WO2007020711A1 - Dcオフセット補正装置及びその方法 - Google Patents

Dcオフセット補正装置及びその方法 Download PDF

Info

Publication number
WO2007020711A1
WO2007020711A1 PCT/JP2005/015164 JP2005015164W WO2007020711A1 WO 2007020711 A1 WO2007020711 A1 WO 2007020711A1 JP 2005015164 W JP2005015164 W JP 2005015164W WO 2007020711 A1 WO2007020711 A1 WO 2007020711A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
offset
state
offset correction
transmission
Prior art date
Application number
PCT/JP2005/015164
Other languages
English (en)
French (fr)
Inventor
Hideharu Shako
Yasuhito Funyu
Takeshi Ohba
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to CN200580051350XA priority Critical patent/CN101238643B/zh
Priority to PCT/JP2005/015164 priority patent/WO2007020711A1/ja
Priority to DE602005024058T priority patent/DE602005024058D1/de
Priority to KR1020087001928A priority patent/KR100935793B1/ko
Priority to EP05772581A priority patent/EP1916773B1/en
Priority to JP2007530893A priority patent/JP4256446B2/ja
Publication of WO2007020711A1 publication Critical patent/WO2007020711A1/ja
Priority to US12/016,354 priority patent/US7564921B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1019Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Definitions

