WO2006088017A1 - 4位ハロゲン化ガラクトース含有糖鎖及びその応用 - Google Patents

4位ハロゲン化ガラクトース含有糖鎖及びその応用 Download PDF

Info

Publication number
WO2006088017A1
WO2006088017A1 PCT/JP2006/302529 JP2006302529W WO2006088017A1 WO 2006088017 A1 WO2006088017 A1 WO 2006088017A1 JP 2006302529 W JP2006302529 W JP 2006302529W WO 2006088017 A1 WO2006088017 A1 WO 2006088017A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligosaccharide
galactose
compound
sugar
reaction
Prior art date
Application number
PCT/JP2006/302529
Other languages
English (en)
French (fr)
Inventor
Shin-Ichiro Nishimura
Noriko Nagahori
Tomoki Hamamoto
Kiyoshi Okuyama
Toshitada Noguchi
Original Assignee
National University Corporation Hokkaido University
Yamasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University, Yamasa Corporation filed Critical National University Corporation Hokkaido University
Priority to JP2007503658A priority Critical patent/JP4910091B2/ja
Priority to US11/815,329 priority patent/US8148112B2/en
Publication of WO2006088017A1 publication Critical patent/WO2006088017A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/08Polyoxyalkylene derivatives

Definitions

  • the present invention relates to a 4-position halogenated galactose-containing sugar chain (oligosaccharide), which is expected to be applied in pharmaceuticals, and the application of the compound.
  • sugar chains (oligosaccharides) having a wide variety of structures are formed by sequentially binding sugar residues sterically and regioselectively by sugar nucleotides, which are sugar donors, and glycosyltransferases. ) Is synthesized. For example, when a certain cell becomes cancerous, the expression of new glycosyltransferase or the quantitative ratio of glycosyltransferases changes, and part of the sugar chain structure changes, and the sugar chain extends to the tumor marker. It is thought to change.
  • a non-natural sugar nucleotide obtained by changing the structure of the sugar moiety of a sugar nucleotide is used as a sugar donor, and a non-natural sugar is obtained by a glycosyltransferase reaction.
  • a non-natural sugar is obtained by a glycosyltransferase reaction.
  • non-natural sugar nucleotides those in which a halogen atom having an analogous property to the hydroxyl group of the sugar and inactive are introduced.
  • the present inventors have introduced a fluorinated amino acid in which a fluorine atom has been introduced into the hydroxyl group of N-acetylyldarcosamine or N-acetylylgalatosamine, which is well known as an indispensable basic composition unit of a physiologically active sugar chain.
  • Sugar nucleotides were prepared and their properties were examined (Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-168751
  • Non-Patent Document 1 J. Org. Chem., 59, 6994— 6998 (1994)
  • Non-Patent Document 2 J. Chem. Soc., Perkin Trans. 1, 2375-2382 (1997)
  • Non-Patent Document 3 Bioorg. Med. Chem. 5, 497- 500 (1997)
  • Non-Patent Document 4 Carbohydr. Res., 328, 473-480 (2000)
  • Non-Patent Document 5 Tetrahedron Letters. 34. (40), 6419— 6422. (1993) Disclosure of the Invention
  • the 4-position fluorinated galactose sugar nucleotide is merely prepared from the sugar nucleotide, and a non-natural sugar chain is not synthesized using this sugar nucleotide.
  • galactose sugar nucleotides fluorinated at the 2-, 3-, or 6-positions of galactose residues have been tested for use in the synthesis of unnatural sugar chains. Although there is a possibility that it can be done, unnatural sugar chains are actually prepared.
  • the present inventors are the only place different from the stereoisomer glucose, and the 4-position hydroxyl group, which is considered to be an important position in the sugar chain recognition mechanism in biomolecules, is targeted to this 4-position.
  • a galactose sugar nucleotide having a halogen atom introduced at the position was prepared, and the glycosyltransferase reaction was examined in detail when the unnatural sugar nucleotide was used as a sugar donor.
  • the present invention provides an oligosaccharide having a 4-position halogenated galactose residue at the terminal.
  • the present invention uses a halogenated galatatoose sugar nucleotide of the following formula (I) as a sugar donor, and transfers a 4-position halogenated galactose residue to an acceptor sugar complex by glycosyltransferase.
  • the present invention provides a method for producing an oligosaccharide having a 4-position halogenated galactose residue at the terminal.
  • R to R represent a hydroxyl group, a acetyl group, a halogen atom or a hydrogen atom
  • X represents
  • Halogen atom, M + represents hydrogen ion or metal ion
  • the present invention also provides a transferase inhibitor containing an oligosaccharide having a 4-position halogenated galatatose residue as a terminal.
  • the present invention provides a method for inhibiting a sugar chain elongation reaction by a glycosyltransferase using an oligosaccharide having a 4-position halogenated galactose residue as a terminal as an inhibitor.
  • the present invention provides a compound of formula (IV) by phosphorylating a compound of formula ( ⁇ ) using a galactokinase derived from bacteria, and the resulting compound of formula (IV) and a sugar nucleotide
  • the present invention provides a method for producing a 4-position halogenated galactose sugar nucleotide, which comprises synthesizing a compound of the formula ( ⁇ ) using hexose 1 phosphate uridylyltransferase derived from bacteria.
  • R to R represent a hydroxyl group, a acetyl group, a halogen atom or a hydrogen atom
  • the oligosaccharide having a terminal 4-halogenated galactose residue at the 4-position of the present invention (hereinafter sometimes referred to as “4-positioned halogenated sucrose-containing oligosaccharide”) is a glycosyl elongation by glycosyltransferase ( In order to inhibit the biosynthetic pathway, for example, it can be expected to be developed as an inhibitor that inhibits the growth of cancer cells and viruses.
  • the present invention comprises (1) enzymatic synthesis of a 4-position halogenated galactose sugar nucleotide, (2) an oligosaccharide having a 4-position halogenated galactose group, and (3) a sugar chain elongation reaction by glycosyltransferase. This will be explained in the order of inhibition.
  • the enzymatic synthesis of the 4-position halogenated galactose sugar nucleotide of the present invention involves phosphorylating the compound of the above formula ( ⁇ ) using galactokinase to obtain the compound of the above formula (IV).
  • the compound of formula (IV) is synthesized from the obtained compound of formula (IV) and sugar nucleotide using hexose-1-phosphate uridylyltransferase.
  • the halogen atom represented by R to R and X includes a fluorine atom, a chlorine atom, and a bromine atom.
  • an iodine atom, and a fluorine atom is preferred.
  • the metal atom of M include alkali metals such as sodium and potassium, and alkaline earth metals such as calcium and magnesium.
  • R to R are hydroxyl groups and X is a fluorine atom Those are particularly preferred.
  • the compound of the above formula ( ⁇ ), which is a 4-position halogenated galatinose used as a raw material, can be purchased as a commercial product, and Maradufu & Perlin, Carbohydr. Res., 3 2, 261-277 (1974), Ittah & Glaudemans, Carbohydr. Res., 95, 189-194 (1981), Kamerling et al., Carbohydr. Res., 291, 63-83 (1996). Is also possible.
  • the compound of formula (IV) is obtained by phosphatization with galactokinase.
  • the galactokinase to be used bacteria-derived enzymes, particularly those derived from Escherichia coli are preferable.
  • mass production is carried out using the cloned galactokinase gene in the usual manner using Escherichia coli as a host, and the enzyme is obtained from the cells of the microorganism. May be prepared.
  • Bacterial cells can be prepared by a method of collecting cells by centrifugation or the like after culturing by a conventional method using a medium in which the microorganism can grow. Specifically, for example, bacteria belonging to Escherichia coli will be described. As a medium, bouillon medium, LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride) or 2xYT medium (1.6% Tryptone, 1% yeast extract, 0.5% salt), etc., inoculate the medium with the inoculum, and then incubate at about 30-50 ° C for about 10-50 hours with stirring if necessary. Centrifugation of the obtained culture broth to collect microbial cells allows preparation of microbial cells having the desired activity.
  • a medium bouillon medium, LB medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride) or 2xYT medium (1.6% Tryptone, 1% yeast extract, 0.5% salt), etc.
  • the bacterial cells obtained are mechanically disrupted (by Warinda blender, French press, homogenizer, mortar, etc.), freeze-thawed, self-digested, dried (by freeze-drying, air-drying, etc.), enzyme Treat in accordance with general treatment methods such as treatment (with lysozyme, etc.), ultrasonic treatment, chemical treatment (with acid, alkali treatment, etc.) to obtain a disrupted cell body or a denatured cell wall or cell membrane. .
  • Enzyme preparation is carried out by subjecting a fraction having the desired activity from the above-mentioned treated product of cells to conventional enzyme purification means such as salting-out treatment, isoelectric point precipitation treatment, organic solvent precipitation treatment, dialysis treatment, Use crude or purified enzyme obtained by seed chromatography
  • enzyme purification means such as salting-out treatment, isoelectric point precipitation treatment, organic solvent precipitation treatment, dialysis treatment, Use crude or purified enzyme obtained by seed chromatography
  • the phosphate donor ie, nucleotide 5'-triphosphate (NTP) used as a substrate, or sugar-1 phosphate, which is a production intermediate, is prevented from being degraded. It is desirable to use the enzyme preparation without leaving the activity (phosphatase activity).
  • Phosphorylation reaction by galactokinase is carried out by 0.1 to: LOOmM, preferably 1 to 50mM of the above formula ( ⁇ ) and adenosine 5 'monotriphosphate (ATP) as a phosphate donor Nucleoside 5, monotriphosphate (NTP) is used in an amount of 1 to 500 mM, preferably 5 to 100 mM, and further 0.01 to 50 units / mL of galactokinase is added to the buffer (pH 4.0 to : LO), 10 ⁇ 70 ° C, 1 ⁇ : Incubate for about LOO time.
  • LOOmM preferably 1 to 50mM of the above formula ( ⁇ ) and adenosine 5 'monotriphosphate (ATP) as a phosphate donor
  • NTP nucleoside 5, monotriphosphate
  • the NTP to be subjected to the phosphorylation reaction is an NTP regeneration system (T. Noguchi & T. Shiba, Bioosci. Biotechnol) that uses the nucleotide 5'-diphosphate (NDP) produced by the reaction to utilize polyphosphate kinase. Biochem., 62, 1594— 1596 (1998)) or a known NTP regeneration system using pyruvate kinase (CH Wong et al., J. Org. Chem., 57, 4343— 4344 (1992)) Even NTP regenerated by an NTP regeneration system (T. Noguchi & T. Shiba, Bioosci. Biotechnol) that uses the nucleotide 5'-diphosphate (NDP) produced by the reaction to utilize polyphosphate kinase. Biochem., 62, 1594— 1596 (1998)) or a known NTP regeneration system using pyruvate kinase (CH
  • the compound of formula (IV) is synthesized from the thus obtained compound of formula (IV) and sugar nucleotide using hexose 1-phosphate uridylyltransferase.
  • the sugar nucleotide used in the reaction is not particularly limited as long as it is a substrate for hexose 1 phosphate uridylyl transferase such as uridine 5′-diphosphate glucose, uridine 5, and diphosphate galactose.
  • the hexose monophosphate uridyl transferase used for the reaction can be the same as that described above, which is preferably derived from bacteria like galactokinase, particularly those derived from E. coli.
  • the transfer reaction with hexose 1 uridylylphosphate transferase is 0.1-100 mM, preferably 0.5-50 mM of the compound of formula (IV) and 1-200 mM, preferably 5-100 mM.
  • sugar nucleotides add 0.1 to 50 units / mL hexose mono 1-phosphate uridylyltransferase and add 10 to 10 in buffer (PH4.0 to 10.0). It can be carried out by incubating at a temperature of 70 ° C for 1 to: LOO time.
  • the sugar nucleotide to be used for the above transfer reaction is glucose 1 phosphate converted to uridine 5,
  • UDP triphosphate
  • the phosphoric acid reaction by galactokinase and the transfer reaction by hexose 1 uridylyl transferase can be performed sequentially or simultaneously. Even if the resulting phosphate sucrose is purified or subjected to a transfer reaction without purification, it is also possible.
  • the 4-position halogenated galactose sugar nucleotide thus obtained is isolated and purified by conventional means for isolating and purifying sugar nucleotides (ion exchange chromatography, adsorption chromatography, gel filtration chromatography, etc.). can do.
