WO2007018259A1 - シチジンジリン酸コリンの精製方法 - Google Patents

シチジンジリン酸コリンの精製方法 Download PDF

Info

Publication number
WO2007018259A1
WO2007018259A1 PCT/JP2006/315802 JP2006315802W WO2007018259A1 WO 2007018259 A1 WO2007018259 A1 WO 2007018259A1 JP 2006315802 W JP2006315802 W JP 2006315802W WO 2007018259 A1 WO2007018259 A1 WO 2007018259A1
Authority
WO
WIPO (PCT)
Prior art keywords
choline
cdp
utp
culture
solution
Prior art date
Application number
PCT/JP2006/315802
Other languages
English (en)
French (fr)
Inventor
Hideki Murata
Tsuyoshi Mokudai
Michio Shiomi
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to EP06782606.5A priority Critical patent/EP1939210B1/en
Priority to US12/063,318 priority patent/US8303820B2/en
Priority to CN200680037687XA priority patent/CN101448846B/zh
Priority to KR1020087004972A priority patent/KR101311571B1/ko
Priority to JP2007529619A priority patent/JP4977608B2/ja
Publication of WO2007018259A1 publication Critical patent/WO2007018259A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids

Definitions

  • the present invention relates to a method for purifying cytidine diphosphate, which is useful as a raw material for pharmaceuticals and nutritional foods.
  • Cytidine diphosphate choline includes chemical synthesis methods (Patent Document 1, Patent Document 2), methods using microorganism culture or enzymes (Patent Document 3, Patent document 4) is known.
  • Methods for purifying CDP-choline produced by chemical synthesis include an anion exchange resin (Patent Document 1), a purification method using a combination of a strongly acidic ion exchange resin and a weakly basic ion exchange resin ( Patent Document 2) is known. In the latter method, two types of ion exchange resins are used, and phosphorylcholine, cytidine-5 '-phosphate (hereinafter abbreviated as CMP) contained in a CDP-choline solution. ) Can be separated, but it is not a method that can efficiently separate uracinole or uridine-5'-triphosphate (hereinafter abbreviated as UTP).
  • Patent Document 1 Japanese Patent Publication No. 63-6558
  • Patent Document 2 Japanese Patent Publication No. 6-31306
  • Patent Document 3 Patent No. 3369236
  • Patent Document 4 Pamphlet of International Publication No. 99/49073
  • An object of the present invention is to provide a method for purifying CDP-choline that can easily separate CDP-choline and nucleic acid-related substances.
  • the present invention relates to the following (1) to (6).
  • a CDP-choline solution containing a nucleic acid-related substance and having a pH force of S0.5 or more and 5.0 or less is contacted with a H-type strong acid cation exchange resin, and the CDP-choline adsorbed on the resin is concentrated in water or ion concentration.
  • a method for purifying CDP-choline characterized in that CDP-choline is separated and purified by elution with an aqueous solution having a degree of O. lmol / L or less.
  • CDP-choline solution power A biocatalyst that has the activity of producing CDP-collin from UTP precursor and choline or phosphorylcholine in UTP precursor and choline or phosphorylcholine or their salts and aqueous medium.
  • the method for purifying CDP-choline according to (1) above which is a solution prepared from the medium obtained by coexisting in the above and producing and accumulating CDP-choline in the medium.
  • a microorganism having the ability of a biocatalyst to produce UTP from a precursor of UTP or a treated product of the culture, and to produce CDP-collin from UTP and choline or phosphorylcholine The method for purifying CDP-choline according to the above (2), which is a biocatalyst containing the culture of the above or a processed product of the culture.
  • biocatalyst comprises a biocatalyst comprising an enzyme responsible for generating CDP-choline from a UTP precursor and choline or phosphorylcholine.
  • Enzymatic power responsible for the reaction to produce CDP-choline S orotate phosphoribosyltransferase, orotidine-5'-monophosphate decarboxylase, uridine phosphorylase, uracinole phosphoribosyltransferase, uridine kinase, uridyl CDP-choline of (4) above, which is an enzyme selected from the group consisting of acid. Cytidyl kinase, nucleoside diphosphate kinase, cytidine-5-triphosphate synthetase, choline phosphate cytidyl transferase, and choline kinase. Purification method.
  • nucleic acid-related substance is a substance selected from uracil and UTP.
  • CDP-choline and a salt thereof are provided at low cost.
  • the CDP-choline solution used in the present invention may be prepared by any method as long as it contains a nucleic acid-related substance and has a pH of 0.5 or more and 5.0 or less. If the pH of the CDP-choline solution is 0.5 to 5.0, add an acid such as hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid if the pH is higher than 5.0. sodium, It can be used by adding an alkali such as potassium hydroxide and adjusting the pH to 0.5 to 5.0, preferably 1.0 to 3.5.
  • the H-type strong acid cation exchange resin may be either a gel type or a porous type as long as it is an H-type strong acid cation exchange resin.
  • HCR-S, HCR-W2, Marathon C Monosphere 650C, MSC-1, Monosphere 88, 50W X 2, 50W X 4, 50W X 8, etc., Mitsubishi Chemical's Diaion SK series (eg SK1B, SK104) , SK110, SKI12, etc.), Diaion PK series (for example, ⁇ 208, ⁇ 212, ⁇ 220, ⁇ 228, etc.) manufactured by Mitsubishi Chemical Corporation, Amberlite series (for example, IR120B, IR124, etc.) manufactured by Rohm 'and' Haas .
  • the degree of crosslinking of the H-form strongly acidic cation exchange resin is not particularly limited as long as it is a degree of crosslinking that can separate CDP-choline and nucleic acid-related substances, but 2 to 10% is preferable, and 4 ⁇ 6%.
  • the H-type strongly acidic cation exchange resin is preferably used in the present invention in a form packed in a column, but any column may be used in the present invention.
  • a CDP-choline solution containing a nucleic acid-related substance and having a pH of 0.5 or more and 5.0 or less is brought into contact with the resin by passing it through a column packed with a H-type strongly acidic cation exchange resin, etc.
  • Ability to adsorb to the resin for example, H-type strong acidity with a crosslinking degree of 2 to 10%
  • CDP-choline and nucleic acid analogues contained in the solution in particular, ortho acid, orotidine-5 '-phosphate (hereinafter abbreviated as OMP), uridine-5'-phosphorus Acid (hereinafter abbreviated as UMP), uridine-5, -diphosphate (hereinafter abbreviated as UDP), UTP, CMP, cytidine-5, -diphosphate (hereinafter abbreviated as CDP), cytidine-5 ' -Pyrimidine-based nucleic acid substances such as triphosphate (hereinafter abbreviated as CTP) can be suitably separated and removed.
  • OMP ortho acid, orotidine-5 '-phosphate
  • UMP uridine-5'-phosphorus Acid
  • UDP uridine-5, -diphosphate
  • CTP cytidine-5, -diphosphate
  • CTP triphosphate
  • uracil or UTP is not adsorbed to the resin at all, even if a CDP-choline solution containing these is brought into contact with the resin at a pH of 5.0 or more and 5.0 or less. It can be suitably separated and removed.
  • CDP-choline adsorbed on the H-form strongly acidic cation exchange resin has an ion concentration of 0.1 mol / L. Thereafter, CDP-choline is eluted from the resin by preferably eluting with an aqueous solution of 0.03 mol / L or less, more preferably by passing water through the column, and CDP-choline can be separated and purified.
  • the collected CDP-choline-containing solution by the above elution process is treated with activated carbon or a non-polar porous synthetic adsorbent as necessary, such as Diaion HP series (for example, HP20, HP21, etc.) manufactured by Mitsubishi Chemical, Mitsubishi. Diaion SP800 series (for example, SP825, SP850, etc.) manufactured by Kagaku Corporation, Diaion SP200 series (for example, SP207) manufactured by Mitsubishi Chemical Corporation, Amberlite XAD series (for example, XAD4, XAD7HP, XAD16HP, XAD1180) manufactured by Rohm 'and' Hearth , XAD2000, etc.) may be used to perform the decoloring process.
  • Diaion HP series for example, HP20, HP21, etc.
  • Diaion SP800 series for example, SP825, SP850, etc.
  • Diaion SP200 series for example, SP207
  • Amberlite XAD series for example, XAD4, XAD7HP, XAD16HP,
  • the above-mentioned CDP-choline-containing solution or decolorizing solution is adjusted to pH 2.0 to 4.0 with acid or alkali and concentrated as necessary, and then the concentration of CDP-choline is 50 to 800 g / re, preferably 100 to
  • the CDP-choline crystals can be obtained by adjusting to 700 g / L and using an organic solvent, preferably a hydrophilic organic solvent such as acetone, ethanol, methanol and propanol.
  • the above-mentioned CDP-choline-containing solution or decolorizing solution is adjusted to pH 5.0 to 9.5 with sodium hydroxide and concentrated as necessary, and then the CDP-choline concentration is 50 to 800 g, preferably 100 to 700 g / CDP-choline sodium salt crystals can be obtained using an organic solvent, preferably a hydrophilic organic solvent such as acetone, ethanol, methanol, propanol, etc.
  • an organic solvent preferably a hydrophilic organic solvent such as acetone, ethanol, methanol, propanol, etc.
  • a method for obtaining CDP-choline crystals using an organic solvent for example, a method of adding an organic solvent to a CDP-choline solution to precipitate crystals, or dropping a CDP-choline solution into a large amount of an organic solvent.
  • a method for precipitating crystals for example, a method of adding an organic solvent to a CDP-choline solution to precipitate crystals, or dropping a CDP-choline solution into a large amount of an organic solvent.
  • any solution containing CDP-choline and a nucleic acid analogue can be used as the CDP-choline solution containing a nucleic acid analogue.
  • a solution produced by a method using a biocatalyst having an activity of producing CDP-choline from a precursor and choline or phosphorylcholine (hereinafter abbreviated as CDP-choline producing activity) can be raised.
  • Examples of the biocatalyst include a culture of a microorganism having CDP-choline producing activity, a treated product of the culture, an enzyme responsible for a reaction for producing CDP-choline, and the like.
  • the microorganism may be any microorganism as long as it has CDP-choline producing activity, and the microorganism originally having CDP-choline producing activity can be used as it is for the production of CDP-choline.
  • Microorganisms that do not have a production activity can be used for the production of CDP-choline by introducing DNA encoding an enzyme responsible for the reaction of producing CDP-choline from a UTP precursor and choline or phosphocholine.
  • the microorganism is preferably the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, or the microbacterium. Genus, Pseudomonas, Streptococcus ⁇ i reptococcus j3 ⁇ 4.
  • the microorganisms belonging to the genus Escherichia include Escherichia coli MM294, Escherichia coli XLl_Blue, Escherichia coli XL2_Blue, Escherichia coli DH1, Escherchia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109B, Escherichia coli JM109B Examples include microorganisms belonging to Eschsri chia mil such as E. coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Eschericma coli GI698, and Escherichia coli TBI.
  • microorganisms belonging to the genus Seragia include column 3 ⁇ 4erratia ncaria. Serratia fonticola. Serratia ligueiaciens. And Serratia marcescens.
