WO2007018185A1 - 燃料電池用セパレータ及びその製造方法 - Google Patents

燃料電池用セパレータ及びその製造方法 Download PDF

Info

Publication number
WO2007018185A1
WO2007018185A1 PCT/JP2006/315609 JP2006315609W WO2007018185A1 WO 2007018185 A1 WO2007018185 A1 WO 2007018185A1 JP 2006315609 W JP2006315609 W JP 2006315609W WO 2007018185 A1 WO2007018185 A1 WO 2007018185A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
fuel cell
cell separator
treatment
hydrophilic functional
Prior art date
Application number
PCT/JP2006/315609
Other languages
English (en)
French (fr)
Inventor
Noboru Kanba
Yoshihisa Suda
Original Assignee
Mitsubishi Pencil Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co., Ltd. filed Critical Mitsubishi Pencil Co., Ltd.
Priority to DE112006002064T priority Critical patent/DE112006002064B4/de
Priority to JP2007529577A priority patent/JP4148984B2/ja
Priority to US11/989,958 priority patent/US7740971B2/en
Priority to CA2618287A priority patent/CA2618287C/en
Priority to CN2006800283930A priority patent/CN101233640B/zh
Publication of WO2007018185A1 publication Critical patent/WO2007018185A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell separator suitable for a solid polymer type fuel cell and a method for producing the same, and more specifically, improves battery characteristics by controlling the wettability of the fuel cell separator.
  • the present invention relates to a fuel cell separator and a manufacturing method thereof. Background art
  • Fuel cells are clean and highly anticipated as next-generation energy capable of expressing high power generation efficiency.
  • next-generation energy capable of expressing high power generation efficiency.
  • solid polymer fuel Batteries are attracting attention.
  • This solid polymer fuel cell generally has a solid polymer electrolyte membrane composed of an ion exchange membrane, two electrodes provided on both sides thereof, and a fuel gas such as hydrogen in each electrode.
  • This fuel cell is composed of a stack of single cells such as a separator provided with a gas supply groove for supplying an oxidant gas such as oxygen, and two current collector forces provided on the outside thereof. Due to the use of a high performance polymer electrolyte membrane in the electrolyte part, the operating temperature is 80 ⁇ : LOO ° C is low, but high power generation is possible.
  • the solid polymer fuel cell separator is required to have a high degree of gas impermeability in order to supply the fuel gas and the acid gas to the electrode in a completely separated state.
  • it is necessary to reduce the internal resistance of the battery. For this reason, it is necessary to have high conductivity.
  • the heat generated by the battery reaction is efficiently dissipated, and the temperature distribution in the battery is made uniform, and high corrosion resistance, chemical resistance, mechanical properties are ensured to ensure high thermal conductivity and long-term durability. It is necessary to have strength and hydrophilicity.
  • the ability to quickly discharge water generated during power generation that is, the hydrophilicity of the separator is one of the most important required characteristics.
  • Separator for fuel cell for example, see Patent Document 1
  • 2) method for hydrophilizing a separator for fuel cell, characterized by subjecting the separator for fuel cell to atmospheric pressure discharge plasma for example, see Patent Document 2), 3
  • Thermosetting resin, average particle size 20-70; formed from a composition containing artificial graphite with ⁇ ⁇ and internal mold release agent, and average surface roughness Ra by surface treatment methods such as shot blasting A fuel cell separator (see, for example, Patent Document 3) characterized in that is 1.0 to 5.0 m is known.
  • the concavo-convex portion is formed by sandblasting, atmospheric pressure plasma treatment or shot blasting method described in Patent Documents 1 to 3, the concavo-convex portion is formed on the surface of the gas flow path.
  • it is necessary to mask parts other than the uneven part and there are problems that the surface treatment process is complicated and that the uneven part cannot be formed accurately and the yield is low.
  • the hydrophilic performance deteriorates with time.
  • the carbon particles are subjected to a treatment for imparting a hydrophilic function to the carbon particles, and then subjected to pressure molding or pressure heating molding with a binder. Since the process of forming irregularities on the surface is performed, there is a problem in that the production efficiency is poor and the performance varies.
  • the fuel cell separator described in Patent Document 2 various processing gases are indispensable for performing plasma processing, and it is necessary to perform processing in an atmosphere diluted with an inert gas from the viewpoint of safety. There is a restriction that there is.
  • the excited gas is blown out and contacted with the fuel cell separator, there is a problem that partial processing into a complicated and fine groove pattern is difficult.
  • the fuel cell separator described in Patent Document 3 is formed by molding a composition containing a thermosetting resin, artificial graphite having an average particle size of 20 to 70 / ⁇ ⁇ , and an internal release agent.
  • an internal mold release agent causes the problem of bleeding out over time, and the composition that contains a resin release agent, the wettability is insufficient and the wettability decreases over time. There are issues.
  • a technique using laser processing for manufacturing a fuel cell for example, a solid polymer electrolyte membrane, a fuel electrode and an air electrode on both sides of the MEA are configured, and both sides of the MEA are sandwiched between separators.
  • a battery and a method for producing a fuel cell in which a skin layer having a large amount of resin formed on the surface of the separator is carbonized by laser irradiation are known.
  • An electrolyte membrane manufacturing method comprising: (a) a step of forming a base material with a hydrogen permeable metal; and (b) a step of forming a ceramic layer having proton conductivity on the surface of the base material.
  • a manufacturing method for example, see Patent Document 5 in which the crystallizing energy required for crystallization of the amorphous material forming the ceramic layer is locally supplied to the amorphous surface by laser irradiation. .
  • Patent Document 4 masks the groove part, carbonizes the separator-rich separator surface other than the groove part, reduces the contact electrical resistance, and laser irradiation. It is completely different from the invention of the present application in which the groove portion is not recognized to be hydrophilized, and its purpose and technical idea (configuration and operational effects) are quite different, and the amount of laser irradiation for carbonization is enormous. However, the hydrophilic treatment cannot be performed with this irradiation amount.
  • Patent Document 5 is a method for producing an electrolyte membrane for a fuel cell, and there is no recognition that the membrane is made hydrophilic by laser irradiation. Are completely different.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-283873 (Claims, Examples, etc.)
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-25570 (Patents, Examples, etc.)
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-197222 (Claims, Examples, etc.)
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-335121 (Patents, Examples, etc.)
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-2005 No. 5088 (Claims, Examples, etc.)
  • the present invention intends to solve this problem, and has excellent hydrophilicity over time without performing a special pretreatment, and improves battery characteristics.
  • the present invention resides in the following (1) to (8).
  • a fuel cell separator formed with a hydrophilic functional group formed on the surface of the separator by laser irradiation treatment, and an average surface roughness.
  • a separator for a fuel cell characterized by forming an uneven portion with an Ra of less than 50 m.
  • the fuel cell separator is a composite molded body of thermosetting resin or thermoplastic resin and carbon, expanded graphite molded body, glassy carbon molded body, glassy carbon and graphite composite molded body.
  • the surface of the fuel cell separator that has been laser-irradiated has a continuous and smooth curvature.
  • At least carbon material strength By applying one laser to the surface of the molded fuel cell separator, hydrophilic functional groups are formed on the surface of the separator and the average surface roughness Ra A method for producing a separator for a fuel cell, characterized in that a concavo-convex portion having a thickness of less than 50 ⁇ m is formed.
  • the “average surface roughness Ra” defined in the present invention is a value measured by the method defined in JIS B0601-1994.
  • the “continuous and smooth curved surface” defined in the present invention means that the material melted and melted by the laser treatment is continuously solidified as it is. A state that spreads smoothly and smoothly. This is clearly observed at an electron microscope magnification of 10,000 times.
  • the surface is discontinuous due to surface debris, flashes, or distinct boundaries and defects due to edges of build-up materials such as graphite during the molding or firing process. It has become.
  • these discontinuous surface states become more discontinuous due to plasma treatment, acid treatment, and the like.
  • a fuel cell separator having improved hydrophilicity and battery characteristics without special pretreatment.
  • FIG. 1 shows an example of the present invention, and is a schematic explanatory view showing an example of a state in which laser irradiation treatment is performed on a predetermined surface portion (flow channel surface) of a fuel cell separator. .
  • FIG. 2 shows an example of the present invention, wherein a predetermined surface portion (flow channel surface) of a fuel cell separator has an uneven portion having a hydrophilic functional group and an average surface roughness Ra of less than 50 m.
  • FIG. 6 is an enlarged schematic cross-sectional view showing a formed state.
  • FIG. 3 is an electron micrograph of the separator surface (flow channel surface) after the laser irradiation treatment of the present invention.
  • FIG. 4 is an electron micrograph showing an example of a separator surface (channel surface) that becomes a discontinuous treatment surface.
  • FIG. 5 is an electron micrograph showing another example of a separator surface (flow channel surface) that becomes a discontinuous treatment surface.
  • FIG. 6 is an electron micrograph showing another example of a separator surface (flow channel surface) that becomes a discontinuous treatment surface.
  • FIG. 7 is a schematic exploded perspective view showing an example of a fuel cell incorporating the fuel cell separator of the present invention.
  • FIG. 8 is a chart showing an example of evaluating hydrophilic functional groups.
  • FIG. 9 is a chart showing other examples of evaluating hydrophilic functional groups.
  • the separator for a fuel cell of the present invention is a separator for a fuel cell formed from at least a carbon material, and has a hydrophilic functional group formed on the surface portion of the separator by laser irradiation treatment. An uneven portion having an average roughness Ra of less than 50 m was formed.
  • a hydrophilic functional group is formed on the surface portion of the separator by performing laser irradiation treatment on the surface portion of the fuel cell separator having at least a carbon material strength.
  • an uneven portion having an average surface roughness Ra of less than 50 ⁇ m is formed.
  • the present invention includes both the fuel cell separator and the manufacturing method thereof.
  • the fuel cell separator before the laser irradiation treatment is at least a fuel cell separator formed from a carbon material, and a preparation method, a molding method, and a shape of a composition containing a carbon material are used.
  • the structure and the like are not particularly limited.For example, using at least a carbon material, after forming a groove portion serving as a predetermined flow path surface with a molding die, a fuel cell separator having a predetermined structure is formed by a firing process.
  • a separator for a fuel cell in which a groove portion serving as a predetermined flow path surface is formed by a molding die using at least a carbon material and a thermosetting resin or a thermoplastic resin, and at least a thermosetting resin is specified.
  • a groove for forming the flow path surface of the fuel cell may be formed by a molding die, and then a fuel cell separator having a predetermined structure may be formed by a firing process.
  • Examples of the raw material for the separator to be used include carbon materials, thermosetting resins, thermoplastic resins, and mixed materials thereof, and additives for forming a separator such as a curing accelerator, a plasticizer, and a solvent.
  • the carbon material that can be used is not particularly limited.
  • glassy carbon isotropic carbon material
  • graphite powder highly oriented pyrolytic graphite (HOPG), quiche graphite, natural black lead, And artificial graphite, fullerene, and carbon black
  • carbon fiber including vapor-grown carbon fiber, PAN-based carbon fiber, and graphite fiber
  • carbon nanotube and expanded graphite sheet.
  • binders or thermosetting resins that connect carbon materials include phenol resin, polyimide resin, furan resin, epoxy resin, xylene resin, unsaturated polyester resin, melamine resin, Examples include alkyd resin and copna resin, and those that exhibit intermolecular cross-linking by heating, become three-dimensional and harden, and show a high carbon residue yield without special carbon precursor treatment. Used.