  • the present invention relates to an apparatus and method for correcting a DC component generated by a quadrature modulator in a wireless communication apparatus.
  • FIG. 1 is a diagram for explaining a local leak.
  • a local leak occurs due to a direct current component (DC offset) generated in a DZA converter or modulator. Since this local leak becomes an unnecessary wave, the local leak must be reduced in order to realize high-quality communication.
  • a function DC offset correction circuit
  • the DC offset correction circuit parameters can be updated adaptively during wireless communication device operation. It is desirable to cancel. Therefore, the CPU calculates the DC component using the reference signal data or feedback signal data and adaptively updates the parameters of the DC offset correction circuit to reduce local leaks even if the temperature or IQ amplitude value changes. The device to be realized is realized.
  • FIG. 2 is a diagram for explaining a reference signal type DC offset correction method.
  • a feedback signal obtained by demodulating the output of the amplifier into an IQ signal through a feedback circuit and a reference signal that is a baseband signal before modulation are used.
  • the feedback signal power is also subtracted from the reference signal, and using the error signal obtained by extracting only the DC offset component of the transmission signal, the anti-phase parameter is calculated and the DC offset correction circuit parameter is updated to remove the DC offset. I do.
  • FIG. 3 is a diagram for explaining a feedback signal type DC offset correction method.
  • the DC offset is corrected using only the feedback signal.
  • the CPU estimates the DC offset vector direction and cancels the DC offset by setting a parameter in the DC offset correction circuit that takes an arbitrary amplitude in the opposite direction.
  • the frequency phase used in the feedback circuit changes due to the rotation of the local phase, causing a deviation between the vector direction of the DC offset estimated by the CPU and the actual vector direction. Therefore, the CPU performs arbitrary corrections, investigates how the local phase rotation amount affects the feedback signal, and estimates the vector direction of the DC offset after taking that value into consideration.
  • Fig. 3 (a) shows a DC vector obtained by adding a DC offset to the baseband signal vector.
  • Figure 3 (b) shows the transmitted signal vector (RxDC vector) with the phase rotation ⁇ added to the DC vector.
  • the correction vector that cancels the RxDC vector is generated by rotating the RxDC vector by 180 ° and multiplying it by an arbitrary constant, as shown in Fig. 3 (c).
  • the TxDC vector is obtained as a result of adding the correction vector to the DC vector.
  • the vector rotated by phase ⁇ is the second RxDC vector.
  • the second RxDC vector is a vector after a correction vector is added to the baseband signal, modulated after DZA conversion, and fed back. Therefore, the difference between the RxDC vector in FIG. 3 (b) and the second RxDC vector in FIG. 3 (e) is a vector obtained by phase rotation of the correction vector. Therefore, the phase rotation amount ⁇ is obtained by comparing this difference vector with the first correction vector. Therefore, the correction
  • a correction vector with phase correction corresponding to the amount of phase rotation is stored in the baseband signal. This compensates for the DC offset. After that, if the magnitude of the correction vector is changed sequentially so that the signal points are distributed around the original point on the IQ plane, the DC offset is cancelled.
  • the features of the reference signal type DC offset correction method include the following points.
  • the DC offset is extracted from the error component of the reference signal and the feedback signal, the DC component can be extracted even if the DC offset frequency overlaps the carrier modulation band, so the correction accuracy is high.
  • Patent Document 1 International Publication Number WO2005Z025167 A1 Publication
  • Patent Document 2 International Publication Number WO2005Z025168 A1 Publication
  • An object of the present invention is to provide a DC offset correction apparatus capable of appropriately performing DC offset correction even when correction is difficult with one DC offset correction method.
  • the DC offset correction apparatus of the present invention provides a demodulated feedback signal by feeding back a reference signal having an appropriate delay to the baseband signal, and modulating the baseband signal and then amplifying the signal after amplification by an amplifier.
  • a DC offset correction device that corrects the DC offset of the transmission signal by examining the reference signal,
  • a signal state estimating means for estimating a state of a transmitted signal, a method of correcting a DC offset of the transmitted signal using only the feedback signal based on the estimation result of the signal state, the reference signal and the reference signal One of the methods for correcting the DC offset of the transmission signal using both of the feedback signals is selected, and DC offset correction means for correcting the DC offset of the transmission signal is provided.
  • FIG. 1 is a diagram for explaining a local leak.
  • FIG. 2 is a diagram for explaining a reference signal type DC offset correction method.
  • FIG. 3 is a diagram illustrating a feedback signal type DC offset correction method.
  • FIG. 4 is a diagram illustrating a configuration example of a DC offset correction circuit.
  • FIG. 5 is a diagram showing a DC offset correction circuit.
  • FIG. 6 is a flowchart showing a DC offset correction sequence according to the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a signal state estimation method.
  • FIG. 8 is a diagram showing a method for determining selection of a DC offset correction method.
  • FIG. 9 is a flowchart (part 1) of processing executed by CPU 20.
  • FIG. 10 is a flowchart (part 2) of processing executed by CPU 2O.
  • feedback signal type DC offset correction and reference signal type DC offset correction are used as a method for performing DC offset correction.
  • the signal pattern of the reference signal is analyzed, and a more suitable method is selected and corrected.
  • the calculation of DC offset rarely occurs when the calculation results in an abnormal value due to the noise component being redundant in the data due to the characteristics of storing the instantaneous value in the memory and performing the calculation.
  • limiter values are set for the calculated values to prevent parameter abnormal values from being set, thereby minimizing abnormal parameter values at the time of incorrect calculations.