  • E ⁇ fc As a microorganism belonging to the genus Bacillus (E ⁇ fc), it is possible to obtain Bacillus subtins. Bacillus meeatenum. And Bacillus amyloliciuefaciens.
  • Examples of fine cattle belonging to the genus Brevibacterium include Bre VI bacterium immariophilum. Brevibacterium saccharolvticum. Brevibacterium flavum, Brevibacterium lactofermentum.
  • Corynebacterium (£ Microorganisms belonging to the genus Orvnebacterium) include Corvnebacterium glutamicum ATCC130 32, and orvneDacterium glutamicum ATC and Corvnebacterium glutamic ⁇ ⁇ , such as Corvnebacterium ammoniagenes AT and C6872, ! ⁇ Microorganisms that belong to this species, such as Corvnebacterium acetoacidophilum ATC and small cattle belonging to Corvnebacterium acetoacido Dhilum, such as 13870.
  • Microbacteria (microbacteri ⁇ genus microorganisms include microbacterium ammoniaphilum ATCC15354 and other microbes belonging to the genus Crobactenum ammomaohilum, Microbacterium lactium. And Micro bacterium imoeriale, etc.
  • Micro cattle belonging to the genus Pseudomonas Examples include Pseudomonas mitida, etc.
  • Sinorhizobium can be mentioned Sinorhizobium mel iloli etc.
  • Examples of the microorganisms belonging to. the Mofirasu (Haemophilus) genus, examples of the microorganisms belonging to the n Asuronoku Kuta one (Arthrobacter) genus can be force S mentioned Haemophilus influenzae and the like, Arthrobacter citreus, Arthrobacter globiformis and so on.
  • Examples of microorganisms belonging to the genus Aureobacterium include Au reobactenum flavescens, Aureobacterium saperdae, Aureobactenum testaceu Hi, etc.
  • Microorganisms belonging to the genus Cellulomonas include Cellulomonas flavigena, Cellulomonas carta, etc.
  • Examples of the microorganisms belonging to the n Kurabibaku coater (Clavibacter) genus may be mentioned, Clavibacter michiganensis, and Cla vibacter mtii i like.
  • Kurt bata Teri ⁇ beam (Curtobacterium) genus Ru microorganism to the genus Fei is to urtobactermm albidum.
  • urtobactermm citreum, 33 ⁇ 4 11 obacterium luteum.
  • Pimerobacter sinmlex and the like can be mentioned as the fine beef belonging to the genus Pimerobacter.
  • the Saccharomyces (Saccharomvces) fine cattle products belonging to the genus can it force s raise the Saccharomvces cere ⁇ ⁇ and the like.
  • microorganisms belonging to the genus Schizosaccharomvces include Schizosaccharomvces. Kluvyeromyces lactis and other microorganisms belonging to the genus KluYveromv_ces_ Ability to do S.
  • microorganisms belonging to the genus TrichosDoron include Trichosporo n Mla.
  • Schwaniomvces alluvius and the like can be mentioned as fine cattle belonging to the genus Schwaniomvces.
  • microorganisms belonging to the genus Pichia include Pichia.
  • Examples of microorganisms belonging to the genus include Candida.
  • microorganism more preferably, the genus Escherichia, Bacillus (Bacill)
  • Brevibacterium Brevibacterium, Corvnebacterium, and Saccharomvces, and more preferably Escherichia, Brevipacteria ( Examples include microorganisms belonging to the genus Brevibacterium and the genus Corvnebacterium.
  • a transformant obtained by introducing DNA encoding the enzyme responsible for the reaction into the microorganism by the following method is preferably used. It is done.
  • CDP-choline synthase The DNA encoding the enzyme responsible for the reaction of generating CDP-choline from UTP precursor and choline or phosphorylcholine (hereinafter abbreviated as CDP-choline synthase) has, for example, the activity of generating OMP from orotate Orotate phosphoribosyltransferase [EC 2.4.2.10], orotidine-5'-monophosphate decarboxylase [EC 4.1.1.23], which has the activity of generating UMP from OMP, uridine phosphorylase [EC 4.1.1.23], which has the activity of generating uridine from uracil 2.4.2.3], uracil phosphoribosyltransferase with activity to generate UMP from uracil [EC 2.4.2.9], uridine kinase with activity to generate UMP from uridine [EC 2.7.1.48], UDP from UMP Uridylate / cytidylate kinase [EC
  • the DNA encoding CDP-choline synthase is preferably a DNA encoding PyrG, CKI, and CCT.
  • DNA encoding p vr G is cloned from the chromosome of Escherichia coli, the entire base sequence has been determined [J. Biol. Chem., 261 , 5568 (1986)] 0 PyrG encoding DN A
  • Smal-Pstl in the multicloning site of ⁇ , 2426 bp NmI_E ⁇ containing DNA encoding PvrG derived from Escherichia coli at ⁇ -position
  • Examples include pMW6 [Biosci. Biotechnol. Biochem., 61, 956 (1997)], which is a plasmid inserted with the I fragment.
  • Recombinant DNA containing DNA encoding CCT includes 1296 bp of DNA containing yeast-derived CCT at one site of the multiple cloning site of Escherichia c 2 c vector pUC18 [Gene, 33, 103 (1985)]. Examples include plasmid PCC41 [Biochemistry, 701 (1988)] with a Dml fragment inserted.
  • DNA encoding CKI has also been cloned from the yeast chromosome and its entire nucleotide sequence has been determined [J. Biol. Chem., 264, 2053 (1989)].
  • Recombinant DNA having DNA encoding CKI includes yeast and Escherichia coli shuttle vector YEDM4 “Mol. Cell. Biol., 7, 29 (1987)”.
  • Plasmid pCKlD [J. Biol. Chem., 264, 2053 (1989)] containing E ⁇ I-Hindin fragments of
  • DNA encoding PyrG, CCT, or CKI is obtained from the plasmid pMW6, plasmid pCC41, or plasmid pCKID, and the polypeptide is encoded as necessary based on the obtained DNA.
  • DNA in which the base sequence of the portion encoding CDP-choline synthase is replaced with a base so that it becomes the optimal codon for host cell expression.
  • the DNA is useful for the efficient production of CDP-choline synthase.
  • a recombinant vector is prepared by inserting the DNA fragment or full-length DNA downstream of the promoter of an appropriate expression vector. At this time, DNAs encoding CDP-choline synthase may be inserted into expression vectors separately, or a plurality of DNAs may be inserted into the same expression vector.
  • the recombinant vector is introduced into a host cell compatible with the expression vector.
  • Examples of host cells include the microorganisms described above.
  • a vector that can replicate autonomously in the host cell or can be integrated into the chromosome and contains a promoter at a position where DNA encoding CDP-choline synthase can be transcribed is used.
  • the recombinant vector containing DNA encoding CDP-choline synthase is capable of autonomous replication in prokaryotes, and at the same time, is associated with a promoter and ribosome.
  • a vector composed of the sequence, the DNA, and the transcription termination sequence is preferable.
  • a gene that controls the promoter may also be included.
  • Examples of expression vectors include pBTrp2, pBTacl, and pBTac2 (both commercially available from Boehringer Mannheim), pKK233-2 (manufactured by Pharmacia), pSE280 [manufactured by Invitrogen], pGEMEX- ⁇ [Promega), pQE_8 (QIAGEN), pKYP10 (Japanese Patent Laid-Open No. 58-110600), pKYP200 [Agric. Biol. Chem., 48, 669 (1984)], pLSAl [ Agric. Biol. Chem., 53, 277 (1989)], pGELl [Proc. Natl. Acad • Sci.
  • Trs30 prepared from Escherichia coli JM109 / pTrS30 (FERM BP-5407)
  • Trs32 prepared from Escherichia coli JM109 / pTrS32 (FERM BP-5408)
  • GHA2 prepared from Escherichia coli IG HA2 (FERM BP-400)
  • JP 60-221091 JP 60-221091
  • pGKA2 prepared from Escherichia coli IGK A2 (FERM BP-6798), JP 60-221091)
  • pTerm2 US Patent No. 4686191, US Patent No.
  • Any promoter can be used as long as it functions in the host cell.
  • promoters derived from Escherichia coli and phages such as T7 promoter.
  • P X 2 two P promoters in series (P X 2), tac promoter, lac
  • a transcription termination sequence is not necessarily required for the expression of DNA encoding CDP-choline synthase, but it is preferable to place the transcription termination gene IJ directly under the structural gene. .
  • any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
  • the protoplast method Japanese Patent Laid-Open No. 63-248394
  • yeast When yeast is used as the host cell, examples of expression vectors include YEpl3 (ATC C37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15 and the like.
  • Any promoter can be used as long as it can be expressed in a yeast strain.
  • a promoter of a glycolytic gene such as hexose kinase, PH05 Ppprolo motor motor, PPGGKK bupromo motor motor, GGAAPP bupromo motor motor, AADDHH bupromo motor motor, ggaall 11 pupro motor motor, ggaall 1100 Motor motors, Heath Shot Cupro Poly Peptide Doped Motor Motors, MMFF aa 11 Pro Motor Motors, CCUUPP 11 Pro Motor Motors, etc. I can finish up here and there. .
  • DDNNAA As a method for introducing recombinant recombinant vector vectors, it is possible to introduce DDNNAA into the fermenting yeast mother.
  • the Electorto mouth mouth polereshoshiyon method [[MMeetthhooddss EEnnzzyymmooLL ,, 119944 ,, 118822 ( (11999900)))
  • Susuft Mouth-Mouth Pupralastot method [(PPrroocc .. NNaattll .. AAccaadd .. SSccii ..
  • CCDDPP--Cocholinrin bioproduction if the microbiological product only has a part of the activity of CCDDPP--Cocolilin biosynthesis
  • CCDDPP--Cocholinrin bioproduction is performed by combining 22 or more species of microbiological organisms as appropriate. It may be used as a living body catalytic catalyst medium having activation activity. . It should be noted that even when microbiotics have CCDDPP--cocoryrin biogenic activity, more than 22 species of microbiotics must be This is where you can assemble and combine. .
  • the above-mentioned microbiological organisms may be selected from any of the above.
  • Genus ((EE)) Genus, Cocoriline Nevabatate Terrirumum ((CCoorrvvnneebbaacctteerriiuumm)) Genus, Mimic Chlorobatabateraterirumum ((MM iiccrrooDDaacctteennuumm)) jj3 ⁇ 43 ⁇ 4,
  • Genus Sinorhizobium genus, Haemophilus genus, Arthrobacter genus, Aureobacterium genus, Cellu lomonas genus, Clavibacter genus, Clavibacter genus
  • microorganisms belonging to the genus Corynebataterium and microorganisms belonging to the genus Escherichia can be mentioned.
  • Corvnebacterium ammoniagenes ATCC 21170 and Escherichia coli MM294 / DCKG55 strain (FERM BP-3717 ) Patent No. 3,369,236, US Pat. No. 6,387,667) and the like.
  • Examples of cultures of microorganisms having CDP-choline producing activity that are one of the biocatalysts having CDP-choline producing activity include cultures obtained by culturing microorganisms obtained by the above method according to a conventional method. That power S.
  • the culture medium for cultivating the microorganism contains a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism.
  • a medium that can efficiently culture the microorganism either a natural medium or a synthetic medium may be used.
  • the microorganism can be assimilated, as well as gnolesose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, ethanol Alcohols such as propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast Extracts, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof can be used.
  • inorganic salt monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
  • the culture is performed under aerobic conditions such as shaking culture or aeration and agitation culture.
  • the culture time is 15 to 50 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH during the culture is preferably maintained at 3-9.
  • the pH is adjusted with inorganic or organic acids, alkaline solutions, urea, carbonate carbonate, ammonia, etc.
  • the medium for culturing the microorganism is used.
  • Antibiotics corresponding to the antibiotic resistance gene possessed by the recombinant DNA may be added to the ground.