  • Oligosaccharides containing a 4-position halogenated sugar must transfer the 4-deoxy-4-halogenogalactosyl group to the acceptor compound using a glycosyltransferase using the above 4-position halogenated galactose sugar nucleotide as a sugar donor. Can be prepared.
  • the transferase used in the reaction is not particularly limited as long as it can transfer a 4-deoxy-4-halogenogalatatosyl group. Specific examples include j8 1,4-galactose transferase, j8 1,3 galactose transferase, ⁇ 1,3 galactose transferase. In addition, the transferase is not limited to those of a specific origin, and those of all origins such as animal origin, plant origin, and microorganism origin can be used.
  • the glycosyltransferase gene to be used is cloned
  • the cloned glycosyltransferase gene is used as a host for Escherichia coli, yeast, insect cells, animal cells, etc. by a conventional method.
  • the enzyme can also be prepared by production.
  • Such a transferase may be in any form as long as it has the activity.
  • Specific examples include treated cells or enzyme preparations obtained from the treated products.
  • cells obtained by various culture methods are mechanically disrupted (by Warner blender, French press, homogenizer, mortar, etc.), frozen and thawed, and self-treated.
  • Cell disruption or cell damage obtained by digestion, drying (by freeze-drying, air-drying, etc.), enzyme treatment, sonication, chemical treatment (by acid, alkali treatment, etc.) Examples include cell wall or cell membrane denatured products.
  • the fraction having glycosyltransferase activity from the above-mentioned processed bacterial cell product can be purified by conventional enzyme purification means such as salting out, isoelectric point precipitation, organic solvent precipitation, dialysis, It is possible to use crude enzyme or purified enzyme obtained by chromatography.
  • the acceptor compound to be added to the reaction solution may be a known monosaccharide, oligosaccharide or a sugar compound thereof, if necessary, depending on the sugar chain to be synthesized or on the transferase to be used. There is no particular limitation as long as it is appropriately selected from a support bonded to a carrier via a spacer.
  • Oligosaccharides containing 4-position halogenated galactose were prepared by using 0.1 to 100 mM 4-position halogenated galactose sugar nucleotide and sugar compound as an acceptor 0.01 to 20 mM, and tris hydrochloride In a buffer solution such as HEPES-NaOH buffer solution (pH 5.0-: L0.0), add sugar transferase to 0.001 unit ZmL or more, preferably 0.01 unit ZmL or more. The reaction can be carried out by reacting with a force S without stirring, if necessary, for about 1 to 50 hours under a temperature condition of not more than ° C, preferably about 5 to 50 ° C.
  • a 4-deoxy-4 halogeno a D galactose derivative represented by (I) can be exemplified.
  • These oligosaccharides can be synthesized using monosaccharides, oligosaccharides or their carriers as acceptors and using a 4-position halogenated galactose sugar nucleotide and galactose transferase.
  • (X represents a halogen atom
  • R represents a monosaccharide, oligosaccharide or carrier
  • Specific examples of the compound of the above formula (I) include 4-deoxy 4 halogeno a-D-galactosyl ⁇ 1-4 acetylacetylcolcamine-containing sugar chain derivative (the following formula ( ⁇ ) compound), or 4 deoxy 4- Examples include halogeno a-D-galactosyl j8 1-3 acetyl darcosamine-containing sugar chain derivatives.
  • X represents a halogen atom
  • R represents a hydrogen atom, a hydroxyl group, a monosaccharide, an oligosaccharide, or a carrier.
  • the halogen atom represented by X includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferred.
  • a fluorine atom is preferred.
  • monosaccharides represented by R or R As monosaccharides represented by R or R,
  • Fructose glucose, mannose, fructose, ribose, arabinose, xylose, xylulose, ribulose, erythrose, threose, lyxose, allose, anoletrose
  • oligosaccharides include maltose, cellobiose, ratatoose, and xylobiose.
  • Isomaltose kenchiobiose, melibiose, planteobiose, noretinose, primebellose, bisiaose, -gerose, laminaribiose, llaranos, cordobiose, sophorose, sucrose, trenorose, chitobiose, hyaguchi biouronic acid , Chondrosin, cellobiuronic acid, rahuinose, gentianose, melezitose, blanteose, kestose, manoletotriose, nonose, isomanoletotriose, stachyose, benorebasose, cyclodextrin, starch, cellulose, chitin, chitosan, milk oligosaccharide (
  • Isomaltose
  • the monosaccharides and oligosaccharides may be fluorescently labeled.
  • monosaccharides or oligosaccharides There are those that are labeled inside the oligosaccharide chain.
  • monosaccharides or oligosaccharides bonded to compounds that exhibit ultraviolet absorption such as p-trophenol and nucleobases can be used.
  • Examples of the carrier include biological samples such as proteins, lipids and nucleic acids, metal fine particles such as gold and platinum, magnetic metal fine particles such as iron and iron oxide, polystyrene, polyacrylamide, agarose and dextran. And high molecular polymers.
  • Examples of spacers of these carriers and sugar chains include (poly) ethylene glycol, various alkyl chains (for example, alkyl having 1 to 20 carbon atoms), and the like.
  • oligosaccharide derivative containing 4-position halogenigalactose obtained in this way is isolated by conventional means for isolating and purifying oligosaccharides (ion exchange chromatography, adsorption chromatography, gel filtration chromatography, etc.). Can be purified.
  • the presence of fluorine at the 4-position can also inhibit, for example, the reaction of a glycosyltransferase that binds a sugar at the 3-position, and this mechanism opens up the biosynthetic pathway for subsequent sugar chains. It is an inhibitor that can be suppressed and can be expected to be applied to pharmaceuticals.
  • the 4-position fluorinated galactose in the reaction solution was quantified using a DIONEX DX-300 instrument, CarboPac TM PAl column, and the eluent was filtrate: distilled water, filtrate: 0.2M sodium hydroxide, C Solution: Performed using a mixed solution of 1M aqueous sodium acetate solution.
  • quantification of nucleic acid-related substances such as uridine 5, diphosphoric acid 4-fluorogalatatose (UDP-4F-Gal) in the reaction solution was performed by HPLC.
  • an ODS-HS 302 column manufactured by YMC was used for separation, and a 0.2M triethylamine monophosphate (pH 6.0) solution was used as an eluent.
  • the cells were collected by centrifugation (9, OOO X g, 20 minutes) and suspended in 10 mL of a buffer solution (20 mM Tris-HCl (pH 7.5), ImM magnesium chloride). The microbial cells were crushed by sonication, and the microbial residue was removed by centrifugation (20, OOO X g, 10 minutes).
  • GalK activity in the present invention was performed according to the method of Takeda et al. (Japanese Patent Laid-Open No. 2002-335988).
  • the strain contains 100 ⁇ g / mL ampicillin.
  • the cells were inoculated into 50 mL of 2 ⁇ medium and cultured with shaking at 37 ° C. When the number of bacteria reached 1 ⁇ 10 8 ZmL, I PTG was added to the culture solution so that the final concentration was ImM, and the shaking culture was further continued for 5 hours.
  • the cells were collected by centrifugation (9,000 X g, 20 minutes), and 10 mL of buffer solution (50 mM HEPES-NaOH (pH 8.0), 0. ImM zinc sulfate, 10 mM 2-mercaptoethanol, 50 mM sodium chloride). The microbial cells were crushed by sonication, and the microbial cell residues were removed by centrifugation (20, OOO X g, 10 minutes).
  • the supernatant fraction thus obtained was dialyzed against a total of 1 liter of the same buffer, and then purified using a HiTrapQ 5 mL column (Amersham Biosciences) under the following conditions !, (A solution; The same buffer solution, B solution; A solution + 1 M sodium chloride, 0-50% B solution (25 CV)), and 5 mL fraction having GalT activity were collected. [0066] This was used as an enzyme solution for the following synthesis reaction. Table 1 shows the results of measuring the galactose-1-phosphate uridylyltransferase (GalT) activity in the enzyme solution.
  • the GalT activity in the present invention was carried out according to the method of Takeda et al.
  • the galactose-1-phosphate uridylyltransferase obtained here is the same enzyme as hexose-1-phosphate uridylyltransferase and catalyzes the same reaction (EC 2. 7. 7. 12).
  • the enzyme solution (l lunit tZmL reaction solution) having the galactose-1 monophosphate uridysyltransferase activity prepared in (1) was added and reacted at 37 ° C for 22 hours.
  • reaction solution was heat-treated at 90 ° C for 5 minutes, and then the insoluble fraction was removed by centrifugation (20, OOO X g, 10 minutes).
  • centrifugation (20, OOO X g, 10 minutes).
  • synthesis of 2.06 mM UDP-4F-Gal was confirmed.
  • the peak of the target product was fractionated using HPLC, and this was freeze-dried.
  • the lyophilized product was dissolved in distilled water and then subjected to gel filtration using a Sephadex G-10 resin column using 10 mM ammonium carbonate as a developing solution.
  • Example 2 Synthesis of 4F-galactose-containing sugar chain using ⁇ 1,4 galactose transferase Acetyldarcosamine (GlcNAc) immobilized on a gold microparticle with a spacer having a thiol group (reference) (See Example 2) as an acceptor (Compound 1), which is equivalent to about 50 M of GlcNAc, 10 mM HEPES-NaOH containing lOOmM salt-sodium, 10 mM salt-manganese, 200 M UDP 4F-Gal Human-derived j8 1,4-galactose transferase (80munitsZmL reaction solution) manufactured by Toyobo Co., Ltd. was added to the buffer solution (pH 7.5), and reacted at 25 ° C for 24 hours. As a control reaction, UDP-G was used instead of UDP-4F-Gal.
  • Fine particles were purified by a centrifugal ultrafiltration device using Centriplus YM-50 (Millipore). When the fine particles were dissolved in pure water and mass spectrometry was performed by MALDI-TOF Mass using 2,5 dihydroxybenzoic acid (DHB) as the matrix, molecular weight peaks corresponding to the heterodisulfide bodies of Compound A and Compound B were obtained. ([M + Na] + m / z 1058. 389) was observed, so the synthesis of Compound 1 fixed with a spacer having a thiol group on the gold fine particles was confirmed.
  • DAB 2,5 dihydroxybenzoic acid
  • Example 3 Transfer enzyme reaction of oc 2, 3 sialic acid to 4F-galactose containing sugar chain
  • 4MU-GlcNAc (Sigma, Compound 7) as an acceptor, a transfer reaction of 4F-galactose with j8 1,4-galactose transferase was performed. That is, 10mM manganese chloride, lOOmM sodium chloride, 50mUZmL reaction solution Alkaline phosphatase, 20 ⁇ PA-modified chitobiose, 2. 35 UDP- 4F- Gal containing 10 mM HEPES- NaOH (pH 7.5) buffer derived from human 1,4-Galactosyltransferase (Toyobo) was added (200mUZmL reaction solution), and the reaction was performed at 25 ° C. A reaction using 50 / z M UDP-Gal as a control was performed in the same manner.
  • human-derived j8 1, 4 in lOmM HEPES-NaOH buffer (pH 7.5) containing lOmM manganese chloride, lOOmM sodium chloride, 50mUZmL reaction solution, alkaline phosphatase, 100 M 4MU-GlcNAc, 200 ⁇ M UDP- Gal -Galactose transferase was added in 40mUZmL reaction solution and reacted at 25 ° C for 48 hours, and then 4MU-LacNAc was prepared in the same manner.
  • 4MU-4F-LacNAc is 10 mM manganese chloride, lOOmM sodium chloride, 50 mUZmL reaction solution in the presence of 20, 40, 80, and 150 M concentrations, respectively, 10 mM HEPES containing alkaline phosphatase, 200 / z M CMP— NeuAc — Rat buffered ⁇ 2,3- 3-sialyltransferase (Calbiochem) was added to NaOH buffer (pH 7.5) (74 mUZmL reaction solution), and the reaction was started at 25 ° C.
  • 1U is the amount of enzyme that produces 1 ⁇ mol of sialic acid sucrose per minute under these conditions.
  • 4MU-LacNAc contains 10 mM manganese chloride, lOOmM sodium chloride, 50 mUZmL reaction solution alkaline phosphatase, 200 / z M CMP- NeuAc in the presence of 20, 40, 80, and 150 M concentrations, respectively.
  • Add rat-derived a 2,3-sialyltransferase (37mUZmL reaction solution) to 10mM HEPES-NaOH buffer (pH7.5) and react at 25 ° C for 8 minutes.
  • the K value was 129 ⁇ and ⁇ was 146.9 nmole / mim / mg.
  • U was defined as the amount of enzyme that produces 1 ⁇ mol of sialic acid sucrose per minute under these conditions.
  • Chitobiose (GlcNAc jS 1-4GlcNAc, Sigma) is subjected to pyridinoreamino (PA) in accordance with a known method (Hase et al., J. Biochem., 95, 197-203 (1984)), filtered by genore, and freeze-dried. A purified sample was obtained (Compound 14). Using this as an acceptor, a transfer reaction of 4F-galactose with ⁇ 1, 4 galactose transferase was performed.
  • PA pyridinoreamino
  • mZz 959.45 peak corresponding to [M + H] + was detected in the reaction to PA ⁇ 4F-galactosylchitobiose, confirming the formation of compound 17.
  • the peak of mZz 957.31 corresponding to [M + H] + was detected in the reaction to PA ⁇ galatatosylchitobiose, and the formation of compound 18 was confirmed.