  • FIG. 4 is a diagram illustrating a configuration example of a DC offset correction circuit.
  • the input signal which is a baseband signal, is delayed by the delay circuit 22 and then stored in the memory circuit 21.
  • This signal is a reference signal.
  • the input signal also has a distortion compensation circuit. After distortion compensation is performed by the path 10, DC offset correction processing is performed by the DC offset correction circuit 11, and then the digital signal is converted into an analog signal by the DZA converter 12 and modulated by the quadrature modulator 13.
  • the local oscillator 15-1 supplies a carrier wave in quadrature modulation. Mainly through the DZA converter 12 and the quadrature modulator 13, the signal gets a DC offset.
  • the output of the quadrature modulator 13 is amplified by the amplifier 14 and output.
  • the output of the amplifier 14 is fed back, multiplied by the oscillation wave of the local oscillator 15-2 in the multiplier 16, and down-converted.
  • the analog signal is converted into a digital signal by the AZD converter 17 and demodulated by the demodulator 18.
  • the demodulated signal is stored in the memory circuit 19.
  • the CPU 20 appropriately reads out the feedback signal and the reference signal from the memory circuits 19 and 21, processes them, obtains a DC offset correction vector, and supplies the DC offset correction vector 11 to the DC offset correction circuit 11.
  • FIG. 5 is a diagram showing a DC offset correction circuit.
  • xi is the input I signal to this circuit
  • xq is the input Q signal to this circuit
  • Xi is the output I signal of this circuit power
  • Xq is the output Q signal from this circuit is there.
  • FIG. 6 is a flowchart showing a DC offset correction sequence according to the embodiment of the present invention.
  • step S10 the reference signal and the feedback signal are written in the memory circuits 21 and 19, respectively.
  • step S11 the current signal state is estimated from the reference signal input data.
  • step S12 a DC offset correction method is selected from the signal state estimated in step S11. In this embodiment, the difference between the feedback signal type DC offset correction method and the reference signal type DC offset correction method is selected.
  • step S13 a correction value is calculated.In step S14, if the calculated value is equal to or greater than the limiter value, the calculated value is considered to be abnormal and the calculated value is ignored and the limiter value is regarded as the correction value. To do. If the calculated value is less than the limiter value, it is calculated The corrected value is used as the correction value. In step S15, the corrected parameter value is updated and set.
  • FIG. 7 is a diagram for explaining a signal state estimation method.
  • the signal state is estimated by the CPU 20 examining the reference signal stored in the memory circuit 21.
  • the power value which is the square sum of the I component XI and Q component Xq of the signal, is a constant value.
  • the power value is observed for a predetermined time, and if the power value remains constant, it is determined that there is no modulation.
  • the burst state of Fig. 7 (b) the data has a constant interval of 0 amplitude. Therefore, if 0 amplitude data continues over a certain number, it is determined as a burst state.
  • the reference signal data is fixed at 0, so that it is determined that the wave-stopping state.
  • FIG. 8 is a diagram showing a method for determining selection of the DC offset correction method.
  • the reference signal type DC offset correction method when the feedback type DC offset correction method is used, if the local leak is hidden within the transmission frequency bandwidth of the carrier, the correction accuracy will drop, so the reference signal type DC Use the offset correction method.
  • the unmodulated wave state if the feedback type DC offset correction method is used, if the carrier frequency and the local leak are the same frequency, the amplitude of the unmodulated carrier is corrected, so the reference signal type DC offset correction method is used. To do. In the burst state, the reference signal type DC offset correction method cannot perform phase adjustment at the point where the transmission data is 0 amplitude, and therefore cannot perform accurate correction. Therefore, the feedback type DC offset correction method is used in the burst state. Since there is no reference signal in the stopped state, the feedback type DC offset correction method is used.
  • 9 and 10 are flowcharts of processing executed by the CPU 20.
  • step S20 the reference signal and the feedback signal are written in the memory circuits 21 and 19, respectively.
  • step S21 the I component of the reference signal is read from the memory circuit 21.
  • step S22 the Q component of the reference signal is read from the memory circuit 21.
  • step S23 the sum of squares of the read I component and Q component is calculated.
  • step S24 the sum of squares is stored in the memory area of the memory circuit 21.
  • step S25 it is determined whether or not all the reference signal data stored in the memory circuit 21 have been read. If the determination in step S25 is no, return to step S21 and repeat the process. If the determination in step S25 is Yes, the signal state is estimated from the calculated sum of squares in step S26.
  • step S28 reference signal type DC offset correction is executed, a correction value is obtained, and the process proceeds to step S29.
  • step S29 it is determined whether or not the correction value is larger than the limiter value. If the determination in step S29 is no, the process proceeds to step S31. If the determination in step S29 is yes, the correction value is replaced with the limiter value in step S30, and the process proceeds to step S31.
  • step S31 the DC offset correction value correction value is updated. As a result, DC offset correction is executed with new correction.
  • FIG. 10 is a flowchart showing details of the state estimation process of FIG.
  • step S35 it is determined whether the amplitude of all signals is 0 or not by detecting the sum of squares. If the determination in step S35 is Yes, it is estimated that the wave is stopped. If the determination in step S35 is No, it is determined in step S36 whether the sum of squares is the same value for all signals. If the determination in step S36 is Yes, it is estimated that the state is an unmodulated wave state. If the determination in step S36 is No, it is determined in step S37 whether or not there is a predetermined number of zero amplitude states. If the determination in step S37 is yes, it is estimated that a burst state is present. If the determination in step S37 is No, the normal state is estimated.