  • thermoplastic resin examples include polysalt vinyl bispolyacetate butyl copolymer, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyamide and the like.
  • various raw materials are selected in consideration of gas impermeability, conductivity, thermal conductivity, corrosion resistance, chemical resistance, mechanical strength, etc. required for a fuel cell separator.
  • a mixture (composition) having a suitable blending amount.
  • carbon materials a mixture such as a binder and a curing accelerator, a mixture such as a carbon material and a thermosetting resin, a mixture such as a carbon material, a thermoplastic resin and a plasticizer, etc. Is mentioned.
  • the mixture and the like obtained above are molded, for example, by filling a suitable amount in a mold for forming a groove pattern to be a flow path surface (molding step).
  • a mold for forming a groove pattern to be a flow path surface there are no particular limitations on the groove shape (cross-section V shape, concave shape, etc.), depth, width, and pattern thereof of the molding die, and a suitable groove shape, depth, Set to width, groove pattern, etc.
  • the mold is heated to 70 to 150 ° C. and solidified (drying process), the obtained resin plate is removed from the mold, and further, in a non-oxidizing atmosphere.
  • a separator having a predetermined structure is obtained by performing a heat treatment and firing (firing step).
  • firing is carried out in three steps in an inert atmosphere such as nitrogen gas or argon gas, in vacuum, that is, in each of these individual atmospheres or in each atmosphere.
  • an inert atmosphere such as nitrogen gas or argon gas
  • vacuum that is, in each of these individual atmospheres or in each atmosphere.
  • a separator having a predetermined structure is produced by carbonizing the binder or the like. If necessary, after the molding (process) or after firing (process), the groove caps at different locations on the front and back surfaces for positioning outer peripheral processing, hole punching, and final finishing for the laminated stack are used. It is also possible to perform a minimum processing such as ⁇ .
  • a separator formed of at least a carbon material as described above for example, a thermosetting resin or a composite formed of a thermoplastic resin and carbon (material), an expanded graphite formed body, a glassy form
  • a predetermined surface portion to be hydrophilized for example, a surface portion to be a flow path surface is subjected to a hydrophilic treatment by laser irradiation treatment.
  • the surface roughness Ra is less than 50 ⁇ m, and uneven portions are formed.
  • a predetermined surface portion of the separator for example, the laser treatment portion at least partially or entirely on the flow path surface, the formation of hydrophilic functional groups and the surface roughness are increased.
  • the laser irradiation is not particularly limited as long as it can form a concavo-convex portion with Ra of less than 50 m, and examples thereof include YAG laser, carbon dioxide gas laser, excimer laser, argon laser, ruby laser, and glass laser.
  • an oscillation wavelength, a versatile point YAG laser is desired! /.
  • a predetermined surface portion of the separator for example, at least part or all of the flow path surface.
  • the laser irradiation treatment of the present invention increases the formation of the hydrophilic functional groups as described above on the predetermined surface portion of the separator, and at the same time, the surface roughness Ra is less than 50 m.
  • the surface roughness Ra is less than 50 m.
  • the uneven portion formed by the laser irradiation treatment of the present invention is a continuous and smooth curved surface having an average surface roughness Ra of less than 50 m.
  • the average roughness Ra of this surface is more than 50 ⁇ m, dimensional accuracy is important in the case of small machines such as DMFC, resulting in the disadvantage that the output varies and becomes unstable. The flow resistance of the flowing fuel becomes undesirable. Further, if the surface roughness Ra is less than 0.1 ⁇ m, the target hydrophilicity function may not be exhibited over time because the degree of hydrophilicity is weak.
  • the laser irradiation condition is that a predetermined surface portion of the separator, for example, at least part or all of the channel surface, has an increased formation of hydrophilic functional groups and an average surface roughness Ra of 50 m.
  • the irradiation dose can form an uneven portion that is less than, when using a force YAG laser or the like that varies depending on the raw material type, size, shape, etc. of the separator, it is not particularly limited.
  • the formation of the desired hydrophilic functional group, the unevenness where the average roughness Ra of the surface is less than 50 m, and the above-mentioned condition adjustments can be combined in a continuous manner.
  • a smooth curved surface can be formed.
  • the output adjustment between 3 and 15W varies depending on the laser specifications, irradiation conditions, etc., but it cannot be said unconditionally. However, if the output is less than 3W, it will be difficult to increase the formation of hydrophilic functional groups. In addition, the time required for the treatment may increase, and the hydrophilic functional group fixing function may not be exhibited over time. On the other hand, if the output exceeds 15 W, the amount of irradiation becomes large and the irradiated part is deeply cut, so that the formation of the target hydrophilic functional group and the uneven part cannot be formed, and the force is also high. In addition, the dimensional accuracy of the separator surface or flow path surface becomes a problem, and the performance of the fuel cell becomes unstable.
  • FIG. 1 is a schematic explanatory diagram illustrating an example of a state in which laser irradiation treatment is performed on a predetermined surface portion (flow channel surface) of a fuel cell separator
  • FIG. 2 is a diagram illustrating a predetermined surface portion (flow channel surface) of the separator.
  • Shows an increase in the formation of hydrophilic functional groups (one OH group, —COOH group,> C 0 group, etc.) and unevenness with an average surface roughness Ra of less than 50 ⁇ m.
  • FIG. 3 is an enlarged schematic cross-sectional view
  • FIG. 3 is an electron micrograph showing a continuous and smooth curved surface of a portion 12 (flow path surface) in FIG. 2 (manufactured by Hitachi, Ltd., S4700, magnification: 10,000) The same applies to the following).
  • FIG. 4 to 6 are electron micrographs showing a discontinuous state in which a continuous and smooth curved surface is not formed due to untreated or acid-soaked treatment, and FIG. 5 is more inferior than FIG. It shows a continuous surface condition.
  • a predetermined surface portion (flow channel surface) 11 of a fuel cell separator 10 formed from a carbon material cover is irradiated with a YAG laser device 20 to achieve one.
  • it can be formed it is more efficient than conventional sandblasting by masking, atmospheric discharge plasma processing, and shot blasting to form uneven parts, and it is easy to make the required parts to be hydrophilized. It can be processed in a short time. Further, the obtained fuel cell separator has excellent hydrophilicity over time without special pretreatment, and can improve battery characteristics.
  • the fuel cell separator of the present invention configured as described above has excellent hydrophilicity over time without performing a special pretreatment, and the flow path resistance is kept low. As a result, it is possible to easily remove the generated water generated by the electrode reaction and suppress variations in fuel cell characteristics.
  • a solid polymer fuel cell A shown in FIG. 7 specifically, a solid polymer electrolyte membrane (proton conductive film) 30 and catalyst layers 31 and 32 on both sides thereof are provided.
  • the fuel cell separator 10 having an effect is used, a fuel cell having stable power generation efficiency and excellent cell characteristics can be obtained over a long period of time.
  • Each fuel cell separator was obtained by the following preparation method and processing method.
  • Furan resin (Hitafuran VF-303, manufactured by Hitachi Chemical Co., Ltd.) 90 parts by weight and natural scaly black lead (average particle size 5 ⁇ m, manufactured by Nippon Graphite Industries Co., Ltd.) Add 1.5 parts by weight of toluene sulfonic acid and mix and stir for 2 minutes at 3000 rpm. Pour an appropriate amount of the mixture into a plate mold at an internal size of 59 mm x 59 mm x l. 5 mm, and heat the mold to 100 ° C. After the solidification treatment, the resulting resin plate was removed from the mold force and subjected to heat treatment at 1500 ° C. using a baking furnace to obtain a carbon separator.
  • the dimensions of the obtained separator were 47 mm X 47 mm X 1.2 mm (flow path surface width l mm, depth 0.5 mm).
  • the separator obtained by this heat treatment method was also used in Example 2 and Comparative Examples 1 to 7 described later.
  • Laser treatment is performed on the flow path surface of the separator obtained by the same method as in Example 1 above, using a YAG laser device as a laser irradiation treatment in a room temperature air atmosphere under conditions of 10 W output and continuous scanning.
  • the hydrophilic functional group and the concavo-convex part were formed.
  • Furan resin (Hitafuran VF-303, manufactured by Hitachi Chemical Co., Ltd.) To 100 parts by weight, add 1.5 parts by weight of p-toluenesulfonic acid as a curing accelerator, stir and mix, and mix the mixture with the prescribed mold metal. After pouring into a mold, this mold was heated to 100 ° C and solidified, and the resulting resin plate was removed from the mold and subjected to heat treatment at 1500 ° C using a firing furnace to obtain a carbon separator. The dimensions of the separator were 47 mm x 47 mm x 1.2 mm (flow path width lmm, depth 0.5mm).
  • a mixture of 10 parts by weight of furan resin (Hitafuran VF-303, manufactured by Hitachi Chemical Co., Ltd.) and 40 parts by weight of polyvinyl chloride-loop polyvinyl acetate copolymer (ZEST-C150S, manufactured by Shin-Daiichi PVC Co., Ltd.) Add 50 parts by weight of natural scaly graphite (Nippon Graphite Industries Co., Ltd., average particle size 5 m) to synthetic resin, and then add 20 parts by weight of diallyl phthalate as a plasticizer and mix with a Henschel mixer. The mixture was dispersed and kneaded sufficiently using a mixing two roll to prepare a fuel cell separator composition, which was further pulverized and sieved to obtain a powder.
  • the obtained powder is press-molded with a molding die with a predetermined groove pattern, dried and solidified at 300 ° C in an aerobic gas atmosphere, and then heated at 1500 ° C in an inert gas atmosphere.
  • a carbon separator was obtained.
  • the dimensions of the resulting separator are 47mmX 47mm X 1.2mm (flow path width lmm, depth 0.5 mm).
  • phenolic resin P4805N manufactured by Gunei Chemical Co., Ltd.
  • natural scaly graphite manufactured by Nippon Graphite Industry Co., Ltd., average particle size: 5 ⁇ m
  • the obtained composition was press-molded with a predetermined molding die to obtain a separator of a resin Z graphite composite.
  • the dimensions of the obtained separator were 47 mm X 47 mm X 1.2 mm (flow path surface width l mm, depth 0.5 mm).
  • oxygen plasma treatment was performed under the conditions of an output of 50 W and an irradiation time of 1 minute.
  • Example 5 The separator obtained by the same method as in Example 1 was subjected to sandblasting (a propellant having a particle size of 1 ⁇ m, a shot pressure of 1 kg).
  • the separator channel obtained by the same method as in Example 1 above was subjected to laser treatment on the channel surface under the conditions of 200 W output and continuous scanning in a room temperature air atmosphere using a YAG laser device.
  • the separator obtained by the same method as in Example 1 was subjected to an oxidation treatment at 500 ° C. for 20 minutes in an air atmosphere without performing laser irradiation treatment.
  • hydrophilic functional groups on the separator surface were evaluated with an X-ray photoelectron spectrometer (ESCA-3400) manufactured by Shimadzu Corporation and evaluated according to the following evaluation criteria.
  • the average surface roughness (Ram) was evaluated using a Surfcom, an average roughness shape measuring instrument manufactured by Tokyo Seimitsu Co., Ltd., at a driving speed of 0.3 mmZ.
  • a contact angle meter CA-X manufactured by Kyowa Interface Chemical Co., Ltd. was used as a method for evaluating the contact angle after the treatment. The lower the value, the better the degree of hydrophilicity.
  • the separator for a fuel cell is a separator for a fuel cell of Comparative Example 1 that falls outside the scope of the present invention, Comparative Examples 2 and 3 for oxygen plasma treatment, Comparative Example 4 for untreated, Comparative Example 5 for sandblast treatment, and Comparative Example 7 Excellent hydrophilization and stable over time compared to oxidation treatment It was found to have a degree of hydrophilization.
  • Comparative Example 6 the dimensional accuracy was poor and the digging was too deep, the surface roughness was too large, and some parts were cut. This proved to be unsuitable for processing small fuel cell separators.
  • a fuel cell separator suitable for a solid polymer type fuel cell and a method for producing the same can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池用セパレータの濡れ性を制御することにより、電池特性を向上させた燃料電池用セパレータ及びその製造方法を提供するために、少なくとも炭素材料から成形された燃料電池用セパレータAであって、該セパレータ10の流路面11の表面部に、YAGレーザー装置20の照射処理により、親水性官能基を形成増加させると共に、表面の平均粗さRaが50μm未満となる凹凸部を形成した構成とする。