Abstract

 本発明は、下記式(I)で代表される、4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖及び当該オリゴ糖を含有する転移酵素阻害剤、及び当該阻害剤を用いる、糖転移酵素による糖鎖伸長反応を阻害する方法等に関する。  また、細菌由来のガラクトカイネースと細菌由来のヘキソース-1-リン酸ウリジリルトランスフェラーゼを用いた式(II)で代表される、4位ハロゲン化ガラクトース糖ヌクレオチドの製造法を提供する。 (Xはハロゲン原子を示し、Rは単糖、オリゴ糖又は担体を示す) (上記式中、R1~R3は水酸基、アセチル基、ハロゲン原子又は水素原子を示し、Xはハロゲン原子を示し、Mは水素イオン又は金属イオンを示す)  医薬品等での応用が期待される4位ハロゲン化ガラクトース含有糖鎖及び当該化合物の応用に関する。

Description

明 細 書
4位ハロゲン化ガラクトース含有糖鎖及びその応用
技術分野
[0001] 本発明は医薬品等での応用が期待される 4位ハロゲン化ガラクトース含有糖鎖 (ォ リゴ糖)及び当該化合物の応用に関するものである。 背景技術
[0002] 生体内においては、糖供与体である糖ヌクレオチドと糖転移酵素によって、立体及 び位置選択的に糖残基が逐次的に結合することにより多種多様な構造を有する糖 鎖 (オリゴ糖)が合成されている。例えば、ある細胞が癌化する際、新たな糖転移酵素 の発現あるいは糖転移酵素群の量比に変化が生じ、糖鎖構造の一部が異変し、腫 瘍マーカーへと糖鎖が伸長もしくは変化していくと考えられている。
[0003] 従って、細胞表面に存在する糖鎖を人為的に改変することにより、細胞の持つ本来 の性質や機能を変え得ることが期待され、その実証のために非天然型の新規な糖鎖 を合成する試みが盛んに行われて 、る。
[0004] 非天然型の糖鎖の合成手段の 1つとして、糖ヌクレオチドの糖部分の構造を変化さ せた非天然型糖ヌクレオチドを糖供与体とし、糖転移酵素反応により非天然型の糖 鎖を合成する方法がある。
[0005] 非天然型の糖ヌクレオチドとしては、糖の水酸基部分に類似の性質を有し、かつ不 活性であるハロゲン原子を導入したものが考えられる。例えば、本発明者らは、生理 活性糖鎖の不可欠な基本組成単位としてよく知られている N—ァセチルダルコサミン 又は N—ァセチルガラタトサミンの水酸基部分にフッ素原子を導入したフッ素化ァミノ 糖ヌクレオチドを調製し、その性質を検討した (特許文献 1)。
[0006] また、 N—ァセチルダルコサミン又は N—ァセチルガラタトサミンと同様に、生理活 性糖鎖における不可欠な基本組成であるガラクトースに関しても、 4位フッ素化ガラク トース糖ヌクレオチド (非特許文献 1、 2)、 4位以外の部位にフッ素を導入したガラタト ース糖ヌクレオチドが調製されて 、る (非特許文献 3〜5)。
特許文献 1 :特開 2004— 168751号公報 非特許文献 1 :J. Org. Chem. , 59, 6994— 6998 (1994)
非特許文献 2 :J. Chem. Soc. , Perkin Trans. 1, 2375- 2382 (1997) 非特許文献 3 : Bioorg. Med. Chem. 5, 497- 500 (1997)
非特許文献 4: Carbohydr. Res. , 328, 473-480 (2000)
非特許文献 5 : Tetrahedron Letters. 34. (40) , 6419— 6422. (1993) 発明の開示
発明が解決しょうとする課題
[0007] しかし、 4位フッ素化ガラクトース糖ヌクレオチドは、単に当該糖ヌクレオチドをィ匕学 的に調製しただけにとどまり、この糖ヌクレオチドを利用して非天然型の糖鎖は合成 されていない。また、ガラクトース残基の 2位、 3位又は 6位をフッ素化したガラクトース 糖ヌクレオチドは、非天然型の糖鎖合成に利用されるか否かの試験が行われている 力 糖供与体として利用できる可能性は示唆されているものの、非天然型の糖鎖は 現実には調製されて 、な 、。
[0008] このように、糖鎖伸長のストッパーとして本命視されて!/ヽる 4位にフッ素を導入したガ ラタトース糖ヌクレオチドが、非天然型の糖鎖合成のための糖供与体として利用でき るかどうか、仮に利用できるとした場合、調製した非天然型の糖鎖は転移酵素の阻害 剤となりうるか否かは、当業者であっても全く予想できることではなかった。
課題を解決するための手段
[0009] 本発明者らは、立体異性体であるグルコースと唯一異なる箇所であり、生体分子に おける糖鎖認識機構において重要な位置と考えられる 4位の水酸基部分をターゲッ トとして、この 4位の位置にハロゲン原子を導入したガラクトース糖ヌクレオチドを調製 し、当該非天然型の糖ヌクレオチドを糖供与体とした場合の糖転移反応に関して詳 細に検討を行った。
[0010] すなわち、もし、 4位ハロゲンィ匕ガラタトース糖ヌクレオチドが糖供与体として糖転移 酵素による糖転移反応が可能であるならば、(1)このハロゲンィ匕糖含有糖鎖が以降 の糖鎖伸長のストッパーになることで、ガラクトースの 4位結合を有する糖鎖で生体内 における機能、役割についてほとんど不明であるグロボ系列の Gb3、 Gb4、あるいは ガンダリオシド系列の GM2 (以降に生合成される糖脂質を含む)の機能、役割を解 明することができ、(2)糖の水酸基と類似の性質を示し、不活性であるハロゲンィ匕糖 を含有した糖鎖を種々合成できるようになることから、ハロゲンィ匕含有糖鎖とその天然 型糖鎖を比較することで、糖鎖の生体内における機能、役割がより明確に解明するこ とができるカゝらである。
[0011] 本発明者らの検討の結果、以下のことが明らかとなった。
(a)従来、 4位以外の部位にフッ素を導入したガラクトース糖ヌクレオチドは酵母由来 の 2種類の酵素 (ガラタトカイネースとガラタトースー 1 リン酸ゥリジリルトランスフェラ ーゼ)を用いて調製されて 、たが、この方法を 4位フッ素化ガラクトース糖ヌクレオチド の調製に応用した場合、収率力かなり低いことから、酵母由来以外の酵素を用いて 検討した結果、細菌、特に大腸菌由来の酵素を用いることで、収率よく目的とする 4 位フッ素化ガラクトース糖ヌクレオチドを調製できること。
[0012] (b)本発明者らが先に調製したフッ素化ァミノ糖ヌクレオチド (たとえば、ゥリジン 5 '—
(2 ァセタミドー 2, 4 ジデォキシー 4ーフノレオロー at D ダルコピラノシル)ジホ スフェート又はゥリジン 5,一(2 ァセタミドー 2, 4 ジデォキシー 4ーフノレオロー a —D—ガラタトピラノシル)ジホスフェート)は、転移酵素を用いた糖転移反応における 糖供与体となり得な力つた力 4位フッ素化ガラクトース糖ヌクレオチドは、意外にもガ ラタトース転移酵素が糖供与体として認識し、 4位フッ素化ガラクトース含有糖鎖を容 易に種々合成できること。
[0013] (c) 4位フッ素化ガラクトース含有糖鎖に対して、シアル酸転移酵素によるシアル酸転 移反応が阻害されること。
[0014] 本発明者らは、上記知見をさらに発展させて本発明を完成した。
すなわち、本発明は、 4位ハロゲンィ匕ガラタトース残基を末端に有するオリゴ糖を提 供するものである。
[0015] また、本発明は、糖供与体として下記式 (Π)のハロゲンィ匕ガラタトース糖ヌクレオチ ドを用い、糖転移酵素により受容体糖ィ匕合物に 4位ハロゲン化ガラクトース残基を転 移することを特徴とする、 4位ハロゲンィ匕ガラタトース残基を末端に有するオリゴ糖の 製造法を提供するものである。
[0016] [化 1] (π)
OH OH
R2
OODIH
[0017] (上記式中、 R〜Rは水酸基、ァセチル基、ハロゲン原子又は水素原子を示し、 Xは
1 3
ハロゲン原子を示し、 M+は水素イオン又は金属イオンを示す)
[0018] また、本発明は、 4位ハロゲンィ匕ガラタトース残基を末端に有するオリゴ糖を含有す る転移酵素阻害剤を提供するものである。
さらに本発明は、 4位ハロゲンィ匕ガラタトース残基を末端に有するオリゴ糖を阻害剤 として用いる、糖転移酵素による糖鎖伸長反応を阻害する方法を提供するものである
[0019] さらにまた、本発明は式 (ΠΙ)の化合物を細菌由来のガラクトカイネースを用いてリン 酸化して式 (IV)の化合物を得、得られた式 (IV)の化合物と糖ヌクレオチドから細菌 由来のへキソース 1 リン酸ゥリジリルトランスフェラーゼを用 、て式 (Π)の化合物 を合成することを特徴とする 4位ハロゲンィ匕ガラタトース糖ヌクレオチドの製造法を提 供するものである。
[0020] [化 2]
Figure imgf000007_0001
[0021] (上記式中、 R〜Rは水酸基、ァセチル基、ハロゲン原子又は水素原子を示し、 R
1 3
はリン酸残基又はその塩を示し、 Xはハロゲン原子を示し、 M+は水素イオン又は金 属イオンを示す)
発明の効果
[0022] 本発明の新規な 4位ハロゲンィ匕ガラタトース残基を末端に有するオリゴ糖 (以下、「4 位ハロゲンィ匕糖含有オリゴ糖」と言うこともある)は、糖転移酵素による糖鎖伸長 (生合 成経路)を阻害するため、例えば、癌細胞やウィルスの増殖を阻止する阻害剤として の開発が期待できるものである。
[0023] 具体的には、ガラクトースの 4位結合糖鎖、 Gb3、 Gb4などのグロボ系列、あるいは ガンダリオシド系列の GM2以降の糖脂質伸長反応 (生合成経路)を阻害することで、 その機能、役割の解明、さらには糖鎖自身の機能性素材や医薬品等への応用が期 待される。また、細胞が癌化した場合、糖鎖の高シアル酸ィ匕が起こることが報告され ていることから、このシアル酸転移阻害活性機構を利用した抗腫瘍剤等への応用の 可能性も期待できる。 [0024] また、 2種類の細菌由来の酵素を使用することで、化学合成では大量取得が困難 であった 4位ハロゲンィ匕ガラタトース糖ヌクレオチドを収率良く大量に取得できるように なった。
発明を実施するための最良の形態
[0025] 以下、本発明を、(1) 4位ハロゲンィ匕ガラタトース糖ヌクレオチドの酵素合成、 (2) 4 位ハロゲンィ匕ガラタトース基を有するオリゴ糖、及び (3)糖転移酵素による糖鎖伸長 反応の阻害の順で説明する。
[0026] (1) 4位ハロゲンィ匕ガラタトース糖ヌクレオチドの酵素合成
上述したように、本発明の 4位ハロゲンィ匕ガラタトース糖ヌクレオチドの酵素合成は、 前記式 (ΠΙ)の化合物をガラクトカイネースを用いてリン酸ィ匕して前記式 (IV)の化合 物を得、得られた式 (IV)の化合物と糖ヌクレオチドからへキソース— 1—リン酸ゥリジ リルトランスフェラーゼを用いて前記式 (Π)の化合物を合成することを特徴とする。
[0027] [化 3]
Figure imgf000008_0001
[0028] (式中、 R〜R、 X及び Mは前記と同じ)
1 4
[0029] R〜R及び Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子
1 3
、ヨウ素原子が挙げられるが、フッ素原子が好ましい。 Mの金属原子としては、ナトリウ ム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属が挙 げられる。上記式 (Π)の化合物としては、 R〜Rが水酸基で、 Xがフッ素原子である ものが特に好ましい。
[0030] 原料として使用する 4位ハロゲンィ匕ガラタトースである前記式 (ΠΙ)の化合物は、巿 販品として購入が可能であり、また、 Maradufu & Perlin, Carbohydr. Res. , 3 2, 261 - 277 (1974) , Ittah & Glaudemans, Carbohydr. Res. , 95, 189— 194 (1981)、Kamerlingら, Carbohydr. Res. , 291, 63— 83 (1996)などの公 知の方法に準じて合成することも可能である。
[0031] このような原料を用い、ガラクトカイネースによりリン酸ィ匕して前記式 (IV)の化合物 を得る。
[0032] 使用するガラクトカイネースとしては、細菌由来の酵素、特に大腸菌由来のものが 好ましい。また、ガラクトカイネース遺伝子がクローン化されている場合には、そのクロ ーン化されたガラクトカイネース遺伝子を用いて常法により大腸菌などを宿主として 大量生産させ、当該微生物の菌体より当該酵素を調製してもよい。
