WO2007018020A1 - Semiconductor testing apparatus - Google Patents

Semiconductor testing apparatus Download PDF

Info

Publication number
WO2007018020A1
WO2007018020A1 PCT/JP2006/314347 JP2006314347W WO2007018020A1 WO 2007018020 A1 WO2007018020 A1 WO 2007018020A1 JP 2006314347 W JP2006314347 W JP 2006314347W WO 2007018020 A1 WO2007018020 A1 WO 2007018020A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
signal line
under test
signal
test
Prior art date
Application number
PCT/JP2006/314347
Other languages
French (fr)
Japanese (ja)
Inventor
Nobusuke Seki
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2007529472A priority Critical patent/JP5038137B2/en
Priority to KR1020097010892A priority patent/KR101088203B1/en
Publication of WO2007018020A1 publication Critical patent/WO2007018020A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318314Tools, e.g. program interfaces, test suite, test bench, simulation hardware, test compiler, test program languages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • the present invention relates to a semiconductor test apparatus that performs a function test on a plurality of devices under test.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-292491 (Page 2-6, Fig. 1-5)
  • the upper limit of the wiring impedance of the socket board that electrically connects the device under test is about 100 ⁇ , and the device under test that can perform functional tests at the same time as the number of branches There was a problem that the number of people could not be increased.
  • the number of branches is set to 4 or more using such a low-impedance signal line, signal reflection occurs due to impedance mismatch and the signal waveform is disturbed, so that the measurement accuracy decreases. There's a problem.
  • the present invention was created in view of the above points, and its purpose is to prevent a decrease in measurement accuracy and to increase the number of devices under test that can be simultaneously measured. To provide an apparatus.
  • a semiconductor test apparatus includes a driver for inputting an applied signal to be used for testing to a pin of a device under test, and one end connected to an output terminal of the driver.
  • a signal line having a plurality of connection points provided in the middle and a termination resistor connected to the other end of the signal line, and connecting each of a plurality of devices under test to each of the plurality of connection points.
  • the apparatus further includes a test signal waveform generating means for generating a signal waveform necessary for the functional test of the device under test described above, receives the signal waveform, generates an applied signal with a driver, and generates the generated applied signal as a signal. It is desirable to input to each of multiple devices under test connected to the track. As a result, it is possible to input a common applied signal to the devices under test whose number has been increased and simultaneously perform a function test.
  • the output impedance of the driver is 50 ⁇
  • the signal line impedance is also set to 50 ⁇ .
  • Such a signal line is easy to realize, and the number of devices under test that are subject to simultaneous measurement. This makes it possible to increase the amount of calories and prevent the measurement accuracy from being lowered, and to facilitate manufacturing.
  • the above-described pin eletronics on which a driver channel having a driver and a terminating resistor is mounted, and a pin electronics, forming part of a signal line connected to each of the driver and the terminating resistor are formed.
  • a mother board wired with a coaxial cable and a device connected to the mother board with multiple devices under test It would be desirable to have a socket board with wiring that forms part of the track. This makes it possible to simultaneously test many devices under test without increasing the impedance of the wiring inside the socket board more than necessary.
  • a DC power source that generates at least one of the voltage and current necessary for the DC test of the device under test described above, a first switch that connects the DC power source to the signal line, a dryer, and a signal line It is desirable to further include a second switch that is inserted between the two and opens and closes the track. This makes it possible to selectively perform both functional tests and DC tests on multiple devices under test using the same signal line.
  • the semiconductor test apparatus of the present invention includes a driver for a plurality of channels for inputting an applied signal to be used for testing to a pin of a device under test, and one end connected to an output terminal of the driver.
  • a signal line having a connection path that is sequentially connected in series to the corresponding pins of the device under test, and the signal lines that are sequentially connected in series between the devices under test have the same propagation length in each of the plurality of channels.
  • the amount of delay is set.
  • the socket board of the present invention is provided in the above-described semiconductor test apparatus, has a plurality of devices under test, and has signal lines for sequentially connecting corresponding pins of the plurality of devices under test in series. I have.
  • a socket board By using such a socket board, it becomes possible to connect a plurality of devices under test to the signal line without increasing the impedance of the signal line, and to increase the number of devices under test that can be measured simultaneously. it can.
