WO2017195743A1 - 3'-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法 - Google Patents

3'-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法 Download PDF

Info

Publication number
WO2017195743A1
WO2017195743A1 PCT/JP2017/017422 JP2017017422W WO2017195743A1 WO 2017195743 A1 WO2017195743 A1 WO 2017195743A1 JP 2017017422 W JP2017017422 W JP 2017017422W WO 2017195743 A1 WO2017195743 A1 WO 2017195743A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
sodium salt
hydrate
crystals
aqueous solution
Prior art date
Application number
PCT/JP2017/017422
Other languages
English (en)
French (fr)
Inventor
友哉 横井
宏 長野
貴久江 間瀬
将大 阿部
Original Assignee
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵バイオ株式会社 filed Critical 協和発酵バイオ株式会社
Priority to CN201780028091.1A priority Critical patent/CN109071584A/zh
Priority to US16/099,877 priority patent/US11008355B2/en
Priority to EP17796104.2A priority patent/EP3456727A4/en
Priority to KR1020187032215A priority patent/KR102476954B1/ko
Priority to SG11201809888YA priority patent/SG11201809888YA/en
Priority to JP2018517013A priority patent/JP6918790B2/ja
Priority to MX2018013787A priority patent/MX2018013787A/es
Publication of WO2017195743A1 publication Critical patent/WO2017195743A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/02Acyclic radicals
    • C07H7/027Keto-aldonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • 3′-sialyllactose [O- (N-acetyl- ⁇ -neuraminosyl)-(2 ⁇ 3) -O- ⁇ -D-galactopyranoylyl- (1 ⁇ 4) -D-Glucose] (hereinafter referred to as 3SL) is It is an acidic oligosaccharide in which sialic acid and lactose are bound, and is useful, for example, as a product, raw material or intermediate for health foods, pharmaceuticals or cosmetics.
  • 3SL is one of the important oligosaccharides contained in human breast milk, and is said to have a physiological activity such as infection-protecting action against viruses and bacteria and lactic acid bacteria growth activity.
  • Patent Document 1 As a method for producing 3SL, a purification method using a gel filtration column (Non-patent Documents 1 and 2), a simulated moving bed chromatographic separation apparatus (Patent Document 1), etc. is disclosed, but it relates to a method for producing 3SL salt crystals. There is no description. Patent Document 2 describes a method for producing a 3SL salt, but crystals of the 3SL salt cannot be obtained by this method.
  • An object of the present invention is to provide a 3SL crystal which is easy to handle and has high storage stability under normal temperature and high temperature conditions and a method for producing the same.
  • the present invention relates to the following (1) to (17).
  • 3′-sialyllactose hereinafter referred to as 3SL
  • 3SL 3′-sialyllactose
  • the diffraction angle (2 ⁇ °) is 7.2 ⁇ 0.2 °, 10.9 ⁇ 0.2 °, 22.7 ⁇ 0.2 °, 21.2 ⁇ 0.
  • the crystal according to (1) or (2) which has peaks at 2 ° and 9.8 ⁇ 0.2 °.
  • the diffraction angle (2 ⁇ °) is further 23.3 ⁇ 0.2 °, 21.8 ⁇ 0.2 °, 17.1 ⁇ 0.2 °, 17.8 ⁇ .
  • the diffraction angle (2 ⁇ °) is further 24.7 ⁇ 0.2 °, 16.4 ⁇ 0.2 °, 25.6 ⁇ 0.2 °, 20.9 ⁇ .
  • FIG. 1 shows the result of powder X-ray diffraction of the 3SL sodium salt / n hydrate crystal obtained in Example 1.
  • the vertical axis represents intensity (cps), and the horizontal axis represents diffraction angle (2 ⁇ °).
  • 2 shows the result of powder X-ray diffraction of 3SL sodium salt / 8.0 hydrate crystals obtained in Example 2.
  • FIG. The vertical axis represents intensity (cps), and the horizontal axis represents diffraction angle (2 ⁇ °).
  • FIG. 3 shows the result of infrared spectroscopy (IR) analysis of the 3SL sodium salt / 8.0 hydrate crystal obtained in Example 2.
  • the vertical axis represents the light transmittance (% T), and the horizontal axis represents the wave number (1 / cm).
  • FIG. 4 shows the result of powder X-ray diffraction of 3SL sodium salt ⁇ 2.0 hydrate crystals obtained in Example 3.
  • the vertical axis represents intensity (cps), and the horizontal axis represents diffraction angle (2 ⁇ °).
  • FIG. 5 shows the result of powder X-ray diffraction of 3SL sodium salt / 5.0 hydrate crystals obtained in Example 5.
  • the vertical axis represents intensity (cps), and the horizontal axis represents diffraction angle (2 ⁇ °).
  • FIG. 6 shows the result of powder X-ray diffraction of 3SL sodium salt ⁇ 1.4 hydrate crystals obtained in Example 7.
  • the vertical axis represents intensity (cps), and the horizontal axis represents diffraction angle (2 ⁇ °).
  • the crystal of the present invention is a 3SL crystal.
  • Examples of the analysis conditions in the analysis using HPLC include the following conditions. Column: Dionex CarboPac TM PA1 BioLC TM, 4x250mm Guard column: Dionex CarboPac TM PA1 BioLC TM, 4x50mm Column temperature: 30 ° C Flow rate: 1 mL / min Eluent: 0.5 M sodium hydroxide / 0.3 M sodium acetate aqueous solution
  • the crystals are 3SL crystals.
  • Analysis by powder X-ray diffraction can be performed, for example, using a powder X-ray diffractometer (XRD) Ultimate IV (manufactured by Rigaku Corporation), using CuK ⁇ as an X-ray source, and according to the attached instruction manual.
  • XRD powder X-ray diffractometer
  • the 3SL crystals are sodium salt crystals.
  • the sodium content can be measured, for example, using an atomic absorption photometer Z-2310 (manufactured by Hitachi High-Technologies Corporation) according to the attached instruction manual.
  • the fact that the crystal of the present invention is a monosodium salt indicates that the sodium content in the crystal is usually 3.5 ⁇ 1.5 wt%, preferably 3.5 ⁇ 1 in terms of anhydride. 0.0% by weight, most preferably 3.5 ⁇ 0.5% by weight.
  • n of n-hydrate is 4 or more and 9 or less, preferably 5.0 or more and 8.0 or less, more preferably 8.0 or 5.0, most preferably The crystal of 3SL sodium salt n hydrate which is 8.0 can be mentioned.
  • the n value of the n hydrate is 4 or more and 9 or less because the water content in the crystal is usually 9.0 to 20.0% by weight. It can be confirmed that the value of n is 5.0 or more and 8.0 or less, when the water content similarly measured is usually 12.0 to 18.0% by weight.
  • the water content in the crystal can be measured, for example, by the Karl Fischer method.
  • the moisture content measurement by the Karl Fischer method can be carried out, for example, using an automatic moisture measuring apparatus AQV-2200 (manufactured by Hiranuma Sangyo Co., Ltd.) by the heating vaporization method (110-171 ° C., 14 minutes) according to the attached instruction manual. it can.
  • n is 8.0 when the water content measured in the same manner is usually 18.0 ⁇ 1.5% by weight. Moreover, it can confirm that the value of n is 5.0 because the moisture content similarly measured is 12.1 ⁇ 1.5 weight% normally.
  • the diffraction angle (2 ⁇ °) described in the following (i) is used.
  • 3SL sodium salt / n-hydrate crystals having a peak at) are preferred, and in addition to the diffraction angle (2 ⁇ °) described in (i) below, a peak is further observed at the diffraction angle (2 ⁇ °) described in (ii) below.
  • 3SL sodium salt / n hydrate crystals are more preferable, and in addition to the diffraction angle (2 ⁇ °) described in the following (i) and (ii), a peak is further observed at the diffraction angle (2 ⁇ ) described in the following (iii).
  • the 3SL sodium salt / n-hydrate crystal is more preferable.
  • n of n hydrate is 4 or more and 9 or less
  • a powder X-ray diffraction pattern using CuK ⁇ as an X-ray source is shown in FIG. 3SL sodium salt / n-hydrate crystal defined by the pattern shown and the diffraction angle value shown in Table 1, 3SL sodium salt / 8.0 defined by the pattern shown in FIG. 2 and the diffraction angle value shown in Table 2
  • examples thereof include hydrate crystals and 3SL sodium salt / 5.0 hydrate crystals defined by the pattern shown in FIG.
  • Infrared spectroscopy (IR) analysis can be performed, for example, using FTIR-8400 type (manufactured by Shimadzu Corporation) according to the attached instruction manual. Further, for example, 3SL sodium salt / 8.0 hydrate crystals defined by the values shown in Table 7 by single crystal X-ray structural analysis can be given.
  • Single crystal X-ray structural analysis can be performed, for example, using R-AXIS RAPD-F (manufactured by Rigaku Corporation) according to the instruction manual.
  • a single crystal of 3SL sodium salt is attached to a diffractometer, and a diffraction image is measured using X-rays of a predetermined wavelength in an atmosphere of room temperature or an inert gas stream of a predetermined temperature.
  • the structure is determined by the direct method and the structure is refined by the least square method to obtain a single crystal structure.
  • the crystal form of 3SL sodium salt ⁇ 8.0 hydrate is preferably represented by the formula Na + ⁇ (C 23 H 38 NO 19 ) ⁇ ⁇ 8H 2 O.
  • n value of n hydrate is 0 or more and less than 4, preferably 1 or more and 3.5 or less, more preferably 2.0, 3.5 or 1.4 Japanese crystals are also crystals of the present invention.
  • n of n-hydrate is 0 or more and less than 4 can be confirmed, for example, by the fact that the water content measured using the Karl Fischer method is usually 0 to 10.0% by weight. . It can be confirmed that the value of n is 1 or more and 3.5 or less, when the water content measured in the same manner is usually 2.0 to 9.0% by weight.
  • the water content measurement by the Karl Fischer method can be performed by the same method as described above.
  • n is 2.0 when the water content measured in the same manner is usually 5.2 ⁇ 1.5% by weight. Moreover, it can confirm that the value of n is 3.5 because the water content measured similarly is 8.8 +/- 1.5 weight% normally. Moreover, it can confirm that the value of n is 1.4 because the moisture content similarly measured is 3.7 ⁇ 1.5 weight% normally.
  • the value of n of n hydrate is 0 or more and less than 4, in the powder X-ray diffraction using CuK ⁇ as the X-ray source, the diffraction angle (2 ⁇ °) described in (iv) below 3SL sodium salt / n-hydrate crystal having a peak at is preferable, and in addition to the diffraction angle (2 ⁇ °) described in (iv) below, it further has a peak at the diffraction angle (2 ⁇ °) described in (v) below.
  • 3SL sodium salt / hydrate crystals are more preferable, and in addition to the diffraction angle (2 ⁇ °) described in (iv) and (v) below, a peak is further observed at the diffraction angle (2 ⁇ °) described in (vi) below.
  • the 3SL sodium salt / n-hydrate crystal is more preferable.
  • the powder X-ray diffraction pattern using CuK ⁇ as the X-ray source has the pattern shown in FIG. Examples include 3SL sodium salt ⁇ 2.0 hydrate crystals defined by the diffraction angle values shown in Table 6 and 3SL sodium salt ⁇ 1.4 hydrate crystals defined by the pattern shown in FIG. it can.
  • the production method of the crystal of the present invention is the production method described in the following 2-1 to 2-3.
  • Production method 1 of the crystal of the present invention As the method for producing the crystal of the present invention in which the value of n of the above 1 n hydrate is 4 or more and 9 or less, 3SL sodium salt is obtained by standing or stirring an aqueous solution of 3SL containing a sodium-containing compound. A step of precipitating n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less), and 3SL sodium salt from the aqueous solution. N hydrate crystals (where n is 4 or more, And 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less). Can do.
  • 3SL contained in the aqueous solution of 3SL sodium salt may be produced by any production method such as a fermentation method, an enzymatic method, an extraction method from a natural product, or a chemical synthesis method.
