WO2007018069A1 - 異形シリカゾルおよびその製造方法 - Google Patents

異形シリカゾルおよびその製造方法 Download PDF

Info

Publication number
WO2007018069A1
WO2007018069A1 PCT/JP2006/315181 JP2006315181W WO2007018069A1 WO 2007018069 A1 WO2007018069 A1 WO 2007018069A1 JP 2006315181 W JP2006315181 W JP 2006315181W WO 2007018069 A1 WO2007018069 A1 WO 2007018069A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicic acid
silica sol
acid solution
silica
solution
Prior art date
Application number
PCT/JP2006/315181
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Nakayama
Akira Nakashima
Hiroyasu Nishida
Yoshinori Wakamiya
Original Assignee
Catalysts & Chemicals Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co., Ltd. filed Critical Catalysts & Chemicals Industries Co., Ltd.
Priority to JP2007529492A priority Critical patent/JP5127452B2/ja
Priority to US11/990,111 priority patent/US20100146864A1/en
Publication of WO2007018069A1 publication Critical patent/WO2007018069A1/ja
Priority to US13/137,661 priority patent/US8585791B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • C01B33/1435Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates using ion exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing

Definitions

  • the present invention relates to an efficient method for producing a deformed silica sol suitable as an abrasive.
  • the power of semiconductor materials is increasing as electrical and electronic products become smaller and higher in performance.
  • impurities such as Na and K
  • the performance of semiconductor materials There is a possibility that unreasonable power will be exerted and cause trouble.
  • Na adheres to the polished semiconductor substrate or the surface of the oxide film Na is captured by defects in the oxide film that are highly diffusible, and even if a circuit is formed on the semiconductor substrate, it will cause an insulation failure. It may cause a short circuit or a short circuit, and the dielectric constant may decrease. For this reason, the above-mentioned problems may occur depending on use conditions or when used for a long period of time. Therefore, there is a need for abrasive particles that hardly contain impurities such as Na and K.
  • silica sol, fumed silica, fumed alumina, and the like have been used as polishing particles.
  • Abrasives used in CMP usually increase the polishing rate of spherical polishing particles with an average particle size of about 200 nm, which is the strength of metal oxides such as silica and alumina, and wiring circuit metal.
  • the surface of the material to be polished has a level difference caused by a wiring groove pattern formed in the underlying insulating film ( Therefore, it is required to polish the coplanar surface while polishing and removing the convex portions to obtain a flat polished surface.
  • conventional spherical abrasive particles when the portion above the coplanar surface is polished, the circuit metal in the wiring groove at the bottom of the recess is polished to below the coplanar surface (dating and dipping). Called). When such dating (overpolishing) occurs, the thickness of the wiring decreases and wiring resistance increases, and the flatness of the insulating film formed thereon deteriorates. It is required to suppress this.
  • both the convex and concave portions can be polished at the same polishing rate, so that the surface after polishing that does not cause dating (overpolishing) has no unevenness and has excellent flatness. It is known. For example, since polishing does not occur during polishing in the formation of semiconductor integrated circuits, etc., the surface after polishing that does not increase the circuit resistance of the obtained integrated circuit is excellent in flatness, so that lamination can be performed efficiently. An integrated circuit can be formed.
  • abrasives containing such irregularly shaped particles can be used for aluminum disks (aluminum or plating layer on the base material) and aluminum wiring of semiconductor multilayer wiring boards.
  • glass substrates for optical disks and magnetic disks glass substrates for liquid crystal displays, glass substrates for photomasks, and mirror finishing of glassy materials.
  • JP-A-4-187512 includes adding a silicic acid solution to a 0.05 to 5.0% alkali metal silicate aqueous solution as SiO.
  • a compound of one or more metals selected from the group forces consisting of Ca, Mg, Al, In, Ti, Zr, Sn, Si, Sb, Fe, Cu and rare earth metals is added.
  • the addition time may be before the addition of the silicate solution or during the addition step). Maintain this mixture at an arbitrary temperature of 60 ° C or higher for a certain period of time, and then add the silicate solution.
  • SiO / M 0 (molar ratio) in the reaction solution is 60 to 100
  • Patent Document 2 discloses that an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof is added to an aqueous colloidal solution of active silicic acid, and the resulting aqueous solution is added. Add an alkaline substance, heat a part of the resulting mixture to 60 ° C or higher to make a heal liquid, the rest as a feed liquid, add the feed liquid to the heel liquid, and during the addition. In addition, by evaporating water, SiO concentration 6
  • a process for producing elongated, shaped silica sols comprising concentrating to 2-30% by weight is disclosed.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2001-11433 (Patent Document 3) describes 0.5 as SiO.
  • Metal oxide in the case of II-valent metal salt, MO, and III-valent metal salt field
  • Si 2 O colloidal aqueous solution of activated silicic acid
  • M represents a II or III valent metal atom
  • O represents an oxygen atom
  • the resulting mixture (1) is derived from the acidic spherical silica sol having an average particle size of 10 to 120 nm and pH 2 to 6
  • the ratio of silica content (A) to silica content (B) derived from this mixture (1) AZB (weight ratio) is 5 to: L00, and the mixture of this acidic spherical silica sol and this mixture (1)
  • JP-A-2001-48520 includes a silica concentration of 1 to 8 mol Z liter, an acid concentration of 0.0019 to 0.18 mol Z liter, and a water concentration of 2 to 30 mol Z liter.
  • After hydrolyzing the alkyl silicate with an acid catalyst without using a solvent it is diluted with water so that the silica concentration is in the range of 0.2 to 1.5 mol Z liter, and then the pH is 7 or more.
  • An alkali catalyst is added and heated so that the polymerization of silicic acid proceeds, and the average diameter in the thickness direction is 5 to 100 nm by electron microscope observation, and the length is 1.5 to 50 times the length.
  • a method for producing a silica sol in which amorphous silica particles are dispersed in a liquid dispersion is described.
  • Patent Document 5 discloses alkali metal silicic acid such as water glass. SiO concentration obtained by decation treatment of an aqueous salt solution is about 2 to 6% by weight.
  • An alkaline earth metal such as a salt of Ca, Mg, Ba or the like is added to an acidic aqueous solution of functional silicic acid at a weight ratio of 100 to 1500 ppm with respect to the SiO of the above active silicic acid in terms of its oxide.
  • SiO 2 / M 0 (M represents an alkali metal atom, NH or a quaternary ammonium group)
  • the liquid obtained by adding the same alkaline substance in an amount that makes the molar ratio 20-150 is the initial heel liquid, and 2-6 wt% SiO concentration and 20-150 SiO 2 / M obtained in the same manner.
  • JP-A-8-279480 (Patent Document 6) describes (1) a method in which an alkali silicate aqueous solution is neutralized with a mineral acid, an alkaline substance is added and heat aging is performed, and (2) an alkali silicate aqueous solution is positively added.
  • the particle shape of the silica particles includes a spherical shape, an irregular shape, a flat shape, a plate shape, an elongated shape, a fiber shape, and the like.
  • Patent Document 7 discloses alkylsilicate as an alkali. A method of polymerizing the produced silicic acid while hydrolyzing in the presence to obtain an aqueous silica sol is disclosed.
  • JP 2001-2411 A Patent Document 8 and the like disclosed that alkoxysilane was hydrolyzed in an acidic solvent and produced thereby.
  • a method for obtaining an aqueous silica sol by polymerizing a silicic acid monomer in a basic solvent is disclosed.
  • the resulting aqueous silica sol is insufficiently stable, or has a sufficient polishing rate when used in an abrasive having a low density of particles obtained by remaining alkoxy groups (OR groups). There is a problem that cannot be obtained.
  • water glass obtained by dissolving cullet obtained by alkali-melting silica sand in water as a starting material
  • water glass is dealkalized and the resulting silicic acid solution (silica monomer is added).
  • Water-based silica sol can be obtained by polymerizing in a basic solvent.
  • silica sand contains many metals such as Al, Ti, Fe, Mg, and Ca as impurities
  • the resulting aqueous silica sol contains many alkali metals (usually Na) in conjunction with the amount of these metal ions. In some cases, they remain and are not suitable for use as abrasives for semiconductor substrates.
  • aqueous silica sol can reduce A1 and Na to some extent by treating with an acid chelating agent or the like, its purity is insufficient as an abrasive for semiconductor substrates.
  • high-purity silica powder is used instead of silica sand, but high-purity silica is expensive and has a problem that it takes time to melt the alkali.
  • JP-A-61-158810 Patent Document 9
  • an alkali silicate aqueous solution having a predetermined concentration is brought into contact with a strong acid type cation exchanger, then an acid is added, and ultrafiltration is performed.
  • a method is disclosed in which an anion exchanger and a cation exchanger are contacted, ammonia is added, and particle growth is subsequently performed.
  • Patent Document 10 Japanese Patent Application Laid-Open No. 5-85718 includes (1) a step of obtaining a water solution of active silicic acid by decomposing a diluted aqueous solution of water glass, and (2) a solution of the active silicic acid solution with a strong acid (3) a step of deionizing the active silicic acid aqueous solution after the strong acid treatment to obtain an aqueous solution of high purity active silicic acid; (4) a step of adding an alkali to this aqueous solution to obtain a stabilized active silicic acid aqueous solution; (5) A step of growing this aqueous solution under evaporation and concentration to produce a silica sol having an average particle size of 10 to 30 ⁇ / ⁇ .
  • a step of bringing this silica sol into contact with an ion exchange resin A method for producing an aqueous silica sol is disclosed. In this method, strong acid is added at the stage of active silicic acid to remove impurities (leaching). There was a problem with the stability of the basic silicic acid, and it was easy to invite jelly.
  • JP-A-6-16414 discloses a step of preparing a solution obtained by adding a strong acid or a salt of a strong acid to an aqueous solution of an alkali metal silicate or active silicic acid, and then adding the solution to the solution.
  • a process for treating with an ion exchange resin and a method for producing a high-purity silica sol having a process power for adding ammonia to the obtained silica sol are disclosed. This manufacturing method also has the same problem as that of JP-A-5-85718.
  • chelate type ion-exchange resin and chelating agent are used as metal ion scavengers.
  • the production efficiency was poor.
  • chelate-type ion exchange resins have a strong selectivity for trivalent ions and are completely regenerated 1, and there is a problem that a large amount of regenerant is required for regeneration.
  • Patent Document 1 Japanese Patent Laid-Open No. 4187512
  • Patent Document 2 JP-A-7-118008
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-11433
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-48520
  • Patent Document 5 JP 2001-150334 A
  • Patent Document 6 JP-A-8-279480
  • Patent Document 7 JP-A-6-316407
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-2411
  • Patent Document 9 Japanese Patent Application Laid-Open No. 61-158810
  • Patent Document 10 JP-A-5-85718
  • Patent Document 11 Japanese Patent Laid-Open No. 6-16414
  • Patent Document 12 Japanese Unexamined Patent Publication No. 2003-89786
  • the present invention provides a novel deformed sheet suitable as an abrasive for an abrasive, for example, an abrasive for CMP, a silicon substrate, an aluminum substrate, a stone substrate, a metal oxide substrate or a glass substrate. It relates to licazosol.
  • the present invention also relates to a method for producing a deformed silica sol suitable as an abrasive, for example, an abrasive for CMP, a silicon substrate, an aluminum substrate, or a glass substrate.
  • a polymer obtained by polymerizing the contained silicic acid to an appropriate viscosity is heated in the presence of alkali to further build up, or the salt is removed from the silica hydrogel obtained by neutralizing the silicate with acid.
  • alkali, and SiO / M 0 M: Na, K
  • the seed sol is prepared by heating and adjusting the molar ratio of
  • the present invention produces a high-purity odd-shaped silica sol with extremely few impurities such as Na, K, Cl, Cu, Ni, and Fe by adding a silica sol high-purification step to the manufacturing step of the irregular-shaped silica sol.
  • a silica sol high-purification step for the purpose.
  • the modified silica sol of the present invention has an average particle diameter (r) obtained by a dynamic light scattering method and an average specific surface area force calculated by a nitrogen adsorption method () Ratio (rZ, hereinafter referred to as “association ratio”) is in the range of 1 to 2-10, the equivalent spherical particle diameter () force is in the range of 200 nm, and the specific surface area is 13 to 550 m 2 / g.
  • association ratio is in the range of 1 to 2-10
  • the equivalent spherical particle diameter () force is in the range of 200 nm
  • the specific surface area is 13 to 550 m 2 / g.
  • irregular-shaped silica sol in which irregular-shaped silica fine particles having a non-uniform shape are dispersed in a solvent, and the ratio of Ca and Mg contained in the irregular-shaped silica fine particles (in terms of acid / oxide) relative to the SiO content.
  • the deformed silica fine particles do not contain carbon.
  • Na, K, Cu, Ni and Fe contained in the highly purified deformed silica sol of the present invention Na is less than or equal to lOppm relative to SiO, K force Opp
  • a first method for producing a deformed silica sol of the present invention comprises a silicic acid solution having a pH in the range of 0 to 7.0 and a silica concentration of 0.05 to 3.0% by weight of 1 to 98 ° C.
  • a polymerized silicic acid solution in which the viscosity of silicic acid is in the range of 0.9-: LOOmPa's is prepared by aging at, and a seed solution is prepared by adding an alkali to the polymerized silicic acid solution and heating. The seed solution is built up.
  • the first production method of the deformed silica sol of the present invention comprises a silicic acid solution having a pH in the range of 1.0 to 7.0 and a silica concentration of 0.05 to 3.0% by weight.
  • a polymerized silicic acid solution in which the viscosity of silicic acid is in the range of 0.9 to LOOmPa's is prepared, and the pH force of the polymerized silicic acid solution is in the range of 9 to 12.5.
  • Prepare a seed solution by calorie heating at 50 to 150 ° C and adjust the pH to 9 to 12.5 by adding alkali to the obtained seed solution as necessary. In a temperature range of 20 to 98 ° C., build-up is performed by continuously or intermittently dripping silicic acid solution or high purity silicic acid solution into the seed solution.
  • the silicic acid solution is prepared by adding an alkali or an acid to the silicic acid solution and adjusting the pH within the range of pH 1.0 to 7.0! /.
  • the purified silica sol having a high purity is subjected to a high-purity treatment by separately contacting a strongly acidic cation exchanger or a strongly basic anion exchanger with a silicic acid solution according to the method for producing the modified silica sol. It is preferable to prepare by a production method that is built up using a highly purified silicic acid solution obtained by performing the above.
  • the highly purified irregular-shaped silica sol is subjected to a high-purity treatment comprising bringing the deformed silica sol obtained by the above production method into contact with a cation exchanger and further contacting with an anion exchanger. It is preferable to obtain by this.
  • the deformed silica sol of the present invention has an average particle diameter (r) of 10 to 200 nm, a specific surface area of 30 to 300 m 2 / g, an association ratio of 1.2 or more and less than 2.7 by a dynamic light scattering method. Characterized by being in range It is suitable as a silica sol for abrasives.
  • silica fine particles having an association ratio (rZ) in the range of 1.2 to 4.0 and r in the range of 10 to 150 nm are dispersed, and the pH at pH 5 and pH 9 is It is particularly preferable that the absolute value of the difference in data potential is in the range of 1 to 9 mV.
  • the second method for producing an irregular shaped silica sol according to the present invention is characterized by being prepared by the following steps (1) and (2).
  • the silicate is preferably selected from sodium silicate, potassium silicate, and ammonium silicate.
  • the seed sol in (2) is preferably a sol in which silica fine particles having an average particle diameter of 5 to 80 nm measured by a dynamic light scattering method are dispersed.
  • the silicic acid solution in (2) is preferably an acidic silicic acid solution obtained by dealkalizing an alkali silicate salt.
  • the silicic acid solution to be used is highly purified.
  • the deformed silica sol can be used as a component of an abrasive.
  • the production method of the present invention it is possible to easily obtain a deformed silica sol having a non-uniform shape. Such a modified silica sol exhibits excellent polishing characteristics when applied as an abrasive.
  • a high-purity odd-shaped silica sol that is an irregular-shaped silica sol having a non-uniform shape and has an extremely low impurity content.
  • the method for producing a deformed silica sol according to the present invention makes it possible to produce a deformed silica sol that can be applied to a polishing application and exhibit excellent polishing characteristics. Since it is not necessary to add calcium salt or magnesium salt, it is not necessary to remove them, and a modified silica sol can be obtained more easily than in the past.
  • the deformed silica sol of the present invention is roughly divided into two major characteristics, which are caused by the method for producing the deformed silica sol.
  • the deformed silica sol of the present invention is mainly characterized in that deformed silica fine particles having a non-uniform shape are dispersed in a solvent rather than a uniform shape of silica fine particles dispersed in a solvent.
  • the shape of the irregularly shaped silica fine particles can be various shapes such as a columnar shape, an egg shape, a lenticular shape, and a branched shape.
  • association ratio the ratio between the average particle diameter (r) obtained by the dynamic light scattering method and the equivalent spherical equivalent particle diameter () calculated by the average specific surface area force measured by the nitrogen adsorption method (rZ, hereinafter referred to as “association ratio”) is from 1.2 to LO.
  • association ratio is less than 1.2, it becomes very spherical, and when used for polishing, a sufficient polishing rate may not be obtained. On the other hand, if the association ratio exceeds 10, the polishing characteristics may deteriorate.
  • the average particle diameter (r) measured by the dynamic light scattering method is obtained by the measurement principle of the measuring instrument using the dynamic light scattering method.
  • the second feature of the irregular-shaped silica fine particles is that the proportion of Ca or Mg contained in the irregular-shaped silica fine particles (in terms of oxides) is less than or equal to lOOOppm with respect to SiO.
  • the ratio of Ca or Mg to 2 (as oxide) is preferably 500ppm or less.
  • the equivalent spherical equivalent particle diameter () calculated by the average specific surface area force measured by the nitrogen adsorption method of the present invention is preferably in the range of 5 to 200 nm.
  • the specific surface area (measured by nitrogen adsorption method) is in the range of 13 to 550 m 2 Zg.
  • the average particle size is less than 5 nm, a sufficient polishing rate may not be obtained when used as an abrasive.
  • the average particle diameter exceeds 200 nm, when applied to a polishing application in a silica sol state, the amount of abrasive particles per unit volume may be insufficient, and sufficient polishing characteristics may not be obtained.
  • the average particle size is more preferably in the range of 10 to 150 nm.
  • an irregular-shaped silica sol that is highly purified as desired is preferably used.
  • Such a highly purified modified silica sol satisfies the requirements of the modified silica sol, and further, Na is less than or equal to lOppm and K is less than or equal to lOppm relative to SiO.
  • the Cu force is OOppb or less
  • Ni is 300ppb or less
  • Fe is 150ppm or less.
  • C1 is lOOOppm or less with respect to SiO.
  • the first method for producing the deformed silica sol of the present invention will be described below in the order of the preparation process of the raw silicate solution, the aging process of the silicate solution, the seed solution preparation process, the build-up process, and the purification process.
  • the silicic acid solution used as a raw material means a solution of a low silicic acid polymer obtained by removing an alkali by treating an aqueous solution of an alkali silicate with a cation exchange resin.
  • alkali silicate for example, sodium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, etc. can be used, preferably No. 1 water glass, No. 2 water glass, No. 3 water glass, etc. Commercially available sodium silicate or potassium silicate is selected.
  • an alkali silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethylorthosilicate (HTEOS) with an excess of NaOH or the like is also suitable.
  • HTEOS tetraethylorthosilicate
  • a known method for producing the alkali silicate is not particularly limited. Can be applied.
  • a production method for example, an alkali silicate aqueous solution obtained by dissolving an alkali silicate glass cullet as disclosed in JP-A-9-110416 in water in the presence of a seed crystal composed of calcium silicate, A method for producing an alkali silicate aqueous solution obtained by filtering the alkali silicate aqueous solution, and a solution of alkali metal hydroxide (AOH; A: alkali metal) on soft silica as disclosed in JP-A-6-171924.
  • AOH alkali metal hydroxide
  • an aqueous solution of alkali silicate having the composition of AO-nSiO is produced by dissolving the silica content in the silica.
  • a method for producing an alkali silicate aqueous solution characterized by adding hydrogen peroxide to the aqueous solution to oxidize a reducing substance derived from soft silica stone.
  • the alkali silicate it is recommended to use a suitably purified one.
  • a known method can be applied as a purification method.
  • the viscosity of an alkali silicate aqueous solution as disclosed in JP-A-2001-294420 is adjusted in advance to 1 to 50 mPa's, and this is an ultrafiltration membrane having a molecular weight cut-off of 15,000 or less.