  • the timing generated in the applied signal applied to each pin of the device under test corresponding to the amount of propagation delay associated with the wiring length of the signal line sequentially connecting the plurality of devices under test in series. Based on the delay, it is desirable to adjust the delay timing for the IO channel connected to each IO pin of multiple devices under test. This makes it possible to adjust the timing for capturing the output signal of each device under test in accordance with the difference in the input timing of the applied signal.
  • the adjustment of the delay timing for the IO channel described above cancels the difference in propagation delay amount due to the difference in wiring length of the signal line for the second driver provided in the IO channel.
  • FIG. 1 is a diagram showing an overall configuration of a semiconductor test apparatus according to an embodiment.
  • FIG. 2 is a diagram showing a connection state between a driver channel and IO channel in the pin electronics and the DUT.
  • FIG. 3 is a diagram showing a modified example of a driver channel that can support both a functional test and a DC test.
  • FIG. 4 is a diagram showing a configuration of a modified example having a branch.
  • FIG. 5 is a diagram showing a modified connection configuration without using a termination resistor.
  • FIG. 1 is a diagram illustrating an overall configuration of a semiconductor test apparatus according to an embodiment.
  • This semiconductor test equipment includes a semiconductor test equipment main body 10 and a workstation 60 in order to perform various tests such as functional tests and DC tests on a plurality of DUTs (devices under test) 200. ing.
  • the workstation 60 controls the entire series of test operations such as functional tests and timing 'calibration operations, and realizes an interface with the user.
  • various semiconductor devices such as semiconductor memories and logic ICs can be considered.
  • the semiconductor test apparatus body 10 performs various tests on the DUT 200 by executing a predetermined test program transferred from the workstation 60.
  • the semiconductor test apparatus body 10 includes a tester control unit 12, a timing generator 14, a pattern generator 16, a data selector 18, a format control unit 20, and pin electronics 22. These tester control unit 12, timing generator 14, pattern generator 16, data selector 18 and format control unit 20 correspond to the test signal waveform generating means.
  • the tester control unit 12 is connected to each component such as the timing generator 14 via a bus, and by executing the test program transferred from the workstation 60, the tester controller 12 controls each component. Control necessary for various test operations.
  • the timing generator 14 sets a basic period of the test operation and generates various timing edges included in the set basic period.
  • the pattern generator 16 generates various pattern data.
  • the data selector 18 assigns the logical pin numbers, which are various pattern data output from the pattern generator 16, to the physical pin numbers of the DUT 200 and associates them.
  • the format control unit 20 performs waveform control applied to the DUT 200 based on the pattern data generated by the no-turn generator 16 and selected by the data selector 18 and the timing edge generated by the timing generator 14. .
  • the pin electronics 22 is used to physically interface the DUT 200. Based on the waveform signal FD and strobe signal STB generated by the waveform control of the format control unit 20, a signal that is actually input / output from / to the DUT 200 is generated.
  • the pin electronics 22 includes a plurality of driver channels (Dch) 24 and a plurality of IO channels (IOch) 26.
  • the pin electronics 22 is housed in a dedicated test head and has a structure that can be separated from the apparatus main body.
  • the driver channel 24 generates an actual test waveform that is input to the driver pins of the DUT 200.
  • the driver channel 24 includes a driver DR and a variable delay element VD that adjusts the timing of the waveform signal FD input to the driver DR.
  • the “dry pin” is a pin that only applies a test waveform to the DUT 200, such as an address pin of a memory device and various control pins.
  • the driver DR passes the waveform signal FD output from the format control unit 20 through the variable delay element VD and applies a test waveform delayed to an arbitrary timing to the DUT 200.
  • the variable delay element VD may be provided in the format control unit 20.
  • the IO channel 26 generates an actual test waveform to be applied to the IO pin of the DUT200, and also receives the response signal that is actually output from the IO pin force and performs timing determination in synchronization with the strobe signal STB. .
  • the IO channel 26 adjusts the timing of the driver DR and the variable delay element VD that adjusts the timing of the waveform signal FD input to the driver DR, and the timing of the comparator CP and the strobe signal STB input to the comparator CP. And a variable delay element VD to be adjusted.
  • the “IO pin” is an input Z output pin, which is a pin for applying a test waveform and determining the timing of a response signal like a data pin of a memory device.