  • the solid matter can be removed using centrifugation, filtration, or a ceramic filter.
  • water-soluble impurities can be obtained by passing the aqueous solution through a column packed with an ion exchange resin or the like. And salt can be removed.
  • the 3SL aqueous solution contains hydrophobic impurities that hinder crystallization, remove the hydrophobic impurities by passing the aqueous solution through a column packed with synthetic adsorption resin or activated carbon. can do.
  • the aqueous solution can be adjusted so that the concentration of 3SL is usually 450 g / kg or more, preferably 500 g / kg or more, more preferably 550 g / kg or more, and most preferably 600 g / kg or more.
  • the aqueous solution can be concentrated by a general concentration method such as a heat concentration method or a vacuum concentration method.
  • the sodium-containing compound examples include a basic compound such as sodium hydroxide, or a neutral salt such as sodium carbonate, sodium sulfate, sodium nitrate, or sodium chloride.
  • a neutral salt such as sodium carbonate, sodium sulfate, sodium nitrate, or sodium chloride.
  • the neutral salt include sodium carbonate, sodium sulfate, sodium nitrate, and sodium chloride.
  • the pH is usually 3.0 to 9.0, preferably 4.5 to 8.5 by adjusting the pH of the 3SL aqueous solution using the basic compound.
  • An aqueous solution of 3SL containing a sodium-containing compound that is most preferably 5.5 to 8.0 can be obtained.
  • 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) can be precipitated by standing or stirring the aqueous solution.
  • the temperature for standing or stirring is usually 0 to 40 ° C, preferably 5 to 35 ° C, and most preferably 10 to 30 ° C.
  • the time required for standing or stirring is usually 2 to 72 hours, preferably 3 to 60 hours, and most preferably 5 to 48 hours.
  • the precipitated crystals are usually preferred for 1 to 48 hours. Can be aged for 1 to 24 hours, most preferably 1 to 12 hours.
  • Aging the precipitated crystal means stopping the step of precipitating 3SL sodium salt / n-hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) and growing the crystal. Say. After ripening the crystals, the step of precipitating 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) may be resumed.
  • Growing a crystal means increasing the crystal based on the precipitated crystal. Crystal ripening is performed mainly for the purpose of growing a crystal, but a new crystal may be precipitated simultaneously with the growth of the crystal.
  • the method for collecting 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) is not particularly limited, but for example, filtration, pressure filtration, suction filtration , Centrifugation and the like. Furthermore, in order to reduce the adhesion of the mother liquor to the crystal and improve the quality of the crystal, the crystal can be washed as appropriate after collecting the crystal.
  • the solution used for crystal washing is not particularly limited, but a solution in which water, methanol, ethanol, acetone, n-propanol, isopropyl alcohol and one or more kinds selected from them are mixed at an arbitrary ratio can be used.
  • the crystals of the present invention can be obtained by drying the wet crystals thus obtained. Any drying method may be used as long as it can maintain the form of 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less). For example, drying under reduced pressure, vacuum Examples thereof include drying, fluidized bed drying, and ventilation drying.
  • the drying temperature may be any as long as the crystal form can be maintained and adhering moisture and solvent can be removed, but preferably 40 ° C. or less, more preferably 35 ° C. or less, and most preferably 30 ° C. or less. be able to.
  • the time required for drying may be any as long as the crystal form can be maintained and the attached moisture and solvent can be removed, but preferably 1 to 60 hours, more preferably 1 to 48 hours. .
  • high purity 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) can be obtained.
  • the purity of 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) is usually 94% or more, preferably 95% or more, more preferably 96% or more. Most preferably, 97% or more can be mentioned.
  • the purity of the crystal can be confirmed, for example, by analysis using the HPLC described in 1 above.
  • 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) that can be produced by the above production method, for example, CuK ⁇ was used as the X-ray source.
  • the powder X-ray diffraction pattern include 3SL sodium salt / n-hydrate crystals defined by the pattern shown in FIG. 1 and the diffraction angle values shown in Table 1.
  • the obtained 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) is allowed to stand at a temperature of 50 ° C. or less for 1 to 20 hours and dried.
  • N hydrate crystals having a smaller n than the n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) (where n is an arbitrary number of 4 or more and 9 or less) You can also get).
  • Production method 2 of crystal of the present invention As a method for producing the crystal of the present invention in which the value of n of the above 1 hydrate is 4 or more and 9 or less, 3SL sodium salt / n hydration is used as a seed crystal in a 3SL aqueous solution containing a sodium-containing compound. Adding a product crystal (where n is an arbitrary number of 4 or more and 9 or less), 3SL sodium salt / n hydrate crystal (provided that n is 4 or more and 9 or less) in the aqueous solution And 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) from the aqueous solution. Examples thereof include a method for producing sodium salt / n-hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less).
  • n of the n hydrate preferably 5.0 or more and 8.0 or less, most preferably 8.0 can be mentioned.
  • 3SL contained in the aqueous solution of 3SL sodium salt the same as those described in 2-1, can be used.
  • 3SL aqueous solution contains solid matter that hinders crystallization, water-soluble impurities or salt that hinders crystallization, or hydrophobic impurity that hinders crystallization Can be used, the same method as in 2-1.
  • the aqueous solution can be adjusted so that the concentration of 3SL is usually 400 g / L or more, preferably 500 g / L or more, more preferably 600 g / L or more, and most preferably 700 g / L or more.
  • the aqueous solution can be concentrated by a general concentration method such as a heat concentration method or a vacuum concentration method.
  • the sodium-containing compound is the same as in 2-1.
  • the pH is usually 3.0 to 9.0, preferably 4.5 to 8.5 by adjusting the pH of the 3SL aqueous solution using the basic compound.
  • An aqueous solution of 3SL containing a sodium-containing compound that is most preferably 5.5 to 8.0 can be obtained.
  • a 3SL sodium salt / n hydrate crystal (where n is 4 or more and 9 or less) is added as a seed crystal to a 3SL aqueous solution containing a sodium-containing compound. A number).
  • the 3SL sodium salt / n hydrate crystal obtained by the method 2-1 (where n is an arbitrary number of 4 or more and 9 or less) can be used.
  • the seed crystals are added so that the concentration in the aqueous solution is usually 0.2 to 15% by weight, preferably 0.4 to 10% by weight, and most preferably 0.7 to 7% by weight.
  • Examples of a method for precipitating 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) in the aqueous solution include, for example, a method of cooling the aqueous solution, and the aqueous solution. And the like, and a method of adding or dropping an alcohol solution into the aqueous solution. In addition, these methods can be used in combination of one or more methods.
  • the temperature of the aqueous solution is usually 0 to 40 ° C., preferably 0 to 35 ° C., and most preferably 0 to 30 ° C.
  • the time required for cooling is usually 2 to 100 hours, preferably 3 to 70 hours, and most preferably 5 to 50 hours.
  • the temperature of the aqueous solution is usually 0 to 100 ° C., preferably 10 to 90 ° C., and most preferably 20 to 80 ° C.
  • the time required for the reduced pressure is usually 2 to 100 hours, preferably 3 to 70 hours, and most preferably 5 to 50 hours.
  • the alcohol solution 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) are precipitated immediately before starting addition or dripping, or after adding or dripping an alcohol solution. Before, the seed crystals are added.
  • the seed crystal can be added usually within 0 to 5 hours, preferably within 0 to 4 hours, most preferably within 0 to 3 hours after the start of dropping or addition of the alcohol solution.
  • the alcohol solution may be a mixture of a plurality of alcohols, or a mixture of alcohol and another organic solvent or water, and preferably a C1-C6 alcohol is used.
  • C1-C3 alcohols more preferably alcohols selected from the group consisting of methanol, ethanol, n-propanol and isopropyl alcohol, still more preferably methanol or ethanol, most preferably ethanol.
  • Can do preferably ethanol, ethanol, n-propanol and isopropyl alcohol, still more preferably methanol or ethanol, most preferably ethanol.
  • the alcohol solution used in the present invention is an alcohol aqueous solution
  • the water content is usually 40% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less, and most preferably 5% by weight or less. Can be mentioned.
  • the temperature of the aqueous solution when adding or dropping the alcohol solution may be any temperature as long as 3SL does not decompose, and is usually 45 ° C. or lower, preferably 40 ° C. or lower, more preferably 35 ° C. or lower, most preferably. Can mention 30 degrees C or less. As a lower limit of temperature, 0 degreeC or more normally, Preferably 10 degreeC or more can be mentioned.
  • the amount of the alcohol solution to be added or dripped is usually 0.1 to 30 times, preferably 0.2 to 25 times, most preferably 0.3 to 10 times.
  • the time required for adding or dropping the alcohol solution to the aqueous solution is usually 1 to 48 hours, preferably 2 to 30 hours, and most preferably 3 to 20 hours.
  • the precipitated crystals are usually preferred for 1 to 48 hours. Can be aged for 1 to 24 hours, most preferably 1 to 12 hours.
  • Aging the precipitated crystal means stopping the step of precipitating 3SL sodium salt / n-hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) and growing the crystal.
  • the step of precipitating 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) may be resumed.
  • the crystal growth is the same as in 2-1.
  • 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) are precipitated by the above method, 3SL sodium salt is obtained by the same process as in 2-1. N hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) can be collected.
  • 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) can be obtained.
  • the purity of 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) is usually 94% or more, preferably 95% or more, more preferably 96% or more. Most preferably, 97% or more can be mentioned.
  • the purity of the crystal can be confirmed, for example, by analysis using the HPLC described in 1 above.
  • 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) that can be produced by the above production method, for example, CuK ⁇ was used as the X-ray source.
  • the powder X-ray diffraction pattern include 3SL sodium salt / 8.0 hydrate crystals defined by the pattern shown in FIG. 2 and the diffraction angle values shown in Table 2.
  • 3SL sodium salt / 8.0 hydrate crystals showing the infrared absorption spectrum shown in FIG. 3 can be mentioned.