Description

明 細 書
燃料電池用セパレータ及びその製造方法
技術分野
[0001] 本発明は、固体高分子型などの燃料電池用に好適な燃料電池用セパレータ及び その製造方法に関し、更に詳しくは、燃料電池用セパレータの濡れ性を制御すること により、電池特性を向上させた燃料電池用セパレータ及びその製造方法に関する。 背景技術
[0002] 燃料電池は、クリーンであり、高い発電効率を発現できる次世代エネルギーとして 期待が高ぐ特に近年、高出力が得られ作動温度域が比較的低いという利点のため 固体高分子型の燃料電池が注目されて 、る。
[0003] この固体高分子型の燃料電池は、一般に、イオン交換膜からなる固体高分子の電 解質膜と、その両側に設けた 2つの電極とそれぞれの電極に水素などの燃料ガスあ るいは酸素などの酸化剤ガスを供給するガス供給溝を設けたセパレータなどカゝらなる 単セルを積層したスタック、及びその外側に設けた 2つの集電体力 構成されて 、る この燃料電池では、電解質部分に高性能の高分子電解質膜を使用している関係 で作動温度が 80〜: LOO°Cと低いにも拘わらず高い出力の発電が可能である。
[0004] この固体高分子型燃料電池のセパレータには、燃料ガスと酸ィ匕ガスとを完全に分 離した状態で電極に供給するために高度のガス不透過性が要求され、また、発電効 率を高くするために電池の内部抵抗を小さくする必要があり、そのために導電性が高 いことが必要である。更に、電池反応に伴う発熱を効率よく放散させ、電池内温度分 布を均一化するために高 、熱伝導性や長期耐久性の確保のために優れた耐腐食 性、耐薬品性、機械的強度、親水性を備える必要がある。
これらの要求特性の中で発電時に発生した水を速やかに排出できる性能、すなわ ち、セパレータに親水性があることが最も重要な要求特性の一つとなるものである。
[0005] 従来にお!、て、燃料電池用セパレータの親水性を向上させる技術等としては、数 多くの技術が知られており、例えば、 1)表面の少なくとも一部に親水性官能基を有す る導電性カーボンと、バインダーとを加圧成形又は加圧加熱成形し、ガス流路の表 面にサンドブラストカ卩ェにより平均 50 m以上 lmm以下の凹凸を設けた高分子電 解質型燃料電池用セパレータ (例えば、特許文献 1参照)、 2)燃料電池用セパレー タを常圧放電プラズマ処理することを特徴とする燃料電池用セパレータの親水化処 理方法 (例えば、特許文献 2参照)、 3)熱硬化性榭脂、平均粒径 20〜70 ;ζ ΐηの人造 黒鉛および内部離型剤を含む組成物を成形してなり、ショットブラスト法等の表面処 理方法により表面の平均粗さ Raが 1. 0〜5. 0 mであることを特徴とする燃料電池 セパレータ(例えば、特許文献 3参照)などが知られて 、る。
し力しながら、上記特許文献 1〜3に記載のサンドブラスト加工、常圧放電プラズマ 処理やショットブラスト法により凹凸部を形成する燃料電池用セパレータでは、ガス流 路の表面に凹凸部を形成するためには凹凸部以外の部分をマスキングする必要が あり、表面処理工程が複雑化するという課題及び凹凸部が正確に形成できず歩留ま りが低い点に課題があり、更に、これらの表面処理によっても経時的に親水性能が低 下するという課題がある。
更に、上記特許文献 1に記載の燃料電池用セパレータでは、カーボン粒子に、親 水性官能基を付与する処理をした上で、バインダーと加圧成形又は加圧加熱成形し 、成形後にガス流路の表面に凹凸部を形成するという処理を行うため、製造効率が 悪ぐまた、性能のバラツキを招くという課題がある。
上記特許文献 2に記載の燃料電池用セパレータでは、プラズマ処理を行うために、 種々の処理用ガスが必須であり、更に、安全性の観点から不活性ガスによって希釈 された雰囲気で処理を行う必要があるという制約がある。また、励起したガスが吹き出 されて燃料電池セパレータに接触処理されるので、複雑かつ微細な溝パターンへの 部分的加工は困難という課題がある。また、ドライでの長期の時間経過の経過と共に 濡れ性が低下する課題などがある。更に、上記特許文献 3に記載の燃料電池用セパ レータでは、熱硬化性榭脂、平均粒径 20〜70 /ζ πιの人造黒鉛および内部離型剤を 含む組成物を成形してなるものである力 内部離型剤の含有によって、経時によって ブリードアウトするという課題、並びに、榭脂 '離型剤が配合されているという組成上、 濡れ性が十分でなぐ経時的に濡れ性が低下するという課題などがある。 [0007] 一方、燃料電池の製造用にレーザー処理を用いる技術としては、例えば、固体高 分子電解質膜とその両側の燃料極と空気極とで MEAを構成し、その MEAの両側を セパレータで挟んで単セルスタックを積層してなる燃料電池であって、セパレータは 黒鉛粒子と榭脂の混合物で表面にガス流路がー体成形され、セパレータの表面に できたスキン層が除去されている燃料電池、並びに、上記セパレータの表面にできた 榭脂分の多いスキン層をレーザ照射により炭化させてなる燃料電池の製造方法 (例 えば、特許文献 4参照)が知られ、また、燃料電池用の電解質膜の製造方法であって 、(a)水素透過性金属により基材を形成する工程と、(b)前記基材の表面に、プロトン 伝導性を有するセラミックス層を成膜する工程とを有し、該工程 (b)において、前記セ ラミック層を形成するアモルファス材料の結晶化に要する結晶化工ネルギカ 該ァモ ルファスに局所的にレーザ照射によって供給されるという製造方法 (例えば、特許文 献 5参照)が知られている。
[0008] し力しながら、上記特許文献 4に記載の技術は、溝部をマスキングし、溝部以外の 榭脂分の多いセパレータ表面を炭化し、接触電気抵抗を低減させるものであり、レー ザ照射によって溝部を親水化処理するという認識は全くなぐ本願発明とその目的、 技術思想 (構成及びその作用効果)が全く相違するものであり、しかも、当該炭化せ しめるためのレーザ照射量は多大であり、この照射量では親水化処理はできないも のである。
また、上記特許文献 5に記載の技術は、燃料電池用の電解質膜の製造方法であり 、レーザ照射により親水化せしめるという認識は全くなぐ本願発明とその目的、技術 思想 (構成及びその作用効果)が全く相違するものである。
特許文献 1:特開 2001— 283873号公報 (特許請求の範囲、実施例等) 特許文献 2:特開 2002— 25570号公報 (特許請求の範囲、実施例等)
特許文献 3:特開 2005— 197222号公報 (特許請求の範囲、実施例等) 特許文献 4:特開 2004— 335121号公報 (特許請求の範囲、実施例等) 特許文献 5:特開 2005 - 5088号公報 (特許請求の範囲、実施例等)
発明の開示
発明が解決しょうとする課題 [0009] 本発明は、上記従来の課題等に鑑み、これを解消しょうとするものであり、特別な前 処理を施すことなぐ経時的にも優れた親水性を有すると共に、電池特性を向上させ ることができる燃料電池用セパレータ及びその製造方法を提供することを目的とする 課題を解決するための手段
[0010] 本発明者らは、上記従来の課題等について、鋭意検討した結果、少なくとも炭素材 料から成形された燃料電池用セパレータの表面部に、特定の処理を施すことにより、 親水性官能基を形成すると共に、表面の平均粗さ Raが特定値未満となる凹凸部を 形成することにより、上記目的の燃料電池用セパレータ及びその製造方法が得られ ることを見い出し、本発明を完成するに至ったのである。
[0011] すなわち、本発明は、次の(1)〜(8)に存する。
(1) 少なくとも炭素材料力 成形された燃料電池用セパレータであって、該セパレ ータの表面部には、レーザー照射処理により、親水性官能基を形成増加させると共 に、表面の平均粗さ Raが 50 m未満となる凹凸部を形成したことを特徴とする燃料 電池用セパレータ。
(2) 燃料電池用セパレータ表面のレーザー処理部が少なくとも流路面の一部又は 全部であることを特徴とする上記(1)記載の燃料電池用セパレータ。