  • an alkali silicate aqueous solution in which an alkali silicate is diluted with water to have a silica concentration of 1 to 10 wt% is used.
  • the production method of the silicic acid solution used as a raw material is as described above.
  • a strong acid cation exchanger or a strong basic anion exchange is used after the production of the silicic acid solution.
  • the strong acid cation exchanger and the strongly basic anion exchanger are preferably contacted in this order, but if necessary, the strongly basic anion exchanger and the strong acid cation exchanger are contacted. They may be contacted in the following order.
  • the contact may be repeated repeatedly or the contact time may be adjusted as appropriate.
  • a highly acidic cation exchanger is repeatedly brought into contact with the alkali silicate aqueous solution to prepare an acidic silicate solution, and then contacted with a strongly basic anion exchanger for high purification treatment. May be.
  • a strongly acidic cation exchanger is brought into contact with the silicic acid solution, preferably the pH is adjusted to 6 or less, and then a strongly basic anion exchanger is brought into contact with Adjust the pH to 9 or higher to remove the eluted impurity ions.
  • an aqueous silica sol can be passed through a column packed with a cation exchanger or an anion exchanger.
  • a cation exchanger or an anion exchanger for example, a strongly basic anion exchanger and a strong acid can be used.
  • pure water may be added to adjust the silica concentration.
  • the strong base anion exchanger known ones can be used, and examples thereof include a hydroxyl group type strong base anion exchange resin and a C1 type anion exchange resin.
  • Known strong acid cation exchangers are also used, such as hydrogen type strong acid cation exchange resin, styrene sulfonic acid resin crosslinked with divinylbenzene, phenol sulfonic acid resin crosslinked with formaldehyde, etc. Is mentioned. It is also possible to use macroporous type resin.
  • the contact between the aqueous silica sol and the ion exchanger is usually performed at a space velocity of 1 to 30 h- 1 .
  • the silicic acid solution used has a pH in the range of 1.0 to 7.0 and a silica concentration in the range of 0.05 to 3% by weight.
  • the pH within the above range can be applied to the production method of the present invention without any special pH adjustment.
  • alkali is added to adjust the pH to the range of 1.0 to 7.0, and the method is applied to the production method of the present invention.
  • an acid is added to adjust the pH range in the same manner and apply to the production method of the present invention.
  • Examples of the alkali used for adjusting the pH of the silicic acid solution include alkali metals such as NaOH and KOH, alkali silicates, aqueous ammonia, and water-soluble amines, but are not limited thereto. Further, ammonia gas may be supplied to the silicic acid solution.
  • Examples of the acid used for adjusting the pH of the silicic acid solution include inorganic acids and organic acids. Usually, hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, formic acid, etc. are selected, but not limited thereto. .
  • the deformed silica sol of the present invention can be obtained through the seed solution preparation step and the build-up step.
  • the pH is less than 1.0 or more than 7.0, the silicic acid gelation occurs, so even when applied to the seed solution preparation process, it exhibits good filterability and polishing characteristics It becomes impossible to obtain a deformed silica sol having an association ratio of less than 2.7.
  • the silica concentration of the silicic acid solution is preferably 0.05 to 3% by weight. When the silica concentration exceeds 3% by weight, the silica solution gels easily. On the other hand, when the silica concentration is less than 0.05% by weight, the production efficiency is low, so it is not practical.
  • a silicic acid solution having a pH in the range of 1.0 to 7.0 and a silica concentration in the range of 0.05 to 3% by weight is aged at 1 to 98 ° C.
  • a polymerized silicic acid solution having a viscosity of 0.9 to: LOOmPa 's is prepared.
  • LOOmPa 's is usually aged by allowing it to stand for several minutes to 100 hours.
  • An alkali is added to the polymerized silicic acid solution in the range of LOOmPa's and heated.
  • the alkali used here ammonia water, water-soluble amines and the like are used, but not limited thereto. Also, supply ammonia gas to the silicic acid solution.
  • an alkali is added to the polymerized silicic acid solution, the pH is preferably adjusted to 9 to 12.5, and the temperature is set to 50 to 150 ° C, preferably 60 to 95 ° C.
  • the temperature is set to 50 to 150 ° C, preferably 60 to 95 ° C.
  • a seed solution containing silica sol can be obtained. If the pH is less than 9, polymerization of the polymerized silicic acid solution will not proceed and the desired seed will not be obtained. When the pH exceeds 12.5, dissolution of the seed sol occurs and the desired seed cannot be obtained.
  • the heating temperature is less than 50 ° C, a sufficiently uniform silica sol may not be obtained.
  • the temperature exceeds 150 ° C, the particle size distribution of the resulting silica tends to be non-uniform.
  • the build-up process is performed using this silica sol as a seed solution.
  • the pH adjustment may be performed by adding ammonia water, water-soluble amines, alkali silicate or the like to the seed solution, or supplying ammonia gas to the seed solution.
  • alkali silicates that can be used include sodium silicate, potassium silicate, lithium silicate, and quaternary ammonium silicate.
  • No. 1 water glass, No. 2 water glass, and No. 3 water glass are used.
  • Sodium silicate or potassium silicate marketed under the names such as
  • an alkali silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethylorthosilicate (TEOS) using excess NaOH or the like is also suitable.
  • TEOS tetraethylorthosilicate
  • a silica solution or a high-purity silicic acid solution is added continuously or intermittently to obtain silica.
  • Grow fine particles As for the silicic acid solution used here, preferably, the silicic acid solution prepared by the above-described production method is used after removing impurities by bringing it into contact with a strongly basic anion exchanger or a strongly acidic cation exchanger. It is desirable to do. If necessary, an acid may be added to the silicic acid solution and heated at 40 ° C to 300 ° C to release alkali from the particle surface and inside.
  • so-called strong acid is used in consideration of the effect of eluting cations from silica fine particles.
  • specific examples include inorganic acids or organic acids, and usually hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, formic acid and the like are selected.
  • hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, formic acid and the like are selected.
  • the pH of the silicic acid solution is desirably in the range of 0-3.
  • the temperature of the seed solution is maintained at a constant temperature of 20 ° C or higher, preferably in the range of 20 to 98 ° C.
  • the temperature of the seed solution is lower than 20 ° C, the dissolution rate of silicic acid in the added polymerized silicic acid solution and the rate of precipitation of dissolved silica on the seeds are slowed. I have to be late.
  • increasing the temperature of the seed solution is advantageous because the dissolution rate and precipitation rate described above can be increased, but it is not desirable because it becomes difficult to control the particle size.
  • the silica in the polymerized silicic acid solution must be surely deposited on the seeds in the seed solution to prevent generation of new seeds. For this reason, the addition rate of the silicic acid solution into the seed solution has a large effect on the particle size, particle size distribution, and shape of the final silica particles.
  • the heating may be continued at 20 to 98 ° C. for about 0.5 to 12 hours. By continuing the heating, a more stable deformed silica sol can be obtained.
  • the obtained modified silica sol is contacted with a strongly basic anion exchanger, preferably adjusted to a pH of 9 or more, and further contacted with a strongly acidic cation exchanger.
  • the pH is preferably adjusted to 6 or less to remove the eluted impurity ions.
  • an aqueous silica sol can be passed through a column filled with an anion exchanger or a cation exchanger.
  • a strongly basic anion exchanger and a strong acid can be used. It is also possible to adjust the silica concentration by removing pure water before contacting with the cationic cation exchanger.
  • the strong base anion exchanger known ones can be used, and examples thereof include a hydroxyl group type strong basic anion exchange resin and a C1 type anion exchange resin.
  • Known strong acid cation exchangers are also used, such as hydrogen type strong acid cation exchange resin, styrene sulfonic acid resin crosslinked with divinylbenzene, phenol sulfonic acid resin crosslinked with formaldehyde, etc. Is mentioned. It is also possible to use macroporous type resin.
  • the contact between the aqueous silica sol and the ion exchanger is usually performed at a space velocity of 1 to 30 h- 1 .
  • the irregular shaped silica sol has a residual impurity capacity of SiO in the silica fine particles, with Na being less than lOppm and K being lOppm.
  • Cu force S500ppb or less Ni force S300ppb or less, Fe force Sl50ppm or less.
  • the deformed silica sol obtained by the production method of the present invention is distilled under reduced pressure, ultrafiltration method, etc. It is also possible to replace the water as a dispersion medium with an organic solvent to form an organosol by the known method.
  • an organic solvent solvents such as alcohols, glycols, esters, ketones, nitrogen compounds, and aromatics can be used. Specifically, methanol, ethanol, propanol, ethylene glycol, and the like can be used.
  • Examples include organic solvents such as Nole, propylene glycol, glycerin, ethylene glycol-no-mono-methylol ether, propylene glycol-no-mono-methylol ether, acetone, methyl ethyl ketone, dimethylformamide, N-methyl-2-pyrrolidone, etc. it can.
  • organic solvents such as Nole, propylene glycol, glycerin, ethylene glycol-no-mono-methylol ether, propylene glycol-no-mono-methylol ether, acetone, methyl ethyl ketone, dimethylformamide, N-methyl-2-pyrrolidone, etc. it can.
  • polymer compounds such as polyethylene glycol and silicone oil can be used as a dispersion medium.
  • a sol using a low polar organic solvent such as xylene, toluene, dimethylethane or the like as a dispersion medium can be obtained.
  • Examples of such surface treatment agents include alkoxide compounds such as etraethoxysilane and triisopropoxylmium, silane coupling agents, titanium coupling agents, low molecular or high molecular surfactants, and higher fatty acid surfactants.
  • Examples include metal salts or metal sarcophagus such as naphthenic acid metal salts.
  • the surface of the silica fine particles can be modified with an inorganic compound such as silica or alumina to obtain a sol having excellent dispersibility and light resistance.
  • an inorganic compound such as silica or alumina
  • a known method can be employed.
  • the method described in Japanese Patent Application Laid-Open No. 7-315832 by the applicant of the present application that is, a method of aging by adding a polymerizable silicon compound to an alkaline alumina sol in which crystalline alumina fine particles are dispersed in water is applied. be able to.
  • the average particle diameter (r) obtained by the measurement of the dynamic light scattering method and the average specific surface area force measured by the nitrogen adsorption method were calculated.
  • the ratio of equivalent sphere equivalent particle diameter () (rZr ', hereinafter referred to as “association ratio”) is 1.2 or more and less than 2.7, and the average particle diameter (r) by dynamic light scattering method is 10 to 200 nm.
  • An average specific surface area force measured by the nitrogen adsorption method (equivalent sphere equivalent particle diameter () is 9 to 90 nm) and a specific surface area of 30 to 300 m 2 / g is particularly desirable as an abrasive.
  • Deformed silica sol with an association ratio of less than 2.7 has excellent filterability and polishing characteristics.
  • the amount of filtered liquid with a 0.45 m flat plate filter is 3 per filter. Og or higher.
  • the abrasive containing the deformed silica sol of the present invention has an excellent polishing rate and can suppress the occurrence of at least a large scratch causing a problem as compared with the case of the abrasive containing the conventional spherical silica sol. is there.
  • an egg-like or cocoon-like shape is not used as a raw material, which uses calcium oxide, magnesium oxide, alkyl silicate, or the like used as a raw material for an elongated silica sol. It does not use any material such as methyl silicate, which is the raw material for silica sol. For this reason, in the irregular shaped silica fine particles obtained by the production method of the present invention, the ratio of Ca and Mg to SiO is lOOOppm or less. In addition, organic groups as raw materials
  • silica having an association ratio (rZi) in the range of 1.2 to 4.0 and an average particle diameter (r) in the range of 10 to 150 nm by the dynamic light scattering method. Since the fine particles are dispersed and the absolute value of the difference between the zeta potentials at pH 5 and pH 9 is in the range of 1 to 9 mV, it has particularly excellent polishing characteristics as abrasive particles.
  • the value of the association ratio When the value of the association ratio is less than 1.2, the polishing rate with a small effect due to the particle shape is small. When the value of the association ratio is in the range of 1.2 to 4.0, scratches are unlikely to occur even at high polishing speeds where clogging of the polishing pad, which is difficult to increase the viscosity, is difficult. If the association ratio exceeds 4.0, these characteristics are slightly reduced, but the association ratio can be used up to 10 without any practical problems.
  • the polishing rate is small.
  • the number of particles at the same concentration becomes extremely small and the polishing rate cannot be achieved.
  • the absolute value of the difference in zeta potential between pH 5 and pH 9 is less than 1 mV, silica particles may aggregate and clog, and if it exceeds 9 mV, interaction with other cationic ions may occur and aggregation may easily occur. Therefore, if the absolute value of the difference between the zeta potentials at pH 5 and pH 9 is within this range, it is particularly preferable for preventing the silica particles from agglomerating.
  • the zeta potential was measured with an ultrasonic zeta potential measurement device (Matec, ESA-800) for a sample whose silica sol was diluted with distilled water to a silica concentration of 2% by weight. To do. Force for measuring zeta potential at pH 9 and pH 5 Use dilute nitric acid solution for pH adjustment.
  • the modified silica sol of the present invention When used as abrasive particles, it can be used by being concentrated or diluted as necessary. Concentration methods include a method of evaporating moisture by heating, a method of using an ultrafiltration membrane, and the like. Silica sol concentration is usually 10 ⁇ as SiO
  • the deformed silica sol of the present invention may be replaced with an organic solvent as necessary to obtain an organosol.
  • organic solvent used for this solvent substitution include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol; acetic acid methyl ester, acetic acid ethyl ester, etc.
  • Esters of ether ethers such as Jetty Noleate Nore, Ethylene Glyconore Monomethinore Ethenole, Ethylene Glyconore Monobutenore Ethenore, Ethylene Glyconore Monobutinoreethenore, Diethylene Glyconore Monomethinore Ether, Diethylene Glycol Monoethyl Ether Ketones such as acetone, methyl ethyl ketone, acetyl acetone, acetoacetate, N-methylpyrrolidone, dimethylformamide And amides such as These may be used alone or in combination of two or more.
  • ethers such as Jetty Noleate Nore, Ethylene Glyconore Monomethinore Ethenole, Ethylene Glyconore Monobutenore Ethenore, Ethylene Glyconore Monobutinoreethenore, Diethylene Glyconore Monomethinor
  • the deformed silica sol of the present invention can also be used after being surface-treated with a silane coupling agent to impart hydrophobicity, and if necessary, the alkali power in the silica sol can be used as an ion exchange resin or the like. Therefore, it can be removed and used.
  • alkali metal silicate, ammonium silicate, and one or more silicates selected from silicate powers of organic bases are preferred.
  • Alkali metal silicates include sodium silicate (water glass) and potassium silicate.
  • Organic bases include quaternary ammonium salts such as tetraethylammonium salt, monoethanolamine, diethanolamine, and triethanolamine.
  • amines such as Ammonium silicates or organic base silicates include alkaline solutions in which ammonia, quaternary ammonium hydroxides, amines, etc. are added to the silicic acid solution.
  • an aqueous solution of this silicate is prepared and neutralized with an acid to prepare a hydrogel.
  • the concentration of the silicate aqueous solution is 1 to 10% by weight as SiO, 2 to 8% by weight,
  • the temperature is preferably room temperature (usually 15 to 35 ° C) and the pH after neutralization is preferably in the range of 3 to 7.
  • this concentration is less than 1% by weight as SiO, the polymerization (gelation) of silicic acid is insufficient,
  • the silica hydrogel obtained by neutralization in this way is washed for the purpose of mainly removing salts generated by neutralization. Usually, it is washed with pure water or ammonia water with a filter such as an Oliver filter.
  • the concentration of sodium sulfate after washing is desirably 0.05% or less, preferably less than 0.05% of the solid content of SiO.
  • silica hydrogel dispersion in a fluid slurry state is prepared with a strong stirrer, and moderate silica is added to this to peptize the silica hydrogel. It is done.
  • the concentration of the dispersion liquid of the silica hydrogel is from 0.5 to 10 weight as SiO 0/0, more
  • this concentration is preferably in the range of 3 to 7% by weight.
  • this concentration is less than 0.5% by weight, the proportion of silica to be dissolved increases, and the average particle size of the silica fine particles obtained becomes small. Tends to be significantly slower. Ma If this concentration exceeds 10% by weight as SiO, the average particle size of silica fine particles obtained by peptization is reduced.
  • the uniform particle size tends to be non-uniform. For this reason, the particle size distribution of the deformed silica sol obtained by the step (2) tends to be non-uniform.
  • alkali metal hydroxides such as KOH and NaOH, ammonium hydroxide, and an aqueous amine solution can be used.
  • the amount of alkali used depends on the number of moles of SiO in the silica hydrogel dispersion and the mole of alkali.
  • the particle size distribution of the silica sol used as seed particles for build-up becomes non-uniform, the particle size distribution of the deformed silica sol finally obtained is also broad.
  • the pH during peptization is preferably in the range of 5-11. If the pH is less than 5, the dispersion becomes highly viscous, and a stable silica sol can be obtained. If the pH exceeds l1, the silica is easily dissolved and becomes unstable.
  • the temperature at which the silica hydrogel is peptized with an alkali is preferably in the range of 60 to 200 ° C, more preferably 70 to 170 ° C. If the temperature is lower than 60 ° C, sufficiently uniform peptization may not be possible. If the temperature exceeds 200 ° C, the resulting silica sol tends to have a spherical particle size.
  • the silica sol obtained in the step (1) is used as a seed sol, and a deformed silica sol is prepared by continuously or intermittently adding a silicic acid solution over a temperature range of 60 to 200 ° C.
  • a deformed silica sol is prepared by continuously or intermittently adding a silicic acid solution over a temperature range of 60 to 200 ° C.
  • side sols if necessary, dilute with pure water and add alkali or silicate to adjust the silica solids concentration to 2 to 10% by weight and pH to 9 to 12.5.
  • the pH is less than 9
  • the potential of the particles becomes small, agglomerates, and the distribution becomes large. If it exceeds 12.5, the solubility of the particles will increase and it will be difficult for the particles to grow.
  • the type of alkali is not particularly limited, but alkali metal hydroxides such as KOH and NaOH, ammonium hydroxide, aqueous amine solutions, aqueous ammonia and the like are used. It is.
  • the silicate is not particularly limited, but silicates exemplified in the step (1) can be used. Particularly preferred are sodium silicate and potassium silicate.
  • silica particles are added continuously or intermittently to grow silica fine particles. The amount of the silicic acid solution added is adjusted according to the desired particle size of the irregular shaped silica sol.
  • the silica sol obtained in the step (1) used as the seed sol here is preferably a silica sol having an average particle diameter of 5 to 80 nm measured by a dynamic light scattering method.
  • the average particle diameter (r) measured by the dynamic light scattering method tends to be in the range of 10 to 150 nm.
  • the silica sol obtained in the step (1) may be selected using a centrifugal separator, if desired.
  • the silicic acid solution used here is preferably a silicic acid solution obtained by dealkalizing an alkali silicate salt.
  • a silicic acid solution is a low polymer solution of silicic acid obtained by removing an alkali by treating an aqueous solution of an alkali silicate salt with a cation exchange resin, and is generally also called an acidic silicic acid solution.
  • the Usually the SiO concentration is 1-10 weight
  • alkali silicate salt for example, sodium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, etc. can be used, preferably No. 1 water glass, No. 2 water glass, No. 3 Sodium silicate or potassium silicate sold under the name of water glass or the like is selected.
  • an alkali silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethylorthosilicate (HTEOS) with an excess of NaOH or the like is also suitable.
  • HTEOS tetraethylorthosilicate
  • the production method of the alkali silicate salt is not particularly limited, and a known production method can be applied.
  • a production method for example, an alkali silicate glass cullet as disclosed in JP-A-9-110416 is dissolved in water in the presence of a seed crystal composed of calcium silicate alkali to obtain an alkali silicate aqueous solution.
  • Aqueous silicate aqueous solution with A O-nSiO composition is produced by dissolving the silica content of
  • a method for producing an alkali silicate aqueous solution characterized by adding hydrogen peroxide to the aqueous solution to acidify a reducing substance derived from soft silica stone.
  • the alkali silicate salt it is recommended to use a suitably purified one.
  • a known method can be applied as a purification method.
  • the viscosity of such an alkali silicate aqueous solution is previously adjusted to 1 to 50 mPa ⁇ s, and this is limited to a molecular weight cut-off of 15,000 or less.
  • the purification method include obtaining an alkali silicate aqueous solution having a Cu content per silica of 200 ppb or less and substantially free of particles having a size of 1 nm or more by passing through an outer filtration membrane.
