flow sensor changes with the temperature difference.
  • the output fluctuation amount of the flow sensor can be expressed as a function of the temperature difference.
  • the output fluctuation amount of the flow sensor also changes depending on the gas flow velocity (gas flow rate) as described later in detail.
  • the gas meter according to the present embodiment basically aims to offset the output fluctuation amount of the flow rate sensor by using the correction amount having the same magnitude as the output fluctuation amount and having the opposite sign.
  • the flow sensor output correction amount per unit temperature difference expressed as a function of the temperature difference and the gas flow velocity is registered in the temperature difference correction table 24.
  • the inventor first obtained the relationship between the temperature difference, the gas flow velocity, and the output fluctuation amount of the flow sensor by the following experiment.
  • a test device that incorporates a flow sensor in the pipe is installed in a thermostat, and a gas at a known temperature flows at a known flow rate into the pipe of the test device.
  • the temperature (corresponding to the pipe temperature) was made the same as the gas temperature, and in this state, the detection output of the flow sensor was measured to obtain the reference detection output.
  • the reference detection output at various gas velocities was obtained while changing the gas velocities.
  • the detection output of the flow sensor at various gas velocities was measured while the temperature in the thermostat was maintained at a certain temperature higher than the gas temperature.
  • the detection output of the flow rate sensor was measured while changing the temperature in the thermostatic chamber around the gas temperature in an increasing direction and a decreasing direction. Then, by subtracting the corresponding reference detection output from the actual measurement output of the flow sensor at each temperature in the constant temperature chamber and each gas flow rate, the output of the flow sensor at various temperature in the constant temperature chamber and gas flow rate is obtained. The amount of variation was determined.
  • a characteristic curve A shown by a broken line in FIG. 2 indicates that the output fluctuation rate of the flow sensor per unit temperature difference changes depending on the gas flow velocity. This tendency is the same for other temperature differences, which means that the output fluctuation rate of the flow sensor per unit temperature difference is almost constant irrespective of the temperature difference. That is, it was confirmed that the amount of output fluctuation of the flow sensor due to the difference between the fluid temperature and the pipe temperature changes mainly depending on the gas flow velocity (more generally, the fluid flow rate). In addition, although the amount of output fluctuation also varies with the temperature difference, it was confirmed that the output fluctuation ratio per unit temperature difference was almost constant regardless of the temperature difference when the gas flow rate was the same.
  • the gas meter according to the present embodiment is designed to correct the output fluctuation of the flow sensor 11 due to the difference between the fluid temperature and the pipe temperature (more generally, the influence of the external environment) as shown in FIG. ,
  • the flow sensor output correction amount per unit temperature difference according to gas flow velocity (more generally, the flow correction amount per unit temperature difference) represented by a characteristic curve B symmetrical to the characteristic curve A with respect to the horizontal axis. Is registered in the temperature difference correction table 24.
  • a correction amount corresponding to the difference between the gas temperature and the pipe temperature and the gas flow velocity is obtained from the temperature difference correction table 24, and the output (more generally, the gas flow rate) of the flow rate sensor 11 is calculated using the correction amount.
  • the temperature difference is corrected.
  • the gas temperature is detected by the first temperature sensor 12a and The pipe temperature is detected by the second temperature sensors 12b and 12c. Then, by multiplying the correction amount by the difference between the gas temperature and the pipe temperature, a necessary flow correction amount is obtained at the temperature difference, and the flow correction amount is added to the gas flow detected by the flow sensor 11. Correct the temperature difference of the detected gas flow rate PT / JP2003 / 011096
  • the measurement characteristic line d is the actually measured detection output and the reference detection output obtained for each gas flow rate when the temperature in the thermostat was set to 125 ° C in the experiment using the test equipment described above, that is, the measurement gas output. It was created based on the flow rate, and the measurement error shown on the vertical axis in Fig. 3.
  • the measurement error on the measurement characteristic line a is obtained from the corrected measured output and the reference detected output obtained by performing the above-described temperature difference correction on the measured detection output.
  • Measurement characteristic line d indicates that the measured gas flow rate without temperature difference correction includes a large error
  • measurement characteristic line a indicates that the error in the measured gas flow rate after temperature difference correction is 1% or less. I have.
  • the measurement characteristic lines b and c in Fig. 3 are obtained by correcting the measured gas flow rate when the temperature in the thermostat was set to 40 ° C and 60 ° C. This shows that the measurement error can be sufficiently reduced to 1% or less by the correction and the measurement accuracy can be sufficiently improved.
  • the degree of the influence of the external environment acting on the sensor chip 1 constituting the flow sensor through the pipe 10 on the measurement of the flow rate of the fluid actually flowing on the flow sensor is expressed by:
  • the difference between the fluid temperature detected by the first temperature sensor 12a and the pipe temperature detected by the second temperature sensors 12b and 12c is easily grasped.
  • the fluid flow rate detected by the flow rate sensor is corrected by using the correction amount obtained in accordance with the temperature difference, so that the measured flow rate can be simplified and effectively corrected. Measurement accuracy can be improved.
  • each flow rate sensor is represented by reference numeral 11.
  • the sensor output from the flow sensor 11 is input [Step S 1].
  • the sensor output is corrected to adjust the detection sensitivity of the flow sensor according to the gas type (more generally, the type of fluid) [Step S2].
  • the sensor output is pressure-corrected with reference to the pressure correction table 23 according to the gas pressure detected by the pressure sensor 13 [Step S 3], and the pressure is corrected according to the gas temperature detected by the first temperature sensor 12 a.
  • the temperature of the sensor output is corrected by referring to the temperature correction table 22 [Step S 4].
  • the sensor output correction processing in steps S1 to S5 and the gas flow velocity calculation processing based on the corrected sensor output in step 6 may be performed in parallel for the four flow sensors 11a to l1d. Alternatively, it may be executed in a time-division manner while cyclically inputting the sensor outputs of the flow sensors 11 a to 11 d via the selector circuit board 14 at a predetermined cycle.
  • the gas flow rates thus obtained from the sensor outputs of the flow rate sensors 11a to 11d are averaged to obtain an average gas flow rate [Step S7]. Then, based on the average gas flow velocity and the difference between the gas temperature detected by the first temperature sensor 12a and the pipe temperature detected by the second temperature sensors 12b and 12c, a temperature difference correction table Referring to 24, calculate the correction amount per unit temperature difference, and multiply this by the temperature difference to obtain the flow rate correction amount.
  • the gas flow rate is measured from the output difference between the first and second temperature detecting elements Ru and Rd while driving the heater element Rh. Then, the measured gas flow rate is corrected for the temperature difference using the 3 011096
  • Step S 8 The temperature-corrected gas flow is output as the gas flow from the thermal flow meter [Step S 9]. Thereafter, by repeatedly performing the above-described processing, the gas flow rate measurement is continuously performed.
  • the thermal type flow meter configured as described above, it is possible to easily correct the flow rate measurement error of the flow rate sensor 11 caused by a thermal action externally applied to the thermal type flow rate sensor 11 through the pipe 10. Can be. Moreover, the temperature difference between the pipe 10 and the fluid is detected by the first temperature sensor 12a attached to the pipe 10 and the second temperature sensors 12b, 12c, and the temperature difference based on the temperature difference is detected. A simple method of performing correction can eliminate flow measurement errors.
  • the average pipe temperature is detected by averaging the pipe temperatures measured by the two second temperature sensors 12b and 12c. Even when only one side is illuminated by sunlight and the temperature on one side increases, the pipe temperature can be correctly evaluated. Further, as described above, since the second temperature sensors 12b and 12c are provided near the high-speed flow sensors 11c and 11d, the low-temperature flow sensors 11a and 11b can be used. Even when measuring the flow rate, the pipe temperature can be accurately detected without being thermally affected by the low-speed flow rate sensors 11a and 11b. When the flow rate is measured using the high-speed flow rate sensor lib, 11c, the flow rate itself is fast, and the pipe temperature is hardly affected by the high-speed flow rate sensor 11b, 11c. Can be accurately detected. Therefore, while the pipe temperature is accurately detected by the two second temperature sensors 12b and 12c provided near the high-speed flow sensors 11c and 11d, the above-described temperature difference correction is effectively performed. It can be carried out.
  • the configuration of the temperature difference correction table 24 is different from the case where the correction amount is registered for each temperature difference. Can be simplified. Then, the temperature difference (gas temperature) is added to the correction amount per unit temperature difference obtained from the temperature difference correction table 24 according to the detected gas flow rate. (The difference between the temperature and the pipe temperature) only needs to be multiplied to obtain the flow rate correction amount, so that the flow rate correction amount can be easily calculated without complicating the temperature difference correction.
  • a gas meter including two low-speed flow sensors and two high-speed flow sensors has been described, but the present invention is applicable to a thermal flow meter that measures the flow rate of a fluid other than gas.
  • the number of flow sensors is not particularly limited, and it is not always necessary to provide both a low-speed flow sensor and a high-speed flow sensor.
  • the number of the first and second temperature sensors is not particularly limited.
  • the present invention can be variously modified and implemented without departing from the gist thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