(3) 燃料電池用セパレータが、熱硬化性榭脂若しくは熱可塑性榭脂と炭素との複 合成形体、膨張黒鉛成形体、ガラス状炭素の成形体、ガラス状炭素と黒鉛との複合 成形体の何れか一つであることを特徴とする上記(1)又は(2)記載の燃料電池用セ ノ レータ。
(4) レーザー照射処理を、少なくとも酸素を含むガス雰囲気中で行うことを特徴とす る上記(1)〜(3)の何れか一つに記載の燃料電池用セパレータ。
(5) 親水性官能基が、 OH基, COOH基、 >C = 0基の少なくとも 1つ以上で あることを特徴とする上記(1)〜(3)の何れか一つに記載の燃料電池用セパレータ。
(6) 表面の平均粗さ Raが 30 m未満となる凹凸部であることを特徴とする上記(1) 〜(5)の何れか一つに記載の燃料電池用セパレータ。
(7) レーザー照射処理された燃料電池用セパレータ表面は、連続的で滑らかな曲 面であることを特徴とする上記(1)〜(6)の何れか一つに記載の燃料電池用セパレ ータ。
(8) 少なくとも炭素材料力 成形された燃料電池用セパレータの表面部に、レーザ 一照射処理することにより、上記セパレータ表面部に、親水性官能基を形成増加さ せると共に、表面の平均粗さ Raが 50 μ m未満となる凹凸部を形成したことを特徴と する燃料電池用セパレータの製造方法。
なお、本発明で規定する「表面の平均粗さ Ra」は、 JIS B0601— 1994で規定さ れる方法により測定される値を 、う。
また、本発明で規定する「連続的で滑らかな曲面」とは、レーザー処理を施すことに より、表面が溶融して液状ィ匕した材料が、そのまま固化したような状態で、全体的に 連続的で滑らかに広がった状態をいう。これは、電子顕微鏡 10000倍の倍率で明瞭 に観察されるものである。レーザー処理前の段階では、成形あるいは焼成等の工程 で、部分的に生じる表面のささくれ、ばり、あるいは黒鉛等の体質材のエッジなどによ る明確な境界及び欠陥などにより表面が不連続な状態となっている。また、プラズマ 処理、酸ィ匕処理などによって、これらの不連続な表面状態は、いっそう不連続となる ものである。
発明の効果
[0012] 本発明によれば、特別な前処理を施すことなぐ優れた親水性及び電池特性を向 上させた燃料電池用セパレータが提供される。
本発明方法によれば、特別な前処理を施すことなぐ優れた親水性を有する燃料 電池用セパレータを、安価で量産性のある燃料電池用セパレータを製造することが できる燃料電池用セパレータの製造方法が提供される。
図面の簡単な説明
[0013] [図 1]本発明の一例を示すものであり、燃料電池用セパレータの所定の表面部(流路 面)に、レーザー照射処理を行っている状態の一例を示す概略説明図である。
[図 2]本発明の一例を示すものであり、燃料電池用セパレータの所定の表面部(流路 面)に、親水性官能基と表面の平均粗さ Raが 50 m未満となる凹凸部が形成された 状態を示す拡大概略断面図である。 [図 3]本発明のレーザー照射処理後のセパレータ表面 (流路面)の電子顕微鏡写真 図面である。
[図 4]不連続な処理面となるセパレータ表面 (流路面)の一例を示す電子顕微鏡写真 図面である。
[図 5]不連続な処理面となるセパレータ表面 (流路面)の他例を示す電子顕微鏡写真 図面である。
[図 6]不連続な処理面となるセパレータ表面 (流路面)の更なる他例を示す電子顕微 鏡写真図面である。
[図 7]本発明の燃料電池用セパレータを組み込んだ燃料電池の一例を示す概略分 解斜視図である。
[図 8]親水官能基を評価した一例を示す図表である。
[図 9]親水官能基を評価した他例を示す図表である。
符号の説明
[0014] A 燃料電池用セパレータ
10 セパレータ
11 流路面 (溝部)
12 凹凸部
20 レーザー装置
発明を実施するための最良の形態
[0015] 以下に、本発明の実施形態を詳しく説明する。
本発明の燃料電池用セパレータは、少なくとも炭素材料カゝら成形された燃料電池 用セパレータであって、該セパレータの表面部には、レーザー照射処理により、親水 性官能基を形成増加させると共に、表面の平均粗さ Raが 50 m未満となる凹凸部 を形成したことを特徴とするものである。
また、本発明の燃料電池用セパレータの製造方法は、少なくとも炭素材料力も成形 された燃料電池用セパレータの表面部に、レーザー照射処理することにより、上記セ パレータ表面部に、親水性官能基を形成増加させると共に、表面の平均粗さ Raが 5 0 μ m未満となる凹凸部を形成したことを特徴とするものである。 以下で、「本発明」というときは、上記の燃料電池用セパレータとその製造方法の両 方を含むことをいう。
[0016] 本発明において、レーザー照射処理前の燃料電池用セパレータは、少なくとも炭 素材料カゝら成形された燃料電池用セパレータであれば、炭素材料を含む組成物の 調製方法、成形方法、形状及び構造等は特に限定されるものでなぐ例えば、少なく とも炭素材料を用いて、所定の流路面となる溝部を成形型により形成した後、焼成処 理により所定構造の燃料電池用セパレータを成形、または、少なくとも炭素材料と熱 硬化性榭脂若しくは熱可塑性榭脂とを用いて、所定の流路面となる溝部を成形型に より形成した燃料電池用セパレータ、更に、少なくとも熱硬化性榭脂を所定の流路面 となる溝部を成形型により形成した後、焼成処理により所定構造の燃料電池用セパ レータを形成することなどが挙げられる。
用いるセパレータの原材料は、炭素材料の他、熱硬化性榭脂、熱可塑性榭脂、及 びこれらの混合材料、更に、硬化促進剤、可塑剤、溶剤などの各セパレータ成形用 添加剤が挙げられる。
[0017] 使用することができる炭素材料としては、特に限定されず、例えば、ガラス状炭素、 等方性炭素材、黒鉛粉末〔高配向性熱分解黒鉛 (HOPG)、キッシュ黒鉛、天然黒 鉛、人造黒鉛、フラーレン、カーボンブラックを含む〕、炭素繊維〔気相成長炭素繊維 、 PAN系炭素繊維、黒鉛繊維を含む〕、カーボンナノチューブ、膨張黒鉛シート等が 挙げられる。これらの炭素材料は、必要とする電気伝導性値等により、適宜選択され 、各単独でも 2種以上の混合物でも使用することができるが、特に、伝導性向上効果 が高いものが望ましい。
また、炭素材料をつなぐバインダー又は熱硬化性榭脂としては、例えば、フエノー ル榭脂、ポリイミド榭脂、フラン榭脂、エポキシ榭脂、キシレン榭脂、不飽和ポリエステ ル榭脂、メラミン榭脂、アルキッド榭脂、コプナ榭脂などが挙げられ、加熱により分子 間架橋を生じ三次元化して硬化し、特別の炭素前駆体化処理を行うことなく高 ヽ炭 素残さ収率を示すものが好適に用いられる。
熱可塑性榭脂としては、例えば、ポリ塩ィ匕ビ二ルーポリ酢酸ビュル共重合体、ポリ 塩化ビニル、ポリアクリロニトリル、ポリビニルアルコール、ポリアミドなどが挙げられる。 [0018] 本発明では、燃料電池用セパレータに要求されるガス不透過性、導電性、熱伝導 性ゃ耐腐食性、耐薬品性、機械的強度等を考慮して、上記各原材料を種々選択し て好適な配合量等となる混合物 (組成物)を用いることが望ましい。例えば、炭素材 料、ノ インダー及び硬化促進剤など力もなる混合物、炭素材料及び熱硬化性榭脂な どカゝらなる混合物、炭素材料、熱可塑性榭脂及び可塑剤などカゝらなる混合物などが 挙げられる。
上記で得られた混合物等は、例えば、流路面となる溝パターンの成形型に好適な 量を充填して成形する (成形工程)。成形型の溝の形状 (断面 V状、凹状等)、深さ、 幅及びそのパターン等は、特に限定されず、燃料電池種、用途、構造などにより、適 宜好適な溝形状、深さ、幅、溝パターンなどに設定される。
例えば、焼成処理でセパレータを作製する場合では、上記成形型を 70〜150°Cに 加熱して固化処理し (乾燥工程)、得られた榭脂プレートを型から外し、更に、非酸化 雰囲気下で加熱処理を行って焼成せしめ(焼成工程)、所定構造のセパレータが得 られる。
