WO2018066690A1 - シチジンジリン酸コリンの結晶及びその製造方法 - Google Patents

シチジンジリン酸コリンの結晶及びその製造方法 Download PDF

Info

Publication number
WO2018066690A1
WO2018066690A1 PCT/JP2017/036463 JP2017036463W WO2018066690A1 WO 2018066690 A1 WO2018066690 A1 WO 2018066690A1 JP 2017036463 W JP2017036463 W JP 2017036463W WO 2018066690 A1 WO2018066690 A1 WO 2018066690A1
Authority
WO
WIPO (PCT)
Prior art keywords
cytidine diphosphate
crystal
crystals
organic solvent
choline
Prior art date
Application number
PCT/JP2017/036463
Other languages
English (en)
French (fr)
Inventor
一成 福本
Original Assignee
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵バイオ株式会社 filed Critical 協和発酵バイオ株式会社
Priority to AU2017341136A priority Critical patent/AU2017341136B2/en
Priority to CN201780061184.4A priority patent/CN109790197A/zh
Priority to EP17858526.1A priority patent/EP3524613B1/en
Priority to JP2018543989A priority patent/JP7146640B2/ja
Priority to US16/339,301 priority patent/US11186605B2/en
Priority to CN202310942771.1A priority patent/CN117069780A/zh
Priority to RU2019112721A priority patent/RU2800932C2/ru
Publication of WO2018066690A1 publication Critical patent/WO2018066690A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a crystal of cytidine diphosphate choline having excellent quality and a method for producing the same.
  • Cytidine diphosphate choline is a physiologically active substance having an effect of improving brain function, and is widely used as a medical drug in Japan and as a health food material overseas (Patent Document 1).
  • a crystal of cytidine diphosphate choline a monohydrate crystal is known (Patent Document 3).
  • Patent Documents 2 and 3 As a method for producing the crystal, a method of adding an organic solvent to an aqueous solution in which cytidine diphosphate choline is dissolved is disclosed.
  • Non-Patent Document 1 methanol is designated as a class 2 as a solvent whose residual amount in pharmaceuticals should be regulated, and it is not desirable to remain in foods that are outside the scope of doctors' prescription management. Therefore, cytidine diphosphate choline crystals are strongly demanded to reduce residual methanol as a material used in pharmaceuticals and foods, and it is also required to have good powder physical properties for molding into tablets etc. It is done.
  • Japanese Patent No. 6166786 Japanese Patent Publication No. 51-32630 Japanese Patent No. 647367 Japanese Patent No. 3369236 Japanese Patent No. 4977608
  • Patent Document 3 when trying to obtain crystals of cytidine diphosphate from an aqueous solution in which choline cytidine diphosphate is dissolved at a high temperature of 50 to 70 ° C. Cytidine diphosphate choline is easily decomposed, and impurities produced by the decomposition remain in the product at a high concentration (Patent Document 3 and Comparative Example 3 in Table 3 described later).
  • methanol used in the crystallization step remains in the crystal at a high concentration without using methanol in the washing step when the crystal is separated by filtration (comparison of Table 4 described later). Examples 1 and 2).
  • Cytidine diphosphate which is currently available in the market, has a residual amount of methanol (product of companies A to C in Table 4 to be described later) and does not contain methanol and has excellent powder properties.
  • the choline crystals have not been known so far.
  • an object of the present invention is to provide a cytidine diphosphate choline crystal that does not contain methanol and has improved powder physical properties, and a method for producing the same.
  • the present invention relates to the following (1) to (11).
  • a step of precipitating choline cytidine diphosphate crystals in an aqueous solution in which cytidine diphosphate choline is dissolved, a step of collecting the precipitated crystals of choline diphosphate phosphate, and a sample of the collected crystals of choline diphosphate phosphate having a water content A method for producing crystals of cytidine diphosphate choline, comprising a step of washing with an aqueous solution containing an organic solvent other than methanol at 5 to 50% by volume.
  • the organic solvent other than methanol is selected from the group consisting of ethanol, acetone, 1-propanol, 2-propanol, ethyl acetate, 1-butanol, 2-butanol, heptane, isopropyl acetate, methyl ethyl ketone, propyl acetate and tetrahydrofuran.
  • the production method according to (8), wherein the production method is at least one organic solvent.
  • the production method according to the above (8) or (9), wherein the organic solvent other than methanol is at least one organic solvent selected from the group consisting of ethanol, acetone, 1-propanol and 2-propanol.
  • (11) The production method according to any one of (8) to (10) above, wherein the organic solvent other than methanol is ethanol.
  • the present invention provides a crystal of cytidine diphosphate choline that does not contain methanol and has improved powder properties, and a method for producing the same.
  • FIG. 1 shows the correlation between the crude specific volume and the ethanol concentration of the aqueous ethanol solution used for crystal washing for the crystals of cytidine diphosphate choline obtained in Comparative Examples 3 and 4 and Examples 1 to 4.
  • the vertical axis represents the crude specific volume (mL / g), and the horizontal axis represents the ethanol concentration (% by volume).
  • the black diamond represents the result of crystallization at 70 ° C.
  • the white diamond represents the result of crystallization at 30 ° C.
  • FIG. 2 shows the correlation between the dense specific volume and the ethanol concentration of the aqueous ethanol solution used for crystal washing for the crystals of cytidine diphosphate choline obtained in Comparative Examples 3 and 4 and Examples 1 to 4.
  • the vertical axis represents the dense specific volume (mL / g), and the horizontal axis represents the ethanol concentration (% by volume).
  • the black diamond represents the result of crystallization at 70 ° C.
  • the white diamond represents the result of crystallization at 30 ° C.
  • the crystal of the present invention is a crystal of choline cytidine diphosphate that does not contain methanol and has a crude specific volume of 4.1 mL / g or less. As an embodiment of the crystal of the present invention, it does not contain methanol, and the crude specific volume is preferably 3.6 mL / g or less, more preferably 3.1 mL / g or less, and most preferably 2.6 mL / g or less. Mention may be made of crystals of cytidine diphosphate choline.
  • the crystal of cytidine diphosphate choline preferably has a small crude specific volume, but the lower limit of the crude specific volume is usually 1.0 mL / g or more, preferably 1.2 mL / g or more. .
  • the coarse specific volume means a value obtained by dividing the volume occupied by the powder when the container is filled with the powder and its mass is measured.
  • the crude specific volume can be measured according to the 17th revised Japanese Pharmacopoeia using a multi-tester MT-1001T type (manufactured by Seishin Enterprise Co., Ltd.) according to the attached manual under the following conditions.
  • the crystal of the present invention does not contain methanol, the crude specific volume is 4.1 mL / g or less, and the angle of repose is preferably 57 degrees or less, more preferably 55 degrees or less, still more preferably A cytidine diphosphate choline crystal of 53 degrees or less, most preferably 50 degrees or less can be mentioned.
  • the crystal of cytidine diphosphate choline preferably has a small angle of repose, but the lower limit of the angle of repose is usually 30 degrees or more, preferably 35 degrees or more.
  • the angle of repose refers to the angle formed between the generatrix of the cone formed by the powder and the horizontal plane when the powder is gently dropped onto a horizontal surface like a funnel.
  • the repose angle can be measured under the following conditions using a multi-tester MT-1001T type (manufactured by Seishin Enterprise Co., Ltd.) according to the attached manual.
  • the crystal of the present invention does not contain methanol, the crude specific volume is 4.1 mL / g or less, and the decay angle is preferably 50 degrees or less, more preferably 48 degrees or less, and still more preferably A cytidine diphosphate choline crystal of 46 degrees or less, most preferably 44 degrees or less can be mentioned.
  • the lower limit of the collapse angle is usually 30 degrees or more, preferably 35 degrees or more.
  • the decay angle is formed when a constant impact is indirectly applied to a cone formed by powder when the powder is gently dropped on a horizontal surface like a funnel.
  • the collapse angle can be measured by the following method using a multi-tester MT-1001T type (manufactured by Seishin Enterprise Co., Ltd.) according to the attached manual.
  • the crystal of the present invention does not contain methanol, the crude specific volume is 4.1 mL / g or less, and the dense specific volume is preferably 2.1 mL / g or less, more preferably 2.0 mL. / G or less, more preferably 1.9 mL / g or less, and most preferably 1.7 mL / g or less of cytidine diphosphate choline crystals.
  • the crystal of cytidine diphosphate choline preferably has a small dense specific volume, but the lower limit of the dense specific volume is usually 0.8 mL / g or more, preferably 1.0 mL / g or more. .
  • the dense specific volume refers to a value obtained by dividing the volume occupied by the powder when the mass is measured after the container is filled with the powder and a certain impact is applied.
  • the dense specific volume can be measured under the following conditions using a multi-tester MT-1001T type (manufactured by Seishin Enterprise Co., Ltd.) according to the 17th revised Japanese Pharmacopoeia, for example.
  • the difference between the repose angle and the collapse angle is preferably 9.0 or less, more preferably 8
  • a crystal having a large difference between the repose angle and the collapse angle has a high jet property and is difficult to control. Therefore, it is preferable that the difference between the repose angle and the collapse angle is small.
  • the crystal of the present invention does not contain methanol, has a crude specific volume of 4.1 mL / g or less, and preferably ethanol, acetone, 1-propanol, 2-propanol, ethyl acetate, 1-
  • the organic solvent other than at least one organic solvent selected from the group most preferably a crystal of cytidine diphosphate that does not contain an organic solvent other than ethanol.
  • methanol is not contained, the crude specific volume is 4.1 mL / g or less, and the content of the organic solvent contained in the crystal is preferably 1000 ppm by mass, respectively.
  • crystals of cytidine diphosphate choline having 800 ppm by mass or less, more preferably 600 ppm by mass or less, and most preferably 500 ppm by mass or less can be exemplified.
  • the content of the organic solvent in the crystal of the present invention can be measured, for example, by analysis using the gas chromatograph.
  • methanol does not contain, the crude specific volume is 4.1 mL / g or less, and the peak area of cytidine diphosphate choline in high performance liquid chromatography (hereinafter referred to as HPLC) analysis.
  • HPLC high performance liquid chromatography
  • 5 'cytidyl acid is a compound produced by decomposition of choline cytidine diphosphate depending on heating or pH fluctuation.
  • HPLC analysis means that a compound to be analyzed is dissolved in a solvent and subjected to analysis by HPLC.
  • the HPLC analysis is not particularly limited as long as it is an analytical method capable of simultaneously detecting cytidine diphosphate choline, 5 ′ cytidyl acid, and uridine diphosphate choline, and preferably HPLC for detecting and measuring absorbance at 254 nm. Analytical methods can be mentioned.
  • HPLC analysis methods include the HPLC analysis examples described below.
  • the peak area in the HPLC analysis is a value when measured under the HPLC analysis conditions described in the above HPLC analysis example.
  • the analysis conditions equivalent to the analysis conditions are also included in the HPLC analysis conditions in the present specification.
  • the peak area refers to the area surrounded by the baseline and the peak line when HPLC analysis is performed, and can be determined for each compound detected by HPLC analysis.
  • the peak of uridine diphosphate does not contain methanol, the crude specific volume is 4.1 mL / g or less, and the peak area of choline cytidine diphosphate is 100 in HPLC analysis.
  • a cytidine diphosphate choline crystal having an area of preferably 0.56 or less, more preferably 0.30 or less, still more preferably 0.10 or less, and most preferably 0.06 or less can be given.
  • Uridine diphosphate choline is a compound produced by decomposition of cytidine diphosphate choline depending on heating or pH fluctuation.
  • the crystal production method of the present invention comprises a step of precipitating cytidine diphosphate choline crystals in an aqueous solution in which cytidine diphosphate choline is dissolved, a step of collecting the precipitated cytidine diphosphate choline crystals, and And washing the collected cytidine diphosphate choline crystals with an aqueous solution containing an organic solvent other than methanol having a water content of 5 to 50% by volume.
  • the cytidine diphosphate choline contained in the aqueous solution in which cytidine diphosphate is dissolved may be produced by any production method such as a fermentation method, an enzymatic method, an extraction method from a natural product, or a chemical synthesis method. .
  • Examples of a method for obtaining an aqueous solution in which cytidine diphosphate choline is dissolved include, for example, a method in which the obtained cytidine diphosphate choline is dissolved in water, and a cytidine diphosphate obtained by culturing a microorganism having the ability to produce cytidine diphosphate choline.
  • Examples include a method for removing insoluble matter from a culture containing choline [Japanese Patent No. 3369236 (Patent Document 4)] and the like, and a method described in Japanese Patent No. 4777608 (Patent Document 5). it can.
  • the solid matter can be removed by centrifugation, filtration, or a ceramic filter.
  • the aqueous solution in which cytidine diphosphate choline is dissolved contains water-soluble impurities and salts that hinder crystallization