熱式流量計は、ヒータ素子(Rh)を間にして流体流れ方向にそれぞれ設けられた第1および第2温度検出素子(Ru、Rd)を有する熱式流量センサと、配管(10)内を流れる流体の温度を検出する第1温度センサ(12a)と、配管温度を検出する第2温度センサ(12b、12c)とを含み、第1及び第2温度検出素子の検出出力差から流体流量を計測する一方、配管温度と流体温度との差に従って温度差補正テーブル(24)から流量補正量を求め、この流量補正量を用いて計測流体流量を補正し、この補正により、流量計測に対する外部環境からの熱的影響を除去して計測精度を向上することができる。

Description

1 明細書
熱式流量計 技術分野
本発明は、 流量計に関し、 特に、 配管内を流れる流体の流量を、 外部環境の 影響を受けることなく精度良く計測することのできる熱式流量計に関する。 背景技術
積算流量計は、 流体通路を流れる流体の瞬時流量を計測する流量センサを備 えて瞬時流量から積算流量を計測するものになっており、 計測精度が高いこと が望ましい。 特に、 ガスメータは、 ガス管内を流れるガスの瞬時流量を例えば
1ヶ月にわたって積算し、 これにより、 ガス使用料金の算出の基になるガス使 用量 (積算流量) を計測するものであるので、 高い計測精度が要求される。 そこで、 最近のガスメータなどの積算流量計では、 計測精度の高い熱式流量 センサが用いられる。 熱式流量センサは、 第 5図に例示したように、 シリコン 基台 B上に測温抵抗体からなる一対の温度検出素子 R u、 R dを流体流れ方向 Fに互いに離間して設けてなるセンサチップ 1として構成され、 シリコン基台 B上には、 発熱抵抗体からなるヒ一夕素子 Rhが温度検出素子 Ru、 Rdの間 に設けられ、 また、 測温抵抗体からなる温度検出素子 Rrがヒータ素子 Rhか ら離隔して設けられる。 このセンサチップ 1は、 第 6図に例示するように配管 10に取り付けられ、 この際、 温度検出素子 Ru、 Rd、 Rr及びヒータ素子 Rhは、 配管 10により画成される流体通路に臨んで配される。
配管 10内に流体が流れると、 温度検出素子 Ru、 Rd、 Rrによりその近 傍を通る流体の温度が検出される。 また、 温度検出の間、 ヒータ素子 Rhが通 電される。 この通電には、 例えば、 特開 2003— 121232号公報に記載 されている如きの、 ヒータ素子 Rh及び温度検出素子 R rを含むプリッジ回路 2003/011096
2 を有したヒータ駆動回路が用いられる。 ヒータ駆動回路は、 ブリッジ回路への 印加電圧をブリッジ出力電圧に基づいて帰還制御することにより、 ヒータ素子 R hの発熱温度を温度検出素子 R rによって検出される流体温度 (周囲温度) よりも一定温度高く保持するようになっている。
ヒー夕素子 R hから発せられる熱は、 シリコン基台 Bやこれに沿って流れる 流体を介して温度検出素子 R u、 R dに伝えられる。 一般に、 流体流れ方向 F にみてヒー夕素子 R より下流側の温度検出素子 R dへの伝熱量は、 上流側の 温度検出素子 R uへの伝熱量よりも大きく、 また、 伝熱量の差は、 流体流量が 増大するにつれて大きくなる。 従って、 温度検出素子 R dにより検出される流 体温度は、 温度検出素子 R uにより検出される流体温度よりも高く、 両検出温 度の差は流体流量の増大につれて大きくなる。
第 5図に示した熱式流量センサを備える熱式流量計は、 温度検出素子 R u、 R dの検出温度の差が上述のように流体流量に応じて変化することを利用する もので、 この検出温度差に基づいて流量計測を行うようになっている。
熱式流量センサを構成するセンサチップ 1は、 既述のように配管 1 0に取り 付けられて使用される。 そして、 配管 1 0へのセンサチップ 1の取付けにあた り、 センサチップ 1を配管 1 0から熱的に絶縁するべく、 例えば、 センサチッ プ 1は、 コバール等からなる台座 2とガラス等からなる熱絶縁体 3とを介して 配管 1 0に固定される。 第 6図中、 参照符号 4は、 上記のヒー夕駆動回路等を 搭載したセンサ回路基板 (センサブラケット) を示し、 5は、 センサ回路基板 4と配管 1 0との間をシールする Oリング、 6は、 センサ回路基板 4の固定ね じを示す。
しかしながら、 このような熱的対策を施しても、 外部環境たとえば外気温度 や日照の影響を受けて台座 2の温度が変化することは否めない。 従って、 台座 2に固定されたセンサチップ 1の温度が外部環境によって変化し、 センサチッ プ 1上の温度検出素子 R rにより検出される温度に影響を及ぼすおそれがある。 既述のように、 温度検出素子 R rの検出温度は、 ヒータ素子 R hの発熱温度 を流体温度より一定温度高くするための通電制御に供されるものであるから、 流体温度を正確に表すものでなければならない。 それにもかかわらず、 温度検 出素子 R rの検出温度が上述の如く外部環境の影響を受ける場合には、 検出温
5 度は流体温度より高くまたは低くなり、 流体温度を正確に表さない。 そして、 不正確な検出温度に基づいて通電制御が行われると、 ヒータ素子 R hの発熱温 度は、 流体温度より一定温度高い規定温度に対してずれを生じてしまう。 例えば、 第 7図に示すようにヒータ素子 R hの発熱温度を流体温度 (例えば 2 0 °C) より一定温度 (例えば 4 5 t:) 高い規定温度 (例えば 6 5 °C) に制御
10 するように構成された熱式流量計において、 外気温度や日照などの影響で温度 検出素子 R rの検出温度が流体温度よりも例えば 1 °Cだけ高くなつたとする。 この様な場合にも、 ヒータ素子 R hの発熱温度が温度検出素子 R rの検出温度 より一定温度高くなるようにヒータ素子 R hへの通電が制御されるので、 ヒー 夕素子 R hの発熱温度は規定温度より例えば 1 高い 6 6 になる。
i s その一方で、 熱式流量計による流量計測は、 ヒータ素子 R hが規定温度の発 熱状態にあることを前提にして行われる。 このため、 温度検出素子 R rの検出 温度が外部環境の影響により不正確になったことに起因してヒータ素子 R hの 発熱温度が規定温度からずれを生じた場合には、 熱式流量計による流量計測に 誤差が発生する。
20
発明の開示
