WO2023068152A1 - 表面処理シリカ粒子分散ゾル及びその製造方法 - Google Patents

表面処理シリカ粒子分散ゾル及びその製造方法 Download PDF

Info

Publication number
WO2023068152A1
WO2023068152A1 PCT/JP2022/038168 JP2022038168W WO2023068152A1 WO 2023068152 A1 WO2023068152 A1 WO 2023068152A1 JP 2022038168 W JP2022038168 W JP 2022038168W WO 2023068152 A1 WO2023068152 A1 WO 2023068152A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
sol
particles
group
average
Prior art date
Application number
PCT/JP2022/038168
Other languages
English (en)
French (fr)
Inventor
悠太 山本
Original Assignee
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル電子化成株式会社
Priority to JP2023554605A priority Critical patent/JPWO2023068152A1/ja
Priority to KR1020247004987A priority patent/KR20240033263A/ko
Priority to CN202280061139.XA priority patent/CN117957194A/zh
Publication of WO2023068152A1 publication Critical patent/WO2023068152A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the ratio D 1 /D 2 of the particle diameter (D 1 ⁇ m) measured by the dynamic light scattering method and the particle diameter (D 2 ⁇ m) measured by the nitrogen gas adsorption method is 5 or more
  • the D 1 is between 40 and 500 millimicrons, and elongated shaped amorphous colloidal silica particles having a uniform thickness within the range of 5 to 40 millimicrons by electron microscopy and elongation in only one plane.
  • Patent Document 1 (claims 1 to 3, page 4, upper right column, lines 5 to 9). )reference.).
  • Claim 2 of Patent Document 1 shows a method for producing an alkaline silica sol comprising the following steps (a), (b) and (c).
  • Step of adding and mixing CaO, MgO, or both in an amount of 1500 to 8500 ppm by weight with respect to SiO 2 of silicic acid (b) Add an alkali metal hydroxide, a water-soluble Organic bases or their water-soluble silicates are expressed as SiO 2 /M 2 O (where SiO 2 is the silica content derived from the active silicic acid, and M is the alkali metal atom or organic base molecule). (c) heating the mixture obtained in step (b) at 60 to 150° C. for 0.5 to 40 hours;
  • Claim 3 of Patent Document 1 further states that the colloidal aqueous solution of active silicic acid used in the step (a) is sodium having a SiO 2 /Na 2 O molar ratio of 1 to 4.5 and an SiO 2 concentration of 1 to 6% by weight. It is obtained by contacting an aqueous solution of water glass with a hydrogen-type cation exchange resin, has a SiO 2 concentration of 1 to 6% by weight and a pH of 2 to 4, and colloidal silica with a particle size of 3 mm microns or more.
  • Patent Document 1 states that the present invention provides a stable silica sol that exhibits improved performance by modifying the shape of colloidal silica particles, and further provides a method for efficiently producing the silica sol related to this improvement. is described.
  • the present inventor prepares pure water having a predetermined ratio with respect to Si in the alkyl silicate, dissolves the alkyl silicate at a predetermined ratio in a mixed solvent of this pure water and an organic solvent, and prepares an alkyl silicate solution. Then, the inventors found that colloidal silica particles are linked in a chain by heating a raw material solution obtained by adding and mixing an alkali catalyst in a predetermined ratio to this solution at a predetermined temperature and time, and arrived at the present invention.
  • a first aspect of the present invention is that spherical primary particles ascertained by field emission scanning electron microscopy have an average number of 4 to 300 and are linked in a chain with an average length of 35 nm to 1800 nm, Colloidal silica having particle surfaces coated with a silane coupling agent having a functional group such as a vinyl group, a methyl group, an epoxy group, a styryl group or a methacrylic group, or coated with a titanate coupling agent or an aluminate coupling agent
  • the organic solvent is an alcohol having 1 to 4 carbon atoms or a water-soluble glycol compound having 2 to 4 carbon atoms
  • K, Na or NH 3 per the colloidal silica particles is 3500 ppm by mass or less
  • the content of each impurity of alkaline earth metal or aluminum is less than 1 ppm by mass.
  • a mixed solvent of pure water and an organic solvent which is an alcohol having 1 to 4 carbon atoms or a water-soluble glycol compound having 2 to 4 carbon atoms is mixed with an alkyl group having 1 to 2 carbon atoms.
  • an alkali catalyst such as an alkali metal hydroxide, ammonia or alkylamine to the alkyl silicate solution to obtain a raw material solution;
  • a first precursor sol in which colloidal silica particles are dispersed (e) a silane coupling agent having a functional group such as a vinyl group, a methyl group, an epoxy group, a styryl group or a methacrylic group in the alcohol diluted sol;
  • a certain surface treatment agent or a titanate coupling agent or an aluminate coupling agent is used in a ratio of 10% by mass to 100% by mass when the silica particles in the alcohol-diluted sol are 100% by mass. adding and mixing and heating at 40° C. to 100° C.
  • a second precursor sol in which surface-treated silica particles are dispersed (f) making the second precursor sol hydrophobic A solvent is added and mixed so that the silica concentration in the second precursor sol is 1% by mass to 25% by mass, and the mixture is heated at 40° C. to 80° C. for 3 hours to 12 hours to replace the solvent.
  • the Alkylsilicate is mixed at a ratio of 18% by mass to 44% by mass, and in the step (b), when the alkylsilicate is converted to silica, the alkali catalyst is added in an amount of 0.02% by mass to 0.02% by mass to the silica.
  • the method for producing the surface-treated silica particle-dispersed sol according to the first aspect is characterized by mixing at a rate of 40% by mass.
  • a third aspect of the present invention is an invention based on the second aspect, wherein the average aspect ratio is 1.0 to 1.1 and the average particle diameter is 5 nm in the initial stage of heating in the step (c).
  • the spherical primary particles in the initial stage of heating have an average particle diameter of 6 nm to 20 nm, and the average number of 4 to 300 is 35 nm to 35 nm.
  • the surface-treated silica particle-dispersed sol of the first aspect of the present invention has an average number of spherical primary particles of 4 to 300 observed by field emission scanning electron microscopy, which is chained in a chain shape and has a diameter of 35 nm to 1800 nm. Since groups of colloidal silica particles having an average length are dispersed in the mixed solvent and formed, when a film is formed, holes are easily formed in the film, resulting in a film with a low refractive index.
  • the spherical primary particles have an average particle diameter of 6 nm to 20 nm and the particle surfaces are treated with a surface treatment agent, aggregation of the particles is suppressed and the silica particle dispersed sol has good storage stability. Since the average aspect ratio of the spherical primary particles is in the range of 1.0 to 1.3, the surface-treated silica particle-dispersed sol has a low viscosity and the formed film has a small variation in refractive index. In addition, since the content of K, Na, or NH 3 impurities in the colloidal silica particles is 3500 mass ppm or less, the spherical primary particles become chains.
  • the content of each alkaline earth metal or aluminum impurity in the surface-treated silica particle-dispersed sol is less than 1 ppm by mass, the particles do not coarsen even after the storage time has passed, and the storage stability is high.
  • a surface-treated silica particle dispersion sol is obtained.
  • an alkylsilicate is dissolved in a mixed solvent to obtain an alkylsilicate solution.
  • a predetermined ratio of alkali catalyst is added, and the mixture is heated at a predetermined temperature for a predetermined time. Since the alkyl silicate has a predetermined concentration, the spherical primary particles become chains by heating, and the alkyl silicate solution does not gel.
  • spherical primary particles By adding an alkali catalyst at a predetermined ratio, spherical primary particles are generated, and by heating the raw material solution at a predetermined temperature for a predetermined time, the spherical primary particles are increased to an average particle size of 6 nm to 20 nm.
  • a first precursor sol is obtained in which a group of colloidal silica particles having an average number of 4 to 300 and having an average length of 35 nm to 1800 nm is grown in a chain.
  • a surface treatment agent is added and mixed in a predetermined ratio to an alcohol-diluted sol obtained by adding and mixing alcohol to this first precursor sol, and the surface-treated silica is heated at a predetermined temperature and time.
  • a second precursor sol with dispersed particles is obtained.
  • a hydrophobic solvent is added to and mixed with this second precursor sol, and the solvent is replaced by heating at a predetermined temperature and time to perform surface treatment in which the surface-treated silica particles are dispersed in the hydrophobic solvent.
  • a silica particle dispersion sol is produced.
  • this surface-treated silica particle-dispersed sol by coating the particle surfaces with a surface-treating agent, aggregation of the particles is prevented and gelation is suppressed. This can prevent gelation even if the concentration of silica in the sol is increased.
  • the spherical primary particles grow and form chains with an average number of 4 to 300. resulting in a group of colloidal silica particles with an average length of 35 nm to 1800 nm.
  • the film of the fourth aspect of the present invention is obtained by using the surface-treated silica particle-dispersed sol of the first aspect.
  • a film with a low refractive index of 25 is obtained.
  • FIG. 2 is a flowchart for producing a surface-treated silica particle-dispersed sol of the present embodiment
  • the surface-treated silica particle-dispersed sol of the present embodiment is roughly produced by the following method. As shown in FIG. 1, an alkylsilicate solution 13 is obtained by adding an alkylsilicate 12 having an alkyl group having 1 to 2 carbon atoms to a mixed solvent 11 of pure water and an organic solvent. Next, an alkali catalyst 14 is added to and mixed with the alkylsilicate solution 13 to obtain a raw material liquid 15 . Next, this raw material liquid 15 is heated at a predetermined temperature for a predetermined time to obtain a first precursor sol 16 in which colloidal silica particles are dispersed.
  • a surface treatment agent 19 is added to an alcohol-diluted sol 18 obtained by adding and mixing an alcohol 17 to the first precursor sol 16, and the surface-treated silica is heated at a predetermined temperature and time.
  • the second precursor sol 20 is added and mixed with a hydrophobic solvent 21 in a predetermined proportion, and heated at a predetermined temperature and time to replace the solvent. to produce a surface-treated silica particle dispersion sol 22.
  • the organic solvent is an alcohol having 1 to 4 carbon atoms or a water-soluble glycol compound having 2 to 4 carbon atoms.
  • Alcohols having 1 to 4 carbon atoms include methanol, ethanol, 2-propanol, n-propanol, and butanol, and aqueous glycol compounds having 2 to 4 carbon atoms include ethylene glycol (2 carbon atoms), propylene glycol ( 3 carbon atoms), propylene glycol monomethyl ether (PGM) (4 carbon atoms), 1,3-butylene glycol (4 carbon atoms), and the like.
  • the mixed solvent 11 of pure water and an organic solvent is a mixed solvent of pure water and an alcohol having 1 to 4 carbon atoms, or a mixed solvent of pure water and a water-soluble glycol compound having 2 to 4 carbon atoms. be.
  • a mixed solvent is preferably used because it easily dissolves the alkyl silicate.
  • the pure water in the mixed solvent is used for hydrolysis of the alkyl silicate, and the organic solvent is used for increasing the compatibility between the pure water and the alkyl silicate.
  • the content of the organic solvent in the alkylsilicate solution is preferably 10% by mass to 35% by mass. If the content of the organic solvent is less than the lower limit, it is difficult to grow spherical primary particles and to sufficiently grow into chain-like particles.
  • spherical primary particles tend to be coarsened.
  • the amount of pure water is adjusted so that the concentration is 8 to 23 mol with respect to Si (silicon) in the alkyl silicate. If it is less than the lower limit, the spherical primary particles are coarsened in the heating step. When the upper limit is exceeded, the spherical primary particles are difficult to increase and do not grow sufficiently in chain form.
  • the amount of pure water is preferably 8 to 16 mol, more preferably 9 to 15 mol, relative to Si in the alkylsilicate.
  • the alkylsilicate 12 is mixed in a proportion of 18% by mass to 44% by mass when the alkylsilicate solution 13 is taken as 100% by mass. If it is less than the lower limit, spherical primary particles are less likely to increase in the heating step. On the other hand, when the upper limit is exceeded, the number of connected primary particles tends to increase, and accordingly, the chains tend to become longer. Also, the alkylsilicate solution gels. When the alkylsilicate solution 13 is 100% by mass, the alkylsilicate 12 is preferably mixed at a ratio of 21% by mass to 43% by mass, more preferably 26% by mass to 38% by mass. preferable.
  • a raw material solution 15 is prepared by adding and mixing an alkali catalyst 14 to an alkyl silicate solution 13 at a ratio of 0.02% by mass to 0.40% by mass with respect to silica when the alkyl silicate is converted to silica.
  • Alkaline catalyst 14 is an alkali metal hydroxide, ammonia or an alkylamine.
  • Other alkaline catalysts containing alkaline earth metal hydroxides and aluminum increase the number of spherical primary particles in the heating step, making the particles coarser and less likely to increase the chain length of the primary particles.
  • alkali metal hydroxides include potassium hydroxide (KOH) and sodium hydroxide (NaOH)
  • alkylamines include methylamine (CH 3 NH 2 ), dimethylamine ((CH 3 ) 2 NH), Examples include trimethylamine ((CH 3 ) 3 N).
  • the alkali catalyst promotes hydrolysis of alkyl silicate in the alkyl silicate solution 13 in the presence of pure water and an organic solvent.
  • the raw material solution is preferably prepared by stirring at a temperature of 0° C. to 30° C. for 1 minute to 30 minutes.
  • the addition ratio of the alkali catalyst is preferably 0.02% by mass to 0.30% by mass, more preferably 0.05% by mass to 0.25% by mass.
  • the raw material liquid 15 is heated at 40° C. to 100° C. for 24 hours to 100 hours.
  • the spherical primary particles increase to an average particle diameter of 6 nm to 20 nm, and grow into a group of colloidal silica particles having an average number of 4 to 300 and an average length of 35 nm to 1800 nm. do.
  • a first precursor sol is obtained in which the group of colloidal silica particles is dispersed in the mixed solvent.
  • the chain length varies depending on the addition ratio of the alkali catalyst, the addition ratio of the alkylsilicate, and the heating temperature.
  • the average particle diameter of spherical primary particles is the average value of particle diameters ascertained by FE-SEM observation (number of ascertained: 50).
  • the average number of connections is the average number of connections ascertained by FE-SEM observation (ascertained number: 50).
  • the average length of the chain-like particles is the average value of the lengths ascertained by FE-SEM observation (number of ascertained: 50).
  • the heating temperature of the raw material liquid 15 is preferably 50.degree. C. to 85.degree.
  • the heating time of the raw material liquid 15 is preferably 24 hours to 72 hours.
  • the first precursor sol is treated with an alcohol having 1 to 4 carbon atoms that easily evaporates during solvent replacement, which will be described later. Dilute to prepare an alcohol-diluted sol.
  • Alcohols having 1 to 4 carbon atoms include methanol, ethanol, 2-propanol, n-propanol and butanol.
  • the dilution ratio is, for example, 1.5 to 5 times (150% to 500% by mass with respect to the silica particles in the first precursor sol).
  • a surface treatment agent is added to this alcohol-diluted sol, stirred and mixed, and held at 40° C. to 100° C. for 3 hours to 24 hours.