  • the aqueous solution is removed by passing through a column packed with an ion exchange resin or the like. Impurities and salts can be removed.
  • the hydrophobic solution can be obtained by passing through a column packed with synthetic adsorption resin or activated carbon. Impurities can be removed.
  • the concentration of choline cytidine diphosphate in an aqueous solution in which cytidine diphosphate is dissolved can be adjusted to be preferably 200 g / L or more, more preferably 250 g / L or more, and even more preferably 300 g / L or more.
  • the aqueous solution can be concentrated by a general concentration method such as a heat concentration method or a vacuum concentration method.
  • Examples of a method for precipitating cytidine diphosphate choline crystals in an aqueous solution in which cytidine diphosphate choline is dissolved include, for example, a method of cooling the aqueous solution, a method of concentrating the aqueous solution under reduced pressure, an organic solvent other than methanol in the aqueous solution, Examples include a method of adding or dropping an aqueous solution containing an organic solvent, or a method of combining one or more of them, and an organic solvent other than methanol or an aqueous solution containing the organic solvent is added to the aqueous solution or The method of dripping is preferable and the method which combined the method of adding or dripping the organic solvent other than methanol or the aqueous solution containing this organic solvent in this aqueous solution, and the method of cooling this aqueous solution is more preferable.
  • the temperature of the aqueous solution is preferably 0 to 35 ° C., more preferably 0 to 30 ° C., and most preferably 0 to 25 ° C.
  • the cooling time is preferably 2 to 100 hours, more preferably 2 to 70 hours, and most preferably 2 to 50 hours.
  • the temperature of the aqueous solution is preferably 0 to 50 ° C., more preferably 5 to 45 ° C., and most preferably 10 to 40 ° C. .
  • the reduced pressure time is preferably 2 to 100 hours, more preferably 3 to 70 hours, and most preferably 5 to 50 hours.
  • Examples of the organic solvent other than methanol in the method of adding or dropping an organic solvent other than methanol or an aqueous solution containing the organic solvent into an aqueous solution in which cytidine diphosphate choline is dissolved include, for example, preferably ethanol, acetone, 1- At least one organic solvent selected from the group consisting of propanol, 2-propanol, ethyl acetate, 1-butanol, 2-butanol, heptane, isopropyl acetate, methyl ethyl ketone, propyl acetate and tetrahydrofuran, more preferably ethanol, acetone, 1- As the at least one organic solvent selected from the group consisting of propanol and 2-propanol, ethanol is most preferable. Moreover, these organic solvents can also be used in combination of multiple types.
  • the concentration of the organic solvent in the aqueous solution containing an organic solvent other than methanol, which is added or dropped into the aqueous solution in which cytidine diphosphate is dissolved is preferably 30% by volume or more, more preferably 40% by volume or more, More preferably, 50 volume% or more can be mentioned, Most preferably, 60 volume% or more can be mentioned.
  • the temperature at which an organic solvent other than methanol or an aqueous solution containing the organic solvent is added or dropped is preferably 0 to 70 ° C., more preferably 0 to 50 ° C., still more preferably 5 to 45 ° C., most preferably 10 to 35 ° C. can be mentioned.
  • the time required for addition or dropwise addition of an organic solvent other than methanol or an aqueous solution containing the organic solvent is preferably 1 to 10 hours, more preferably 2 to 8 hours.
  • the amount of the organic solvent other than methanol or the aqueous solution containing the organic solvent added or dropped is preferably 1 to 10 times equivalent, more preferably 2 to 7 times equivalent of the aqueous solution in which cytidine diphosphate choline is dissolved. Can be mentioned.
  • seed crystals may be added before the crystals of cytidine diphosphate choline are precipitated.
  • seed crystals for example, crystals of cytidine diphosphate choline obtained by the method described in Japanese Patent No. 647367 (Patent Document 3) can be used.
  • the time for adding the seed crystal is, for example, preferably within 0 to 12 hours, more preferably 0 to 8 hours from the start of dropping or addition of an organic solvent other than methanol or an aqueous solution containing the organic solvent. And most preferably within 0 to 4 hours.
  • the seed crystal can be added so that the concentration in the aqueous solution to which the seed crystal is added is preferably 0.1 to 5.0 g / L, more preferably 0.2 to 1.0 g / L.
  • cytidine diphosphate choline crystals as described above, preferably 0.5 to 48 hours, more preferably 0.5 to 24 hours, most preferably 0.5 to 12 hours, preferably 0 to 70. It can be aged by stirring or leaving the aqueous solution containing the crystals at a temperature of 0 ° C., more preferably 3 to 50 ° C., and most preferably 5 to 35 ° C.
  • Aging the crystal means that the crystal is grown by interrupting or stopping the addition of an organic solvent other than methanol or an aqueous solution containing the organic solvent.
  • Growing a crystal means increasing the crystal based on the precipitated crystal. Crystal ripening is performed mainly for the purpose of growing a crystal, but a new crystal may be precipitated simultaneously with the growth of the crystal. After aging the crystals, the step of precipitating cytidine diphosphate choline crystals may be resumed.
  • Step of collecting precipitated cytidine diphosphate choline crystals Examples of methods for collecting precipitated cytidine diphosphate choline crystals include filtration, pressure filtration, suction filtration, and centrifugation.
  • the collected cytidine diphosphate choline crystal is an organic substance other than methanol having a water content of 5 to 50% by volume, preferably 10 to 40% by volume, more preferably 20 to 30% by volume. Wash with aqueous solution containing solvent. According to this process, in addition to reducing the adhesion of the mother liquor to the crystal and improving the quality of the crystal, the powder physical properties of the crystal can be controlled.
  • the temperature of the aqueous solution containing an organic solvent other than methanol used for crystal washing may be any temperature as long as the cytidine diphosphate choline is not decomposed, but is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, still more preferably. 20 ° C. or lower, most preferably 15 ° C. or lower.
  • 0 degreeC or more normally, Preferably 5 degreeC or more can be mentioned.
  • an organic solvent other than methanol used in the step of washing crystals of cytidine diphosphate an organic solvent other than methanol or an aqueous solution containing the organic solvent is added or added dropwise to an aqueous solution in which the cytidine diphosphate choline is dissolved.
  • an organic solvent similar to the organic solvent other than methanol can be used.
  • Examples of the method for washing the crystal include a method for spraying or spraying a crystal washing solution comprising an aqueous solution containing an organic solvent other than the above-mentioned methanol on the crystal layer, and a method for immersing the crystal layer in the crystal washing solution. be able to.
  • the crystal layer is taken out of the crystal cleaning solution in which the crystal layer is immersed, suspended again in the crystal cleaning solution, stirred, filtered again, pressure filtered, suction filtered, Operations such as centrifugation can also be performed.
  • the amount of the crystal washing solution used for the crystal washing is preferably 0.5 to 10 times, more preferably 1 to 9 times, and further preferably 2 to 8 times by volume ratio of the cytidine diphosphate choline to the crystal weight. The amount can be mentioned.
  • the crystals of the present invention can be obtained by drying the wet crystals thus obtained. Any drying method may be used as long as it can maintain the crystal form of cytidine diphosphate choline. For example, vacuum drying, vacuum drying, fluidized bed drying, ventilation drying, and the like can be applied.
  • the drying temperature may be any as long as it can remove adhering moisture and solvent, but is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and most preferably 60 ° C. or lower.
  • the drying time may be any as long as it can remove the adhering moisture and the solvent, but it is preferably 1 to 48 hours, more preferably 1 to 24 hours.
  • Example 1 According to Example 1 of Japanese Patent Publication No. 51-32630 (patent document 2), 760 g of cytidine diphosphate choline (Kyowa Hakko Bio Co., Ltd .: Lot. 160325) was dissolved in distilled water to make 1600 mL, and cytidine diphosphate choline was 450 g. An aqueous solution containing a concentration of / L was prepared. 1400 mL of methanol was added over 20 minutes at 20 ° C. to 400 mL of them. When white turbidity was observed during the addition of methanol, 0.8 g of cytidine diphosphate choline was added as a seed crystal.
  • Comparative Example 2 The rest of the crystal slurry obtained in Comparative Example 1 was centrifuged to separate the crystals, and the obtained wet crystals were suspended in 160 mL of 99.5% by volume ethanol and stirred to adhere to the crystal surface. Methanol was washed away completely. The wet crystals were dried under reduced pressure at 25 ° C. for 3 hours and further under reduced pressure at 60 ° C. for 3 hours to obtain 13.2 g of crystals.
  • Example 3 According to Example 3 of Japanese Patent No. 647367 (Patent Document 3), 639.9 g of cytidine diphosphate choline (Kyowa Hakko Bio Co., Ltd .: Lot. 160325) in terms of dry matter was added to 1300 mL of distilled water and dissolved. 1690 mL aqueous solution. Of these, 832 mL was mixed with 640 mL of 99.5 vol% ethanol at 70 ° C. Subsequently, 1280 mL of 80% by volume hydrous ethanol was added over 2 hours while maintaining the mixed solution at 70 ° C.
  • Patent Document 3 639.9 g of cytidine diphosphate choline (Kyowa Hakko Bio Co., Ltd .: Lot. 160325) in terms of dry matter was added to 1300 mL of distilled water and dissolved. 1690 mL aqueous solution. Of these, 832 mL was mixed with 640 mL of 99.5 vol%
  • Example 1 One third of the crystal slurry obtained in Comparative Example 3 was centrifuged to separate the crystals, and then washed with 533 mL of 85 volume% aqueous ethanol (water content 15 volume%) cooled to 10 ° C. The obtained wet crystals were dried under reduced pressure at 30 ° C. for 3 hours and further under reduced pressure at 60 ° C. for 3 hours to obtain 68.2 g of crystals.
  • Example 2 After centrifuging 1/3 minutes of the crystal slurry obtained in Comparative Example 3 to separate crystals, the crystals were washed with 533 mL of 70% by volume hydrous ethanol (water content 30% by volume) cooled to 10 ° C. The obtained wet crystals were dried under reduced pressure at 30 ° C. for 3 hours and further under reduced pressure at 60 ° C. for 3 hours to obtain 82.5 g of crystals.
  • Example 3 One third of the crystal slurry obtained in Comparative Example 4 was centrifuged to separate the crystals, and then washed with 670 mL of 85% by volume hydrous ethanol (water content 15% by volume) cooled to 10 ° C. The obtained wet crystals were dried under reduced pressure at 30 ° C. for 3 hours and further under reduced pressure at 60 ° C. for 3 hours to obtain 109.6 g of crystals.
  • Example 4 One third of the crystal slurry obtained in Comparative Example 4 was centrifuged to separate the crystals, and then washed with 670 mL of 70% by volume hydrous ethanol (water content 30% by volume) cooled to 10 ° C. The obtained wet crystals were dried under reduced pressure at 30 ° C. for 3 hours and further under reduced pressure at 60 ° C. for 3 hours to obtain 105.8 g of crystals.
  • Fig. 1 shows the results of measuring the crude specific volume, dense specific volume, repose angle, and decay angle of cytidine diphosphate choline crystals currently on the market and cytidine diphosphate choline crystals obtained by the above method. It shows in FIG. 2 and Table 2, respectively.
  • the specific volume of the cytidine diphosphate choline crystals was increased as the water content of the ethanol solution used for crystal washing was increased at both crystallization temperatures of 30 ° C. and 70 ° C. It was shown that the specific volume and dense specific volume) can be reduced. In particular, in crystallization at 30 ° C., which is a low temperature condition, the effect of reducing the specific volume by increasing the water content of the ethanol solution was more remarkable.
  • Table 3 shows the results of measuring the amount of 5 'cytidyl acid and choline uridine diphosphate contained in the crystals of the obtained cytidine diphosphate choline by HPLC analysis. Each value in Table 3 shows the value of each peak area when the peak area of cytidine diphosphate choline is defined as 100.
  • Table 4 shows the results of measuring the residual solvent contained in the crystals of cytidine diphosphate choline crystals and the obtained cytidine diphosphate crystals currently on the market by gas chromatography.
  • ppm indicates mass ppm.
  • ND indicates that it is below the detection limit.
  • Comparative Examples 1 and 2 about 0.5 g of cytidine diphosphate choline crystals were weighed and dissolved in distilled water to adjust to 10 mL.
  • Comparative Examples 3 and 4 and Examples 1 to 4 about 1 g of cytidine diphosphate choline crystals were weighed and dissolved in distilled water to adjust to 10 mL.
  • the crystal production method of the present invention makes it possible to obtain a crystal of cytidine diphosphate that does not contain methanol and that exhibits a powder physical property equivalent to or higher than that of the existing cytidine diphosphate crystal.
  • a crystal of cytidine diphosphate choline that achieves both reduction of impurities and residual solvent and improvement of powder physical properties, and a method for producing the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、メタノールを含有せず、かつ粉体物性が改善したシチジンジリン酸コリンの結晶、及びその製造方法を提供することを目的とする。本発明によれば、シチジンジリン酸コリンが溶解している水溶液にシチジンジリン酸コリンの結晶を析出させ、該析出したシチジンジリン酸コリンの結晶を採取し、該採取したシチジンジリン酸コリンの結晶を、含水量が5~50体積%である、メタノール以外の有機溶媒を含有する水溶液で洗浄することにより、メタノールを含有せず、かつ粉体物性が改善したシチジンジリン酸コリンの結晶を取得することができる。