[0033] 細菌の菌体の調製は、当該微生物が生育可能な培地を用い、常法により培養後、 遠心分離等で集菌する方法で行うことができる。具体的に、大腸菌類に属する細菌 を例に挙げ説明すれば、培地としてはブイヨン培地、 LB培地(1%トリプトン、 0. 5% イーストエキストラタト、 1%食塩)又は 2xYT培地(1. 6%トリプトン、 1%イーストェキ ストラタト、0. 5%食塩)などを使用することができ、当該培地に種菌を接種後、約 30 〜50°Cで約 10〜50時間程度必要により撹拌しながら培養し、得られた培養液を遠 心分離して微生物菌体を集菌することにより目的とする活性を有する微生物菌体を 調製することができる。
[0034] 得られた細菌の菌体は、機械的破壊 (ワーリンダブレンダー、フレンチプレス、ホモ ジナイザー、乳鉢などによる)、凍結融解、自己消化、乾燥 (凍結乾燥、風乾などによ る)、酵素処理 (リゾチームなどによる)、超音波処理、化学処理 (酸、アルカリ処理な どによる)などの一般的な処理法に従って処理し、菌体の破壊物又は菌体の細胞壁 もしくは細胞膜の変性物とする。
[0035] 酵素の調製は、上記菌体処理物から目的とする活性を有する画分を通常の酵素の 精製手段、例えば塩析処理、等電点沈澱処理、有機溶媒沈澱処理、透析処理、各 種クロマトグラフィー処理などを施して得られる粗酵素又は精製酵素を使用すること ができる力 リン酸供与体、すなわち基質として用いるヌクレオチド 5'—トリリン酸 (NT P)、あるいは生成中間体である糖— 1リン酸の分解を抑え、収率を向上させるために 、脱リン酸活性 (ホスファターゼ活性)を残存して 、な 、酵素標品を用いることが望ま しい。
[0036] ガラクトカイネースによるリン酸化反応は、 0. 1〜: LOOmM、好ましくは l〜50mMの 前記式 (ΠΙ)の化合物とリン酸供与体としてのアデノシン 5 ' 一トリリン酸 (ATP)などの ヌクレオシド 5,一トリリン酸(NTP)を l〜500mM、好ましくは 5〜100mM使用し、さ らに 0. 01〜50ユニット/ mLのガラクトカイネースを添カ卩し、緩衝液(pH4. 0〜: LO) 中、 10〜70°Cの温度条件下、 1〜: LOO時間程度インキュベートすることで実施するこ とがでさる。
[0037] なお、上記リン酸化反応に供する NTPは、当該反応で生成するヌクレオチド 5'— ジリン酸(NDP)をポリリン酸カイネースを利用した NTP再生系(T. Noguchi & T . Shiba、 Bioosci. Biotechnol. Biochem. , 62, 1594— 1596 (1998) )、あるい は公知であるピルビン酸カイネースを利用した NTP再生系(C. H. Wongら、 J. Org . Chem. , 57, 4343— 4344 (1992) )により再生された NTPであっても力まわな!/、
[0038] このようにして得られた式 (IV)の化合物と糖ヌクレオチドからへキソース 1 リン 酸ゥリジリルトランスフェラーゼを用いて前記式 (Π)の化合物を合成する。
反応に使用する糖ヌクレオチドとしては、ゥリジン 5'—ジリン酸グルコース、ゥリジン 5,ージリン酸ガラクトースなどのへキソース 1 リン酸ゥリジリルトランスフェラーゼの 基質になるものであれば、特に制限されな 、。
また、反応に使用するへキソース 1 リン酸ゥリジリルトランスフェラーゼはガラクト カイネースと同様に細菌由来のもの、特に大腸菌由来のものが好ましぐ上記と同様 に調製したものを使用することができる。
[0039] へキソース 1 リン酸ゥリジリルトランスフェラーゼによる転移反応は、 0. 1〜100 mM、好ましくは 0. 5〜50mMの前記式(IV)の化合物と l〜200mM、好ましくは 5 〜100mMの糖ヌクレオチドを使用し、さらに 0. 1〜50ユニット/ mLのへキソース一 1—リン酸ゥリジリルトランスフェラーゼを添カ卩し、緩衝液 (PH4. 0-10. 0)中、 10〜 70°Cの温度条件下、 1〜: LOO時間程度インキュベートすることで実施することができ る。
[0040] なお、上記転移反応に供する糖ヌクレオチドは、グルコース 1 リン酸をゥリジン 5,
トリリン酸 (UTP)存在下、糖ヌクレオチドピロホスホリラーゼの反応により生成ある いは再生させたものであっても力まわな 、。
[0041] また、ガラクトカイネースによるリン酸ィ匕反応とへキソース 1 リン酸ゥリジリルトラン スフエラーゼによる転移反応は、逐次、あるいは同時で行ってもよぐまた、ガラタト力 イネースによるリン酸ィ匕反応後、得られたリン酸ィ匕糖を精製した後、あるいは精製せ ず転移反応に供しても力まわな 、。
[0042] このようにして得られた 4位ハロゲンィ匕ガラタトース糖ヌクレオチドは、通常の糖ヌク レオチドの単離精製手段 (イオン交換クロマトグラフィー、吸着クロマトグラフィー、ゲ ルろ過クロマトグラフィーなど)により単離精製することができる。
[0043] (2) 4位ハロゲンィ匕ガラタトース残基を末端に有するオリゴ糖
4位ハロゲン化糖含有オリゴ糖は、上記 4位ハロゲンィ匕ガラタトース糖ヌクレオチドを 糖供与体とし、糖転移酵素を用い、受容体ィ匕合物に 4—デォキシ— 4—ハロゲノガラ クトシル基を転移することで調製することができる。
[0044] 反応に用いる転移酵素としては、 4—デォキシ一 4—ハロゲノガラタトシル基を転移 できるものであれば特に制限されるものではない。具体的には、 j8 1, 4—ガラクトー ス転移酵素、 j8 1, 3 ガラクトース転移酵素、 《1, 3 ガラクトース転移酵素などが 例示される。また、転移酵素は特定の由来のものには限定されず、動物由来、植物 由来、微生物由来など、すべての由来のものを使用することができる。また、使用す る糖転移酵素遺伝子がクローン化されて 、る場合には、そのクローンィ匕された糖転 移酵素遺伝子を用いて常法により大腸菌、酵母、昆虫細胞、動物細胞などを宿主と して生産させ、当該酵素を調製することも可能である。
[0045] このような転移酵素は、当該活性を有する限りどのような形態であってもよい。具体 的には細胞の処理物又は当該処理物から得られる酵素調製物などが挙げられる。 細胞の処理物としては、各種培養法によって得られた細胞を機械的破砕 (ワーリン ダブレンダー、フレンチプレス、ホモジナイザー、乳鉢などによる)、凍結融解、自己 消化、乾燥 (凍結乾燥、風乾などによる)、酵素処理、超音波処理、化学処理 (酸、ァ ルカリ処理などによる)などの一般的な処理法に従って処理して得られる細胞の破壊 物又は細胞の細胞壁もしくは細胞膜の変性物が挙げられる。
[0046] 酵素調製物としては、上記菌体処理物から糖転移活性を有する画分を通常の酵素 の精製手段、例えば塩析処理、等電点沈澱処理、有機溶媒沈澱処理、透析処理、 各種クロマトグラフィー処理などを施して得られる粗酵素又は精製酵素を使用するこ とがでさる。
[0047] 反応液に添加する受容体化合物は、合成目的の糖鎖に応じて、あるいは使用する 転移酵素に応じて、既知の単糖、オリゴ糖あるいはそれら糖ィ匕合物を、必要によりス ぺーサ一を介して担体に結合させた担持物から適宜選択すれば良ぐ特に制限され るものではない。
[0048] 4位ハロゲン化ガラクトース含有オリゴ糖の合成は、 0. l〜100mMの 4位ハロゲン 化ガラクトース糖ヌクレオチドと受容体としての糖ィ匕合物 0. 01〜20mMを使用し、ト リス塩酸緩衝液、 HEPES— NaOH緩衝液等の緩衝液 (pH5. 0〜: L0. 0)中、糖転 移酵素を 0. 001ユニット ZmL以上、好ましくは 0. 01ユニット ZmL以上添カ卩し、 50 °C以下、好ましくは約 5〜50°Cの温度条件下、 1〜50時間程度、必要により攪拌しな 力 Sら反応させること〖こより実施できる。
[0049] このような 4位ハロゲンィ匕ガラタトース糖含有オリゴ糖を例示すれば、例えば下記式
(I)で表される 4ーデォキシー4 ハロゲノー a D ガラクトース誘導体を例示する ことができる。このオリゴ糖は、単糖、オリゴ糖もしくはそれらの担持物を受容体とし、 4 位ハロゲンィ匕ガラタトース糖ヌクレオチドとガラクトース転移酵素を用いることで合成す ることがでさる。
[0050] [化 4]
Figure imgf000012_0001
[0051] (Xはハロゲン原子を示し、 Rは単糖、オリゴ糖又は担体を示す) 上記式 (I)化合物の具体的な例としては、 4ーデォキシー 4 ハロゲノー a -D- ガラクトシル β 1—4Ν ァセチルダルコサミン含有糖鎖誘導体(下記式 (Γ )化合物) 、あるいは 4 デォキシ一 4—ハロゲノー a— D—ガラクトシル j8 1— 3Ν ァセチル ダルコサミン含有糖鎖誘導体等を挙げることができる。
[0052] [化 5]
Figure imgf000013_0001
[0053] (式中、 Xはハロゲン原子を示し、 Rは水素原子、水酸基、単糖、オリゴ糖又は担体
5
を示す)
[0054] Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子 が挙げられるが、フッ素原子が好ましい。 Rあるいは Rで示される単糖としては、ガラ
5
クトース、グルコース、マンノース、フルクトース、リボース、ァラビノース、キシロース、 キシリロース、リブロース、エリトロース、トレオース、リキソース、ァロース、ァノレトロース
、グロース、イドース、タロース、タガトース、ソノレボース、プシコース、 D グリセロー D ーガラタトヘプトース、 D グリセローグルコヘプトース、 DL グリセロー D—マンノへ プトース、ァ口へプッロース、ァノレトヘプッロース、タ口へプッロース、マンノヘプッロ ース、ォクッロース、ノヌロース、 D グリセロー Lーガラタトォクッロース、 D グリセ口 —D マンノォタツロース、ノムロース、フコース、ラムノース、ァロメチロース、キノボー ス、アンチアロース、タロメチロース、ジキタロース、ジギドキソース、シマロース、チべ ロース、アベロース、ノ ラトース、コリトース、ァスカリロース、グルクロン酸、ガラタツ口 ン酸、マンヌロン酸、ィズロン酸、グルロン酸、ダルコサミン、ガラクトサミン、マンノサミ ン、ノィラミン酸、 N ァセチルダルコサミン、 N ァセチルガラタトサミン、 N ァセチ ルマンノサミン、 N ァセチルノイラミン酸、 N ァセチルー O ァセチルノイラミン酸 、 N ダリコイルノィラミン酸、ムラミン酸、並びにその誘導体が挙げられる。
[0055] また、オリゴ糖としては、例えばマルトース、セロビオース、ラタトース、キシロビオー ス、イソマルトース、ケンチオビオース、メリビオース、プランテオビオース、ノレチノース 、プリメべロース、ビシァノース、 -ゲロース、ラミナリビオース、ッラノース、コージビォ ース、ソホロース、スクロース、トレノヽロース、キトビース、ヒア口ビォゥロン酸、コンドロ シン、セロビォゥロン酸、ラフイノース、ゲンチアノース、メレジトース、ブランテオース、 ケストース、マノレトトリオース、ノノース、イソマノレトトリオース、スタキオース、ベノレバス コース、シクロデキストリン、デンプン、セルロース、キチン、キトサン、乳汁オリゴ糖(例 えばフコシルラクトース、シァリルラタトース、ラタトー N テトラオース、ラタトー N フ コペンタオース、ラクト N ネオテトラオースなど)、ヒアルロン酸、コンドロイチン硫 酸、デルマタン硫酸などのグリコサミノダリカン、 ABO型血液型糖鎖、各種 N 結合 型糖鎖、各種ムチン (O 結合)型糖鎖、スフインゴ糖脂質、グリセ口糖脂質などの糖 脂質糖鎖、並びに以上の誘導体などが挙げられる。
[0056] なお、単糖、オリゴ糖としては、蛍光標識したものであっても力まわな 、。具体的に は、ベンズアミジン、 p—メトキシベンズアミジン、 1, 2—ジ一(パラメトキシフエ-ル) エチレンジァミン、 Fmoc ヒドラジン、ェチル 4 ァミノベンゼン、 2 ァミノ安息香酸 、 2 アミノビリジン、 2 アミノアクリドン、 8 ァミノナフタレン一 1, 3, 6 トリスルホン 酸、 3— (ァセチルァミノ)—6アミノアクリジン、 5— (ジメチルァミノ)ナフタレン— 1—ス ルホン酸などで単糖叉はオリゴ糖の還元末端が標識されたもの、ある 、はオリゴ糖鎖 内部が標識されたものが挙げられる。さらに、 p -トロフエノール、核酸塩基などの 紫外線吸収を示すィ匕合物と結合した単糖叉はオリゴ糖であってもカゝまわない。
[0057] また、担体としては、例えば、タンパク質、脂質、核酸などの生体試料、金、白金な どの金属微粒子、鉄、酸化鉄などの磁性金属微粒子、ポリスチレン、ポリアクリルアミ ド、ァガロース、デキストランなどの高分子ポリマーなどが挙げられる。これらの担体と 糖鎖とのスぺーサ一としては、例えば(ポリ)エチレングリコール、種々のアルキル鎖( 例えば、炭素数 1〜20のアルキル)などが挙げられる。