本発明の目的は、 外部環境の影響を受けることなく精度良く流体流量を計測 することができ、 しかも構成が簡易な熱式流量計を提供することにある。 上記の目的を達成するため、 本発明によれば、 流体流れ方向に互いに離間し 25 て設けられた第 1及び第 2温度検出素子と両該温度検出素子の間に設けられた ヒータ素子とを含むと共に流体力流れる配管に取り付けられる熱式流量センサ を備え、 ヒータ素子が駆動されている間に第 1及び第 2温度検出素子によりそ れぞれ検出された温度に基づいて流体流量を計測する熱式流量計が提供される。 この熱式流量計は、 配管内を流れる流体の温度を検出する第 1温度センサと、 配管の温度を検出する第 2温度センサと、 第 1温度センサにより検出された流 体温度と第 2温度センサにより検出された配管温度との差に従って補正量を求 める温度差補正手段とを備えることを特徴とする。
本発明の熱式流量計において、 例えば、 ヒータ素子は、 その発熱温度が、 第 5図の温度検出素子 R rまたは第 1温度センサにより検出された流体温度より も一定温度高くなるように駆動される (本発明において、 温度検出素子 R rは 除去可能であるが、 第 1温度センサと共に使用しても良い) 。 この際、 熱式流 量計の構成によっては、 温度検出素子 R rや第 1温度センサの検出温度が、 外 気温度や日照などの外部環境の影響を受けるおそれがある。 従来の熱式流量計 では外部環境の影響に起因して流量測定誤差が生じるが、 本発明では、 外部環 境の影響を受けて温度検出素子 R rや第 1温度センサの検出温度に誤差が生じ た場合にも、 その検出温度 (流体温度) と第 2温度センサにより検出された配 管温度との差から求めた補正量に基づいて、 外部環境が流量測定に及ぼす影響 を除去することができる。
すなわち、 外部環境たとえば外気温度や日照などは、 熱式流量センサが取り 付けられた配管に作用し、 更に、 この配管への作用を介して流量測定に影響を 及ぼすものであり、 外部環境の影響は配管温度の変化として現れる。 この点、 本発明は、 配管温度を考慮した補正量を用いるので、 流量測定に対して外部環 境が及ぼす影響を除去可能である。 特に、 流体温度 (第 1温度センサの検出温 度) と配管温度との差から補正量を求めるので、 外部環境が第 1温度センサの 検出温度に及ぼす影響を除去可能であり、 これにより流量計測を外部環境の影 響を受けることなく精度良く行うことができる。 しかも、 本発明の熱式流量計 は、 例えば、 第 2温度センサ及び温度差補正手段を従来の熱式流量計に追加す JP2003/011096
5 ることにより実現可能であり、 構成が簡易である。
本発明において、 好ましくは、 温度差補正手段は、 第 1温度センサにより検 出された流体温度と第 2温度センサにより検出された配管温度との差に従って 流量補正量を前記補正量として求める。 そして、 この流量補正量を用いて、 第 1及び第 2温度検出素子による検出温度に基づいて計測された流体流量が補正 される。
この好適態様によれば、 外部環境の影響によってヒータ素子の発熱温度が規 定温度に対してずれを生じて第 1及び第 2温度検出素子の検出温度のそれぞれ に誤差が生じた場合にも、 両検出温度 (例えば両検出温度の差) に基づいて計 測された不正確な流体流量を流量補正量で補正することにより、 流体流量を精 度良く且つ簡易に求めることができる。
より好ましくは、 温度差補正手段は、 流量補正量を流体温度と配管温度との 差及び流体流量の関数として表す温度差補正テーブルを備え、 第 1温度センサ により検出された流体温度、 第 2温度センサにより検出された配管温度及び第 1及び第 2温度検出素子による検出温度に基づいて測定された流体流量に応じ て温度差補正テーブルから流量補正量を求める。
この好適態様によれば、 温度差 (流体温度と配管温度との差) と流体流量と 流量補正量との関係を例えば実験により予め求めておき、 流量補正量を温度差 及び流体流量の関数で表した温度差補正テーブルを予め作成しておくことによ り、 流体温度、 配管温度及び計測流体流量に応じて温度差補正テーブルから流 量補正量を容易に求めることができる。 そして、 流量補正量を用いて計測流体 流量を補正して、 正確な流体流量を迅速に計測することができる。 このため、 瞬時流量を短い間隔で計測して積算流量をより正確に計測することができる。 或いは、 温度差補正手段は、 流体温度と配管温度との差及び流体流量の関数 として単位温度差あたりの流量補正量を表す温度差補正テーブルを備え、 第 1 温度センサにより検出された流体温度、 第 2温度センサにより検出された配管 3 011096
6 温度及び第 1及び第 2温度検出素子による検出温度に基づいて測定された流体 流量に応じて前記温度差補正テーブルから単位温度差あたりの流量補正量を求 める。 そして、 第 1温度センサにより検出された流体温度と第 2温度センサに より検出された配管温度との差を単位温度差あたりの流量補正量に乗じて流量 補正量を求める。
この好適態様における流量補正原理は次のとおりである。 すなわち、 流体温 度と配管温度との間に差があるときの熱式流量センサの出力は、 その様な温度 差がないときのセンサ出力から変動するが、 本発明者に固有の認識によれば、 熱式流量センサの出力変動量は温度差に応じて変化するものの、 単位温度差あ たりの出力変動量は温度差にさほど依存せずに略一定である。 この好適態様は、 その様な出力変動量と大きさが同一で且つ符号が反対の流量補正量を用いて、 流量補正を行うものである。
そして、 上記の流量補正原理に基づくこの好適態様によれば、 流体温度と配 管温度との差を単位温度差あたりの流量補正量に乗じるという簡易な方法で流 量補正量を求めることができる。
或いは、 温度差補正手段は、 流体温度と配管温度との差に従って温度補正量 を求めるものでも良い。 この場合、 熱式流量計では、 例えば、 第 1温度センサ の検出温度に従って求められたヒータ素子の目標発熱温度が温度補正量により 補正され、 補正後の目標発熱温度になるようにヒータ素子が駆動される。 この 結果、 外部環境の影響による発熱温度の規定温度からのずれが防止されるので、 発熱温度のずれに起因して第 1及び第 2温度検出素子の検出温度に生じる誤差 が除去され、 流体流量を正確に計測することができる。
好ましくは、 第 1温度センサは、 配管内の中央部における流体温度を検出す るように設けられる。 この好適態様によれば、 第 1温度センサにより検出され る流体温度が外部環境の影響を受けるおそれが大幅に低減する。 この様に、 好 適態様による熱式流量計は、 配管内中央部での流体温度検出により流量測定に 対する外部環境の影響を低減するものとなっており、 特に、 従来の温度検出素 子 R rの周囲温度検出機能を第 1温度センサに持たせた構成にすることにより、 流体温度と配管温度との差に応じた補正量に基づく外部環境の影響の除去と相 俟つて、 流量計測精度を向上することができる。