Description

シチジンジリン酸コリンの結晶及びその製造方法
 本発明は、品質に優れたシチジンジリン酸コリンの結晶及びその製造方法に関する。
 シチジンジリン酸コリンは、脳機能の改善効果を有する生理活性物質であり、日本では医療用医薬品として、海外では健康食品素材として広く使用されている(特許文献1)。シチジンジリン酸コリンの結晶としては、1水和物の結晶が知られており(特許文献3)、その製造方法としては、シチジンジリン酸コリンが溶解している水溶液に有機溶媒を添加する方法が開示されている(特許文献2及び3)。  
 シチジンジリン酸コリンが溶解している水溶液にエタノールなどの有機溶媒を添加すると、常温下では有機層と水層が二層に分離し、結晶化に長時間を要する。そのため、シチジンジリン酸コリンの結晶を安定して得るためには、特許文献3に示される通り、50~70℃の高温が必要となる。
 一方、シチジンジリン酸コリンが溶解している水溶液と混和性の高いメタノールを使用すれば、低温条件下においても1水和物の結晶を速やかに起晶させることができる(特許文献2及び後述の比較例1)。
 非特許文献1によれば、メタノールは医薬品中の残留量を規制すべき溶媒としてクラス2に指定されており、また、医師の処方管理の範囲外となる食品への残留も望ましくない。そのため、医薬品や食品に用いられる素材として、シチジンジリン酸コリンの結晶には、残留メタノールの低減が強く求められるとともに、合わせて、錠剤等に成型するために、良好な粉体物性を有することが求められる。
日本国特許第6166786号公報 日本国特公昭51-32630号公報 日本国特許第647367号公報 日本国特許第3369236号公報 日本国特許第4977608号公報
医薬品の残留溶媒ガイドラインについて
 しかしながら、晶析工程にエタノールを使用する場合、特許文献3に記載されているように、50~70℃の高温でシチジンジリン酸コリンが溶解している水溶液からシチジンジリン酸コリンの結晶を得ようとすると、シチジンジリン酸コリンが容易に分解し、分解により生成した不純物が製品中に高濃度で残留する(特許文献3及び後述の表3の比較例3)。
 これに対して、結晶化に長時間を要することを許容してでも晶析温度を低下させると、シチジンジリン酸コリンの分解は抑制できるものの、今度は得られる結晶の比容積が著しく増大し、粉体物性が悪化する(後述の表2の比較例4)。
 また、特許文献2に記載の方法では、結晶を濾別する際の洗浄工程にメタノールを使用せずとも、晶析工程に用いるメタノールが結晶中に高濃度で残留する(後述の表4の比較例1及び2)。
 現在、市場で流通しているシチジンジリン酸コリンの結晶にはすべからくメタノールが残留しており(後述の表4のA~C社品)、メタノールを含有せず、かつ粉体物性の優れたシチジンジリン酸コリンの結晶はこれまで知られていない。
 したがって、本発明は、メタノールを含有せず、かつ粉体物性が改善したシチジンジリン酸コリンの結晶、及びその製造方法を提供することを目的とする。
 本発明は、以下の(1)~(11)に関する。
(1)メタノールを含有せず、かつ粗比容が4.1mL/g以下である、シチジンジリン酸コリンの結晶。
(2)安息角が57度以下である、上記(1)に記載の結晶。
(3)崩壊角が50度以下である、上記(1)又は(2)に記載の結晶。
(4)密比容が2.1mL/g以下である、上記(1)~(3)のいずれか1に記載の結晶。
(5)エタノール、アセトン、1-プロパノール、2-プロパノール、酢酸エチル、1-ブタノール、2-ブタノール、ヘプタン、酢酸イソプロピル、メチルエチルケトン、酢酸プロピル及びテトラヒドロフランからなる群より選ばれる少なくとも1の有機溶媒以外の有機溶媒を含有しない、上記(1)~(4)のいずれか1に記載の結晶。
(6)エタノール、アセトン、1-プロパノール及び2-プロパノールからなる群より選ばれる少なくとも1の有機溶媒以外の有機溶媒を含有しない、上記(1)~(5)のいずれか1に記載の結晶。
(7)エタノール以外の有機溶媒を含有しない、上記(1)~(6)のいずれか1に記載の結晶。
(8)シチジンジリン酸コリンが溶解している水溶液にシチジンジリン酸コリンの結晶を析出させる工程、該析出したシチジンジリン酸コリンの結晶を採取する工程、及び該採取したシチジンジリン酸コリンの結晶を、含水量が5~50体積%である、メタノール以外の有機溶媒を含有する水溶液で洗浄する工程を含む、シチジンジリン酸コリンの結晶の製造方法。
(9)メタノール以外の有機溶媒が、エタノール、アセトン、1-プロパノール、2-プロパノール、酢酸エチル、1-ブタノール、2-ブタノール、ヘプタン、酢酸イソプロピル、メチルエチルケトン、酢酸プロピル及びテトラヒドロフランからなる群より選ばれる少なくとも1の有機溶媒である、上記(8)に記載の製造方法。
(10)メタノール以外の有機溶媒が、エタノール、アセトン、1-プロパノール及び2-プロパノールからなる群より選ばれる少なくとも1の有機溶媒である、上記(8)又は(9)に記載の製造方法。
(11)メタノール以外の有機溶媒が、エタノールである、上記(8)~(10)のいずれか1に記載の製造方法。
 本発明は、メタノールを含有せず、かつ粉体物性が改善したシチジンジリン酸コリンの結晶、及びその製造方法を提供する。
図1は、比較例3及び4と実施例1~4で得られたシチジンジリン酸コリンの結晶について、粗比容と結晶洗浄に使用したエタノール水溶液のエタノール濃度の相関を表わす。縦軸は粗比容(mL/g)を、横軸はエタノール濃度(体積%)を表わす。黒ひし形は70℃晶析、白ひし形は30℃晶析の結果を表わす。 図2は、比較例3及び4と実施例1~4で得られたシチジンジリン酸コリンの結晶について、密比容と結晶洗浄に使用したエタノール水溶液のエタノール濃度の相関を表わす。縦軸は密比容(mL/g)を、横軸はエタノール濃度(体積%)を表わす。黒ひし形は70℃晶析、白ひし形は30℃晶析の結果を表わす。
1.本発明の結晶
 本発明の結晶は、メタノールを含有せず、かつ粗比容が4.1mL/g以下である、シチジンジリン酸コリンの結晶である。
 本発明の結晶の一態様としては、メタノールを含有せず、かつ粗比容が好ましくは3.6mL/g以下、より好ましくは3.1mL/g以下、最も好ましくは2.6mL/g以下のシチジンジリン酸コリンの結晶を挙げることができる。
 粗比容が小さい結晶は、充填性に優れ、各種加工工程におけるハンドリングが容易であり、また輸送面でのコストも低い。そのため、シチジンジリン酸コリンの結晶としては、粗比容が小さいことが好ましいが、粗比容の下限値としては、通常1.0mL/g以上、好ましくは1.2mL/g以上を挙げることができる。
 ここで、粗比容とは、容器に粉体を充填してその質量を測定した際、粉体の占める容積を該質量で割った値をいう。
 粗比容は、第十七改正日本薬局方に準じ、マルチテスターMT-1001T型(セイシン企業社製)を用い、付属のマニュアルに従って以下の条件で測定することができる。
[粗比容の測定条件]
使用機器:マルチテスターMT-1001T型(セイシン企業社製)
ふるい:1.18mm
振動幅:0.7~0.8mm
結晶容量:100mL
粗比容の測定方法の具体例:0.7~0.8mmの幅で振動させた1.18mmのふるいを経由して結晶を落下させながら、ステンレス製の100mL円筒形容器に充填する。容器の上面から過剰の粉体を注意深く擦り落とし、あらかじめ測定しておいた空の測定容器の質量を差し引くことで、粉体の質量を測定する。測定は独立して3回行い、平均値を求める。
 本発明の結晶がメタノールを含有しないことは、以下のガスクロマトグラフを用いた分析例に記載の方法に従って確認することができる。
 本発明の結晶がメタノールを含有しないとは、以下のガスクロマトグラフを用いた分析例に従って分析したときに、メタノールが検出限界以下であることをいう。
[ガスクロマトグラフを用いた分析例]
使用機器:GC-2014(島津製作所社製)
カラム充填剤:Adsorb P-1 60/80mesh(西尾工業社製)
カラム温度:120℃
気化室温度:150℃
ヘリウム流速:30mL/min
検出器温度:200℃試料調製方法:シチジンジリン酸コリンの結晶を約1.0g秤量し、蒸留水に溶解させて10mLに調整したものを試料とする。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ安息角が、好ましくは57度以下、より好ましくは55度以下、さらに好ましくは53度以下、最も好ましくは50度以下のシチジンジリン酸コリンの結晶を挙げることができる。
 安息角が大きい結晶は、ホッパーから排出する際、ホッパー底部の傾斜角が安息角の角度よりも大きくなければホッパー底部から完全に排出することができないので、装置が限定され、ハンドリングが煩雑となる。また、安息角が大きい結晶は、流動性が悪い。そのため、シチジンジリン酸コリンの結晶としては、安息角が小さいことが好ましいが、安息角の下限としては、通常30度以上、好ましくは35度以上を挙げることができる。
 ここで、安息角とは、粉体を漏斗のようなもので水平な面に静かに落下させた時に粉体で形成される円錐体の母線と水平面のなす角のことをいう。
 安息角は、マルチテスターMT-1001T型(セイシン企業社製)を用い、付属のマニュアルに従って以下の条件で測定することができる。