  • a second precursor sol is prepared which is surface-treated and in which the surface-treated silica particles are dispersed.
  • This surface treatment agent is a silane coupling agent having a functional group of vinyl group, methyl group, epoxy group, styryl group or methacrylic group, or a titanate coupling agent or an aluminate coupling agent.
  • the surface treatment agent is added and mixed in a proportion of 10% by mass to 100% by mass when the silica particles in the alcohol-diluted sol are taken as 100% by mass.
  • the addition ratio of the surface treatment agent is preferably 10% by mass to 80% by mass, more preferably 15% by mass to 70% by mass.
  • the temperature for heating the mixed solution of the alcohol-diluted sol and the surface treatment agent is preferably 50°C to 90°C, more preferably 60°C to 90°C.
  • the time for heating the mixed solution of the alcohol-diluted sol and the surface treatment agent is preferably 3 to 18 hours, more preferably 3 to 12 hours.
  • silane coupling agents having a vinyl group as a functional group examples include vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-1003), vinylethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-1003), and methyl groups.
  • silane coupling agents having a functional group examples include methoxysilane (manufactured by the same company, product name: KBM-13), methyltriethoxysilane (manufactured by the same company, product name: KBE-13), and silanes having an epoxy group as a functional group.
  • 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane product name: KBM-303 manufactured by the same company
  • silane coupling agent having a styryl group as a functional group p-styryltri Methoxysilane
  • silane coupling agents having methacryl groups as functional groups include 3-methacryloxypropylmethyldimethoxysilane (manufactured by the same company, product name: KBM-502). be done.
  • Other product names include KBM-22, KBM-403, KBM-503 and SZ31 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • titanate-based coupling agents include isopropyl triisostearoyl titanate (manufactured by Ajinomoto Fine-Techno Co., Inc., product name: Plenact TTS).
  • Other product names include PLENACT 55, PLENACT 46B, PLENACT 338X, PLENACT 238S, PLENACT 38S, PLENACT 138S, PLENACT 41B, PLENACT 9SA (all manufactured by Ajinomoto Fine-Techno Co., Ltd.).
  • the aluminate coupling agent includes, for example, alkylacetoacetate aluminum diisopropylate (eg, Ajinomoto Fine-Techno Co., Ltd., product name: PLENACT AL-M).
  • solvent substitution with hydrophobic solvent and production of surface-treated silica particle dispersion sol A hydrophobic solvent is added to the obtained second precursor sol, mixed with stirring, and held at 40° C. to 80° C. for 3 hours to 12 hours to obtain a mixed solvent of pure water and an organic solvent used in the initial stage of production. And solvent replacement is performed by evaporating the alcohol in which the first precursor sol is diluted. As a result, a surface-treated silica particle-dispersed sol in which surface-treated silica particles are dispersed in a hydrophobic solvent is obtained.
  • the hydrophobic solvent is mixed so that the silica concentration in the second precursor sol is 1% by mass to 25% by mass.
  • the heating temperature of the mixed solution of the second precursor sol and the hydrophobic solvent is preferably 50°C to 80°C, more preferably 50°C to 70°C.
  • the hydrophobic solvent is preferably mixed so that the silica concentration in the second precursor sol is 1% to 20% by mass, more preferably 1% to 10% by mass.
  • Hydrophobic solvents include toluene, butyl acetate, cyclohexane, methyl isobutyl ketone, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propanol and the like.
  • the silica (SiO 2 ) concentration of the surface-treated silica particle-dispersed sol of the present embodiment is preferably 10% by mass to 35% by mass. If it is less than the lower limit, the formed film may not have a low refractive index. On the other hand, when the upper limit is exceeded, SiO 2 tends to aggregate in the surface-treated silica particle-dispersed sol. A more preferable SiO 2 concentration is 5% to 10% by weight.
  • the surface-treated silica particle-dispersed sol of the present embodiment is produced by the above-described production method, and has an average number of 4 to 300 spherical primary particles ascertained by FE-SEM observation.
  • a group of colloidal silica particles having an average length is dispersed in a hydrophobic solvent and formed, the spherical primary particles have an average particle diameter of 6 nm to 20 nm, and the spherical primary particles have an average aspect ratio of 1.0 to 1.3, each content rate of K, Na or NH3 impurities per colloidal silica particle is 3500 mass ppm or less, and each content rate of alkaline earth metal or aluminum impurities is less than 1 mass ppm is.
  • the average aspect ratio of spherical primary particles is the average value of the numerical values obtained by dividing the major axis by the minor axis of constituent particles, and is calculated as the average value of 100 or more arbitrary particles that are individually determined for the aspect ratio.
  • the concentration of impurities other than NH 3 can be obtained by measuring with an ICP (Inductively Coupled Plasma) emission spectrometer/mass spectrometer (manufactured by Perchielmer, product number: Avio 500).
  • the impurity concentration of NH 3 is obtained by measuring with an ammonia meter (manufactured by Toko Kagaku Kenkyusho Co., Ltd., model number: TiN-9001).
  • the refractive index of the film becomes high when the film is formed, and when it exceeds 300, the storage stability of the surface-treated silica particle-dispersed sol decreases.
  • the preferred average number of links is 50-200. If the chain-like average length of the colloidal silica particles is less than 35 nm, the refractive index of the formed film will not be lowered. On the other hand, if it exceeds 1800 nm, the storage stability of the surface-treated silica particle-dispersed sol is lowered and gelation occurs.
  • a preferred average chain length is 50 nm to 1000 nm.
  • the average particle size of the spherical primary particles is less than 6 nm, the particles are less likely to form chains, and if it exceeds 20 nm, a film cannot be formed, or even if a film can be formed, the film tends to have a high refractive index.
  • Preferred spherical primary particles have an average particle size of 7 nm to 15 nm. The closer the average aspect ratio of the spherical primary particles is to 1, the lower the viscosity of the surface-treated silica particle-dispersed sol, and the smaller the variation in the refractive index of the film formed. If the average aspect ratio of the spherical primary particles exceeds 1.3, the chain thickness of the colloidal silica particles becomes uneven.
  • the refractive index of the coating film is determined by measuring with a spectroscopic ellipsometer (manufactured by JA Woollam Japan, product number: M-2000).
  • the content of K, Na or NH3 impurities per colloidal silica particle is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less.
  • the method for forming the surface-treated silica particle-dispersed sol of the present embodiment on the substrate surface is not particularly limited. There are methods such as Examples of the base material include, but are not limited to, glass substrates, silicon wafers, resin substrates, metal foil substrates, and the like. Examples of the method for applying the surface-treated silica particle-dispersed sol include a spin coating method, a screen printing method, a bar coating method, a die coating method, a doctor blade method, and a brush coating method.
  • the refractive index of the obtained film is between 1.10 and 1.25.
  • a mixed solvent was prepared by mixing 63.5 g of ethanol and 63.5 g of pure water in a flask. The mass ratio of pure water:ethanol was 1:1.
  • a tetraethoxysilane solution was prepared by adding 73.0 g of tetraethoxysilane (TEOS) to this mixed solvent. The concentration of tetraethoxysilane in the tetraethoxysilane solution was 34.8% by mass.
  • pure water was contained at a ratio of 11.6 mol with respect to Si in tetraethoxysilane.
  • methanol is added to the first precursor sol at a rate of 400% by mass with respect to the silica particles in the first precursor sol, and mixed to obtain a methanol-diluted sol.
  • Ethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13
  • KBE-13 is added at a rate of 50% by mass with respect to the silica particles in the methanol-diluted sol, stirred and mixed, and held at 60 ° C. for 5 hours. , to obtain a second precursor sol.
  • Tables 1 and 2 below show the conditions for preparing the alkylsilicate solutions and the like and the conditions for preparing the raw material liquids of Example 1 and Examples 2 to 21 and Comparative Examples 1 to 12, respectively.
  • a sodium silicate (Na silicate) aqueous solution was used instead of the alkyl silicate solution, as will be described later.
  • Example 2 to 21 and Comparative Examples 1 to 10, 12 As shown in Table 1, in preparing the alkyl silicate solutions of Examples 2 to 21 and Comparative Examples 1 to 10 and 12, in Example 11, the alkyl silicate was trimer to pentameric amount of tetramethoxysilane (TMOS). A body (manufactured by Mitsubishi Chemical Corporation, trade name: MKC Silicate MS51) and tetramethoxysilane (TMOS) were used. The mixing ratio of MS51 and TEOS was 1:1 in mass ratio. In Example 13, MS51 was used as the alkyl silicate. In Examples other than the above and Comparative Examples 1 to 10 and 12, the same tetraethoxysilane (TEOS) as in Example 1 was used.
  • TMOS tetramethoxysilane
  • the mixing ratio of the alkyl silicate in the alkyl silicate solutions of Examples 2 to 21 and Comparative Examples 1 to 10 and 12 was the same as or changed from Example 1, as shown in Table 1.
  • the ratio of the molar concentration to Si in the alkylsilicate of pure water was the same as in Example 1 or changed, as shown in Table 1.
  • the organic solvents in Examples 2 to 21 and Comparative Examples 1 to 10 and 12 were the same as in Example 1 or changed, as shown in Table 1.
  • propylene glycol monomethyl ether was used in Examples 4 and Comparative Example 6, methanol was used in Examples 14 and 21, 2-propanol was used in Example 15, n-propanol was used in Example 16, and n-propanol was used in Example 17. Ethylene glycol was used, and in Example 18, butanol was used. In Examples other than the above and Comparative Examples 1 to 5, 7 to 10, and 12, the same ethanol as in Example 1 was used.
  • the type of alkali catalyst used in Examples 2-21 and Comparative Examples 1-10 and 12 was the same as in Example 1 or changed when preparing the raw material solutions. Both are alkaline aqueous solutions.
  • the alkali catalyst in Comparative Example 1, magnesium hydroxide (Mg(OH) 2 ) was used, and in Comparative Example 2, aluminum chloride (AlCl 3 ) hexahydrate and ammonia (NH 3 ) water were used. Mixed liquids were used so that N was 1:1. Further, the addition ratio of the alkali catalyst to silica when the alkyl silicate is converted to silica was the same as in Example 1 or changed.
  • a first precursor sol in which colloidal silica particles were dispersed was obtained by a method according to Example 1 of Patent Document 1. Specifically, a colloidal aqueous solution of active silicic acid was obtained by passing an aqueous sodium silicate solution having a SiO 2 concentration of 3.6% by mass through a column packed with a cation exchange resin. 2000 g of this colloidal aqueous solution of activated silicic acid was charged into a glass container, and then 8.0 g of a 10% by mass calcium chloride aqueous solution was added dropwise to the aqueous solution while stirring the aqueous solution.
  • Table 3 below shows the surface treatment conditions and solvent replacement conditions of the silica particles in the eight types of first precursor sols as conditions 1 to 8.
  • Methanol or ethanol was used as a dilution solvent at a rate of 400% by mass with respect to the silica particles in the first precursor sol.
  • the heating temperature and heating time for each of the eight conditions 1 to 8 were the same as in Example 1 or changed.
  • N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-602 was used.
  • Table 3 shows the replacement of the solvent in the second precursor sols obtained in Examples 1 to 21 and Comparative Examples 1 to 12, in which the silica particles in the first precursor sols were surface-treated, with a hydrophobic solvent. As indicated, all conditions 1-8 were performed by heating at 60° C. for 3 hours. Also, the hydrophobic solvent was added so that the silica concentration in the second precursor sol was 10% by mass.
  • the primary particles of the colloidal silica particles of Example 1 were spherical, had an average particle diameter of 10 nm, had an average aspect ratio of 1.1, and had an average of 70 primary particles. They were chained and had an average length of 700 nm.
  • the primary particles of the colloidal silica particles after 6 hours of heating at the end of heating in Comparative Example 11 were not spherical, had an average particle diameter of 12 nm, had an average aspect ratio of 1.4, and had an average Four primary particles were linked in a chain with an average length of 50 nm. It is presumed that this is because the dissolved calcium ions elute the surface of the silica particles.
  • the content of Mg (magnesium) impurities in the colloidal silica particles was 420 mass ppm.
  • the storage stability of the dispersed sol was "poor". Surface treatment and solvent replacement could not be performed because the coarse particles aggregated and did not disperse.
  • the colloidal silica particles had an NH 3 impurity content of 990 mass ppm and an Al (aluminum) impurity content of 1000 mass ppm.
  • the storage stability of the dispersed sol was "poor". Surface treatment and solvent replacement could not be performed because the coarse particles aggregated and did not disperse.
  • the concentration of NaOH which is an alkali catalyst
  • the colloidal silica particles had an average chain length of 4000 nm, and aggregated particles having an average number of primary particles linked to 10 were obtained.
  • the average aspect ratio of the primary particles was too large, 2.0. Since coarse spherical particles aggregated, a coating film could not be formed on the glass substrate, and the refractive index of the film could not be measured.
  • the content of Na (sodium) impurities in the colloidal silica particles was 4020 mass ppm.
  • the storage stability of the dispersed sol was "poor". Surface treatment and solvent replacement could not be performed due to agglomeration of coarse spherical particles.
  • the dispersion sol did not gel or increase in viscosity, it was possible to form a coating film, and the refractive index of the film was 1.20. Also, there was a variation in the refractive index of the film, which was as large as 5%.
  • N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name : KBM-602
  • the silica particles in the dispersion sol aggregated due to the change in the pH of the liquid due to the amino group was used as a surface treatment agent, the silica particles in the dispersion sol aggregated due to the change in the pH of the liquid due to the amino group. Therefore, a coating film could not be formed on the glass substrate, and the refractive index of the film could not be measured.
  • the surface-treated silica particle-dispersed sol was produced under the conditions satisfying the above-mentioned production conditions of the second aspect of the present invention, so the surfaces having the properties of the first aspect of the present invention.
  • a treated silica particle-dispersed sol was obtained.
  • the surface-treated silica particle-dispersed sol of the present invention is used in the field of forming antireflection films used to prevent reflection of incident light in cathode ray tubes, liquid crystal, organic EL and other display panels, solar cells, glass for showcases, and the like. Alternatively, it is used in the field of forming an intermediate film or the like using a refractive index difference used in a sensor, a camera module, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Compounds (AREA)