好ましくは、 第 2温度センサは、 配管の壁面温度を検出するように設けられ る。 外部環境は既述のように配管に対する作用を介して流量測定に影響を及ぼ すので、 外部環境の影響は配管壁面温度の変化として現れる。 この好適態様に よれば、 外部環境の影響の度合いを良好に表す配管壁面温度に基づいて補正量 が求められ、 その様な補正量を用いることにより、 流量計測に対する外部環境 の影響を確実に除去することができる。 また、 配管壁面温度を検出するように 第 2温度センサを設置することは比較的簡単であり、 熱式流量計の構成の簡易 化に寄与する。
好ましくは、 熱式流量計は、 配管の周方向に互いに離隔して設けられた複数 の第 2温度センサ (例えば、 配管の横断面中心を通る垂線の両側にそれぞれ設 けられた 2つの第 2温度センサ) を備える。 温度差補正手段は、 複数の第 2温 度センサにより検出された複数の配管温度を平均して平均配管温度を求め、 ま た、 第 1温度センサにより検出された流体温度と平均配管温度との差に従つて 補正量を求める。
外部環境は、 熱式流量センサが取り付けられる配管の全周にわたって必ずし も均一に作用しない。 例えば、 配管が屋外に露出して設置される場合、 配管の、 直射日光が当たる部分と当たらない部分とでは配管温度が異なる。 この様に外 部環境が配管に対して不均一に作用する場合、 一つの第 2温度センサを用いる ことによっては配管全周に係る配管温度を正確に検出できないおそれがある。 この点、 この好適態様に係る熱式流量計は複数の第 2温度センサを備えて、 配 管全周にわたる配管温度を良好に反映した平均配管温度を求めるものとなって おり、 従って、 平均配管温度から適正に求められる補正量を用いて、 流量計測 に対する外部環境の影響を良好に除去することができる。 特に、 配管の横断面 中心を通る垂線の両側に第 2温度センサを設けた態様によれば、 屋外に露出し て設置された配管の一部に直射日光があたってその部分での配管温度が上昇す るような環境下においても、 直射日光があたる部分の配管温度と直射日光があ たらない部分の配管温度とから求められる平均配管温度に対応する補正量を用 いて、 流量計測に対する日照の影響を除去することができる。 図面の簡単な説明
第 1図は、 本発明の一実施形態に係る熱式流量計の概略図、
第 2図は、 第 1図に示す熱式流量計が温度差補正のために備える温度差捕正 テーブルに登録される、 ガス流速に応じた単位温度差あたりの補正量を例示す るグラフ、
第 3図は、 温度差補正による流量計測精度の向上結果を示すグラフ、 第 4図は、 第 1図に示した熱式流量計における流量測定手順を示すフローチ ャ一卜、
第 5図は、 熱式流量センサを構成するセンサチップの概略図、
第 6図は、 熱式流量センサの配管への取付構造を示す概略断面図、 および 第 7図は、 外気温度の上昇に伴って発生する、 規定の発熱温度に対するヒー タ要素の発熱温度のずれを示す模式図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の一実施形態に係る熱式流量計について説明 する。 '
本実施形態の熱式流量計は、 配管により画成される流体通路内を流れるガス の流量を計測するガスメータとして構成されている。 第 1図に示すように、 ガ スメ一夕は、 配管 1 0の周壁に設けられ配管 1 0内を流れるガスの流速 (より 一般的には流体流量) を表す出力をそれぞれ送出する複数たとえば 4個の熱式 流量センサ 11 a、 l i b, l l c、 l i dと、 ガスの温度を検出するための 第 1温度センサ 12 aと、 配管 10の温度を検出するための第 2温度センサ 1 2b、 12じと、 ガスの圧力を検出するための圧力センサ 13とを備えている。 詳しくは、 熱式流量センサ 11 a〜l I dの各々は、 基本的には第 5図に示 したセンサチップ 1と同一の構造を有している。 即ち、 各流量センサは、 ガス 流れ方向 Fに互いに離間して設けられた第 1及び第 2温度検出素子 R u、 R d と、 両温度検出素子 Ru、 Rd間に設けられたヒータ素子 Rhとを有している。 また、 第 5図の温度検出素子 R rに代えて既述の第 1温度センサ 12 aが設け られている。 なお、 第 1温度センサ 12 aと共に温度検出素子 R rを用いるよ うにしてもよい。
流量センサ 11 a, 11 bと流量センサ 11 c, 11 dは、 ヒータ素子 R と 温度検出素子 Ru、 Rd間距離を異にし、 互いに異なる流速計測レンジを有す るものになっている。 例えば、 流量センサ 11 a、 11 bは低流量域検出用の 低速流量センサとして構成され、 流量センサ 11 c、 11 dは高流量域検出用 の高速流量センサとして構成されており、 特開 2003— 121232号公報 に記載の如くガス流量に応じて低速流量センサ 11 a、 11 bまたは高速流量 センサ 11 c、 11 dを選択的に使用するようになっている。 そして、 流量セ ンサ 11 a〜l 1 dは、 配管 10の円筒状周壁の左上側、 右上側、 左下側およ び右下側の計 4箇所に周方向に 90° 間隔で設けられている。
また、 第 1温度センサ 12 aはサーミス夕などからなり、 その温度検出端が 配管 10内の中央部に配されて、 配管中央部のガス温度を検出するようになつ ている。 更に、 第 2温度センサ 12 b, 12 cは、 配管 10の周壁の例えば外 周面において配管の横断面中心を通る垂線の両側にそれぞれ設けられ、 好まし くは、 高速流量センサ 11 c, 11 dの近傍に設けられる。
上記構成のガスメータ (熱式流量計) において、 流量センサ 11 a〜l 1 d の各々は、 ヒータ素子 R hの駆動回路や、 温度検出素子 R u、 R dの抵抗値差 を温度差として検出するブリッジ回路と共に、 回路基板に搭載されて配管 1 0 に組み込まれている。
これら各流量センサ 1 1 a〜l I dは、 配管 1 0の外周壁に取り付けられた セレクタ回路基板 1 4に搭載されたインターフェース部と、 ケ一ブル 1 6とを 介して、 ガスメータの、 C P Uを主体として構成される計測部 2 0に接続され ており、 そのセンサ出力 (検出信号) を計測部 2 0に出力するようになってい る。 また、 第 1及び第 2温度センサ 1 2 a〜l 2 cならびに圧力センサ 1 3も セレクタ回路基板 1 4のインタ一フェース部を介して計測部 2 0に接続されて いる。