[安息角の測定条件]
使用機器:マルチテスターMT-1001T型(セイシン企業社製)
ふるい:1.18mm
振動幅:0.7~0.8mm
安息角の測定方法の具体例:0.7~0.8mmの幅で振動させた1.18mmのふるいを経由して結晶を落下させながら、安息角テーブル(部品番号:MT-1028)の上に堆積させる。安息角テーブルに振動を与えないように回転させて、3ヶ所で角度を読み、それらの相加平均値を安息角とする。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ崩壊角が、好ましくは50度以下、より好ましくは48度以下、さらに好ましくは46度以下、最も好ましくは44度以下のシチジンジリン酸コリンの結晶を挙げることができる。崩壊角の下限値としては、通常30度以上、好ましくは35度以上を挙げることができる。
 ここで、崩壊角とは、粉体を漏斗のようなもので水平な面に静かに落下させた時に粉体で形成される円錐体に、間接的に一定の衝撃を加えた際形成される、円錐体の母線と水平面のなす角のことをいう。
 崩壊角は、マルチテスターMT-1001T型(セイシン企業社製)を用い、付属のマニュアルに従って以下の方法で測定することができる。
[崩壊角の測定方法の具体例]
 安息角を測定後、安息角テーブルユニット(部品番号:MT-1028)の下についている鍾をゆっくりタッピングテーブルの下まで持ち上げて落下させる。この操作を3回繰り返す。安息角の測定方法と同様の方法で3ヶ所の角度を読み、それらの相加平均値を崩壊角とする。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ密比容が、好ましくは2.1mL/g以下、より好ましくは2.0mL/g以下、さらに好ましくは1.9mL/g以下、最も好ましくは1.7mL/g以下のシチジンジリン酸コリンの結晶を挙げることができる。
 密比容が小さい結晶は、充填性に優れ、輸送面でのコストも低い。そのため、シチジンジリン酸コリンの結晶としては、密比容が小さいことが好ましいが、密比容の下限値としては、通常0.8mL/g以上、好ましくは1.0mL/g以上を挙げることができる。
 ここで、密比容とは、容器に粉体を充填して一定の衝撃を加えたのちにその質量を測定した際、粉体の占める容積を該質量で割った値をいう。
 密比容は、例えば、第十七改正日本薬局方に準じ、マルチテスターMT-1001T型(セイシン企業社製)を用い、付属のマニュアルに従って以下の条件で測定することができる。
[密比容の測定条件]
使用機器:マルチテスターMT-1001T型(セイシン企業社製)
ふるい:1.18mm
振動幅:0.7~0.8mm
結晶容量:100mL
スペーサー:32mm
タッピング速度:1回/秒
タッピング回数:400回
密比容の測定方法の具体例:0.7~0.8mmの幅で振動させた1.18mmのふるいを経由して結晶を落下させながら、補助円筒を装着したステンレス製の100mL円筒形容器に充填する。32mmのスペーサーを挟んで1回/秒のタッピングを400回繰り返した後に補助円筒を外し、容器の上面から過剰の粉体を注意深く擦り落とし、あらかじめ測定しておいた空の測定容器の質量を差し引くことで、粉体の質量を測定する。測定は独立して3回行い、平均値を求める。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ安息角と崩壊角の差が、好ましくは9.0以下、より好ましくは8.5以下、さらに好ましくは7.0以下、よりさらに好ましくは5.0以下、最も好ましくは4.0以下のシチジンジリン酸コリンの結晶を挙げることができる。
 安息角と崩壊角の差が大きい結晶は噴流性が高く制御が困難であるため、安息角と崩壊角の差は小さいことが好ましい。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ、好ましくはエタノール、アセトン、1-プロパノール、2-プロパノール、酢酸エチル、1-ブタノール、2-ブタノール、ヘプタン、酢酸イソプロピル、メチルエチルケトン、酢酸プロピル及びテトラヒドロフランからなる群より選ばれる少なくとも1の有機溶媒以外の有機溶媒を、より好ましくはエタノール、アセトン、1-プロパノール及び2-プロパノールからなる群より選ばれる少なくとも1の有機溶媒以外の有機溶媒を、最も好ましくはエタノール以外の有機溶媒を含有しない、シチジンジリン酸コリンの結晶を挙げることができる。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ結晶中に含有される上記有機溶媒の含有量が、それぞれ好ましくは1000質量ppm以下、より好ましくは800質量ppm以下、さらに好ましくは600質量ppm以下、最も好ましくは500質量ppm以下のシチジンジリン酸コリンの結晶を挙げることができる。
 本発明の結晶中の有機溶媒の含有量は、例えば上記ガスクロマトグラフを用いた分析により測定することができる。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつ高速液体クロマトグラフィー(以下、HPLCという。)分析において、シチジンジリン酸コリンのピーク面積100に対して、5’シチジル酸のピーク面積が、好ましくは0.27以下、より好ましくは0.20以下、さらに好ましくは0.15以下、最も好ましくは0.10以下のシチジンジリン酸コリンの結晶を挙げることができる。
 5’シチジル酸は、加熱又はpHの変動に依存してシチジンジリン酸コリンの分解によって生成する化合物である。
 HPLC分析とは、分析対象である化合物を溶媒に溶解してHPLCによる分析に供することを意味する。
 HPLC分析としては、シチジンジリン酸コリン、5’シチジル酸及びウリジンジリン酸コリンを同時に検出することができる分析方法であれば、分析条件等は特に限定されず、好ましくは254nmの吸光度を検出・測定するHPLC分析方法を挙げることができる。
 HPLC分析方法の例としては、以下に記載のHPLC分析例を挙げることができる。
[HPLC分析例]
使用機器:検出器(L-7405)、ポンプ(L-7100)、オートサンプラー(L-7200)、カラムオーブン(L-2350)(いずれも日立製作所社製)、クロマトパック(C-R8A)、データ解析(PACsolution)(いずれも島津製作所社製)
検出器:紫外吸光光度計(測定波長254nm)
カラム:Partisil 10SAX 粒径10μm 4.0×250mmを2本直列連結(Hichrom)
移動相:リン酸でpH3.5に調整された0.06mol/Lのリン酸二水素カリウム水溶液(リン酸二水素カリウム40.83gを蒸留水に溶解させ、リン酸を加えてpH3.5に調整した後に蒸留水で5000mLに調整)
カラム温度:30℃
流速:0.4~0.5mL/min(シチジンジリン酸コリンの保持時間が約26minになるように調整)
試料注入量:20μL
試料調製方法:シチジンジリン酸コリンの結晶を約0.1g秤量し、蒸留水に溶解させて100mLに調整したものを試料とする。
 本願明細書において、HPLC分析におけるピーク面積は、上記のHPLC分析例に記載のHPLC分析条件で測定したときの値である。ただし、当該分析条件と同等の分析条件も本願明細書におけるHPLC分析条件に含まれる。
 ピーク面積とは、HPLC分析を行ったとき、ベースラインとピークラインで囲まれた部分の面積のことをいい、HPLC分析によって検出された化合物ごとに求めることができる。
 本発明の結晶の一態様としては、メタノールを含有せず、粗比容が4.1mL/g以下であり、かつHPLC分析において、シチジンジリン酸コリンのピーク面積100に対して、ウリジンジリン酸コリンのピーク面積が、好ましくは0.56以下、より好ましくは0.30以下、さらに好ましくは0.10以下、最も好ましくは0.06以下のシチジンジリン酸コリンの結晶を挙げることができる。
 ウリジンジリン酸コリンは、加熱又はpHの変動に依存してシチジンジリン酸コリンの分解によって生成する化合物である。
2.本発明の結晶の製造方法
 本発明の結晶の製造方法は、シチジンジリン酸コリンが溶解している水溶液にシチジンジリン酸コリンの結晶を析出させる工程、該析出したシチジンジリン酸コリンの結晶を採取する工程、及び該採取したシチジンジリン酸コリンの結晶を、含水量が5~50体積%である、メタノール以外の有機溶媒を含有する水溶液で洗浄する工程、を含む、シチジンジリン酸コリンの結晶の製造方法である。
 以下、各工程について説明する。
(シチジンジリン酸コリンが溶解している水溶液にシチジンジリン酸コリンの結晶を析出させる工程)
 シチジンジリン酸コリンが溶解している水溶液に含有されるシチジンジリン酸コリンは、発酵法、酵素法、天然物からの抽出法、化学合成法等のいずれの製造方法によって製造されたものであってもよい。
 シチジンジリン酸コリンが溶解している水溶液を取得する方法としては、例えば、上記得られたシチジンジリン酸コリンを水に溶解させる方法、シチジンジリン酸コリンを生産する能力を有する微生物を培養して得られるシチジンジリン酸コリンを含有する培養物[日本国特許第3369236号公報(特許文献4)]等から不溶物を除去する方法、及び日本国特許第4977608号公報(特許文献5)に記載の方法を挙げることができる。