[0058] このようにして得られた 4位ハロゲンィ匕ガラタトース含有オリゴ糖誘導体は、通常の オリゴ糖の単離精製手段 (イオン交換クロマトグラフィー、吸着クロマトグラフィー、ゲ ルろ過クロマトグラフィーなど)により単離精製することができる。
[0059] (3)糖転移酵素による糖鎖伸長反応の阻害 4位ハロゲン化ガラクトース糖含有オリゴ糖、特に 4位フッ素化ガラクトース含有オリ ゴ糖は、ガラクトースの 4位にハロゲン原子、特にフッ素原子が結合しているため、ガ ラタトースの 4位に糖が結合している糖鎖の伸長をストップする力、あるいは糖鎖の伸 長を著しく遅延させることが可能であり、転移酵素阻害剤として有用である。
さらに、 4位にフッ素が結合していることで、例えば 3位の位置に糖を結合する糖転 移酵素の反応を阻害することもでき、この機構によりそれ以降の糖鎖の生合成経路 が抑制されることも可能で、医薬品などの応用も充分に期待できる阻害剤である。具 体的には、 4位フッ素化ガラクトース含有糖鎖を反応系に添加することにより、 « 2, 3 ーシアル酸転移酵素または ex 2, 6 シアル酸転移酵素によるシアル酸転移反応、 β 1 , 3—Ν ァセチルダルコサミン転移酵素による Ν ァセチルダルコサミン転移反 応、 β ΐ , 3— Ν ァセチルガラタトサミン転移酵素による Ν ァセチルガラタトサミン 転移反応、 α ΐ , 3—ガラクトース転移酵素によるガラクトース転移反応、 α ΐ , 3 - Ν -ァセチルガラタトサミン転移酵素による Ν -ァセチルガラタトサミン転移反応を阻害 することができる。
実施例
[0060] 以下、実施例を示し、本発明を具体的に説明するが、本発明がこれに限定されな いことは明らかである。
なお、反応液中の 4位フッ素化ガラクトースの定量は DIONEX社 DX— 300装置、 CarboPacTMPAlカラムを用い、溶出液は Α液;蒸留水、 Β液; 0. 2M 水酸化ナトリ ゥム、 C液; 1M 酢酸ナトリウム水溶液の混合溶液を使用して行った。また、反応液 中のゥリジン 5, -ジリン酸 4 -フルォロガラタトース(UDP - 4F - Gal)などの核酸関 連物質の定量は HPLC法により行った。具体的には分離には YMC社製の ODS— HS 302カラムを用い、溶出液として 0. 2M トリェチルァミン一リン酸 (pH6. 0)溶液 を用いた。
[0061] 実施例 1:ゥリジン 5,ージリン酸 4 フルォロガラタトースの合成
( 1)大腸菌ガラクトカイネース (GalK)の調製
大腸菌 GalKをコードする遺伝子を挿入した pTrc— galKプラスミド (特開 2002— 3 35988)で、大腸菌 JM 109株 (タカラバイオより入手)を形質転換した後、当該菌株 を 100 μ g/mLのアンピシリンを含有する 2χΥΤ培地 lOOmLに植菌し、 37°Cで振と う培養した。菌数が 1 X 108個 ZmLに達した時点で、培養液に最終濃度 0. 2mMに なるようにイソプロピル一 β—チォガラクトシド (IPTG)を添加し、さらに 8時間振とう培 養を続けた。培養終了後、遠心分離 (9, OOO X g, 20分)により菌体を回収し、 10m Lの緩衝液(20mMトリス塩酸 (pH7. 5)、 ImM 塩化マグネシウム)に懸濁した。超 音波処理を行って菌体を破砕し、さらに遠心分離(20, OOO X g, 10分)により菌体 残さを除去した。
[0062] このように得られた上清画分を計 1リットルの同上緩衝液で透析した後、 HiTrapQ5 mLカラム(アマシャムバイオサイエンス)を用いて以下の条件で精製を行!、 (A液;同 上緩衝液、 B液; A液 + 1M 塩化ナトリウム、 5— 35%B液(20CV) )、ガラタトカイネ ース活性を有する画分 15mLを回収した。
[0063] これを酵素液とし以下の合成反応に用いた。なお、酵素液におけるガラクトカイネ ース (GalK)活性を測定した結果を表 1に示す。なお、本発明における GalK活性は 武田らの方法(特開 2002— 335988)に従って行った。
[0064] (2)大腸菌ガラクトース— 1—リン酸ゥリジリルトランスフェラーゼ (GalT)の調製
大腸菌をコードする遺伝子を挿入した pTrc— GalTプラスミド (特開 2002— 33598 8)で、大腸菌 JM109株 (タカラバイオより入手)を形質転換した後、当該菌株を 100 μ g/mLのアンピシリンを含有する 2χΥΤ培地 50mLに植菌し、 37°Cで振とう培養し た。菌数が 1 X 108個 ZmLに達した時点で、培養液に最終濃度 ImMになるように I PTGを添加し、さらに 5時間振とう培養を続けた。培養終了後、遠心分離 (9, 000 X g, 20分)により菌体を回収し、 10mLの緩衝液(50mM HEPES -NaOH (pH8. 0)、 0. ImM 硫酸亜鉛、 10mM 2—メルカプトエタノール、 50mM 塩化ナトリウ ム)に懸濁した。超音波処理を行って菌体を破砕し、さらに遠心分離(20, OOO X g, 10分)により菌体残さを除去した。
[0065] このように得られた上清画分を計 1リットルの同上緩衝液で透析した後、 HiTrapQ5 mLカラム(アマシャムバイオサイエンス)を用いて以下の条件で精製を行!、 (A液;同 上緩衝液、 B液; A液 + 1M 塩化ナトリウム、 0— 50%B液(25CV) )、 GalT活性を 有する画分 5mLを回収した。 [0066] これを酵素液とし以下の合成反応に用いた。なお、酵素液におけるガラクトースー 1 リン酸ゥリジリルトランスフェラーゼ (GalT)活性を測定した結果を表 1に示す。本発 明における GalT活性は武田らの方法 (特開 2002— 335988)に従って行った。ここ で得られたガラクトースー 1 リン酸ゥリジリルトランスフェラーゼは、へキソース 1 リン酸ゥリジリルトランスフェラーゼと同一酵素で、同一反応を触媒する (E. C. 2. 7. 7. 12)。
[0067] [表 1]
Figure imgf000017_0001
[0068] (3) 4位フッ素化ガラクトース— 1リン酸 (Gal— IP)の合成
10mM 4F- Gal (Toronto Research Chemicals Incより入手)、 5mM 塩 ィ匕マグネシウム、 10mM ATPを含有する lOOmMトリス塩酸塩緩衝液(pH7. 8)に 、上記(1)により調製したガラクトカイネース活性を有する酵素液 (2. 3unitsZmL反 応液)を添カ卩し、 37°Cで、 1時間反応を行った。コントロールとして 4F— Galなしの反 応も行った。
[0069] 反応液を 1Z10量の水酸ィ匕ナトリウムを添加した後、遠心分離(20, OOO X g, 10 分)により不溶性画分を除去した。これを ESI—イオントラップ質量分析装置(日立ハ ィテクノロジ一社製)を用いて分析を行った結果、コントロール反応液ではな力つた [ M— H] _ (mZz261)のピークを検出したことから、 4F— Gal— 1Pが生成したことを 確認した。なお、 Dionex DX— 300による分析を行ったところ、コントロールと比べ て 2. ImMの 4F— Galの減少が認められたことから、 2. ImMの 4F— Gal— 1Pが生 成したことが示唆された。
[0070] 上記反応液から 10mM 炭酸アンモ-ゥムを溶離液として DEAE—Toyopearl榭 脂カラム (東ソ一)(塩ィ匕アンモ-ゥムによるグラジェント溶出)、 Sephadex G— 10 ( アマシャムバイオサイエンス)を用いて 4F— Gal— IPを単離し、得られた画分を凍結 乾燥することにより白色粉末を取得した。続いてこれを用いて下記の UDP— 4F— G al合成反応を行った。
[0071] (4) UDP— 4F— Galの合成
10mM 4F—Gal—lP、 5mM 塩化マグネシウム、 20mM ゥリジン 5, 2リン酸 グルコース(UDP— Glc)を含有する lOOmM トリス塩酸緩衝液 (pH8. 0)に上記(2
)より調製したガラクトースー 1リン酸ゥリジル酸転移酵素活性を有する酵素液(l luni tZmL反応液)を添加し、 37°C、 22時間反応を行った。
[0072] 反応液を 90°C、 5分間の熱処理を行った後、遠心分離(20, OOO X g, 10分)により 不溶性画分を除去した。得られた上清画分を HPLCを用いて分析したところ、 2. 06 mMの UDP -4F- Galの合成を確認した。
[0073] さらに HPLCを用いて目的物のピークを分取し、これを凍結乾燥した。凍結乾燥物 を蒸留水で溶解後、 10mM 炭酸アンモ-ゥムを展開液として Sephadex G— 10 榭脂カラムによるゲルろ過を行った。 UDP— 4F— Gal画分を凍結乾燥することにより
、 HPLC純度 98%の UDP— 4F— Galの白色粉末を得た。
[0074] 1H—NMR (600MHz D Ο) δ : 7. 84 (1Η, d, J = 8. 30Hz, uri— Η,,一 6) , 5.
2
87 (1Η, d, J=4. 76Hz, rib— Η,— 1) , 5. 86 (1Η, d, J = 8. 30Hz, uri— H,,— 5) , 5. 56 (1H, dd, J = 3. 48, 7. 29Hz, H— 1) , 4. 83 (1H, dd, J = 2. 34, 50. 69Hz, H-4) , 4. 28〜4. 25 (2H, m, rib— H'— 2, 3) , 4. 18〜4. 07 (4H, m , rib-H' -4, 5S, 5R, H— 5) , 3. 92 (1H, ddd, J = 2. 34, 10. 31, 29. 70Hz , H- 3) , 3. 76 (1H, dt, J= 10. 31, 3. 48Hz, H— 2) , 3. 68〜3. 66 (2H, m, H-6a, 6b)
[0075] 参考例 1
(酵母由来ガラクトースー 1 リン酸ゥリジリルトランスフェラーゼを用いた UDP— 4F Galの合成)
10mM 4F—Gal—lP、 5mM 塩化マグネシウム、 20mM ゥリジン 5, 2リン酸 グルコース(UDP— Glc)を含有する lOOmM トリス塩酸緩衝液(pH8. 7)にシグマ 社製酵母由来ガラクトースー 1 リン酸ゥリジリルトランスフェラーゼ(20unitZmL反 応液)を添加し、 25°C、 36時間反応を行った。 [0076] 反応液を 90°C、 5分間の熱処理を行った後、遠心分離(20, 000 X g, 10分)により 不溶性画分を除去した。得られた上清画分を HPLCを用いて分析したところ、 0. 61 mMの UDP -4F- Galの生成を確認したが、大腸菌由来ガラクトース 1ーリン酸ゥ リジリルトランスフェラーゼに比べて、 目的物の生成量が本発明方法の 30%以下と極 めて低いことが明ら力となった。
[0077] 実施例 2 : β 1, 4 ガラクトース転移酵素用いた 4F—ガラクトース含有糖鎖の合成 金微粒子にチオール基を有するスぺーサ一で固定化した Ν ァセチルダルコサミ ン(GlcNAc) (参考例 2参照)をァクセプターとして (ィ匕合物 1)、これを GlcNAc相当 量で約 50 M、 lOOmM 塩ィ匕ナトリウム、 10mM 塩ィ匕マンガン、 200 M UDP 4F— Galを含有する10mM HEPES— NaOH緩衝液(pH7. 5)に東洋紡社製 ヒト由来 j8 1, 4—ガラクトース転移酵素(80munitsZmL反応液)を添カ卩し、 25°C、 2 4時間反応を行った。なお、コントロール反応として UDP— 4F— Galの代わりに UD P - Galを用 V、た反応も行った。
[0078] [化 6]
(化合物 1 )
Figure imgf000019_0001
[0079] 反応終了液をそのまま 1 μ 1分取して、 MALDI-TOF-MS (Ultraflex、 Bruker 社製)を用いて測定したところ、原料物質由来の [M+Na] + (mZz 1059. 297)の 化合物 2のピークの他に、 4F—ガラクトースが付カ卩した [M+Na] + (mZz 1223. 4 57)のピークを検出したことから、 4F—ガラクトース j8 1— 4N—ァセチルダルコサミン 含有糖鎖 (ィ匕合物 3)が生成したことを確認した。なお、 UDP— Galを用いた反応に おいても、ガラクトース j8 1—4N ァセチルダルコサミン含有糖鎖 (ィ匕合物 4)に対応 する [M+Na]+ (mZz 1221. 476)のピークを検出した。