計測部 2 0は、 流量センサ 1 1 a〜l 1 dからの検出信号に従って、 配管 1 0内を流れるガスの瞬時流量 Qを算出する流量演算部 2 1と、 第 1温度センサ 1 2 aにより検出されたガス温度に応じて検出信号を温度補正するために用い られる温度補正テ一ブル 2 2と、 圧力センサ 1 3により検出されたガス圧力に 応じて検出信号を圧力補正するために用いられる圧力補正テーブル 2 3とを備 えている。
計測部 2 0が特徴とするところは、 第 1温度センサ 1 2 aにより検出される ガス温度と第 2温度センサ 1 2 b、 1 2 cにより検出される配管温度との差に 従って、 温度差補正テーブル 2 4を参照して、 流量センサ 1 l a〜 l i dから の検出信号を温度差補正する機能 (温度差補正手段) を備える点にある。
既述のように、 流量センサ 1 1 a〜l 1 dの各々は、 ヒータ素子の駆動中に 第 1及び第 2温度検出素子の出力の差を検出出力として送出するものとなって いる。 外部環境の影響がなく配管温度がガス温度と同一である場合の流量セン サの検出出力 (以下、 基準検出出力) に対し、 流量センサの検出出力は、 外部 環境の影響の度合い (ガス温度と配管温度との差の大きさ) に応じて変動する。 以下、 ガス温度と配管温度との差を温度差と称し、 また、 流量センサの検出出 力の変動量を流量センサの出力変動量という。
この様に、 流量センサの検出出力は温度差によって変化する。 換言すれば、 流量センサの出力変動量を温度差の関数として表すことができる。 また、 流量 センサの出力変動量は、 後で詳述するようにガス流速 (ガス流量) によっても 変化する。
本実施形態のガスメータでは、 その様な出力変動量と大きさが同一で且つ符 号が反対の補正量を用いることにより流量センサの出力変動量を相殺すること を企図して、 基本的には、 温度差及びガス流速の関数として表される単位温度 差あたりの流量センサ出力補正量を温度差補正テーブル 2 4に登録するように している。
その様な補正量を求めるため、 本発明者は、 先ず、 温度差とガス流速と流量 センサの出力変動量との関係を以下の実験により求めた。
第 1図に示す如きの、 配管に流量センサを組み込んでなる試験装置を、 恒温 槽内に設置し、 既知の温度のガスを既知の流速で試験装置の配管内に流すと共 に恒温槽内温度 (配管温度に対応) をガス温度と同一にし、 この状態で、 流量 センサの検出出力を実測して基準検出出力を求めた。 次に、 ガス流速を変更し つつ、 種々のガス流速における基準検出出力を求めた。 次いで、 恒温槽内温度 をガス温度より一定温度高く保持した状態で、 種々のガス流速における流量セ ンサの検出出力を実測した。 更に、 恒温槽内温度をガス温度まわりで増大方向 に変更しまた減少方向に変更しつつ、 流量センサの検出出力を実測した。 そし て、 個々の恒温槽内温度且つ個々のガス流速における流量センサの実測検出出 力から、 これに対応する基準検出出力を減じて、 種々の恒温槽内温度およびガ ス流速における流量センサの出力変動量を求めた。
更に、 上記の実測検出出力データ及び基準検出出力データに基づき、 本発明 者は、 単位温度差あたりの流量センサの出力変動割合 (%Z°C) を種々の温度 差及び種々のガス流速について求め、 その結果、 個々の温度差に関して、 ガス 1096
12 流速と単位温度差あたりのセンサ出力変動割合との関係を表す特性曲線を得た (そのうちの一つを第 2図に破線で且つ記号 Aを付して示す) 。
第 2図に破線で示した特性曲線 Aは、 単位温度差あたりの流量センサの出力 変動割合が、 ガス流速によって変化することを表している。 この様な傾向はそ の他の温度差についても同様であり、 これは、 単位温度差あたりの流量センサ の出力変動割合が、 温度差とは無関係にほぼ一定であることを表している。 即ち、 流体温度と配管温度との差に起因する流量センサの出力変動量が主と してガス流速 (より一般的には流体流量) に依存して変化することを確認した。 また、 出力変動量は温度差によっても変化するものの、 ガス流速が同一であれ ば単位温度差当たりの出力変動割合は温度差に拘わらずほぼ一定であることが 確認できた。
上述の認識に基づき、 本実施形態のガスメータでは、 流体温度と配管温度と の差 (より一般的には外部環境の影響) に起因する流量センサ 1 1の出力変動 を補正するべく、 第 2図において横軸に関して特性曲線 Aと対称をなす特性曲 線 Bで表される、 ガス流速に応じた単位温度差あたりの流量センサ出力補正量 (より一般的には単位温度差あたりの流量補正量) を、 温度差補正テーブル 2 4に登録するようにしている。
そして、 ガス温度と配管温度との差およびガス流速に応じた補正量を温度差 補正テーブル 2 4から求め、 この補正量を用いて流量センサ 1 1の出力 (より 一般的にはガス流量) を温度差補正するものとなっている。
詳しくは、 流量センサ 1 1の出力が表すガス流速に応じて温度差補正テープ ル 2 4から単位温度差当たりの補正量を求める一方、 第 1温度センサ 1 2 aに よりガス温度を検出すると共に第 2温度センサ 1 2 b、 1 2 cにより配管温度 を検出する。 そして、 補正量にガス温度と配管温度との差を掛けることにより、 その温度差において必要な流量補正量を求め、 この流量補正量を流量センサ 1 1により検出されたガス流量に加算することで検出ガス流量を温度差補正し、 P T/JP2003/011096
13 配管 1 0を流れたガスの実際の流量を精度良く求めるものとなっている。
上記の温度差補正による計測誤差低減の効果は、 第 3図に示すガス流速と計 測誤差との関係を表す計測特性線 a、 dから確認することができる。 ここで、 計測特性線 dは、 既述の試験装置を用いた実験で恒温槽内温度を一 2 5 °Cとし たときに個々のガス流速について得た実測検出出力及び基準検出出力すなわち 計測ガス流量に基づいて作成したものであり、 第 3図の縦軸に示す計測誤差
(%) は、 実測検出出力と基準検出出力との差を基準検出出力で除したものを 1 0 0倍したものである。 一方、 計測特性線 aでの計測誤差は、 実測検出出力 に対して上記の温度差補正を施した補正後の実測検出出力と基準検出出力とか ら求めたものである。 計測特性線 dは、 温度差補正を施さない計測ガス流量が 大きな誤差を含むことを表し、 計測特性線 aは、 温度差補正後の計測ガス流量 における誤差が 1 %以下であることを表している。 第 3図中の計測特性線 b、 cは、 恒温槽内温度を 4 0 °C及び 6 0 °Cとしたときの計測ガス流量に温度差補 正を施して得たものであり、 温度差補正により計測誤差を 1 %以下と十分に小 さく抑えて計測精度を十分に高め得ることを表している。