Abstract

 参照信号とフィードバック信号をメモリに書き込み、参照信号の電力値の様子から、現在の信号の状態が通常状態、バースト状態、無変調状態、停波状態のいずれかを判断する。バースト状態と停波状態の場合には、フィードバック信号のみを用いてDCオフセット補正を行うフィードバック信号型DCオフセット補正方法を選択して、DCオフセット補正を行う。通常状態、あるいは、無変調状態と判断された場合には、参照信号とフィードバック信号の誤差信号を用いてDCオフセット補正を行う参照信号型DCオフセット補正方法を選択してDCオフセット補正を行う。

Description

明 細 書
DCオフセット補正装置及びその方法
技術分野
[0001] 本発明は、無線通信装置において、直交変調器により生じる DC成分を補正する装 置及び方法に関する。
背景技術
[0002] 図 1は、ローカルリークについて説明する図である。
直接変調方式を使用した無線通信装置における増幅器では、 DZAコンバータや 変調器において生じる直流成分 (DCオフセット)により、ローカルリークが発生する。こ のローカルリークは、不要波となるので、品質のよい通信を実現するためには、ロー カルリークを低減しなくてはならない。このローカルリークを低減するためには、変調 器において生じる DCオフセットをキャンセルするようなオフセット電圧を与える機能( DCオフセット補正回路)が必要である。変調器の DCオフセット量は温度や入力され る I、 Q信号の振幅に依存して変化するため、無線通信装置の運用時にも DCオフセ ット補正回路のパラメータを更新して適応的に DCオフセットをキャンセルすることが 望ましい。そこで、 CPUが参照信号データまたはフィードバック信号データを使って DC成分を算出して、 DCオフセット補正回路のパラメータを適応的に更新することに より温度や IQ振幅値が変化してもローカルリークを低減させる装置を実現する。
[0003] 従来の DCオフセットの補正方法としては、 2つの方法が知られている。
図 2は、参照信号型 DCオフセット補正方法を説明する図である。
参照信号型 DCオフセットの補正においては、増幅器の出力をフィードバック回路 を介して IQ信号に復調したフィードバック信号と変調前のベースバンド信号である参 照信号を使用する。フィードバック信号力も参照信号を減算し、送信信号の DCオフ セット成分のみを取り出した誤差信号を用いて、逆位相のパラメータを算出して DCォ フセット補正回路のパラメータを更新することにより DCオフセットの除去を行う。この 動作の前には、フィードバック信号と参照信号の位相調整動作を行い、参照信号とフ イードバック信号の信号点位相を合わせる必要がある。 [0004] 図 2 (a)に示すように、参照信号を示すベクトルが Refdtで表されており、図 2 (b)に 示すように、フィードバック信号を示すベクトル力 SFbdtで表されているとする。 Fbdtに は、変調器や DZAコンバータなどにより DCオフセットが加えられている。 Refdtと Fb dtとの位相力 位相調整により一致しているとすると、 Refdtは、 DCオフセットがない 状態の信号であるので、 DCオフセットが加えられている Fbdt力 Refdtを引くことに より、 DCオフセットを表すベクトルが得られる。したがって、演算により得られた DCォ フセットを表すベクトルを、あらかじめ Refdt力も減算し、その後、 DZA変換、及び、 変調をすることによって、 DCオフセットが低減された増幅器出力が得られる。
[0005] 図 3は、フィードバック信号型 DCオフセット補正方法を説明する図である。
フィードバック信号型 DCオフセット補正方法にぉ 、ては、フィードバック信号のみを 用いて DCオフセットの補正を行う。この方法では CPUが DCオフセットのベクトル方 向を推測してその逆方向に任意振幅をとるようなパラメータを DCオフセット補正回路 に設定することにより DCオフセットをキャンセルする。し力し実際はフィードバック回 路で使用する周波数変^^の、ローカル位相が回転することにより CPUが推測した DCオフセットのベクトル方向と実際のベクトル方向にずれが生じる。そこで、 CPUが 任意の補正を行 、、フィードバック信号にローカルの位相回転量がどう影響したかを 調べ、その値を考慮した上で DCオフセットのベクトル方向を推定する。
[0006] 図 3 (a)は、ベースバンド信号ベクトルに DCオフセットが加えられたベクトルであると ころの DCベクトルである。図 3 (b)は、 DCベクトルに位相回転 φが加えられた送信信 号ベクトル(RxDCベクトル)である。 RxDCベクトルをキャンセルする補正ベクトルは 、図 3 (c)に示されるように、 RxDCベクトルを 180° 回転し、任意の定数を乗算して 生成する。そして、図 3 (d)に表されるように、 DCベクトルに補正ベクトルをカ卩えた結 果、 TxDCベクトルを得る。これを、図 3 (e)に示されるように、位相 φだけ回転したベ タトルが第 2の RxDCベクトルである。第 2の RxDCベクトルは、ベースバンド信号に 補正ベクトルをカ卩え、 DZA変換後に変調し、フィードバックした後のベクトルである。 したがって、図 3 (b)の RxDCベクトルと、図 3 (e)の第 2の RxDCベクトルの差は、補 正ベクトルが位相回転されたベクトルとなる。したがって、この差ベクトルと、最初の補 正ベクトルを比較することにより、位相回転量 φが求まる。したがって、次に、補正べ タトルを RxDCベクトルにカ卩える場合には、ベースバンド信号に、この位相回転量だ け位相補正をカ卩えた補正ベクトルをカ卩えるようにする。これにより、 DCオフセットがい くら力補正される。後は、補正ベクトルの大きさを順次可変し、信号点が IQ平面の原 点を中心に分布するようにすれば、 DCオフセットがキャンセルされたことになる。