  • the silicic acid solution is preferably used after removing impurities by contacting with a strongly basic anion exchanger or a strongly acidic cation exchanger. Further, if necessary, an acid may be added to the silicic acid solution and heated at 40 ° C to 300 ° C to release the particle surface and internal force alkali.
  • so-called strong acid is used in consideration of the effect of eluting cations from silica fine particles.
  • specific examples include inorganic acids or organic acids, and usually hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, formic acid and the like are selected.
  • hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, formic acid and the like are selected.
  • an acid to a silicic acid solution it is usually added in an aqueous solution having an acid concentration of 1 to 20%. The amount of acid added is adjusted so that the pH of the silicic acid solution is in the range of 0.1 to 1.0.
  • the temperature of the seed sol is maintained at a temperature in the range of 60 to 200 ° C.
  • the temperature of the seed sol is less than 60 ° C, the dissolution rate of silicic acid in the seed sol to which the silicic acid solution has been added and the deposition rate of silica on the seed become slow.
  • the temperature of the seed solution is higher than 200 ° C, it is advantageous because the dissolution rate and precipitation rate described above can be increased, but it is difficult to control the particle shape if the particle size. This is not preferable because it is an expensive process that requires less force.
  • the rate of addition of the silicic acid solution into the seed solution has a significant effect on the particle size, particle size distribution, and shape of the final silica particles.
  • the raw material is not slender, and calcium oxide, magnesium oxide, alkyl silicate, etc. used as a raw material for silica sol are not used. Na! /, And does not use any methyl silicate, which is the raw material for the cage-like silica sol.
  • the deformed silica fine particles obtained by the production method of the present invention have Ca and Mg ratios of less than lOOOppm with respect to SiO, and substantially contain C.
  • the second production method of the present invention it is possible to use a highly purified silicate solution as in the first production method as the silicate solution used in the production process. It is also possible to prepare a highly purified deformed silica sol by subjecting the deformed silica sol obtained by the second manufacturing method to a high purity treatment in the same manner as in the first manufacturing method.
  • the modified silica sol of the present invention is useful as an abrasive, and the abrasive containing the modified silica sol of the present invention can be used as an abrasive for hard disks, an abrasive for wafers, or an abrasive for polishing Cu-CMP. is there.
  • the silica concentration was adjusted to 2% by adding 455.5 g of the silica solution 454.5 g obtained above and the mixture was stirred for 10 minutes. The pH at this point was 3.8. Then, 0.4 g of 1% ammonia water was added to adjust the pH to 4.5, and the mixture was aged by maintaining at room temperature for 2 hours to obtain a polymerized silicic acid solution l, OOOg.
  • the viscosity of this polymerized silicic acid solution was 1.3 mPa's as measured using a B-type viscometer manufactured by TOKI Corporation. In the following Examples and Comparative Examples, this apparatus was used for all viscosity measurements.
  • Polymerized silicic acid solution l, OOOg was added with 61.2g of 15% ammonia water, pH was adjusted to 10.4, the temperature was raised to 95 ° C and heated for 1 hour to room temperature. After cooling to a transparent pale sol.
  • the obtained sol had an average particle size of 20 nm as measured by a dynamic light scattering method and a silica concentration of 1.9%.
  • a particle size distribution measuring device (PAR-III, manufactured by Otsuka Electronics Co., Ltd.) was used for measuring the average particle size by the dynamic light scattering method. In the following examples and comparative examples, this apparatus was used for all measurements of the average particle diameter by the dynamic light scattering method.
  • the pH was adjusted to 11.4 by adding 79.68g of 15% aqueous ammonia to 284.7g of Zonole obtained by caloric heating, and the temperature was raised to 83 ° C and maintained for 30 minutes.
  • This high-purity silicic acid solution (4,333 g) was added to the sol maintained at an elevated temperature over 18 hours. After the addition, the mixture was further maintained at 83 ° C for 1 hour and then cooled to room temperature.
  • Table 1 shows the silica sol preparation conditions so far.
  • the build-up sol was concentrated to 10% concentration with an ultrafiltration membrane (Asahi Kasei Corp., SIP-1013). [0092] 1-7) Concentration with a rotary evaporator
  • the average particle diameter (r) of the obtained sol by dynamic light scattering was 37 nm.
  • the specific surface area was 118 m 2 / g, and the equivalent spherical equivalent particle diameter () with a specific surface area force was 23. lnm. Therefore, the association ratio (rZi) was 1.6.
  • the sample silica sol was diluted with 0.58% aqueous ammonia to a silica concentration of 1% by mass After adjustment, measurement was performed using a laser single particle analyzer (particle size measuring device (1)).
  • Example 1-Example 12 and Comparative Examples 1-5 it was based on this measuring method (1).
  • the average particle diameter (r) was measured by another measurement method (2). That is, the sample silica sol was diluted with 0.58% aqueous ammonia, adjusted to ⁇ 11 and silica concentration of 0.1% by mass, and the average particle size was measured using the particle size measuring device (2).
  • PARTICLE SIZING SYSTEMS Co. model number “NICOMP 380”, measurement principle: dynamic light scattering method (homodyne / particle size distribution), light source: He—Ne laser 5mW, detector: photomultiplier tube for photocount, correlator: 32-bit digital autocorrelator (with DSP), measurement cell: four-sided transmission type square cell (disposable), temperature control method: Peltier element (computer control), setting range: 5 ° C to 80 ° C, measurement particle size distribution Range: In m to 5 ⁇ m.
  • measurement principle dynamic light scattering method (homodyne / particle size distribution)
  • light source He—Ne laser 5mW
  • detector photomultiplier tube for photocount
  • correlator 32-bit digital autocorrelator (with DSP)
  • measurement cell four-sided transmission type square cell (disposable)
  • temperature control method Peltier element (computer control) setting range: 5 ° C to 80 ° C
  • measurement particle size distribution Range In m to 5
  • 0.5 g of a sample is placed in a measurement cell, degassed at 300 ° C for 20 minutes in a mixed gas stream of 30% nitrogen and 70% helium, and then the sample is mixed with the above mixed gas.
  • the liquid nitrogen temperature is maintained in a gas stream, and nitrogen is adsorbed on the sample by equilibrium.
  • the sample temperature was gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the silica sol was calculated using a calibration curve prepared in advance.
  • Inductively coupled plasma emission spectrometer (Seiko Instruments Co., Ltd., SPS1200A, introducing a solution sample into high frequency inductively coupled argon plasma, exciting each element in the sample, and quantifying by emission spectrum Qualitative analysis device with a measurement wavelength range of 175 500nm. ).
  • the detection wavelength of each element in the case of a silica sample is Ca: 393.366 Mg: 279.553 nm Fe: 259.940 nm.
  • Atomic absorption spectrophotometer manufactured by Hitachi, Ltd., Z-8200, flame vaporizes the sample with a frame and irradiates the atomic vapor layer with light of an appropriate wavelength. At that time, the light absorbed by the atoms The strength was measured, and the element concentration in the sample was quantified (Graphite furnace was used. Measurement mode: atomic absorption, measurement wavelength range was 190 900 nm.) In the case of the silica sample, the detection wavelength of each element is Cu: 324.8 nm Ni: 232.0 nm.
  • An atomic absorption spectrophotometer (manufactured by Hitachi, Ltd., Z-5300, measurement wavelength range is 190 900 nm) was used.
  • the detection wavelength of each element in the case of a silica sample is Na: 589.0 nm K: 766.5 nm.
  • SiO in the sample silica sol can also be obtained in the following (2) C content and (3) C1 content.
  • the silica content determined by the method of 7) above was used.
  • the sample silica sol was dried at 110 ° C. for 12 hours. 0 lg was measured with a “carbon / sulfur analyzer” (EMIA-320V / FA, manufactured by Horiba, Ltd.).
  • the analysis principle of this carbon 'sulfur analyzer is based on the high-frequency heating combustion infrared absorption method in an oxygen stream. Minimum reading sensitivity: 0.01 ppm, analysis time: 30 60 seconds, combustion furnace method is a high-frequency induction heating furnace method with combustion control function, anode output: 2.3 KW, frequency: 18 MHz. [0103] (3) Content of C1 (chlorine)
  • sample silica sol is collected in a 200ml beaker and weighed to 0.1mg.
  • a blank test solution was prepared in the same manner as 2) above except that no sample silica sol was added, and the titer was determined in the same manner.
  • the chlorine content in the sample was calculated from the following [Equation 2].
  • Na was less than lppm
  • K was less than lppm
  • Cu was less than 300ppb
  • Ni was less than lOOppb
  • Fe was less than 50ppm.
  • Mg was less than lOOppm
  • Ca was less than lOOppm
  • C was less than lOppm and C1 was less than lppm. Table 2 shows the measurement results.
  • Example 1 To the high-purity silicic acid solution obtained in the same manner as in 1-1) to 1-2) of Example 1, pure water was added in the same manner as in Example 1 to adjust the silica concentration to 2%, Stir for 10 minutes and add 1% ammonia water. It was aged by maintaining at pH 3.8 for 2 hours at a pH of 3.8 without addition to obtain 6,650 g of a polymerized silicic acid solution. The viscosity of silicic acid in this polymerized silicic acid solution was 1. ImPa's.
  • the obtained sol had an average particle size of 16 ⁇ m measured by a dynamic light scattering method and a silica concentration of 1.9%.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 33 nm.
  • the specific surface area was 137 m 2 / g
  • the equivalent spherical equivalent particle diameter () calculated for the specific surface area force was 19.9 nm
  • the association ratio (rZr ′) was 1.61.
  • the obtained sol had an average particle size of 33 ⁇ m as measured by a dynamic light scattering method and a solid content concentration of 1.9%.
  • Example 1 1-6 Then, as in Example 1 1-6) and 1-7), ultraconcentration and rotary evaporation The physical properties were measured by concentration.
  • the average particle diameter (r) of the finally obtained sol was 62 nm.
  • the specific surface area was 102 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 26.7 nm
  • the association ratio (rZr ′) was 2.32.
  • Example 1 To the high-purity silicic acid solution obtained in the same manner as in 1-1) to 1-2) of Example 1, pure water was added in the same manner as in Example 1 to adjust the silica concentration to 2%. Stir for 10 minutes, add 0.4 g of 1% strength aqueous ammonia, adjust pH to 4.5, and keep aging at 5 ° C for 2 hours to obtain 6,650 g of polymerized silicate solution .
  • the viscosity of silicic acid in the polymerized silicic acid solution was 1. ImPa's.
  • the obtained sol had an average particle size of 12 nm as measured by a dynamic light scattering method and a solid content concentration of 1.9%.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the sol finally obtained was 27 nm.
  • the specific surface area was 157 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 17.4 nm
  • the association ratio (rZr ′) was 1.55.
  • Example 1 To the high-purity silicic acid solution obtained in the same manner as in 1-1) to 1-2) of Example 1, pure water was added in the same manner as in Example 1 to adjust the silica concentration to 2%. The mixture was stirred for 10 minutes, 1% ammonia water was added so that the pH was 6.5, and the mixture was aged by keeping it at room temperature for 2 hours to obtain 6,650 g of a polymerized silicic acid solution. The viscosity of the polymerized silicic acid solution was 1.3 mPa's.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 32 nm.
  • the specific surface area was 139 m 2 / g
  • the equivalent sphere equivalent particle diameter (r ′) calculated for the specific surface area force was 19.6 nm
  • the association ratio (rZi) was 1.63.
  • Example 1 To the high-purity silicic acid solution obtained in the same manner as in 1-1) to 1-2) of Example 1, pure water was added in the same manner as in Example 1 to adjust the silica concentration to 2%. The mixture was agitated for 10 minutes, and 1% strength sulfuric acid was added so that the pH was 2.0, and the mixture was aged by maintaining at room temperature for 2 hours to obtain 6,650 g of a polymerized silicic acid solution. The viscosity of the polymerized silicic acid solution was 1.2 mPa's.
  • the obtained sol had an average particle diameter measured by a dynamic light scattering method of 18 nm and a solid content concentration of 1.81%.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 34 nm.
  • the specific surface area was 128 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 21.3 nm
  • the association ratio (rZr ′) was 1.60.
  • the obtained sol had an average particle diameter measured by a dynamic light scattering method of 60.4 nm and a solid content concentration of 1.89%.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle size (r) of the sol finally obtained was 8 Onm.
  • the specific surface area was 89 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 30.6 nm
  • the association ratio (rZi) was 2.61.
  • Silica solution obtained in the same manner as in Example 1 G) 1) was adjusted to a silica concentration of 2% by adding pure water to a 7% silica solution, stirred for 10 minutes, pH The solution was aged by adding 1% ammonia water so as to be 4.5 and kept at room temperature for 2 hours to obtain 6,650 g of a polymerized silicic acid solution.
  • the viscosity of the polymerized silicic acid solution was 1.3 mPa's.
  • the obtained sol had an average particle size of 27 nm as measured by a dynamic light scattering method and a solid content concentration of 1.9%.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 53 nm.
  • the specific surface area was 112 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated by the specific surface area force was 24.3 nm
  • the association ratio (rZr ′) was 2.18.
  • the obtained sol had an average particle size of 27 nm as measured by a dynamic light scattering method and a solid content concentration of 1.9%.
  • Zonole 1353.7g obtained by caloric heating was added with 24.2g of No. 3 water glass with silica concentration 24.28%, pH was adjusted to 10.9, and the temperature was raised to 87 ° C. Kept for 30 minutes. Then, 4143.3 g of silicic acid solution adjusted to 3% silica concentration by adding pure water to the silicic acid solution (silica concentration 4.7% by weight) obtained by the same production method as in Example 1 (1) was added for 14 hours. Added over time. After completion of the addition, the mixture was further maintained at 83 ° C for 1 hour and then cooled to room temperature.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 35 nm.
  • the specific surface area was 195 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 14 nm
  • the association ratio (rZ) was 2.5.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 68 nm.
  • the specific surface area was 125 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 21.8 nm
  • the association ratio (rZr ′) was 3.12.
  • Example 1 Then, as in 1-6) and 1-7) of Example 1, ultraconcentration and concentration with a rotary evaporator were performed, and the physical properties were measured.
  • the average particle diameter (r) of the finally obtained sol was 53 nm.
  • the specific surface area was 144 m 2 / g
  • the equivalent sphere equivalent particle diameter () calculated for the specific surface area force was 18.9 nm
  • the association ratio (rZr ′) was 2.8.
  • Example 1 1-6 Example 1 1-6 and 1-7), ultraconcentration (silica concentration 12%) and concentration with a rotary evaporator (silica concentration 30.5%) were carried out to It was measured.
  • the average particle size (r) of the sol finally obtained was 65 nm.
  • the specific surface area was 124 m 2 / g, the equivalent spherical equivalent particle diameter () calculated by specific surface area force was 22. Onm, and the combined ratio (rZ) was 2.96.
  • Spherical silica sol manufactured by Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-50, average particle size 38 nm by dynamic light scattering method, silica concentration 48%, association ratio 1.5
  • ultrapure water was added to adjust the silica concentration of the spherical silica sol to 16%, and a slurry used for the polishing characteristic test of Example 11 was prepared.
  • a spherical silica sol (catalyst chemicals Co., Ltd., Cataloid SI-80, average particle diameter 105 nm by dynamic light scattering method, silica concentration 40.5%, association ratio 1.3) was prepared. Further, ultrapure water was added to adjust the silica concentration of the spherical silica sol to 16%, and a slurry used for the polishing characteristic test of Example 12 was prepared.
  • silica sols obtained in Comparative Examples 1 to 3 and the spherical silica sol of Comparative Example 4 were also prepared in the same manner to obtain a polishing slurry.
  • An aluminum disk substrate was used as the substrate to be polished.
  • This aluminum disk substrate is a substrate (95mm ⁇ / 2 5mm-Ni-P) with an electroless plating (hard Ni-P plating layer with a composition of Ni88% and P12%) to a thickness of 10 ⁇ m on the aluminum substrate. 1. 27mmt) was used. Note that this substrate has been subjected to primary polishing, and the surface roughness is a maximum of 0.
  • a 5% aqueous sodium hydroxide solution and ultrapure water were added to the deformed silica sol having a silica concentration of 16% by weight obtained in Examples 1 to 9 to prepare a polishing slurry having a silica concentration of 9% by weight and ⁇ 5. Further, the silica sols obtained in Comparative Examples 1 to 3 and the spherical silica sol of Comparative Example 5 were similarly prepared to obtain a polishing slurry.
  • a hard disk glass substrate made of tempered glass of 65 mm ⁇ was used as the substrate to be polished.
  • This glass substrate for hard disks is pre-polished and has a maximum surface roughness of 0
  • the substrate to be polished is set in a polishing apparatus (Nano Factor Co., Ltd .: NF300), and ⁇ Apollon '' manufactured by Koutale is used as the polishing pad, the substrate load is 0.18 MPa, and the table rotation speed is 30 rpm. Polishing was performed by supplying a polishing slurry at a rate of 20 gZ for 10 minutes. The polishing rate was calculated by determining the weight change of the substrate to be polished before and after polishing. Table 2 shows the polishing rate ratios of Examples 1 to 9 and Comparative Examples 1 to 3 when the polishing rate in Comparative Example 5 is 1.
  • the aqueous solution of sodium silicate was neutralized by adding sulfuric acid so that the pH was 6.5, and the mixture was kept at room temperature for 1 hour to prepare a silica hydrogel.
  • This silica hydrogel was thoroughly washed with an oliver filter with pure water (an amount equivalent to about 120 times the SiO solid content) to remove salts. After washing
  • the sodium sulfate concentration was less than 0.01% with respect to the SiO solid content.
  • silica hydrogel was dispersed in pure water (silica concentration: 3% by weight) and made into a fluid slurry state with a powerful stirrer to form a silica hydrogel dispersion, and a 5% by weight NaOH aqueous solution was added to the SiO 2 solution. / Na 2 O was added so that the molar ratio was 75 and heated at 160 ° C for 1 hour.
  • Table 3 shows the preparation conditions for step (1) up to this point.
  • the silica hydrogel was washed with 28% aqueous ammonia instead of pure water. Using a 1: 1 mixture of 5% by weight NaOH aqueous solution and 28% ammonia water, the build-up temperature is 90 ° C, the silica concentration of the silica solution to be added is 4.5% by weight, and the addition amount of the silica solution A modified silica sol was prepared in the same manner as in Example 13 except that 117.2 Kg and the time required for addition of the silicic acid solution were 10 hours.
  • a deformed silica sol was prepared in the same manner as in Example 13 except that the temperature during buildup was 88 ° C.
  • a modified silica sol was prepared in the same manner as in Example 13 except that hydrochloric acid was used instead of sulfuric acid and the temperature during buildup was 85 ° C.
  • a modified silica sol was prepared in the same manner as in Example 13, except that the silica concentration of the silicic acid solution to be added was 4.5 wt%, and the addition amount of the silicic acid solution was 117.2 kg.
  • a deformed silica gel was prepared in the same manner as in Example 13, except that the amount of the silicic acid solution to be added was 126.7 kg.
  • a modified silica sol was prepared in the same manner as in Example 13 except that the temperature during buildup was 86 ° C.
  • a modified silica sol was prepared in the same manner as in Example 13 except that the temperature during buildup was set to 87 ° C.
  • a deformed silica sol was prepared in the same manner as in Example 13 except that the heating condition after addition of the 5 wt% NaOH aqueous solution was 120 ° C for 2 hours and the temperature during build-up was 70 ° C. .
  • Example 23
  • a deformed silica sol was prepared in the same manner as in Example 22 except that the temperature during buildup was 120 ° C.
  • a silica sol was prepared in the same manner as in Example 13 except that the temperature during buildup was 40 ° C.
  • a spherical silica sol (Cataloid SI-40, produced by Catalytic Chemical Industry Co., Ltd.) having an average particle size of 17 nm was adjusted to a silica concentration of 4.5 wt%, and 13. 83 kg was used as a seed sol as in Example 13. After adding 0.81 kg of sodium silicate with a SiO concentration of 24% and mixing,
  • the mixture is cooled to room temperature, and the resulting silica sol is filtered through an ultrafiltration membrane with a SiO concentration of 10
  • a silica sol was prepared in the same manner as in Example 13 except that the amount of the dosol was 13.02 kg, the addition amount of the silicic acid solution was 182. OKg, and the time required for addition of the silicic acid solution was 14.5 hours.
  • a silica sol was prepared in the same manner as in Example 13 except that a NaOH aqueous solution having a concentration of 5% by weight was added and the heating temperature was 250 ° C.
  • a silica sol was prepared in the same manner as in Example 13 except that the amount of the first sol was 13.02 kg, the addition amount of the silicic acid solution was 182.0 kg, and the time required for addition of the silicic acid solution was 14.5 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 CMP用研磨材等の研磨材として好適な異形シリカゾルに関する。本異形シリカゾルは、動的光散乱法の測定により得られた平均粒子径(r)と窒素吸着法により測定された平均比表面積から算出した等価球換算粒子径(r′)の比(r/r′、以下「会合比」と称する。)が1.2~10の範囲にあり、等価球換算粒子径(r′)が5~200nmの範囲にあり、比表面積が13~550m2/gの範囲にあって、形状が不均一な異形シリカ微粒子が溶媒に分散した異形シリカゾルであって、該異形シリカ微粒子の含有するCaおよびMgの割合(酸化物換算)が、SiO2分に対してそれぞれ1000ppm以下である。