以上の説明から分かるように、 本発明では、 配管 1 0を通して流量センサを 構成するセンサチップ 1に作用する外部環境の影響が、 実際に流量センサ上を 流れる流体の流量の計測に及ぼす度合いを、 第 1温度センサ 1 2 aにより検出 される流体温度と第 2温度センサ 1 2 b、 1 2 cにより検出される配管温度と の差として簡易に捉えるようにしている。 更に、 この温度差に応じて求めた補 正量を用いて、 流量センサにて検出される流体流量を補正するようにしており、 これにより、 計測流量を簡易にして効果的に補正することができ、 計測精度を 高めることができる。
上述した温度差補正は、 具体的には、 流量演算部 2 1が第 4図に示す流量計 測処理手順を実行することにより行われる。 この流量計測処理では、 流量セン サ 1 1 a〜l 1 dのそれぞれの出力についての補正や、 補正後のセンサ出力に 基づく流量算出を、 流量センサ毎に行うようにしており、 以下の説明において、 個々の流量センサを参照符号 1 1で表すことにする。
さて、 流量計測処理では、 先ず、 流量センサ 1 1からのセンサ出力を入力す る [ステップ S 1 ] 。 次いで、 ガス種 (より一般には流体の種別) に応じて流 量センサの検出感度を調整するべくセンサ出力を補正する [ステップ S 2 ] 。 更に、 圧力センサ 1 3により検出したガス圧力に応じて圧力補正テーブル 2 3 を参照してセンサ出力を圧力補正し [ステップ S 3 ] 、 第 1温度センサ 1 2 a により検出したガス温度に応じて温度補正テーブル 2 2を参照してセンサ出力 を温度補正する [ステップ S 4 ] 。 この様に、 流量センサ 1 1の検出特性の、 ガス種、 ガス圧力及びガス温度に依存する変化をそれぞれ補正した後、 流量セ ンサ 1 1の基準検出特性に応じて個々の流体センサの個体差を補正し [ステツ プ S 5 ] 、 これらの補正を施したセンサ出力に従って配管 1 0内のガス流速 (ガス流量) を求める [ステップ S 6 ] 。
尚、 ステップ S 1〜S 5でのセンサ出力補正処理およびステップ 6での補正 センサ出力に基づくガス流速算出処理は、 4つの流量センサ 1 1 a〜l 1 dに ついて並列に行っても良く、 或いは、 セレクタ回路基板 1 4を介して流量セン サ 1 1 a〜l 1 dのセンサ出力を所定周期で巡回的に入力しつつ、 時分割で実 行しても良い。
第 4図の流量計測処理では、 このようにして流量センサ 1 1 a〜l 1 dのセ ンサ出力からそれぞれ求めたガス流速を平均して平均ガス流速を求める [ステ ップ S 7 ] 。 そして、 この平均ガス流速と、 第 1温度センサ 1 2 aにより検出 されるガス温度と第 2温度センサ 1 2 b、 1 2 cにより検出される配管温度と の差に基づいて、 温度差補正テーブル 2 4を参照して単位温度差あたりの補正 量を求め、 これに温度差を乗じて流量補正量を求める。 その一方で、 ヒータ素 子 R hを駆動しつつ第 1及び第 2温度検出素子 R u、 R dの出力差からガス流 量を計測する。 そして、 流量補正量を用いて計測ガス流量を温度差補正し [ス 3 011096
15 テツプ S 8 ] 、 この温度差補正されたガス流量を、 熱式流量計からガス流量と して出力する [ステップ S 9 ] 。 以降、 上述した処理を繰り返し実行すること で、 ガス流量計測を継続して実行する。
かくして上述した如く構成された熱式流量計によれば、 配管 1 0を通して熱 式流量センサ 1 1に外部から加わる熱的作用に起因する流量センサ 1 1の流量 測定誤差を、 簡単に補正することができる。 しかも、 配管 1 0に取り付けた第 1温度センサ 1 2 aと第 2温度センサ 1 2 b, 1 2 cとにより配管 1 0と流体 との温度差を検出し、 その温度差に基づいた温度差補正を行うと言う簡単な手 法により、 流量測定誤差を除去することができる。
上記実施形態では、 2つの第 2温度センサ 1 2 b, 1 2 cによりそれぞれ計 測される配管温度を平均して平均配管温度を検出するようにしており、 これに より、 例えば配管 1 0の片面側だけが太陽光により照らされて片面側の温度が 高くなる場合であっても、 配管温度を正しく評価することができる。 また、 前 述したように第 2温度センサ 1 2 b, 1 2 cを高速流量センサ 1 1 c , 1 1 dの 近傍に設けているので、 低速流量センサ 1 1 a , 1 1 bを用いて流量計測して いる場合でも、 低速流量センサ 1 1 a, 1 1 bからの熱的影響を受けることな しに配管温度を正確に検出することができる。 尚、 高速流量センサ l i b , 1 1 cを用いて流量計測している場合には、 流速自体が早いので高速流量センサ 1 1 b , 1 1 cからの熱的影響を殆ど受けることなしに配管温度を正確に検出 することができる。 従って、 高速流量センサ 1 1 c、 1 1 dの近傍に設けた 2 つの第 2温度センサ 1 2 b、 1 2 cにより配管温度を正確に検出しながら、 前 述した温度差補正を効果的に行うことができる。
更には、 温度差補正テーブル 2 4には単位温度差当たりの補正量を登録して おけば良いので、 温度差毎に補正量を登録する場合に比べて、 温度差補正テー ブル 2 4の構成を簡素化することができる。 そして、 検出ガス流量に応じて温 度差補正テ一ブル 2 4から求めた単位温度差あたりの補正量に温度差 (ガス温 度と配管温度との差) を乗じて流量補正量を求めるだけでよいので、 流量補正 量の算出ひいては温度差補正を複雑な処理を伴うことなしに簡単に行うことが できる。
尚、 本発明は上述した実施形態に限定されるものではない。
例えば、 実施形態においては、 2つの低速流量センサと 2つの高速流量セン ザとを備えたガスメータについて説明したが、 本発明は、 ガス以外の流体の流 量を計測する熱式流量計に適用可能であり、 また、 流量センサの数も特に限定 されるものではなく、 必ずしも低速流量センサと高速流量センサの双方を備え る必要もない。 また、 第 1及び第 2温度センサの数も特に限定されない。 その 他、 本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。