[0007] フィードバック信号型 DCオフセット補正方法の特徴としては、以下の点が挙げられ る。
•参照信号を使用しな 、ため位相調整を行う必要がな 、。
'無変調波とローカルリークが同じ周波数だった場合、無変調振幅と DCオフセットの 区別ができないため無変調波の振幅までキャンセルしてしまう。
•キャリアの変調帯域内にローカルリークの周波数がある場合、 DC成分の抽出が困 難なため補正精度が落ちる。
[0008] 参照信号型 DCオフセット補正方法の特徴としては、以下の点が挙げられる。
•参照信号とフィードバック信号の誤差成分より DCオフセットを抽出するのでキャリア の変調帯域内に DCオフセットの周波数が重なっても DC成分の抽出が行えるので補 正精度が高い。
•バースト時等、 0振幅が頻繁に発生する送信パターンでは位相調整が正常に行え な!、ため DCオフセット成分の抽出ができな!/、ので DCオフセット補正ができな!/、。
[0009] 上記 DCオフセット補正方法につ ヽては、特許文献 1及び 2に詳細が記載されて ヽ る。
特許文献 1:国際公開番号 WO2005Z025167 A1公報
特許文献 2 :国際公開番号 WO2005Z025168 A1公報
発明の開示
[0010] 本発明の課題は、 1つの DCオフセット補正方法では、補正が難しい場合にも適切 に DCオフセット補正ができる DCオフセット補正装置を提供することである。
本発明の DCオフセット補正装置は、ベースバンド信号に適切な遅延を与えた参照 信号と、該ベースバンド信号によって変調を行い、アンプによって増幅された後の信 号をフィードバックして、復調したフィードバック信号を生成し、送信信号の DCオフセ ットを補正する DCオフセット補正装置において、該参照信号を調べることによって、 送信される信号の状態を推定する信号状態推定手段と、該信号状態の推定結果に 基づ 、て、該フィードバック信号のみを用いて送信信号の DCオフセットを補正する 方法と、該参照信号と該フィードバック信号の両方を用いて送信信号の DCオフセット を補正する方法の一方を選択し、送信信号の DCオフセットを補正する DCオフセット 補正手段とを備えることを特徴とする。
図面の簡単な説明
[0011] [図 1]ローカルリークについて説明する図である。
[図 2]参照信号型 DCオフセット補正方法を説明する図である。
[図 3]フィードバック信号型 DCオフセット補正方法を説明する図である。
[図 4]DCオフセット補正回路の構成例を示す図である。
[図 5]DCオフセット補正回路を示す図である。
[図 6]本発明の実施形態に従った DCオフセットの補正シーケンスを示すフローチヤ ートである。
[図 7]信号状態推定方法を説明する図である。
[図 8]DCオフセット補正方法の選択判断方法示す図である。
[図 9]CPU20が実行する処理のフローチャート(その 1)である。
[図 10]CPU2Oが実行する処理のフローチャート(その 2)である。
発明を実施するための最良の形態
[0012] 本発明の実施形態では、 DCオフセット補正を行う方法として、フィードバック信号 型 DCオフセット補正と参照信号型 DCオフセット補正を用いる。特に、参照信号の信 号パターンを解析して、より適した方式を選択して補正を行う。また、 DCオフセットの 計算は瞬時値をメモリに蓄えて計算を実施する特性上、データにノイズ成分が冗長さ れるなどして計算結果が異常値になる場合が稀に発生する。その場合にパラメータ の異常値設定を防ぐために計算値にリミッタ値を設けることにより、計算間違い時の ノ ラメータ異常値を最小限に抑える。
[0013] 図 4は、 DCオフセット補正回路の構成例を示す図である。
ベースバンド信号である入力信号は、遅延回路 22によって遅延が与えられた後、メ モリ回路 21に格納される。この信号が参照信号である。また、入力信号は、歪補償回 路 10によって歪補償された後、 DCオフセット補正回路 11によって、 DCオフセットの 補正処理がなされた後、 DZAコンバータ 12によってデジタル信号カゝらアナログ信号 に変換され、直交変調器 13によって変調される。局部発振器 15— 1は、直交変調に おいて、キャリア波を供給するものである。主に、 DZAコンバータ 12と直交変調器 1 3を通ることによって、信号は DCオフセットを得る。直交変調器 13の出力は、アンプ 1 4によって増幅され、出力される。
[0014] アンプ 14の出力は、フィードバックされ、乗算器 16において、局部発振器 15— 2の 発振波と乗算され、ダウンコンバートされる。そして、 AZDコンバータ 17によって、ァ ナログ信号からデジタル信号に変換され、復調器 18によって復調される。復調された 信号は、メモリ回路 19に格納される。
[0015] CPU20は、メモリ回路 19と 21からフィードバック信号と参照信号を適宜読み出し、 処理して、 DCオフセット補正ベクトルを求め、 DCオフセット補正回路 11に与える。
[0016] 図 5は、 DCオフセット補正回路を示す図である。
xiは、この回路への入力 I信号であり、 xqは、この回路への入力 Q信号であり、 Xiは 、この回路力もの出力 I信号であり、 Xqは、この回路からの出力 Q信号である。