[0080] [化 7] (化合物 2 )
Figure imgf000020_0001
C49H97NO17S
Exact Mass: 1035.61979
Mol. Wt.: 1036.42098
(化合物 3 )
Figure imgf000020_0002
C55H106FNO21S2 Exact Mass: 1199.66828 Mol. Wt.: 1200.55264
(化合物 4 )
Figure imgf000020_0003
Mol. Wt.: 1198.56158
[0081] 参考例 2
[0082] [化 8]
Figure imgf000020_0004
(化合物 A)
Figure imgf000020_0005
(化合物 [0083] S Penadesらの方法(Chemistry, A European Journal, (2003) , 9, 1909 1921)に準じて合成したィ匕合物 A (52mg, 69 mol)、並びに当該化合物の末 端に N ァセチルダルコサミンを有する化合物 B ( 10mg, 7. 6 11101)をメタノール( 35mL)—純水(5mL)混合溶媒に溶解し、テトラクロ口金酸(25. 5mg, 75 mol)を カロえた。この溶液に水素化ホウ素ナトリウム水溶液(70mgZ5mL)を少量ずつ加え、 室温で 12時間撹拌した。 Centriplus YM— 50 (ミリポア社)を用いた遠心型限外濾 過装置により微粒子を精製した。微粒子を純水に溶解し、マトリックスとして 2, 5 ジ ヒドロキシベンゾイツク酸(DHB)を用いて MALDI— TOF Massによる質量分析を 行ったところ、化合物 A、化合物 Bのへテロジスルフイド体に対応する分子量ピーク([ M +Na] + m/z 1058. 389)が観察されたことから、金微粒子にチオール基を有 するスぺーサ一で固定ィ匕したィ匕合物 1の合成を確認した。
[0084] 実施例 3 : 4F—ガラクトース含有糖鎖への oc 2, 3 シアル酸の転移酵素反応
上記反応終了液をそれぞれミリポア社製遠心型限外ろ過ユニット (マイクロコン Y M— 10)を用いて純水に置換した後、上記 |8 1 , 4—ガラクトース転移反応と同量の スケール(約 50 M相当量の糖鎖を含有)で、 lOOmM 塩化ナトリウム、 10mM 塩化マンガン、 400 M CMP— Ν ァセチルノイラミン酸(CMP— NeuAc)を含 有する 10mM HEPES— NaOH緩衝液(pH7. 5)に Calbiochem社製ラット由来 a 2, 3—(N)—シアル酸転移酵素(74munitsZmL反応液)を添カ卩し、 25°C、 24 時間反応を行った。
[0085] 反応開始 24時間後、マイクロコン YM— 10を用いて純水に置換後、減圧乾燥を 行った。金微粒子力も糖鎖部分を切り離すため、メタノールを溶媒とする ImM ヨウ 素溶液に溶解させ、室温で約 2時間攪拌した。再度減圧乾燥を行い、ヨウ素溶液を 除去した後、 10%メタノールを添加し充分にけん濁した後、遠心分離(20, OOO X g 、 10分)により金微粒子画分を除去し、このようにして得られた上清をサンプルとして MALDI -TOF- MS (Ultraflex, Bruker社製)による分析を行った。
[0086] その結果、ガラクトース β 1—4N ァセチルダルコサミン含有糖鎖を用いた反応で はシアル酸が転移した [M + Na]+ (m/z 1512. 629)、並びに [M + 2Na— H]+ ( m/z 1534. 626)に対応した化合物 5のピークを検出することができた力 4F—ガ ラタトース ι8 1—4N—ァセチルダルコサミン含有糖鎖を用いた反応では、シアル酸が 転移した際に検出されうる [M + Na]+ (m/z 1514)、並びに [M + 2Na— H]+ (m /z 1536)に対応する化合物 6のピークを検出することができな力つた。このことか ら 4F—ガラクトース含有糖鎖により少なくとも a 2, 3—シアル酸転移酵素反応が阻害 されることが判明した。
[0087] [化 9]
(化合物 5 )
Figure imgf000022_0001
(化合物 6 )
Figure imgf000022_0002
C66H123PN2O29S2
Exact Mass: 1490.7637
Mol. Wt.: 1491.80722
[0088] 実施例 4: 4ーメチルゥンベリフェリル 4F— N—ァセチルラクトサミン(4MU— 4F— La cNAc)の合成
4MU—GlcNAc (シグマ社製、化合物 7)をァクセプターとして用いて j8 1, 4—ガラ クトース転移酵素による 4F—ガラクトースの転移反応を行った。すなわち、 10mM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 アルカリホスファタ一 ゼ、20 Μ PA化キトビオース、 2. 35 UDP— 4F— Galを含有する 10mM HEPES— NaOH (pH7. 5)緩衝液にヒト由来 1, 4—ガラクトース転移酵素 (東洋 紡)を添カ卩し(200mUZmL反応液)、 25°Cで反応を行った。なお、コントロールとし て 50 /z M UDP— Galを用いた反応も同様に行った。
[0089] 反応開始 24時間後に 90°C、 5分間の熱処理を行うことで反応を停止させ、これを 希釈した後、高速液体クロマトグラフィー (HPLC)による分析を行った。分離には GL サイエンス社製の ODS— 3カラムを用い、溶離液として 10% ァセトニトリルを用いて 分離を行った。検出には蛍光光度計 (励起波長 325nm、蛍光波長 372nm)を用い た。 β 1, 4 ガラクトース転移酵素反応により新たに生成したピークを分取し、これを 減圧乾燥した後、 DHBをマトリックスとして MALDI— TOF— MSを行ったところ、化 合物 8の [M+Na] +に相当する mZz 565. 90のピークを検出したことから、 4F— ガラクトース含有糖鎖、 4MU— 4F— LacNAc (ィ匕合物 8)の生成を確認した。また H PLCの面積比より 1. 34 Mの 4MU— 4F— LacNAcが生成した。
[0090] なお、 UDP— Galを用いたコントロール反応においても MALDI—TOF— MSに おいて化合物 9の [M+Na] +に相当する mZz 563. 89のピークを検出し、 20 Mの 4MU— LacNAc (ィ匕合物 9)の生成を確認した。
[0091] [化 10]
(化合物 7)
2
Figure imgf000023_0001
(化合物 8)
Figure imgf000023_0002
( 2) 4MU -4F- LacNAc (ィ匕合物 8)及び 4MU— LacNAc (ィ匕合物 9)の大量取得
10mM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 アルカリ ホスファターゼ、 40 M 4MU— GlcNAc 55 M UDP— 4F— Galを含有する lOmM HEPES— NaOH緩衝液 (pH7. 5)にヒト由来 j8 1, 4—ガラクトース転移酵 素を 200mUZmL反応液添カ卩し、 25°Cで反応を行った。
140時間反応後、 90°C、 10分間の熱処理を行った後、 20, 000g、 10分間の遠心 分離により得られた上清を減圧乾燥により濃縮し、 ODS - 3カラムを用いて目的のピ 一クを分取した。分取したものを減圧乾燥し、蒸留水で再溶解させたものを Ultrafre e MC 0. 22 /z m (ミリポア社)を用いて不要物を除去した後、再度減圧乾燥した。 これを蒸留水で再溶解させたものを 4MU— 4F— LacNAcとして以後の実験に供し た。
なお、 lOmM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 ァ ルカリホスファターゼ、 100 M 4MU - GlcNAc, 200 μ M UDP— Galを含有 する lOmM HEPES— NaOH緩衝液(pH7. 5)にヒト由来 j8 1 , 4—ガラクトース転 移酵素を 40mUZmL反応液添カ卩し、 25°C、 48時間反応を行った後、同様に 4MU — LacNAcを調製した。
[0093] (3) 4MU— 4F— LacNAc (化合物 8)への α 2, 3—シアル酸の転移酵素反応
lOmM ィ匕マンガン、 lOOmM ィ匕ナ卜ジクム、 200 M CMP— NeuAc、 50 mUZmL反応液 アルカリホスファターゼ、 20 M 4MU— 4F— LacNAcを含有 する lOmM HEPES— NaOH緩衝液(pH7. 5)に Calbiochem社製ラット由来 α 2 , 3—Ν—シアル酸転移酵素を 92. 5mUZmL反応液添カ卩し、 25°Cで反応を行った 。なお、コントロールとして 4MU— LacNAcをァクセプターとして用いた反応も同様 に行った。
[0094] 1、 4、 10、 24時間後に一部サンプリングし、 4倍量の 80%ァセトニトリルを添カロし、 激しく攪拌することで反応を停止させた。蒸留水で希釈後、 ODS— 3カラム、溶離液 として 10%ァセトニトリル、 20mM ギ酸アンモ-ゥムを用いて HPLC分析を行ったと ころ、 a 2, 3— N—シアル酸転移酵素によりそれぞれ新たなピークの出現を確認した 。これらのピークを分取し、減圧乾燥後、 DHBをマトリックスとして MALDI—TOF— MSを行った。その結果、 4MU— 4F— LacNAcを用ぃた反応にぉぃては[M + H] +に相当する mZz 835. 13のピークを検出したことから、化合物 10の生成を確認し た。また、 4MU— LacNAcを用いた反応においても [M + H] +に相当する mZz 8 33. 02のピークを検出しィ匕合物 1 1の生成を確認した。 [0095] [化 11]
Figure imgf000025_0001
Figure imgf000025_0002
[0096] (4) 4MU— 4F— LacNAcに対する a 2, 3—シアル酸転移酵素反応の速度論的解 析
4MU—4F—LacNAcが、 20、 40、 80、 150 Mの各濃度存在下でそれぞれ 10 mM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 アルカリホスフ ァターゼ、 200 /z M CMP— NeuAcを含有する 10mM HEPES— NaOH緩衝液 (pH7. 5)にラット由来 α 2, 3— Ν—シアル酸転移酵素(Calbiochem)を添カ卩し(74 mUZmL反応液)、 25°Cで反応を開始した。
正確に 60分後、 4倍量の 80% ァセトニトリルを添加し、激しく攪拌することにより反 応を停止し、希釈後、 HPLCによる分析を行った。各濃度での活性を算出後、 1/[S ]〜lZvプロットを用いて計算したところ、 α 2, 3—シアル酸転移酵素の 4MU— 4F — LacNAcに対する Κ値は 188 Μ、ν は 12. 60nmoleZminZmgであった。
m max
なお、 1Uはこの条件下で 1分間に 1 μ moleのシアル酸ィ匕糖を生成する酵素量として 我しァこ。
[0097] また、 4MU— LacNAcが、 20、 40、 80、 150 Mの各濃度存在下でそれぞれ 10 mM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 アルカリホスフ ァターゼ、 200 /z M CMP— NeuAcを含有する 10mM HEPES— NaOH緩衝液 (pH7. 5)にラット由来 a 2, 3—シアル酸転移酵素を添加し(37mUZmL反応液)、 25°Cで 8分間反応を行ったところ、 HPLC分析により得られた各濃度での活性値か ら lZ[S]〜lZvプロットを用いて K値は 129 Μ、ν は 146. 9nmole/mim/ mgであった。
[0098] 以上の結果を下記表 2に示す。この表より、 4F ガラクトース含有糖鎖である 4MU
4F— LacNAcに対するラット由来 oc 2, 3 シアル酸転移酵素の触媒効率は 4M U— LacNAcの 6%以下であり、 4MU— 4F— LacNAcが転移酵素の阻害剤として 有用であることが示唆された。
[0099] [表 2]
Figure imgf000026_0001
[0100] (5) 4MU— 4F— LacNAcへのα 2, 6 シアル酸の転移酵素反応