Description

明 細 書
異形シリカゾルおよびその製造方法
技術分野
[0001] 本発明は研磨材として好適な異形シリカゾルの効率的な製造方法に関する。
背景技術
[0002] 半導体の集積回路付基板の製造においては、シリコンゥエーハ上に銅などの金属 で回路を形成する際に凹凸あるいは段差が生じるので、これを研磨して表面の段差 力 くなるように回路の金属部分を優先的に除去することが行われている。また、シリ コンゥエーハ上にアルミ配線を形成し、この上に絶縁膜としてシリカ等の酸ィ匕膜を設 けると配線による凹凸が生じるので、この酸ィ匕膜を研磨して平坦ィ匕することが行われ ている。このような基板の研磨においては、研磨後の表面は段差や凹凸がなく平坦 で、さらにミクロな傷等もなく平滑であることが求められており、また研磨速度が速いこ とも必要である。
[0003] さらに、半導体材料は電気'電子製品の小型化や高性能化に伴い高集積化が進 展している力 例えばトランジスタ分離層に Naや K等の不純物等が残存した場合、 性能が発揮されな力つたり、不具合の原因となることがある。特に研磨した半導体基 板や酸ィ匕膜表面に Naが付着すると、 Naは拡散性が高ぐ酸ィ匕膜中の欠陥などに捕 獲され、半導体基板に回路を形成しても絶縁不良を起こしたり、回路が短絡すること があり、また誘電率が低下することがあった。このため使用条件によって、或いは使用 が長期にわたつた場合に前記不具合を生じることがあるので、 Naや Kなどの不純物 を殆ど含まな 、研磨用粒子が求められて 、る。
研磨用粒子としては、従来、シリカゾルゃヒュームドシリカ、ヒュームドアルミナなどが 用いられている。
[0004] CMPで使用される研磨材は、通常、シリカ、アルミナ等の金属酸ィ匕物力 なる平均 粒子径が 200nm程度の球状の研磨用粒子と、配線'回路用金属の研磨速度を早め るための酸化剤、有機酸等の添加剤及び純水などの溶媒カゝら構成されているが、被 研磨材の表面には下地の絶縁膜に形成した配線用の溝パターンに起因した段差( 凹凸)が存在するので、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨 面とすることが求められている。し力しながら、従来の球状の研磨用粒子では共面より 上の部分を研磨した際に、凹部の下部にあった配線溝内の回路用金属が共面以下 まで研磨される問題 (デイツシングと呼ばれている。)があった。このようなデイツシング (過研磨)が起きると配線の厚みが減少して配線抵抗が増加したり、また、この上に形 成される絶縁膜の平坦性が低下するなどの問題が生じるので、デイツシングを抑制す ることが求められている。
[0005] 異形粒子群を含む研磨材は、この様な凹凸を有する基材の研磨において、凸部の 上端面が凹部の底面と同レベルになるまで凹部の研磨が抑制され、凸部の上端面 が凹部の底面と同レベルまで研磨された後は凸部、凹部ともに同じ研磨速度で研磨 できるので、デイツシング (過研磨)が起きることがなぐ研磨後の表面は凹凸が無く平 坦性に優れることが知られている。例えば、半導体集積回路の形成などにおける研 磨においてデイツシングが起きることがないので、得られる集積回路の回路抵抗を増 カロさせることもなぐ研磨後の表面は平坦性に優れているので効率的に積層集積回 路を形成することができる。
また、この様な異形粒子群を含む研磨材の用途としては、アルミニウムディスク (ァ ルミ-ゥムまたはその基材上のメツキ層)や半導体多層配線基板のアルミニウム配線
、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマス ク用ガラス基板、ガラス質材料の鏡面加工などへの適用が期待されている。
[0006] 異形粒子を含むシリカゾルの製造方法としては、特開平 4— 187512号公報 (特許 文献 1)に、 SiOとして 0.05〜5.0 %のアルカリ金属珪酸塩水溶液に、珪酸液を添
2
加して混合液の SiO /M 0 (モル比、 Mはアルカリ金属又は第 4級アンモ-ゥム)を 30
2 2
〜60とした後に、 Ca,Mg,Al,In,Ti,Zr,Sn,Si,Sb,Fe,Cuおよび希土類金属からなる 群力も選ばれた 1種または 2種以上の金属の化合物を添加し (添カ卩時期は、前記珪 酸液添加の前または添カ卩中でも良い)、 この混合液を 60°C以上の任意の温度で一 定時間維持し、更に珪酸液を添カ卩して反応液中の SiO /M 0 (モル比)を60〜100と
2 2
してなる実質的に異形形状のシリカ微粒子が分散したゾルの製造方法が開示されて いる。 [0007] 特開平 7— 118008号公報 (特許文献 2)には、活性珪酸のコロイド水溶液に、水溶 性のカルシウム塩、マグネシウム塩又はこれらの混合物の水溶液を添カ卩し、得られた 水溶液にアルカリ性物質をカ卩え、得られた混合物の一部を 60°C以上に加熱してヒー ル液とし、残部をフィード液として、当該ヒール液に当該フィード液を添加し、当該添 加の間に、水を蒸発させる事により SiO濃度 6
2 〜30重量%まで濃縮することよりなる 細長 、形状のシリカゾルの製造法が開示されて 、る。
[0008] 特開 2001— 11433号公報(特許文献 3)には、 SiOとして 0. 5
2 〜10重量%を含有 し、かつ、 pHが 2〜6である、活性珪酸のコロイド水溶液に、水溶性の II価又は III価の 金属の塩を単独又は混合して含有する水溶液を、同活性珪酸のコロイド水溶液の Si Oに対して、金属酸化物(II価の金属の塩の場合は MOとし、 III価の金属の塩の場
2
合は M Oとする。但し、 Mは II価又は III価の金属原子を表し、 Oは酸素原子を表す。
2 3
)として 1〜: L0重量%となる量を加えて混合し、得られた混合液(1)に、平均粒子径 1 0〜120nm、 pH2〜6の酸性球状シリカゾルを、この酸性球状シリカゾルに由来する シリカ含量 (A)とこの混合液( 1)に由来するシリカ含量 (B)の比 AZB (重量比)が 5 〜: L00、かつ、この酸性球状シリカゾルとこの混合液(1)との混合により得られる混合 液(2)の全シリカ含量 (A+B)が混合液(2)において SiO濃度 5
2 〜40重量%となる ようにカ卩えて混合し、混合液(2)にアルカリ金属水酸ィ匕物等を PHが 7〜: L 1となるよう に加えて混合し、得られた混合液(3)を 100〜200°Cで 0. 5〜50時間加熱してなる 数珠状のシリカゾルの製造方法が記載されている。
[0009] 特開 2001—48520号公報 (特許文献 4)には、シリカ濃度 1〜8モル Zリットル、酸 濃度 0. 0018〜0. 18モル Zリットルで水濃度 2〜30モル Zリットルの範囲の組成で 、溶剤を使用しないでアルキルシリケ一トを酸触媒で加水分解した後、シリカ濃度が 0 . 2〜1. 5モル Zリットルの範囲となるように水で希釈し、次いで pHが 7以上となるよう にアルカリ触媒を加え加熱して珪酸の重合を進行させて、電子顕微鏡観察による太 さ方向の平均直径が 5〜100nmであり、長さがその 1.5〜50倍の長さの細長い形状 の非晶質シリカ粒子が液状分散体中に分散されて 、るシリカゾルの製造方法が記載 されている。
[0010] 特開 2001— 150334号公報(特許文献 5)には、水ガラスなどのアルカリ金属珪酸 塩の水溶液を脱陽イオン処理することにより得られる SiO濃度 2〜6重量%程度の活
2
性珪酸の酸性水溶液に、アルカリ土類金属、例えば、 Ca、 Mg、 Baなどの塩をその酸 化物換算で上記活性珪酸の SiOに対し 100〜1500 ppmの重量比に添カ卩し、更にこ
2
の液中 SiO /M 0 (Mは、アルカリ金属原子、 NH又は第 4級アンモ-ゥム基を表す
2 2 4
。)モル比が 20〜150となる量の同アルカリ物質を添加することにより得られる液を当 初ヒール液とし、同様にして得られる 2〜6重量%の SiO濃度と 20〜150の SiO /M
2 2 2
0 (Mは、上記に同じ。 )モル比を有する活性珪酸水溶液をチャージ液として、 60〜1 50 °Cで前記当初ヒール液に前記チャージ液を、 1時間当たり、チャージ液 SiO
2 Z当 初ヒール液 SiOの重量比として 0.05〜1.0の速度で、液力 水を蒸発除去しながら(
2
又はせずに)、添加してなる歪な形状を有するシリカゾルの製造方法が記載されてい る。
[0011] 特開平 8— 279480号公報 (特許文献 6)には、(1)珪酸アルカリ水溶液を鉱酸で中 和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽ィォ ン交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、( 3)ェチルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟 成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によつ て製造されるコロイダルシリカ水溶液は、通常、 4〜l,000nm (ナノメートル)、好まし くは 7〜500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したもので あり、 SiO として 0. 5〜50重量%、好ましくは 0. 5〜30重量%の濃度を有する。上
2
記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状、繊維状 等が挙げられることが記載されて 、る。
このような異形粒子を含むシリカゾルにお 、ても Naや Kなどの含有量が少な 、高 純度なシリカゾルが求められて ヽた。
[0012] 高純度の水性シリカゾルの製造方法として、不純物の少ないアルコキシシランを出 発原料とする方法が知られており、特開平 6— 316407号公報 (特許文献 7)にはァ ルキルシリケートをアルカリ存在下で加水分解しながら、生成した珪酸を重合させて 水性シリカゾルを得る方法が開示されている。また、特開 2001— 2411号公報 (特許 文献 8)等には、アルコキシシランを酸性溶媒中で加水分解し、これによつて生成した 珪酸モノマーを塩基性溶媒中で重合させて水性シリカゾルを得る方法が開示されて いる。これらの方法では、得られる水性シリカゾルの安定性が不充分であったり、また 、アルコキシ基 (OR基)が残存して得られる粒子の密度が低ぐ研磨材に用いた場合 に充分な研磨速度が得られな 、と 、う問題がある。
[0013] 他方、珪砂をアルカリ溶融したカレットを水に溶解させて得られる水硝子を出発原 料とする方法においては、例えば、水ガラスを脱アルカリし、得られた珪酸液 (珪酸モ ノマーを多く含む)を塩基性溶媒中で重合させることにより水性シリカゾルを得ること ができる。
しかしながら、珪砂中には不純分として Al、 Ti、 Fe、 Mg、 Caなどの金属が多く含ま れるため、得られる水性シリカゾルにはこれらの金属イオン量と連動してアルカリ金属 (通常 Na)が多く残存し、半導体基板の研磨材として用いるには不向きな場合があつ た。
この様な水性シリカゾルは酸ゃキレート剤等で処理することによって、ある程度は A1 や Naを低減することができるものの、半導体基板の研磨材としては純度が不十分で あった。また、珪砂の代わりに高純度シリカ粉を用いることも行われているが、高純度 シリカは高価であり、更にアルカリ溶融に時間が力かるなどの問題があった。
[0014] 特開昭 61— 158810号公報 (特許文献 9)には、所定濃度のアルカリ珪酸塩水溶 液を強酸型陽イオン交換体に接触させ、次に酸を加え、限外濾過を行い、更に陰ィ オン交換体および陽イオン交換体に接触させ、アンモニアを加え、続いて粒子成長 させてなる方法が開示されている。
[0015] 特開平 5— 85718号公報 (特許文献 10)には、(1)水ガラスの希釈水溶液を脱力チ オンして活性珪酸の水溶液を得る工程、(2)該活性珪酸水溶液を強酸で処理するェ 程、(3)強酸処理後の活性珪酸水溶液を脱イオンして高純度の活性珪酸の水溶液を 得る工程、(4)この水溶液にアルカリを加えて安定化活性珪酸水溶液を得る工程、 (5) この水溶液を蒸発濃縮下、粒子成長させて平均粒子径が 10〜30πι /ζのシリカゾル を生成させる工程、(6)このシリカゾルをイオン交換樹脂に接触させる工程カゝらなる高 純度の水性シリカゾルの製造方法が開示されている。この方法では、活性珪酸の段 階で、強酸を加えて、不純物の除去(リーチング)を行っている力 リーチング後、活 性珪酸の安定性に問題があり、ゲルィ匕を招き易かった。
[0016] 特開平 6— 16414号公報 (特許文献 11)には、アルカリ金属珪酸塩や活性珪酸の 水溶液に強酸又は強酸の塩を添加した溶液を調製する工程と、次にその溶液をィォ ン交換樹脂で処理する工程と、次に当該イオン交換によって得られた溶液に同様な 工程カゝら得られた当該溶液を添加することによってシリカゾルを調製する工程と、次 に得られたシリカゾルをイオン交換樹脂で処理する工程と、更に得られたシリカゾル にアンモニアを添加する工程力 なる高純度のシリカゾルの製造方法が開示されて いる。この製造方法においても前記特開平 5— 85718号公報と同様な問題がある。
[0017] 特開 2003— 89786号公報 (特許文献 12)記載の発明ではキレート型イオン交換 榭脂及びキレート剤を金属イオンの捕捉剤として使用しているが、珪酸アルカリ水溶 液から活性珪酸水溶液を調製するために、先ず強酸性型イオン交換樹脂に接触さ せ珪酸アルカリ中のアルカリ金属を除去し、その後にキレート榭脂と接触させることに より多価金属イオンを除去させねばならず、多段階のイオン交換となり製造効率が悪 かった。また、キレート型イオン交換榭脂は 3価のイオンに対する選択性が強く完全 には再生し 1 、再生する場合も多量の再生剤を必要とするという問題点があった。 さらに、キレート剤を添加して金属イオンを捕捉する場合は、残存するキレート剤及 び金属イオンを捕捉したキレート剤を除去するために、限外濾過膜で繰り返し洗浄す る必要があり、生産効率が悪いという問題点がある上に、繰り返し洗浄を行っても完 全にはキレート剤を除去できず、残存したキレート剤が研磨特性に影響を及ぼす可 能性があった。
[0018] 特許文献 1 :特開平 4 187512号公報
特許文献 2:特開平 7— 118008号公報
特許文献 3:特開 2001— 11433号公報
特許文献 4:特開 2001— 48520号公報
特許文献 5:特開 2001— 150334号公報
特許文献 6:特開平 8 - 279480号公報
特許文献 7:特開平 6 - 316407号公報
特許文献 8:特開 2001— 2411号公報 特許文献 9:特開昭 61 - 158810号公報
特許文献 10 :特開平 5— 85718号公報
特許文献 11:特開平 6— 16414号公報
特許文献 12 :特開 2003— 89786号公報
発明の開示
発明が解決しょうとする課題
[0019] 本発明は、研磨材、例えば、 CMP用研磨材、シリコン基板、アルミニウム基材、石 英基材、金属酸化物基材またはガラス基材用の研磨材として好適な、新規な異形シ リカゾルに関するものである。
[0020] また、本発明は、研磨材、例えば、 CMP用研磨材、シリコン基板、アルミニウム基材 またはガラス基材用の研磨材として好適な異形シリカゾルの製造方法に関するもの で、原料の珪酸液に含まれる珪酸を適切な粘度となるまで重合したものを、アルカリ 存在下で加熱し、さらにビルドアップさせるカゝ、あるいは、珪酸塩を酸で中和して得ら れるシリカヒドロゲルから塩類を除去し、アルカリを添カ卩して、 SiO /M 0 (M :Na, K
2 2
, ΝΗ )のモル比を調整し、加熱してシードゾルを調製し、アルカリ領域にて、ビルト
3
アップさせることを特徴とするちのである。
また、本発明は、前記異形シリカゾルの製造工程に、シリカゾルの高純度化工程を 繰り入れることにより、 Na、 K、 Cl、 Cu、 Ni、 Feなどの不純物が極めて少ない高純度 な異形シリカゾルを製造することを目的とする。
課題を解決するための手段
[0021] 本発明の異形シリカゾルの態様は、動的光散乱法の測定により得られた平均粒子 径 (r)と窒素吸着法により測定された平均比表面積力 算出した等価球換算粒子径 ( )の比 (rZ 、以下「会合比」と称する。)が 1. 2〜10の範囲にあり、等価球換 算粒子径 ( )力 〜 200nmの範囲にあり、比表面積が 13〜550m2/gの範囲にあ つて、形状が不均一な異形シリカ微粒子が溶媒に分散した異形シリカゾルであって、 該異形シリカ微粒子の含有する Caおよび Mgの割合 (酸ィ匕物換算)が、 SiO分に対
2 してそれぞれ lOOOppm以下であることを特徴とするものである。
前記異形シリカ微粒子にっ 、ては、炭素を含むものではな 、。 [0022] また、本発明の異形シリカゾルであって、高純度化された異形シリカゾルに含まれる Na, K, Cu、 Niおよび Feについては、 SiOに対して、 Naが lOppm以下、 K力 Opp
2
m以下、 Cu力 OOppb以下、 Niが 300ppb以下、 Feが 150ppm以下であることを特 徴とするちのである。
[0023] 本発明の異形シリカゾルの第 1の製造方法は、 pHl. 0〜7. 0の範囲にあり、シリカ 濃度が 0. 05〜3. 0重量%の珪酸液を、 1〜98°Cで熟成することにより、珪酸の粘度 が 0. 9〜: LOOmPa' sの範囲にある重合珪酸液を調製し、該重合珪酸液にアルカリを 加えて加熱することによりシード液を調製し、得られたシード液をビルドアップさせるこ とを特徴とするものである。
[0024] また、本発明の異形シリカゾルの第 1の製造方法は、 pHl . 0〜7. 0の範囲にあり、 シリカ濃度が 0. 05〜3. 0重量%の珪酸液を、 1〜98°Cで熟成することにより、珪酸 の粘度が 0. 9〜: LOOmPa' sの範囲にある重合珪酸液を調製し、該重合珪酸液にそ の pH力 9〜12. 5の範囲になるように ノレカリをカロ免、 50〜150oCでカロ熱することに よりシード液を調製し、得られたシード液に必要に応じてアルカリをカ卩えてその pHを 9〜12. 5に調整し、 20〜98°Cの温度範囲において、シード液に珪酸液または高純 度珪酸液を連続的または断続的に滴下することによりビルドアップさせることを特徴と するものである。
[0025] 前記珪酸液は、珪酸液にアルカリまたは酸を加えて pHl. 0〜7. 0の範囲に調整し たものであることが好まし!/、。
前記高純度化された異形シリカゾルは、前記異形シリカゾルの製造方法にぉ 、て、 珪酸液に強酸性陽イオン交換体または強塩基性陰イオン交換体をそれぞれ別々 に接触させて、高純度化処理を行なって得られる高純度化珪酸液を使用してビルト アップしてなる製造方法で調製されることが好ましい。
また、前記高純度化された異形シリカゾルは、前記製造方法により得られた異形シ リカゾルに更に陽イオン交換体に接触させ、更に陰イオン交換体に接触させることか らなる高純度化処理を行うことによって得ることが好ましい。
[0026] 本発明の異形シリカゾルは、動的光散乱法による平均粒子径 (r)が 10〜200nm、 比表面積が 30〜300m2/g、会合比が 1. 2以上、 2. 7未満の範囲にあることを特徴と するものであり、研磨材用シリカゾルとして好適である。
また、本発明の異形シリカゾルのうち、会合比 (rZ )が 1. 2〜4. 0の範囲にあり 、 rが 10〜150nmの範囲にあるシリカ微粒子が分散してなり、 pH5と pH9におけるゼ ータ電位の差の絶対値が l〜9mVの範囲にあるものが特に好適である。
[0027] 本発明に係る異形シリカゾルの第 2の製造方法は、次の(1)および(2)の工程によ り調製することを特徴とするものである。
(1)珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄することにより、塩類を除 去し、 SiO /M 0 (M :Na, K, ΝΗ )のモル比が 30〜500となるようにアルカリを添
2 2 3
加した後、 60〜200°Cの範囲に加熱してシリカゾルを得る工程。
(2)該シリカゾルをシードゾルとし、必要に応じてアルカリを加え、 pH9〜12. 5、温度 60〜200°Cの条件下、珪酸液を連続的にまたは断続的に添加する工程。
[0028] 前記珪酸塩は、珪酸ナトリウム、珪酸カリウムまたは珪酸アンモニゥムカも選ばれる ことが好ましい。
前記(2)におけるシードゾルは、動的光散乱法で測定した平均粒子径が 5〜80nm のシリカ微粒子が分散したゾルであることが好ましい。
前記(2)における珪酸液は、珪酸アルカリ塩を脱アルカリして得られる酸性珪酸液 であることが好ましい。
[0029] 前記第 2の製造方法においては、使用する珪酸液が高純度化されたものであること が好ましい。
前記第 2の製造方法により得られた異形シリカゾルに更に高純度化処理を行なうこ とが好ましい。
前記異形シリカゾルにつ 、ては、研磨剤の成分として使用可能である。
発明の効果
[0030] 本発明の製造方法により、形状が不均一な異形シリカゾルを容易に得ることができ るようなった。このような異形シリカゾルは、研磨材として適用した場合、優れた研磨 特性を示すものである。また、本発明の別の製造方法によれば、形状が不均一な異 形シリカゾルであって、不純物の含有量が極めて低 、高純度異形シリカゾルを得るこ とが可能となった。 また、本発明に係る異形シリカゾルの製造方法は、研磨用途に適用して優れた研 磨特性を発揮できる異形シリカゾルを製造することを可能とするものであり、工程上、 従来技術で見られるようなカルシウム塩やマグネシウム塩の添カ卩を行なう必要がない ため、それらの除去操作も不要であり、従来より簡便に異形シリカゾルを得ることがで きる。
発明を実施するための最良の形態
[0031] 異形シリカゾル
本発明の異形シリカゾルは、大別して二つの大きな特徴を有するものであり、これら は異形シリカゾルの製造方法に原因するものである。本発明の異形シリカゾルは、溶 媒に分散したシリカ微粒子の形状が均一なものではなぐ形状が不均一な異形シリカ 微粒子が溶媒に分散していることが第一に特徴的な点である。異形シリカ微粒子の 形状としては、柱状、卵状、勾玉状、枝別れ状など多様な形状となる。
この様な異形シリカ微粒子については、動的光散乱法の測定により得られた平均 粒子径 (r)と窒素吸着法により測定された平均比表面積力 算出した等価球換算粒 子径 ( )の比 (rZ 、以下「会合比」と称する。)が 1. 2〜: LOの範囲のものである 。会合比が 1. 2未満の場合は、極めて球状に近くなり、研磨用途に使用した場合、 充分な研磨レートを得られない場合がある。他方、会合比が 10を越える場合、研磨 特性が低下する場合がある。
[0032] 動的光散乱法により測定される平均粒子径 (r)とは、測定機器の測定原理が動的 光散乱法によるものにより得られるものである。
BET法により測定される比表面積力 算定される平均粒子径 ( )については、窒 素吸着法 (BET法)を用いて、窒素の吸着量から、 BET1点法により比表面積を算出 し、等価球換算粒子径 ( ) =6000Z (SAX密度)の式から、シリカの密度を 2. 2と して ( )を求めた。
[0033] この異形シリカ微粒子の第二の特徴は、該異形シリカ微粒子の含有する Caまたは Mgの割合 (酸ィ匕物換算)が、 SiOに対して、 lOOOppm以下であり、実質的に炭素
2
元素を含まないことを特徴としている。なお、 SiO
2に対する Caまたは Mgの割合 (酸 化物換算)は 500ppm以下が望ましい。 [0034] 本発明の窒素吸着法により測定された平均比表面積力 算出した等価球換算粒 子径 ( )は、 5〜200nmの範囲にあることが望ましい。また、その比表面積 (窒素 吸着法により測定される。)は、 13〜550m2Zgの範囲となる。