非酸ィ匕雰囲気下としては、窒素ガス、アルゴンガスなどの不活性雰囲気中、真空中 の少なくとも 1種、すなわち、これらの各単独雰囲気中、または、各雰囲気中をニェ 程、三工程で焼成することにより、バインダー等を炭素化して所定構造のセパレータ が作製されることとなる。なお、必要に応じて、上記成形 (工程)後や焼成(工程)後に 、積層スタックのための位置決め用の外周部加工、孔抜き加工、及び最終仕上げの ための表裏面で異なる部位の溝カ卩ェ等、最低限の加工処理を行うこともできる。
[0019] 本発明では、上述の如ぐ少なくとも炭素材料で成形されたセパレータ、例えば、熱 硬化性榭脂若しくは熱可塑性榭脂と炭素 (材料)との複合成形体、膨張黒鉛成形体 、ガラス状炭素の成形体、ガラス状炭素と黒鉛との複合成形体などの何れか一つか らなるセパレータにおいて、親水化すべき所定の表面部、例えば、流路面となる表面 部に、レーザー照射処理により、親水性官能基を形成増加させると共に、表面の粗さ Raが 50 μ m未満となる凹凸部を形成する。
用いるレーザー照射処理としては、セパレータの所定の表面部、例えば、レーザー 処理部が少なくとも流路面の一部又は全部に、親水性官能基形成増加と表面の粗さ Raが 50 m未満となる凹凸部が形成できるレーザー照射であれば、特に限定され ず、例えば、 YAGレーザー、炭酸ガスレーザー、エキシマレーザー、アルゴンレーザ 一、ルビーレーザー、ガラスレーザーなどが挙げられる。好ましくは、発振波長、汎用 性の点力 YAGレーザーが望まし!/、。
[0020] 本発明におけるレーザー照射処理は、セパレータの所定の表面部、例えば、少なく とも流路面の一部又は全部に、—OH基,—COOH基、 >C = 0基などの少なくとも 1つ以上の親水性官能基を効率良く形成増加せせる点、経済性の点から、室温下( 25°C)空気雰囲気中、若しくは、少なくとも酸素を含むガス雰囲気中で行うことが好ま しい。また、室温下以上の加湿状態で行ってもよいものである。
[0021] また、本発明のレーザー照射処理は、セパレータの所定の表面部に、上述の如ぐ 親水性官能基を形成増加させると同時に、表面の平均粗さ Raが 50 m未満となる 凹凸部を形成する。好ましくは、表面の平均粗さ Raが 30 m未満となる凹凸部、更 に好ましくは、表面の粗さ平均 Raが 0. 01〜: LO /z mとなる凹凸部、特に好ましくは、 表面の粗さ平均 Raが 0. 2〜7 mとなる凹凸部を形成することが望ましい。
更に、本発明のレーザー照射処理で形成される凹凸部は、上記表面の平均粗さ R aが 50 m未満で、連続的で滑らかな曲面であることが望ましい。
この表面の平均粗さ Raが 50 μ mを超える凹凸部であると、 DMFCなどの小型機の 場合寸法精度が重要となるので、出力がバラツキ、不安定となるデメリットとなり、更に 、流路を流れる燃料の流れ抵抗となり、好ましくない。また、表面の平均粗さ Raが 0. 1 μ m未満となる凹凸部であると、親水化度合いが弱ぐ経時的にも目的の親水化の 機能を発揮できなヽことがある。
[0022] 本発明において、レーザー照射条件は、セパレータの所定の表面部に、例えば、 少なくとも流路面の一部又は全部に、親水性官能基の形成増加と表面の平均粗さ R aが 50 m未満となる凹凸部が形成できる照射量であれば、特に限定されるもので はなぐセパレータの原材料種、大きさ、形状等により変動するものである力 YAGレ 一ザ一などを用いた場合、 3〜15Wの間での出力調整、レーザースキャン速度の調 整、レーザーパルス幅の調整、焦点距離によるレーザースポット径若しくはエネルギ 一密度の調整(およそ、 103〜: L06WZcm2)、レーザー照射パターンの調整等の任 意の条件調整を行うことで、目的の親水性官能基の形成増加と表面の平均粗さ Ra が 50 m未満となる凹凸部、更に、上記各条件調整を好適に組み合わせることで、 連続的で滑らかな曲面が形成できるものとなる。
なお、上記 3〜15Wの間での出力調整は、レーザーの仕様、照射条件等により変 動し一概には言えないが、出力が 3W未満であると、親水官能基の形成増加が困難 となり、また、処理に要する時間が増大したり、経時的にも親水性官能基の固定機能 を発揮できないことがある。一方、出力が 15Wを超える照射であると、照射量が多大 となり、照射部を深く削ることとなるので、目的の親水性官能基の形成増加と凹凸部 を形成することができず、し力も、セパレータ表面、あるいは、流路面の寸法精度が問 題となり、燃料電池の性能が不安定となる。
図 1は、燃料電池用セパレータの所定の表面部(流路面)に、レーザー照射処理を 行っている状態の一例を示す概略説明図であり、図 2は、セパレータの所定の表面 部 (流路面)に、親水性官能基(一 OH基,— COOH基、 >C = 0基など)の形成増 カロと表面の平均粗さ Raが 50 μ m未満となる凹凸部が形成された状態を示す拡大概 略断面図であり、図 3は、図 2の図示符号 12 (流路面)部分の連続的で滑らかな曲面 を有する電子顕微鏡写真図面 (株式会社日立製作所製、 S4700、倍率:10, 000倍 、以下同様)である。
また、図 4〜図 6は、未処理や酸ィ匕処理等により連続的で滑らかな曲面とならない 不連続な状態を示す電子顕微鏡写真図面であり、図 5の方が図 4よりも更に不連続 な表面状態を示すものである。
本発明では、図 1に示すように、少なくとも炭素材料カゝら成形された燃料電池用セ パレータ 10の所定の表面部(流路面) 11に、 YAGレーザー装置 20により照射処理 することで、一工程で、当該表面部 11に親水性官能基(一 OH基,— COOH基、 > C = 0基等)の形成増加と、平均粗さ Raが 50 m未満となる凹凸部 12がー度に形 成することができるので、従来のマスキング処理によるサンドブラスト加工、常圧放電 プラズマ加工やショットブラスト加工により凹凸部を形成するものよりも製造効率が良 ぐかつ、親水化処理する所要箇所を簡単に、短時間で処理することができるもので ある。 また、得られる燃料電池用セパレータは、特別な前処理を施すことなぐ経時的にも 優れた親水性を有すると共に、電池特性を向上させることができるものである。
[0024] このように構成される本発明の燃料電池用セパレータは、特別な前処理を施すこと なぐ経時的にも優れた親水性を有すると共に、流路抵抗が低く抑えられているので 、電池の電極反応で発生した生成水の除去を容易にし、燃料電池特性のバラツキを 抑制することが可能となる。このセパレータを用いた、例えば、図 7に示す固体高分 子型の燃料電池 A、具体的には、固体高分子電解質膜 (プロトン導電膜) 30とその 両側の触媒層 31, 32を設けた燃料極 33と空気極 34とで MEAを構成し、その MEA の両側を本発明のセパレータ 10, 10で挟んで単セルスタックを積層してなる燃料電 池 Aでは、本発明の上述の優れた効果を有する燃料電池用セパレータ 10を用いる ので、長期に亘つて安定した発電効率を有する電池特性に優れた燃料電池が得ら れるちのとなる。
実施例
[0025] 次に、本発明を実施例及び比較例により、更に詳述するが、本発明は下記実施例 に限定されるものではない。
[0026] 〔実施例 1〜5及び比較例 1〜7〕
下記調製法、処理方法により、各燃料電池用セパレータを得た。
[0027] (実施例 1)
フラン榭脂〔日立化成工業 (株)製 ヒタフラン VF— 303〕 90重量部と天然鱗状黒 鉛(日本黒鉛工業 (株)製 平均粒径 5 μ m) 10重量部に、硬化促進剤として p -トル エンスルホン酸を 1. 5重量部加え、 3000rpmで 2分間混合撹拌した混合物を内寸 法 59mm X 59mm X l. 5mmでプレート成形用金型に適量流し込み、この型を 100 °Cに加熱して固化処理後、できた榭脂プレートを型力も外し、焼成炉を用いて 1500 °Cの加熱処理を行い、炭素製セパレータを得た。
得られたセパレータの寸法は、 47mmX 47mm X 1. 2mm (流路面の幅 lmm、深 さ 0. 5mm)であった。この加熱処理方法により得られたセパレータは、後述する実施 例 2、比較例 1〜7でも用いた。