  • a cell lytic enzyme such as a surfactant, an organic solvent or lysozyme.
  • the culture of the microorganism may be treated with a surfactant, an organic solvent, or a cytolytic enzyme alone, or the culture of the microorganism may be treated in combination.
  • the microorganism culture obtained by the above method is concentrated or dried by a concentrator or dryer, and the microorganism culture concentrate or dried product, or the microorganism culture is filtered or centrifuged.
  • Examples include cells obtained by solid-liquid separation by separation and the like, and dried products of the cells obtained by drying the cells with a dryer or the like.
  • a cell-lytic enzyme such as a surfactant, an organic solvent, or lysozyme, or a combination of these cells treated with a surfactant, an organic solvent-treated product, or a cell-lytic enzyme treatment Things etc.
  • the processed products of two or more types of cultures may be used separately as biocatalysts having CDP-choline producing activity, and the processed products of these cultures may be mixed. The resulting mixture may be used as a biocatalyst having CDP-choline producing activity.
  • CDP-choline generates and accumulates CDP-choline in the medium by contacting the biocatalyst with a UTP precursor and choline or phosphorylcholine or a salt thereof in the medium, It can be manufactured by sampling.
  • UTP precursors include orotic acid, OMP, uracil, uridine, UMP, and UDP, and preferably, orotic acid and uracinole.
  • a mixture obtained by mixing the above biocatalyst with a precursor of UTP and choline, phosphorylcholine, or a salt thereof in a medium may be mixed with other if necessary. Add ingredients and maintain pH at 5-11, more preferably 6-10 and hold at 20-50 ° C for 2-48 hours.
  • the amount of biocatalyst used varies depending on the specific activity of the biocatalyst. For example, when a microorganism culture or a processed product of the culture is used as a biocatalyst, a wet cell obtained by centrifuging the culture or the processed product of the culture is used for lmg of choline chloride. It is preferable to use 5 to 500 mg, preferably 10 to 300 mg.
  • choline, phosphorylcholine and salts thereof include choline, choline chloride, choline bromide, choline iodide, choline halide, choline bicarbonate, methylcholine sulfate, choline dihydrogen choline, choline bitartrate, phosphorylcholine,
  • phosphorylcholine halides such as phosphorylcholine chloride Choline or a phosphorylcholine halide is preferably used, and choline chloride and phosphorylcholine chloride are more preferably used.
  • the UTP precursor, choline, phosphorylcholine, and salts thereof may be obtained by chemical synthesis, or may be obtained from a living organism by fermentation or the like. Moreover, it does not necessarily have to be purely purified. Any substrate is commercially available and can be easily obtained.
  • the concentration of the precursor of UTP, choline, phosphorylcholine and their salts is preferably 1 mmol / L to lmol / L, more preferably 10 to 100 mmol / L.
  • Examples of other necessary components include energy donors, phosphate ions, magnesium ions, ammonium ions, surfactants and organic solvents necessary for the production of CDP-choline. These components do not need to be added when the required amount is brought from a biocatalyst or the like.
  • sugars such as gnolecose, fructose and sucrose, molasses, starch hydrolysates, and amino acids such as glycine and alanine are used. These are preferably used at a concentration of 0.02 to 2.0 mol / L.
  • phosphate ions include orthophosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid, etc., polyphosphoric acid, polymetaphosphoric acid, monopotassium phosphate, dipotassium phosphate, monosodium phosphate, disodium phosphate, etc. Inorganic phosphates can be used. These phosphate ions are preferably used at a concentration of 10 to 500 mmol / L.
  • Magnesium ions include inorganic magnesium salts such as magnesium sulfate, magnesium nitrate, and magnesium salt, and organic magnesium salts such as magnesium citrate. Can be used. Magnesium ions are preferably used at a concentration of 5 to 200 mmol / L.
  • ammonium ion aqueous ammonia, ammonia gas, various inorganic or organic ammonia salts, yeast extract, corn steep liquor and the like can be used.
  • ammonium ions organic nutrient sources such as glutamine, a peptide containing glutamine, and casamino acid can also be used.
  • concentration of these ammonium ions is preferably used at a concentration of lOmmol / L to 2mol / L.
  • surfactant examples include sodium dioctylsulfosuccinate (for example, Rabizol B-80, manufactured by NOF Corporation), anionic surfactants such as lauroyl sarcosinate, polyoxyethylene'cetyl ether (for example, nonion P_208, Non-ionic surfactants such as Nippon Oil & Fats Co., Ltd., and tertiary amines such as alkyldimethylamine (eg, tertiary amine FB, manufactured by Nippon Oil & Fats Co., Ltd.) can promote the production of CDP-choline. Either can be used. These are usually used in the range of 0.1 to 100 g / L, preferably 1 to 50 g / L.
  • organic solvent examples include xylene, toluene, aliphatic alcohols (such as methyl alcohol, ethyl alcohol, and butyl alcohol), acetone, ethyl acetate, and dimethyl sulfoxide. These are usually used at a concentration of 0.1 to 100 mL / L, preferably 1 to 50 mL / L.
  • a medium for contacting the biocatalyst with the UTP precursor and choline or phosphorylcholine or a salt thereof a medium for culturing a microorganism to be used as a biocatalyst, a culture of the microorganism, a supernatant of the culture, etc. are used.
  • an aqueous medium may be used.
  • aqueous medium examples include buffers such as water, phosphate buffer, HEPES (N_2-hydroxyethylpiperazine-N-ethanesulfonic acid) buffer, and tris [tris (hydroxymethyl) aminomethane] hydrochloric acid buffer. can give.
  • An organic solvent may be added to the medium as long as the reaction is not inhibited.
  • the organic solvent include acetone, ethyl acetate, dimethyl sulfoxide, xylene, methyl alcohol, ethyl alcohol, butanol and the like.
  • CDP-choline As a method for producing such CDP-choline, CDP using Corvnebacterium ammoniagenes ATCC21170 and Escherichia coli MM294 / pCKG55 strain (FERM BP-3717) as a biocatalyst. -A method for producing choline (Patent No. 3369236, US Pat. No. 6,387,667).
  • CDP-choline producing enzymes include olotate phosphoribosyltransferase, orotidine-5, -monophosphate decarboxylase, uridine phosphorylase, uracil phosphoribosyltransferase, uridine kinase, uridylate.cytidylate kinase, nucleoside diphosphate
  • microorganism having the enzyme activity After crushing the microorganism having the enzyme activity with a homogenizer or the like, it is further subjected to salting-out treatment, isoelectric point precipitation treatment, organic solvent precipitation treatment, dialysis treatment, various chromatographic treatments, etc.
  • a crude enzyme or a purified enzyme obtained by applying a purification means can be used as a CDP-choline synthase.
  • the crushed microorganism can be used as it is as the enzyme.
  • the crushed microorganism, crude enzyme, or purified enzyme may be immobilized on a water-insoluble carrier or gel and used as the enzyme.
  • CDP-choline produces and accumulates CDP-choline in the medium by contacting the above enzyme with a precursor of UTP and choline or phosphorylcholine or a salt thereof in the medium, and CDP-choline is produced from the medium. It can be manufactured by sampling.
  • CDP-choline As a specific method for producing and accumulating CDP-choline, a mixture obtained by mixing the above enzyme with a UTP precursor and choline or phosphorylcholine or a salt thereof in a medium is necessary. Add other ingredients accordingly and maintain the pH at 5-11, more preferably 6-10, and hold at 20-50 ° C for 2-48 hours.
  • the amount of CDP-producing enzyme used varies depending on the specific activity of the enzyme. For example, when a crude enzyme is used as the enzyme, it is preferable to use 1 ⁇ g to 500 mg, preferably 10 ⁇ g to 300 mg, per 1 mg of choline choline.
  • UTP precursor, choline, phosphorylcholine, their salts, and other ingredients added as necessary when CDP-choline synthase is used to produce and accumulate CDP-choline.
  • the energy donor may be supplemented with adenosine-5′-triphosphate, etc.
  • 5-phosphiribosyl diphosphate may be added.
  • a medium for contacting CDP-choline synthase with a precursor of UTP and choline or phosphorylcholine or a salt thereof a medium for culturing a microorganism to be used as a biocatalyst, a culture solution of the microorganism Alternatively, a culture supernatant or the like may be used, or an aqueous medium may be used.
  • aqueous medium examples include buffers such as water, phosphate buffer, HEPES (N-2-hydroxyethylpiperazine-N-ethanesulfonic acid) buffer, and tris [tris (hydroxymethyl) aminomethane] hydrochloric acid buffer. It is done.
  • nucleic acid analogues contained in the CDP-choline solution prepared by the above method include uracil, UTP and the like.
  • CDP-choline and nucleic acid-related substances can be analyzed by conventional methods using high-performance liquid chromatography (UV detection).
  • CDP-choline manufactured by Wako Pure Chemical Industries, Ltd.
  • uracil manufactured by Nakarai Tester
  • UTP manufactured by Nakarai Tester
  • Example 2 Purification of CDP-choline from a culture of microorganisms capable of producing CDP-choline
  • Escherichia coli MM294 / pCKG55 strain (FERM BP-3717) having enzyme activity of PyrG, CCT, and CKI is mixed with L medium lectotryptone (Difco) 10 g / L containing ampicillin 50 / ig / mL, yeast ex (Difco)
  • L medium lectotryptone (Difco) 10 g / L containing ampicillin 50 / ig / mL
  • yeast ex yeast ex
  • liquid medium (pH unadjusted) Inoculate a 5L culture tank containing 2.5L, 11 hours at 25 ° C, then 13 hours at 32 ° C, stirring 600rpm, Cultivation was performed while adjusting the pH to 7.0 with 14% aqueous ammonia under the conditions of aeration of 2.5 L / min.
  • a feed solution having a composition of 167 g glucose and 167 g / L peptone was fed at a rate of 30 mL / hour with a peristaltic pump from the 11th hour until the 24th hour.
  • Corynebacterium 'Ammoniagenes ATCC21170 strain which has the activity of generating UTP from orotate, was prepared by using 50 g / L glucose, 10 g / L polypeptone (manufactured by Daigo Nutrition Chemical Co., Ltd.), yeast extract (Daigo 10g / L, urea 5g / L, (NH) SO 5g / L, KHPO 1g / L, KHPO 3g, MgSO7 ⁇ Olg, CaCl2 ⁇ O 0.1g / L, FeSO7 ⁇ O 10 mg, ZnSO-7H O 10 mg / L, MnSO 4-6 ⁇ O 20 mg / L, L_cystine 20 mg / L, D_ calcium pantothenate 10 mg / L, vitamin Bl 5 mg / L, nicotinic acid 5 mg Inoculate a test tube containing 10 mL of liquid medium consisting of 30 ⁇ g / L of pi
  • Consisting of 0mg / L, sodium gnoletamate lg / L, piotin 100 xg / reurea 2g / L (separately sterilized) and vitamins 5 mg / L (separately sterilized) (adjusted to pH 7.2 with sodium hydroxide) Inoculated into a 5L culture tank containing 2.5L of liquid medium, and performed main culture while adjusting to PH6.8 with concentrated ammonia water under the conditions of culture at 32 ° C with stirring at 600rpm and aeration rate of 2.5L / min. . The culture was terminated when the glucose in the culture supernatant was consumed.
  • CDP-choline and a salt thereof are provided at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