lOmM ィ匕マンガン、 lOOmM ィ匕ナ卜ジクム、 200 M CMP— NeuAc、 50 mUZmL反応液 アルカリホスファターゼ、 20 M 4MU— 4F— LacNAcを含有 する lOmM HEPES— NaOH緩衝液(pH7. 5)に Calbiochem社製ラット由来 α 2 , 6— Ν—シアル酸転移酵素を lOmUZmL反応液添加し、 25°Cで反応を行った。 なお、コントロールとして 4MU— LacNAcをァクセプターとして用いた反応も同様に 行った。
[0101] 1、 4、 10、 24時間後に一部サンプリングし、 4倍量の 80%ァセトニトリルを添カロし、 激しく攪拌することで反応を停止させた。蒸留水で希釈後、 ODS— 3カラム、溶離液 として 10%ァセトニトリル、 20mM ギ酸アンモ-ゥムを用いて HPLC分析を行ったと ころ、 a 2, 6— N シアル酸転移酵素反応によりそれぞれ新たなピークの出現を確 認した。これらのピークを分取し、減圧乾燥後、 DHBをマトリックスとして MALDI—T OF— MSを行った。その結果、 4MU— 4F— LacNAcへの反応においては [M + N a] +に相当する mZz 856. 88のピークを検出したことから、化合物 12の生成を確 認した。また、 4MU— LacNAcへの反応においても [M + Na] +に相当する mZz 855. 06のピークを検出しィ匕合物 13の生成を確認した。
[0102] [化 12] (化合物 12)
6
Figure imgf000027_0001
(化合物 1 3)
Figure imgf000027_0002
[0103] (6) 4MU—4F—LacNAcに対するQ;2, 6—シアル酸転移酵素反応の速度論的解 析
4MU— 4F— LacNAcを、 20、 40、 80、 120、 150 Mの各濃度存在下でそれぞ れ 10mM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 アルカリ ホスファターゼ、 200 M CMP— NeuAcを含有する 10mM HEPES— NaOH 緩衝液 (ρΗ7. 5)にラット由来《2, 6— N—シアル酸転移酵素(Calbiochem)を添 カロし (40mUZmL反応液)、 25°Cで反応を開始した。
[0104] 正確に 120分後、 1Z5倍量の 1M NaOHを添カ卩することにより反応を停止し、 H PLC溶離液で中和、希釈後、 HPLCによる分析を行った。各濃度での活性を算出後 、 l/[S]〜l/vプロットを用! /、て計算したところ、 l/v= 260. 27/[S] -0. 1005 の式が得られたため、 K値、並びに V 値を算出することが出来な力つた。なお、 1 m max
Uはこの条件下で 1分間に 1 μ moleのシアル酸ィ匕糖を生成する酵素量として定義し た。
また、 4MU— LacNAcを、 20、 40、 80、 120、 150 Mの各濃度存在下でそれぞ れ 10mM 塩化マンガン、 lOOmM 塩化ナトリウム、 50mUZmL反応液 アルカリ ホスファターゼ、 200 M CMP— NeuAcを含有する 10mM HEPES -NaOH 緩衝液 (ρΗ7. 5)〖こラット由来《2, 6—シアル酸転移酵素を添カ卩し (40mU/mL反 応液)、 25°Cで 10分間反応を行った。 HPLC分析により得られた各濃度での活性値 から lZ[S]〜lZvプロットを用いて K値は 217 Μ、ν は 65. 24nmole/mim m max
/ mgであった。
[0105] 各濃度での活性を比較すると、下記表 3に示すように、 4F ガラクトース含有糖鎖 である 4MU— 4F— LacNAcに対してラット由来 α 2, 6 シアル酸転移酵素の活性 が明らかに減少し、転移酵素の阻害剤として有用であることが示された。
[0106] [表 3]
Figure imgf000028_0001
[0107] 実施例 5:ピリジルァミノ化ガラクトシルキトビオースの合成
( 1)ピリジルァミノ化 4F ガラクトシルキトビオースの合成
キトビオース(GlcNAc jS 1— 4GlcNAc、シグマ)を公知の方法(Haseら、 J. Bioch em. , 95, 197— 203 ( 1984) )に従ってピリジノレアミノ(PA)ィ匕を行い、ゲノレろ過、 並びに凍結乾燥により精製標品を取得した (ィ匕合物 14)。これをァクセプターとして β 1 , 4 ガラクトース転移酵素による 4F—ガラクトースの転移反応を行った。すなわ ち、 10mM 塩化マンガン、 lOOmM 塩ィ匕ナトリウム、 25 M PAィ匕キトビオース、 4. 7 μ Μ UDP— 4F— Galを含有する10mM HEPES -NaOH (pH7. 5)緩衝 液にヒト由来 j8 1 , 4—ガラクトース転移酵素 (東洋紡)を 160mUZmL反応液添加し 、 25°Cで反応を行った。なお、コントロールとして 100 M UDP— Galを用いた反 応も同様に行った。
[0108] 反応開始 10時間後に 90°C、 5分間の熱処理により反応を停止させ、これを蒸留水 で希釈した後、高速液体クロマトグラフィー (HPLC)による分析を行った。分離には 野村化学社製の Develosil C30— UG— 5カラムを用い、溶離液として lOmM リン 酸ナトリウム(PH3. 8)、並びに lOmM リン酸ナトリウム(pH3. 8) + 0. 5% (w/v) 1ーブタノールを用い、両溶液による勾配をかけることで分離を行った。反応により新 たに生成したピークを分取し、これを減圧乾燥による濃縮、 ZipTip による脱塩後、 得られた吸着画分にっ 、て DHBをマトリックスとして MALDI— TOF - MS (Ultrafl ex、 Bruker社)を行った。その結果、化合物 15の [M+Na] +に相当する mZz 69 0. 02のピークを検出したことから、 4F—化ガラクトシルイ匕糖の生成を確認した。また HPLCの面積比より 3. 80 Mの PAィ匕 4F ガラクトシル化キトビオース(ィ匕合物 15) が生成した。なお UDP— Galを用いたコントロール反応においても MALDI—TOF MSにおいて化合物 16の [M+Na] +に相当する mZz 687. 56のピークを検出 し、 23. 5 Mの PA化ガラクトースキトビオース(ィ匕合物 16)が生成した。
[0109] [化 13]
(化合物 1 4)
(化合物
Figure imgf000029_0001
(化合物 1 6)
3
Figure imgf000029_0002
[0110] (2) PA化 4F—ガラクトシルキトビオース(ィ匕合物 15)及び PAィ匕ガラタトシルキトピオ ース (化合物 16)の大量取得
10mM 塩化マンガン、 lOOmM 塩ィ匕ナトリウム、 25 M PA化キトビオース、 2 . 35 ^ Μ UDP— 4F— Galを含有する lOmM HEPES— NaOH緩衝液(pH7. 5 )にヒト由来 j8 1, 4—ガラクトース転移酵素を 200mUZmL反応液添カ卩し、 25°Cで 反応を行った。
36時間後、 90°C、 5分間の熱処理を行った後、減圧乾燥により反応液を濃縮し、 D evelosil C30—UG— 5カラムを用いて目的のピークを分取した。これを減圧乾燥 により濃縮した後、 20mM 炭酸水素アンモ-ゥムで平衡ィ匕した東ソ一社製 TSKgel — Oligo— PWカラムを用いて脱塩処理を行った。 目的ピークを回収後、減圧乾燥を 行 、、これを蒸留水で再溶解させたものを PA化 4F—ガラクトシルキトビオース (ィ匕合 物 15)として以後の実験に供した。
[0111] なお、 10mM 塩化マンガン、 lOOmM 塩ィ匕ナトリウム、 25 M PAィ匕キトビオー ス、 50 Μ UDP— Galを含有する lOmM HEPES— NaOH緩衝液(pH7. 5)に ヒト由来 j8 1, 4—ガラクトース転移酵素を 200mU/mL反応液添カ卩し、 25°C、 8時 間反応を行った後、同様に PAィ匕ガラ外シルキトビオース (化合物 16)を調製した。
[0112] (3) PA化 4F—ガラクトシルキトビオースへの α 2, 3—シアル酸の転移反応
lOmM 塩化マンガン、 lOOmM 塩ィ匕ナトリウム、 100 M CMP— NeuAc、 0. 02% (w/v) BSA、 ΙΟ ^ Μ PAィ匕 4F—ガラクトシル化キトビオースを含有する 10m M HEPES— NaOH緩衝液 (pH7. 5)に Calbiochem社製ラット由来 α 2, 3— N —シアル酸転移酵素を lOOmUZmL反応液添加し、 25°Cで反応を行った。なお、 コントロールとして PAィ匕ガラタトシルキトビオースをァクセプターとして用いた反応も 同様に行った。
2. 5、 24時間後に一部サンプリングした後、 9倍量の lOmM リン酸ナトリウム (pH 4. 3)を添加し、激しく攪拌することで反応を停止させた。これらを C30— UG— 5カラ ムを用いて HPLC分析を行ったところ、 a 2, 3— N—シアル酸転移酵素反応によりそ れぞれ新たなピークが出現したことを確認した。これらのピークを分取し、減圧乾燥後 、続いて 20mM 炭酸水素アンモ-ゥムで平衡化した東ソ一社製 TSKgel— Oligo —PWカラムを用いて目的ピークを回収後減圧乾燥し、 DHBをマトリックスとして MA LDI— TOF— MSを行った。その結果、 PAィ匕 4F—ガラクトシルキトビオースへの反 応においては [M+H] +に相当する mZz 959. 45のピークを検出したことから、化 合物 17が生成したことを確認した。また、 PAィ匕ガラタトシルキトビオースへの反応に おいても [M+H] +に相当する mZz 957. 31のピークを検出し、化合物 18の生成 を確認した。
なお、 HPLCのピーク面積比より両ィ匕合物の転換率を比較した結果、 PA化 4F— ガラクトシルキトビオースをァクセプターとする反応では a 2, 3—シアル酸酵素の反 応率が著しく減少し、阻害剤として有用であることが判明した。
[0113] [化 14]
(化合物 1 7)
Figure imgf000031_0001
(化合物 1 8)
Figure imgf000031_0002
[0114] (4) PA化 4F—ガラクトシルキトビオースへの α 2, 6—シアル酸の転移反応
10mM 塩化マンガン、 lOOmM 塩ィ匕ナトリウム、 100 M CMP— NeuAc、 0. 02% (w/v) BSA、 ΙΟ ^ Μ PAィ匕 4F—ガラクトシル化キトビオースを含有する 10m M HEPES— NaOH緩衝液 (pH7. 5)に Calbiochem社製ラット由来 α 2, 6— N —シアル酸転移酵素を 40mUZmL反応液添加し、 25°Cで反応を行った。なお、コ ントロールとして PAィ匕ガラタトシルキトビオースをァクセプターとして用いた反応も同 様に行つ 7こ。
[0115] 1、 2. 5、 8、 24時間後に一部サンプリングした後、 19倍量の 0. 5M トリェチルアミ ン—酢酸 (PH7. 3):ァセトニトリル = 25 : 75を添加し、激しく攪拌することで反応を停 止させた後、 HPLCによる分析を行った。分離には東ソ一社製の Amide— 80カラム を用い、溶離液として 10mM トリェチルァミン—酢酸 (pH7. 3):ァセトニトリル = 25 : 75、並びに 0. 5M 卜リエチルァミン—酢酸(pH7. 3):ァセ卜-卜リル = 25 : 75を用 い、両溶液による勾配をかけることで分離を行った。反応により新たに生成したピーク を分取し、これを減圧乾燥した後、 DHBをマトリックスとして MALDI— TOF— MSを 行ったところ、化合物 19の [M+H] +に相当する mZz 659. 74のピークを検出し たことから、化合物 19の生成を確認した。なお、 UDP— Galを用いたコントロール反 応にお 、ても MALDI—TOF— MSにお!/、て化合物 20の [M + H] +に相当する m /z 657. 74のピークを検出したことから、化合物 20の生成も確認した。 [0116] なお、 HPLCのピーク面積比より、各化合物の転換率を比較した結果、 PA化 4F— ガラクトシルキトビオースに対して α 2, 6—シアル酸酵素の反応率が著しく減少し、 阻害剤として有用であることが明らかとなった。
[0117] [化 15]
(化合物 1 9)
Figure imgf000032_0001
(化合
Figure imgf000032_0002