 シチジンジリン酸コリンが溶解している水溶液に、結晶化の障害となる固形物が含まれている場合には、遠心分離、濾過又はセラミックフィルタ等を用いて固形物を除去することができる。
 また、シチジンジリン酸コリンが溶解している水溶液に、結晶化の障害となる水溶性の不純物や塩が含まれている場合には、イオン交換樹脂等を充填したカラムに通塔する等により、水溶性の不純物や塩を除去することができる。
 また、シチジンジリン酸コリンが溶解している水溶液に、結晶化の障害となる疎水性の不純物が含まれる場合には、合成吸着樹脂や活性炭等を充填したカラムに通塔する等により、疎水性の不純物を除去することができる。
 シチジンジリン酸コリンが溶解している水溶液におけるシチジンジリン酸コリンの濃度は、好ましくは200g/L以上、より好ましくは250g/L以上、さらに好ましくは300g/L以上となるように調整することができる。
 シチジンジリン酸コリンが溶解している水溶液のシチジンジリン酸コリンの濃度を上記の濃度とするために、該水溶液を加熱濃縮法又は減圧濃縮法などの一般的な濃縮方法により濃縮することができる。
 シチジンジリン酸コリンが溶解している水溶液にシチジンジリン酸コリンの結晶を析出させる方法としては、例えば、該水溶液を冷却する方法、該水溶液を減圧濃縮する方法、該水溶液中にメタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する方法、又はそれらの1以上を組み合わせた方法等を挙げることができるが、該水溶液中にメタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する方法が好ましく、該水溶液中にメタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する方法と該水溶液を冷却する方法を組み合わせた方法がより好ましい。
 シチジンジリン酸コリンが溶解している水溶液を冷却する方法における、該水溶液の温度としては、好ましくは0~35℃、より好ましくは0~30℃、最も好ましくは0~25℃を挙げることができる。
 シチジンジリン酸コリンが溶解している水溶液を冷却する方法における、冷却時間としては、好ましくは2~100時間、より好ましくは2~70時間、最も好ましくは2~50時間を挙げることができる。
 シチジンジリン酸コリンが溶解している水溶液を減圧濃縮する方法における、該水溶液の温度としては、好ましくは0~50℃、より好ましくは5~45℃、最も好ましくは10~40℃を挙げることができる。
 シチジンジリン酸コリンが溶解している水溶液を減圧濃縮する方法における、減圧時間としては、好ましくは2~100時間、より好ましくは3~70時間、最も好ましくは5~50時間を挙げることができる。
 シチジンジリン酸コリンが溶解している水溶液中にメタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する方法における、メタノール以外の有機溶媒としては、例えば、好ましくはエタノール、アセトン、1-プロパノール、2-プロパノール、酢酸エチル、1-ブタノール、2-ブタノール、ヘプタン、酢酸イソプロピル、メチルエチルケトン、酢酸プロピル及びテトラヒドロフランからなる群より選ばれる少なくとも1の有機溶媒を、より好ましくはエタノール、アセトン、1-プロパノール及び2-プロパノールからなる群より選ばれる少なくとも1の有機溶媒を、最も好ましくはエタノールを挙げることができる。また、これらの有機溶媒は、複数種類を組み合わせて用いることもできる。
 シチジンジリン酸コリンが溶解している水溶液中に添加又は滴下する、メタノール以外の有機溶媒を含有する水溶液中の該有機溶媒の濃度としては、好ましくは30体積%以上、より好ましくは40体積%以上、さらに好ましくは50体積%以上、最も好ましくは60体積%以上を挙げることができる。
 メタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する際の温度としては、好ましくは0~70℃、より好ましくは0~50℃、さらに好ましくは5~45℃、最も好ましくは10~35℃を挙げることができる。
 メタノール以外の有機溶媒又は該有機溶媒を含有する水溶液の添加又は滴下に要する時間としては、好ましくは1~10時間、より好ましくは2~8時間を挙げることができる。
 メタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する量としては、シチジンジリン酸コリンが溶解している水溶液の好ましくは1~10倍等量、より好ましくは2~7倍等量を挙げることができる。
 シチジンジリン酸コリンが溶解している水溶液中にメタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下することにより、シチジンジリン酸コリンの結晶を析出させる方法においては、メタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下した後、シチジンジリン酸コリンの結晶が析出する前に、種晶を添加してもよい。
 種晶としては、例えば、日本国特許第647367号公報(特許文献3)に記載の方法で取得したシチジンジリン酸コリンの結晶を用いることができる。
 該種晶を添加する時間としては、例えば、メタノール以外の有機溶媒又は該有機溶媒を含有する水溶液の滴下又は添加を開始してから、好ましくは0~12時間以内、より好ましくは0~8時間以内、最も好ましくは0~4時間以内を挙げることができる。
 前記種晶は、種晶を添加する水溶液中の濃度が好ましくは0.1~5.0g/L、より好ましくは0.2~1.0g/Lとなるように添加することができる。
 上記のようにしてシチジンジリン酸コリンの結晶を析出させた後、好ましくは0.5~48時間、より好ましくは0.5~24時間、最も好ましくは0.5~12時間、好ましくは0~70℃、より好ましくは3~50℃、最も好ましくは5~35℃にて当該結晶を含む水溶液を攪拌又は放置することにより熟成させることができる。
 結晶を熟成させるとは、メタノール以外の有機溶媒又は該有機溶媒を含有する水溶液の添加を中断又は停止し、結晶を成長させることをいう。
 結晶を成長させるとは、析出した結晶を元にして、結晶を増大させることをいう。
 結晶の熟成は、結晶を成長させることを主な目的として行うが、結晶の成長と同時に、新たな結晶の析出が起こっていてもよい。
 結晶を熟成させた後は、シチジンジリン酸コリンの結晶を析出させる工程を再開してもよい。
(析出したシチジンジリン酸コリンの結晶を採取する工程)析出したシチジンジリン酸コリンの結晶を採取する方法としては、例えば、濾取、加圧濾過、吸引濾過、遠心分離等を挙げることができる。
(採取したシチジンジリン酸コリンの結晶を、含水量が5~50体積%である、メタノール以外の有機溶媒を含有する水溶液で洗浄する工程)
 本発明の製造方法の一態様は、採取したシチジンジリン酸コリンの結晶を、含水量が5~50体積%、好ましくは10~40体積%、より好ましくは20~30体積%の、メタノール以外の有機溶媒を含有する水溶液で洗浄する。当該工程により、結晶への母液の付着を低減し、結晶の品質を向上させることに加えて、結晶の粉体物性を制御することができる。
 結晶洗浄に用いる、メタノール以外の有機溶媒を含有する水溶液の温度は、シチジンジリン酸コリンが分解しない温度であればいずれの温度でもよいが、好ましくは40℃以下、より好ましくは30℃以下、さらに好ましく20℃以下、最も好ましくは15℃以下を挙げることができる。温度の下限値としては、通常0℃以上、好ましくは5℃以上を挙げることができる。
 シチジンジリン酸コリンの結晶を洗浄する工程に使用する、メタノール以外の有機溶媒としては、上記シチジンジリン酸コリンが溶解している水溶液中にメタノール以外の有機溶媒又は該有機溶媒を含有する水溶液を添加又は滴下する方法における、メタノール以外の有機溶媒と同様の有機溶媒を用いることができる。
 結晶を洗浄する方法としては、例えば、結晶層に、上記メタノール以外の有機溶媒を含有する水溶液からなる結晶洗浄溶液を噴射又は噴霧する方法、結晶層を該結晶洗浄溶液に浸漬する方法、を挙げることができる。
 結晶層を結晶洗浄溶液に浸漬する方法においては、結晶層を浸漬させた結晶洗浄溶液から結晶層を取り出し、再度結晶洗浄溶液に懸濁して撹拌し、再び濾取、加圧濾過、吸引濾過、遠心分離等の操作を行うこともできる。
 結晶洗浄に使用する結晶洗浄溶液の量としては、シチジンジリン酸コリンの結晶の重量に対する体積比率で好ましくは0.5~10倍量、より好ましくは1~9倍量、さらに好ましくは2~8倍量を挙げることができる。
 このようにして得られた湿晶を乾燥させることにより、本発明の結晶を取得することができる。乾燥条件としては、シチジンジリン酸コリンの結晶の形態を保持できる方法ならばいずれでもよく、例えば、減圧乾燥、真空乾燥、流動層乾燥、通風乾燥等を適用することができる。
 乾燥温度としては、付着水分や溶媒を除去できる範囲ならばいずれでもよいが、好ましくは80℃以下、より好ましくは70℃以下、最も好ましくは60℃以下を挙げることができる。乾燥時間としては、付着水分や溶媒を除去できる範囲ならばいずれでもよいが、好ましくは1~48時間、より好ましくは1~24時間を挙げることができる。