  • 3SL sodium salt / 8.0 hydrate crystals defined by the values shown in Table 7 by single crystal X-ray structural analysis can be given.
  • the obtained 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less) is allowed to stand at a temperature of 50 ° C. or less for 1 to 20 hours and dried.
  • N hydrate crystals having a smaller n than the n hydrate crystals (where n is an arbitrary number of 4 or more and 9 or less) (where n is an arbitrary number of 4 or more and 9 or less) You can also get).
  • 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 4 or more and 9 or less), for example, a powder X-ray diffraction pattern using CuK ⁇ as an X-ray source,
  • the pattern-defined 3SL sodium salt / 5.0 hydrate crystal shown in FIG. 5 can be mentioned.
  • Production method 3 of crystal of the present invention As the method for producing the crystal of the present invention in which the value of n of the above 1 hydrate is 0 or more and less than 4, the 3SL sodium salt / n hydrate crystal obtained in the above 2-1 or 2-2 ( However, n is an arbitrary number of 4 or more and 9 or less) including a step of drying by ventilation for 20 hours or more under the condition of 45 ° C. or higher, or a step of vacuum drying for 48 hours or more under the condition of 25 ° C. or higher.
  • An example is a method for producing 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 0 or more and less than 4).
  • the value of n of the n hydrate in the obtained 3SL sodium salt / n hydrate crystal is preferably 1 or more and 3.5 or less.
  • the drying temperature when the crystals are air-dried is preferably 45 ° C. or higher, more preferably 50 ° C. or higher.
  • the time required for ventilation drying is preferably 20 hours or more.
  • the drying temperature when the crystal is vacuum-dried is preferably 25 ° C. or higher, more preferably 30 ° C. or higher.
  • the time required for vacuum drying is preferably 48 hours or longer.
  • high-purity 3SL sodium salt / n hydrate crystals (where n is an arbitrary number of 0 or more and less than 4) can be obtained.
  • the crystal purity of 3SL sodium salt / n hydrate (where n is 0 or more and any number less than 4) is usually 93% or more, preferably 94% or more, more preferably 95% or more. Most preferably, 96% or more can be mentioned.
  • the purity of the crystal can be confirmed, for example, by analysis using the HPLC described in 1 above.
  • CuK ⁇ was used as the X-ray source as the 3SL sodium salt / n hydrate crystal (where n is an arbitrary number of 0 or more and less than 4) that can be produced by the above production method.
  • Example 1 Acquisition of 3SL sodium salt / n hydrate crystals 25 ⁇ L of water was added to 50.3 mg of 3SL sodium reagent (manufactured by Carbosynch, amorphous) and dissolved while heating to 50 ° C. The aqueous solution was stirred for 12 hours at room temperature to allow crystals to spontaneously crystallize. The aqueous solution was naturally dried at room temperature for 48 hours to obtain 60 mg of 3SL sodium salt / n hydrate crystals.
  • 3SL sodium reagent manufactured by Carbosynch, amorphous
  • Table 1 shows the diffraction angle of the peak having a relative intensity ratio (I / I 0 ) of 4 or more from the result of powder X-ray diffraction of the obtained crystal.
  • “2 ⁇ ” indicates a diffraction angle (2 ⁇ °)
  • “relative intensity” indicates a relative intensity ratio (I / I 0 ).
  • Example 2 Acquisition of 3SL sodium salt / 8.0 hydrate crystals Aqueous sodium hydroxide was added to an aqueous solution containing 100 g of 3SL in terms of free form to adjust the pH to 6.81 to 2900 mL. The aqueous solution was concentrated to 125 mL, and the obtained concentrated solution was subjected to the next step.
  • Example 2 While maintaining the 125 mL concentrated solution at 25 ° C., 1 g of the 3SL sodium salt / n hydrate crystal obtained in Example 1 was added as a seed crystal. To this, 62.5 mL of 100% ethanol was added dropwise over 10 hours to precipitate crystals. The crystals were aged by stirring the crystal slurry for 12 hours, and then the crystals were collected by filtration, washed with a 90% aqueous ethanol solution, and then dried by ventilation at 25 ° C. to obtain 64.8 g of crystals. The obtained crystals were confirmed to have a 3SL purity of 97.3% (area%) or higher by HPLC purity measurement.
  • Table 2 shows the diffraction angle of the peak having a relative intensity ratio (I / I 0 ) of 4 or more from the result of powder X-ray diffraction of the obtained crystal.
  • “2 ⁇ ” indicates a diffraction angle (2 ⁇ °)
  • “relative intensity” indicates a relative intensity ratio (I / I 0 ).
  • the sodium content of the crystal As a result of measuring the sodium content of the crystal by the atomic absorption method, it was 3.54% by weight, which almost coincided with the theoretical value (3.50% by weight) of the monosodium salt.
  • the water content of the crystals was measured by the Karl Fischer method and found to be 17.0% by weight. From the comparison with the theoretical water content, the 3SL sodium salt crystals were 3SL sodium salt / 8.0 hydrated. It turned out to be a thing.
  • Table 3 shows various physical properties of the crystals obtained in Example 2.
  • the pH was determined by measuring a 50 g / L aqueous solution as crystals of 3SL sodium salt / 8.0 hydrate.
  • the melting point was measured using Melting Point M-565 (manufactured by BUCHI) under the conditions of 50 ° C. to 200 ° C. and 0.5 ° C./min according to the instruction manual.
  • the hygroscopicity of the 3SL sodium salt ⁇ 8.0 hydrate crystals obtained in Example 2 and the 3SL sodium reagent (Carbosyth, amorphous) were compared under the following conditions.
  • Example 4 As shown in Table 4, the 3SL sodium salt / 8.0 hydrate crystal obtained in Example 2 (“Crystal” in Table 4) showed almost no change in weight over time.
  • the 3SL sodium reagent (“Amorphous” in Table 4) increased in weight over time. From this, it was confirmed that the 3SL sodium salt ⁇ 8.0 hydrate crystals have low hygroscopicity and excellent storage stability compared to the 3SL sodium reagent.
  • Example 5 As shown in Table 5, the 3SL sodium salt / 8.0 hydrate crystals obtained in Example 2 (in Table 5 compared with the amorphous material obtained in Reference Example 1 ("Freeze-dried product" in Table 5)) It was confirmed that the “crystal”) had a small increase in impurities after heating and was excellent in heating stability.
  • Example 3 Obtaining 3SL sodium salt / 2.0 hydrate crystals 50 g of 3SL sodium salt / 8.0 hydrate obtained according to Example 2 was dried by ventilation at 50 ° C. for 24 hours to obtain 43.3 g of crystals. . The obtained crystals were confirmed to have a 9SL purity of 96.6% (area%) or more by HPLC purity measurement.
  • Table 6 shows the diffraction angle of the peak having a relative intensity ratio (I / I 0 ) of 10 or more based on the result of powder X-ray diffraction of the crystal.
  • “2 ⁇ ” indicates a diffraction angle (2 ⁇ °)
  • “relative intensity” indicates a relative intensity ratio (I / I 0 ).
  • the powder X-ray diffraction pattern of the obtained crystal is different from the powder X-ray diffraction pattern of the crystal obtained according to Example 2, and the crystal is polymorphic with the crystal obtained according to Example 2. It was found that there is a relationship. As a result of measuring the water content in the crystal by the Karl Fischer method, it was 5.1% by weight. From comparison with the theoretical water content, the crystal of the 3SL sodium salt was 3SL sodium salt ⁇ 2.0 hydrate. I found out.
  • Example 4 Single crystal X-ray structure analysis of 3SL sodium salt / 8.0 hydrate crystal
  • a measurement apparatus single crystal X-ray structure analysis apparatus manufactured by Rigaku Corporation
  • Single crystal X-ray diffraction was performed using R-AXIS RAPID-F).
  • a single crystal of 3SL sodium salt was attached to a diffractometer, and a diffraction image was measured using X-rays having a predetermined wavelength in an atmosphere of room temperature or an inert gas stream at a predetermined temperature.
  • the structure is determined by the direct method and the structure is refined by the least square method [Acta Cryst. A64, 112 (2008)] to obtain a single crystal structure. The results are shown in Table 7.
  • the crystal was a 3SL sodium salt crystal and was a 3SL sodium salt / 8.0 hydrate having 8 water molecules in a unit cell.
  • Example 5 Obtaining 3SL sodium salt / 5.0 hydrate crystals
  • the 3SL sodium salt / 8.0 hydrate crystals obtained in Example 2 were allowed to stand at 50 ° C. for 20 hours and dried. As a result of measuring the moisture content of the crystal after drying by the Karl Fischer method, it was 12.1% by weight. From comparison with the theoretical moisture content, the 3SL sodium salt crystal was 3SL sodium salt 5.0 hydrate. I found out.
  • the crystal was the same as the powder X-ray diffraction pattern of the crystal obtained in Example 2, the crystal was the same as the 3SL sodium salt / 8.0 hydrate crystal. It turned out to be a shape.
  • Example 2 From the results of Example 2 and Example 5, the crystals of 3SL sodium salt / n hydrate are accompanied by a change in the powder X-ray diffraction pattern in the 8.0 hydrate crystals and 5.0 hydrate crystals. It was confirmed that the number of hydrates changed. From this, 3SL sodium salt is a clathrate hydrate (J. Pharm. Sci., 64 (8), 1269-1288, 1975) in which the number of hydrates changes without changing the structure of the crystal lattice. It was thought that there was. The formation of clathrate hydrates by sugar compounds is also recognized, for example, in WO 2014/069625.
  • Example 6 Acquisition of 3SL sodium salt / 3.5 hydrate crystals
  • the 3SL sodium salt / 8.0 hydrate crystals obtained in Example 2 were dried by ventilation at 45 ° C. for 20 hours.
  • As a result of measuring the moisture content of the crystal after drying by the Karl Fischer method it was 8.7% by weight. From comparison with the theoretical moisture content, the crystal of the 3SL sodium salt was 3SL sodium salt / 3.5 hydrate. I found out.
  • the crystal was the same as the powder X-ray diffraction pattern of the crystal obtained in Example 3, the crystal was the same as 3SL sodium salt / 2.0 hydrate crystal. It turned out to be a shape.
  • Example 7 Acquisition of 3SL sodium salt ⁇ 1.4 hydrate crystals
  • the 3SL sodium salt ⁇ 8.0 hydrate crystals obtained in Example 2 were vacuum-dried for 56 hours under conditions of 30 ° C and 35 hPa. As a result of measuring the moisture content of the crystal after drying by the Karl Fischer method, it was 3.7% by weight. From comparison with the theoretical moisture content, the 3SL sodium salt crystal was 3SL sodium salt / 1.4 hydrate. I found out.
  • the crystal was the same as the powder X-ray diffraction pattern of the crystal obtained in Example 3, the crystal was the same as 3SL sodium salt / 2.0 hydrate crystal. It turned out to be a shape.
  • Example 6 From the results of Example 2, Example 6 and Example 7, the 3SL sodium salt n hydrate crystals were continuously from at least 1.4 hydrate to 3.5 hydrate as above. It was found that the same crystal state of n hydrate exists.
  • the present invention provides, for example, 3SL sodium salt / n hydrate crystals that are useful as products, raw materials, intermediates, and the like such as health foods, pharmaceuticals, and cosmetics, and methods for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明は、取り扱いしやすく、常温及び高温条件下における保存安定性が高い、3'-シアリルラクトース(以下、3SLという)の結晶及びその製造方法を提供することを目的とする。本発明は、3SLナトリウム塩・n水和物結晶(ただし、nは0~9の任意の数字を表し、n=0の場合は、3SLナトリウム塩・無水物という)及びその製造方法に関する。