Claims

請求の範囲
1 . 流体流れ方向に互いに離間して設けられた第 1及び第 2温度検出素子と 両前記温度検出素子の間に設けられたヒ一夕素子とを含むと共に流体が流れる 配管に取り付けられる熱式流量センサを備え、 前記ヒータ素子が駆動されてい る間に前記第 1及び第 2温度検出素子によりそれぞれ検出された温度に基づい て流体流量を計測する熱式流量計であって、
前記配管内を流れる流体の温度を検出する第 1温度センサと、
前記配管の温度を検出する第 2温度センサと、
前記第 1温度センサにより検出された流体温度と前記第 2温度センサにより 検出された配管温度との差に従って補正量を求める温度差補正手段と
を備えることを特徴とする熱式流量計。
2 . 前記温度差補正手段が、 前記第 1温度センサにより検出された流体温度 と前記第 2温度センサにより検出された配管温度との差に従って流量補正量を 前記補正量として求め、
前記第 1及び第 2温度検出素子による検出温度に基づいて計測された流体流 量を前記流量補正量を用いて補正する
ことを特徴とする請求の範囲第 1項に記載の熱式流量計。
3 . 前記温度差補正手段が、 前記流量補正量を流体温度と配管温度との差及 び流体流量の関数として表す温度差補正テーブルを備え、 前記第 1温度センサ により検出された流体温度、 前記第 2温度センサにより検出された配管温度及 び前記第 1及び第 2温度検出素子による検出温度に基づいて測定された流体流 量に応じて前記温度差補正テ一ブルから前記流量補正量を求めることを特徴と する請求の範囲第 2項に記載の熱式流量計。
4. 前記温度差補正手段が、 流体温度と配管温度との差及び流体流量の関数 として単位温度差あたりの流量補正量を表す温度差補正テーブルを備え、 前記 第 1温度センサにより検出された流体温度、 前記第 2温度センサにより検出さ れた配管温度及び前記第 1及び第 2温度検出素子による検出温度に基づいて測 定された流体流量に応じて前記温度差補正テーブルから単位温度差あたりの流 量補正量を求め、
前記第 1温度センサにより検出された流体温度と前記第 2温度センサにより 検出された配管温度との差を前記単位温度差あたりの流量補正量に乗じて前記 流量補正量を求めることを特徴とする請求の範囲第 2項に記載の熱式流量計。
5 . 前記第 1温度センサが、 前記配管内の中央部における流体温度を検出す るように設けられることを特徴とする請求の範囲第 1項に記載の熱式流量計。
6 . 前記第 2温度センサが、 前記配管の壁面温度を検出するように設けられ ることを特徴とする請求の範囲第 1項に記載の熱式流量計。
7 . 前記配管の周方向に互いに離隔して設けられた複数の前記第 2温度セン サを備え、
前記温度差補正手段が、 前記複数の第 2温度センサにより検出された複数の 配管温度を平均して平均配管温度を求め、 また、 前記第 1温度センサにより検 出された流体温度と前記平均配管温度との差に従って前記補正量を求める ことを特徴とする請求の範囲第 1項に記載の熱式流量計。
8 . 前記配管の横断面中心を通る垂線の両側にそれぞれ設けられた 2つの前 記第 2温度センサを備え、
前記温度差補正手段が、 前記 2つの第 2温度センサにより検出された 2つの 配管温度を平均して平均配管温度を求め、 また、 前記第 1温度センサにより検 出された流体温度と前記平均配管温度との差に従つて前記補正量を求める ことを特徴とする請求の範囲第 1項に記載の熱式流量計。
PCT/JP2003/011096 2002-08-29 2003-08-29 熱式流量計 WO2004020958A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10393185T DE10393185B4 (de) 2002-08-29 2003-08-29 Kalorimetrischer Durchflussmesser
AU2003257603A AU2003257603A1 (en) 2002-08-29 2003-08-29 Thermal flowmeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002251050A JP4355792B2 (ja) 2002-08-29 2002-08-29 熱式流量計
JP2002-251050 2002-08-29

Publications (1)

Publication Number Publication Date
WO2004020958A1 true WO2004020958A1 (ja) 2004-03-11

Family

ID=31972661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011096 WO2004020958A1 (ja) 2002-08-29 2003-08-29 熱式流量計

Country Status (5)

Country Link
JP (1) JP4355792B2 (ja)
CN (1) CN100350223C (ja)
AU (1) AU2003257603A1 (ja)
DE (1) DE10393185B4 (ja)
WO (1) WO2004020958A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430216A (zh) * 2007-11-05 2009-05-13 北京七星华创电子股份有限公司 质量流量传感器及控制系统及其实现质量流量控制的方法
US9612146B2 (en) 2014-02-07 2017-04-04 Honeywell International, Inc. Airflow sensor with dust reduction
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device
US20220372968A1 (en) * 2021-05-18 2022-11-24 Hamilton Sundstrand Corporation Variable displacement metering pump system with multivariate feedback