[比較例1]
 日本国特公昭51-32630号公報(特許文献2)の実施例1に従い、760gのシチジンジリン酸コリン(協和発酵バイオ社製:Lot.160325)を蒸留水に溶かして1600mLとし、シチジンジリン酸コリンを450g/Lの濃度で含む水溶液を調製した。そのうちの400mLに対し、20℃にて1600mLのメタノールを20分かけて添加した。メタノールの添加中に白濁が見られた時点で、0.8gのシチジンジリン酸コリンを種晶として添加した。
 シチジンジリン酸コリンの起晶を確認後、800mLの酢酸エチルを3時間かけて添加し、その後、20℃にて2時間の撹拌を行った。こうして得られた2500mL程度の結晶スラリーのうち、2000mLを遠心分離にかけて結晶を濾別し、640mLのメタノールで洗浄した。得られた湿晶を減圧条件下、25℃にて3時間、さらに、減圧条件下、60℃にて3時間乾燥させ、100.9gの結晶を得た。
[比較例2]
 比較例1で得られた結晶スラリーの残りを遠心分離にかけて結晶を濾別し、得られた湿晶を160mLの99.5体積%のエタノールに懸濁して撹拌することで、結晶表面に付着したメタノールを完全に洗い流した。この湿晶を減圧条件下、25℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、13.2gの結晶を得た。
[比較例3]
 日本国特許第647367号公報(特許文献3)の実施例3に従い、乾物換算で639.9gのシチジンジリン酸コリン(協和発酵バイオ社製:Lot.160325)を1300mLの蒸留水に加えて溶解したところ、1690mLの水溶液となった。このうちの832mLに対し、70℃にて640mLの99.5体積%のエタノールを混合した。続いて、この混合液を70℃に保ったまま1280mLの80体積%の含水エタノールを2時間かけて添加した。
 その後、1.28gのシチジンジリン酸コリンを種晶として添加し、30分間撹拌を続けたのち、1280mLの99.5体積の%エタノールを1時間かけて添加した。その後、溶液を70℃から25℃まで徐々に冷却しながら10時間撹拌を続けた。こうして得られた結晶スラリーを三等分し、そのうちの一つを遠心分離にかけて結晶を濾別したのち、533mLの99.5体積%のエタノールで洗浄した。得られた湿晶を減圧条件下、30℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、65.8gの結晶を得た。
[比較例4]
 比較例3と同じ方法で調製したシチジンジリン酸コリンの水溶液1040mLを30℃に保ち、800mLの99.5体積%のエタノールを混合した。この混合液に対し、30℃にて1600mLの99.5体積%のエタノールを2時間かけて添加した。その後、1.6gのシチジンジリン酸コリンを種晶として添加し、起晶を確認したのち、1600mLの99.5体積%のエタノールを2時間かけて添加した。
 その後、溶液を30℃に保ったまま3時間撹拌を続けたのち、20℃まで3時間かけて冷却した。こうして得られた結晶スラリーを三等分し、そのうちの一つを遠心分離にかけて結晶を濾別したのち、670mLの99.5体積%のエタノールで洗浄した。得られた湿晶を減圧条件下、30℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、116.6gの結晶を得た。
[予備試験]
50~80体積%の含水エタノール(含水量20~50体積%)にシチジンジリン酸コリン(協和発酵バイオ社製:Lot.160325)を溶け残るまで溶解させ、30℃、35℃ 又は40℃にて十分に攪拌した。その後、各溶液をフィルター濾過し、得られた各濾液中のシチジンジリン酸コリン濃度(g/L)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、いずれの温度においても、含水エタノール中の含水量が高くなるほど、シチジンジリン酸コリンの溶解度が高くなることがわかった。
 以下に実施例を示すが、本発明は下記実施例に限定されるものではない。
[実施例1]
 比較例3で得られた結晶スラリーの1/3分を遠心分離にかけて結晶を濾別したのち、10℃に冷却した533mLの85体積%の含水エタノール(含水量15体積%)で洗浄した。得られた湿晶を減圧条件下、30℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、68.2gの結晶を得た。
[実施例2]
 比較例3で得られた結晶スラリーの1/3分を遠心分離にかけて結晶を濾別したのち、10℃に冷却した533mLの70体積%の含水エタノール(含水量30体積%)で洗浄した。得られた湿晶を減圧条件下、30℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、82.5gの結晶を得た。
[実施例3]
 比較例4で得られた結晶スラリーの1/3分を遠心分離にかけて結晶を濾別したのち、10℃に冷却した670mLの85体積%の含水エタノール(含水量15体積%)で洗浄した。得られた湿晶を減圧条件下、30℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、109.6gの結晶を得た。
[実施例4]
 比較例4で得られた結晶スラリーの1/3分を遠心分離にかけて結晶を濾別したのち、10℃に冷却した670mLの70体積%の含水エタノール(含水量30体積%)で洗浄した。得られた湿晶を減圧条件下、30℃にて3時間、さらに減圧条件下、60℃にて3時間乾燥させ、105.8gの結晶を得た。
 現在市場に流通しているシチジンジリン酸コリンの結晶、及び上記の方法で得られたシチジンジリン酸コリンの結晶について、粗比容、密比容、安息角、及び崩壊角を測定した結果を図1、図2及び表2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 図1、図2及び表2に示すように、30℃及び70℃のいずれの晶析温度においても、結晶洗浄に用いるエタノール溶液の含水量を上げるに従って、シチジンジリン酸コリンの結晶の比容積(粗比容及び密比容)を低減できることが示された。特に、低温の条件である30℃晶析において、該エタノール溶液の含水量を高めることによる比容積の低減効果がより顕著であった。さらに、含水エタノールを用いてシチジンジリン酸コリンの結晶を洗浄した結果、99.5体積%のエタノールを用いて結晶洗浄した場合と比べ、安息角と崩壊角を低減できることが示された。
 また、得られたシチジンジリン酸コリンの結晶について、結晶中に含まれる5’シチジル酸とウリジンジリン酸コリンの量をHPLC分析で測定した結果を表3に示す。表3中の各値は、シチジンジリン酸コリンのピーク面積を100とした時の各ピーク面積の値を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、低温で晶析を行った方が、結晶中に残留する5’シチジル酸とウリジンジリン酸コリンの含有量を低減できることが示された。
 続いて、現在市場に流通しているシチジンジリン酸コリンの結晶、及び得られたシチジンジリン酸コリンの結晶について、結晶中に含まれる残留溶媒をガスクロマトグラフで測定した結果を表4に示す。表4において、「ppm」は質量ppmを示す。また、「N.D.」は検出限界以下であることを示す。
 ここで、比較例1、2については、シチジンジリン酸コリンの結晶を約0.5g秤量し、蒸留水に溶解させて10mLに調整したものを試料とした。一方、比較例3、4及び実施例1~4については、シチジンジリン酸コリンの結晶を約1g秤量し、蒸留水に溶解させて10mLに調整したものを試料とした。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、現在市場に流通しているシチジンジリン酸コリンの結晶は、いずれもメタノールを含有していることが分かった。また、比較例1及び2の結果から、エタノールによる結晶洗浄を行っても、シチジンジリン酸コリンの結晶中には晶析工程で添加したメタノールが高濃度で検出されることが分かる。これより、シチジンジリン酸コリンの結晶は、メタノールを取り込みやすい性質を有し、晶析工程で添加して結晶中に取り込まれたメタノールは、結晶洗浄によっては除去できないことが分かった。
 一方、実施例1~4では、晶析工程及び結晶洗浄工程にメタノールを用いていないため、得られたシチジンジリン酸コリンの結晶中には、メタノールは検出されなかった。
 以上より、本発明の結晶の製造方法により、メタノールを含有せず、かつ既存のシチジンジリン酸コリンの結晶と比較して同等以上の粉体物性を示すシチジンジリン酸コリンの結晶が取得できることが分かった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年10月6日付けで出願された日本特許出願(特願2016-197695号)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明により、不純物及び残留溶媒の低減と粉体物性の改善を両立させたシチジンジリン酸コリンの結晶、並びにその製造法が提供される。