Description

3’-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法
 本発明は、例えば、健康食品、医薬品又は化粧品等の製品、原料又は中間体等として有用である3’-シアリルラクトースナトリウム塩・n水和物結晶(ただし、nは0~9の任意の数字を表し、n=0の場合は、3’-シアリルラクトースナトリウム塩・無水物という)及び該結晶の製造方法に関する。
 3’-シアリルラクトース[O-(N-acetyl-α-neuraminosyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-D-Glucose](以下、3SLという)は、シアル酸とラクトースが結合した酸性オリゴ糖であり、例えば健康食品、医薬品又は化粧品等の製品、原料又は中間体等として有用である。
 3SLは、ヒト母乳に含まれる重要なオリゴ糖の1つであり、ウイルスや細菌に対する感染防御作用や、乳酸菌増殖活性のような生理活性があるとされている。
 3SLの製造方法としては、ゲルろ過カラム(非特許文献1及び2)、疑似移動床式クロマト分離装置(特許文献1)等による精製方法が開示されているが、3SL塩の結晶の製造方法に関する記載はない。特許文献2には、3SL塩の製造方法が記載されているが、当該方法では3SL塩の結晶を取得することはできない。
日本国特開平08-252403号公報 日本国特表平10-513437号公報
Carbohydrate Research., Vol. 337, p473, 2002 Apply Microbiol Biotechnol., Vol. 53, p257, 2000
 本発明は、取り扱いしやすく、常温及び高温条件下における保存安定性が高い、3SLの結晶及びその製造方法を提供することを目的とする。
 本発明は、以下の(1)~(17)に関する。
(1)3’-シアリルラクトース(以下、3SLという)ナトリウム塩・n水和物結晶(ただし、nは0~9の任意の数字を表し、n=0の場合は、3SLナトリウム塩・無水物という)。
(2)nが4以上、かつ9以下の任意の数字である、上記(1)に記載の結晶。
(3)nが5.0又は8.0である、上記(2)に記載の結晶。
(4)粉末X線回折において、回折角(2θ°)が、7.2±0.2°、10.9±0.2°、22.7±0.2°、21.2±0.2°、及び9.8±0.2°にピークを有する、上記(1)又は(2)に記載の結晶。
(5)粉末X線回折において、回折角(2θ°)が、さらに、23.3±0.2°、21.8±0.2°、17.1±0.2°、17.8±0.2°、及び24.1±0.2°にピークを有する、上記(4)に記載の結晶。
(6)粉末X線回折において、回折角(2θ°)が、さらに、24.7±0.2°、16.4±0.2°、25.6±0.2°、20.9±0.2°、及び23.9±0.2°にピークを有する、上記(5)に記載の結晶。
(7)単結晶X線構造解析において、-173℃で測定した場合、次の概略的単位胞パラメーター:a=11.2942Å;b=13.3269Å;c=24.4525Å;V=3680.5Å;Z=4;を有し、かつ空間群がP2;である、上記(1)又は(2)に記載の結晶。
(8)nが0以上、かつ4より小さい任意の数字である、上記(1)に記載の結晶。
(9)nが1.4、2.0又は3.5である、上記(8)に記載の結晶。
(10)粉末X線回折において、回折角(2θ°)が、8.9±0.2°、17.1±0.2°、15.5±0.2°、19.3±0.2°、及び20.9±0.2°にピークを有する、上記(1)又は(8)に記載の結晶。
(11)粉末X線回折において、回折角(2θ°)が、さらに、27.4±0.2°、13.3±0.2°、22.5±0.2°、11.8±0.2°、及び23.7±0.2°にピークを有する、上記(10)に記載の結晶。
(12)粉末X線回折において、回折角(2θ°)が、さらに、25.0±0.2°、10.8±0.2°、17.9±0.2°、20.0±0.2°、及び21.8±0.2°にピークを有する、上記(11)に記載の結晶。
(13)ナトリウム含有化合物を含む3SLの水溶液を静置又は攪拌することにより、3SLナトリウム塩・n水和物結晶を析出させる工程、及び該水溶液から3SLナトリウム塩・n水和物結晶を採取する工程、を含む、上記(2)~(7)のいずれか1に記載の結晶の製造方法[nは上記(2)と同義]。
(14)ナトリウム含有化合物を含む3SLの水溶液に、種晶として3SLナトリウム塩・n水和物結晶を添加する工程、該水溶液中に3SLナトリウム塩・n水和物結晶を析出させる工程、及び該水溶液から3SLナトリウム塩・n水和物結晶を採取する工程、を含む、上記(2)~(7)のいずれか1に記載の結晶の製造方法[nは上記(2)と同義]。
(15)3SLナトリウム塩・n水和物結晶を析出させる工程が、アルコール溶液を添加又は滴下することにより、3SLナトリウム塩・n水和物結晶を析出させる工程である、上記(14)に記載の製造方法[nは上記(2)と同義]。
(16)アルコール溶液が、C1~C6のアルコール類からなる群より選ばれる溶液である、上記(15)に記載の製造方法。
(17)上記(2)~(7)のいずれか1に記載の結晶を、45℃以上の条件で20時間以上通風乾燥する工程、又は25℃以上の条件で48時間以上真空乾燥する工程、を含む、上記(8)~(12)のいずれか1に記載の結晶の製造方法。
図1は、実施例1で得られた、3SLナトリウム塩・n水和物結晶の粉末X線回折の結果を表わす。縦軸は強度(cps)を、横軸は回折角(2θ°)を表わす。 図2は、実施例2で得られた、3SLナトリウム塩・8.0水和物結晶の粉末X線回折の結果を表わす。縦軸は強度(cps)を、横軸は回折角(2θ°)を表わす。 図3は、実施例2で得られた、3SLナトリウム塩・8.0水和物結晶の赤外分光(IR)分析の結果を表わす。縦軸は光の透過率(%T)を、横軸は波数(1/cm)を表わす。 図4は、実施例3で得られた、3SLナトリウム塩・2.0水和物結晶の粉末X線回折の結果を表わす。縦軸は強度(cps)を、横軸は回折角(2θ°)を表わす。 図5は、実施例5で得られた、3SLナトリウム塩・5.0水和物結晶の粉末X線回折の結果を表わす。縦軸は強度(cps)を、横軸は回折角(2θ°)を表わす。 図6は、実施例7で得られた、3SLナトリウム塩・1.4水和物結晶の粉末X線回折の結果を表わす。縦軸は強度(cps)を、横軸は回折角(2θ°)を表わす。
1.本発明の結晶
 本発明の結晶は、3SLナトリウム塩・n水和物(ただし、nは0~9の任意の数字であり、n=0の場合は、3SLナトリウム塩・無水物という)の結晶である。
 本発明の結晶が3SLの結晶であることは、例えば、HPLCを用いた分析により確認することができる。HPLCを用いた分析における分析条件としては、例えば、以下の条件を挙げることができる。
カラム:DionexCarboPac(商標) PA1 BioLC(商標),4x250mm
ガードカラム:DionexCarboPac(商標) PA1 BioLC(商標),4x50mm
カラム温度:30℃
流速:1mL/分
溶離液:0.5M水酸化ナトリウム/0.3M酢酸ナトリウム水溶液
 結晶が3SLの結晶であることは、粉末X線回折装置を用いた分析によっても確認することができる。粉末X線回折による分析は、例えば、粉末X線回折装置(XRD)UltimaIV(リガク社製)を使用し、X線源としてCuKαを用い、付属の使用説明書に従って行うことができる。
 3SLの結晶がナトリウム塩の結晶であることは、当該結晶中に含まれるナトリウム含量を測定することにより確認することができる。ナトリウム含量は、例えば、原子吸光光度計Z-2310(日立ハイテクノロジーズ社製)を用い、付属の使用説明書に従って測定することができる。
 例えば、本発明の結晶が1ナトリウム塩の結晶であることは、無水物に換算して、該結晶中のナトリウム含量が、通常3.5±1.5重量%、好ましくは3.5±1.0重量%、最も好ましくは3.5±0.5重量%であることにより確認することができる。
 本発明の結晶としては、n水和物のnの値が4以上、かつ9以下、好ましくは5.0以上、かつ8.0以下、より好ましくは8.0又は5.0、最も好ましくは8.0である、3SLナトリウム塩・n水和物の結晶を挙げることができる。
 n水和物のnの値が4以上、かつ9以下であることは、結晶中の水分含量が、通常9.0~20.0重量%であることにより確認することができる。nの値が5.0以上、かつ8.0以下であることは、同様に測定した水分含量が、通常12.0~18.0重量%であることにより確認することができる。
 結晶中の水分含量は、例えば、カールフィッシャー法により測定することができる。カールフィッシャー法による水分含量測定は、例えば、自動水分測定装置AQV-2200(平沼産業社製)を用い、付属の使用説明書に従って、加熱気化法(110~171℃、14分)で行うことができる。
 nの値が8.0であることは、同様に測定した水分含量が、通常18.0±1.5重量%であることにより確認することができる。また、nの値が5.0であることは、同様に測定した水分含量が、通常12.1±1.5重量%であることにより確認することができる。
 n水和物のnの値が4以上、かつ9以下である本発明の結晶としては、X線源としてCuKαを用いた粉末X線回折において、下記(i)に記載の回折角(2θ°)にピークを有する3SLナトリウム塩・n水和物結晶が好ましく、下記(i)に記載の回折角(2θ°)に加えてさらに下記(ii)に記載の回折角(2θ°)にピークを有する3SLナトリウム塩・n水和物結晶がより好ましく、下記(i)および(ii)に記載の回折角(2θ°)に加えてさらに下記(iii)に記載の回折角(2θ)にピークを有する3SLナトリウム塩・n水和物結晶がさらに好ましい。
(i)7.2±0.2°、好ましくは7.2±0.1°、10.9±0.2°、好ましくは10.9±0.1°、22.7±0.2°、好ましくは22.7±0.1°、21.2±0.2°、好ましくは21.2±0.1°、及び9.8±0.2°、好ましくは9.8±0.1°
(ii)23.3±0.2°、好ましくは23.3±0.1°、21.8±0.2°、好ましくは21.8±0.1°、17.1±0.2°、好ましくは17.1±0.1°、17.8±0.2°、好ましくは17.8±0.1°、及び24.1±0.2°、好ましくは24.1±0.1°
(iii)24.7±0.2°、好ましくは24.7±0.1°、16.4±0.2°、好ましくは16.4±0.1°、25.6±0.2°、好ましくは25.6±0.1°、20.9±0.2°、好ましくは20.9±0.1°、及び23.9±0.2°、好ましくは23.9±0.1°
 n水和物のnの値が4以上、かつ9以下である本発明の結晶としては、より具体的には、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図1に示すパターン及び表1に示す回折角の値で規定される3SLナトリウム塩・n水和物結晶、図2に示すパターン及び表2に示す回折角の値で規定される3SLナトリウム塩・8.0水和物結晶、並びに、図5に示すパターンで規定される3SLナトリウム塩・5.0水和物結晶を挙げることができる。
 また、例えば、赤外分光(IR)分析に供した場合、図3に示す赤外吸収スペクトルを示す3SLナトリウム塩・8.0水和物結晶を挙げることができる。
 赤外分光(IR)分析は、例えば、FTIR-8400型(島津製作所製)を使用し、付属の使用説明書に従って行うことができる。また、例えば、単結晶X線構造解析により表7に示す値で規定される3SLナトリウム塩・8.0水和物結晶を挙げることができる。