 核酸類縁物質を含む、pHが0.5以上5.0以下のシチジンジリン酸コリン溶液を、H形強酸性カチオン交換樹脂と接触させ、該樹脂に吸着したシチジンジリン酸コリンを水またはイオン濃度が0.1mol/L以下の水溶液で溶出させて、シチジンジリン酸コリンを分離精製することを特徴とするシチジンジリン酸コリンの精製方法を提供する。

Description

明 細 書
シチジンジリン酸コリンの精製方法
技術分野
[0001] 本発明は医薬品原料、栄養食品原料として有用なシチジンジリン酸コリンの精製方 法に関する。
背景技術
[0002] シチジンジリン酸コリン(以下、 CDP-コリンと略す)の製造方法としては、化学的合 成方法 (特許文献 1、特許文献 2)、微生物の培養物または酵素を用いる方法 (特許 文献 3、特許文献 4)が知られている。化学合成法で製造された CDP-コリンの精製方 法としては、陰イオン交換樹脂を用いる方法 (特許文献 1)、強酸性イオン交換樹脂お よび弱塩基性イオン交換樹脂を組み合わせて用いる精製方法 (特許文献 2)が知ら れているが、後者の方法では 2種のイオン交換樹脂を使用する上、 CDP-コリン溶液 中に含まれるホスホリルコリン、シチジン- 5 ' -—リン酸(以下、 CMPと略す)は分離でき るものの、ゥラシノレまたはゥリジン- 5 ' -三リン酸 (以下、 UTPと略す)を効率よく分離で きる方法ではない。
特許文献 1:特公昭 63-6558号
特許文献 2:特公平 6-31306号
特許文献 3:特許第 3369236号
特許文献 4:国際公開第 99/49073号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] 本発明の目的は、簡便に CDP-コリンと核酸類縁物質を分離することが可能な CDP -コリンの精製方法を提供することにある。
課題を解決するための手段
[0004] 本発明は以下の (1)〜(6)に関する。
(1)核酸類縁物質を含み、かつ pH力 S0.5以上 5.0以下の CDP-コリン溶液を、 H形強酸 性カチオン交換樹脂と接触させ、該樹脂に吸着した CDP-コリンを水またはイオン濃 度が O. lmol/L以下の水溶液で溶出させて、 CDP-コリンを分離精製することを特徴と する CDP-コリンの精製方法。
(2) CDP-コリン溶液力 UTPの前駆体とコリンまたはホスホリルコリンとから CDP-コリ ンを生成する活性を有する生体触媒を、 UTPの前駆体、およびコリンもしくはホスホリ ルコリンまたはそれらの塩と水性媒体中で共存させ、該媒体中に CDP-コリンを生成 蓄積させることにより得られる該媒体から調製される溶液である、上記 (1)の CDP-コリ ンの精製方法。
(3) 生体触媒が、 UTPの前駆体から UTPを生成する能力を有する微生物の培養物 または該培養物の処理物、および UTPとコリンまたはホスホリルコリンとから CDP-コリ ンを生成する能力を有する微生物の培養物または該培養物の処理物を含む生体触 媒である、上記 (2)の CDP -コリンの精製方法。
(4) 生体触媒が、 UTPの前駆体とコリンまたはホスホリルコリンとから CDP-コリンを生 成する反応を担う酵素を含む生体触媒である、上記 (2)の CDP-コリンの精製方法。
(5) CDP-コリンを生成する反応を担う酵素力 S、ォロット酸ホスホリボシルトランスフェラ ーゼ、ォロチジン- 5 ' -モノリン酸デカルボキシラーゼ、ゥリジンホスホリラーゼ、ゥラシ ノレホスホリボシルトランスフェラーゼ、ゥリジンキナーゼ、ゥリジル酸.シチジル酸キナ ーゼ、ヌクレオシドジリン酸キナーゼ、シチジン- 5,-トリリン酸シンセターゼ、コリンホス フェートシチジルトランスフェラーゼ、およびコリンキナーゼからなる群から選ばれる酵 素である、上記 (4)の CDP-コリンの精製方法。
(6) 核酸類縁物質が、ゥラシルおよび UTPから選ばれる物質である、上記 (1)〜(5)の CDP-コリンの精製方法。
発明の効果
[0005] 本発明により、 CDP -コリンおよびその塩が安価に提供される。
発明を実施するための最良の形態
[0006] 本発明に用いられる CDP-コリン溶液は、核酸類縁物質を含み、かつ pHが 0.5以上 5 .0以下の溶液であればいずれの方法で調製された溶液であってもよぐ調製された C DP-コリン溶液の pHが 0.5〜5.0であればそのまま、 pHが 5.0より大きい場合には塩酸、 硫酸、硝酸、リン酸等の酸を添加し、 pHが 0.5より小さい場合には水酸化ナトリウム、 水酸化カリウム等のアルカリを添カ卩し、 pHを 0.5以上 5.0以下、好ましくは 1.0以上 3.5以 下に調整して用いることができる。
[0007] H形強酸性カチオン交換樹脂としては、 H形強酸性カチオン交換樹脂ならば、ゲル 型でもポーラス型でも良ぐ具体的にはザ ·ダウケミカル ·力ンパニー社製ダウエックス シリーズ(例えば、 HCR- S、 HCR-W2、マラソン C、モノスフィァー 650C、 MSC- 1、モノ スフィァー 88、 50W X 2、 50W X 4、 50W X 8等)、三菱化学社製ダイヤイオン SKシリー ズ(例えば SK1B、 SK104、 SK110、 SKI 12等)、三菱化学社製ダイヤイオン PKシリーズ (例えば ΡΚ208、 ΡΚ212、 ΡΚ220, ΡΚ228等)、ローム 'アンド'ハース社製アンバーライ トシリーズ (例えば IR120B、 IR124等)等があげられる。
[0008] H形強酸性カチオン交換樹脂の架橋度は、 CDP-コリンと核酸類縁物質を分離でき る架橋度であれば特に制限はないが、 2〜10%が好ましぐ更に好ましくは、 4〜6%で ある。
H形強酸性カチオン交換樹脂はカラムに充填された形態で本発明に用いることが 好ましいが、本発明に用いられるカラムはどのようなものでも良い。
核酸類縁物質を含み、かつ pHが 0.5以上 5.0以下の CDP-コリン溶液を、 H形強酸性 カチオン交換樹脂が充填されたカラムに通塔等することによって該樹脂に接触させる ことにより CDP-コリンを該榭脂に吸着させる力 例えば架橋度 2〜10%の H形強酸性力 チオン交換樹脂の充填されたカラムに通塔する際の通塔速度は SV = 0.1〜5.0、好ま しくは SV=0.2〜3.0である。
[0009] 上記吸着処理により、 CDP-コリンと、溶液中に含まれる核酸類縁物質、特にォロッ ト酸、ォロチジン- 5 ' -—リン酸(以下、 OMPと略す)、ゥリジン- 5 ' -—リン酸 (以下、 UM Pと略す)、ゥリジン- 5,-二リン酸 (以下、 UDPと略す)、 UTP、 CMP,シチジン- 5, -二リン 酸 (以下、 CDPと略す)、シチジン- 5 ' -三リン酸 (以下、 CTPと略す)等のピリミジン系核 酸物質を好適に分離、除去することができる。核酸類縁物質のうちゥラシルまたは UT Pは、これらを含む CDP-コリン溶液を pH力 以上 5.0以下で該樹脂に接触させても、 該樹脂にはほとんど、または全く吸着しないので、ゥラシルまたは UTPを特に好適に 分離、除去することができる。
[0010] H形強酸性カチオン交換樹脂に吸着している CDP -コリンは、イオン濃度 0.1mol/L 以下、好ましくは、 0.03mol/L以下の水溶液、更に好ましくは水を通塔する等によって 溶出することにより、 CDP-コリンが樹脂から溶離し、 CDP-コリンを分離精製することが できる。
上記溶出工程により、採取した CDP-コリン含有液は、必要に応じて活性炭処理もし くは非極性多孔質合成吸着剤、例えば三菱化学社製ダイヤイオン HPシリーズ (例え ば HP20、 HP21等)、三菱化学社製ダイヤイオン SP800シリーズ (例えば SP825、 SP850 等)、三菱化学社製ダイヤイオン SP200シリーズ (例えば SP207等)、ローム 'アンド'ハー ス社製アンバーライト XADシリーズ (例えば XAD4、 XAD7HP、 XAD16HP、 XAD1180、 XAD2000等)等を用いて脱色処理を行ってもよい。
[0011] 上記の CDP-コリン含有液または脱色液を、酸またはアルカリで pH2.0〜4.0に調整 し、必要に応じて濃縮後、 CDP-コリンの濃度を 50〜800g/レ好ましくは 100〜700g/L に調整し、有機溶媒、好ましくはアセトン、エタノール、メタノーノレ、プロパノール等の 親水性の有機溶媒を用いて CDP-コリン結晶を取得することができる。
また、上記の CDP-コリン含有液または脱色液を水酸化ナトリウムにて pH5.0〜9.5に 調整し、必要に応じて濃縮後、 CDP-コリン濃度を 50〜800gん、好ましくは 100〜700g /Lに調整し、有機溶媒、好ましくはアセトン、エタノール、メタノール、プロパノール等 の親水性の有機溶媒を用いて、 CDP-コリンナトリウム塩結晶を取得することができる
[0012] 有機溶媒を用いて CDP-コリン結晶を取得する方法としては、例えば、 CDP-コリン 溶液に有機溶媒を添加し結晶を析出させる方法、または大量の有機溶媒中へ CDP- コリン溶液を滴下して結晶を析出させる方法があげられる。
なお、本発明において、核酸類縁物質を含む CDP-コリン溶液としては、 CDP -コリ ンと核酸類縁物質とを含む溶液であればどのようなものでも良レ、が、化学合成法、 U TPの前駆体とコリンまたはホスホリルコリンとから CDP-コリンを生成する活性(以下、 C DP-コリン生成活性と略す)を有する生体触媒を用いた方法により製造される溶液を あげ'ること力 Sできる。
[0013] 該生体触媒としては、 CDP -コリン生成活性を有する微生物の培養物、該培養物の 処理物、 CDP -コリンを生成する反応を担う酵素等をあげることができる。 該微生物としては、 CDP-コリン生成活性を有する微生物であればいずれの微生物 でもよく、元来 CDP-コリン生成活性を有する微生物はそのまま CDP-コリンの生産に 用いることができ、元来 CDP-コリン生成活性を有さない微生物は、 UTPの前駆体とコ リンまたはホスホコリンとから CDP-コリンを生成する反応を担う酵素をコードする DNA を導入することにより CDP -コリンの生産に用いることができる。該微生物としては、好 ましくは、ェシエリヒア (Escherichia)属、セラチア (Serratia)属、バチルス (Bacillus)属、ブ レビバクテリゥム (Brevibacterium)属、コリネバクテリゥム (Corvnebacterium)属、ミクロノく クテリゥム (Microbacterium)属、シユードモナス (Pseudomonas)属、ストレプトコッカス (≤i reptococcus)j¾.シノリゾビゥム(Sinorhizobium) j¾、へモフィフス (Haemophilus;属、ァ ースロバクタ一(Arthrobacter)属、オーレォバクテリゥム(Aureobacterium)属、セノレ口 モナス(Cellulomonas)属、クラビバクタ一(Clavibacter)属、クルトバクテリゥム(Curtob acterium)属、ピメロノ クタ一 (Pimerobacter)属、サッカロマイセス (Saccharomvces)晨 、シゾサッカロマイセス (Schizosaccharomvces)属、クリュイベロマづでス (Kluweromvc )属、トリコスポロン(Trichosooron)属、シヮニォマイセス(Schwanniomvces)属、ピヒ ァ (Pichia)属、およびキャンディダ (dni a)属に属する微生物等をあげることができ る。
ェシエリヒア (Escherichia)属に属する微生物としては、 Escherichia coli MM294, Esc henchia coli XLl_Blue、 Escherichia coli XL2_Blue、 Escherichia coli DH1、 Eschench ia coli MC1000、 Escherichia coli KY3276、 Escherichia coli W1485、 Escherichia coli JM109、 Escherichia coli HB101、 Escherichia coli No.49、 Escherichia coli W3110、 Es cherichia coli NY49、 Eschericma coli GI698、および Escherichia coli TBI等の Eschsri chia milに属する微生物をあげることができる。セラチア (Sgimtk)属に属する微生物 としては、 列 Iは、 ¾erratia ncaria. Serratia fonticola. Serratia ligueiaciens.および Se rratia marcescens等をあげることができる。バチルス (E^fc)属に属する微生物とし 飞は、 Bacillus subtins. Bacillus meeatenum.および Bacillus amyloliciuefaciens を ¾ げること力 Sできる。ブレビパクテリゥム (Brevibacterium)属に属する微牛物としては、 Bre VI bacterium immariophilum. Brevibacterium saccharolvticum. Brevibacterium flavum 、および Brevibacterium lactofermentum.等をあげることができる。コリネバクテリウム(£ orvnebacterium)属に属する微生物としては、 Corvnebacterium glutamicum ATCC130 32、およびし orvneDacterium glutamicum ATCし丄 3869等の Corvnebacterium glutamic ^ΠΙに属する微生物、 Corvnebacterium ammoniagenes ATし C6872、および Corvneb actenum ammoniagenes ATし C21170等のし orvnebacterium ammoniagenes !