平均粒子径が 5nm未満では、研磨材として使用した場合、充分な研磨速度を得ら れない場合がある。他方、平均粒子径が 200nmを越える場合は、シリカゾルの状態 で研磨用途に適用した場合、単位体積当たりの研磨粒子の量が不足する場合があり 、充分な研磨特性を得られない場合がある。平均粒子径としては、より望ましくは 10 〜 150nmの範囲が推奨される。
[0035] 本発明の異形シリカゾルについては、所望により高純度化された異形シリカゾルが 好適に使用される。このような高純度化された異形シリカゾルは、前記異形シリカゾル の要件を満たすものであって、更に、 SiOに対して、 Naが lOppm以下、 Kが lOppm
2
以下、 Cu力 OOppb以下、 Niが 300ppb以下、 Feが 150ppm以下であることを特徴 とするものである。また、 C1が SiOに対して、 lOOOppm以下であるものが望ましい。
2
[0036] ¾ シリカゾルの の観告 法
本発明の異形シリカゾルの第 1の製造方法について、原料となる珪酸液の調製ェ 程、珪酸液の熟成工程、シード液調製工程、ビルトアップ工程、高純度化処理工程 の順で以下に述べる。
[0037] (1)原料となる珪酸液の調製工程
本発明の製造方法において、原料として使用する珪酸液とは、珪酸アルカリの水溶 液を陽イオン交換樹脂で処理することによって、アルカリを除去して得られる珪酸の 低重合物の溶液を意味する。
珪酸アルカリとしては、例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、第 4級 アンモ-ゥムシリケートなどが何れも使用可能であり、好適には 1号水ガラス、 2号水 ガラス、 3号水ガラス等の名称で市販されている珪酸ナトリウムまたは珪酸カリウムが 選ばれる。また、テトラエチルオルソシリケー HTEOS)などの加水分解性有機化合 物を過剰の NaOHなどを用いて加水分解して得られる珪酸アルカリ水溶液なども好 適である。
[0038] 前記珪酸アルカリの製造方法は、格別に限定されるものではなぐ公知の製造方法 を適用できる。このような製造方法として、例えば、特開平 9— 110416号公報に開示 されるような珪酸アルカリガラスカレットを珪酸カルシウムよりなる種結晶の存在下に 水に溶解して珪酸アルカリ水溶液を得た後、該珪酸アルカリ水溶液を濾過してなる 珪酸アルカリ水溶液の製造方法、特開平 6— 171924号公報に開示されるような軟 質珪石に水酸ィ匕アルカリ(AOH ;A:アルカリ金属)水溶液をカ卩えて、該珪石中の珪 酸分を溶解させることで A O -nSiOの組成を有する珪酸アルカリ水溶液を製造する
2 2
に際し、水溶液中に過酸化水素を添加して軟質珪石に由来する還元物質を酸化さ せることを特徴とする珪酸アルカリ水溶液の製造方法などが挙げられる。
[0039] 前記珪酸アルカリについては、好適には精製されたものを使用することが推奨され る。精製方法としては、公知の方法が適用できる。その様な例としては、特開 2001— 294420号公報に開示されているような珪酸アルカリ水溶液の粘度を予め l〜50mP a' sに調節し、これを分画分子量 15,000以下の限外濾過膜を通過させることにより、 シリカ当たりの Cuの含有率が 200ppb以下であり、かつ lnm以上の大きさの粒子が 実質的に存在しない珪酸アルカリ水溶液を得る精製方法などが挙げられる。
[0040] 本発明の製造方法において、原料として使用される珪酸液の好ましい製造方法と しては、珪酸アルカリを水で希釈してシリカ濃度を 1〜10重量%とした珪酸アルカリ 水溶液に、強酸性陽イオン交換体を接触させて酸性の珪酸液を調製する方法が挙 げられる。
本発明の製造方法において、原料として使用される珪酸液の製造方法については 、前記の通りであるが、好適には、珪酸液の製造後に強酸性陽イオン交換体や強塩 基性陰イオン交換体と接触させて、高純度化処理を行っても良い。なお、この場合、 強酸性陽イオン交換体、強塩基性陰イオン交換体の順番で接触させることが好まし いが、必要に応じて、強塩基性陰イオン交換体、強酸性陽イオン交換体の順番で接 触させても良い。
[0041] イオン交換体の接触にっ ヽては、適宜、反復して接触させたり、接触時間を調整し ても構わない。また、前記珪酸アルカリ水溶液に反復して強酸性陽イオン交換体を接 触させて、酸性の珪酸液を調製し、次に強塩基性陰イオン交換体に接触させること により高純度化処理を行なっても良い。 [0042] 具体的には、珪酸液に、強酸性陽イオン交換体を接触させて、好適には pHを 6以 下に調整し、次に強塩基性陰イオン交換体を接触させ、好適には pHを 9以上に調 整して、溶出した不純物イオンを除去する。接触方法としては、例えば、陽イオン交 換体または陰イオン交換体が充填されたカラム中に水性シリカゾルを通液させること により行うことができ、珪酸液については、強塩基性陰イオン交換体および強酸性陽 イオン交換体に接触させる前に純水を加えてシリカ濃度を調整しても良い。
[0043] 前記強塩基性陰イオン交換体としては公知のものが使用でき、水酸基型強塩基性 陰イオン交換榭脂、 C1型陰イオン交換榭脂などが挙げられる。前記強酸性陽イオン 交換体も公知のものが使用され、例えば、水素型強酸性陽イオン交換榭脂、ジビニ ルベンゼンで架橋したスチレン系スルホン酸榭脂、ホルムアルデヒドで架橋したフエノ 一ルスルホン酸榭脂等が挙げられる。また、マクロポーラス型の榭脂を使用することも 可能である。水性シリカゾルとイオン交換体の接触は、通常、 l〜30h— 1の空間速度 で行われる。
[0044] (2)珪酸液の熟成工程
本発明の異形シリカゾルの製造方法において、使用される珪酸液は、 pHが 1. 0〜 7. 0の範囲にあり、そのシリカ濃度が 0. 05〜3重量%の範囲にあるものが使用され る。珪酸液を調製した段階で、 pHが上記範囲にあるものについては、特段の pH調 整は必要なぐそのまま本発明の製造方法に適用することができる。他方、 pHが 1. 0 未満の場合は、アルカリを添カ卩して、 pHを 1. 0〜7. 0の範囲に調整して、本発明の 製造方法に適用する。また、 pHが 7. 0より大きい場合は、酸を添加して、同様に pH 範囲を調整して、本発明の製造方法に適用する。
[0045] 珪酸液の pH調整に使用されるアルカリとしては、 NaOH、 KOHなどのアルカリ金 属ゃ珪酸アルカリ、アンモニア水、水溶性アミン類などが使用されるがこれらに限定さ れるものではない。また、アンモニアガスを前記珪酸液に供給してもよい。珪酸液の p H調整に使用される酸としては、無機酸または有機酸が挙げられ、通常は、塩酸、硫 酸、硝酸、スルファミン酸、蟻酸等が選ばれるがこれらに限定されるものではない。
[0046] 珪酸液の pHが 1. 0〜7. 0の範囲にあり、他の要件が満たされる場合は、珪酸液が ゲルィ匕することなぐ粘度が所定の範囲にある重合珪酸液を得ることが可能となるの で、それにつ 、てシード液調製工程およびビルドアップ工程を経ることにより本発明 の異形シリカゾルを得ることができる。 pHが 1. 0未満の場合または pHが 7. 0を超え る場合は、珪酸液のゲルィ匕が生じるために、シード液調製工程に適用しても、良好な 濾過性および研磨特性を発揮する会合比が 2. 7未満の異形シリカゾルを得ることが できなくなる。
[0047] 珪酸液のシリカ濃度としては、 0. 05〜3重量%のものが好適に使用できる。シリカ 濃度が 3重量%を超える場合は、珪酸液のゲル化が生じ易くなる。また、シリカ濃度 が 0. 05重量%未満の場合は、生産効率が低くなるので、実用的ではない。
本発明においては、 pHが 1. 0〜7. 0の範囲にあり、そのシリカ濃度が 0. 05〜3重 量%の範囲にある珪酸液を 1〜98°Cで熟成して、珪酸の粘度が 0. 9〜: LOOmPa' s の範囲にある重合珪酸液を調製する。この粘度範囲の重合珪酸液を得るには、通常 は数分〜 100時間程度かけて静置することにより熟成される。
[0048] (3)シード液調製工程
粘度が 0. 9〜: LOOmPa' sの範囲にある前記重合珪酸液にアルカリをカ卩えて、加熱 する。ここで使用するアルカリについては、アンモニア水、水溶性アミン類などが使用 されるがこれらに限定されるものではない。また、アンモニアガスを前記珪酸液に供 給してちょい。
[0049] 具体的には、重合珪酸液にアルカリを加え、好適には pHを 9〜12. 5に調整し、温 度を 50〜150°C、好ましくは 60〜95°Cの温度で、 10分〜 5時間保持することにより 、シリカゾルを含むシード液を得ることができる。 pHが 9未満の場合は、重合珪酸液 の重合が進まず、 目的とするシードが得られない。 pHが 12. 5を超える場合は、シー ドゾルの溶解が生じ、 目的とするシードが得られない。また加熱温度が 50°C未満の 場合は、充分に均一なシリカゾルができないことがある。温度が 150°Cを越えると、得 られるシリカの粒子径分布が不均一となる傾向がある。このシリカゾルをシード液とし て、ビルドアップ工程を行う。
[0050] (4)ビルドアップ工程
前記シード液に必要に応じてアルカリをカ卩え、 pHを 10〜12. 5の範囲に調整する 。シード液の pHが 10〜12. 5の範囲にある場合は、アルカリ添カ卩による pH調整の必 要はない。
pH調整は、アンモニア水、水溶性アミン類、珪酸アルカリなどをシード液に添加し て行うか、アンモニアガスを前記シード液に供給しても良い。珪酸アルカリとしては、 例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、第 4級アンモニゥムシリケートな どが何れも使用可能であり、好適には 1号水ガラス、 2号水ガラス、 3号水ガラス等の 名称で市販されている珪酸ナトリウムまたは珪酸カリウムが選ばれる。また、テトラエチ ルオルソシリケート (TEOS)などの加水分解性有機化合物を過剰の NaOHなどを用 いて加水分解して得られる珪酸アルカリ水溶液なども好適である。 pHが 12. 5を超え ると、得られる異形シリカゾルが異形ィ匕していない粒子を多く含むものとなり、 pHが 1 0を下回る場合は、新たな核が生成し、異形粒子の成長が不充分となる。
[0051] pH10〜12. 5に調整したシード液の温度を 20〜98°Cの範囲に保持しながら、珪 酸液または高純度珪酸液を連続的に、または断続的に添加して、シリカ微粒子を成 長させる。ここで使用する珪酸液については、望ましくは、前記製造方法で調製され た珪酸液に強塩基性陰イオン交換体や強酸性陽イオン交換体と接触させて、不純 物除去を行ったものを使用することが望ましい。また、珪酸液に必要に応じて、酸を 加え、 40°C〜300°Cで加熱することにより、粒子表面及び内部からアルカリを放出さ せてものを使用しても良い。
[0052] 酸の種類については、シリカ微粒子から陽イオンを溶出させる効果を考慮して所謂 、強酸を用いる。具体的には、無機酸または有機酸が挙げられ、通常は、塩酸、硫酸 、硝酸、スルファミン酸、蟻酸等が選ばれる。なお、酸を珪酸液に添加する際には、 通常、酸の濃度が 1〜20%の水溶液にして添加する。酸の添加量については、珪酸 液の pHが、望ましくは 0〜3の範囲になるように添加される。
[0053] シ―ド液中のシリカ微粒子の粒子成長を行う際には、シ―ド液の温度を 20°C以上、 好ましくは 20〜98°Cの範囲の一定温度に保持する。シード液の温度が 20°C未満で は、添加された重合珪酸液中の珪酸の溶解速度および溶解されたシリカのシード上 への析出速度などが遅くなり、このため重合珪酸液の添加速度を遅くせざるを得ない 。一方、シード液の温度を高くすれば、前述の溶解速度および析出速度を速くするこ とができるので有利であるが、粒径を制御することが困難となり望ましくない。 [0054] 珪酸液を添加する際に、この重合珪酸液中のシリカがシード液中のシードに確実 に析出して、新たなシードを発生しないようにしなければならない。このためシード液 中への珪酸液の添加速度は、最終製品のシリカ微粒子の粒径、粒度分布、形状に 大きな影響を与える。本発明の製造方法においては、 30分〜 72時間かけて連続的 にまたは断続的に珪酸液を添加することが望ましい。これにより、異形シリカゾルを得 ることがでさる。
尚、所望によりシード液に珪酸液を添加した後に、 20〜98°Cで 0. 5〜12時間程、 加温を続けても良い。加温を続けることにより、より安定な異形シリカゾルを得ることが できる。
[0055] (5)高純度化工程
所望により、ビルトアップ工程終了後、得られた異形シリカゾルに、強塩基性陰ィォ ン交換体を接触させ、好適には pHを 9以上に調整し、更に強酸性陽イオン交換体を 接触させて、好適には pHを 6以下に調整して、溶出した不純物イオンを除去する。 接触方法としては、例えば、陰イオン交換体または陽イオン交換体が充填されたカラ ム中に水性シリカゾルを通液させることにより行うことができ、シリカゾルについては、 強塩基性陰イオン交換体および強酸性陽イオン交換体に接触させる前に純水をカロ えてシリカ濃度を調整しても良 、。
[0056] 前記強塩基性陰イオン交換体としては公知のものが使用でき、水酸基型強塩基性 陰イオン交換榭脂、 C1型陰イオン交換榭脂などが挙げられる。前記強酸性陽イオン 交換体も公知のものが使用され、例えば、水素型強酸性陽イオン交換榭脂、ジビニ ルベンゼンで架橋したスチレン系スルホン酸榭脂、ホルムアルデヒドで架橋したフエノ 一ルスルホン酸榭脂等が挙げられる。また、マクロポーラス型の榭脂を使用することも 可能である。水性シリカゾルとイオン交換体の接触は、通常、 l〜30h— 1の空間速度 で行われる。
[0057] 異形シリカゾルに対して、この高純度化処理を行なうことにより、異形シリカゾルは、 シリカ微粒子中の不純物残存量力 SiOに対して、 Naが lOppm以下、 Kが lOppm
2
以下、 Cu力 S500ppb以下、 Ni力 S300ppb以下、 Fe力 Sl50ppm以下となる。
[0058] 本発明の製造方法によって得られる異形シリカゾルは、減圧蒸留、限外濾過法など の公知の方法により、分散媒としての水を有機溶媒に置換してオルガノゾルとするこ とも可能である。このような有機溶媒としては、アルコール類、グリコール類、エステル 類、ケトン類、窒素化合物類、芳香族類などの溶媒を使用することができ、具体的に は、メタノール、エタノール、プロパノール、エチレングリコーノレ、プロピレングリコール 、グリセリン、エチレングリコーノレモノメチノレエーテル、プロピレングリコーノレモノメチノレ エーテル、アセトン、メチルェチルケトン、ジメチルホルムアミド、 N—メチルー 2—ピロ リドン、などの有機溶媒を例示することができる。また、ポリエチレングリコール、シリコ ーンオイルなどの高分子化合物を分散媒として用いることもできる。
[0059] また、シリカ微粒子の表面を公知の方法により表面処理することにより、キシレン、ト ルェン、ジメチルェタンなどの低極性有機溶媒を分散媒とするゾルとすることもできる
。このような表面処理剤としては、例えば、エトラエトキシシラン、トリイソプロボキシァ ルミ-ゥムなどのアルコキシド化合物、シランカップリング剤、チタンカップリング剤、 低分子または高分子界面活性剤、高級脂肪酸の金属塩、または、ナフテン酸の金属 塩などの金属石鹼などが挙げられる。
[0060] 更に、シリカ微粒子の表面をシリカ、アルミナなどの無機化合物を用いて修飾するこ とにより分散性、耐光性等に優れたゾルとすることも可能であり、このような処理方法と しては公知の方法を採用することができる。また、本願出願人による特開平 7— 3158 32号公報に記載された方法、即ち、結晶性アルミナ微粒子が水に分散したアルカリ 性アルミナゾルに重合性珪素化合物を添加して熟成する方法などを適用することが できる。
[0061] 本発明の製造方法で得られる異形シリカゾルのうち、特に動的光散乱法の測定に より得られた平均粒子径 (r)と窒素吸着法により測定された平均比表面積力 算出し た等価球換算粒子径 ( )の比 (rZr' 、以下「会合比」と称する。)が、 1. 2以上、 2 . 7未満、動的光散乱法による平均粒子径 (r)が 10〜200nm (窒素吸着法により測 定された平均比表面積力 算出した等価球換算粒子径 ( )としては 9〜90nm)、 比表面積が 30〜300m2/gのものは研磨材として特に望ましい。
会合比が 2. 7未満の異形シリカゾルは、濾過性に優れ、研磨特性に優れたもので あり、例えば、 0. 45 m平板フィルターによる濾過通液量がフィルター 1枚当たり、 3 Og以上である。また、本発明の異形シリカゾルを含む研磨剤は、従来の球状シリカゾ ルを含む研磨剤の場合に比べて、研磨レートに優れ、少なくとも問題となるような大き なスクラッチの発生も抑制可能なものである。
[0062] 本発明の第 1の製造方法では、原料として、細長いシリカゾルの原料として使用さ れるカルシウム酸化物、マグネシウム酸化物、アルキルシリケートなどを用いるもので はなぐ卵状な 、しは繭状のシリカゾルの原料となる珪酸メチルなどを一切使用する ものではない。このため本発明製造方法により得られる異形シリカ微粒子においては 、 SiOに対する Ca、 Mgの割合は lOOOppm以下となる。また、原料として有機基を
2
有するものを使用しないため、 Cについても実質的に含有するものではない。
[0063] 異形シリカゾルの别の餱様
本発明に係る異形シリカゾルのうち、例えば、会合比 (rZi )が 1. 2〜4. 0の範囲 にあり、動的光散乱法による平均粒子径 (r)が 10〜150nmの範囲にあるシリカ微粒 子が分散してなり、かつ、 pH5と pH9におけるゼータ電位の差の絶対値が l〜9mV の範囲にあるので、研磨用粒子として特に優れた研磨特性を有して 、る。
会合比の値が 1. 2未満の場合は、粒子形状による効果が少なぐ研磨速度は小さ い。会合比の値が 1. 2〜4. 0の範囲では、特に高粘度化しにくぐ研磨パッドへの目 詰まりも生じにくぐ高研磨速度であっても、スクラッチも生じにくい。会合比が 4. 0を 超えると、このような特性はやや低下するものの会合比 10までは実用上問題なく使 用することができる。
[0064] また、動的光散乱法による平均粒子径 (r)が lOnm未満では研磨速度が小さぐ 15 Onmを超える場合は、同一濃度での粒子個数が極端に少なくなり、研磨速度が稼げ ない傾向がある。なお、実用上は 200nmまでは使用可能である。
pH5と pH9におけるゼータ電位の差の絶対値が lmV未満ではシリカ粒子が凝集 しゃすい場合があり、 9mVを超える場合は、他のカチオン性イオンとの相互作用が 起こり、凝集が起き易い場合があるため、 pH5と pH9におけるゼータ電位の差の絶 対値がこの範囲にある場合は、シリカ粒子の凝集を防ぐ上では特に好ま 、。
[0065] ゼータ電位については、シリカゾルを蒸留水で希釈してシリカ濃度を 2重量%とした 試料について、超音波方式ゼータ電位測定装置(Matec製、 ESA-800)にて測定 する。 pH9の場合と pH5の場合のゼータ電位を測定する力 pH調整には希薄硝酸 溶液を使用する。
本発明の異形シリカゾルを研磨用粒子とする場合には、必要に応じて濃縮したり、 希釈したりして用いることができる。濃縮方法としては、加熱して水分を蒸発させる方 法、限外濾過膜を用いる方法などがある。シリカゾルの濃度は SiOとして通常、 10〜
2
50重量%の範囲に調整される。
[0066] さらに、本発明の異形シリカゾルは、必要に応じて有機溶媒で溶媒置換してオルガ ノゾルとすることもできる。この溶媒置換に用いられる有機溶媒としては、メタノール、 エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール 、テトラヒドロフルフリルアルコール、エチレングリコール、へキシレングリコールなどの アルコール類;酢酸メチルエステル、酢酸ェチルエステルなどのエステル類;ジェチ ノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレ エーテノレ、エチレングリコーノレモノブチノレエーテノレ、ジエチレングリコーノレモノメチノレ エーテル、ジエチレングリコールモノェチルエーテルなどのエーテル類;アセトン、メ チルェチルケトン、ァセチルアセトン、ァセト酢酸エステルなどのケトン類、 N—メチル ピロリドン、ジメチルホルムアミド等のアミド類などが挙げられる。これらは単独で使用 しても良ぐまた 2種以上混合して使用しても良い。
[0067] また、本発明の異形シリカゾルは、シランカップリング剤で表面処理して疎水性を付 与して用いることもでき、必要に応じてシリカゾル中のアル力リをイオン交換榭脂等に よって除去して用いることもできる。
[0068] 異形シリカゾルの第 2の製造方法
本発明に係る異形シリカゾルの第 2の製造方法を工程順に説明する。
[0069] (1)の工程
本工程で原料として使用する珪酸塩としては、アルカリ金属珪酸塩、アンモニゥム 珪酸塩および有機塩基の珪酸塩力 選ばれる 1種または 2種以上の珪酸塩が好まし い。アルカリ金属珪酸塩としては、珪酸ナトリウム (水ガラス)ゃ珪酸カリウム力 有機 塩基としては、テトラエチルアンモ -ゥム塩などの第 4級アンモ-ゥム塩、モノエタノー ルァミン、ジエタノールァミン、トリエタノールァミンなどのアミン類を挙げることができ、 アンモ-ゥムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第 4級 アンモ-ゥム水酸ィ匕物、アミンィ匕合物などを添加したアルカリ性溶液も含まれる。
[0070] (1)の工程では、この珪酸塩の水溶液を調製し、酸で中和してヒドロゲルを調製す る。珪酸塩の水溶液の濃度は、 SiOとして 1〜10重量%、さらには 2〜8重量%、温
2
度は常温(通常 15〜35°C)、中和後の pHは 3〜7の範囲にあることが好ましい。 この濃度が SiOとして 1重量%未満の場合は、珪酸の重合 (ゲル化)が不充分で、
2
得られる実用的な条件でヒドロゲルを得ることが容易ではなくなる。他方、この濃度が SiOとして 10重量%を越えると、均一に中和することができず珪酸の重合が不均一
2
となり、最終的に得られる異形シリカゾルの大きさのばらつきが増大する。
[0071] 中和後の pHが 3〜7の場合、均一なヒドロゲルを得ることが容易であり、 pHが 3未 満の場合は、ヒドロゲル構造が弱ぐ洗浄時にシリカが、濾布から溶出し易ぐ 7を超 える場合は、一部シロキサン結合が起こり、解膠し難いという欠点がある。尚、中和に 使用される酸としては、塩酸、硝酸、硫酸などが使用される。
[0072] このように中和して得られるシリカヒドロゲルを洗浄して、主として中和により生成す る塩類を除去する目的で行う。通常は、オリバーフィルタ一等の濾過機にて、純水ま たはアンモニア水などで洗浄を行なう。
例えば、硫酸ナトリウムが生成した場合、洗浄後の硫酸ナトリウムの濃度は、望まし くは、 SiOの固形分に対して、 0. 05%以下が好ましぐ少ないほど解膠時間が短い
2
。尚、塩類の濃度が高いと解膠しても、ゾル粒子の負電位が小さぐ凝集体が出来易 V、ために、安定なゾル液を得ることが出来な!/、。
[0073] 洗浄が終了したシリカヒドロゲルにアルカリをカ卩えて、シリカヒドロゲルを解膠する。
通常は、シリカヒドロゲルに水を添加し、強力攪拌機にて流動性のあるスラリ-状態と したシリカヒドロゲル分散液を調製し、これに適度のアルカリをカ卩えてシリカヒドロゲル を解膠する方法が挙げられる。
このとき、シリカヒドロゲルの分散液の濃度は、 SiOとして 0.5〜10重量0 /0、さらには
2
3〜7重量%の範囲にあることが好ましい。この濃度が 0.5重量%未満の場合は、溶 解するシリカの割合が増加し、得られるシリカ微粒子の平均粒子径が小さくなるため 、(2)の工程で行うビルドアップの際の粒子成長速度が著しく遅くなる傾向がある。ま た、この濃度が SiOとして 10重量%を越えると、解膠して得られるシリカ微粒子の平
2