 単結晶X線構造解析は、例えば、R-AXIS RAPD-F(リガク社製)を用い、使用説明書に従って行うことができる。具体的には、例えば、3SLナトリウム塩の単結晶を回折計に取り付け、室温の大気中または所定の温度の不活性ガス気流中で、所定の波長のX線を用いて、回折画像を測定する。回折画像から算出された面指数と回折強度の組から、直接法による構造決定と最小二乗法による構造精密化を行い、単結晶構造を得る。
 一実施形態において、3SLナトリウム塩・8.0水和物の結晶形態は、おおよそ以下の結晶パラメーター、すなわち:単結晶X線構造解析において、およそ-173℃で測定した場合、単位格子寸法:a=11.2942Å;b=13.3269Å;c=24.4525Å;V=3680.5Å;Z=4;を有し、計算密度(Dcalc、gcm-3)が1.443gcm-3であり;かつ空間群がP2;である単結晶X線結晶学的解析結果を示すことが好ましい。
 また、一実施形態において、3SLナトリウム塩・8.0水和物の結晶形態は式Na・(C2338NO19・8HOで表されることが好ましい。
 n水和物のnの値が0以上、かつ4より小さい、好ましくは1以上、かつ3.5以下、より好ましくは2.0、3.5又は1.4である3SLナトリウム塩・n水和物の結晶もまた、本発明の結晶である。
 n水和物のnの値が0以上、かつ4より小さいことは、例えば、カールフィッシャー法を用いて測定した水分含量が、通常0~10.0重量%であることにより確認することができる。nの値が1以上、かつ3.5以下であることは、同様に測定した水分含量が、通常2.0~9.0重量%であることにより確認することができる。カールフィッシャー法による水分含量測定は、上記と同様の方法で行うことができる。
 nの値が2.0であることは、同様に測定した水分含量が、通常5.2±1.5重量%であることにより確認することができる。また、nの値が3.5であることは、同様に測定した水分含量が、通常8.8±1.5重量%であることにより確認することができる。また、nの値が1.4であることは、同様に測定した水分含量が、通常3.7±1.5重量%であることにより確認することができる。
 n水和物のnの値が0以上、かつ4より小さい本発明の結晶としては、X線源としてCuKαを用いた粉末X線回折において、下記(iv)に記載の回折角(2θ°)にピークを有する3SLナトリウム塩・n水和物結晶が好ましく、下記(iv)に記載の回折角(2θ°)に加えてさらに下記(v)に記載の回折角(2θ°)にピークを有する3SLナトリウム塩・n水和物結晶がより好ましく、下記(iv)および(v)に記載の回折角(2θ°)に加えてさらに下記(vi)に記載の回折角(2θ°)にピークを有する3SLナトリウム塩・n水和物結晶がさらに好ましい。
(iv)8.9±0.2°、好ましくは8.9±0.1°、17.1±0.2°、好ましくは17.1±0.1°、15.5±0.2°、好ましくは15.5±0.1°、19.3±0.2°、好ましくは19.3±0.1°、及び20.9±0.2°、好ましくは20.9±0.1°
(v)27.4±0.2°、好ましくは27.4±0.1°、13.3±0.2°、好ましくは13.3±0.1°、22.5±0.2°、好ましくは22.5±0.1°、11.8±0.2°、好ましくは11.8±0.1°、及び23.7±0.2°、好ましくは23.7±0.1°
(vi)25.0±0.2°、好ましくは25.0±0.1°、10.8±0.2°、好ましくは10.8±0.1°、17.9±0.2°、好ましくは17.9±0.1°、20.0±0.2°、好ましくは20.0±0.1°、及び21.8±0.2°、好ましくは21.8±0.1°
 n水和物のnの値が0以上、かつ4より小さい本発明の結晶としては、より具体的には、X線源としてCuKαを用いた粉末X線回折パターンが、図4に示すパターン及び表6に示す回折角の値で規定される3SLナトリウム塩・2.0水和物結晶、並びに、図6に示すパターンで規定される3SLナトリウム塩・1.4水和物結晶を挙げることができる。
2.本発明の結晶の製造方法
 本発明の結晶の製造方法は、以下の2-1~2-3に記載の製造方法である。
2-1.本発明の結晶の製造方法1
 上記1のn水和物のnの値が4以上、かつ9以下である本発明の結晶の製造方法としては、ナトリウム含有化合物を含む3SLの水溶液を静置又は攪拌することにより、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる工程、及び該水溶液から3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を採取する工程、を含む3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)の製造方法を挙げることができる。
 n水和物のnの値としては、好ましくは5.0以上、かつ8.0以下、最も好ましくは8.0を挙げることができる。3SLナトリウム塩の水溶液に含有される3SLは、発酵法、酵素法、天然物からの抽出法、化学合成法等のいずれの製造方法によって製造されたものであってもよい。
 3SLの水溶液に、結晶化の障害となる固形物が含まれている場合には、遠心分離、濾過又はセラミックフィルタ等を用いて固形物を除去することができる。
 また、3SLの水溶液に、結晶化の障害となる水溶性の不純物や塩が含まれている場合には、イオン交換樹脂等を充填したカラムに該水溶液を通塔する等により、水溶性の不純物や塩を除去することができる。
 また、3SLの水溶液に、結晶化の障害となる疎水性の不純物が含まれる場合には、合成吸着樹脂や活性炭等を充填したカラムに該水溶液を通塔する等により、疎水性の不純物を除去することができる。
 前記水溶液は、3SLの濃度が通常450g/kg以上、好ましくは500g/kg以上、より好ましくは550g/kg以上、最も好ましくは600g/kg以上となるように調整することができる。前記水溶液の濃度を前記濃度とするために、該水溶液を加熱濃縮法又は減圧濃縮法などの一般的な濃縮方法により濃縮することができる。
 ナトリウム含有化合物としては、例えば、水酸化ナトリウムのような塩基性化合物、又はナトリウムの炭酸化物、ナトリウムの硫酸化物、ナトリウムの硝酸化物若しくはナトリウムの塩化物のような中性塩を挙げることができる。中性塩としては、具体的には、炭酸ナトリウム、硫酸ナトリウム、硝酸ナトリウム、又は塩化ナトリウムを挙げることができる。
 ナトリウム含有化合物として塩基性化合物を用いる場合、当該塩基性化合物を使用して3SLの水溶液のpHを調整することにより、pHが通常3.0~9.0、好ましくは4.5~8.5、最も好ましくは5.5~8.0であるナトリウム含有化合物を含む3SLの水溶液を取得することができる。
 前記水溶液を静置又は攪拌することにより、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させることができる。静置又は攪拌する温度としては、通常0~40℃、好ましくは5~35℃、最も好ましくは10~30℃を挙げることができる。静置又は攪拌に要する時間としては、通常2~72時間、好ましくは3~60時間、最も好ましくは5~48時間を挙げることができる。
 上記のようにして3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させた後、さらに析出した結晶を通常1~48時間、好ましくは1~24時間、最も好ましくは1~12時間熟成させることができる。
 析出した結晶を熟成させるとは、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる工程を停止して、結晶を成長させることをいう。結晶を熟成させた後は、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる工程を再開してもよい。
 結晶を成長させるとは、析出した結晶を元にして、結晶を増大させることをいう。結晶の熟成は、結晶を成長させることを主な目的として行うが、結晶の成長と同時に、新たな結晶の析出が起こっていてもよい。
 3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を採取する方法としては、特に限定されないが、例えば、濾取、加圧濾過、吸引濾過、遠心分離等を挙げることができる。さらに結晶への母液の付着を低減し、結晶の品質を向上させるために、結晶を採取した後、適宜、結晶を洗浄することができる。
 結晶洗浄に用いる溶液に特に制限はないが、水、メタノール、エタノール、アセトン、n-プロパノール、イソプロピルアルコール及びそれらから選ばれる1種類又は複数種類を任意の割合で混合した溶液を用いることができる。
 このようにして得られた湿晶を乾燥させることにより、本発明の結晶を取得することができる。乾燥条件としては、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)の形態を保持できる方法ならばいずれでもよく、例えば、減圧乾燥、真空乾燥、流動層乾燥、通風乾燥等が挙げられる。
 乾燥温度としては、該結晶の形態を保持でき、かつ付着水分や溶媒を除去できる範囲ならばいずれでもよいが、好ましくは40℃以下、より好ましくは35℃以下、最も好ましくは30℃以下を挙げることができる。乾燥に要する時間としては、該結晶の形態を保持でき、かつ付着水分や溶媒を除去できる範囲ならばいずれでもよいが、好ましくは1~60時間、より好ましくは1~48時間を挙げることができる。
 上記の晶析条件によって、高純度の3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を取得することができる。3SLナトリウム塩・n水和物の結晶(ただし、nは4以上、かつ9以下の任意の数字である)の純度としては、通常94%以上、好ましくは95%以上、より好ましくは96%以上、最も好ましくは97%以上を挙げることができる。結晶の純度は、例えば、上記1に記載のHPLCを用いた分析により確認することができる。
 上記の製造方法によって製造することができる3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)としては、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図1に示すパターン及び表1に示す回折角の値で規定される3SLナトリウム塩・n水和物結晶を挙げることができる。
 取得した3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を、50℃以下の条件で1~20時間静置して乾燥することにより、該n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)よりもnが小さいn水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を取得することもできる。
2-2.本発明の結晶の製造方法2
 上記1のn水和物のnの値が4以上、かつ9以下である本発明の結晶の製造方法としては、ナトリウム含有化合物を含む3SLの水溶液に、種晶として3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を添加する工程、該水溶液中に3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる工程、及び該水溶液から3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を採取する工程、を含む3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)の製造方法を挙げることができる。