■こ属する 微生物、 Corvnebacterium acetoacidophilum ATCし 13870等の Corvnebacterium acet oacidoDhilumに属する微牛物等をあげることができる。ミクロバクテリゥム (Microbacteri ^属に属する微生物としては、 Microbacterium ammoniaphilum ATCC15354等の滅 crobactenum ammomaohilum〖こ属する微生物、 Microbacterium lactium.および Micro bacterium imoeriale等をあげることができる シユードモナス (Pseudomonas)属に属す る微牛物としては、 Pseudomonas mitida等をあげることができる。ストレプトコッカス (≤ϋ eptococcus)属に属する微生 としては、 Streptococcus oneumoniae等をあけ こと力 S できる。シノリゾビゥム(Sinorhizobium)属に属する微牛物としては、 Sinorhizobium mel iloli等をあげることができる。へモフィラス (Haemophilus)属に属する微生物としては、 Haemophilus influenzae等をあげること力 Sできる nアースロノくクタ一 (Arthrobacter)属 に属する微生物としては、 Arthrobacter citreus, Arthrobacter globiformis等をあげる ことができる。オーレォバクテリゥム (Aureobacterium)属に属する微生物としては、 Au reobactenum flavescens, Aureobacterium saperdae, よび Aur e obactenum testaceu Hi等をあげることができる。セルロモナス (Cellulomonas)属に属する微生物としては、 Cellulomonas flavigena,および Cellulomonas carta等をあげることができる nクラビバク ター(Clavibacter)属に属する微生物としては、 Clavibacter michiganensis,および Cla vibacter mtii i等をあげることができる。クルトバタテリゥム (Curtobacterium)属に属 る微生物とし飞は、し urtobactermm albidum.し urtobactermm citreum、 3¾ょびし 11: obacterium luteum等をあげることができる。ピメロバクタ一(Pimerobacter)属に属する 微牛物としては、 Pimerobacter sinmlex等をあげることができる。
サッカロマイセス (Saccharomvces)属に属する微牛物としては、 Saccharomvces cere ί ^等をあげること力 sできる。シゾサッカロマイセス (Schizosaccharomvces)属に属す る微生物としては、 Schizosaccharomvces 等をあげることができる。クリュイべ口 マイセス (KluYveromv_ces_)属に属する微生物としては、 Kluvyeromyces lactis等をあげ ること力 Sできる。トリコスポロン (TrichosDoron)属に属する微生物としては、 Trichosporo n Ml a 等をあげることができる。シヮニォマイセス (Schwanniomvces)属に属する微 牛物 しては、 Schwanniomvces alluvius等をあげることができる。ピヒア(Pichia)属に 属する微生物としては、 Pichia 等をあげることができる。キャンディダ (Candida
)属に属する微生物としては、 Candida 等をあげることができる。
[0016] また、該微生物として、より好ましくは、ェシエリヒア (Escherichia)属、バチルス (Bacill
)属、ブレビバクテリゥム (Brevibacterium)属、コリネバクテリゥム (Corvnebacterium)属 およびサッカロマイセス(Saccharomvces)属に属する微生物をあげることができ、さら に好ましくはェシエリヒア (Escherichia)属、ブレビパクテリゥム (Brevibacterium)属、コリ ネバクテリゥム (Corvnebacterium)属に属する微生物をあげることができる。
[0017] 上記微生物のうち、元来 CDP -コリン生成活性を有する微生物であっても CDP-コリ ン生成活性が充分に強くない場合には、該微生物に、 UTPの前駆体とコリンまたはホ スホリルコリンとから CDP-コリンを生成する反応を担う酵素をコードする DNAを有する 組換え体 DNAを常法によって導入する力 \該活性を有する他の微生物の細胞を融 合させることにより、該活性の強化された微生物を作製して用いてもよい。
[0018] 該活性が強化された微生物および該活性が付与された微生物としては、該反応を 担う酵素をコードする DNAを以下に示す方法によって微生物に導入して得られる形 質転換体が好ましく用いられる。
UTPの前駆体とコリンまたはホスホリルコリンとから CDP-コリンを生成する反応を担う 酵素 (以下、 CDP-コリン生成酵素と略す)をコードする DNAとしては、例えば、ォロット 酸から OMPを生成する活性を有するォロット酸ホスホリボシルトランスフェラーゼ [EC 2.4.2.10]、 OMPから UMPを生成する活性を有するォロチジン- 5 ' -モノリン酸デカルボ キシラーゼ [EC 4.1.1.23]、ゥラシルからゥリジンを生成する活性を有するゥリジンホス ホリラーゼ [EC 2.4.2.3]、ゥラシルから UMPを生成する活性を有するゥラシルホスホリ ボシルトランスフェラーゼ [EC 2.4.2.9]、ゥリジンから UMPを生成する活性を有するゥリ ジンキナーゼ [EC 2.7.1.48]、 UMPから UDPを生成する活性を有するゥリジル酸 ·シチ ジル酸キナーゼ [EC 2.7.1.48]、 UDPから UTPを生成する活性を有するヌクレオシドジ リン酸キナーゼ [EC 2.7.4.6]、 UTPから CTPを生成する活性を有するシチジン- 5 ' _トリ リン酸シンセターゼ [EC 6.3.4.2] (以下、 PyrGと略す)、コリンカ ホスホリルコリンを生 成する活性を有するコリンキナーゼ [EC 2.7.1.32] (以下、 CKIと略す)をコードする DN A、および CTPとホスホリルコリンから CDP-コリンを生成する活性を有するコリンリン酸 シチジルトランスフェラーゼ [EC 2.7.7.15] (以下、 CCTと略す)をそれぞれコードする D NA等をあげることができる。
[0019] CDP -コリン生成酵素をコードする DNAとしては、好ましくは、 PyrG、 CKI、および CC Tをコードする DNAをあげることができる。
pvrGをコードする DNAは、 Escherichia coliの染色体よりクローン化され、その全塩 基配列が決定されている [J. Biol. Chem., 261, 5568 (1986) ] 0 PyrGをコードする DN Aを有する組換え体としては、 Escherichia coliのベクター pUC8「Gene, 19, 259(1982) Ίのマルチクローニングサイトの Smal-Pstlき β位に Escherichia coli由来の PvrGをコード する DNAを含む 2426bpの NmI_E^I断片が揷入されたプラスミドである pMW6 [Biosci. Biotechnol. Biochem., 61, 956 (1997)]などがあげられる。
[0020] CCTをコードする DNAは、その全塩基配列が決定されている [Eur. J. Biochem., 16 9, 477(1987)]。 CCTをコードする DNAを有する組換え体 DNAとしては、 Escherichia c 2ϋのベクター pUC18 [Gene, 33, 103(1985)]のマルチクローニングサイトの 1部位 に酵母由来の CCTをコードする DNAを含む 1296bpの Dml断片が挿入されたプラスミ ド PCC41 [生化学, 701(1988)]などがあげられる。
[0021] CKIをコードする DNAも同様に酵母染色体よりクローン化され、その全塩基配列が 決定されている [J. Biol. Chem., 264, 2053(1989)]。 CKIをコードする DNAを有する組 換え体 DNAとしては、酵母と Escherichia coliのシャトルベクター YEDM4「Mol. Cell. Bi ol., 7, 29(1987)]に酵母由来の CKIをコードする DNAを含む 2692bpの E^I-Hindin断 片が揷入されたプラスミド pCKlD [J. Biol. Chem., 264, 2053(1989)]などがあげられる
[0022] 上記のプラスミドは、これらのプラスミドを保持した大腸菌力 公知の方法 [Nuc. Aci ds Res., 7, 1513(1979)]に従い単離精製できる。
上記のようにして得られるプラスミドから、例えば、 Molecular Cloning, A Laboratory Manual, Third Edition, sambrookら編、し old spring Harbor Laboratory (2001)に従つ て、 CDP-コリン生成酵素をコードする DNAを取得し、該 DNAを発現ベクターに組み 込み、組換え体 DNAを作製し、上記微生物を宿主細胞として形質転換を行うことによ り、 CDP-コリン生成活性を有する生体触媒を取得することができる。
[0023] まず、 PyrG、 CCTまたは CKIをコードする DNAを上記プラスミド pMW6、プラスミド pC C41またはプラスミド pCKIDより取得し、得られた DNAをもとにして、必要に応じて、該 ポリペプチドをコードする部分を含む適当な長さの DNA断片を調製する。
また、必要に応じて、 CDP-コリン生成酵素をコードする部分の塩基配列を、宿主細 胞の発現に最適なコドンとなるように塩基を置換した DNAを調製する。該 DNAは CDP -コリン生成酵素の効率的製造に有用である。
[0024] 該 DNA断片、または全長 DNAを適当な発現ベクターのプロモーターの下流に揷入 することにより、組換えベクターを作製する。この際、 CDP-コリン生成酵素をコードす る DNAを、それぞれ別個に発現ベクターに揷入してもよいし、複数の DNAを同じ発現 ベクターに挿入してもよい。
該組換えベクターを、該発現べクタ一に適合した宿主細胞に導入する。
[0025] 宿主細胞としては、上記微生物をあげることができる。
発現ベクターとしては、該宿主細胞において自立複製可能ないしは染色体中への 組込が可能で、 CDP-コリン生成酵素をコードする DNAを転写できる位置にプロモー ターを含有しているものが用いられる。
宿主細胞として、細菌等の原核生物を用いる場合は、 CDP-コリン生成酵素をコー ドする DNAを含有してなる組換えベクターは原核生物中で自立複製可能であると同 時に、プロモーター、リボソーム結合配列、該 DNA、転写終結配列、より構成されたべ クタ一であることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
[0026] 発現ベクターとしては、例えば、 pBTrp2, pBTacl、 pBTac2 (いずれもベーリンガー マンハイム社より市販)、 pKK233- 2 [フアルマシア(Pharmacia)社製]、 pSE280 [インビト ロジェン(Invitrogen)社製]、 pGEMEX-Ι [プロメガ(Promega)社製]、 pQE_8 [キアゲン( QIAGEN)社製]、 pKYP10 (特開昭 58-110600号)、 pKYP200〔Agric. Biol. Chem., 48, 669 (1984)]、 pLSAl [Agric. Biol. Chem., 53, 277 (1989)〕、 pGELl [Proc. Natl. Acad • Sci. USA, 82, 4306 (1985)〕、 pBluescript II SK (-) [ストラタジーン(Stratagene)社製] 、 Trs30 [Escherichia coli JM109/pTrS30 (FERM BP-5407)より調製〕、 Trs32 [Esch erichia coli JM109/pTrS32 (FERM BP-5408)より調製〕、 GHA2 [Escherichia coli IG HA2 (FERM BP-400)より調製、特開昭 60-221091号〕、 pGKA2 [Escherichia coli IGK A2 (FERM BP-6798)より調製、特開昭 60-221091号〕、 pTerm2 (米国特許 4686191号 、米国特許 4939094号、米国特許 5160735号)、 pSupex、 pUBHO, pTP5、 pC194、 pE G400 [J. Bacteriol., 172, 2392 (1990)〕、 pGEX [フアルマシア(Pharmacia)社製]、 pET システム [ノバジェン(Novagen)社製]等をあげることができる。
[0027] プロモーターとしては、宿主細胞中で機能するものであればいかなるものでもよレ、。
例えば、 プロモーター (P )、 lacプロモーター、 Pプロモーター、 Pプロモーター、 trp L
T7プロモーター等の、 Escherichia coliやファージ等に由夹するプロモーターをあげる こと力 Sできる。また P を 2つ直列させたプロモーター(P X 2)、 tacプロモーター、 lac
trp trp
T7プロモーター、 let Iプロモーターのように人為的に設計改変されたプロモーター等 も用いること力 Sできる。
[0028] リボソーム結合配列であるシャインーダルガノ(Shine-Dalgamo)配列と開始コドンと の間を適当な距離 (例えば 6〜18塩基)に調節したプラスミドを用いることが好ましい。 本発明の組換えベクターにおいては、 CDP-コリン生成酵素をコードする DNAの発 現には転写終結配列は必ずしも必要ではなレ、が、構造遺伝子の直下に転写終結配 歹 IJを配置することが好ましい。