得られたセパレレータの流路面に、 YAGレーザー装置を用いて、室温空気雰囲気 下で、出力 12W、パルス幅 50 sの条件で流路面にレーザー処理を行い、親水性 官能基と凹凸部を形成した。
[0028] (実施例 2)
上記実施例 1と同様の方法で得られたセパレータの流路面に、レーザー照射処理 として、 YAGレーザー装置を用いて、室温空気雰囲気下で、出力 10W、連続スキヤ ンの条件で流路面にレーザー処理を行い、親水性官能基と凹凸部を形成した。
[0029] (実施例 3)
フラン榭脂〔日立化成工業 (株)製 ヒタフラン VF— 303〕 100重量部に、硬化促進 剤として p—トルエンスルホン酸を 1. 5重量部加えて撹拌混合し、混合物を所定の成 型用金型に流し込み、この型を 100°Cに加熱して固化処理後、できた榭脂プレート を型から外し、焼成炉を用いて 1500°Cの加熱処理を行い、炭素製セパレータを得た 得られたセパレータの寸法は、 47mmX 47mm X 1. 2mm (流路面の幅 lmm、深 さ 0. 5mm)であった。
得られたセパレレータの流路面に、 YAGレーザー装置を用いて、室温空気雰囲気 下で、出力 12W、パルス幅 50 sの条件で流路面にレーザー処理を行い、親水性 官能基と凹凸部を形成した。
[0030] (実施例 4)
フラン榭脂〔日立化成工業 (株)製 ヒタフラン VF— 303〕 10重量部と、ポリ塩ィ匕ビ- ルーポリ酢酸ビニル共重合体 (新第一塩ビ社製 ZEST— C150S) 40重量部との混 合榭脂に、天然鱗状黒鉛(日本黒鉛工業社製、平均粒径 5 m) 50重量部を加え、 更に可塑剤としてジァリルフタレートを 20重量部添カ卩した材料をヘンシェルミキサー で混合、分散し、ミキシング用二本ロールを用いて十分に混練を繰り返して燃料電池 用セパレータ組成物を調整し、更に粉砕、篩いをかけて粉末を得た。
得られた粉末を所定の溝パターンの成型用金型でプレス成形した後、有酸素ガス 雰囲気中で 300°Cの温度で乾燥固化させ、不活性ガス雰囲気中で 1500°Cの加熱 処理を行い、炭素製セパレータを得た。
得られたセパレータの寸法は、 47mmX 47mm X 1. 2mm (流路面の幅 lmm、深 さ 0. 5mm)であった。
得られたセパレレータの流路面に、 YAGレーザー装置を用いて、室温空気雰囲気 下で、出力 12W、パルス幅 50 sの条件で流路面にレーザー処理を行い、親水性 官能基と凹凸部を形成した。
[0031] (実施例 5)
フ ノール榭脂〔群栄化学社製 PL4805N] 25重量部と天然鱗状黒鉛 (日本黒鉛 工業社製、平均粒径 5 μ m) 75重量部をヘンシェルミキサーで混合し、燃料電池用 セパレータ組成物を調整した。
得られた組成物を所定の成型用金型でプレス成形し、榭脂 Z黒鉛複合体のセパレ ータを得た。
得られたセパレータの寸法は、 47mmX 47mm X 1. 2mm (流路面の幅 lmm、深 さ 0. 5mm)であった。
得られたセパレレータの流路面に、 YAGレーザー装置を用いて、室温空気雰囲気 下で、出力 8W、パルス幅 50 sの条件で流路面にレーザー処理を行い、親水性官 能基と凹凸部を形成した。
[0032] (比較例 1)
上記実施例 1と同様の方法で得られたセパレータの流路面に、 YAGレーザー装置 を用いて、室温空気雰囲気下で、出力 1W、連続スキャンの条件で流路面にレーザ 一処理を行った。
[0033] (比較例 2)
上記実施例 1と同様の方法で得られたセパレータを用い、出力 50W、照射時間 1 分間の条件で酸素プラズマ処理を行った。
[0034] (比較例 3)
上記実施例 1と同様の方法で得られたセパレータを用い、出力 300W、照射時間 3 0分間の条件で酸素プラズマ処理を行った。
[0035] (比較例 4)
上記実施例 1と同様の方法で得られたセパレータを未処理の状態のものを用いた。
[0036] (比較例 5) 上記実施例 1と同様の方法で得られたセパレータをサンドブラスト処理 (粒径 1 μ m の噴射剤、ショット圧 lkg)を施した。
[0037] (比較例 6)
上記実施例 1と同様の方法で得られたセパレータの流路面に、 YAGレーザー装置 を用いて、室温空気雰囲気下で、出力 200W、連続スキャンの条件で流路面にレー ザ一処理を行った。
[0038] (比較例 7)
上記実施例 1と同様の方法で得られたセパレータを、レーザー照射処理を行わず、 空気雰囲気中で、 20分間、 500°Cの条件で酸化処理を行った。
[0039] 上記実施例 1〜5及び比較例 1〜6で得た各燃料電池用セパレータについて、下 記各評価方法により、親水化度 (親水基官能基の有無、平均粗さ Ra、処理直後接触 角、経時的親水化度)を評価した。
これらの結果を下記表 1に示す。
[0040] (親水基官能基の有無の評価方法)
セパレータ表面の親水官能基の評価は、島津製作所社製 X線光電子分光分析 装置 (ESCA— 3400)で行 ヽ、下記評価基準で評価した。
評価基準:
◎:未処理 (比較例 4)と比較して、 C— 0、 C = 0の結合エネルギーピークの成 長があり、新たにカルボキシル基 (COOH基)の結合が生成、更に酸素の結合エネ ルギーピークの成長がある。
〇:未処理 (比較例 4)と比較して、 C— 0、 C = 0の結合エネルギーピークの成 長があり、更に、酸素の結合エネルギーピークの成長がある。
△:若干の結合エネルギーの変化が認められる力 ほとんど差がない。
X:未処理 (比較例 4)と比較して、官能基に帰属されるピークの成長が認めら れず、上記〇に帰属される結合エネルギーのピークも変化が認められな 、。
[0041] なお、図 8及び図 9は、 X線光電子分光分析装置 (ESCA)の評価結果の例示であ り、図 8は、 C = 0, C-0 -C = 0, C—Hのピークを示すものであり、図 9は、 C-O •C = 0, C—Hのピークを示すものである。 [0042] (平均粗さ Raの評価方法)
表面の平均粗さ Ra m)の評価は、東京精密社製 平均粗さ形状測定器 サーフ コムを用い、駆動速度 0. 3mmZ分で行った。
[0043] (接触角の評価方法)
処理後の接触角の評価方法は、共和界面化学社製 接触角計 CA— X型を用い 、液滴を 1 μ 1滴下し、接触角を測定した。数値が低い程、親水化度に優れていること を示す。
[0044] (経時的親水化度の評価方法)
経時的親水化度の評価は、 25°C、 60%の雰囲気下と、 60°Cドライの雰囲気下で 一定期間(7日、 2ヶ月)保管して、上記と同様に方法で接触角を測定し、接触角の変 化で評価した。数値の変動が低い程、経時的親水化度に優れていることを示す。
[0045] [表 1]
Figure imgf000018_0001
上記表 1の結果力も明らかなように、本発明範囲となる実施例 1〜5の親水性官能 基が形成されると共に、表面の平均粗さ Raが 50 m未満となる凹凸部を形成した燃 料電池用セパレータは、本発明の範囲外となる比較例 1の燃料電池用セパレータ、 酸素プラズマ処理の比較例 2及び 3、未処理の比較例 4、サンドブラスト処理の比較 例 5及び比較例 7の酸化処理に較べて、優れた親水化度、並びに、経時的にも安定 した親水化度を有することが判明した。
また、比較例 6では、寸法精度が悪ぐ深掘りし過ぎであり、表面粗さも大きすぎ、一 部に切断された部分もあった。小型の燃料電池用セパレータの加工法としては不適 であることが判った。
更に、本発明範囲となる実施例 1〜5のレーザー照射処理した燃料電池用セパレ ータを電子顕微鏡 (倍率: 10, 000倍)により観察したところ、図 3と同様に、連続的で 滑らかな曲面であった。これに対して、比較例 1及び 4では、図 4と同様に、不連続な 状態となっており、また、比較例 2、 5〜7では、図 5と同様に、更に不連続な状態とな つており、比較例 3では、図 6に示すように、不連続な状態となっていることが判った。 産業上の利用可能性
固体高分子型などの燃料電池用に好適な燃料電池用セパレータ及びその製造方 法が得られる。