 n水和物のnの値としては、好ましくは5.0以上、かつ8.0以下、最も好ましくは8.0を挙げることができる。3SLナトリウム塩の水溶液に含有される3SLとしては、上記2-1と同様のものを用いることができる。
 3SLの水溶液に、結晶化の障害となる固形物が含まれている場合、結晶化の障害となる水溶性の不純物や塩が含まれている場合、又は結晶化の障害となる疎水性の不純物が含まれる場合は、上記2-1と同様の方法をとることができる。
 前記水溶液は、3SLの濃度が通常400g/L以上、好ましくは500g/L以上、より好ましくは600g/L以上、最も好ましくは700g/L以上となるように調整することができる。該水溶液の濃度を前記濃度とするために、該水溶液を加熱濃縮法又は減圧濃縮法などの一般的な濃縮方法により濃縮することができる。
 ナトリウム含有化合物については、上記2-1と同様である。ナトリウム含有化合物として塩基性化合物を用いる場合、当該塩基性化合物を使用して3SLの水溶液のpHを調整することにより、pHが通常3.0~9.0、好ましくは4.5~8.5、最も好ましくは5.5~8.0であるナトリウム含有化合物を含む3SLの水溶液を取得することができる。
 2-2の本発明の結晶の製造方法においては、ナトリウム含有化合物を含む3SLの水溶液に、種晶として3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を添加する。
 種晶としては、例えば、上記2-1の方法で取得した3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を用いることができる。該種晶は、水溶液中の濃度が通常0.2~15重量%、好ましくは0.4~10重量%、最も好ましくは0.7~7重量%となるように添加する。
 前記水溶液中に、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる方法としては、例えば、該水溶液を冷却する方法、該水溶液を減圧濃縮する方法、該水溶液中にアルコール溶液を添加又は滴下する方法等を挙げることができる。また、これらの方法は、1以上の方法を組み合わせて用いることもできる。
 前記水溶液を冷却する方法における、該水溶液の温度としては、通常0~40℃、好ましくは0~35℃、最も好ましくは0~30℃を挙げることができる。該水溶液を冷却する方法における、冷却に要する時間としては、通常2~100時間、好ましくは3~70時間、最も好ましくは5~50時間を挙げることができる。
 前記水溶液を減圧濃縮する方法における、該水溶液の温度としては、通常0~100℃、好ましくは10~90℃、最も好ましくは20~80℃を挙げることができる。該水溶液を減圧濃縮する方法における、減圧に要する時間としては、通常2~100時間、好ましくは3~70時間、最も好ましくは5~50時間を挙げることができる。
 前記水溶液中にアルコール溶液を添加又は滴下することにより、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる方法においては、アルコール溶液の添加又は滴下を開始する直前に、又はアルコール溶液を添加又は滴下した後、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)が析出する前に、該種晶を添加する。
 前記種晶は、アルコール溶液の滴下又は添加を開始してから、通常0~5時間以内、好ましくは0~4時間以内、最も好ましくは0~3時間以内に添加することができる。
 アルコール溶液は、本発明の方法に使用できる限りにおいて、複数種のアルコールの混合物、又はアルコールと他の有機溶媒もしくは水との混合物であってもよく、好ましくはC1~C6のアルコール類を、より好ましくはC1~C3のアルコール類を、さらに好ましくは、メタノール、エタノール、n-プロパノール及びイソプロピルアルコールからなる群より選ばれるアルコール類を、よりさらに好ましくはメタノール又はエタノールを、最も好ましくはエタノールを挙げることができる。
 また、本発明で用いられるアルコール溶液がアルコール水溶液である場合、含水量としては、通常40重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下、最も好ましくは5重量%以下を挙げることができる。
 アルコール溶液を添加又は滴下するときの前記水溶液の温度としては、3SLが分解しない温度であればいずれの温度でもよく、通常45℃以下、好ましくは40℃以下、より好ましくは35℃以下、最も好ましくは30℃以下を挙げることができる。温度の下限値としては、通常0℃以上、好ましくは10℃以上を挙げることができる。
 添加又は滴下するアルコール溶液の量としては、前記水溶液の通常0.1~30倍量、好ましくは0.2~25倍量、最も好ましくは0.3~10倍量を挙げることができる。前記水溶液へのアルコール溶液の添加又は滴下に要する時間としては、通常1~48時間、好ましくは2~30時間、最も好ましくは3~20時間を挙げることができる。
 上記のようにして3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させた後、さらに析出した結晶を通常1~48時間、好ましくは1~24時間、最も好ましくは1~12時間熟成させることができる。
 析出した結晶を熟成させるとは、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる工程を停止して、結晶を成長させることをいう。結晶を熟成させた後は、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させる工程を再開してもよい。
 結晶の成長については、上記2-1と同様である。
 上記の方法により3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を析出させた後、上記2-1と同様の工程により、3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を採取することができる。
 上記の方法によって、高純度の3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を取得することができる。3SLナトリウム塩・n水和物の結晶(ただし、nは4以上、かつ9以下の任意の数字である)の純度としては、通常94%以上、好ましくは95%以上、より好ましくは96%以上、最も好ましくは97%以上を挙げることができる。結晶の純度は、例えば、上記1に記載のHPLCを用いた分析により確認することができる。
 上記の製造方法によって製造することができる3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)としては、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図2に示すパターン及び表2に示す回折角の値で規定される3SLナトリウム塩・8.0水和物結晶を挙げることができる。
 また、例えば、赤外分光(IR)分析に供した場合、図3に示す赤外吸収スペクトルを示す3SLナトリウム塩・8.0水和物結晶、を挙げることができる。また、例えば、単結晶X線構造解析により表7に示す値で規定される3SLナトリウム塩・8.0水和物結晶を挙げることができる。
 取得した3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を、50℃以下の条件で1~20時間静置して乾燥することにより、該n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)よりもnが小さいn水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を取得することもできる。
 そのような3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)としては、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図5に示すパターン規定される3SLナトリウム塩・5.0水和物結晶を挙げることができる。
2-3.本発明の結晶の製造方法3
 上記1のn水和物のnの値が0以上、かつ4より小さい本発明の結晶の製造方法としては、上記2-1又は2-2で取得した3SLナトリウム塩・n水和物結晶(ただし、nは4以上、かつ9以下の任意の数字である)を、45℃以上の条件で20時間以上通風乾燥する工程、又は25℃以上の条件で48時間以上真空乾燥する工程、を含む、3SLナトリウム塩・n水和物結晶(ただし、nは0以上、かつ4より小さい任意の数字である)の製造方法を挙げることができる。得られる3SLナトリウム塩・n水和物結晶におけるn水和物のnの値としては、好ましくは1以上、かつ3.5以下を挙げることができる。
 乾燥方法としては、例えば、通風乾燥又は真空乾燥を用いることができる。該結晶を通風乾燥する場合の乾燥温度としては、好ましくは45℃以上、より好ましくは50℃以上を挙げることができる。通風乾燥に要する時間としては、好ましくは20時間以上を挙げることができる。該結晶を真空乾燥する場合の乾燥温度としては、好ましくは25℃以上、より好ましくは30℃以上を挙げることができる。真空乾燥に要する時間としては、好ましくは48時間以上を挙げることができる。
 上記の方法によって、高純度の3SLナトリウム塩・n水和物結晶(ただし、nは0以上、かつ4より小さい任意の数字である)を取得することができる。3SLナトリウム塩・n水和物(ただし、nは0以上、かつ4より小さい任意の数字である)の結晶の純度としては、通常93%以上、好ましくは94%以上、より好ましくは95%以上、最も好ましくは96%以上を挙げることができる。結晶の純度は、例えば、上記1に記載のHPLCを用いた分析により確認することができる。
 上記の製造方法によって製造することができる3SLナトリウム塩・n水和物結晶(ただし、nは0以上、かつ4より小さい任意の数字である)としては、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図4に示すパターン及び表6に示す回折角の値で規定される3SLナトリウム塩・2.0水和物結晶、並びに、図6に示すパターンで規定される3SLナトリウム塩・1.4水和物結晶を挙げることができる。
[参考例1]
3SLナトリウム塩の非結晶性アモルファスの取得
 フリー体換算で100gの3SLを含む水溶液に、水酸化ナトリウム水溶液を加えてpHを6.40に調整し、0.5Lとした。この水溶液の一部を凍結乾燥することで、白色の粉末を得た。当該粉末の粉末X線回折を測定したところ、X線回折ピークが確認されなかったことから、当該粉末は非結晶性アモルファスであるであることがわかった。
[参考例2]
濃縮による3SLナトリウム塩の結晶の取得検討
 ナトリウム塩換算で169g/Lの3SLナトリウム塩の水溶液(pH6.81)30mLを濃縮(50℃、20hPa、30分)し、白色の固形物6.3gを得た。偏光顕微鏡を用いた観察の結果、該固形物は、偏光を示さない無定形のアメ状固体であり、非結晶性アモルファスであることが確認された。以上より、本方法では、3SLナトリウム塩の結晶は得られないことがわかった。
[参考例3]
有機溶媒との混合による3SLナトリウム塩の結晶の取得検討-1