[0017] DCオフセットの I成分と Q成分をそれぞれ、 Idc、 Qdcとすると、
Idc + dc— i=0、 Qdc + dc— q = 0となる dc— iと dc— qを設定することにより、 DCォ フセットを補正する。
[0018] 図 6は、本発明の実施形態に従った DCオフセットの補正シーケンスを示すフロー チャートである。
まず、ステップ S10において、参照信号、及び、フィードバック信号をメモリ回路 21、 19にそれぞれ書き込む。ステップ S 11において、参照信号の入力データより、現在 の信号の状態を推測する。ステップ S 12において、ステップ S 11において推測された 信号状態より、 DCオフセットの補正方法を選択する。本実施形態では、フィードバッ ク信号型 DCオフセット補正方法と、参照信号型 DCオフセット補正方法の 、ずれか を選択する。ステップ S 13において、補正値を計算し、ステップ S 14において、計算さ れた値がリミッタ値以上だった場合は、計算値が異常であるとして、計算値を無視し てリミッタ値を補正値とする。計算された値がリミッタ値より小さい場合には、計算され た値を補正値として使う。ステップ S15において、補正されたパラメータ値を更新、設 定する。
[0019] 図 7は、信号状態推定方法を説明する図である。
信号状態は、 CPU20がメモリ回路 21に格納された参照信号を調べることにより推 定される。
[0020] 図 7 (a)の無変調状態の場合には、信号の I成分 XIと Q成分 Xqの 2乗和である電力 値が一定値となる。所定時間電力値を観測し、電力値一定状態が続けば、無変調状 態であると判断する。一方、図 7 (b)のバースト状態では、データが一定区間 0振幅と なる。したがって、 0振幅データが一定数以上続く場合には、バースト状態と判断する
[0021] また、停波状態の場合には、参照信号のデータが 0で固定されるので、停波状態と 判断する。
図 8は、 DCオフセット補正方法の選択判断方法示す図である。
[0022] 図 8に示されるように、フィードバック型 DCオフセット補正方法を用いると、キャリア の送信周波数帯域幅内にローカルリークが隠れてしまう場合、補正精度が落ちてし まうので、参照信号型 DCオフセット補正方法を使用する。無変調波状態では、フィ ードバック型 DCオフセット補正方法であると、キャリア周波数とローカルリークが同じ 周波数の場合、無変調キャリアの振幅まで補正してしまうので、参照信号型 DCオフ セット補正方法を使用する。バースト状態では、参照信号型 DCオフセット補正方法 では、送信データが 0振幅のポイントで位相調整が不可能となるため、精度のよい補 正ができない。したがって、バースト状態では、フィードバック型 DCオフセット補正方 法を用いる。停波状態では、参照信号がないため、フィードバック型 DCオフセット補 正方法を用いる。
[0023] 以上の判断方法は、 CPU20が実行する。
図 9及び図 10は、 CPU20が実行する処理のフローチャートである。
まず、ステップ S20において、参照信号とフィードバック信号をメモリ回路 21及び 19 にそれぞれ書き込む。ステップ S21において、メモリ回路 21から参照信号の I成分を 読み出す。ステップ S22において、メモリ回路 21から参照信号の Q成分を読み出す。 ステップ S23において、読み出した I成分と Q成分の 2乗和を算出する。ステップ S24 において、 2乗和をメモリ回路 21のメモリ領域に記憶する。ステップ S25において、メ モリ回路 21に記憶されているすべての参照信号のデータを読み出した力否かを判 断する。ステップ S25の判断が Noの場合には、ステップ S21に戻って、処理を繰り返 す。ステップ S25の判断が Yesの場合には、ステップ S26において、算出された 2乗 和の値から、信号状態の推定を行う。信号状態の推定の結果、通常状態あるいは無 変調状態であると判断された場合には、ステップ S28において、参照信号型 DCオフ セット補正を実行し、補正値を得、ステップ S29に進む。信号状態の推定の結果、バ 一スト状態、あるいは、停波状態であると判断された場合には、ステップ S27におい て、フィードバック型 DCオフセット補正を実行し、補正値を得、ステップ S29に進む。 ステップ S29においては、補正値がリミッタ値より大きいか否かを判断する。ステップ S 29の判断が Noの場合には、ステップ S31に進む。ステップ S29の判断が Yesの場 合には、ステップ S30において、補正値をリミッタ値に置き換え、ステップ S31に進む 。ステップ S31においては、 DCオフセット補正値補正値を更新する。これにより、新 たな補正により、 DCオフセット補正が実行される。
図 10は、図 9の状態推定処理の詳細を示すフローチャートである。
ステップ S35において、 2乗和の検出により、すべての信号の振幅が 0であるか否か を判断する。ステップ S35の判断が Yesの場合には、停波状態であると推定する。ス テツプ S35の判断が Noの場合には、ステップ S36において、 2乗和がすべての信号 について同じ値カゝ否かを判断する。ステップ S36の判断が Yesの場合には、無変調 波状態であると推定する。ステップ S36の判断が Noの場合には、ステップ S37にお いて、連続して所定個の 0振幅状態がある力否かを判断する。ステップ S37の判断が Yesの場合には、バースト状態であると推定する。ステップ S37の判断が Noの場合 には、通常状態と推定する。