Abstract

電界放出型走査電子顕微鏡観察により把握される球状の一次粒子が4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有し、粒子表面がビニル基等の官能基を有するシランカップリング剤等により被覆されたコロイダルシリカ粒子の群が疎水性溶媒(21)中に分散して形成された表面処理シリカ粒子分散ゾル(22)である。球状の一次粒子の平均粒子径が6nm~20nmであり、球状の一次粒子の平均アスペクト比が1.0~1.3の範囲にある。コロイダルシリカ粒子当たりのK、Na又はNHの不純物の含有割合が3500質量ppm以下であり、アルカリ土類金属又はアルミニウムの不純物の含有割合が1質量ppm未満である。

Description

表面処理シリカ粒子分散ゾル及びその製造方法
 本発明は、球状の一次粒子が鎖状に連なった表面処理シリカ粒子が分散したゾル及びその製造方法に関する。更に詳しくは、基材上に塗布したときに屈折率の低い膜を形成することができ、かつ保存安定性の良好な表面処理シリカ粒子分散ゾル及びその製造方法に関するものである。また、その表面処理シリカ粒子分散ゾルを用いて得られる膜に関する。
 本願は、2021年10月18日に、日本に出願された特願2021-170419号に基づき優先権を主張し、その内容をここに援用する。
 従来、この種のシリカゾルとして、動的光散乱法による測定粒子径(Dμm)と窒素ガス吸着法による測定粒子径(Dμm)の比D/Dが5以上であって、このDは40~500ミリミクロンであり、そして電子顕微鏡観察による5~40ミリミクロンの範囲内の一様な太さで一平面内のみの伸長を有する細長い形状の非晶質コロイダルシリカ粒子が液状媒体中に分散されてなるSiO濃度0.5~30重量%の安定なシリカゾルが開示されている(特許文献1(請求項1~請求項3、第4頁右上欄第5~9行)参照。)。
 特許文献1の請求項2には、以下の(a)、(b)及び(c)の工程からなるアルカリ性シリカゾルの製造方法が示される。
 (a)SiOとして1~6重量%を含有し、かつpHが2~4である活性珪酸のコロイド水溶液に、水溶性のカルシウム塩、マグネシウム塩又はこれらの混合物を含有する水溶液を、上記活性珪酸のSiOに対して、CaO、MgO又はこの両者として重量比1500~8500ppmとなる量加えて混合する工程
 (b)(a)工程により得られた水溶液に、アルカリ金属水酸化物、水溶性有機塩基又はそれらの水溶性珪酸塩をSiO/MO(但し、SiOは上記活性珪酸に由来するシリカ分の含量を、そしてMは上記アルカリ金属原子又は有機塩基の分子を表す。)モル比として20~200となるように加えて混合する工程
 (c)(b)工程によって得られた混合物を60~150℃で0.5~40時間加熱する工程。
 特許文献1の請求項3には、更に(a)工程に用いられる活性珪酸のコロイド水溶液が、SiO/NaOモル比1~4.5とSiO濃度1~6重量%を有するナトリウム水ガラスの水溶液を水素型陽イオン交換樹脂と接触させることにより得られるものであること、SiO濃度1~6重量%とpH2~4を有すること、そして3ミリミクロン以上の粒径のコロイダルシリカを含まないものであることを特徴とする請求項2に記載の安定なアルカリ性水性シリカゾルの製造方法が示される。
 特許文献1には、この発明が、コロイダルシリカ粒子の形状を改変することによって改良された性能を示す安定なシリカゾルを提供し、更に、この改良に係わるシリカゾルを効率よく製造する方法を提供する旨が記載されている。
特開平1-317115号公報
 特許文献1に開示された細長い形状のシリカゾルの製造方法では、原料である水ガラスをイオン交換樹脂を充填したカラムに通して活性珪酸水溶液を得ている。この金属イオン除去工程において多くの手間と時間を必要とするため効率が悪い課題があった。
 また、活性珪酸のコロイド水溶液に水溶性のカルシウム塩、マグネシウム塩又は、これらの混合物を有する水溶液を添加するために、不純物である金属原子が溶液中に含有され、時間の経過とともにこの不純物の金属粒子がシリカ粒子の表面から溶出して針状の不純物が析出し、保存安定性に欠けていた。このため、特許文献1の方法で得られるシリカゾルは、不純物による影響が懸念される半導体などの分野における利用には適しない課題があった。
 一方、高純度の球状のコロイダルシリカ粒子は、化学機械研磨(CMP)の用途に、研磨剤としては、粒子径の揃ったものが求められているが、球状コロイダルシリカ粒子により膜を形成した場合、膜中の粒子が最密充填になりやすく、低屈折率の膜を得ることが難しい課題があった。
 本発明の目的は、基材上に塗布したときに屈折率の低い膜を形成することができ、かつ保存安定性が良好な表面処理シリカ粒子分散ゾルを提供することにある。本発明の別の目的は、この表面処理シリカ粒子分散ゾルを簡便に製造する方法および屈折率の低い膜を提供することにある。
 本発明者は、アルキルシリケート中のSiに対して所定割合の純水を用意し、この純水と有機溶媒との混合溶媒に所定の割合でアルキルシリケートを溶解してアルキルシリケート溶液を調製した後で、この溶液に所定の割合でアルカリ触媒を添加混合した原料液を所定の温度と時間で加熱することにより、コロイダルシリカ粒子が鎖状に連なることを知見し、本発明に到達した。
 本発明の第1の観点は、電界放出型走査電子顕微鏡観察により把握される球状の一次粒子が4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有し、粒子表面がビニル基、メチル基、エポキシ基、スチリル基又はメタクリル基の官能基を有するシランカップリング剤により被覆されるか、チタネート系カップリング剤又はアルミネート系カップリング剤により被覆されたコロイダルシリカ粒子の群が疎水性溶媒中に分散して形成された表面処理シリカ粒子分散ゾルであって、前記球状の一次粒子の平均粒子径が6nm~20nmであり、前記球状の一次粒子の平均アスペクト比が1.0~1.3の範囲にあり、前記有機溶媒が炭素数1~4のアルコール又は炭素数2~4の水溶性グリコール化合物であり、前記コロイダルシリカ粒子当たりのK、Na又はNHの不純物のそれぞれの含有割合が3500質量ppm以下であり、アルカリ土類金属又はアルミニウムのそれぞれの不純物の含有割合が1質量ppm未満であることを特徴とする表面処理シリカ粒子分散ゾルである。
 本発明の第2の観点は、(a)純水と炭素数1~4のアルコール又は炭素数2~4の水溶性グリコール化合物である有機溶媒との混合溶媒に炭素数1~2のアルキル基を有するアルキルシリケートを混合してアルキルシリケート溶液を得る工程と、(b)前記アルキルシリケート溶液にアルカリ金属水酸化物、アンモニア又はアルキルアミンであるアルカリ触媒を添加混合して原料液を得る工程と、(c)前記原料液を40℃~100℃で24時間~100時間加熱してコロイダルシリカ粒子が分散した第1前駆体ゾルを得る工程と、(d)前記第1前駆体ゾルに炭素数1~4のアルコールを添加混合してアルコール希釈ゾルを得る工程と、(e)前記アルコール希釈ゾルに、ビニル基、メチル基、エポキシ基、スチリル基又はメタクリル基の官能基を有するシランカップリング剤である表面処理剤又はチタネート系カップリング剤又はアルミネート系カップリング剤である表面処理剤を、前記アルコール希釈ゾル中のシリカ粒子を100質量%とするとき、10質量%~100質量%の割合で添加混合し、40℃~100℃で3時間~24時間加熱して、表面処理されたシリカ粒子が分散した第2前駆体ゾルを得る工程と、(f)前記第2前駆体ゾルに疎水性溶媒を、前記第2前駆体ゾル中のシリカ濃度が1質量%~25質量%になるように添加混合し、40℃~80℃で3時間~12時間加熱して溶媒置換する工程を含み、前記純水が前記アルキルシリケート中のSiに対して8モル濃度~23モル濃度の割合で前記混合溶媒に含まれ、前記(a)工程では、前記アルキルシリケート溶液を100質量%とするとき、前記アルキルシリケートを18質量%~44質量%の割合で混合し、前記(b)工程では、前記アルキルシリケートをシリカに換算するとき、前記アルカリ触媒を前記シリカに対して0.02質量%~0.40質量%の割合で混合することを特徴とする第1の観点の表面処理シリカ粒子分散ゾルを製造する方法である。
 本発明の第3の観点は、第2の観点に基づく発明であって、前記(c)工程の加熱初期段階で、平均アスペクト比が1.0~1.1であって平均粒子径が5nm未満の球状の一次粒子が形成され、加熱終了時に前記加熱初期段階の球状の一次粒子が6nm~20nmの平均粒子径になってかつ4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群に成長する表面処理シリカ粒子分散ゾルの製造方法である。
 本発明の第4の観点は、第1の観点の表面処理シリカ粒子分散ゾルを用いて得られる膜であって、屈折率が1.10~1.25であることを特徴とする膜である。すなわち、本発明の第4の観点の膜は、第1の観点の表面処理シリカ粒子分散ゾルを基材上に塗布した後に、乾燥させることによって得られてもよい。
 本発明の第1の観点の表面処理シリカ粒子分散ゾルは、電界放出型走査電子顕微鏡観察により把握される球状の一次粒子が4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群が混合溶媒中に分散して形成されるため、膜を形成したときに、膜に空孔ができやすく、屈折率が低い膜となる。また球状の一次粒子の平均粒子径が6nm~20nmであり、粒子表面が表面処理剤で表面処理されているため、粒子同士の凝集が抑制され、シリカ粒子分散ゾルの保存安定性が良い。球状の一次粒子の平均アスペクト比が1.0~1.3の範囲にあるため、表面処理シリカ粒子分散ゾルは低い粘度となり、形成した膜の屈折率にばらつきが小さい。また、前記コロイダルシリカ粒子当たりのK、Na又はNHの不純物の各含有割合が3500質量ppm以下であるため、球状の一次粒子が鎖状になる。更に、表面処理シリカ粒子分散ゾルにおけるアルカリ土類金属又はアルミニウムの不純物の各含有割合が1質量ppm未満であるため、保存時間が経過しても粒子が粗大化せずに、保存安定性の高い表面処理シリカ粒子分散ゾルとなる。
 本発明の第2の観点の表面処理シリカ粒子分散ゾルの製造方法では、先ず、アルキルシリケートを混合溶媒に溶解してアルキルシリケート溶液を得た後に、アルキルシリケートが所定の濃度であるアルキルシリケート溶液に所定の割合のアルカリ触媒を加えて、所定の温度で所定時間加熱する。アルキルシリケートが所定の濃度であるため、加熱により球状の一次粒子が鎖状になるとともに、アルキルシリケート溶液がゲル化しない。所定の割合でアルカリ触媒を添加することにより、球状の一次粒子が生成するとともに、原料液を所定時間、所定の温度で加熱することにより、球状の一次粒子が6nm~20nmの平均粒子径に増大して、4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群に成長した第1前駆体ゾルを得る。
 次に、この第1前駆体ゾルにアルコールを添加混合して得られたアルコール希釈ゾルに表面処理剤を所定の割合で添加混合し、所定の温度と時間で加熱して、表面処理されたシリカ粒子が分散した第2前駆体ゾルを得る。最後にこの第2前駆体ゾルに疎水性溶媒を添加混合し、所定の温度と時間で加熱することにより、溶剤置換を行って、疎水性溶媒中に表面処理されたシリカ粒子が分散した表面処理シリカ粒子分散ゾルを製造する。この表面処理シリカ粒子分散ゾルは、粒子表面を表面処理剤で被覆することで粒子同士の凝集が防止されてゲル化が抑制される。これによりゾル中のシリカの濃度を高くしてもゲル化を防ぐことができる。