Claims (11)

  1.  メタノールを含有せず、かつ粗比容が4.1mL/g以下である、シチジンジリン酸コリンの結晶。
  2.  安息角が57度以下である、請求項1に記載の結晶。
  3.  崩壊角が50度以下である、請求項1又は2に記載の結晶。
  4.  密比容が2.1mL/g以下である、請求項1~3のいずれか1項に記載の結晶。
  5.  エタノール、アセトン、1-プロパノール、2-プロパノール、酢酸エチル、1-ブタノール、2-ブタノール、ヘプタン、酢酸イソプロピル、メチルエチルケトン、酢酸プロピル及びテトラヒドロフランからなる群より選ばれる少なくとも1の有機溶媒以外の有機溶媒を含有しない、請求項1~4のいずれか1項に記載の結晶。
  6.  エタノール、アセトン、1-プロパノール及び2-プロパノールからなる群より選ばれる少なくとも1の有機溶媒以外の有機溶媒を含有しない、請求項1~5のいずれか1項に記載の結晶。
  7.  エタノール以外の有機溶媒を含有しない、請求項1~6のいずれか1項に記載の結晶。
  8.  シチジンジリン酸コリンが溶解している水溶液にシチジンジリン酸コリンの結晶を析出させる工程、該析出したシチジンジリン酸コリンの結晶を採取する工程、及び該採取したシチジンジリン酸コリンの結晶を、含水量が5~50体積%である、メタノール以外の有機溶媒を含有する水溶液で洗浄する工程を含む、シチジンジリン酸コリンの結晶の製造方法。
  9.  メタノール以外の有機溶媒が、エタノール、アセトン、1-プロパノール、2-プロパノール、酢酸エチル、1-ブタノール、2-ブタノール、ヘプタン、酢酸イソプロピル、メチルエチルケトン、酢酸プロピル及びテトラヒドロフランからなる群より選ばれる少なくとも1の有機溶媒である、請求項8に記載の製造方法。
  10.  メタノール以外の有機溶媒が、エタノール、アセトン、1-プロパノール及び2-プロパノールからなる群より選ばれる少なくとも1の有機溶媒である、請求項8又は9に記載の製造方法。
  11.  メタノール以外の有機溶媒がエタノールである、請求項8~10のいずれか1項に記載の製造方法。
PCT/JP2017/036463 2016-10-06 2017-10-06 シチジンジリン酸コリンの結晶及びその製造方法 WO2018066690A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2017341136A AU2017341136B2 (en) 2016-10-06 2017-10-06 Crystal of cytidine diphosphate choline and production method thereof
CN201780061184.4A CN109790197A (zh) 2016-10-06 2017-10-06 胞苷二磷酸胆碱的晶体及其制造方法
EP17858526.1A EP3524613B1 (en) 2016-10-06 2017-10-06 Crystal of cytidine diphosphate choline and production method thereof
JP2018543989A JP7146640B2 (ja) 2016-10-06 2017-10-06 シチジンジリン酸コリンの結晶及びその製造方法
US16/339,301 US11186605B2 (en) 2016-10-06 2017-10-06 Crystal of cytidine diphosphate choline and production method thereof
CN202310942771.1A CN117069780A (zh) 2016-10-06 2017-10-06 胞苷二磷酸胆碱的晶体及其制造方法
RU2019112721A RU2800932C2 (ru) 2016-10-06 2017-10-06 Кристалл цитидиндифосфатхолина и способ его получения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197695 2016-10-06
JP2016197695 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066690A1 true WO2018066690A1 (ja) 2018-04-12