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005057688A1 (de) * 2005-12-01 2007-06-14 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Massedurchflusses eines gasförmigen Mediums
DE102007062908A1 (de) 2007-12-21 2009-06-25 Endress + Hauser Flowtec Ag Verfahren und System zur Bestimmung mindestens einer Prozessgröße eines strömenden Mediums
US8438936B2 (en) * 2011-06-03 2013-05-14 General Electric Company Sensor assembly including a collar for mounting sensors to a pipeline
DE102012102094A1 (de) * 2012-03-13 2013-09-19 Pierburg Gmbh Vorrichtung zur Bestimmung eines Gasmassenstroms sowie Verfahren zur Rekalibrierung einer derartigen Vorrichtung
JP5336640B1 (ja) * 2012-09-17 2013-11-06 東京計装株式会社 熱式流量計
JP6010440B2 (ja) * 2012-12-03 2016-10-19 アズビル株式会社 フローセンサ
CN107421858A (zh) * 2017-06-15 2017-12-01 中国科学技术大学 便携式电子产品及其微颗粒物传感装置
JP2019035640A (ja) * 2017-08-14 2019-03-07 アズビル株式会社 熱式流量計
DE102018105046B4 (de) * 2018-03-06 2023-05-04 Endress+Hauser Flowtec Ag Thermisches Durchflussmessgerät
JP7067789B2 (ja) * 2018-07-02 2022-05-16 サーパス工業株式会社 熱式流量計およびその重み付け係数の決定方法
EP3637218B1 (en) * 2018-10-10 2024-09-11 Gambro Lundia AB Fluid warming device for an extracorporeal blood treatment apparatus and method for detecting a fluid temperature at an outlet of a fluid warming device for an extracorporeal blood treatment apparatus
CN110763278A (zh) * 2019-11-14 2020-02-07 上海权宥环保科技有限公司 一种测量管道内流体介质参数的测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593639A (ja) * 1991-10-01 1993-04-16 Japan Electron Control Syst Co Ltd 流量・流速計測装置
JPH06160139A (ja) * 1992-11-20 1994-06-07 Hitachi Metals Ltd 質量流量計
JPH1194619A (ja) * 1997-09-12 1999-04-09 Gastar Corp 流体流量検出装置および燃焼装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502325A (en) * 1983-09-08 1985-03-05 General Motors Corporation Measurement of mass airflow into an engine
JPS61239119A (ja) * 1985-04-17 1986-10-24 Hitachi Ltd 空気流量検出器
DE4342481C2 (de) * 1993-12-13 1996-09-05 Siemens Ag Verfahren zum Messen der angesaugten Luftmasse
CN2243068Y (zh) * 1996-05-10 1996-12-18 北京圣业科技发展有限公司 气体质量流量计
JP3333712B2 (ja) * 1997-06-19 2002-10-15 三菱電機株式会社 流量検出素子およびそれを用いた流量センサ
JP3848754B2 (ja) * 1997-09-11 2006-11-22 株式会社ガスター 流体流量検出装置
CA2310050A1 (en) * 1997-12-15 1999-06-24 Kazumitsu Nukui Flowmeter
JPH11281418A (ja) * 1998-03-26 1999-10-15 Ricoh Elemex Corp フルイディック型流量計
CH695166A5 (de) * 2000-04-25 2005-12-30 Sensirion Ag Verfahren und Vorrichtung zum Messen des Flusses einer Flüssigkeit.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593639A (ja) * 1991-10-01 1993-04-16 Japan Electron Control Syst Co Ltd 流量・流速計測装置
JPH06160139A (ja) * 1992-11-20 1994-06-07 Hitachi Metals Ltd 質量流量計
JPH1194619A (ja) * 1997-09-12 1999-04-09 Gastar Corp 流体流量検出装置および燃焼装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430216A (zh) * 2007-11-05 2009-05-13 北京七星华创电子股份有限公司 质量流量传感器及控制系统及其实现质量流量控制的方法
CN101430216B (zh) * 2007-11-05 2015-11-25 北京七星华创电子股份有限公司 质量流量传感器及控制系统及其实现质量流量控制的方法
US9612146B2 (en) 2014-02-07 2017-04-04 Honeywell International, Inc. Airflow sensor with dust reduction
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device
US10942080B2 (en) 2015-01-07 2021-03-09 Homeserve Plc Fluid flow detection apparatus
US11209333B2 (en) 2015-01-07 2021-12-28 Homeserve Plc Flow detection device
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
US20220372968A1 (en) * 2021-05-18 2022-11-24 Hamilton Sundstrand Corporation Variable displacement metering pump system with multivariate feedback

Also Published As

Publication number Publication date
DE10393185T5 (de) 2005-10-20
CN1678889A (zh) 2005-10-05
CN100350223C (zh) 2007-11-21
JP4355792B2 (ja) 2009-11-04
JP2004093180A (ja) 2004-03-25
DE10393185B4 (de) 2013-01-31
AU2003257603A8 (en) 2004-03-19
AU2003257603A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
US7363182B2 (en) System and method for mass flow detection device calibration
WO2004020958A1 (ja) 熱式流量計
JP4705140B2 (ja) 質量流量計及びマスフローコントローラ
US7467547B2 (en) Fluid-measuring device and fluid-measuring method
KR20070049246A (ko) 매스 플로우 미터 및 제어기의 열 센서를 위한 자세 에러자기보정
JP2011209152A (ja) 流量計
EP1431717A1 (en) Flow rate measuring instrument
JP2004093179A (ja) 熱式流量計
JP6460911B2 (ja) 熱式マスフローコントローラ及びその傾斜誤差改善方法
JP4269046B2 (ja) 流量計
JP3510378B2 (ja) ガス流量計
JP3961911B2 (ja) 熱式流量計
JP3719802B2 (ja) 多点計測型流量計
JP3998295B2 (ja) 質量流量計
JP2964186B2 (ja) 熱式流量計
JP7529778B2 (ja) 熱式流量計、流量制御装置、熱式流量測定方法、及び、熱式流量計用プログラム
JP4013755B2 (ja) 差圧測定装置
KR102707102B1 (ko) 압력 둔감형 열식 유량계
JP6200896B2 (ja) 風速計
JP5062720B2 (ja) 流れ検出装置
JP5522826B2 (ja) 熱式流量計
JP2004093321A (ja) ブリッジ回路形検出器
JP2001174297A (ja) 流量計測方法および流量計測装置
JPH0835874A (ja) 流量計
JP2003090751A (ja) フローセンサ式流量計及びその校正方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038204169

Country of ref document: CN

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607