 本発明の第3の観点の表面処理シリカ粒子分散ゾルの製造方法では、(c)工程の加熱終了時には、球状の一次粒子が成長して、4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群となる。
 本発明の第4の観点の膜は、第1の観点の表面処理シリカ粒子分散ゾルを用いて得られるため、膜中の粒子が最密充填になりにくく、屈折率が1.10~1.25である低い屈折率の膜となる。
本実施形態の表面処理シリカ粒子分散ゾルを製造するフロー図である。
 次に本発明を実施するための形態について図面を参照して説明する。
〔表面処理シリカ粒子分散ゾルの製造方法〕
 本実施形態の表面処理シリカ粒子分散ゾルは次の方法により、概略製造される。
 図1に示すように、純水と有機溶媒との混合溶媒11に、炭素数1~2のアルキル基を有するアルキルシリケート12を添加混合してアルキルシリケート溶液13を得る。次いで、このアルキルシリケート溶液13に、アルカリ触媒14を添加混合して原料液15を得る。次に、この原料液15を所定の温度で所定の時間加熱してコロイダルシリカ粒子が分散した第1前駆体ゾル16を得る。
 次に、この第1前駆体ゾル16にアルコール17を添加混合して得られたアルコール希釈ゾル18に表面処理剤19を添加混合し、所定の温度と時間で加熱して、表面処理されたシリカ粒子が分散した第2前駆体ゾル20を得た後、この第2前駆体ゾル20に所定の割合で疎水性溶媒21を添加混合し、所定の温度と時間で加熱することにより、溶媒置換して表面処理シリカ粒子分散ゾル22を製造する。
〔純水と有機溶媒との混合溶媒の調製〕
 有機溶媒は、炭素数1~4のアルコール又は炭素数2~4の水溶性グリコール化合物である。炭素数1~4のアルコールとしては、メタノール、エタノール、2-プロパノール、n-プロパノール、ブタノールが挙げられ、炭素数2~4の水溶液グリコール化合物としては、エチレングリコール(炭素数2)、プロピレングリコール(炭素数3)、プロピレングリコールモノメチルエーテル(PGM)(炭素数4)、1,3-ブチレングリコール(炭素数4)等が挙げられる。
 純水と有機溶媒との混合溶媒11は、純水と炭素数1~4のアルコールとの混合溶媒であるか、又は純水と炭素数2~4である水溶性グリコール化合物との混合溶媒である。こうした混合溶媒は、アルキルシリケートを溶解し易いために、好適に用いられる。また、混合溶媒中の純水はアルキルシリケートの加水分解のために、有機溶媒は純水とアルキルシリケートの相溶性を高めるために、それぞれ用いられる。有機溶媒のアルキルシリケート溶液中の含有割合は、10質量%~35質量%であることが好ましい。有機溶媒の含有割合が下限値未満では、球状の一次粒子が成長しにくくかつ鎖状の粒子に十分に成長しにくい。また上限値を超えると、球状の一次粒子が粗大化し易い。
 純水の量はアルキルシリケート中のSi(ケイ素)に対して8モル濃度~23モル濃度になるように調整される。下限値未満では、加熱工程で、球状の一次粒子が粗大化する。上限値を超えると、球状の一次粒子が増大しにくく、鎖状に十分に成長しない。純水の量は、アルキルシリケート中のSiに対して8モル濃度~16モル濃度であることが好ましく、9モル濃度~15モル濃度であることがより好ましい。
〔アルキルシリケート溶液の調製〕
 混合溶媒11にアルキルシリケート12を添加混合してアルキルシリケート溶液13が調製される。アルキルシリケート12は、加水分解が容易である炭素数1~2のアルキル基を有するシリケートである。例えば、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)又はこれらの混合物或いはアルキルシリケートのオリゴマーが挙げられる。例えば、テトラメトキシシラン(TMOS)の3量体~5量体(三菱化学社製、商品名:MKCシリケートMS51、以下単に『MS51』ということもある。)が好適に用いられる。アルキルシリケート12は、アルキルシリケート溶液13を100質量%とするとき、18質量%~44質量%の割合で混合される。下限値未満では、加熱工程で、球状の一次粒子が増大しにくい。また上限値を超えると、一次粒子の連結個数が多くなり易く、それに伴い鎖が長大化し易くなる。またアルキルシリケート溶液がゲル化する。アルキルシリケート12は、アルキルシリケート溶液13を100質量%とするとき、21質量%~43質量%の割合で混合されることが好ましく、26質量%~38質量%の割合で混合されることがより好ましい。
 好ましくは0℃~30℃の温度で1分~30分間撹拌することによりアルキルシリケート溶液を調製する。アルキルシリケート溶液中のアルキルシリケートの含有割合は、核磁気共鳴(NMR)(BRUKER社製、品番:AVANCE III 400)で測定して求められる。
〔原料液の調製〕
 アルキルシリケート溶液13に、アルキルシリケートをシリカに換算するとき、アルカリ触媒14をこのシリカに対して、0.02質量%~0.40質量%の割合で、添加混合して原料液15が調製される。アルカリ触媒14は、アルカリ金属水酸化物、アンモニア又はアルキルアミンである。これ以外のアルカリ土類金属水酸化物やアルミニウムを含むアルカリ触媒では、加熱工程で、球状の一次粒子が増大し、粒子が粗大化し、一次粒子の鎖の長さが大きくなりにくい。
 こうしたアルカリ触媒14を用いるため、最終のコロイダルシリカ粒子当たりのアルカリ土類金属又はアルミニウムの不純物の含有割合が1質量ppm未満となる。アルカリ金属水酸化物としては、水酸化カリウム(KOH)又は水酸化ナトリウム(NaOH)が例示され、アルキルアミンとしては、メチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)等が例示される。アルカリ触媒は、純水及び有機溶媒の存在下で、アルキルシリケート溶液13中のアルキルシリケートの加水分解を促進する。このアルカリ触媒の添加割合が下限値の0.02質量%未満では、反応性に乏しく、球状の一次粒子は十分に生成せず、粒子が鎖状になりにくい。上限値の0.40質量%を超えると、加熱工程で、加水分解が過剰に促進され、反応性が高くなり過ぎ、鎖状の粒子ではなく、球状の粒子が生成する。好ましくは0℃~30℃の温度で1分~30分間撹拌することにより原料液を調製する。アルカリ触媒の添加割合は、0.02質量%~0.30質量%であることが好ましく、0.05質量%~0.25質量%であることがより好ましい。
〔原料液の加熱と第1前駆体ゾルの製造〕
 原料液15は、40℃~100℃で24時間~100時間加熱する。これにより、球状の一次粒子が6nm~20nmの平均粒子径に増大して、4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群に成長する。このコロイダルシリカ粒子の群が上記混合溶媒中に分散した第1前駆体ゾルが得られる。鎖の長さはアルカリ触媒の添加割合、アルキルシリケートの添加割合、加熱温度により変動する。なお、球状の一次粒子の平均粒子径は、FE-SEM観察により把握される粒子径の平均値(把握数:50)である。またその連結個数の平均個数は、FE-SEM観察により把握される連結数の平均個数(把握数:50)である。更にその鎖状粒子の平均長さは、FE-SEM観察により把握される長さの平均値(把握数:50)である。原料液15の加熱温度は、50℃~85℃であることが好ましい。原料液15の加熱時間は、24時間~72時間であることが好ましい。
〔シリカ粒子を表面処理した第2前駆体ゾルの製造〕
 上記第1前駆体ゾル中に分散しているシリカ粒子の表面を容易に改質するための前処理として、後述する溶媒置換時に蒸発し易い炭素数1~4のアルコールで第1前駆体ゾルを希釈してアルコール希釈ゾルを調製する。炭素数1~4のアルコールとしては、メタノール及びエタノール、2-プロパノール、n-プロパノール、ブタノールが挙げられる。希釈割合は、例えば1.5倍~5倍(第1前駆体ゾル中のシリカ粒子に対して150質量%~500質量%)である。
 このアルコール希釈ゾルに表面処理剤を添加し、撹拌混合して40℃~100℃で3時間~24時間保持することにより、粒子表面のヒドロキシ基と後述するカップリング剤が結合してシリカ粒子が表面処理され、この表面処理されたシリカ粒子が分散した第2前駆体ゾルが調製される。この表面処理剤は、ビニル基、メチル基、エポキシ基、スチリル基又はメタクリル基の官能基を有するシランカップリング剤であるか、又はチタネート系カップリング剤又はアルミネート系カップリング剤である。表面処理剤は、アルコール希釈ゾル中のシリカ粒子を100質量%とするとき、10質量%~100質量%の割合で添加混合する。表面処理剤の添加割合は、10質量%~80質量%であることが好ましく、15質量%~70質量%であることがより好ましい。アルコール希釈ゾルと表面処理剤との混合溶液の加熱温度は、50℃~90℃であることが好ましく、60℃~90℃であることがより好ましい。アルコール希釈ゾルと表面処理剤との混合溶液の加熱時間は、3時間~18時間であることが好ましく、3時間~12時間であることがより好ましい。
 ビニル基を官能基とするシランカップリング剤としては、ビニルトリメトキシシラン(信越化学工業社製、製品名:KBM-1003)、ビニルエトキシシラン(同社製、製品名:KBE-1003)、メチル基を官能基とするシランカップリング剤としては、メトキシシラン(同社製、製品名:KBM-13)、メチルトリエトキシシラン(同社製、製品名:KBE-13)、エポキシ基を官能基とするシランカップリング剤としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(同社製、製品名:KBM-303)、スチリル基を官能基とするシランカップリング剤としては、p-スチリルトリメトキシシラン(同社製、製品名:KBM-1403)、メタクリル基を官能基とするシランカップリング剤としては、3-メタクリロキシプロピルメチルジメトキシシラン(同社製、製品名:KBM-502)等が挙げられる。それ以外に、製品名が、KBM-22、KBM-403、KBM-503、SZ31(いずれも信越化学工業社製)が挙げられる。
 また、チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート(味の素ファインテクノ社製、製品名:プレンアクトTTS)が挙げられる。それ以外に、製品名が、プレンアクト55、プレンアクト46B、プレンアクト338X、プレンアクト238S、プレンアクト38S、プレンアクト138S、プレンアクト41B、プレンアクト9SA(いずれも味の素ファインテクノ社製)が挙げられる。更に、アルミネートカップリング剤としては、例えば、アルキルアセトアセテートアルミニウムジイソプロピレート(例えば、味の素ファインテクノ社製、製品名:プレンアクトAL-M)が挙げられる。
〔疎水性溶媒への溶媒置換と表面処理シリカ粒子分散ゾルの製造〕
 得られた第2前駆体ゾルに疎水性溶媒を添加し、撹拌混合して40℃~80℃で3時間~12時間保持することにより、製造初期に用いた純水と有機溶媒との混合溶媒及び第1前駆体ゾルを希釈したアルコールを蒸発させることにより、溶媒置換を行う。この結果、疎水性溶媒中に表面処理されたシリカ粒子が分散した表面処理シリカ粒子分散ゾルが得られる。ここで、疎水性溶媒は第2前駆体ゾル中のシリカ濃度が1質量%~25質量%になるように混合する。第2前駆体ゾルと疎水性溶媒との混合溶液の加熱温度は、50℃~80℃であることが好ましく、50℃~70℃であることがより好ましい。疎水性溶媒は、第2前駆体ゾル中のシリカ濃度が1質量%~20質量%になるように混合することが好ましく、1質量%~10質量%になるように混合することがより好ましい。
 疎水性溶媒としては、トルエン、酢酸ブチル、シクロヘキサン、メチルイソブチルケトン、酢酸2-メトキシ-1-メチルエチル、1-メトキシ-2-プロパノール等が挙げられる。