Claims

請求の範囲
4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖。
4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖が、下記式 (I)で表されるも のである、請求項 1記載のオリゴ糖。
[化 1]
Figure imgf000033_0001
(Xはハロゲン原子を示し、 Rは単糖、オリゴ糖又は担体を示す)
4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖が、下記式 (Γ )で表される ものである、請求項 1記載のオリゴ糖。
[化 2]
Figure imgf000033_0002
(式中、 Xはハロゲン原子を示し、 Rは水素原子、水酸基、単糖、オリゴ糖又は担体
5
を示す)
糖供与体として下記式 (Π)のハロゲンィ匕ガラタトース糖ヌクレオチドを用い、糖転移 酵素により受容体糖ィ匕合物に 4位ハロゲン化ガラクトース残基を転移することを特徴 とする、請求項 1〜3のいずれか 1項記載のオリゴ糖の製造法。
[化 3]
Figure imgf000034_0001
(上記式中、 R〜Rは水酸基、ァセチル基、ハロゲン原子又は水素原子を示し、 Xは
1 3
ハロゲン原子を示し、 M+は水素イオン又は金属イオンを示す)
[5] 式 (Π)の化合物の R〜Rが水酸基で、 Xがフッ素原子である、請求項 4記載の製
1 3
造法。
[6] 4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖を含有する転移酵素阻害 剤。
[7] 4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖が、下記式 (I)で表されるも のである、請求項 6記載の阻害剤。
[化 4]
Figure imgf000034_0002
(Xはハロゲン原子を示し、 Rは単糖、オリゴ糖又は担体を示す)
4位ハロゲン化ガラクトース残基を末端に有するオリゴ糖が、下記式 (Γ )で表される ものである、請求項 6記載の阻害剤。
[化 5]
Figure imgf000034_0003
(式中、 Xはハロゲン原子を示し、 Rは水素原子、水酸基、単糖、オリゴ糖又は担体
5
を示す)
[9] 請求項 6〜8のいずれか 1項記載の阻害剤を用いる、糖転移酵素による糖鎖伸長 反応を阻害する方法。
[10] 式 (ΠΙ)の化合物を細菌由来のガラクトカイネースを用いてリン酸ィ匕して式 (IV)の化 合物を得、得られた式 (IV)の化合物と糖ヌクレオチドから細菌由来のへキソース— 1 リン酸ゥリジリルトランスフェラーゼを用いて式 (Π)の化合物を合成することを特徴と する 4位ハロゲンィ匕ガラタトース糖ヌクレオチドの製造法。
Figure imgf000035_0001
(上記式中、 R〜Rは水酸基、ァセチル基、ハロゲン原子又は水素原子を示し、 R
1 3
はリン酸残基又はその塩を示し、 Xはハロゲン原子を示し、 M+は水素イオン又は金 属イオンを示す)
[11] 式 (Π)の化合物の R〜Rが水酸基で、 Xがフッ素原子である、請求項 10記載の製
1 3
造法。
[12] 糖ヌクレオチドがゥリジン 5,ージリン酸グルコースである、請求項 10記載の製造法。
[13] 2つの酵素とも大腸菌由来の酵素を用いる、請求項 10記載の製造法。
PCT/JP2006/302529 2005-02-16 2006-02-14 4位ハロゲン化ガラクトース含有糖鎖及びその応用 WO2006088017A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007503658A JP4910091B2 (ja) 2005-02-16 2006-02-14 4位ハロゲン化ガラクトース含有糖鎖及びその応用
US11/815,329 US8148112B2 (en) 2005-02-16 2006-02-14 Sugar chain containing 4-position halogenated galactose and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-038751 2005-02-16
JP2005038751 2005-02-16

Publications (1)

Publication Number Publication Date
WO2006088017A1 true WO2006088017A1 (ja) 2006-08-24

Family

ID=36916423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302529 WO2006088017A1 (ja) 2005-02-16 2006-02-14 4位ハロゲン化ガラクトース含有糖鎖及びその応用

Country Status (3)

Country Link
US (1) US8148112B2 (ja)
JP (1) JP4910091B2 (ja)
WO (1) WO2006088017A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975577B2 (ja) * 2011-03-04 2016-08-23 株式会社糖鎖工学研究所 シアル酸含有糖鎖の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287275A (en) * 1976-01-08 1977-07-20 Tate & Lyle Ltd Sweetening agent
JPS57102898A (en) * 1980-10-28 1982-06-26 Talres Dev Sweet chlorine-substituted disaccharide and manufacture
JPS5829795A (ja) * 1981-05-22 1983-02-22 テイト・アンド・ライル・パブリツク・リミテツド・コンパニ− 臭素化蔗糖誘導体および甘味付与方法
JPS5835196A (ja) * 1981-08-21 1983-03-01 テイト・アンド・ライル・パブリツク・リミテツド・コンパニ− 4′−ハロ置換シヨ糖誘導体ならびにその製造法および組成物
JPH02501440A (ja) * 1987-10-06 1990-05-24 テイト アンド ライル パブリック リミテッド カンパニー シユクラロース組成物
JPH0787927A (ja) * 1990-03-12 1995-04-04 Warner Lambert Co ポリデキストロースおよびクロロデオキシ糖を含有する相乗甘味組成物およびその調製方法
JP2001511812A (ja) * 1997-02-13 2001-08-14 マクニール−ピーピーシー・インコーポレーテツド 塩化スクロースのクロマトグラフィー精製
JP2004041118A (ja) * 2002-07-12 2004-02-12 Sanei Gen Ffi Inc 嗜好性飲料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435440A (en) * 1976-01-08 1984-03-06 Tate & Lyle Limited Sweeteners
JP2002335988A (ja) * 2001-05-22 2002-11-26 Yamasa Shoyu Co Ltd オリゴ糖の製造法
EP1461445B1 (en) * 2001-11-28 2008-08-20 Neose Technologies, Inc. Glycoprotein remodeling using endoglycanases
JP4169199B2 (ja) * 2002-10-30 2008-10-22 ヤマサ醤油株式会社 フッ素化アミノ糖ヌクレオチド及びその製造法
US20080145899A1 (en) 2004-09-17 2008-06-19 Neose Technologies Inc Production of Oligosaccharides By Microorganisms

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287275A (en) * 1976-01-08 1977-07-20 Tate & Lyle Ltd Sweetening agent
JPS57102898A (en) * 1980-10-28 1982-06-26 Talres Dev Sweet chlorine-substituted disaccharide and manufacture
JPS5829795A (ja) * 1981-05-22 1983-02-22 テイト・アンド・ライル・パブリツク・リミテツド・コンパニ− 臭素化蔗糖誘導体および甘味付与方法
JPS5835196A (ja) * 1981-08-21 1983-03-01 テイト・アンド・ライル・パブリツク・リミテツド・コンパニ− 4′−ハロ置換シヨ糖誘導体ならびにその製造法および組成物
JPH02501440A (ja) * 1987-10-06 1990-05-24 テイト アンド ライル パブリック リミテッド カンパニー シユクラロース組成物
JPH0787927A (ja) * 1990-03-12 1995-04-04 Warner Lambert Co ポリデキストロースおよびクロロデオキシ糖を含有する相乗甘味組成物およびその調製方法
JP2001511812A (ja) * 1997-02-13 2001-08-14 マクニール−ピーピーシー・インコーポレーテツド 塩化スクロースのクロマトグラフィー精製
JP2004041118A (ja) * 2002-07-12 2004-02-12 Sanei Gen Ffi Inc 嗜好性飲料

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ARITA H. AND MATSUSHIMA Y.: "Studies on the Substrate specificity of taka-amylase A. IX. Effect on the enzymic action of the terminal C-4 of phenyl alpha-maltoside", JOURNAL OF BIOCHEMISTRY, vol. 70, no. 5, November 1971 (1971-11-01), TOKYO, JAPAN, pages 795 - 801, XP008063990 *
FAIRCLOUGH P.H., HOUGH L., RICHARDSON A.C.: "Derivatives of beta-D-fructofuranosyl alpha-D-galactopyranoside", CARBOHYDRATE RESEARCH, vol. 40, no. 2, 1975, pages 285 - 298, XP000571304 *
GARCIA R.C. ET AL.: "Syntheses of hepta-, hexa-, and pentapivalates of trehalose by selective pivaloylation", CARBOHYDRATE RESEARCH, vol. 200, 25 April 1990 (1990-04-25), pages 307 - 317, XP002997967 *
HOUGH L., PALMER A.K., RICHARDSON A.C.: "Chemical modification of trehalose. XIII. Synthesis of 4,4'-difluoro and 4,4'6,6'-tetrafluoro analogs", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTINS 1: ORGANIC AND BIO-ORGANIC CHEMISTRY (1972-1999), no. 8, 1973, pages 784 - 788, XP008063989 *
KIHLBERG J. ET AL.: "Preparation and calculated conformations of the 2'-, 3'-, 4'-, and 6'-deoxy, 3'-O-methyl, 4'-epi, and 4'- and 6'-deoxyfluoro derivatives of methyl 4-O-alpha-D-alpha-galactopyranosyl-beta-D-galactopyranoside (methyl beta-D-galabioside)", CARBOHYDRATE RESEARCH, vol. 185, no. 2, 1 February 1989 (1989-02-01), pages 171 - 190, XP009009830 *
LEE C.K., KANG H.C., LINDEN A.: "Synthesis, structure, and sweetness of 4-chloro-4-deoxy-alpha-D-galactopyranosyl, 4,6-trichloro-1,4,6-trideoxy-beta-D-tagatofuranoside", JOURNAL OF CARBOHYDRATE CHEMISTRY, vol. 18, no. 2, 1999, pages 241 - 253, XP008063991 *
SOFIAN A.M. AND LEE C.K.: "Synthesis and taste properties of 4,1',4',6'-tetrahalodeoxysucrose analogues", JOURNAL OF CARBOHYDRATE CHEMISTRY, vol. 22, no. 3 & 4, 2003, pages 185 - 206, XP008063993 *
SUAMI T. ET AL.: "Molecular mechanisms of sweet taste. V. Sucralose and its derivatives", JOURNAL OF CARBOHYDRATE CHEMISTRY, vol. 13, no. 8, 1994, pages 1079 - 1092, XP008063992 *

Also Published As

Publication number Publication date
US20090018327A1 (en) 2009-01-15
JP4910091B2 (ja) 2012-04-04
JPWO2006088017A1 (ja) 2008-07-03
US8148112B2 (en) 2012-04-03

Similar Documents

Publication Publication Date Title
TWI573876B (zh) 寡醣之大規模酵素合成
JP5975577B2 (ja) シアル酸含有糖鎖の製造方法
JP4601060B2 (ja) アジド化アミノ糖ヌクレオチド及びその応用
JP3545424B2 (ja) ヌクレオシド5’−トリリン酸の製造法及びその応用
Bastida et al. Heterologous Over‐expression of α‐1, 6‐Fucosyltransferase from Rhizobium sp.: Application to the Synthesis of the Trisaccharide β‐d‐GlcNAc (1→ 4)‐[α‐l‐Fuc‐(1→ 6)]‐d‐GlcNAc, Study of the Acceptor Specificity and Evaluation of Polyhydroxylated Indolizidines as Inhibitors
Zou et al. One-pot three-enzyme synthesis of UDP-Glc, UDP-Gal, and their derivatives
Kharel et al. Characterization of the TDP-D-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-D-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate
Marroun et al. UGT74B1 from Arabidopsis thaliana as a versatile biocatalyst for the synthesis of desulfoglycosinolates
WO2021170624A2 (en) Synthesis of glycosylated sphingoid bases of interest or analogues thereof
EP4121436A1 (en) Synthesis of glycosyl fluorides
US6040158A (en) Process for preparing sugar nucleotide
CN116790649A (zh) 一种酶法合成udp-葡萄糖醛酸和udp-n-乙酰氨基葡萄糖的方法
WO2006088017A1 (ja) 4位ハロゲン化ガラクトース含有糖鎖及びその応用
Weïwer et al. Synthesis of uridine 5′-diphosphoiduronic acid: A potential substrate for the chemoenzymatic synthesis of heparin
Kang et al. Preparative synthesis of dTDP‐l‐rhamnose through combined enzymatic pathways
Chien et al. Glucose 1‐Phosphate Thymidylyltransferase in the Synthesis of Uridine 5′‐Diphosphate Galactose and its Application in the Synthesis of N‐Acetyllactosamine
CN115552026A (zh) 用于制备CMP-Neu5Ac的酶促方法
WO2005045052A1 (ja) ペントース−5−リン酸エステルの製造方法
Schwardt et al. Minireview: bacterial sialyltransferases for carbohydrate synthesis
EP4176070A1 (en) One-pot cell-free glycosylation process
CN115927507A (zh) 一种糖苷磷酸化酶联合单糖激酶及聚磷酸激酶制备寡糖的方法
CN117683833A (zh) 一种由核苷一磷酸制备核苷酸糖的方法
JP4901447B2 (ja) Cmp−デアミノノイラミン酸の製造法
WO2021170621A1 (en) Synthesis of c-glycosides of interest
CN114317483A (zh) 一种催化生成l-阿拉伯糖-1-磷酸的单糖激酶及其编码基因与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503658

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11815329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713670

Country of ref document: EP

Kind code of ref document: A1