Claims

請求の範囲
[1] 少なくとも炭素材料力 成形された燃料電池用セパレータであって、該セパレータ の表面部には、レーザー照射処理により、親水性官能基を形成増加させると共に、 表面の平均粗さ Raが 50 μ m未満となる凹凸部を形成したことを特徴とする燃料電池 用セパレータ。
[2] 燃料電池用セパレータ表面のレーザー処理部が少なくとも流路面の一部又は全部 であることを特徴とする請求項 1記載の燃料電池用セパレータ。
[3] 燃料電池用セパレータが、熱硬化性榭脂若しくは熱可塑性榭脂と炭素との複合成 形体、膨張黒鉛成形体、ガラス状炭素の成形体、ガラス状炭素と黒鉛との複合成形 体の何れか一つであることを特徴とする請求項 1又は 2記載の燃料電池用セパレー タ。
[4] レーザー照射処理を、少なくとも酸素を含むガス雰囲気中で行うことを特徴とする請 求項 1〜3の何れか一つに記載の燃料電池用セパレータ。
[5] 親水性官能基が、—OH基,—COOH基、 >C = 0基の少なくとも 1つ以上である ことを特徴とする請求項 1〜3の何れか一つに記載の燃料電池用セパレータ。
[6] 表面の平均粗さ Raが 30 μ m未満となる凹凸部であることを特徴とする請求項 1〜5 の何れか一つに記載の燃料電池用セパレータ。
[7] レーザー照射処理された燃料電池用セパレータ表面は、連続的で滑らかな曲面で あることを特徴とする請求項 1〜6の何れか一つに記載の燃料電池用セパレータ。
[8] 少なくとも炭素材料力 成形された燃料電池用セパレータの表面部に、レーザー照 射処理することにより、上記セパレータ表面部に、親水性官能基を形成増加させると 共に、表面の平均粗さ Raが 50 m未満となる凹凸部を形成したことを特徴とする燃 料電池用セパレータの製造方法。
PCT/JP2006/315609 2005-08-05 2006-08-07 燃料電池用セパレータ及びその製造方法 WO2007018185A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112006002064T DE112006002064B4 (de) 2005-08-05 2006-08-07 Separatorplatte für eine Brennstoffzelle und Verfahren zu deren Herstellung
JP2007529577A JP4148984B2 (ja) 2005-08-05 2006-08-07 燃料電池用セパレータ及びその製造方法
US11/989,958 US7740971B2 (en) 2005-08-05 2006-08-07 Separator for fuel cell and production process for the same
CA2618287A CA2618287C (en) 2005-08-05 2006-08-07 Separator for fuel cell and production process for the same
CN2006800283930A CN101233640B (zh) 2005-08-05 2006-08-07 燃料电池用隔板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005227822 2005-08-05
JP2005-227822 2005-08-05

Publications (1)

Publication Number Publication Date
WO2007018185A1 true WO2007018185A1 (ja) 2007-02-15

Family

ID=37727368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315609 WO2007018185A1 (ja) 2005-08-05 2006-08-07 燃料電池用セパレータ及びその製造方法

Country Status (8)

Country Link
US (1) US7740971B2 (ja)
JP (1) JP4148984B2 (ja)
KR (1) KR100892187B1 (ja)
CN (1) CN101233640B (ja)
CA (1) CA2618287C (ja)
DE (1) DE112006002064B4 (ja)
TW (1) TW200721583A (ja)
WO (1) WO2007018185A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087732A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 燃料電池用セパレータおよび燃料電池
WO2009113717A1 (ja) * 2008-03-14 2009-09-17 昭和電工株式会社 燃料電池用セパレータおよびその製造方法
US8105721B2 (en) 2007-04-04 2012-01-31 GM Global Technology Operations LLC Microtextured fuel cell elements for improved water management
WO2012032922A1 (ja) * 2010-09-10 2012-03-15 日清紡ケミカル株式会社 燃料電池セパレータ
JP2014154475A (ja) * 2013-02-13 2014-08-25 Panasonic Corp 燃料電池セパレータ及びその製造方法
WO2014129224A1 (ja) * 2013-02-25 2014-08-28 日清紡ケミカル株式会社 燃料電池セパレータ
JP2015222729A (ja) * 2015-08-03 2015-12-10 パナソニックIpマネジメント株式会社 燃料電池セパレータ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091868B2 (en) * 2008-07-23 2012-01-10 GM Global Technology Operations LLC WVT design for reduced mass and improved sealing reliability
US8497050B2 (en) 2008-07-29 2013-07-30 GM Global Technology Operations LLC Amorphous carbon coatings for fuel cell bipolar plates
US8221938B2 (en) * 2008-08-08 2012-07-17 GM Global Technology Operations LLC Method of making a stable hydrophilic coating/surface on carbon-based materials for fuel cell applications
US9048468B2 (en) * 2010-09-17 2015-06-02 GM Global Technology Operations LLC Method for forming channels on diffusion media for a membrane humidifier
TWI447995B (zh) 2011-12-20 2014-08-01 Ind Tech Res Inst 雙極板與燃料電池
USD942849S1 (en) * 2018-09-28 2022-02-08 Mitsubishi Pencil Company, Limited Packaging container
US11611097B2 (en) 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making
WO2020097119A1 (en) * 2018-11-06 2020-05-14 Utility Global, Inc. Method of making a fusl cell and treating a component thereof
US11539053B2 (en) 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
EP3877152A4 (en) 2018-11-06 2022-10-12 Utility Global, Inc. INTEGRATED DEPOSITION AND HEATING SYSTEM AND METHOD
US11603324B2 (en) 2018-11-06 2023-03-14 Utility Global, Inc. Channeled electrodes and method of making
CN110357090B (zh) * 2019-07-19 2020-12-29 广东工业大学 一种纳米金刚石水溶胶的制备方法
KR20220060258A (ko) * 2020-11-04 2022-05-11 한양대학교 에리카산학협력단 마이크로 채널을 갖는 필름 구조체 및 그 제조 방법
KR102372491B1 (ko) * 2021-01-11 2022-03-10 주식회사 엔에스머티리얼즈 이차전지용 리드탭 제조 방법
DE102021113591A1 (de) 2021-03-11 2022-09-15 Schunk Kohlenstofftechnik Gmbh Verfahren zum ausbilden einer hydrophilen oberfläche auf einem graphithaltigen werkstoff und verfahren zum fertigen einer bipolarplatte sowie bipolarplatte und brennstoffzelle bzw. flussbatterie mit derselben
CN113410587A (zh) * 2021-04-26 2021-09-17 Ns材料有限公司 二次电池用极耳