 本実施形態の表面処理シリカ粒子分散ゾルのシリカ(SiO)濃度は、10質量%~35質量%であることが好ましい。下限値未満では膜を形成したときに低い屈折率の膜にならないおそれがある。また上限値を超えると表面処理シリカ粒子分散ゾル中でSiOが凝集し易くなる。より好ましいSiO濃度は、5質量%~10質量%である。
〔表面処理シリカ粒子分散ゾルの特性〕
 本実施形態の表面処理シリカ粒子分散ゾルは、上記製造方法で製造され、FE-SEM観察により把握される球状の一次粒子が4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群が疎水性溶媒中に分散して形成され、球状の一次粒子の平均粒子径が6nm~20nmであり、球状の一次粒子の平均アスペクト比が1.0~1.3の範囲にあり、コロイダルシリカ粒子当たりのK、Na又はNHの不純物の各含有割合が3500質量ppm以下であり、アルカリ土類金属又はアルミニウムの不純物の各含有割合が1質量ppm未満である。球状の一次粒子の平均アスペクト比は、構成粒子の長径を短径で除した数値の平均値であり、100個以上の任意の粒子について個別にアスペクト比を求め、その平均値として算出される。またNH以外の不純物の濃度は、ICP(高周波誘導結合プラズマ)発光分光・質量分析装置(パーキエルマー社製、品番:Avio 500)で測定して求められる。NHの不純物の濃度は、アンモニアメータ((株)東興化学研究所製、型番:TiN-9001)で測定して求められる。
 コロイダルシリカ粒子の連結平均個数が4個未満では、膜を形成したときに膜の屈折率が高くなり、300個を超えると、表面処理シリカ粒子分散ゾルの保存安定性が低下する。好ましい連結平均個数は50個~200個である。またコロイダルシリカ粒子の鎖状の平均長さが35nm未満では、膜を形成したときに膜の屈折率が低くならない。また1800nmを超えると、表面処理シリカ粒子分散ゾルの保存安定性が低下し、ゲル化する。好ましい鎖状の平均長さは50nm~1000nmである。
 球状の一次粒子の平均粒子径が6nm未満では、粒子が鎖状になりにくく、20nmを超えると、膜を形成できないか、或いは膜を形成できても膜の屈折率が高くなり易い。好ましい球状の一次粒子の平均粒子径は7nm~15nmである。
 球状の一次粒子の平均アスペクト比が1に近いほど、表面処理シリカ粒子分散ゾルは低い粘度となり、膜を形成したときに膜の屈折率のばらつきが小さい。球状の一次粒子の平均アスペクト比が1.3を超えると、コロイダルシリカ粒子の鎖の太さが不均一になる。塗膜の屈折率は、分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製、品番:M-2000)で測定して求められる。
 コロイダルシリカ粒子当たりのK、Na又はNHの不純物のそれぞれの含有割合が3500質量ppmを超えると、反応が過剰に促進され、加水分解速度が高まり過ぎ、球状の一次粒子が鎖状にならない。コロイダルシリカ粒子当たりのアルカリ土類金属又はアルミニウムの不純物のそれぞれの含有割合が1質量ppm以上になると、表面処理シリカ粒子分散ゾルは保存時間が経過すると、粒子が粗大化し、保存安定性が低下する。コロイダルシリカ粒子当たりのK、Na又はNHの不純物のそれぞれの含有割合は、3000質量ppm以下であることが好ましく、2500質量ppm以下であることがより好ましい。
〔表面処理シリカ粒子分散ゾルの基材表面への形成方法〕
 本実施形態の表面処理シリカ粒子分散ゾルを基材表面に形成する方法は、特に限定されないが、例えば、表面処理シリカ粒子分散ゾルを基材上に塗布した後に、大気中で室温乾燥させて膜にする等の方法がある。この基材としては、特に限定されないが、ガラス基板、シリコンウエハ、樹脂基板、金属箔基板等が挙げられる。上記表面処理シリカ粒子分散ゾルの塗布方法としては、スピンコート法、スクリーン印刷法、バーコート法、ダイコート法、ドクターブレード法、刷毛塗り法等が挙げられる。得られた膜の屈折率は、1.10~1.25である。本実施形態の鎖状のコロイダルシリカ粒子分散ゾルを用いることで、膜中の粒子が最密充填になりにくくなり、屈折率の低い膜を得ることができる。
 次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
 フラスコにエタノール63.5gと純水63.5gとを混合して混合溶媒を調製した。純水:エタノールの質量比は1:1であった。この混合溶媒にテトラエトキシシラン(TEOS)73.0gを入れてテトラエトキシシラン溶液を調製した。テトラエトキシシラン溶液中のテトラエトキシシランの濃度は34.8質量%であった。また純水は、テトラエトキシシラン中のSiに対して11.6モル濃度の割合で含まれていた。この溶液を撹拌しながらアルカリ触媒として水酸化カリウム(KOH)水溶液10gを滴下して原料液を調製した。水酸化カリウムは、テトラエトキシシランをシリカに換算するとき、このシリカに対して0.12質量%の割合で滴下した。水酸化カリウム水溶液を滴下した後、原料液を60℃で96時間加熱し、原料液を熟成した。加熱後、原料液を室温に徐冷して、コロイダルシリカ粒子が分散した第1前駆体ゾルを得た。なお、加熱により蒸発又は揮発した溶媒は冷却系に移して液化し、原料液に戻した。
 次に、第1前駆体ゾルにメタノールを、第1前駆体ゾル中のシリカ粒子に対して400質量%の割合で、添加混合してメタノール希釈ゾルを得た後に、表面処理剤として、メチルトリエトキシシラン(信越化学工業社製、製品名:KBE-13)を、メタノール希釈ゾル中のシリカ粒子に対して50質量%の割合で添加し、撹拌混合して60℃で5時間保持することにより、第2前駆体ゾルを得た。
 最後に、第2前駆体ゾルに疎水性溶媒である酢酸2-メトキシ-1-メチルエチルを、第2前駆体ゾル中のシリカ濃度が10質量%になるように添加し、撹拌混合して60℃で3時間保持して、これまでの第2前駆体ゾル中の溶媒を蒸発させ、疎水性溶媒に置換した。これにより、実施例1の表面処理シリカ粒子分散ゾルを得た。
 以下の表1及び表2に、実施例1及び次に述べる実施例2~21及び比較例1~12のそれぞれのアルキルシリケート溶液等の調製条件及び原料液の調製条件を示す。なお、比較例11では、後述するように、アルキルシリケート溶液の代わりに珪酸ナトリウム(珪酸Na)水溶液を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<実施例2~21及び比較例1~10、12>
 表1に示すように、実施例2~21及び比較例1~10、12のアルキルシリケート溶液の調製に際して、実施例11では、アルキルシリケートとして、テトラメトキシシラン(TMOS)の3量体~5量体(三菱化学社製、商品名:MKCシリケートMS51)とテトラメトキシシラン(TMOS)を用いた。MS51とTEOSの混合比率は質量比で1:1であった。また実施例13では、アルキルシリケートとして、MS51を用いた。上記以外の実施例及び比較例1~10、12では、実施例1と同じテトラエトキシシラン(TEOS)を用いた。
 実施例2~21及び比較例1~10、12のアルキルシリケート溶液中のアルキルシリケートの混合割合は、表1に示すように、実施例1と同一又は変更した。実施例2~21及び比較例1~10、12の純水のアルキルシリケート中のSiに対するモル濃度の割合は、表1に示すように、実施例1と同一又は変更した。実施例2~21及び比較例1~10、12の有機溶媒は、表1に示すように、実施例1と同一又は変更した。有機溶媒として、実施例4及び比較例6では、プロピレングリコールモノメチルエーテルを、実施例14、21ではメタノールを、実施例15では2-プロパノールを、実施例16ではn-プロパノールを、実施例17ではエチレングリコールを、実施例18ではブタノールを、それぞれ用いた。上記以外の実施例及び比較例1~5、7~10、12では、実施例1と同じエタノールを用いた。
 表2に示すように、実施例2~21及び比較例1~10、12の原料液の調製に際して、アルカリ触媒の種類を、実施例1と同一又は変更した。いずれもアルカリ性水溶液である。アルカリ触媒として、比較例1では、水酸化マグネシウム(Mg(OH))を、比較例2では、塩化アルミニウム(AlCl)6水和物とアンモニア(NH)水を、溶液中のAlとNが1:1となるように、混合した液体を用いた。またアルカリ触媒の、アルキルシリケートをシリカに換算したときのシリカに対する添加割合は、実施例1と同一又は変更した。更に、表2に示すように、実施例2~21及び比較例1~10、12の原料液の加熱に際して、その温度と時間を実施例1と同一又は変更した。こうした製造条件で、実施例2~21及び比較例1~10、12のコロイダルシリカ粒子が分散した第1前駆体ゾルをそれぞれ得た。
<比較例11>
 比較例11では、特許文献1の実施例1に準じた方法でコロイダルシリカ粒子が分散した第1前駆体ゾルを得た。具体的には、陽イオン交換樹脂充填のカラムにSiO濃度3.6質量%の珪酸ナトリウム水溶液を通して活性珪酸のコロイド水溶液を得た。この活性珪酸のコロイド水溶液2000gをガラス容器に投入し、次いで水溶液を撹拌しながら、この水溶液に10質量%の塩化カルシウム水溶液8.0gを滴下して混合した。この混合液を撹拌しながら、30分後に、更に10質量%の水酸化ナトリウム水溶液12.0gを滴下して原料液を調製した。この原料液をステンレス製オートクレーブに入れ、130℃で6時間加熱した後、内容物を取り出し、第1前駆体ゾルを得た。
 以下の表3に、8種類の第1前駆体ゾル中のシリカ粒子の表面処理条件と溶媒置換条件を、条件1~8として示す。希釈溶媒としてメタノール又はエタノールを第1前駆体ゾル中のシリカ粒子に対してすべて400質量%の割合で用いた。表面処理条件では、8種類の条件1~8のそれぞれの加熱温度及び加熱時間を、実施例1と同一又は変更した。条件8では、本発明の第1の観点に記載されていない、アミノ基の官能基を有するN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業社製、製品名:KBM-602)を用いた。
Figure JPOXMLDOC01-appb-T000003
 実施例1~21及び比較例1~12で得られた第1前駆体ゾル中のシリカ粒子の表面処理を行った第2前駆体ゾル中の溶媒の疎水性溶媒への置換は、表3に示すように、条件1~8すべてにおいて、60℃で3時間加熱することにより行った。また、疎水性溶媒は、第2前駆体ゾル中のシリカ濃度が10質量%になるように添加した。
<評価>
 (1) 原料液の加熱後におけるコロイダルシリカ粒子の状態
 前述したFE-SEMを用いて、実施例1~21及び比較例1~12の原料液の加熱1時間後(加熱初期)及び加熱終了時(最終)におけるコロイダルシリカ粒子の状態を観察した。その結果を以下の表4に示す。加熱1時間後では、実施例1のコロイダルシリカ粒子の一次粒子の平均粒子径は4nmであり、その平均アスペクト比は、1.0であった。まだ鎖状にはなっていなかった。加熱終了時の加熱96時間後では、実施例1のコロイダルシリカ粒子の一次粒子は球状であって平均粒子径が10nmであり、平均アスペクト比が1.1であり、平均70個の一次粒子が鎖状に連なりその平均長さは700nmであった。表4に示すように、比較例11の加熱終了時の加熱6時間後のコロイダルシリカ粒子の一次粒子は球状ではなく、平均粒子径が12nmであり、平均アスペクト比が1.4であり、平均4個の一次粒子が鎖状に連なりその平均長さは50nmであった。これは溶存するカルシウムイオンがシリカ粒子の表面を溶出させるためであると推察される。
Figure JPOXMLDOC01-appb-T000004
 (2) コロイダルシリカ粒子の不純物の含有割合