[0029] 組換えベクターの導入方法としては、上記宿主細胞へ DNAを導入する方法であれ ばいずれも用いることができ、例えば、カルシウムイオンを用いる方法〔Proc. Natl. Ac ad. Sci. USA, 69, 2110 (1972)〕、プロトプラスト法(特開昭 63-248394号)、または Gen e, 17, 107 (1982)や Molecular & General Genetics, 168, 111 (1979)に記載の方法等 をあげること力できる。
[0030] 宿主細胞として酵母を用いる場合には、発現ベクターとして、例えば、 YEpl3 (ATC C37115)、 YEp24 (ATCC37051)、 YCp50 (ATCC37419)、 pHS19、 pHS15等をあげる こと力 Sできる。
プロモーターとしては、酵母菌株中で発現できるものであればいずれのものを用い てもよく、例えば、へキソースキナーゼ等の解糖系の遺伝子のプロモーター、 PH05 ププロロモモーータターー、、 PPGGKKププロロモモーータターー、、 GGAAPPププロロモモーータターー、、 AADDHHププロロモモーータターー、、 ggaall 11ププロロ モモーータターー、、 ggaall 1100ププロロモモーータターー、、ヒヒーートトシショョッッククポポリリペペププチチドドププロロモモーータターー、、 MMFF aa 11ププロロ モモーータターー、、 CCUUPP 11ププロロモモーータターー等等ををああげげるるここととががででききるる。。
[[00003311]] 組組換換ええベベククタターーのの導導入入方方法法ととししててはは、、酵酵母母にに DDNNAAをを導導入入すするる方方法法ででああれればばいいずずれれ もも用用いいるるここととががでできき、、例例ええばば、、エエレレククトト口口ポポレレーーシシヨヨンン法法 [[MMeetthhooddss EEnnzzyymmooLL ,, 119944,, 118822 (( 11999900))〕〕、、ススフフヱヱ口口ププララスストト法法〔〔PPrroocc.. NNaattll.. AAccaadd.. SSccii.. UUSSAA,, 7755,, 11992299 ((11997788))〕〕、、酢酢酸酸リリチチ ゥゥムム法法〔〔JJ.. BBaacctteerriioollooggyy,, 115533,, 116633 ((11998833))〕〕、、 PPrroocc.. NNaattll.. AAccaadd.. SSccii.. UUSSAA,, 7755,, 11992299 ((1199 7788))記記載載のの方方法法等等ををああげげるるここととががででききるる。。
[[00003322]] 微微生生物物がが CCDDPP--ココリリンン生生成成活活性性のの一一部部ししかか有有ししてていいなないい場場合合、、 CCDDPP--ココリリンン生生成成活活性性 がが得得らられれるるよよううにに、、適適宜宜 22種種以以上上のの微微生生物物をを組組みみ合合わわせせてて、、 CCDDPP--ココリリンン生生成成活活性性をを有有 すするる生生体体触触媒媒ととししてて用用いいててももよよいい。。ななおお、、微微生生物物がが CCDDPP--ココリリンン生生成成活活性性をを有有ししてていいるる 場場合合ででもも、、 22種種以以上上のの微微生生物物をを組組みみ合合わわせせるるここととががででききるる。。
22種種以以上上のの微微生生物物のの組組合合せせととししててはは、、上上記記微微生生物物ののいいずずれれかからら選選ばばれれててももよよぐぐェェ シシエエリリヒヒアア ((EEsscchheerriicchhiiaa))属属、、セセララチチアア ((SSeerrrraattiiaa))属属、、ババチチルルスス ((BBaacciilllluuss))属属、、ブブレレビビババタタテテリリ ゥゥムム ((BBrreevviibbaacctteerriiuumm))属属、、ココリリネネババタタテテリリゥゥムム ((CCoorrvvnneebbaacctteerriiuumm))属属、、ミミククロロババタタテテリリゥゥムム ((MM iiccrrooDDaacctteennuumm))jj¾¾、、
Figure imgf000012_0001
)属、シノリゾビゥム(Sinorhizobium)属、へモフィラス(Haemophilus)属、アースロバクタ 一 (Arthrobacter)属、オーレォバクテリゥム (Aureobacterium)属、セノレ口モナス (Cellu lomonas)属、クラビバクタ一 (Clavibacter)属、クノレトバクテリゥム (Curtobacterium)属 、ピメロバクタ一 (Pimerobacter)属、サッカロマイセス (Saccharomv_ces)属、シゾサッカ ロマづ ス (§chizosaccharomvces.ノ属、
Figure imgf000012_0002
属、トリコ スホロン(TrichosDoron)属、シヮニォマイセス (Schwanniomvces)属、ピヒア (Pichia)属 およびキャンディダ 属に属する微生物等から選ばれる、同一の属に属する 微生物、あるいは異なる属に属する微生物の組合せがあげられる。
[0033] 例えば、コリネバタテリゥム属に属する微生物とェシエリヒア属に属する微生物の組 合せなどをあげることができ、具体的には、 Corvnebacterium ammoniagenes ATCC 21170と Escherichia coli MM294/DCKG55株 (FERM BP- 3717)との組合せ(特許第 33 69236号、米国特許第 6387667号)等をあげることができる。 CDP-コリン生成活性を有する生体触媒の一つである、 CDP-コリン生成活性を有す る微生物の培養物としては、上記方法で得られる微生物を常法に従って培養して得 られる培養物をあげること力 Sできる。
[0034] 該微生物が細菌等の原核生物あるいは酵母等の真核生物である場合は、該微生 物を培養する培地として、該微生物が資化し得る炭素源、窒素源、無機塩類等を含 有し、該微生物の培養を効率的に行える培地であれば天然培地、合成培地のいず れを用いてもよい。
炭素源としては、該微生物が資化し得るものであればよぐグノレコース、フラクトース 、シュクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の 炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコ 一ル類等を用いることができる。
[0035] 窒素源としては、アンモニア、塩化アンモニゥム、硫酸アンモニゥム、酢酸アンモニ ゥム、リン酸アンモニゥム等の無機酸もしくは有機酸のアンモニゥム塩、その他の含窒 素化合物、ならびに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼィ ン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物 等を用いることができる。
[0036] 無機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸 マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム 等を用いることができる。
培養は、振盪培養または通気攪拌培養などの好気的条件下で行う。培養温度は 15 〜50°Cがよぐ培養時間は、通常 16時間〜 7日間である。培養中の pHは 3〜9に保持 することが好ましい。 pHの調整は、無機または有機の酸、アルカリ性溶液、尿素、炭 酸カノレシゥム、アンモニアなどを用いて行う。
[0037] 該微生物が形質転換体であって、かつ、該微生物を形質転換するために用いた組 換え体 DNAが抗生物質耐性遺伝子を保有してレ、る場合は、該微生物を培養する培 地に、該組換え体 DNAが保有する抗生物質耐性遺伝子に対応する抗生物質を添加 してもよい。
生体触媒として 2種以上の微生物の培養物または該培養物の処理物を用いる場合 は、それぞれの微生物を上記方法に従って別々にあるいは同一の培地中で培養し て得られるものを用いることができる。
[0038] 2種以上の微生物を同一の培地中で培養する場合、これらの微生物を同時に培養 しても、一つの微生物の培養中、あるいは培養終了後に残りの微生物を該培地中に 培養してもよい。
微生物の培養物の処理物としては、上記の手法で得られる微生物の培養物を界面 活性剤、有機溶剤またはリゾチーム等の細胞溶解酵素で処理して得られる界面活性 剤、有機溶剤または細胞溶解酵素処理培養物があげられる。界面活性剤、有機溶 剤または細胞溶解酵素をそれぞれ単独で用いて該微生物の培養物を処理してもよ いし、これらを組合せて該微生物の培養物を処理してもよい。また、上記の手法で得 られる微生物の培養物を濃縮機もしくは乾燥機等で濃縮もしくは乾燥処理して得ら れる該微生物の培養物の濃縮物もしくは乾燥物、該微生物の培養物をろ過もしくは 遠心分離などで固液分離して得られる菌体、該菌体を乾燥機等で乾燥処理して得ら れる該菌体の乾燥物があげられる。また、該菌体を界面活性剤、有機溶剤、もしくは リゾチームなどの細胞溶解酵素、またはこれらを組合せて処理して得られる該菌体の 界面活性剤処理物または有機溶剤処理物、細胞溶解酵素処理物等があげられる。
[0039] 2種以上の微生物を用いる場合、 2種以上の培養物の処理物を別々に CDP-コリン 生成活性を有する生体触媒として用いてもよぐこれら培養物の処理物を混合して得 られる混合物を CDP-コリン生成活性を有する生体触媒として用いてもよい。
CDP-コリンは、上記生体触媒と UTPの前駆体、およびコリンもしくはホスホリルコリン またはそれらの塩とを媒体中で接触させることによって該媒体中に CDP-コリンを生成 蓄積させ、該媒体から CDP-コリンを採取することによって製造することができる。
[0040] UTPの前駆体としては、ォロット酸、 OMP、ゥラシル、ゥリジン、 UMPおよび UDP等が あげられ、好ましくはォロット酸とゥラシノレがあげられる。
具体的な CDP-コリンを生成蓄積させる方法としては、上記生体触媒と UTPの前駆 体およびコリンもしくはホスホリルコリンまたはそれらの塩とを媒体中で混合して得られ る混合物に、必要に応じて他の成分を添加し、 pHを 5〜11、より好ましくは 6〜10に維 持して、 20〜50°Cで 2〜48時間保持する。 [0041] 生体触媒の使用量は、当該生体触媒の比活性等により異なる。例えば、生体触媒 として微生物の培養物もしくは該培養物の処理物を用いる場合は、該培養物もしくは 該培養物の処理物を遠心分離して得られる湿菌体として、塩化コリン lmgに対して、 5 〜500mg、好ましくは 10〜300mg用いることが好ましい。
コリン、ホスホリルコリンおよびそれらの塩としては、例えば、コリン、塩化コリン、臭化 コリン、ヨウ化コリンなどのハロゲン化コリン、重炭酸コリン、硫酸メチルコリン、クェン酸 二水素コリン、重酒石酸コリン、ホスホリルコリン、塩化ホスホリルコリンなどのホスホリ ルコリンのハロゲン化物などがあげられる力 コリンもしくはホスホリルコリンのハロゲン 化物が好ましく用いられ、塩化コリン、塩化ホスホリルコリンがさらに好ましく用いられ る。
[0042] UTPの前駆体、コリン、ホスホリルコリンおよびそれらの塩は、化学合成して得てもよ いし、発酵法などにより生物から得てもよい。また、必ずしも純粋に精製されたもので なくてもよい。また、いずれの基質も市販されており容易に入手可能である。
UTPの前駆体、コリン、ホスホリルコリンおよびそれらの塩の濃度は、 1 mmol/L〜lm ol/Lが好ましく、 10〜100mmol/Lがさらに好ましい。
[0043] 必要な他の成分としては、 CDP-コリン生成に必要なエネルギー供与体、リン酸ィォ ン、マグネシウムイオン、アンモニゥムイオン、界面活性剤および有機溶剤などがあげ られる。これらの成分は、生体触媒等から必要量が持ち込まれる場合には添加する 必要はない。
エネルギー供与体としてはグノレコース、フラクトース、シュクロースなどの糖、糖蜜、 澱粉加水分解物など、グリシン、ァラニンなどのアミノ酸が用いられる。これらは、 0.02 〜2.0mol/Lの濃度で用いられることが好ましレ、。
[0044] リン酸イオンとしては正リン酸、ピロリン酸、トリポリリン酸、テトラポリリン酸などのポリリ ン酸、ポリメタリン酸、リン酸一カリウム、リン酸二カリウム、リン酸一ナトリウム、リン酸二 ナトリウムなどの無機のリン酸塩などを用いることができる。これらのリン酸イオンは、 1 0〜500mmol/Lの濃度で用いられることが好ましレ、。
マグネシウムイオンとしては硫酸マグネシウム、硝酸マグネシウム、塩ィヒマグネシゥ ムなどの無機のマグネシウム塩、クェン酸マグネシウムなどの有機のマグネシウム塩 を用いることができる。マグネシウムイオンは 5〜200mmol/Lの濃度で用いられること が好ましい。
[0045] アンモニゥムイオンとしてはアンモニア水、アンモニアガス、各種無機あるいは有機 のアンモニア塩、酵母エキス、コーンスチープリカーなどを用いることができる。またァ ンモニゥムイオンに代えてグルタミンやグルタミンを含有するペプチドやカザミノ酸な どの有機栄養源を用いることもできる。これらのアンモニゥムイオンの濃度は lOmmol/ L〜2mol/Lの濃度で用いられることが好ましレ、。
[0046] 界面活性剤としてはジォクチルスルホコハク酸ナトリウム(例えばラビゾール B-80、 日本油脂社製)、ラウロイルザルコシネートなどの陰イオン性界面活性剤、ポリオキシ エチレン'セチルエーテル (例えばノニオン P_208、 日本油脂社製)などの非イオン性 界面活性剤、アルキルジメチルァミン (例えば三級アミン FB、 日本油脂社製)などの 三級アミン類など、 CDP-コリンの生成を促進するものであればいずれでも使用できる 。これらは通常 0.1〜100g/L、好ましくは l〜50g/Lの範囲で用いられる。