 特許文献2の記載をもとに、3SLナトリウム塩の結晶の取得を試みた。参考例1の方法で得られた3SLナトリウム塩の非結晶性アモルファス6.3gに10mLの95%-メタノールを加えて24時間撹拌し、アモルファスが溶解した白色の透明溶液をた。さらに該溶液に30mLの100%-メタノールを加え、白色の沈殿物を析出させた。
 偏光顕微鏡を用いた観察の結果、得られた沈殿物は、偏光を示さない無定形のアメ状固体であり、非結晶性アモルファスであることが確認された。以上より、本方法では3SLナトリウム塩の結晶は得られないことがわかった。
[参考例4]
有機溶媒との混合による3SLナトリウム塩の結晶の取得検討-2
 特許文献2の記載をもとに、3SLナトリウム塩の結晶の取得を試みた。参考例1の方法で得られた3SLナトリウム塩の非結晶性アモルファス6.3gに10mLの95%-エタノールを加えて24時間撹拌し、白色の沈殿物を得た。
 偏光顕微鏡を用いた観察の結果、得られた沈殿物は、偏光を示さない無定形のアメ状固体であり、非結晶性アモルファスであることが確認された。以上より、本方法では3SLナトリウム塩の結晶は得られないことがわかった。
[参考例5]
有機溶媒との混合による3SLナトリウム塩の結晶の取得検討-3
 特許文献2の記載をもとに、3SLナトリウム塩の結晶の取得を試みた。参考例1の方法で得られた3SLナトリウム塩の非結晶性アモルファス6.5gに10mLの95%-イソプロピルアルコールを加えて24時間撹拌し、白色の沈殿物を得た。
 偏光顕微鏡を用いた観察の結果、得られた沈殿物は偏光を示さない無定形のアメ状固体であり、非結晶性アモルファスであることが確認された。以上より、本方法では3SLナトリウム塩の結晶は得られないことがわかった。
 以下に実施例を示すが、本発明は下記実施例に限定されるものではない。また、下記実施例の表中の「%」は特に限定がなければ「重量%」を意味する。
[実施例1]
3SLナトリウム塩・n水和物結晶の取得
 3SLナトリウム試薬(Carbosynth社製、アモルファス)50.3mgに水25μLを加え50℃に加熱しながら溶解させた。当該水溶液を室温で12時間撹拌することによって、結晶を自然起晶させた。当該水溶液を室温下で48時間自然乾燥させ、3SLナトリウム塩・n水和物結晶60mgを得た。
 得られた結晶の粉末X線回折の結果より、相対強度比(I/I)が4以上であったピークの回折角を表1に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
3SLナトリウム塩・8.0水和物結晶の取得
 フリー体換算で100gの3SLを含む水溶液に、水酸化ナトリウム水溶液を加えてpHを6.81に調整し、2900mLとした。この水溶液を濃縮して125mLとし、得られた濃縮液を次の工程に供した。
 当該125mLの濃縮溶液を25℃に維持しつつ、実施例1で得られた3SLナトリウム塩・n水和物結晶を種晶として1g添加した。これに62.5mLの100%-エタノールを10時間かけて滴下添加し、結晶を析出させた。結晶スラリーを12時間攪拌することにより結晶を熟成させた後に当該結晶を濾取し、90%エタノール水溶液で洗浄した後、25℃で通風乾燥させることにより、64.8gの結晶を得た。得られた結晶は、HPLCによる純度測定では97.3%(面積%)以上の3SL純度であることを確認した。
 得られた結晶の粉末X線回折の結果より、相対強度比(I/I)が4以上であったピークの回折角を表2に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。
Figure JPOXMLDOC01-appb-T000002
 当該結晶のナトリウム含量を原子吸光法により測定した結果、3.54重量%であり、1ナトリウム塩の理論値(3.50重量%)とほぼ一致した。また、当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、17.0重量%であり、理論水分量との比較から、当該3SLナトリウム塩の結晶は3SLナトリウム塩・8.0水和物であることがわかった。
 実施例2で取得した結晶の各種物性を表3に示す。pHは、3SLナトリウム塩・8.0水和物の結晶として50g/Lの水溶液を測定した。融点は、Melting Point M-565(BUCHI社製)を用い、使用説明書に従って、50℃~200℃、0.5℃/分の条件で測定した。
Figure JPOXMLDOC01-appb-T000003
 実施例2で取得した3SLナトリウム塩・8.0水和物結晶と、3SLナトリウム試薬(Carbosynth社製、アモルファス)の吸湿性を、以下の条件下で比較した。
保管条件:30℃、相対湿度80%(装置:THE051FA、アドバンテック東洋社製)
測定方法:サンプル約100mgを精密天秤によって秤量後、ガラス容器に充填し、上記条件にて保管後、再度サンプルを秤量して重量変化率を算出した。
 結果を表4に示す。なお、試験開始時のそれぞれの重量を100%として各経過時間のサンプルの重量を測定した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例2で取得した3SLナトリウム塩・8.0水和物結晶(表4中「結晶」)は、時間の経過に伴う重量の変化がほとんどなかったのに対し、3SLナトリウム試薬(表4中「アモルファス」)は、時間の経過に伴い重量が増加した。このことから、3SLナトリウム塩・8.0水和物結晶は、3SLナトリウム試薬と比較して、吸湿性が低く、保存安定性に優れていることが確認された。
 また、参考例1により取得した3SLナトリウムのアモルファス(凍結乾燥品)と、実施例2で取得した3SLナトリウム塩・8.0水和物結晶の加熱安定性を、以下の条件下で比較した。結果を表5に示す。
保管条件:50℃、相対湿度50%(飽和臭化ナトリウム溶液で調整)
測定方法:サンプル約5gを精密天秤によって秤量後、ガラス容器に充填し、加熱後の不純物(グルコース、ラクトース、シアル酸)量をHPLCで評価した(表5中の「%」は、「重量%」を表わす。)。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、参考例1により取得したアモルファス(表5中「凍結乾燥品」)と比較して、実施例2で取得した3SLナトリウム塩・8.0水和物結晶(表5中「結晶」)は加熱後の不純物の増加量が少なく、加熱安定性に優れていることが確認された。
[実施例3]
3SLナトリウム塩・2.0水和物結晶の取得
 実施例2に従って得られた3SLナトリウム塩・8.0水和物50gを50℃で24時間通風乾燥させることにより43.3gの結晶を得た。得られた結晶は、HPLCによる純度測定では96.6%(面積%)以上の3SL純度であることを確認した。
 当該結晶の粉末X線回折の結果より、相対強度比(I/I)が10以上であったピークの回折角を表6に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、得られた結晶の粉末X線回折のパターンは実施例2に従って得られる結晶の粉末X線回折のパターンとは異なり、当該結晶は実施例2に従って得られる結晶と多形の関係にあることがわかった。当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、5.1重量%であり、理論水分量との比較から、当該3SLナトリウム塩の結晶は3SLナトリウム塩・2.0水和物であることがわかった。
[実施例4]
3SLナトリウム塩・8.0水和物結晶の単結晶X線構造解析
 実施例2で得られた3SLナトリウム塩結晶の構造を決定するために、測定装置(リガク社製単結晶X線構造解析装置R-AXIS RAPID-F)を用いて単結晶X線回折(SXRD)を実施した。
 まず、3SLナトリウム塩の単結晶を回折計に取り付け、室温の大気中あるいは所定の温度の不活性ガス気流中で、所定の波長のX線を用いて、回折画像を測定した。次に、回折画像から算出された面指数と回折強度の組から、直接法による構造決定と最小二乗法による構造精密化[Acta Cryst.A64,112(2008)]を行い、単結晶構造を得た。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 単結晶X線構造解析の結果、当該結晶が3SLナトリウム塩の結晶であり、単位格子内に8個の水分子を有する3SLナトリウム塩・8.0水和物であることが確認された。
[実施例5]
3SLナトリウム塩・5.0水和物結晶の取得
 実施例2で得られた3SLナトリウム塩・8.0水和物結晶を50℃条件下で20時間静置して乾燥させた。乾燥後の結晶の水分量をカールフィッシャー法により測定した結果、12.1重量%であり、理論水分量との比較から、当該3SLナトリウム塩の結晶は3SLナトリウム塩・5.0水和物であることがわかった。
 当該結晶の粉末X線回折のパターンは実施例2で取得した結晶の粉末X線回折のパターンと同一であったことから、当該結晶は3SLナトリウム塩・8.0水和物結晶と同一多形であることがわかった。
 実施例2及び実施例5の結果から、3SLナトリウム塩・n水和物の結晶では、8.0水和物結晶と5.0水和物結晶において、粉末X線回折パターンの変化を伴うことなく水和物数が変化することを確認した。このことから、3SLナトリウム塩は、結晶格子の構造変化を伴うことなく水和物数が変化するクラスレート水和物(J. Pharm. Sci., 64 (8), 1269-1288, 1975)であると考えられた。糖化合物がクラスレート水和物を形成することは、例えば、国際公開第2014/069625号中にも認められる。
 よって、3SLナトリウム塩・n水和物の結晶には、少なくとも5.0水和物から8.0水和物までの連続するn水和物の同一の結晶状態が存在することがわかった。
[実施例6]
3SLナトリウム塩・3.5水和物結晶の取得
 実施例2で得られた3SLナトリウム塩・8.0水和物結晶を45℃条件下で20時間通風乾燥させた。乾燥後の結晶の水分量をカールフィッシャー法により測定した結果、8.7重量%であり、理論水分量との比較から、当該3SLナトリウム塩の結晶は3SLナトリウム塩・3.5水和物であることがわかった。
 当該結晶の粉末X線回折のパターンは実施例3で取得した結晶の粉末X線回折のパターンと同一であったことから、当該結晶は3SLナトリウム塩・2.0水和物結晶と同一多形であることがわかった。
[実施例7]
3SLナトリウム塩・1.4水和物結晶の取得
 実施例2で得られた3SLナトリウム塩・8.0水和物結晶を30℃、35hPa条件下で56時間真空乾燥させた。乾燥後の結晶の水分量をカールフィッシャー法により測定した結果、3.7重量%であり、理論水分量との比較から、当該3SLナトリウム塩の結晶は3SLナトリウム塩・1.4水和物であることがわかった。
 当該結晶の粉末X線回折のパターンは実施例3で取得した結晶の粉末X線回折のパターンと同一であったことから、当該結晶は3SLナトリウム塩・2.0水和物結晶と同一多形であることがわかった。
 実施例2、実施例6及び実施例7の結果から、上記と同様に、3SLナトリウム塩・n水和物の結晶には、少なくとも1.4水和物から3.5水和物までの連続するn水和物の同一の結晶状態が存在することがわかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年5月9日付けで出願された日本特許出願(特願2016-093664)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明により、例えば、健康食品、医薬品又は化粧品等の製品、原料又は中間体等として有用である3SLナトリウム塩・n水和物結晶及びその製造方法が提供される。