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223904A (ja) * 2001-02-22 2003-08-08 Jfe Steel Kk 燃料電池用セパレータとその製造方法および固体高分子型燃料電池
JP2004335121A (ja) * 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd 燃料電池とその製造方法
JP2005197222A (ja) * 2003-12-12 2005-07-21 Nisshinbo Ind Inc 燃料電池セパレータ
JP2006019252A (ja) * 2004-05-31 2006-01-19 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池用セパレータ、高分子電解質形燃料電池、高分子電解質形燃料電池用セパレータの評価方法、及び、高分子電解質形燃料電池用セパレータの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881754A (ja) * 1994-09-12 1996-03-26 Nissin Electric Co Ltd 窒化クロム膜被覆部材及びその製造方法
KR100295611B1 (ko) 1996-07-10 2001-10-24 이구택 각종금속류표면의경질피막형성방법
EP0975040A1 (en) * 1998-02-06 2000-01-26 Nisshinbo Industries, Inc. Separator for fuel cells and method of manufacturing the same
JP3580218B2 (ja) 2000-03-31 2004-10-20 松下電器産業株式会社 高分子電解質型燃料電池用セパレータとこれを用いた高分子電解質型燃料電池
JP2002025570A (ja) 2000-07-04 2002-01-25 Sekisui Chem Co Ltd 燃料電池用セパレータの処理方法及び燃料電池
CA2372326C (en) 2001-02-22 2007-09-11 Kawasaki Steel Corporation Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
JP3773170B2 (ja) 2001-07-11 2006-05-10 株式会社藤商事 スロットマシン
KR20030030269A (ko) * 2001-10-09 2003-04-18 (주)세티 수지함침에 의하여 강화된 팽창 그라파이트 시이트로제조된 연료전지용 바이폴라 플레이트
JP2005005088A (ja) 2003-06-11 2005-01-06 Toyota Motor Corp 燃料電池用電解質膜の製造方法
US20050037253A1 (en) * 2003-08-13 2005-02-17 Amir Faghri Integrated bipolar plate heat pipe for fuel cell stacks
JP4143023B2 (ja) * 2003-11-21 2008-09-03 株式会社東芝 パターン形成方法および半導体装置の製造方法
KR100759654B1 (ko) 2004-05-31 2007-09-17 마츠시타 덴끼 산교 가부시키가이샤 고분자 전해질형 연료 전지용 세퍼레이터, 고분자 전해질형연료 전지, 고분자 전해질형 연료 전지용 세퍼레이터의평가방법 및 고분자 전해질형 연료 전지용 세퍼레이터의제조방법
JP4934951B2 (ja) 2004-08-25 2012-05-23 パナソニック株式会社 燃料電池用セパレータ及びその製造方法及びそれを用いた固体高分子型燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223904A (ja) * 2001-02-22 2003-08-08 Jfe Steel Kk 燃料電池用セパレータとその製造方法および固体高分子型燃料電池
JP2004335121A (ja) * 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd 燃料電池とその製造方法
JP2005197222A (ja) * 2003-12-12 2005-07-21 Nisshinbo Ind Inc 燃料電池セパレータ
JP2006019252A (ja) * 2004-05-31 2006-01-19 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池用セパレータ、高分子電解質形燃料電池、高分子電解質形燃料電池用セパレータの評価方法、及び、高分子電解質形燃料電池用セパレータの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105721B2 (en) 2007-04-04 2012-01-31 GM Global Technology Operations LLC Microtextured fuel cell elements for improved water management
JP2009087732A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 燃料電池用セパレータおよび燃料電池
WO2009113717A1 (ja) * 2008-03-14 2009-09-17 昭和電工株式会社 燃料電池用セパレータおよびその製造方法
JP2013179098A (ja) * 2008-03-14 2013-09-09 Showa Denko Kk 燃料電池用セパレータおよびその製造方法
WO2012032922A1 (ja) * 2010-09-10 2012-03-15 日清紡ケミカル株式会社 燃料電池セパレータ
JP5954177B2 (ja) * 2010-09-10 2016-07-20 日清紡ケミカル株式会社 燃料電池セパレータ
JP2014154475A (ja) * 2013-02-13 2014-08-25 Panasonic Corp 燃料電池セパレータ及びその製造方法
WO2014129224A1 (ja) * 2013-02-25 2014-08-28 日清紡ケミカル株式会社 燃料電池セパレータ
JP2014164996A (ja) * 2013-02-25 2014-09-08 Nisshinbo Chemical Inc 燃料電池セパレータ
US9768452B2 (en) 2013-02-25 2017-09-19 Nisshinbo Chemical Inc. Fuel cell separator
JP2015222729A (ja) * 2015-08-03 2015-12-10 パナソニックIpマネジメント株式会社 燃料電池セパレータ

Also Published As

Publication number Publication date
DE112006002064B4 (de) 2013-09-05
CA2618287A1 (en) 2007-02-15
DE112006002064T5 (de) 2008-07-03
US20100099000A1 (en) 2010-04-22
US7740971B2 (en) 2010-06-22
KR100892187B1 (ko) 2009-04-07
CN101233640A (zh) 2008-07-30
CN101233640B (zh) 2010-11-24
CA2618287C (en) 2011-11-22
JP4148984B2 (ja) 2008-09-10
JPWO2007018185A1 (ja) 2009-02-19
KR20080033294A (ko) 2008-04-16
TWI373876B (ja) 2012-10-01
TW200721583A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
WO2007018185A1 (ja) 燃料電池用セパレータ及びその製造方法
JP5680147B2 (ja) 燃料電池用セパレータおよびその製造方法
TWI416786B (zh) Isolated material for solid polymer fuel cell and manufacturing method thereof
EP1223630A2 (en) Bipolar plates for fuel cell stacks
KR100790423B1 (ko) 친수성 카본블랙 결집체 및 이의 제조 방법과, 이를포함하는 친수성 복합재 및 연료 전지용 바이폴라 플레이트
JP2007157387A (ja) 燃料電池の製造方法及び燃料電池
CN1599111A (zh) 燃料电池用电解质膜及其制造方法和使用它的燃料电池
JP2007172996A (ja) 流体配流板および流体配流板の製造方法
JP2006028616A (ja) 多孔質焼結体およびその製造方法
KR102350326B1 (ko) 금속 코팅 방법 및 이에 의해 형성된 코팅층을 포함하는 금속 부재
KR100801596B1 (ko) 친수성 무기물 결집체 및 이의 제조 방법과, 이를 포함하는친수성 복합재 및 연료 전지용 바이폴라 플레이트
CN115315835A (zh) 气体扩散电极基材的制造方法
JP2011146373A (ja) ガス拡散電極基材の製造方法
JP4561239B2 (ja) 燃料電池セパレータおよびそれを用いた燃料電池
JPH11297337A (ja) 固体高分子型燃料電池セパレータ部材及びその製造方法
JP2001068128A (ja) 燃料電池用セパレータ及びその製造方法
JP2004139885A (ja) 燃料電池用セパレータ及びその製造方法
JP2001143719A (ja) 燃料電池用セパレータ及びその製造方法
JP2003217609A (ja) 固体高分子型燃料電池用セパレータの製造方法
JP4430962B2 (ja) 固体高分子形燃料電池用セパレータ材とその製造方法
JP2002343374A (ja) 燃料電池用セパレータ及びその製造方法
US20240088405A1 (en) Method for forming a hydrophilic surface on a graphite-containing material, and method for manufacturing a bipolar plate, and bipolar plate, and fuel cell or flow battery having such a bipolar plate
JP2002114573A (ja) 導電性カーボン多孔体の作製方法及びその方法で作製した導電性カーボン多孔体
JP2002231261A (ja) 燃料電池用セパレータ及びその製造方法
JP2005235656A (ja) 燃料電池用セパレータ及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028393.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529577

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087001984

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2618287

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11989958

Country of ref document: US

Ref document number: 1120060020641

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006002064

Country of ref document: DE

Date of ref document: 20080703

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782451

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607