Family

ID=61831163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036463 WO2018066690A1 (ja) 2016-10-06 2017-10-06 シチジンジリン酸コリンの結晶及びその製造方法

Country Status (6)

Country Link
US (1) US11186605B2 (ja)
EP (1) EP3524613B1 (ja)
JP (1) JP7146640B2 (ja)
CN (2) CN109790197A (ja)
AU (1) AU2017341136B2 (ja)
WO (1) WO2018066690A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687932A (en) * 1969-04-24 1972-08-29 Takeda Chemical Industries Ltd Crystalline cytidine-5{40 -diphosphate choline monohydrate and production thereof
JPS5132630B1 (ja) 1971-06-08 1976-09-14
JPS51108076A (en) * 1975-03-15 1976-09-25 Asahi Chemical Ind 2**3**00 surufuinirupirimijinnukureoshido 5** rinsanesuterujudotainoseizohoho
JPS647367A (en) 1987-03-31 1989-01-11 Canon Kk Method and device for recording information
JP3369236B2 (ja) 1992-01-30 2003-01-20 協和醗酵工業株式会社 シチジンジリン酸コリンの製造法
WO2007018259A1 (ja) * 2005-08-10 2007-02-15 Kyowa Hakko Kogyo Co., Ltd. シチジンジリン酸コリンの精製方法
WO2008047792A1 (fr) * 2006-10-16 2008-04-24 Kyowa Hakko Bio Co., Ltd. Cristal de glutathione et son procédé de fabrication
CN101538300A (zh) * 2008-03-19 2009-09-23 南京工业大学 一种胞二磷胆碱的盐析-溶析结晶方法
JP2016197695A (ja) 2015-04-06 2016-11-24 旭硝子株式会社 太陽電池モジュール
JP6166786B2 (ja) 2012-10-30 2017-07-19 協和発酵バイオ株式会社 脳機能低下の予防または改善剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394753B (zh) 2006-03-17 2013-05-01 Otsuka Pharma Co Ltd 新穎替妥牟拉(tetomilast)晶體
JP2012522792A (ja) 2009-04-01 2012-09-27 プリバ フルバトゥスカ ドゥ.オ.オ. エルトロンボパグ及びエルトロンボパグ塩の多形体、並びにその調製方法
CN103319504A (zh) 2013-06-28 2013-09-25 华北制药河北华民药业有限责任公司 一种头孢噻肟钠的结晶方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687932A (en) * 1969-04-24 1972-08-29 Takeda Chemical Industries Ltd Crystalline cytidine-5{40 -diphosphate choline monohydrate and production thereof
JPS5132630B1 (ja) 1971-06-08 1976-09-14
JPS51108076A (en) * 1975-03-15 1976-09-25 Asahi Chemical Ind 2**3**00 surufuinirupirimijinnukureoshido 5** rinsanesuterujudotainoseizohoho
JPS647367A (en) 1987-03-31 1989-01-11 Canon Kk Method and device for recording information
JP3369236B2 (ja) 1992-01-30 2003-01-20 協和醗酵工業株式会社 シチジンジリン酸コリンの製造法
WO2007018259A1 (ja) * 2005-08-10 2007-02-15 Kyowa Hakko Kogyo Co., Ltd. シチジンジリン酸コリンの精製方法
JP4977608B2 (ja) 2005-08-10 2012-07-18 協和発酵バイオ株式会社 シチジンジリン酸コリンの精製方法
WO2008047792A1 (fr) * 2006-10-16 2008-04-24 Kyowa Hakko Bio Co., Ltd. Cristal de glutathione et son procédé de fabrication
CN101538300A (zh) * 2008-03-19 2009-09-23 南京工业大学 一种胞二磷胆碱的盐析-溶析结晶方法
JP6166786B2 (ja) 2012-10-30 2017-07-19 協和発酵バイオ株式会社 脳機能低下の予防または改善剤
JP2016197695A (ja) 2015-04-06 2016-11-24 旭硝子株式会社 太陽電池モジュール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CYTIDINE 5' -DIPHOSPHATE CHOLINE MONOHYDRATE, vol. 34, no. 3, 1975, pages 358 - 368, XP9515009 *
YAMAGISHI, TAKAMICHI: "Passage, A Laboratory Guide to Organic Chemical Experiment for Young Chemists", A LABORATORY GUIDE TO ORGANIC CHEMICAL EXPERIMENT FOR YOUNG CHEMISTS, 10 March 2010 (2010-03-10), pages 132 - 133, XP009515254, ISBN: 978-4-06-154375-1 *

Also Published As

Publication number Publication date
EP3524613A1 (en) 2019-08-14
EP3524613B1 (en) 2024-04-03
JP7146640B2 (ja) 2022-10-04
CN117069780A (zh) 2023-11-17
AU2017341136B2 (en) 2021-07-08
EP3524613A4 (en) 2020-06-17
RU2019112721A (ru) 2020-11-06
US11186605B2 (en) 2021-11-30
JPWO2018066690A1 (ja) 2019-07-25
AU2017341136A1 (en) 2019-05-02
RU2019112721A3 (ja) 2021-01-26
US20190225642A1 (en) 2019-07-25
EP3524613C0 (en) 2024-04-03
CN109790197A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2018047715A1 (ja) β-ニコチンアミドモノヌクレオチドの結晶及びその製造方法
US10745432B2 (en) Crystal of 6′-sialyllactose sodium salt, and process for producing same
CN100379723C (zh) 阿托伐他汀半钙脱溶剂的方法和基本上不含有机溶剂的阿托伐他汀半钙
JP4870787B2 (ja) フコキサンチンおよび/またはフコステロールの製造方法
WO2018066690A1 (ja) シチジンジリン酸コリンの結晶及びその製造方法
CN104861014A (zh) 一种盐酸表阿霉素结晶的制备方法
CN103183587B (zh) 3,3’,5,5’-四异丙基-4,4’-二联苯酚的新晶型及其制备方法
CN102557918B (zh) 一种布洛芬钠化合物及其制法
RU2800932C2 (ru) Кристалл цитидиндифосфатхолина и способ его получения
EP3617191A1 (en) Method for manufacturing diastereomer of citric acid derivative
US20200369721A1 (en) Crystal of reduced glutathione and method for producing same
US11365170B2 (en) Non-solvate crystal of eucomic acid and method for producing same
JP2018203690A (ja) L−カルノシンの結晶及びその製造方法
JP7069040B2 (ja) L-アラニル-l-グルタミンの結晶及びその製造方法
CN105287409A (zh) 治疗老年痴呆的药物盐酸甲氯芬酯组合物冻干粉针剂
WO2017195743A1 (ja) 3'-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法
CN109020995A (zh) 一种替西罗莫司的晶型物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017341136

Country of ref document: AU

Date of ref document: 20171006

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017858526

Country of ref document: EP

Effective date: 20190506