Claims (17)

  1.  3’-シアリルラクトース(以下、3SLという)ナトリウム塩・n水和物結晶(ただし、nは0~9の任意の数字を表し、n=0の場合は、3SLナトリウム塩・無水物という)。 
  2.  nが4以上、かつ9以下の任意の数字である、請求項1に記載の結晶。
  3.  nが5.0又は8.0である、請求項2に記載の結晶。
  4.  粉末X線回折において、回折角(2θ°)が、7.2±0.2°、10.9±0.2°、22.7±0.2°、21.2±0.2°、及び9.8±0.2°にピークを有する、請求項1又は2に記載の結晶。
  5.  粉末X線回折において、回折角(2θ°)が、さらに、23.3±0.2°、21.8±0.2°、17.1±0.2°、17.8±0.2°、及び24.1±0.2°にピークを有する、請求項4に記載の結晶。
  6.  粉末X線回折において、回折角(2θ°)が、さらに、24.7±0.2°、16.4±0.2°、25.6±0.2°、20.9±0.2°、及び23.9±0.2°にピークを有する、請求項5に記載の結晶。
  7.  単結晶X線構造解析において、-173℃で測定した場合、次の概略的単位胞パラメーター:a=11.2942Å;b=13.3269Å;c=24.4525Å;V=3680.5Å;Z=4;を有し、かつ空間群がP2;である、請求項1又は2に記載の結晶。
  8.  nが0以上、かつ4より小さい任意の数字である、請求項1に記載の結晶。
  9.  nが1.4、2.0又は3.5である、請求項8に記載の結晶。
  10.  粉末X線回折において、回折角(2θ°)が、8.9±0.2°、17.1±0.2°、15.5±0.2°、19.3±0.2°、及び20.9±0.2°にピークを有する、請求項1又は8に記載の結晶。
  11.  粉末X線回折において、回折角(2θ°)が、さらに、27.4±0.2°、13.3±0.2°、22.5±0.2°、11.8±0.2°、及び23.7±0.2°にピークを有する、請求項10に記載の結晶。
  12.  粉末X線回折において、回折角(2θ°)が、さらに、25.0±0.2°、10.8±0.2°、17.9±0.2°、20.0±0.2°、及び21.8±0.2°にピークを有する、請求項11に記載の結晶。
  13.  ナトリウム含有化合物を含む3SLの水溶液を静置又は攪拌することにより、3SLナトリウム塩・n水和物結晶を析出させる工程、及び該水溶液から3SLナトリウム塩・n水和物結晶を採取する工程、を含む、請求項2~7のいずれか1項に記載の結晶の製造方法(nは請求項2と同義)。
  14.  ナトリウム含有化合物を含む3SLの水溶液に、種晶として3SLナトリウム塩・n水和物結晶を添加する工程、該水溶液中に3SLナトリウム塩・n水和物結晶を析出させる工程、及び該水溶液から3SLナトリウム塩・n水和物結晶を採取する工程、を含む、請求項2~7のいずれか1項に記載の結晶の製造方法(nは請求項2と同義)。
  15.  3SLナトリウム塩・n水和物結晶を析出させる工程が、アルコール溶液を添加又は滴下することにより、3SLナトリウム塩・n水和物結晶を析出させる工程である、請求項14に記載の製造方法(nは請求項2と同義)。
  16.  アルコール溶液が、C1~C6のアルコール類からなる群より選ばれる溶液である、請求項15に記載の製造方法。
  17.  請求項2~7のいずれか1項に記載の結晶を、45℃以上の条件で20時間以上通風乾燥する工程、又は25℃以上の条件で48時間以上真空乾燥する工程、を含む、請求項8~12のいずれか1項に記載の結晶の製造方法。
PCT/JP2017/017422 2016-05-09 2017-05-08 3'-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法 WO2017195743A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780028091.1A CN109071584A (zh) 2016-05-09 2017-05-08 3’-唾液乳糖钠盐n水合物的晶体及其制造方法
US16/099,877 US11008355B2 (en) 2016-05-09 2017-05-08 Crystal of 3'-sialyllactose sodium salt n-hydrate, and process for producing same
EP17796104.2A EP3456727A4 (en) 2016-05-09 2017-05-08 CRYSTAL OF SODIUM SALT N-HYDRATE 3'-SIALYLLACTOSE AND METHOD FOR THE PRODUCTION THEREOF
KR1020187032215A KR102476954B1 (ko) 2016-05-09 2017-05-08 3'-시알릴락토오스나트륨염·n수화물의 결정 및 그 제조 방법
SG11201809888YA SG11201809888YA (en) 2016-05-09 2017-05-08 CRYSTAL OF 3'-SIALYLLACTOSE SODIUM SALT n-HYDRATE, AND PROCESS FOR PRODUCING SAME
JP2018517013A JP6918790B2 (ja) 2016-05-09 2017-05-08 3’−シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法
MX2018013787A MX2018013787A (es) 2016-05-09 2017-05-08 Cristal de sal sodica de 3'-sialillactosa n-hidratado, y proceso para producirlo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093664 2016-05-09
JP2016-093664 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195743A1 true WO2017195743A1 (ja) 2017-11-16

Family

ID=60267649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017422 WO2017195743A1 (ja) 2016-05-09 2017-05-08 3'-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法

Country Status (8)

Country Link
US (1) US11008355B2 (ja)
EP (1) EP3456727A4 (ja)
JP (1) JP6918790B2 (ja)
KR (1) KR102476954B1 (ja)
CN (1) CN109071584A (ja)
MX (1) MX2018013787A (ja)
SG (1) SG11201809888YA (ja)
WO (1) WO2017195743A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252403A (ja) 1995-03-20 1996-10-01 Snow Brand Milk Prod Co Ltd シアリルラクトースの分離方法
WO1998048817A1 (en) * 1997-05-01 1998-11-05 Cytel Corporation Use of sialyl galactosides and related compounds as anti-angiogenic agents
JPH10513437A (ja) 1994-11-07 1998-12-22 ネオセ テクノロジーズ インク チーズ加工廃棄物の処理方法
JP2012522761A (ja) * 2009-04-06 2012-09-27 イナルコ ソシエタ ペル アチオニ 6’−シアリルラクトース塩並びに6’−シアリルラクトース塩及び他のa−シアリルオリゴ糖の合成方法
WO2014069625A1 (ja) 2012-11-01 2014-05-08 協和発酵バイオ株式会社 オリゴ糖の結晶およびその製造方法
WO2017086443A1 (ja) * 2015-11-18 2017-05-26 協和発酵バイオ株式会社 6'-シアリルラクトースナトリウム塩の結晶およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513437A (ja) 1994-11-07 1998-12-22 ネオセ テクノロジーズ インク チーズ加工廃棄物の処理方法
JPH08252403A (ja) 1995-03-20 1996-10-01 Snow Brand Milk Prod Co Ltd シアリルラクトースの分離方法
WO1998048817A1 (en) * 1997-05-01 1998-11-05 Cytel Corporation Use of sialyl galactosides and related compounds as anti-angiogenic agents
JP2012522761A (ja) * 2009-04-06 2012-09-27 イナルコ ソシエタ ペル アチオニ 6’−シアリルラクトース塩並びに6’−シアリルラクトース塩及び他のa−シアリルオリゴ糖の合成方法
WO2014069625A1 (ja) 2012-11-01 2014-05-08 協和発酵バイオ株式会社 オリゴ糖の結晶およびその製造方法
WO2017086443A1 (ja) * 2015-11-18 2017-05-26 協和発酵バイオ株式会社 6'-シアリルラクトースナトリウム塩の結晶およびその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ACTA CRYST., vol. A64, 2008, pages 112
APPLY MICROBIOL BIOTECHNOL., vol. 53, 2000, pages 257
CARBOHYDRATE RESEARCH., vol. 337, 2002, pages 473
ITO,YUKISHIGE: "Highly stereoselective glycosylation of sialic acid aided by stereocontrolling auxiliaries", TETRAHEDRON, vol. 46, no. 1, 1990, pages 89 - 102, XP055547361 *
J. PHARM. SCI., vol. 64, no. 8, 1975, pages 1269 - 1288
RENCUROSI, ANNA ET AL.: "Human milk oligosaccharides: an enzymatic protection step simplifies the synthesis of 3'- and 6'-O-sialyllactose and their analogues", CARBOHYDRATE RESEARCH, vol. 337, no. 6, 15 March 2002 (2002-03-15), pages 473 - 483, XP004343543 *
See also references of EP3456727A4

Also Published As

Publication number Publication date
KR20190005162A (ko) 2019-01-15
KR102476954B1 (ko) 2022-12-12
EP3456727A1 (en) 2019-03-20
US20190135846A1 (en) 2019-05-09
JPWO2017195743A1 (ja) 2019-04-04
CN109071584A (zh) 2018-12-21
JP6918790B2 (ja) 2021-08-11
SG11201809888YA (en) 2018-12-28
EP3456727A4 (en) 2019-12-18
US11008355B2 (en) 2021-05-18
MX2018013787A (es) 2019-07-08

Similar Documents

Publication Publication Date Title
WO2018047715A1 (ja) β-ニコチンアミドモノヌクレオチドの結晶及びその製造方法
JP2022069548A (ja) 6’-シアリルラクトースナトリウム塩の結晶およびその製造方法
CN110088118B (zh) 三硫化谷胱甘肽二水合物的晶体及其制造方法
WO2014069625A1 (ja) オリゴ糖の結晶およびその製造方法
WO2016121810A1 (ja) N-アセチルノイラミン酸アンモニウム塩・無水和物の結晶及びその製造方法
WO2016159317A1 (ja) 還元型グルタチオンの結晶
JP6959022B2 (ja) プロトカテク酸カチオン塩の結晶及びその製造方法
WO2017195743A1 (ja) 3'-シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法
JP7116207B2 (ja) 3-ヒドロキシイソ吉草酸の一価カチオン塩の結晶および該結晶の製造方法
TWI496789B (zh) 表柔比星(epirubicin)鹽酸鹽之結晶
JP6867806B2 (ja) N−アセチルノイラミン酸アルカリ金属塩・無水和物の結晶及びその製造方法
JP7132917B2 (ja) 酸化型グルタチオン・二カチオン塩の結晶及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517013

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032215

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017796104

Country of ref document: EP

Effective date: 20181210