 前述したICP発光分光・質量分析装置及びアンモニアメータを用いて、実施例1~21及び比較例1~12の第1前駆体ゾルのコロイダルシリカ粒子の不純物の含有割合を測定した。その結果を以下の表5に示す。実施例1のコロイダルシリカ粒子は、アルカリ触媒にKOHを用いたため、コロイダルシリカ粒子当たりのK濃度が850質量ppmであった。Na、NH、Ca、Mg及びAlはすべて検出限界未満の1質量ppm未満であった。表5において、『<1』は不純物の含有割合が1質量ppm未満であることを示す。
Figure JPOXMLDOC01-appb-T000005
 (3) 表面処理シリカ粒子分散ゾルの保存安定性
 実施例1~21及び比較例1~12の表面処理シリカ粒子分散ゾルの保存安定性は、この分散ゾルを透明なガラス容器に入れ、25℃、相対湿度60%の環境下で、1ヶ月間静置することにより目視で確認した。分散ゾルに凝集物が出現せず、かつ分散ゾルがゲル化しない場合を『良好』と判定し、分散ゾルに凝集物が出現するか、又は分散ゾルがゲル化した場合を『不良』と判定した。その結果を上記表5に示す。
 (4) 塗膜の屈折率
 実施例1~21及び比較例1~12の表面処理シリカ粒子分散ゾルをガラス基板に乾燥後の厚さが0.15μmになるように、スピンコート法により塗布し、温度120℃で30分間乾燥した。ガラス基板上に形成された塗膜の屈折率を前述した分光エリプソメーターを用いて測定した。その結果を上記表5に示す。膜の屈折率のばらつきは、膜の異なる3箇所における屈折率を測定し、次の式(1)により算出した。
    [(最大値-最小値)/平均値]×100%       (1)
 『±5%未満』の場合を膜の屈折率のばらつきが良好であると判定し、『±5%以上』の場合を膜の屈折率のばらつきが不良であると判定した。表5において、『-』は測定不能であることを示す。
<評価結果>
 表4から明らかなように、比較例1では、アルカリ触媒として、水酸化マグネシウム(Mg(OH))を用いたため、溶存するマグネシウムイオンがシリカ粒子の表面から溶出し、粗大粒子の生成を促すことにより、粒子が粗大化して一次粒子の平均粒子径が30nmと大きくなり過ぎた。コロイダルシリカ粒子の鎖状の平均長さは250nmであり、平均連結個数は9個であった。このため、粗大粒子が凝集して分散せず、ガラス基板上に塗膜を形成することができず、膜の屈折率を測定できなかった。またコロイダルシリカ粒子のMg(マグネシウム)の不純物の含有割合は420質量ppmであった。分散ゾルの保存安定性は『不良』であった。表面処理及び溶媒置換は、粗大粒子が凝集して分散しなかったため、行うことができなかった。
 比較例2では、アルカリ触媒として、塩化アルミニウム6水和物とアンモニア水の混合物を用いたため、不純物となるアルミニウムイオンがシリカ粒子の表面を溶出させ、粗大粒子の生成を促すことにより、コロイダルシリカ粒子が粗大化して一次粒子の平均粒子径が30nmとなり、コロイダルシリカ粒子の鎖状の平均長さは400nmであり、平均連結個数は14個であった。このため、粗大粒子が凝集して分散せず、ガラス基板上に塗膜を形成することができず、膜の屈折率を測定できなかった。またコロイダルシリカ粒子のNH不純物の含有割合は990質量ppmであり、かつAl(アルミニウム)の不純物の含有割合は1000質量ppmであった。分散ゾルの保存安定性は『不良』であった。表面処理及び溶媒置換は、粗大粒子が凝集して分散しなかったため、行うことができなかった。
 比較例3では、アルカリ触媒であるNaOHの濃度が0.01質量%と低過ぎたため、反応性に乏しく、球状の一次粒子は十分に生成せず、コロイダルシリカ粒子の鎖の平均長さは20nmと短過ぎ、一次粒子の平均連結個数は2個と少な過ぎた。このため、塗膜を形成することができたが、膜の屈折率は1.30と高かった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は12質量ppmであった。分散ゾルの保存安定性は『良好』であった。
 比較例4では、テトラエトキシシランの混合割合がテトラエトキシシラン溶液に対して、60.8質量%と多過ぎ、これにより純水のテトラエトキシシラン中のSiに対する割合は4.2モル濃度になったため、テトラエトキシシラン溶液がゲル化した。このため、一次粒子の平均連結個数は250個であったが、コロイダルシリカ粒子の鎖の平均長さは2500nmと長くなり過ぎ、ガラス基板上に塗膜を形成することができず、膜の屈折率を測定できなかった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は700質量ppmであった。分散ゾルの保存安定性は『不良』であった。表面処理及び溶媒置換は、コロイダルシリカ粒子の鎖の平均長さが長くなり過ぎて、コロイダルシリカ粒子が分散しなかったため、行うことができなかった。
 比較例5では、テトラエトキシシランの混合割合がテトラエトキシシラン溶液に対して、8.7質量%と少な過ぎ、これにより純水のテトラエトキシシラン中のSiに対する割合は64.0モル濃度になったため、加熱工程で、球状の一次粒子が十分に増大せず、一次粒子の平均粒子径が4nmと小さ過ぎた。一次粒子の平均連結個数は20個であり、コロイダルシリカ粒子の鎖の平均長さは80nmであって、塗膜を形成することができたが、球状粒子が凝集していたため、膜の屈折率は1.30と高かった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は700質量ppmであった。分散ゾルの保存安定性は球状粒子が凝集していたが、鎖の平均長さが短かったため、『良好』であった。
 比較例6では、テトラエトキシシランの混合割合がテトラエトキシシラン溶液に対して、34.8質量%と適切であったが、純水のテトラエトキシシラン中のSiに対する割合が1.6モル濃度と少な過ぎた。このため、一次粒子が粗大化し、一次粒子の平均粒子径が35nmと大きくなり過ぎた。一次粒子の平均連結個数は15個であり、コロイダルシリカ粒子の鎖の平均長さは250nmであって、塗膜を形成することができたが、粗大な球状粒子であったため、膜の屈折率は1.37と高かった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は700質量ppmであった。分散ゾルの保存安定性は『良好』であった。
 比較例7では、テトラエトキシシランの混合割合がテトラエトキシシラン溶液に対して、34.8質量%と適切であったが、純水のテトラエトキシシラン中のSiに対する割合が1.6モル濃度と少な過ぎた。このため、一次粒子が粗大化し、一次粒子の平均粒子径が40nmと大きくなり過ぎ、一次粒子の平均アスペクト比が1.4と大きくなり過ぎた。一次粒子の平均連結個数は5個であり、コロイダルシリカ粒子の鎖の平均長さは200nmであって、塗膜を形成することができたが、球状粒子が凝集していたため、膜の屈折率は1.38と高かった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は700質量ppmであった。分散ゾルの保存安定性は『良好』であった。
 比較例8では、アルカリ触媒であるNH(アンモニア)の濃度が0.60質量%と高過ぎたため、テトラエトキシシランの加水分解の反応速度が著しく上昇し、球状の一次粒子が粗大化し、一次粒子の平均粒子径が30nmと大きくなり過ぎた。一次粒子の平均アスペクト比が1.2であった。コロイダルシリカ粒子の鎖の平均長さは90nmであって、一次粒子の平均連結個数は僅か3個の凝集粒子でしかなかった。このため、塗膜を形成することができたが、膜の屈折率は1.30と高かった。またコロイダルシリカ粒子のNHの不純物の含有割合は490質量ppmであった。分散ゾルの保存安定性は『良好』であった。
 比較例9では、テトラエトキシシランの混合割合がテトラエトキシシラン溶液に対して、69.5質量%と多過ぎ、これにより純水のテトラエトキシシラン中のSiに対する割合は2.9モル濃度になったため、テトラエトキシシラン溶液がゲル化した。一次粒子の平均連結個数は400個と極めて多くなり、コロイダルシリカ粒子の鎖の平均長さは3200nmと長くなり過ぎた。このため、ガラス基板上に塗膜を形成することができず、膜の屈折率を測定できなかった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は700質量ppmであった。分散ゾルの保存安定性は『不良』であった。表面処理及び溶媒置換は、コロイダルシリカ粒子の鎖の平均長さが長くなり過ぎて、コロイダルシリカ粒子が分散しなかったため、行うことができなかった。
 比較例10では、アルカリ触媒であるNaOHの濃度が0.70質量%と高過ぎたため、テトラエトキシシランの加水分解の反応速度が著しく上昇したため、一次粒子が粗大化し、一次粒子平均粒子径が500nmと大きくなり過ぎた。コロイダルシリカ粒子の鎖の平均長さは4000nmであり、一次粒子の平均連結個数が10個の凝集粒子が得られた。一次粒子の平均アスペクト比は2.0と大きくなり過ぎた。粗大な球状粒子が凝集したため、ガラス基板上に塗膜を形成することができず、膜の屈折率を測定できなかった。またコロイダルシリカ粒子のNa(ナトリウム)の不純物の含有割合は4020質量ppmであった。分散ゾルの保存安定性は『不良』であった。表面処理及び溶媒置換は、粗大な球状粒子が凝集したため、行うことができなかった。
 比較例11では、アルキルシリケートの代わりに珪酸ナトリウム(珪酸Na)水溶液を用い、この珪酸ナトリウム水溶液に塩化カルシウム水溶液を添加したため、粒子合成時には不純物のNa(ナトリウム)の濃度が9691質量ppm及びCa(カルシウム)の濃度が4052質量ppmであった。また、濃縮により不純物のNaの濃度が5886質量ppm及びCaの濃度が3843質量ppmに上昇した。しかし、時間の経過とともにこの不純物のナトリウムイオン及びカルシウムイオンがシリカ粒子の表面から溶出して針状の不純物が析出したため、平均アスペクト比が1.4と非常に大きい粒子が観察された。またゾルの保存安定性は『不良』であった。分散ゾルにはゲル化や粘度の上昇がなかったため、塗膜を形成することができ、膜の屈折率は1.20であったが、鎖の太さが一様でなく、粒子の連結個数にもばらつきがあったため、膜の屈折率のばらつきが5%と非常に大きかった。
 比較例12では、本発明の第1の観点に記載されていない、アミノ基の官能基を有するN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業社製、製品名:KBM-602)を表面処理剤に用いたため、アミノ基により液中のpHが変化したことにより、分散ゾル中のシリカ粒子が凝集した。このため、ガラス基板上に塗膜を形成することができず、膜の屈折率を測定できなかった。
 それらに対して、実施例1~21では、上述した本発明の第2の観点の製造条件を満たす条件で表面処理シリカ粒子分散ゾルを製造したため、本発明の第1の観点の特性を有する表面処理シリカ粒子分散ゾルを得ることができた。
 本発明の表面処理シリカ粒子分散ゾルは、ブラウン管、液晶、有機EL等のディスプレイパネル、太陽電池、ショーケース用ガラス等において、入射光の反射を防止するために用いられる反射防止膜を形成する分野、或いはセンサーやカメラモジュール等に用いられる屈折率差を利用した中間膜等を形成する分野に用いられる。
 11 純水と有機溶媒との混合溶媒
 12 アルキルシリケート
 13 アルキルシリケート溶液
 14 アルカリ触媒
 15 原料液
 16 第1前駆体ゾル
 17 アルコール
 18 アルコール希釈ゾル
 19 表面処理剤
 20 第2前駆体ゾル
 21 疎水性溶媒
 22 表面処理シリカ粒子分散ゾル