Claims

請求の範囲
[1] ベースバンド信号に適切な遅延を与えた参照信号と、該ベースバンド信号によって 変調を行い、アンプによって増幅された後の信号をフィードバックして、復調したフィ ードバック信号を生成し、送信信号の DCオフセットを補正する DCオフセット補正装 ¾【こ; i l /、て、
該参照信号を調べることによって、送信される信号の状態を推定する信号状態推 定手段と、
該信号状態の推定結果に基づいて、該フィードバック信号のみを用いて送信信号 の DCオフセットを補正する第 1の方法と、該参照信号と該フィードバック信号の両方 を用いて送信信号の DCオフセットを補正する第 2の方法の一方を選択し、送信信号 の DCオフセットを補正する DCオフセット補正手段と、
を備えることを特徴とする DCオフセット補正装置。
[2] 前記信号状態推定手段は、前記参照信号の電力値を用いて信号の状態を推定す ることを特徴とする請求項 1に記載の DCオフセット補正装置。
[3] 前記信号状態推定手段は、送信信号が、通常の送信状態、バースト信号の送信状 態、無変調波の送信状態、停波状態のいずれであるかを推定することを特徴とする 請求項 1に記載の DCオフセット補正装置。
[4] 前記送信信号が、バースト信号の送信状態、あるいは、停波状態の場合には、前 記第 1の方法を用いて DCオフセットの補正処理を行うことを特徴とする請求項 3に記 載の DCオフセット補正装置。
[5] 前記送信信号が、通常の送信状態、あるいは、無変調波の送信状態の場合には、 前記第 2の方法を用いて DCオフセットの補正処理を行うことを特徴とする請求項 3に 記載の DCオフセット補正装置。
[6] 前記送信信号の DCオフセットを補正する場合の補正値が所定の値よりも大きくな る場合には、該補正値は、該所定の値に置き換えられて、 DCオフセットの補正が行 われることを特徴とする請求項 1に記載の DCオフセット補正装置。
[7] ベースバンド信号に適切な遅延を与えた参照信号と、該ベースバンド信号によって 変調を行い、アンプによって増幅された後の信号をフィードバックして、復調したフィ ードバック信号を生成し、送信信号の DCオフセットを補正する DCオフセット補正方 法において、
該参照信号を調べることによって、送信される信号の状態を推定し、
該信号状態の推定結果に基づいて、該フィードバック信号のみを用いて送信信号 の DCオフセットを補正する第 1の方法と、該参照信号と該フィードバック信号の両方 を用いて送信信号の DCオフセットを補正する第 2の方法の一方を選択し、送信信号 の DCオフセットを補正する、
ことを特徴とする DCオフセット補正方法。
PCT/JP2005/015164 2005-08-19 2005-08-19 Dcオフセット補正装置及びその方法 WO2007020711A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200580051350XA CN101238643B (zh) 2005-08-19 2005-08-19 直流偏移校正装置及其方法
PCT/JP2005/015164 WO2007020711A1 (ja) 2005-08-19 2005-08-19 Dcオフセット補正装置及びその方法
DE602005024058T DE602005024058D1 (de) 2005-08-19 2005-08-19 Gleichstrom-Offsetkorrektureinrichtung und Verfahren dafür
KR1020087001928A KR100935793B1 (ko) 2005-08-19 2005-08-19 Dc 오프셋 보정 장치 및 그 방법
EP05772581A EP1916773B1 (en) 2005-08-19 2005-08-19 DC offset correction device and its method
JP2007530893A JP4256446B2 (ja) 2005-08-19 2005-08-19 Dcオフセット補正装置及びその方法
US12/016,354 US7564921B2 (en) 2005-08-19 2008-01-18 DC offset correction apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015164 WO2007020711A1 (ja) 2005-08-19 2005-08-19 Dcオフセット補正装置及びその方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/016,354 Continuation US7564921B2 (en) 2005-08-19 2008-01-18 DC offset correction apparatus and method

Publications (1)

Publication Number Publication Date
WO2007020711A1 true WO2007020711A1 (ja) 2007-02-22

Family

ID=37757383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015164 WO2007020711A1 (ja) 2005-08-19 2005-08-19 Dcオフセット補正装置及びその方法

Country Status (7)