均粒子径が不均一となりやすい。このため(2)の工程により得られる異形シリカゾル の粒子径分布が不均一になりやすくなる。
[0074] アルカリとしては、 KOH、 NaOH等のアルカリ金属水酸化物や水酸化アンモ-ゥム 、さらにはァミン水溶液等を用いることができる。
アルカリの使用量は、シリカヒドロゲルの分散液中の SiOのモル数とアルカリのモル
2
数との比(SiO ) / (M O)力 0
2 2 〜500、さらには 40〜200の範囲となるように使用す ることが好ましい。前記モル比(SiO )Z(M O)が 30未満の場合は、溶解したシリカ
2 2
の割合が増加し、最終的に異形シリカゾルの生産効率や収率が低下する。他方、前 記モル比(SiO ) / (M O)が 500を越えると、解膠が不充分となり、 (2)の工程で行
2 2
なうビルドアップに供される種粒子となるシリカゾルの粒子径分布が不均一となるため 、最終的に得られる異形シリカゾルの粒子径分布もブロードなものとなる。
[0075] 解膠するときの pHは 5〜11の範囲が好ましい。 pH5未満では、分散液が高粘度化 するため、安定なシリカゾルが得に《なる。 pHl lを超えると、シリカが溶解しやすく なり不安定となる。
上記シリカヒドロゲルをアルカリで解膠する際の温度は 60〜200°C、さらには 70〜 170°Cの範囲にあることが好ましい。 60°C未満の場合は、充分に均一な解膠ができ ないことがある。温度が 200°Cを越えると、得られるシリカゾルの粒子径の形状が球状 となり易い傾向がある。
[0076] (2)の工程
前記(1)の工程で得られたシリカゾルをシードゾルとし、 60〜200°Cの範囲〖こて、 珪酸液を連続的にまたは断続的に添加することにより異形シリカゾルを調製する。シ 一ドゾルについては、必要に応じて、純水による希釈とアルカリまたはケィ酸塩の添 加を行い、シリカ固形分濃度を 2〜 10重量%に、 pHを 9〜12. 5の範囲に調整する 。 pHが 9未満の場合は、粒子の電位が小さくなり、凝集し、分布が大きくなる。 12. 5 を超えると粒子の溶解性が増加し、粒子成長しにくい。
[0077] アルカリの種類としては、格別に限定されるものではないが、 KOH、 NaOH等のァ ルカリ金属水酸化物や水酸化アンモニゥム、ァミン水溶液、アンモニア水等が使用さ れる。ケィ酸塩についても格別〖こ限定されるものではないが、前記(1)の工程で例示 されたような珪酸塩が使用できる。特には珪酸ナトリウム、珪酸カリウム等が好ましい。 次に、シ—ドゾルの温度を 60〜200°Cの範囲に保持しながら、珪酸液を連続的に 、または断続的に添加して、シリカ微粒子を成長させる。珪酸液の添加量については 、所望する異形シリカゾルの粒子径の大きさに応じて、調整される。
[0078] ここでシードゾルとして使用する(1)の工程で得られたシリカゾルにつ!/、ては、好適 には動的光散乱法で測定した平均粒子径が 5〜80nmのシリカゾルが使用される。こ の範囲のシリカゾルをシードゾルとして使用した場合、動的光散乱法により測定され る平均粒子径 (r)が 10〜150nmの範囲となり易い。なお、前記範囲の平均粒子径 のシードゾルを用いる場合には、所望により、(1)の工程で得られたシリカゾルを遠心 分離装置にかけて選別しても良い。
ここで使用する珪酸液については、望ましくは、珪酸アルカリ塩を脱アルカリして得 られる珪酸液が使用される。このような珪酸液は、通常は珪酸アルカリ塩の水溶液を 陽イオン交換樹脂で処理することによって、アルカリを除去して得られる珪酸の低重 合物の溶液であり、一般に酸性珪酸液とも称される。通常は SiO濃度が 1〜10重量
2
%の珪酸液が使用される。
[0079] 珪酸アルカリ塩としては、例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、第 4 級アンモ-ゥムシリケートなどが何れも使用可能であり、好適には 1号水ガラス、 2号 水ガラス、 3号水ガラス等の名称で市販されている珪酸ナトリウムまたは珪酸カリウム が選ばれる。また、テトラエチルオルソシリケー HTEOS)などの加水分解性有機化 合物を過剰の NaOHなどを用いて加水分解して得られる珪酸アルカリ水溶液なども 好適である。
[0080] 前記珪酸アルカリ塩の製造方法は、格別に限定されるものではなぐ公知の製造方 法を適用できる。このような製造方法として、例えば、特開平 9— 110416号公報に開 示されるような珪酸アルカリガラスカレットを珪酸カルシウムアルカリよりなる種結晶の 存在下に水に溶解して珪酸アルカリ水溶液を得た後、該珪酸アルカリ水溶液を濾過 してなる珪酸アルカリ水溶液の製造方法、特開平 6— 171924号公報に開示されるよ うな軟質珪石に水酸ィ匕アルカリ(AOH ;A:アルカリ金属)水溶液をカ卩えて、該珪石中 の珪酸分を溶解させることで A O-nSiOの組成を有する珪酸アルカリ水溶液を製造
2 2
するに際し、 水溶液中に過酸化水素を添加して軟質珪石に由来する還元物質を酸 ィ匕させることを特徴とする珪酸アルカリ水溶液の製造方法などが挙げられる。
[0081] 前記珪酸アルカリ塩については、好適には精製されたものを使用することが推奨さ れる。精製方法としては、公知の方法が適用できる。その様な例としては、特開 2001 - 294420号公報に開示されて 、るような珪酸アルカリ水溶液の粘度を予め 1〜50 mPa · sに調節し、これを分画分子量 15 ,000以下の限外濾過膜を通過させることに より、シリカ当たりの Cuの含有率が 200ppb以下であり、かつ lnm以上の大きさの粒 子が実質的に存在しない珪酸アルカリ水溶液を得る精製方法などが挙げられる。 前記珪酸液は、強塩基性陰イオン交換体や強酸性陽イオン交換体と接触させて、 不純物除去を行ったものを使用することが望ましい。また、珪酸液に必要に応じて、 酸を加え、 40°C〜300°Cで加熱することにより、粒子表面及び内部力 アルカリを放 出させてものを使用しても良い。
[0082] 酸の種類については、シリカ微粒子から陽イオンを溶出させる効果を考慮して所謂 、強酸を用いる。具体的には、無機酸または有機酸が挙げられ、通常は、塩酸、硫酸 、硝酸、スルファミン酸、蟻酸等が選ばれる。なお、酸を珪酸液に添加する際には、 通常、酸の濃度が 1〜20%の水溶液にして添加する。酸の添加量については、珪酸 液の pHが 0. 1〜1. 0の範囲になるように添カ卩される。
[0083] シードゾル中のシリカ微粒子の粒子成長を行う際には、シードゾルの温度を 60〜2 00°Cの範囲の温度に保持する。シードゾルの温度が 60°C未満では、珪酸液が添加 されたシードゾル中での珪酸の溶解速度およびシリカのシード上への析出速度など が遅くなる。一方、シ―ド液の温度を 200°Cより高くすれば、前述の溶解速度および 析出速度を速くすることができるので有利であるが、粒子径ゃ粒子形状を制御するこ とが困難となるば力りでなぐ高価なプロセスとなるために、好ましくない。
珪酸液を添加する際に、新たなシードを発生しないようにしなければならない。この ためシード液中への珪酸液の添加速度は、最終製品のシリカ微粒子の粒径、粒度分 布、形状に大きな影響を与える。本発明の製造方法においては、 30分〜 72時間か けて連続的にまたは断続的に珪酸液を添加することが望ましい。これにより、異形シ リカゾルを得ることができる。
[0084] 本発明の第 2の製造方法にぉ 、ても、原料として、細長 、シリカゾルの原料として 使用されるカルシウム酸化物、マグネシウム酸ィ匕物、アルキルシリケートなどを用いる ものではなく、卵状な!/、しは繭状のシリカゾルの原料となる珪酸メチルなどを一切使 用するものではない。このため本発明製造方法により得られる異形シリカ微粒子は、 SiOに対する Ca、 Mgの割合は lOOOppm以下となり、 Cについても実質的に含有
2
するものではない。
[0085] 本発明の第 2の製造方法においても、製造工程で使用する珪酸液として前記第 1 の製造方法と同様に高純度化処理した珪酸液を使用することが可能である。また、 第 2の製造方法で得られた異形シリカゾルを前記第 1の製造方法と同様に高純度化 処理することにより高純度化された異形シリカゾルを調製することも可能である。 本発明の異形シリカゾルは、研磨材として有用なものであり、本発明の異形シリカゾ ルを含む研磨剤は、ハードディスク用研磨剤、ウェハ用研磨剤または Cu— CMP研 磨用研磨剤として利用可能である。
実施例 1
[0086] 異形シリカゾルの製造
1-1)珪酸液の調製
7%濃度の珪酸ナトリウム (3号水硝子)の 7,000gを限外モジュール (旭化成社製 SI P— 1013)に通液し濾水を回収し精製水硝子を得た。この精製水硝子のシリカ濃度 力 %になるように純水を添加した。そして、このシリカ濃度 5%の水硝子 6,500gを強 酸性陽イオン交換榭脂 SK1BH (三菱ィ匕学社製) 2. 2Lに空間速度 3. 1で通液させる ことで珪酸液 6,650gを得た。得られた珪酸液のシリカ濃度は 4. 7%であった。
[0087] 1-2) 珪酸液の高純度化処理
上記珪酸液 6,650gを再度強酸性陽イオン交換榭脂 SK1BH (三菱ィ匕学社製) 0. 4L に空間速度 3. 1で通液させ、次いで強塩基性イオン交換榭脂 SANUPC (三菱ィ匕学社 製) 0. 4Lに空間速度 3. 1で通液させる事で、シリカ濃度 4. 4%の高純度珪酸液を得 た。
得られた珪酸液の不純分につ!、ては、後記 1-9)不純分測定に記載する方法で測 定した。その結果、 Naが 50ppb以下、 Kが 50ppb以下、 C1は lppm以下であった。
[0088] 1-3) 珪酸液の pH調整および熟成
上記で得られた珪酸液 454. 5g〖こ純水 545. 5gを添カ卩してシリカ濃度を 2%に調 整し、 10分間攪拌した。この時点での pHは 3. 8だった。そして 1%濃度のアンモ- ァ水 0. 4gを添加して pHを 4. 5に調整し、室温で 2時間保つことにより熟成し、重合 珪酸液 l,OOOgを得た。この重合珪酸液の粘度を TOKI (株)製: B型粘度計を用いて 測定したところ、 1. 3mPa' sであった。尚、以下の実施例および比較例において粘 度測定には、全てこの装置を使用した。
[0089] 1-4) シード液の調製
重合珪酸液 l,OOOgに 15%濃度のアンモニア水を 61. 2g添カ卩して pHを 10.4に調 整し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 20 nmであり、シリカ濃度は 1. 9%であった。なお、動的光散乱法により平均粒子径の 測定には、粒子径分布測定装置 (大塚電子社製、 PAR— III)を使用した。尚、以下 の実施例および比較例にぉ 、て動的光散乱法による平均粒子径の測定には、全て この装置を使用した。
[0090] 1-5) ビルドアップ
カロ熱して得られたゾノレ 284.7gに 15%アンモニア水 79. 68gを添カロして pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。
別途、前記 1-1)〜1-2)と同様の製造方法により 4. 4%濃度の高純度酸性ケィ酸液 2,954. 3gを調製し、これに 1%濃度の硫酸を 38g添カ卩し、さらに純水を添カ卩して 3重 量%の高純度ケィ酸液 4,333gを調製した。
この高純度珪酸液 4,333gを前記昇温保持したゾルに 18時間かけて添加した。添 加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
ここまでのシリカゾルの調製条件を表 1に示す。
[0091] 1-6) 限外濃縮
ビルドアップ後のゾルを限外ろ過膜 (旭化成社製、 SIP— 1013)で 10%濃度まで濃 縮した。 [0092] 1-7) ロータリーエバポレーターによる濃縮
さらにロータリーエバポレーターで 16%濃度まで濃縮した。
[0093] 1-8) 物性測定
得られたゾルの動的光散乱法による平均粒子径 (r)は 37nmであった。また、比表 面積は 118m2/gであり、比表面積力もの等価球換算粒子径 ( )は 23. lnmであつ た。従って、会合比 (rZi )は 1. 6であった。
[0094] 動的光散乱法による平均粒子径 (r)の測定 (測定方法(1) )については、試料シリ 力ゾルを 0. 58%アンモニア水にて希釈して、シリカ濃度 1質量%に調整し、レーザ 一パーティクルアナライザー (粒径測定装置(1) )を用いて測定した。
[粒径測定装置(1)の概要]
大塚電子 (株)製造、型番「レーザー粒径解析システム、 LP— 510モデル PAR— II I」、測定原理:動的光散乱法、測定角度: 90° 、受光素子:光電子倍増管 2インチ、 測定範囲: 3ηπι〜5 /ζ πι、光源: He— Neレーザー 5mW 632.8nm、温度調整範囲: 5〜90°C、温度調整方式:ペルチェ素子 (冷却)、セラミックヒーター (加熱)、セル: 10m m角のプラスチックセル。
実施例 1〜実施例 12および比較例 1〜5については、この測定方法(1)によった。
[0095] また、実施例 13〜23および比較例 6〜10については、別の測定方法(2)により平 均粒子径 (r)を測定した。 即ち、試料シリカゾルを 0. 58%アンモニア水にて希釈し 、 ρΗ11、シリカ濃度 0. 1質量%に調整し、粒径測定装置 (2)を用いて平均粒子径を 測定した。
[粒径測定装置 (2)の概要]
PARTICLE SIZING SYSTEMS Co.製造、型番「NICOMP 380」、測定 原理:動的光散乱法 (ホモダイン/粒度分布)、光源: He— Neレーザー 5mW、検出 器:フォトカウント用光電子増倍管、コーリレーター: 32bitデジタルオートコーリレータ 一(DSP搭載)、測定セル:四面透過型角セル (デイスポーザブル)、温度制御方式: ペルチェ素子 (コンピュータ制御)、設定範囲: 5°C〜80°C、測定粒度分布範囲: In m〜5 μ m。
[0096] 比表面積の測定については、シリカゾル 50mlを HNOで pH3. 5に調整し、 1ープ ロパノール 40mlをカ卩え、 110°Cで 16時間乾燥した試料について、乳鉢で粉砕後、 マツフル炉にて 500°C、 1時間焼成し、測定用試料とした。そして、比表面積測定装 置(ュアサアイォ-タス製、型番マルチソープ 12)を用いて窒素吸着法 (BET法)によ り、窒素の吸着量から、 BET1点法により比表面積を算出した。
具体的には、試料 0. 5gを測定セルに取り、窒素 30容量%とヘリウム 70容量%の 混合ガス気流中、 300°Cで 20分間脱ガス処理を行い、その上で試料を上記混合ガ ス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガ スを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を 検出し、予め作成した検量線により、シリカゾルの比表面積を算出した。
[0097] 等価球換算粒子径については、上記方法で算出された比表面積を次の [式 1]に 代入し、シリカ密度を 2. 2として等価球換算粒子径 ( )を算出した。
[式 1] 等価球換算粒子径 ( )=60007[比表面積 密度(/0 ) ] 測定結果を表 2に示す。尚、以下の実施例および比較例においても全てこの装置 を使用した。
[0098] 1-9) 不純分測定
(1)余属(Ca、 Mg、 Na、 K、 Cu、 Ν たは Fe)含有量
1)試料シリカゾル約 10gを白金皿に採取し、 0. lmgまで秤量する。
2)硝酸 5mlと弗化水素酸 20mlを加えて、サンドバス上で加熱し、蒸発乾固する。
3)液量が少なくなつたら、更に弗化水素酸 20mlをカ卩えてサンドバス上で加熱し、蒸 発乾固する。
4)室温まで冷却後、硝酸 2mlと水約 50mlカ卩えて、サンドバス上で加熱溶解する。
5)室温まで冷却後、フラスコ(100ml)に入れ、水で 100mlに希釈して試料溶液とす る。
6)下記測定装置により試料溶液中に存在する各金属の含有量を測定した。
[0099] [Ca、 Mgおよび Feの含有量]
誘導結合プラズマ発光分光分析装置 (セイコーインスツル (株)製、 SPS1200A、高 周波誘導結合アルゴンプラズマ中に溶液ィ匕した試料を導入し、試料中の各元素を励 起発光させ、発光スペクトルにより定量、定性分析を行う装置。測定波長範囲は 175 500nm。 )により測定した。シリカ試料の場合における各元素の検出波長は、 Ca : 393.366 Mg : 279.553nm Fe : 259.940nmである。
[0100] [Cuおよび Niの含有量]
原子吸光分光光度計(日立製作所 (株)製、 Z-8200,フレームにより試料を原子蒸 気化し、その原子蒸気層に適当な波長の光を照射する。その際、原子によって吸収 された光の強さを測定し、これにより試料中の元素濃度を定量する。グラフアイト炉を 使用する。測定モード:原子吸光、測定波長範囲は 190 900nm。)を使用した。シ リカ試料の場合における各元素の検出波長は、 Cu: 324.8nm Ni: 232.0nmである。
[Naおよび Kの含有量]
原子吸光分光光度計(日立製作所 (株)製、 Z-5300、測定波長範囲は 190 900n m。)を使用した。シリカ試料の場合における各元素の検出波長は、 Na : 589.0nm K : 766.5nmである。
[0101] 7)試料シリカゾル 10gに 50%硫酸水溶液 2mlをカ卩え、白金皿上にて蒸発乾固し、得 られた固形物を 1000°Cにて 1時間焼成後、冷却して秤量する。次に、秤量した固形 物を微量の 50%硫酸水溶液に溶かし、更にフッ化水素酸 20mlをカ卩えてから、白金 皿上にて蒸発乾固し、 1000°Cにて 15分焼成後、冷却して秤量する。これらの重量 差よりシリカ含有量を求めた。
8)上記 6)と 7)の結果から SiO分に対する各金属の割合を算出した。なお、 Caと Mg
2
については、それぞれ酸ィ匕物に換算して SiOに対する割合を算出し、 Na K Cu
2
Mまたは Feについては、金属単体として SiOに対する割合を算出した。
2
なお、後記(2) Cの含有量と(3) C1の含有量においても、試料シリカゾル中の SiO
2 の量については、上記 7)の方法で求めたシリカ含有量を使用した。
[0102] (2) C (カーボン)の含有量
試料シリカゾルを 110°Cで 12時間乾燥させたもの 0. lgを「炭素 ·硫黄分析装置」( (株)堀場製作所製、 EMIA-320V/FA)にて測定した。この炭素'硫黄分析装置の分 析原理は、酸素気流中高周波加熱燃焼 赤外線吸収法による。最小読取感度: 0. 01ppm、分析時間:30 60秒、燃焼炉方式は燃焼コントロール機能付の高周波誘 導加熱炉方式、陽極出力: 2. 3KW、周波数: 18MHzである。 [0103] (3) C1 (塩素)の含有量
1)試料シリカゾルの約 20gを 200mlビーカーに採取し、 0. lmgまで秤量する。
2)アセトン 100ml、酢酸 5mlおよび 0. 002molZlの塩化ナトリウム溶液 4mlを加え、 試料溶液とする。
3)電位差自動滴定装置 (京都電子工業 (株)製、 AT— 610、検出範囲:― 2000〜2 OOOmV、 pH0〜14、温度 0〜100°C)を使用して、試料溶液に対する硝酸銀のアル コール溶液 (硝酸銀濃度 0. 002mol/l)の滴定量を求める。
また、試料シリカゾルを添加しない他は上記 2)と同様にして空試験溶液を調製し、 これについても同様に滴定量を求めた。そして、次の [式 2]から試料中の塩素含有 量を求めた。
[0104] [式 2] Cl[ppm] = ( (A-B) X f X C) /W
A:試料溶液に対する硝酸銀アルコール溶液の滴定量 (ml)
B:空試験溶液に対する硝酸銀アルコール溶液の滴定量 (ml)
f:硝酸銀アルコール溶液の力価
C:硝酸銀アルコール溶液 lmlにおける C1滴定量 = 71 ( μ g)
W:試料採取量 (g)
[0105] 得られた異形シリカゾルの異形シリカ微粒子(SiO )に関する分析結果にっ 、ては
2
、 Naが lppm以下、 Kが lppm以下、 Cuは 300ppb以下、 Niは lOOppb以下、 Feは 50ppm以下となった。また、酸化物換算で、 Mgは lOOppm以下、 Caは lOOppm以 下となった。そして、 Cは lOppm以下また C1は lppm以下であった。測定結果を表 2 に示す。
尚、以下の実施例および比較例における不純分の測定には、全てこれらの装置を 使用した。
実施例 2〜9の分析結果を表 2に示す。実施例 13〜23の分析結果については表 4 に示す。
実施例 2
[0106] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液に、実施例 1と同様に純 水を添加してシリカ濃度を 2%に調整し、 10分間攪拌し、 1%濃度のアンモニア水を 添加せず、 pH3. 8の状態で、室温にて 2時間保つことにより熟成して、重合珪酸液 6 ,650gを得た。この重合珪酸液中の珪酸の粘度は、 1. ImPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10.4になるように添カロ し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性の 青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 16η mであり、シリカ濃度は 1. 9%であった。
[0107] カロ熱して得られたゾノレ 284.7gに 15%アンモニア水 79. 68gを添カロして pHを 11. 4 に調整し、 83°Cに昇温し、 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 3 3nmであった。また比表面積は 137m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 19. 9nmであり、会合比(rZr' )は 1. 61であつた。
実施例 3
[0108] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液に、実施例 1と同様に純 水を添加してシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 1%濃度のアンモニア 水を 0. 4g添カ卩して、 pHを 4. 5に調整し、 80°Cで 1時間保つことにより熟成して重合 珪酸液 6,650gを得た。重合珪酸液中の珪酸の粘度は、 1. 3mPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10.4になるように添カロ し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性の 青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 33η mであり、固形分濃度は 1. 9%であった。
[0109] カロ熱して得られたゾノレ 284.7gに 15%アンモニア水 79. 68gを添カロして pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 6 2nmであった。また比表面積は 102m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 26. 7nmであり、会合比(rZr' )は 2. 32であった。
実施例 4