Claims (4)

  1.  電界放出型走査電子顕微鏡観察により把握される球状の一次粒子が4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有し、粒子表面がビニル基、メチル基、エポキシ基、スチリル基又はメタクリル基の官能基を有するシランカップリング剤により被覆されるか、チタネート系カップリング剤又はアルミネート系カップリング剤により被覆されたコロイダルシリカ粒子の群が疎水性溶媒中に分散して形成された表面処理シリカ粒子分散ゾルであって、
     前記球状の一次粒子の平均粒子径が6nm~20nmであり、前記球状の一次粒子の平均アスペクト比が1.0~1.3の範囲にあり、
     前記コロイダルシリカ粒子当たりのK、Na又はNHの不純物のそれぞれの含有割合が3500質量ppm以下であり、アルカリ土類金属又はアルミニウムの不純物のそれぞれの含有割合が1質量ppm未満であることを特徴とする表面処理シリカ粒子分散ゾル。
  2.  (a)純水と炭素数1~4のアルコール又は炭素数2~4の水溶性グリコール化合物である有機溶媒との混合溶媒に炭素数1~2のアルキル基を有するアルキルシリケートを混合してアルキルシリケート溶液を得る工程と、
     (b)前記アルキルシリケート溶液にアルカリ金属水酸化物、アンモニア又はアルキルアミンであるアルカリ触媒を添加混合して原料液を得る工程と、
     (c)前記原料液を40℃~100℃で24時間~100時間加熱してコロイダルシリカ粒子が分散した第1前駆体ゾルを得る工程と、
     (d)前記第1前駆体ゾルに炭素数1~4のアルコールを添加混合してアルコール希釈ゾルを得る工程と、
     (e)前記アルコール希釈ゾルに、ビニル基、メチル基、エポキシ基、スチリル基又はメタクリル基の官能基を有するシランカップリング剤である表面処理剤又はチタネート系カップリング剤又はアルミネート系カップリング剤である表面処理剤を、前記アルコール希釈ゾル中のシリカ粒子を100質量%とするとき、10質量%~100質量%の割合で添加混合し、40℃~100℃で3時間~24時間加熱して、表面処理されたシリカ粒子が分散した第2前駆体ゾルを得る工程と、
     (f)前記第2前駆体ゾルに疎水性溶媒を、前記第2前駆体ゾル中のシリカ濃度が1質量%~25質量%になるように添加混合し、40℃~80℃で3時間~12時間加熱して溶媒置換する工程を含み、
     前記純水が前記アルキルシリケート中のSiに対して8モル濃度~23モル濃度の割合で含まれ、
     前記(a)工程では、前記アルキルシリケート溶液を100質量%とするとき、前記アルキルシリケートを18質量%~44質量%の割合で混合し、
     前記(b)工程では、前記アルキルシリケートをシリカに換算するとき、前記アルカリ触媒を前記シリカに対して0.02質量%~0.40質量%の割合で混合する
    ことを特徴とする請求項1記載の表面処理シリカ粒子分散ゾルを製造する方法。
  3.  前記(c)工程の加熱初期段階で、平均アスペクト比が1.0~1.1であって平均粒子径が5nm未満の球状の一次粒子が形成され、加熱終了時に前記加熱初期段階の球状の一次粒子が6nm~20nmの平均粒子径になってかつ4個~300個の平均個数で鎖状に連なって35nm~1800nmの平均長さを有するコロイダルシリカ粒子の群に成長する請求項2記載の表面処理シリカ粒子分散ゾルの製造方法。
  4.  請求項1記載の表面処理シリカ粒子分散ゾルを用いて得られる膜であって、
     屈折率が1.10~1.25であることを特徴とする膜。
PCT/JP2022/038168 2021-10-18 2022-10-13 表面処理シリカ粒子分散ゾル及びその製造方法 WO2023068152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023554605A JPWO2023068152A1 (ja) 2021-10-18 2022-10-13
KR1020247004987A KR20240033263A (ko) 2021-10-18 2022-10-13 표면 처리 실리카 입자 분산 졸 및 그 제조 방법
CN202280061139.XA CN117957194A (zh) 2021-10-18 2022-10-13 表面处理二氧化硅粒子分散溶胶及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021170419 2021-10-18
JP2021-170419 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023068152A1 true WO2023068152A1 (ja) 2023-04-27