[0047] 有機溶剤としては、キシレン、トルエン、脂肪族アルコール (メチルアルコール、ェチ ノレアルコール、ブチルアルコール等)、アセトン、酢酸ェチル、ジメチルスルホキシド 等があげられる。これらは通常、 0.1〜100mL/L、好ましくは l〜50mL/Lの濃度で用い られる。
生体触媒と UTP前駆体、およびコリンもしくはホスホリルコリンまたはそれらの塩とを 接触させる媒体としては、生体触媒として使用する微生物を培養するための培地、該 微生物の培養物、培養物の上清等を用いてもよいし、水性媒体を用いてもよい。
[0048] 水性媒体としては、水、リン酸緩衝液、 HEPES(N_2-ヒドロキシェチルピペラジン- N- エタンスルホン酸)緩衝液、トリス [トリス (ヒドロキシメチル)ァミノメタン]塩酸緩衝液等の 緩衝液があげられる。
反応を阻害しなければ該媒体に有機溶媒を添加してもよい。有機溶媒としては、ァ セトン、酢酸ェチル、ジメチルスルホキシド、キシレン、メチルアルコール、ェチルアル コール、ブタノール等があげられる。
[0049] このような CDP-コリンの製法として、 Corvnebacterium ammoniagenes ATCC21170 と Escherichia coli MM294/pCKG55株 (FERM BP-3717)を生体触媒として用いて CDP -コリンを生産する方法(特許第 3369236号、米国特許第 6387667号)があげられる。
CDP-コリン生成酵素としては、ォロット酸ホスホリボシルトランスフェラーゼ、ォロチ ジン- 5,-モノリン酸デカルボキシラーゼ、ゥリジンホスホリラーゼ、ゥラシルホスホリボ シルトランスフェラーゼ、ゥリジンキナーゼ、ゥリジル酸.シチジル酸キナーゼ、ヌクレオ シドジリン酸キナーゼ、 PyrG、 CCT、および CKIからなる群力、ら選ばれる 1または 2以上 の酵素があげられる。
[0050] 上記の酵素活性を有する微生物をホモジェナイザー等で破砕した後、さらに塩析 処理、等電点沈殿処理、有機溶媒沈殿処理、透析処理、各種クロマトグラフィー処理 等の、通常の酵素の精製手段を施して得られる粗酵素または精製酵素を CDP -コリン 生成酵素として用いることができる。また、該微生物の破砕物をそのまま上記酵素とし て用いることができる。
[0051] また、上記微生物破砕物、粗酵素または精製酵素を水不溶性の担体やゲルなどに 固定化し、これを上記酵素として用いてもよい。
CDP-コリンは、上記酵素と UTPの前駆体、およびコリンもしくはホスホリルコリンまた はそれらの塩とを媒体中で接触させることによって媒体中に CDP-コリンを生成蓄積さ せ、該媒体から CDP-コリンを採取することによって製造することができる。
[0052] 具体的な CDP-コリンを生成蓄積させる方法としては、上記酵素と UTPの前駆体お よびコリンもしくはホスホリルコリンまたはそれらの塩とを媒体中で混合して得られる混 合物に、必要に応じて他の成分を添加し、 pHを 5〜11、より好ましくは 6〜10に維持し て、 20〜50°Cで 2〜48時間保持する。
CDP-生成酵素の使用量は、当該酵素の比活性等により異なる。例えば、該酵素と して粗酵素を用いる場合は、塩ィ匕コリン lmgに対して、 1 μ g〜500mg、好ましくは 10 μ g〜300mg用いることが好ましレ、。
[0053] CDP -コリン生成酵素を用いて CDP-コリンを生成蓄積させる際に添加する UTPの前 駆体、コリン、ホスホリルコリン、それらの塩、および必要に応じて添カ卩する他の成分 は、上記の微生物の培養物等を用いて CDP -コリンを生成蓄積させる場合と同様であ る力 さらに必要に応じてエネルギー供与体としてはアデノシン- 5 ' -三リン酸など添 カロしてもよく、さらに 5 -ホスフオリボシルジリン酸を添加してもよい。 [0054] CDP-コリン生成酵素と UTPの前駆体およびコリンもしくはホスホリルコリンまたはそ れらの塩とを接触させる媒体としては、生体触媒として使用する微生物を培養するた めの培地、該微生物の培養液、培養上清等を用いてもよいし、水性媒体を用いても よい。
水性媒体としては、水、リン酸緩衝液、 HEPES(N-2-ヒドロキシェチルピペラジン- N- エタンスルホン酸)緩衝液、トリス [トリス (ヒドロキシメチル)ァミノメタン]塩酸緩衝液等の 緩衝液があげられる。
[0055] 上記のように CDP -コリンを生成蓄積させた媒体から CDP -コリン溶液を調製する際 には、膜分離、濾過、遠心分離等の手段を用いて、該媒体から固形物を分離除去す れは'よレ、。
上記方法により調製される CDP-コリン溶液に含まれる核酸類縁物質としては、ゥラ シル、 UTP等があげられる。
CDP-コリンや核酸類縁物質は高速液体クロマトグラフィー(UV検出)を用いた常法 により分析すること力 Sできる。
[0056] 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施 例に限定されるものではない。
実施例 1
[0057] 強酸性カチオン交換樹脂を用いた CDP -コリンの精製
CDP -コリン (和光純薬工業社製) 50g、ゥラシル (ナカライテスタ社製) 2g、 UTP (ナカ ライテスタ社製) lgを水に溶解し 5Lの CDP -コリン溶液を調製した。その溶液を硫酸に て PH3.0に調整し、架橋度 4。/0の強酸性カチオン交換樹脂ダイヤイオン PK208 (H形) 10Lを充填したカラムに通塔した。続けて水を通塔し、高速液体クロマトグラフィー分 析によりゥラシル、 UTPの各濃度が CDP -コリンに対して 0.1%(w/w)未満である分画を 取得した。 CDP-コリン画分を lOOmLに濃縮し、エタノール 350mLを徐々に添加した。 析出した結晶を濾取し、 100%エタノール溶液で洗浄した後、 20°Cにて 3日間減圧乾 燥した。その結果、ゥラシル、 UTPの各濃度力 CDP-コリンに対して 0.1%(w/w)未満で ある CDP-コリン結晶を 40g取得した。
実施例 2 [0058] CDP-コリンを生成する能力を有する微生物の培養物からの CDP-コリンの精製
PyrG、 CCT、 CKIの酵素活性を有する大腸菌 MM294/pCKG55株 (FERM BP-3717) をアンピシリン 50 /i g/mLを含む L培地レくクトトリプトン (ディフコ社製) 10g/L、酵母ェキ ス (ディフコ社製) 5g/L、 NaCl 5g/Lを含み、 pHを 7.2に調整した液体培地] 10mLの入つ た試験管に接種し、 25°Cで 24時間 300rpmにて振盪培養した。この培養液 20mLをァ ンピシリン 50 μ g/mLを含む L培地 400mLの入った 2Lバッフル付き三角フラスコに接種 し、 25°Cにて 16時間、 190rpmで回転振盪培養した。この培養液 125mLを、グルコース 5g/L (別殺菌)、ペプトン (極東製薬工業社製) 5g/レ Na HPO 6g/L、 KH PO 3g/レ
NaCl 5g/L、NH Cl lg/L、 MgSO · 7Η〇 250mg/L (別殺菌)およびビタミン Bl 4 g
/L (別殺菌)の組成からなる液体培地 (pH無調整) 2.5Lの入った 5L容培養槽に接種し、 25°Cにて 11時間、その後 32°Cにて 13時間、攪拌 600rpm、通気量 2.5L/分の培養条 件下、 14%アンモニア水にて pH7.0に調整しつつ培養を行った。培養中、培養開始 11 時間目力ら 24時間目までの間、グルコース 167gん、ペプトン 167g/Lの組成力 なるフ イード液をペリスタポンプにより 30mL/時間の速度にて流加した。
[0059] 一方、ォロット酸からから UTPを生成する活性を有するコリネバタテリゥム 'アンモニ ァゲネス ATCC21170株を、グルコース 50g/L、ポリペプトン (大五栄養化学社製) 10g/ L、イーストエキス (大五栄養化学社製) 10g/L、尿素 5g/L、 (NH ) SO 5g/L、 KH PO 1 g/L、 K HPO 3gん、 MgSO · 7Η O lgん、 CaCl · 2Η O 0.1g/L、 FeSO · 7Η O 10m gん、 ZnSO - 7H O 10mg/L、 MnSO ·4〜6Η O 20mg/L、 L_システィン 20mg/L、 D_ パントテン酸カルシウム 10mg/L、ビタミン Bl 5mg/L、ニコチン酸 5mg/L、およびピオ チン 30 μ g/L (水酸化ナトリウムで ρΗ7.2に調整)の組成からなる液体培地 10mLの入つ た試験管に接種し、 28°Cにて 24時間、 300rpmで往復振盪培養した。この培養液 20m Lを上記と同一組成の液体培地 230mLの入った 2L容バッフル付き三角フラスコに接 種し、 28°Cで 24時間 190rpmにて回転振盪培養した。この培養液 250mLを、ダルコ一 ス 100g/L、肉エキス 10g/L、ポリペプトン 10g/L、 KH PO lg/L、 K HPO lg/L、 MgS
〇 .7H O lg/L、 CaCl ·2Η O 0.1g/L、 FeSO · 7Η O 20mg/L、 ZnSO · 7Η O 10mg/
L、 MnSO ·4〜6Η O 20mg/L、 j3 -ァラニン 15mg/L、 L -システィン 20mg/L、ピオチン
100 μ g/L、尿素 2g/L (別殺菌)およびビタミン Bl 5mg/L (別殺菌) (水酸化ナトリウムで pH7.2に調整)の組成からなる液体培地 2.5Lの入った 5L容培養槽に接種し、 32°Cに て攪拌 600卬 m、通気量 2.5L/分の培養条件下、濃アンモニア水で pHを 6.8に調整し つつ種培養を行った。上記種培養液の上清中のグルコースが消費された時点で、培 養液を 350mL無菌的に採取し、グルコース 180g/L、 KH PO 10g/L、 K HPO 10g/L
、 MgSO · 7Η O 10g/L、 CaCl - 2H O 0.1g/L、 FeSO - 7H O 20mg/L、 ZnSO - 7H〇
10mg/L、 MnSO ·4〜6Η〇 20mg/L (別殺菌)、 /3 -ァラニン 15mg/L、し-システィン 2
0mg/L、グノレタミン酸ナトリウム lg/L、ピオチン 100 x g/レ尿素 2g/L (別殺菌)およびビ タミン Bl 5mg/L (別殺菌) (水酸化ナトリウムで pH7.2に調整)の組成からなる液体培地 2.5Lの入った 5L容培養槽に接種し、 32°Cにて攪拌 600rpm、通気量 2.5L/分の培養 条件下、濃アンモニア水で PH6.8に調整しつつ本培養を行った。培養液上清中のグ ルコースが消費された時点で培養を終了した。
[0060] このようにして得られた大腸菌 MM294/pCKG55株の培養液 360mLとコリネバタテリ ゥム 'アンモニアゲネス ATCC21170株の培養液 360mLを 2L容培養槽に入れ、これに グルコース 100g/L、ォロット酸 10gん、塩化コリン 8.4g/L、 MgSO · 7Η O 5g/L、キシレ ン 20mL/Lを添加し、蒸留水を加え全量を 800mLとした。この混合液を、 32°Cにて攪 拌 800卬 m、通気量 0.8L/分の条件下、 10規定水酸化ナトリウムで pHを 7.2に調整しつ つ反応を行った。反応中、反応液上清中のリン酸濃度が KH POとして l〜5g/Lに保 たれるように適宜 KH POを途中添加した。 23時間反応を行ったところ、 CDP-コリンが
11.0g/L生成した。
[0061] 上記反応液 4回分を硫酸にて pHl.Oに調整し、遠心分離 (7000rpm、 10分)にて菌体 を分離し、得られた上澄み液に水を添加し 6Lになるよう調製した(CDP-コリン 6.0g/L 、ゥラシル 0.5g/レ UTPl.Og /し)。このシチジンジリン酸コリン溶液を、架橋度 4%の強 酸性カチオン交換樹脂ダイヤイオン SK104 (H形) 10Lを充填したカラムに通塔した。 続けて水を通塔し、高速液体クロマトグラフィー分析によりゥラシル、 UTPの各濃度が CDP -コリンに対して 0.1%(w/w)未満である分画を取得した。活性炭を用いて CDP -コリ ン画分を脱色した後、 lOOmLになるまで濃縮した。この濃縮液にエタノール 350mLを 徐々に添カ卩し、析出した結晶を濾取した。得られた結晶を 100%エタノール溶液で洗 浄した後、 20°Cにて 3日間減圧乾燥した。その結果、ゥラシル、 UTPの各濃度力 CD P-コリンに対して 0.1%(w/w)未満である CDP-コリン結晶を 18g得た。
実施例 3
[0062] CDP -コリンを生成する能力を有する微生物の培養物からの CDP -コリンナトリウム塩 の精製
実施例 2と同様にして得られた反応液 4回分を硫酸にて pHl.Oに調整し、遠心分離( 7000rpm、 10分)にて菌体を分離し、得られた上澄み液に水を添加し 6Lになるよう調 製した(CDP-コリン 6.0gん、ゥラシル 0.5g/L、 UTPl.Ogん)。このシチジンジリン酸コリ ン溶液を、架橋度 4%の強酸性カチオン交換樹脂ダイヤイオン SK104 (H形) 10Lを充 填したカラムに通塔した。続けて水を通塔し、高速液体クロマトグラフィー分析により ゥラシル、 UTPの各濃度が CDP-コリンに対して 0.1%(w/w)未満である分画を取得した 。 CDP-コリン画分を水酸化ナトリウムにて pH7.5に調整し、活性炭を用いて脱色した 後、 lOOmLになるまで濃縮した。この濃縮液にエタノール 400mLを徐々に添カ卩し、析 出した結晶を濾取した。得られた結晶を 100%エタノール溶液で洗浄した後、 20°Cにて 3日間減圧乾燥した。その結果、ゥラシル、 UTPの各濃度力 CDP-コリンに対して 0.1 %(w/w)未満である CDP-コリンナトリウム塩結晶を 20g得た。
[0063] 以上の結果、核酸類縁物質を含む CDP-コリン溶液を、強酸性カチオン交換樹脂を 用いて 1回処理するだけで、不純物を含まない CDP-コリンまたはその塩を簡便に得 ることができることが明らかになった。
産業上の利用可能性
[0064] 本発明により、 CDP-コリンおよびその塩が安価に提供される。