[0110] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液に、実施例 1と同様に純 水を添加してシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 1%濃度のアンモニア 水を 0. 4g添加して、 pHを 4. 5に調整し、 5°Cで 2時間保つことにより熟成して重合珪 酸液 6,650gを得た。重合珪酸液中の珪酸の粘度は、 1. ImPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10. 4になるように添 加し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 12 nmであり、固形分濃度は 1. 9%であった。
[0111] 加熱して得られたゾル 284.7gに 15%アンモニア水 79. 68gを添加して pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 2 7nmであった。また比表面積は 157m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 17. 4nmであり、会合比(rZr' )は 1. 55であつた。
実施例 5
[0112] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液に、実施例 1と同様に純 水を添加してシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 pHが 6. 5になるように 1%濃度のアンモニア水を添加し、室温で 2時間保つことにより熟成して重合珪酸液 6 ,650gを得た。重合珪酸液の粘度は、 1. 3mPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10. 4になるように添 加し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 13 nmであり、固形分濃度は 1. 9%であった。
[0113] 加熱して得られたゾル 284.7gに 15%アンモニア水 79. 68gを添加して pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 3 2nmであった。また比表面積は 139m2/g、比表面積力も算出した等価球換算粒子 径 (r' )は 19. 6nmであり、会合比(rZi )は 1. 63であつた。
実施例 6
[0114] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液に、実施例 1と同様に純 水を添加してシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 pHが 2. 0になるように 、 1%濃度の硫酸を添加し、室温で 2時間保つことにより熟成して重合珪酸液 6,650g を得た。重合珪酸液の粘度は、 1. 2mPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10. 4になるように添 加し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 18 nmであり、固形分濃度は 1. 81%であった。
[0115] 加熱して得られたゾル 284.7gに 15%アンモニア水 79. 68gを添加して pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 3 4nmであった。また比表面積は 128m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 21. 3nmであり、会合比(rZr' )は 1. 60であった。
実施例 7
[0116] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液に、実施例 1と同様に純 水を添加してシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 pHが 3. 0になるように 1%濃度の硫酸を添加し、室温で 72時間保つことにより熟成して重合珪酸液 6,650g を得た。重合珪酸液の粘度は、 78mPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10. 4になるように添 加し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 60 . 4nmであり、固形分濃度は 1. 89%であった。
[0117] 加熱して得られたゾル 284.7gに 15%アンモニア水 79. 68gを添加して pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 8 Onmであった。また比表面積は 89m2/g、比表面積力も算出した等価球換算粒子径 ( )は 30. 6nmであり、会合比(rZi )は 2. 61であった。
実施例 8
[0118] 実施例 1のト 1)と同様にして得られたシリカ濃度 4. 7%の珪酸液に、純水を添加し てシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 pHが 4. 5になるように 1%濃度の アンモニア水を添カ卩し、室温で 2時間保つことにより熟成して重合珪酸液 6,650gを 得た。重合珪酸液の粘度は、 1. 3mPa' sであった。
この重合珪酸液 l,000gに 15%濃度のアンモニア水を pHが 10. 4になるように添 加し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 27 nmであり、固形分濃度は 1. 9%であった。
[0119] カロ熱して得られたゾノレ 284.7gに、シリカ濃度 24.25%の 3号水硝子 20.81gを添カロし 、 pHを 11.2に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1のト 1)と同様 な製造方法により得られた珪酸液 (シリカ濃度 4. 7重量%)に純水を加えてシリカ濃 度 3%に調整した珪酸液の 4,333gを 18時間かけて添加した。添加終了後さらに 83 °Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 5 3nmであった。また比表面積は 112m2/g、比表面積力 算出した等価球換算粒子 径 ( )は 24. 3nmであり、会合比(rZr' )は 2. 18であった。
実施例 9
[0120] 実施例 1の 1-1)と同様にして得られたシリカ濃度 4. 7%の高純度珪酸液に、純水を 添加してシリカ濃度を 2%濃度に調整し、 10分間攪拌し、 pHが 4. 5になるように 1% 濃度のアンモニア水を添加し、室温で 2時間保つことにより熟成して重合珪酸液 6,6 50gを得た。重合珪酸液の粘度は、 1. 3mPa' sであった。
この重合珪酸液 l,OOOgに 15%濃度のアンモニア水を pHが 10. 4になるように添 加し、温度を 95°Cに昇温して、 1時間保つことにより加熱し、室温まで冷却し、透明性 の青白いゾルを得た。得られたゾルは動的光散乱法により測定した平均粒子径が 27 nmであり、固形分濃度は 1. 9%であった。
[0121] カロ熱して得られたゾノレ 1353. 7gに、シリカ濃度 24. 28%の 3号水硝子 24. 2gを添 加し、 pHを 10. 9に調整し、 87°Cに昇温し 30分間保った。そして、実施例 1のト 1)と 同様な製造方法により得られた珪酸液 (シリカ濃度 4. 7重量%)に純水を加えシリカ 濃度 3%に調整した珪酸液の 4143. 3gを 14時間かけて添加した。添加終了後さら に 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 3 5nmであった。また比表面積は 195m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 14nmであり、会合比 (rZ )は 2. 5であった。
比較例 1
[0122] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液 (シリカ濃度 4. 4%)に純 水を加えず、 pHが 4. 5になるように 1%濃度のアンモニア水を添カ卩し、室温で 2時間 保つことにより熟成したところ珪酸液は寒天状にゲルィ匕していた。
このゲル l,OOOgを薬さじで攪拌し、超純水 600gを添加し、ゲルをほぐしながら、 p H10.4になるように 15%濃度のアンモニア水を添カ卩した。温度を 95°Cに昇温して、 1 時間保つことにより加熱し、室温まで冷却し、ゾルを得た。得られたゾルは動的光散 乱法により測定した平均粒子径が 53nmであり、固形分濃度は 4. 2%であった。
[0123] カロ熱して得られたゾノレ 284.7gに 15%アンモニア水 79. 68gを添カロして pHを 11. 4 に調整し、 83°Cに昇温し 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 6 8nmであった。また比表面積は 125m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 21. 8nmであり、会合比(rZr' )は 3. 12であった。
比較例 2
[0124] 実施例 1の 1-1)〜1-2)と同様にして得られた高純度珪酸液 (シリカ濃度 4. 4%)に純 水を加えず、 pHが 5. 5になるように 1%濃度のアンモニア水を添カ卩し、室温で 2時間 保つことにより熟成したところ珪酸液は寒天状にゲルィ匕していた。
このゲル l,OOOgを薬さじで攪拌しゲルをほぐしながら、 ρΗΙΟ.4になるように 15% 濃度のアンモニア水を添加した。温度を 95°Cに昇温して、 1時間保つことにより加熱 し、室温まで冷却し、ゾルを得た。得られたゾルは動的光散乱法により測定した平均 粒子径カ S44nmであり、固形分濃度は 4. 2%であった。
[0125] カロ熱して得られたゾノレ 284.7gに 15%アンモニア水 79. 68gを添カロして pHを 11. 4 に調整し、 83°Cに昇温し、 30分間保った。そして、実施例 1と同様に高純度珪酸液( シリカ濃度 3重量%)の 4,333gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮およびロータリーエバポレー タによる濃縮を行い、物性を測定した。最終的に得られたゾルの平均粒子径 (r)は 5 3nmであった。また比表面積は 144m2/g、比表面積力も算出した等価球換算粒子 径 ( )は 18. 9nmであり、会合比(rZr' )は 2. 8であった。
比較例 3 [0126] 実施例 1の 1-1)と同様にして得られた珪酸液 (シリカ濃度 4. 7%)に純水を加えず、 pHが 4. 5になるように 1%濃度のアンモニア水を添カ卩し、室温で 2時間保つことにより 熟成したところ珪酸液は寒天状にゲルィ匕して 、た。
このゲル l,OOOgを薬さじで攪拌しゲルをほぐしながら、 ρΗΙΟ.4になるように 15% 濃度のアンモニア水を添加した。温度を 95°Cに昇温して、 1時間保つことにより加熱 し、室温まで冷却し、ゾルを得た。得られたゾルは動的光散乱法により測定した平均 粒子径が 56nmであり、固形分濃度は 1. 9%であった。
[0127] 加熱して得られたゾル 284.7gにシリカ濃度 24.25%の 3号水硝子 20.81gを添カロし p Hを 11.2に調整し、 83°Cに昇温し 30分間保った。次いで、実施例 1のト 1)と同様にし て得られた 4.7%濃度の珪酸液に純水を添加して 3%濃度に調整した珪酸液 4,333. 3gを 18時間かけて添加した。添加終了後さらに 83°Cで 1時間保ちその後室温まで冷 却した。
そして、実施例 1の 1-6)および 1-7)と同様に限外濃縮 (ただし、シリカ濃度 12%)お よびロータリーエバポレータによる濃縮 (ただし、シリカ濃度 30. 5%)を行い、物性を 測定した。最終的に得られたゾルの平均粒子径 (r)は 65nmであった。また比表面積 は 124m2/g、比表面積力 算出した等価球換算粒子径 ( )は 22. Onmであり、会 合比(rZ )は 2. 96であった。
比較例 4
[0128] 球状シリカゾル (触媒化成工業株式会社製、カタロイド SI-50、動的光散乱法によ る平均粒子径 38nm、シリカ濃度 48%、会合比 1. 5)を準備した。また、超純水を添 カロして球状シリカゾルのシリカ濃度を 16%に調整し、実施例 11の研磨特性試験に用 いるスラリーを準備した。
比較例 5
[0129] 球状シリカゾル (触媒化成工業株式会社製、カタロイド SI-80、動的光散乱法によ る平均粒子径 105nm、シリカ濃度 40. 5%、会合比 1. 3)を準備した。また、超純水 を添加して球状シリカゾルのシリカ濃度を 16%に調整し、実施例 12の研磨特性試験 に用いるスラリーを準備した。
実施例 10 [0130] [濾過性試験]
実施例 1〜9及び比較例 1〜3で得られたシリカゾルと、比較例 4、 5で準備したシリカ ゾルを 47mm径の 0.45 μの平板フィルターで減圧濾過を行い、通液したゾルの重量を 測定した。評価結果を表 2に示す。
実施例 11
[0131] [アルミニウム基板の研磨特性試験]
Iff磨用スラリーの調製
上記実施例 1〜9で得たシリカ濃度 16重量%の異形シリカゾルに、 H O、 HEDP (
2 2
1-ヒドロキシェチリデン- 1 , 1-ジホスホン酸)および超純水をカ卩えて、シリカ 9重量%、 H O 0. 5重量%、 1-ヒドロキシェチリデン -1 , 1-ジホスホン酸 0. 5重量%の研磨用ス
2 2
ラリーを調製し、さらに必要に応じて HNOを添加することにより、 pH2. 0の研磨用ス
3
ラリーを調製した。
また、比較例 1〜3で得られたシリカゾルおよび比較例 4の球状シリカゾルにつ 、て も同様に調製し研磨用スラリーを得た。
[0132] 被研磨某板
被研磨基板として、アルミニウムディスク用基板を使用した。
このアルミニウムディスク用基板は、アルミニウム基板に Ni—Pを 10 μ mの厚さに無 電解メツキ(Ni88%と P12%の組成の硬質 Ni—Pメツキ層)をした基板(95mm φ /2 5mm - 1. 27mmt)を使用した。尚、この基板は 1次研磨してあり、表面粗さは最 大 0. である。
[0133] 研磨試験
上記被研磨基板を、研磨装置 (ナノファクター (株)製: NF300)にセットし、研磨パ ッドとして、口デール社製「アポロン」を使用し、基板荷重 0. 05MPa、テーブル回転 速度 30rpmで研磨用スラリーを 20gZ分の速度で 10分間供給して研磨を行った。 研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。そして、比較例 4の場合の研磨速度を 1としたときの、実施例 1〜9および比較例 1〜3の研磨速度の 比率を研磨レートとして、表 2に記した。
[0134] また、研磨表面を観察し、表面の平滑性を光学顕微鏡で観察し、以下の基準で評 価して、結果を表 2に示した。
スクラッチが認められな力つた :◎
小さなスクラッチが僅か〖こ認められた :〇
小さなスクラッチが広範囲に認められた: Δ
大きなスクラッチが点在して認められた: X
実施例 12
[0135] [ガラス基板の研磨特性試験]
Iff磨用スラリーの調製
上記実施例 1〜9で得たシリカ濃度 16重量%の異形シリカゾルに、 5%水酸化ナト リウム水溶液および超純水を加え、シリカ濃度 9重量%、 ρΗΙΟ. 5の研磨用スラリー を調製した。また、比較例 1〜3で得られたシリカゾルおよび比較例 5の球状シリカゾ ルについても同様に調製し研磨用スラリーを得た。
[0136] 被研磨某板
被研磨基板として、 65mm φの強化ガラス製のハードディスク用ガラス基板を使用 した。このハードディスク用ガラス基板は、一次研磨済みであり、表面粗さは最大で 0
. である。
[0137] 研磨試験
上記被研磨基板を、研磨装置 (ナノファクター (株)製: NF300)にセットし、研磨パ ッドとして、口デール社製「アポロン」を使用し、基板荷重 0. 18MPa、テーブル回転 速度 30rpmで研磨用スラリーを 20gZ分の速度で 10分間供給して研磨を行った。 研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。そして、比較例 5の場合の研磨速度を 1としたときの、実施例 1〜9および比較例 1〜3の研磨速度の 比率を研磨レートとして、表 2に記した。
[0138] また、研磨表面を観察し、表面の平滑性を光学顕微鏡で観察し、以下の基準で評 価して、結果を表 1に示した。
スクラッチが認められな力つた :◎
小さなスクラッチが僅か〖こ認められた :〇
小さなスクラッチが広範囲に認められた: Δ 大きなスクラッチが点在して認められた:
[表 1]
Ϊ/8ε9002τ/:£1寸 OAV
Figure imgf000041_0001
[z [owo]
T8lSlC/900Zdf/X3d VP 6908Ϊ0/.00Ζ OAV
Figure imgf000043_0001
実施例 13
[0141] SiO濃度が 24重量%の珪酸ナトリウム水溶液(SiO /Na Oモル比が 3.1)をィォ
2 2 2
ン交換水で希釈して、 SiO濃度が 5重量%の珪酸ナトリウム水溶液 (pHl l . 3)を 1K
2
g調製した。
この珪酸ソーダ水溶液の pHが 6. 5になるように、硫酸をカ卩えて中和し、常温で 1時 間保持して、シリカヒドロゲルを調製した。このシリカヒドロゲルをオリバーフィルターに て純水 (SiO固形分の約 120倍相当量)で充分に洗浄し、塩類を除去した。洗浄後
2
の硫酸ナトリウム濃度は、 SiO固形分に対して、 0. 01%未満だった。
2
得られたシリカヒドロゲルを純水に分散し (シリカ濃度 3重量%)、強力攪拌機にて流 動性のあるスラリー状態としたシリカヒドロゲル分散液とし、これに濃度 5重量%の Na OH水溶液を SiO /Na Oモル比が 75となるように添カ卩し、 160°Cで 1時間加熱した
2 2
。ここまでの(1)の工程の調製条件を表 3に示す。
[0142] 次【こ、上記シリカ:/ノレ 2. 09kg【こ、 240/0挂酸ナトリウムを 0. 81kgおよび純水 10. 9 3kgをカ卩えて、シードゾル 13. 83kg (pHl l . 2)を調製した。このシードゾルの動的 光散乱法により測定される平均粒子径は 17nmであった。なお、以下の実施例およ び比較例にお 、ても同様にシードゾルの平均粒子径の測定を行なった。その結果を 表 4に示す。
次にこのシードゾルを 83°Cに維持しながら、これに後記する SiO濃度 3重量%の
2
珪酸液 175. 8Kgを 14時間かけて添カ卩した。
[0143] 添加終了後、室温まで冷却させ、得られた異形シリカゾルを限外濾過膜で SiO濃
2 度 20重量%まで濃縮した。
この異形シリカゾルを試料として、動的光散乱法により測定される平均粒子径 (r)、 BET法により測定される比表面積力も算定される平均粒子径 ( )および pH5と pH 9でのゼータ電位の測定を行なった。その結果と(2)の工程の調製条件を表 4に示す 。また、以下の実施例および比較例においても同様に!:、 およびゼータ電位の測 定を行なった。
[0144] 珪酸液の調製
シリカ濃度 24%の珪酸ナトリウム(3号水ガラス) 0. 8Kgを限外モジュール (旭化成 社製 SIP1013)に通液し、濾水を回収し精製水ガラスを得た。得られた精製水ガラス に純水を添加しシリカ濃度 3. 2%に調整した。この希釈水ガラス 6,500gを強酸性陽 イオン交換榭脂 SK1BH (三菱ィ匕学社製) 2. 2Lに、 3LZ時間の速度で通液させるこ とで酸性珪酸液 6,650gを得た。得られた珪酸液のシリカ濃度は 3. 0%であった。 以下の実施例および比較例においても同様な製造方法によって得られた珪酸液を 濃度調整して使用した。実施例 13〜23の分析結果については表 4に示す。
実施例 14
[0145] シリカヒドロゲルの洗浄に、純水に変えて 28%アンモニア水溶液を使用し、シリカヒ
Figure imgf000045_0001
濃度 5重量%のNaOH 水溶液と 28%アンモニア水の 1: 1混合物を使用し、ビルドアップ時の温度を 90°C、 添加する珪酸液のシリカ濃度を 4. 5重量%、珪酸液の添加量を 117. 2Kg、珪酸液 添加所要時間を 10時間とした他は実施例 13と同様にして、異形シリカゾルを調製し た。
実施例 15
[0146] ビルドアップ時の温度を 88°Cとした他は実施例 13と同様にして異形シリカゾルを調 製した。
実施例 16
[0147] シリカヒドロゲルの調製にぉ 、て硫酸に代えて塩酸を用い、ビルドアップ時の温度 を 85°Cとした他は実施例 13と同様にして、異形シリカゾルを調製した。
実施例 17
[0148] 添加する珪酸液のシリカ濃度を 4. 5重量%、珪酸液の添加量を 117. 2Kg、とした 他は実施例 13と同様にして異形シリカゾルを調製した。
実施例 18
[0149] 添加する珪酸液の量を 126. 7Kgとした他は、実施例 13と同様にして異形シリカゾ ルを調製した。
実施例 19
[0150] ビルドアップ時の珪酸液添加所要時間を 13時間とした他は実施例 13と同様にして 異形シリカゾルを調製した。
実施例 20
[0151] ビルドアップ時の温度を 86°Cとした他は実施例 13と同様にして異形シリカゾルを調 製した。
実施例 21
[0152] ビルドアップ時の温度を 87°Cとした他は実施例 13と同様にして異形シリカゾルを調 製した。
実施例 22
[0153] 濃度 5重量%NaOH水溶液を添加後の加熱条件を 120°Cで 2時間とし、ビルドアツ プ時の温度を 70°Cとした他は実施例 13と同様にして、異形シリカゾルを調製した。 実施例 23
[0154] ビルドアップ時の温度を 120°Cとした他は実施例 22と同様にして、異形シリカゾル を調製した。
比較例 6
[0155] ビルドアップ時の温度を 40°Cとした他は実施例 13と同様にしてシリカゾルを調製し た。
比較例 7
[0156] 平均粒子径 17nmの球状シリカゾル (カタロイド SI-40、触媒化成工業株式会社製) をシリカ濃度 4. 5重量%に調整し、その 13. 83Kgをシードゾルとし、実施例 13と同 様に SiO濃度 24%の珪酸ナトリウム 0. 81Kgを添加し、混合したうえで、該シードゾ
2
ルを 85°Cに維持し、珪酸液(SiO濃度 3重量%) 175. 8Kgを 14時間かけて添カロし
2
た。
添加終了後、室温まで冷却させ、得られたシリカゾルを限外濾過膜で SiO濃度 10
2 重量%まで濃縮した。
比較例 8
[0157] シリカヒドロゲル分散液に添加する濃度 5重量。/ oNaOH水溶液の量を、 SiO /Na
2 2
Oモル比が 25となるように添カ卩し、シードゾルへの珪酸ナトリウムの添力卩量を 0、シー ドゾルの量は 13. 02Kg、珪酸液の添力卩量を 182. OKg、珪酸液添加所要時間を 14 . 5時間とした他は実施例 13と同様にして、シリカゾルを調製した。
比較例 9
[0158] 濃度 5重量%のNaOH水溶液を添加後、加熱温度を 250°Cとした他は実施例 13と 同様にして、シリカゾルを調製した。
比較例 10
[0159] シリカヒドロゲル分散液に添加する濃度 5重量%のNaOH水溶液の量を、 SiO /N
2 a Oモル比が 550となるように添カ卩し、シードゾルへの珪酸ナトリウムの添力卩量を 0、シ
2
一ドゾルの量は 13. 02Kg、珪酸液の添力卩量を 182. 0Kg、珪酸液添加所要時間を 14. 5時間とした他は実施例 13と同様にして、シリカゾルを調製した。
[0160] [表 3]
0161
Figure imgf000048_0001
Figure imgf000049_0001