Country Link
US (1) US7564921B2 (ja)
EP (1) EP1916773B1 (ja)
JP (1) JP4256446B2 (ja)
KR (1) KR100935793B1 (ja)
CN (1) CN101238643B (ja)
DE (1) DE602005024058D1 (ja)
WO (1) WO2007020711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075144A1 (ja) * 2007-12-10 2009-06-18 Nec Corporation 無線通信装置および直流オフセット調整方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256446B2 (ja) * 2005-08-19 2009-04-22 富士通株式会社 Dcオフセット補正装置及びその方法
JP2010054218A (ja) * 2008-08-26 2010-03-11 Toyota Central R&D Labs Inc デジタル信号処理装置及びそれを有するフェーズドアレイレーダ
KR101184861B1 (ko) 2011-09-27 2012-09-20 한국전력공사 전력량계의 직류 오프셋 제거장치 및 방법
CN113595640B (zh) * 2020-04-30 2023-06-27 华为技术有限公司 一种信号处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285387A (ja) * 2000-01-28 2001-10-12 Hitachi Kokusai Electric Inc 負帰還回路を備えた電力増幅回路及び位相制御方法
JP2001339452A (ja) * 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc 直交変調装置及び直交変調誤差検出方法
US20030174783A1 (en) 2002-03-12 2003-09-18 Mahibur Rahman Self calibrating transmit path correction system
WO2005025167A1 (ja) 2003-09-05 2005-03-17 Fujitsu Limited オフセット補償装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959500A (en) * 1998-01-26 1999-09-28 Glenayre Electronics, Inc. Model-based adaptive feedforward amplifier linearizer
US5990734A (en) * 1998-06-19 1999-11-23 Datum Telegraphic Inc. System and methods for stimulating and training a power amplifier during non-transmission events
GB2354649A (en) * 1999-09-22 2001-03-28 Cadence Design Systems Inc Method and apparatus for generating a modulated radio frequency output signal
US6384677B2 (en) 2000-01-28 2002-05-07 Hitachi Kokusai Electric Inc. Power amplifier having negative feedback circuit for transmitter
US6560447B2 (en) * 2001-03-05 2003-05-06 Motorola, Inc. DC offset correction scheme for wireless receivers
JP4256446B2 (ja) * 2005-08-19 2009-04-22 富士通株式会社 Dcオフセット補正装置及びその方法
JP4758781B2 (ja) * 2006-01-31 2011-08-31 富士通株式会社 Dcオフセット補正装置及びその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285387A (ja) * 2000-01-28 2001-10-12 Hitachi Kokusai Electric Inc 負帰還回路を備えた電力増幅回路及び位相制御方法
JP2001339452A (ja) * 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc 直交変調装置及び直交変調誤差検出方法
US20030174783A1 (en) 2002-03-12 2003-09-18 Mahibur Rahman Self calibrating transmit path correction system
WO2005025167A1 (ja) 2003-09-05 2005-03-17 Fujitsu Limited オフセット補償装置
WO2005025168A1 (ja) 2003-09-05 2005-03-17 Fujitsu Limited オフセット補償装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1916773A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075144A1 (ja) * 2007-12-10 2009-06-18 Nec Corporation 無線通信装置および直流オフセット調整方法
JPWO2009075144A1 (ja) * 2007-12-10 2011-04-28 日本電気株式会社 無線通信装置および直流オフセット調整方法
US8396433B2 (en) 2007-12-10 2013-03-12 Nec Corporation Radio communication apparatus and DC offset adjustment method

Also Published As

Publication number Publication date
JPWO2007020711A1 (ja) 2009-02-19
EP1916773A1 (en) 2008-04-30
DE602005024058D1 (de) 2010-11-18
US20080111723A1 (en) 2008-05-15
CN101238643B (zh) 2010-12-15
CN101238643A (zh) 2008-08-06
EP1916773B1 (en) 2010-10-06
US7564921B2 (en) 2009-07-21
EP1916773A4 (en) 2010-01-27
KR20080028961A (ko) 2008-04-02
KR100935793B1 (ko) 2010-01-06
JP4256446B2 (ja) 2009-04-22

Similar Documents

Publication Publication Date Title
JP3957077B2 (ja) 歪補償装置
US7539268B2 (en) Transmission/reception arrangement and method for reducing nonlinearities in output signals from a transmission/reception arrangement
US7327191B2 (en) Distortion compensating apparatus and method
KR100864558B1 (ko) 왜곡 보상 장치 및 왜곡 보상 방법
KR100954706B1 (ko) Dc 오프셋 수정 수신기
EP1878111B1 (en) Dc offset detection and cancellation in a receiver
US7133649B2 (en) Negative feedback amplifier for transmitter, transmitter, and method of correcting error in the negative feedback amplifier
JP5012581B2 (ja) 歪補償増幅装置および補正方法
JP4901679B2 (ja) 無線送受信装置及び無線送信方法
JP2007195056A (ja) 歪み補償装置及び歪み補償方法
JP4256446B2 (ja) Dcオフセット補正装置及びその方法
US8681896B1 (en) Transmitter I/Q and carrier leak calibration
EP2154852B1 (en) DC Offset correction in a transmitter
EP2903232B1 (en) Compensation device, and wireless communication device
JP2019057878A (ja) 直交変調器におけるキャリアリーク補正方法
KR101980862B1 (ko) 트랜시버 내 국부 발진기의 위상 동기화를 위한 장치 및 방법
JPH0983417A (ja) 無線機
JP2007173896A (ja) オフセット補正装置及び無線装置
JP2005117436A (ja) 送信機
JP2008098781A (ja) 通信装置
JP3869976B2 (ja) 高周波電力増幅装置
JP3884965B2 (ja) デジタル無線機
JPH09199959A (ja) 無線機
JP2008072522A (ja) ループバック遅延補正装置及びループバック遅延補正方法
JP2010187334A (ja) 非線形歪み補償装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007530893

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005772581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12016354

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087001928

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580051350.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005772581

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 12016354

Country of ref document: US