Claims

請求の範囲
[1] 核酸類縁物質を含み、かつ pHが 0.5以上 5.0以下のシチジンジリン酸コリン(以下、 C DP -コリンと略す)溶液を、 H形強酸性カチオン交換樹脂と接触させ、該樹脂に吸着し た CDP-コリンを水またはイオン濃度が 0.1mol/L以下の水溶液で溶出させて、 CDP- コリンを分離精製することを特徴とする、 CDP -コリンの精製方法。
[2] 該 CDP -コリン溶液力 ゥリジン- 5 ' -三リン酸(以下、 UTPと略す)の前駆体とコリンまた はホスホリルコリンとから CDP-コリンを生成する活性を有する生体触媒を、 UTPの前 駆体、およびコリンもしくはホスホリルコリンまたはそれらの塩と水性媒体中で共存さ せ、該媒体中に CDP-コリンを生成蓄積させることにより得られる該媒体力 調製され る溶液である、請求項 1記載の CDP-コリンの精製方法。
[3] 生体触媒が、 UTPの前駆体力 UTPを生成する能力を有する微生物の培養物また は該培養物の処理物、および UTPとコリンまたはホスホリルコリンとから CDP-コリンを 生成する能力を有する微生物の培養物または該培養物の処理物を含む生体触媒で ある、請求項 2記載の CDP-コリンの精製方法。
[4] 生体触媒が、 UTPの前駆体とコリンまたはホスホリルコリンとから CDP-コリンを生成す る反応を担う酵素を含む生体触媒である、請求項 2記載の CDP-コリンの精製方法。
[5] CDP -コリンを生成する反応を担う酵素力 ォロット酸ホスホリボシルトランスフェラーゼ 、ォロチジン- 5,-モノリン酸デカルボキシラーゼ、ゥリジンホスホリラーゼ、ゥラシルホ スホリボシルトランスフェラーゼ、ゥリジンキナーゼ、ゥリジル酸.シチジル酸キナーゼ、 ヌクレオシドジリン酸キナーゼ、シチジン- 5,-トリリン酸シンセターゼ、コリンホスフエ一 トシチジルトランスフェラーゼ、およびコリンキナーゼからなる群から選ばれる酵素で ある、請求項 4記載の CDP-コリンの精製方法。
[6] 核酸類縁物質が、ゥラシノレおよび UTPから選ばれる物質である、請求項 1〜5記載の CDP -コリンの精製方法。
PCT/JP2006/315802 2005-08-10 2006-08-10 シチジンジリン酸コリンの精製方法 WO2007018259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06782606.5A EP1939210B1 (en) 2005-08-10 2006-08-10 Method of purifying cytidine diphosphate choline
US12/063,318 US8303820B2 (en) 2005-08-10 2006-08-10 Method of purifying cytidine diphosphate choline
CN200680037687XA CN101448846B (zh) 2005-08-10 2006-08-10 胞苷二磷酸胆碱的纯化方法
KR1020087004972A KR101311571B1 (ko) 2005-08-10 2006-08-10 시티딘이인산 콜린의 정제 방법
JP2007529619A JP4977608B2 (ja) 2005-08-10 2006-08-10 シチジンジリン酸コリンの精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-231958 2005-08-10
JP2005231958 2005-08-10

Publications (1)

Publication Number Publication Date
WO2007018259A1 true WO2007018259A1 (ja) 2007-02-15

Family

ID=37727439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315802 WO2007018259A1 (ja) 2005-08-10 2006-08-10 シチジンジリン酸コリンの精製方法

Country Status (7)

Country Link
US (1) US8303820B2 (ja)
EP (1) EP1939210B1 (ja)
JP (1) JP4977608B2 (ja)
KR (1) KR101311571B1 (ja)
CN (1) CN101448846B (ja)
TW (1) TW200741005A (ja)
WO (1) WO2007018259A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906126B (zh) * 2010-02-09 2012-04-25 南京工业大学 一种疏水层析分离纯化胞二磷胆碱的方法
CN102952167A (zh) * 2012-11-29 2013-03-06 南京工业大学 胞苷5’-磷酸二钠的溶析结晶方法
WO2018066690A1 (ja) * 2016-10-06 2018-04-12 協和発酵バイオ株式会社 シチジンジリン酸コリンの結晶及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046708B2 (ja) * 2004-06-04 2008-02-13 明治製菓株式会社 3−アルケニルセフェム化合物の製造方法
EP2376619A4 (en) 2008-12-15 2012-07-04 Greenlight Biosciences Inc METHODS FOR CONTROLLING FLOWS IN METABOLIC PATHWAYS
ES2718844T3 (es) 2010-05-07 2019-07-04 Greenlight Biosciences Inc Métodos para controlar el flujo en rutas metabólicas mediante la reubicación de enzimas
EP2611922A1 (en) 2010-08-31 2013-07-10 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways through protease manipulation
WO2013036787A2 (en) 2011-09-09 2013-03-14 Greenlight Biosciences, Inc. Cell-free preparation of carbapenems
BR112016002494A2 (pt) 2013-08-05 2017-09-05 Greenlight Biosciences Inc Proteí-nas construídas com um sítio de clivagem de protease, ácido nucléico, vetor, célula e processo de engenharia de uma proteína recombinante e de um grande número de variantes de ácidos nucleicos que codificam proteínas recombinantes
CN103819522B (zh) * 2014-02-27 2015-09-09 江南大学 一种从东方伊萨酵母生物转化液中分离纯化胞二磷胆碱的方法
CN107614682B (zh) 2015-03-30 2021-11-09 绿光生物科技股份有限公司 核糖核酸的无细胞生成
RU2018138975A (ru) 2016-04-06 2020-05-12 Гринлайт Байосайенсис, Инк. Бесклеточная продукция рибонуклеиновой кислоты
CN111465701A (zh) 2017-10-11 2020-07-28 绿光生物科技股份有限公司 用于三磷酸核苷和核糖核酸生成的方法和组合物
CN109836468A (zh) * 2017-11-24 2019-06-04 苏州华赛生物工程技术有限公司 一种从微生物发酵液中分离纯化胞二磷胆碱钠的方法
CN108358989A (zh) * 2018-04-24 2018-08-03 苏州华赛生物工程技术有限公司 一种从微生物发酵液中分离纯化胞苷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1305539A (ja) 1970-12-02 1973-02-07
JPS6216497A (ja) * 1985-07-12 1987-01-24 Takeda Chem Ind Ltd シチジン―5′―ジリン酸コリン1水和物結晶の製造法
JPS636558B2 (ja) 1983-06-16 1988-02-10 Kojin Kk
WO1999049073A1 (fr) 1998-03-20 1999-09-30 Yamasa Corporation Procede de production de cytidine 5'-diphosphate choline
JP3369236B2 (ja) 1992-01-30 2003-01-20 協和醗酵工業株式会社 シチジンジリン酸コリンの製造法
EP1502956A1 (en) 2002-05-08 2005-02-02 Kyowa Hakko Kogyo Co., Ltd. Process for producing cytidine 5'-diphocphate choline

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209980A (ja) 1982-04-27 1983-12-07 Kyowa Hakko Kogyo Co Ltd 酵素の精製法
KR0177841B1 (ko) 1992-01-30 1999-04-01 나까무라 간노스께 시티딘 디인산 콜린의 제조방법
US5589517A (en) 1994-04-08 1996-12-31 Mitsubishi Chemical Corporation Modified ion exchange resins and use thereof
TW593331B (en) * 1997-07-25 2004-06-21 Inspire Pharmaceuticals Inc Method for large-scale production of di(uridine 5')-tetraphosphate and salts thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1305539A (ja) 1970-12-02 1973-02-07
JPS636558B2 (ja) 1983-06-16 1988-02-10 Kojin Kk
JPS6216497A (ja) * 1985-07-12 1987-01-24 Takeda Chem Ind Ltd シチジン―5′―ジリン酸コリン1水和物結晶の製造法
JPH0631306B2 (ja) 1985-07-12 1994-04-27 武田薬品工業株式会社 シチジン―5′―ジリン酸コリン1水和物結晶の製造法
JP3369236B2 (ja) 1992-01-30 2003-01-20 協和醗酵工業株式会社 シチジンジリン酸コリンの製造法
WO1999049073A1 (fr) 1998-03-20 1999-09-30 Yamasa Corporation Procede de production de cytidine 5'-diphosphate choline
EP1502956A1 (en) 2002-05-08 2005-02-02 Kyowa Hakko Kogyo Co., Ltd. Process for producing cytidine 5'-diphocphate choline

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJIO ET AL., BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 61, no. 6, 1997, pages 960 - 964
See also references of EP1939210A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906126B (zh) * 2010-02-09 2012-04-25 南京工业大学 一种疏水层析分离纯化胞二磷胆碱的方法
CN102952167A (zh) * 2012-11-29 2013-03-06 南京工业大学 胞苷5’-磷酸二钠的溶析结晶方法
WO2018066690A1 (ja) * 2016-10-06 2018-04-12 協和発酵バイオ株式会社 シチジンジリン酸コリンの結晶及びその製造方法
JPWO2018066690A1 (ja) * 2016-10-06 2019-07-25 協和発酵バイオ株式会社 シチジンジリン酸コリンの結晶及びその製造方法
JP7146640B2 (ja) 2016-10-06 2022-10-04 協和発酵バイオ株式会社 シチジンジリン酸コリンの結晶及びその製造方法

Also Published As

Publication number Publication date
JP4977608B2 (ja) 2012-07-18
TW200741005A (en) 2007-11-01
US8303820B2 (en) 2012-11-06
KR20080036623A (ko) 2008-04-28
KR101311571B1 (ko) 2013-09-26
EP1939210B1 (en) 2014-12-03
JPWO2007018259A1 (ja) 2009-02-19
US20090286284A1 (en) 2009-11-19
CN101448846B (zh) 2012-05-30
EP1939210A1 (en) 2008-07-02
CN101448846A (zh) 2009-06-03
EP1939210A4 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2007018259A1 (ja) シチジンジリン酸コリンの精製方法
KR100555161B1 (ko) 당뉴클레오티드류및복합당질의제조법
US8309329B2 (en) Process for production of 5′-guanylic acid
US20150240277A1 (en) Process for producing monosaccharides
EP1816206B1 (en) Method of producing uridine 5 -diphospho-n-acetylgalactosamine
EP1502956B1 (en) Process for producing cytidine 5'-diphosphate choline
JP2001136982A (ja) N−アセチルノイラミン酸の製造法
JP3890744B2 (ja) グルコースを出発原料としたl−リボースの製造方法
JP5112869B2 (ja) シチジンジリン酸コリンの製造法
WO1998011247A1 (fr) Procede de production de nucleotides de sucre et d'hydrates de carbone complexes
WO2002031176A1 (fr) Procédé permettant la production de nucléosides
US4594320A (en) Process for producing 3-deoxyguanosine
KR101818561B1 (ko) 바실러스 유래 뉴클레오시드 포스포릴라아제를 이용한 3'-아미노-2',3'-디데옥시아데노신의 제조 방법
JP3739352B2 (ja) 糖ヌクレオチド類および複合糖質の製造法
JP4173815B2 (ja) 2’−デオキシグアノシンの製造法
JP3992073B2 (ja) 2’−デオキシアデノシン、2’−デオキシグアノシンの製造法
EP0801684A1 (en) Process for the complete removal of protective groups on nucleoside diphosphate and triphosphate sugars
CN116479074A (zh) 一种由GDP-Mannose合成稀有糖类核苷酸的方法
CN116287064A (zh) 一种由UDP-GlcNAc合成稀有糖核苷酸的方法
JP4901447B2 (ja) Cmp−デアミノノイラミン酸の製造法
JP5348807B2 (ja) Cmp−デアミノノイラミン酸の製造法
WO2006088017A1 (ja) 4位ハロゲン化ガラクトース含有糖鎖及びその応用
JPH0419838B2 (ja)
JPH038760B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037687.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529619

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12063318

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 634/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006782606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087004972

Country of ref document: KR