Claims

請求の範囲
[1] 動的光散乱法の測定により得られた平均粒子径 (r)と窒素吸着法により測定された 平均比表面積から算出した等価球換算粒子径 ( )の比 (rZ 、以下「会合比」と 称する。)が 1. 2〜 10の範囲にあり、等価球換算粒子径 ( )が 5〜200nmの範囲 にあり、比表面積が 13〜550m2/gの範囲にあって、形状が不均一な異形シリカ微粒 子が溶媒に分散した異形シリカゾルであって、該異形シリカ微粒子の含有する お よび Mgの割合 (酸ィ匕物換算)が、 SiO分に対してそれぞれ lOOOppm以下であるこ
2
とを特徴とする異形シリカゾル。
[2] 前記異形シリカ微粒子が炭素を含有しないものであることを特徴とする請求項 1記 載の異形シリカゾル。
[3] 前記異形シリカ微粒子に含まれる Na、 K、 Cu、 Nほたは Feの含有量力 SiOに対
2 して、 Na力 SlOppm以下、 K力 SlOppm以下、 Cu力 S500ppb以下、 Ni力 S300ppb以下 、Feが 150ppm以下であることを特徴とする請求項 1または請求項 2記載の異形シリ 力ゾル。
[4] pHl. 0〜7. 0の範囲にあり、シリカ濃度が 0. 05〜3. 0重量%の珪酸液を、 1〜9
8°Cで熟成することにより、珪酸の粘度が 0. 9〜: LOOmPa' sの範囲にある重合珪酸 液を調製し、該重合珪酸液にアルカリを加えて加熱することによりシード液を調製し、 得られたシード液をビルドアップさせることを特徴とする請求項 1または 2記載の異形 シリカゾルの製造方法。
[5] pHl. 0〜7. 0の範囲にあり、シリカ濃度が 0. 05〜3. 0重量%の珪酸液を、 1〜9
8°Cで熟成することにより、珪酸の粘度が 0. 9〜: LOOmPa' sの範囲にある重合珪酸 液を調製し、該重合珪酸液にその pHが 9〜 12. 5の範囲になるようにアルカリをカロえ 、 50〜150°Cで加熱することによりシード液を調製し、得られたシード液に必要に応 じてアルカリをカ卩えてその pHを 9〜 12. 5に調整し、 20〜98°Cの温度範囲において 、シード液に珪酸液または高純度珪酸液を連続的または断続的に滴下することによ りビルドアップさせることを特徴とする請求項 1または 2記載の異形シリカゾルの製造 方法。
[6] 前記珪酸液が、珪酸液にアルカリまたは酸を加えて pHl. 0〜7. 0の範囲に調整し たものである請求項 4または 5記載の異形シリカゾルの製造方法。
[7] 前記高純度珪酸液が、珪酸液に強酸性陽イオン交換体または強塩基性陰イオン 交換体をそれぞれ別々に接触させて、高純度化処理を行なったものであることを特 徴とする請求項 5記載の異形シリカゾルの製造方法。
[8] 請求項 4、請求項 5または請求項 7記載の製造方法により得られた異形シリカゾル に更に高純度化処理を行うことを特徴とする請求項 3記載の異形シリカゾルの製造方 法。
[9] 前記高純度化処理が異形シリカゾルを陽イオン交換体に接触させ、更に陰イオン 交換体に接触させる処理である請求項 8記載の異形シリカゾルの製造方法。
[10] 前記異形シリカ微粒子の動的光散乱法による平均粒子径 (r)が 10〜200nm、比 表面積が 30〜300m2/g、会合比が 1. 2以上、 2. 7未満の範囲にあることを特徴とす る請求項 1、請求項 2または請求項 3記載の異形シリカゾル。
[11] 請求項 10記載の異形シリカゾルカもなる研磨材用シリカゾル。
[12] 会合比 (rZr' )が 1. 2〜4. 0の範囲にあり、動的光散乱法による平均粒子径 (r) 力 S 10〜 150nmの範囲にあるシリカ微粒子が分散してなり、 pH5と pH9におけるゼー タ電位の差の絶対値が l〜9mVの範囲にあることを特徴とする請求項 1または 2記載 の異形シリカゾル。
[13] 次の(1)および(2)の工程により調製されることを特徴とする請求項 1または 2記載 の異形シリカゾルの製造方法。
(1)珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄することにより、塩類を除 去し、 SiO /M 0 (M :Na, K, ΝΗ )のモル比が 30〜500となるようにアルカリを添
2 2 3
加した後、 60〜200°Cの範囲に加熱してシリカゾルを得る工程
(2)該シリカゾルをシードゾルとし、必要に応じてアルカリを加え、 pH9〜12. 5、温度 60〜200°Cの条件下、珪酸液を連続的にまたは断続的に添加する工程
[14] 前記珪酸塩が珪酸ナトリウム、珪酸カリウムまたは珪酸アンモニゥム力 選ばれるも のである請求項 13記載の異形シリカゾルの製造方法。
[15] 前記(2)におけるシードゾルカ 動的光散乱法で測定した平均粒子径が 5〜80nm のシリカ微粒子が分散したゾルである請求項 13記載の異形シリカゾルの製造方法。
[16] 前記(2)における珪酸液が、珪酸アルカリ塩を脱アルカリして得られる酸性珪酸液 である請求項 13記載の異形シリカゾルの製造方法。
[17] 請求項 13の製造方法において使用する珪酸液が高純度化処理されたものである ことを特徴とする請求項 3記載の異形シリカゾルの製造方法。
[18] 請求項 13または請求項 17記載の製造方法により得られた異形シリカゾルに更に高 純度化処理を行うことを特徴とする請求項 3記載の異形シリカゾルの製造方法。
[19] 請求項 1、請求項 2または請求項 3記載の異形シリカゾルを含有してなる研磨剤。
PCT/JP2006/315181 2005-08-10 2006-08-01 異形シリカゾルおよびその製造方法 WO2007018069A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007529492A JP5127452B2 (ja) 2005-08-10 2006-08-01 異形シリカゾルの製造方法
US11/990,111 US20100146864A1 (en) 2005-08-10 2006-08-01 Nodular Silica Sol and Method of Producing the Same
US13/137,661 US8585791B2 (en) 2005-08-10 2011-09-01 Method of producing nodular silica sol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-231465 2005-08-10
JP2005231465 2005-08-10
JP2005-254054 2005-09-01
JP2005254054 2005-09-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/990,111 A-371-Of-International US20100146864A1 (en) 2005-08-10 2006-08-01 Nodular Silica Sol and Method of Producing the Same
US13/137,661 Continuation US8585791B2 (en) 2005-08-10 2011-09-01 Method of producing nodular silica sol

Publications (1)

Publication Number Publication Date
WO2007018069A1 true WO2007018069A1 (ja) 2007-02-15

Family

ID=37727257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315181 WO2007018069A1 (ja) 2005-08-10 2006-08-01 異形シリカゾルおよびその製造方法

Country Status (5)

Country Link
US (2) US20100146864A1 (ja)
JP (2) JP5127452B2 (ja)
MY (1) MY148097A (ja)
TW (1) TWI476150B (ja)
WO (1) WO2007018069A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098924A1 (ja) * 2008-02-06 2009-08-13 Jsr Corporation 化学機械研磨用水系分散体および化学機械研磨方法
JP2009212496A (ja) * 2008-02-06 2009-09-17 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2009224767A (ja) * 2008-02-18 2009-10-01 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2009224771A (ja) * 2008-02-18 2009-10-01 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010016341A (ja) * 2008-02-06 2010-01-21 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010016344A (ja) * 2008-02-18 2010-01-21 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010016346A (ja) * 2008-02-18 2010-01-21 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028082A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028074A (ja) * 2008-02-06 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028077A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028078A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028075A (ja) * 2008-02-06 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028080A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028076A (ja) * 2008-02-06 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010024119A (ja) * 2008-07-24 2010-02-04 Jgc Catalysts & Chemicals Ltd 金平糖状シリカゾルの製造方法
JP2010028081A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028079A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010034497A (ja) * 2008-02-18 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010034498A (ja) * 2008-02-18 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010034495A (ja) * 2008-02-06 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010041027A (ja) * 2008-02-18 2010-02-18 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010041029A (ja) * 2008-02-18 2010-02-18 Jsr Corp 化学機械研磨用水系分散体、化学機械研磨方法および化学機械研磨用水系分散体の製造方法
JP2010041024A (ja) * 2008-02-06 2010-02-18 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2011104694A (ja) * 2009-11-16 2011-06-02 Jgc Catalysts & Chemicals Ltd 無機酸化物微粒子分散液、研磨用粒子分散液及び研磨用組成物
JP2013082584A (ja) * 2011-10-11 2013-05-09 Fuso Chemical Co Ltd 高純度単分散シリカ粒子及びその製造方法
US8529787B2 (en) 2008-09-26 2013-09-10 Fuso Chemical Co., Ltd. Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
JP2017117847A (ja) * 2015-12-21 2017-06-29 花王株式会社 シリカ分散液の製造方法
US10040907B2 (en) 2014-09-30 2018-08-07 Kaneka Corporation Method for producing siloxane resin
CN109647325A (zh) * 2018-12-03 2019-04-19 中海油天津化工研究设计院有限公司 一种表面酸量可控的二氧化硅吸附剂的制备方法
US10563088B2 (en) 2014-12-16 2020-02-18 Kaneka Corporation Photocurable and thermosetting resin composition, cured product, and laminate
JP2021065825A (ja) * 2019-10-21 2021-04-30 日揮触媒化成株式会社 有機反応触媒用担体粒子分散液および有機反応触媒
CN115611286A (zh) * 2021-07-16 2023-01-17 万华化学集团电子材料有限公司 一种花生形超高纯硅溶胶的制备方法、超高纯硅溶胶及其应用
WO2023068152A1 (ja) * 2021-10-18 2023-04-27 三菱マテリアル電子化成株式会社 表面処理シリカ粒子分散ゾル及びその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390837A (zh) * 2011-08-03 2012-03-28 南通海迅天恒纳米科技有限公司 一种非球形纳米级硅溶胶的制备方法
KR20140071356A (ko) * 2011-09-16 2014-06-11 닛산 가가쿠 고교 가부시키 가이샤 정제된 활성규산액 및 실리카졸의 제조방법
TWI549911B (zh) * 2011-12-28 2016-09-21 日揮觸媒化成股份有限公司 高純度氧化矽溶膠及其製造方法
JP6259182B2 (ja) * 2012-12-12 2018-01-10 株式会社フジミインコーポレーテッド ニッケルリンめっきが施された磁気ディスク基板の一次研磨用研磨液
KR102242683B1 (ko) * 2013-04-17 2021-04-23 실본드 코포레이션 콜로이드 졸 및 그의 제조 방법
CN105263860B (zh) * 2013-05-20 2017-06-27 日产化学工业株式会社 硅溶胶以及含二氧化硅的环氧树脂组合物
TWI561621B (en) * 2014-06-25 2016-12-11 Cabot Microelectronics Corp Tungsten chemical-mechanical polishing composition
EP3161095B8 (en) * 2014-06-25 2021-07-07 CMC Materials, Inc. Copper barrier chemical-mechanical polishing composition
WO2017069065A1 (ja) * 2015-10-20 2017-04-27 日産化学工業株式会社 精製された珪酸水溶液の製造方法
CN106395836B (zh) * 2016-08-26 2018-08-28 强新正品(苏州)环保材料科技有限公司 一种高稳定硅溶胶及其制备方法
JP7054628B2 (ja) * 2017-01-20 2022-04-14 日揮触媒化成株式会社 シリカ粒子分散液及びその製造方法
JP6927732B2 (ja) * 2017-04-10 2021-09-01 日揮触媒化成株式会社 異形シリカ粒子の製造方法
TWI777011B (zh) 2017-12-27 2022-09-11 日商日揮觸媒化成股份有限公司 研磨材料用鏈狀粒子分散液的製造方法
CN110194458B (zh) * 2018-02-24 2021-03-23 航天特种材料及工艺技术研究所 一种硅溶胶及制备方法
US11891307B2 (en) 2018-10-10 2024-02-06 Jgc Catalysts And Chemicals Ltd. Silica-based particle dispersion and production method therefor
JP7351698B2 (ja) 2019-09-30 2023-09-27 日揮触媒化成株式会社 シリカ粒子分散液及びその製造方法
JP7482699B2 (ja) 2020-06-29 2024-05-14 日揮触媒化成株式会社 異形シリカ粒子分散液の製造方法
CN112978735B (zh) * 2021-02-04 2022-04-12 石家庄优士科电子科技有限公司 一种二氧化硅胶粒及包含其的分散液和制备方法
CN115611287B (zh) * 2021-07-16 2024-04-09 万华化学集团电子材料有限公司 一种可调控缔合度的超高纯硅溶胶制备方法、超高纯硅溶胶及其应用
CN113880098B (zh) * 2021-11-17 2022-12-09 江苏海格新材料有限公司 一种高纯球形硅微粉的生产方法
CN114591684B (zh) * 2022-02-18 2024-01-30 浙江开化元通硅业有限公司 一种基于高纯球形硅溶胶的环保型化学机械抛光液及其制备方法和抛光方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364911A (ja) * 1986-09-01 1988-03-23 Catalysts & Chem Ind Co Ltd 大粒径のシリカ粒子を含むシリカゾルの製造方法
JPH01317115A (ja) * 1988-03-16 1989-12-21 Nissan Chem Ind Ltd 細長い形状のシリカゾル及びその製造法
JPH0585718A (ja) * 1991-09-25 1993-04-06 Nissan Chem Ind Ltd 高純度の水性シリカゾルの製造法
JPH07118008A (ja) * 1993-10-15 1995-05-09 Nissan Chem Ind Ltd 細長い形状のシリカゾルの製造法
JP2003089786A (ja) * 2001-09-19 2003-03-28 Nippon Chem Ind Co Ltd 研磨剤用高純度コロイダルシリカ
JP2004203729A (ja) * 2002-12-12 2004-07-22 Catalysts & Chem Ind Co Ltd シリカゾルの製造方法およびシリカゾル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345113A (ja) * 1986-08-13 1988-02-26 Catalysts & Chem Ind Co Ltd 低濁度および低粘度のシリカゾル
JPS6345114A (ja) * 1986-08-13 1988-02-26 Catalysts & Chem Ind Co Ltd シリカゾルの製造方法
US5221497A (en) * 1988-03-16 1993-06-22 Nissan Chemical Industries, Ltd. Elongated-shaped silica sol and method for preparing the same
US20030061766A1 (en) * 2000-03-31 2003-04-03 Kristina Vogt Polishing agent and method for producing planar layers
TW575656B (en) * 2001-12-07 2004-02-11 Chung Shan Inst Of Science A method for preparing shape-changed nanosize colloidal silica
DE10314977A1 (de) * 2003-04-02 2004-10-14 H.C. Starck Gmbh Verfahren zur Herstellung silikatischer Formkörper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364911A (ja) * 1986-09-01 1988-03-23 Catalysts & Chem Ind Co Ltd 大粒径のシリカ粒子を含むシリカゾルの製造方法
JPH01317115A (ja) * 1988-03-16 1989-12-21 Nissan Chem Ind Ltd 細長い形状のシリカゾル及びその製造法
JPH0585718A (ja) * 1991-09-25 1993-04-06 Nissan Chem Ind Ltd 高純度の水性シリカゾルの製造法
JPH07118008A (ja) * 1993-10-15 1995-05-09 Nissan Chem Ind Ltd 細長い形状のシリカゾルの製造法
JP2003089786A (ja) * 2001-09-19 2003-03-28 Nippon Chem Ind Co Ltd 研磨剤用高純度コロイダルシリカ
JP2004203729A (ja) * 2002-12-12 2004-07-22 Catalysts & Chem Ind Co Ltd シリカゾルの製造方法およびシリカゾル

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160894B2 (en) 2007-11-30 2018-12-25 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
JP2010028076A (ja) * 2008-02-06 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2009212496A (ja) * 2008-02-06 2009-09-17 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010016341A (ja) * 2008-02-06 2010-01-21 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
KR101562416B1 (ko) * 2008-02-06 2015-10-21 제이에스알 가부시끼가이샤 화학 기계 연마용 수계 분산체 및 화학 기계 연마 방법
US8506359B2 (en) 2008-02-06 2013-08-13 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2010041024A (ja) * 2008-02-06 2010-02-18 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028074A (ja) * 2008-02-06 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
WO2009098924A1 (ja) * 2008-02-06 2009-08-13 Jsr Corporation 化学機械研磨用水系分散体および化学機械研磨方法
JP2010034495A (ja) * 2008-02-06 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028075A (ja) * 2008-02-06 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028077A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010016346A (ja) * 2008-02-18 2010-01-21 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2009224767A (ja) * 2008-02-18 2009-10-01 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028081A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028079A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010034497A (ja) * 2008-02-18 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010034498A (ja) * 2008-02-18 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028078A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010041027A (ja) * 2008-02-18 2010-02-18 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010041029A (ja) * 2008-02-18 2010-02-18 Jsr Corp 化学機械研磨用水系分散体、化学機械研磨方法および化学機械研磨用水系分散体の製造方法
JP2010028082A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2009224771A (ja) * 2008-02-18 2009-10-01 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010016344A (ja) * 2008-02-18 2010-01-21 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010028080A (ja) * 2008-02-18 2010-02-04 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2010024119A (ja) * 2008-07-24 2010-02-04 Jgc Catalysts & Chemicals Ltd 金平糖状シリカゾルの製造方法
US8529787B2 (en) 2008-09-26 2013-09-10 Fuso Chemical Co., Ltd. Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2011104694A (ja) * 2009-11-16 2011-06-02 Jgc Catalysts & Chemicals Ltd 無機酸化物微粒子分散液、研磨用粒子分散液及び研磨用組成物
JP2013082584A (ja) * 2011-10-11 2013-05-09 Fuso Chemical Co Ltd 高純度単分散シリカ粒子及びその製造方法
US10040907B2 (en) 2014-09-30 2018-08-07 Kaneka Corporation Method for producing siloxane resin
US10563088B2 (en) 2014-12-16 2020-02-18 Kaneka Corporation Photocurable and thermosetting resin composition, cured product, and laminate
JP2017117847A (ja) * 2015-12-21 2017-06-29 花王株式会社 シリカ分散液の製造方法
CN109647325A (zh) * 2018-12-03 2019-04-19 中海油天津化工研究设计院有限公司 一种表面酸量可控的二氧化硅吸附剂的制备方法
JP2021065825A (ja) * 2019-10-21 2021-04-30 日揮触媒化成株式会社 有機反応触媒用担体粒子分散液および有機反応触媒
CN115611286A (zh) * 2021-07-16 2023-01-17 万华化学集团电子材料有限公司 一种花生形超高纯硅溶胶的制备方法、超高纯硅溶胶及其应用
CN115611286B (zh) * 2021-07-16 2024-04-09 万华化学集团电子材料有限公司 一种花生形超高纯硅溶胶的制备方法、超高纯硅溶胶及其应用
WO2023068152A1 (ja) * 2021-10-18 2023-04-27 三菱マテリアル電子化成株式会社 表面処理シリカ粒子分散ゾル及びその製造方法

Also Published As

Publication number Publication date
US20100146864A1 (en) 2010-06-17
MY148097A (en) 2013-02-28
JPWO2007018069A1 (ja) 2009-02-19
JP5599440B2 (ja) 2014-10-01
JP2013032276A (ja) 2013-02-14
JP5127452B2 (ja) 2013-01-23
US20110314745A1 (en) 2011-12-29
TW200714551A (en) 2007-04-16
US8585791B2 (en) 2013-11-19
TWI476150B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2007018069A1 (ja) 異形シリカゾルおよびその製造方法
JP5080061B2 (ja) 中性コロイダルシリカの製造方法
JP5602358B2 (ja) 非球状シリカゾル、その製造方法および研磨用組成物
JP5587957B2 (ja) 金平糖状シリカ系ゾル
JP4907317B2 (ja) 金平糖状無機酸化物ゾル、その製造方法および前記ゾルを含む研磨剤
TWI436947B (zh) 膠體矽石及其製法
WO2010052945A1 (ja) 非球状シリカゾル、その製造方法および研磨用組成物
JP4911960B2 (ja) 異方形状シリカゾルの製造方法
JPWO2004074180A1 (ja) 耐アルカリ性繭型コロイダルシリカ粒子及びその製造方法
JP4549878B2 (ja) 高純度水性シリカゾルの製造方法
JP4911961B2 (ja) 異方形状シリカゾルの製造方法
JP4911955B2 (ja) 異方形状シリカゾルの製造方法
CN113474289A (zh) 二氧化硅粒子及其制造方法、硅溶胶、研磨组合物、研磨方法、半导体晶片的制造方法和半导体器件的制造方法
JP4949209B2 (ja) 非球状アルミナ−シリカ複合ゾル、その製造方法および研磨用組成物
JP2002338951A (ja) 研磨剤用水熱処理コロイダルシリカ
JP4979930B2 (ja) 異方形状シリカゾルの製造方法
JP5346167B2 (ja) 粒子連結型アルミナ−シリカ複合ゾルおよびその製造方法
JP2006036605A (ja) 高純度水性シリカゾルの製造方法
JP3993995B2 (ja) シリカゾルの製造方法
JP5377135B2 (ja) コロイダルシリカの製造方法
JP7482699B2 (ja) 異形シリカ粒子分散液の製造方法
TWI836014B (zh) 二氧化矽粒子及其製造方法、二氧化矽溶膠、研磨組合物、研磨方法、半導體晶圓之製造方法以及半導體裝置之製造方法
JP7470079B2 (ja) 金平糖状アルミナ-シリカ複合微粒子分散液の製造方法
JP2009091197A (ja) 金平糖状無機酸化物ゾル、その製造方法および前記ゾルを含む研磨剤
JP5377134B2 (ja) コロイダルシリカの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529492

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11990111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782059

Country of ref document: EP

Kind code of ref document: A1