Family

ID=86059130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038168 WO2023068152A1 (ja) 2021-10-18 2022-10-13 表面処理シリカ粒子分散ゾル及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2023068152A1 (ja)
KR (1) KR20240033263A (ja)
CN (1) CN117957194A (ja)
TW (1) TWI833391B (ja)
WO (1) WO2023068152A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (ja) 1988-03-16 1989-12-21 Nissan Chem Ind Ltd 細長い形状のシリカゾル及びその製造法
WO2000015552A1 (fr) * 1998-09-10 2000-03-23 Nissan Chemical Industries, Ltd. Solution colloidale de silice moniliforme, procede de production associe et support d'enregistrement de jets d'encre
JP2005313593A (ja) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd 反射防止積層体
WO2007018069A1 (ja) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. 異形シリカゾルおよびその製造方法
JP2007327018A (ja) * 2005-06-24 2007-12-20 Jsr Corp 硬化性樹脂組成物及び反射防止膜
WO2010021400A1 (ja) * 2008-08-22 2010-02-25 国立大学法人東京大学 シリカナノ粒子構造体及びその製造方法
JP2013253145A (ja) * 2012-06-06 2013-12-19 Mitsubishi Materials Corp 低屈折率膜形成用組成物及びこれを用いた低屈折率膜の形成方法
JP2015021029A (ja) * 2013-07-17 2015-02-02 東レ株式会社 組成物、これを用いた反射防止層およびその形成方法、ならびにそれを有するガラスおよび太陽電池モジュール
WO2019131874A1 (ja) * 2017-12-27 2019-07-04 日揮触媒化成株式会社 鎖状粒子分散液の製造方法および鎖状粒子の分散液
WO2021044988A1 (ja) * 2019-09-06 2021-03-11 富士フイルム株式会社 組成物、膜、構造体、カラーフィルタ、固体撮像素子および画像表示装置
JP2021170419A (ja) 2017-07-20 2021-10-28 東芝テック株式会社 特典付与システム及び制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186468A1 (ja) * 2017-04-06 2018-10-11 株式会社日本触媒 シリカ粒子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317115A (ja) 1988-03-16 1989-12-21 Nissan Chem Ind Ltd 細長い形状のシリカゾル及びその製造法
WO2000015552A1 (fr) * 1998-09-10 2000-03-23 Nissan Chemical Industries, Ltd. Solution colloidale de silice moniliforme, procede de production associe et support d'enregistrement de jets d'encre
JP2005313593A (ja) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd 反射防止積層体
JP2007327018A (ja) * 2005-06-24 2007-12-20 Jsr Corp 硬化性樹脂組成物及び反射防止膜
WO2007018069A1 (ja) * 2005-08-10 2007-02-15 Catalysts & Chemicals Industries Co., Ltd. 異形シリカゾルおよびその製造方法
WO2010021400A1 (ja) * 2008-08-22 2010-02-25 国立大学法人東京大学 シリカナノ粒子構造体及びその製造方法
JP2013253145A (ja) * 2012-06-06 2013-12-19 Mitsubishi Materials Corp 低屈折率膜形成用組成物及びこれを用いた低屈折率膜の形成方法
JP2015021029A (ja) * 2013-07-17 2015-02-02 東レ株式会社 組成物、これを用いた反射防止層およびその形成方法、ならびにそれを有するガラスおよび太陽電池モジュール
JP2021170419A (ja) 2017-07-20 2021-10-28 東芝テック株式会社 特典付与システム及び制御方法
WO2019131874A1 (ja) * 2017-12-27 2019-07-04 日揮触媒化成株式会社 鎖状粒子分散液の製造方法および鎖状粒子の分散液
WO2021044988A1 (ja) * 2019-09-06 2021-03-11 富士フイルム株式会社 組成物、膜、構造体、カラーフィルタ、固体撮像素子および画像表示装置

Also Published As

Publication number Publication date
JPWO2023068152A1 (ja) 2023-04-27
TW202323191A (zh) 2023-06-16
TWI833391B (zh) 2024-02-21
KR20240033263A (ko) 2024-03-12
CN117957194A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US10160894B2 (en) Non-spherical silica sol, process for producing the same, and composition for polishing
JP5591530B2 (ja) シリカ系微粒子分散ゾルの製造方法、シリカ系微粒子分散ゾル、該分散ゾルを含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材
WO2010052945A1 (ja) 非球状シリカゾル、その製造方法および研磨用組成物
TWI690489B (zh) 二氧化矽粒子、其製造方法、及二氧化矽溶膠
US8118898B2 (en) Spinous silica-based sol and method of producing the same
JP6536821B2 (ja) シリカ含有樹脂組成物及びその製造方法並びにシリカ含有樹脂組成物の成形品
JP5080061B2 (ja) 中性コロイダルシリカの製造方法
JP5334385B2 (ja) ポリシリケート粒子状材料の製造および使用
TWI741116B (zh) 二氧化矽粒子分散液及其製造方法
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JP2001048520A (ja) 細長い形状のシリカゾル及びその製造方法
JP6011804B2 (ja) シリカゾルの製造方法
WO2023068152A1 (ja) 表面処理シリカ粒子分散ゾル及びその製造方法
WO2023058745A1 (ja) 鎖状のコロイダルシリカ粒子分散ゾル及びその製造方法
JP2000178020A (ja) 高純度シリカ水性ゾル及びその製造方法
JP2010030791A (ja) 中空シリカ粒子の製造方法
JP5505900B2 (ja) 高濃度シリカゾル
JP5346167B2 (ja) 粒子連結型アルミナ−シリカ複合ゾルおよびその製造方法
JP2013220976A (ja) 中性コロイダルシリカ分散液の分散安定化方法及び分散安定性に優れた中性コロイダルシリカ分散液
JP5646143B2 (ja) 薄片状複合シリカ微粒子分散液およびその製造方法
CN116768220A (zh) 一种快速合成高浓度非球形二氧化硅溶胶的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247004987

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023554605

Country of ref document: JP

Ref document number: 1020247004987

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280061139.X

Country of ref document: CN