  • the comparator CP samples the response signal at a timing based on the strobe signal STB output from the format control unit 20 and input via the variable delay element VD, and determines whether the sampled signal is good or bad in the subsequent stage. Supply to a circuit (not shown).
  • a mother board 30 that mediates between the socket board 40 and the pin electronics 22 is mounted on the semiconductor test apparatus main body 10, and the coaxial cable 32 in the mother board 30 is connected to the mother board 30.
  • the pin electronics 22 described above is connected to the socket board 40.
  • the socket board 40 has multiple DUTs 200 mounted via IC sockets (not shown). Wiring for connecting these DUT200 driver pins and IO pins to the mother board 30 is provided.
  • FIG. 2 is a diagram illustrating a connection state between the driver channel 24 and the IO channel 26 in the pin electronics 22 and a plurality of n (for example, four) DUTs 200.
  • one driver channel 24 in the pinpoint mouth 22 is associated with four DUTs 200 (200-1, 200-2, 200-3, 200-4). That is, the common signal power output from the driver DR in the driver channel 24 is input to the same driver pin of each of the DUT 200-1 to 200-4, and four 0171200-1 to 200-4 are input. A functional test is performed at the same time.
  • the output terminal of the driver DR in the driver channel 24 is the coaxial cable 32 (32—1) in the mother board 30 and the wiring Cl, C2, C3, C4, C5 in the socket board 40. It is connected to the terminal resistor 28 in the driver channel 24 via the coaxial cable 32 (32-2) in the mother board 30.
  • the output impedance of driver DR in driver channel 24 is set to 50 ⁇ .
  • the coaxial cables 32-1 and 32 2 in the motherboard 30 and the wiring in the socket board 40 Cl, C2, C3, C4, C5, and the impedance of the terminal resistor 28 in the driver channel 24 are also 50 ⁇ . Is set to Therefore, the signal that is also output as the driver DR force in the driver channel 24 is transmitted to the terminating resistor 28 without causing reflection.
  • the termination resistor 28 may be provided on the socket board 40 or the mother board 30.
  • the driver pins of the DUT 200-1 are connected to the connection points of the wirings Cl and C2.
  • the driver pin of DUT200-2 is connected to the connection point of wirings C2 and C3.
  • the driver pin of DUT200-3 is connected to the connection point of wiring C3 and C4.
  • the driver pins of DUT200-4 are connected to the connection points of wirings C4 and C5.
  • the wirings Cl, C2, C3, C4, and C5 in the socket board 40 are connected in cascade (series connection), and a plurality of DUTs 200-1 to 200-4 are connected to the connection points of the respective wirings. It is connected
  • connection between the IO pins included in each of the DUTs 200-1 to 200-4 and the respective IO channels 26 in the pin electronics 22 is performed in the same manner as in the prior art. That is, DUT200- Each IO pin 1 and each IO channel 26 are connected in a one-to-one relationship, and the path Z fail judgment is performed separately for the signal output from each IO pin.
  • the waveforms applied to the driver pins of each DUT are applied at different timings.
  • the delay times DL21 to DL24 of the four IO channels 26a to 26d are the same.
  • the driver DR in the driver channel 24 is connected to the coaxial cable 32-1, the wiring Cl, C2, C3, C4, C5, and the coaxial cable 32-2 as one signal line. Are connected to each other, and four DUT200-1 to 200-4 are connected to different locations along the signal line.
  • the impedance of the coaxial cable 32-1 and wiring C1, etc. By matching the impedance of the coaxial cable 32-1 and wiring C1, etc., and connecting a termination resistor 28 to the tip of this signal line, it is possible to eliminate signal reflection at the middle and at the tip of this signal line. Therefore, it is possible to prevent a decrease in measurement accuracy due to signal waveform disturbance due to reflection. In addition, it is not necessary to increase the impedance of the wiring C1 etc.
  • the number of DUTs 200 that can be measured simultaneously can be easily increased to 2 or more. be able to.
  • driver channel 24 having hundreds to thousands of channels, the number of channels can be greatly reduced, so that a cheaper semiconductor test apparatus can be realized. Can appear.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the configuration in which the signal output from the driver DR is input to the four DUTs 200-1 to 200-4 when performing the function test has been described.
  • the DC test for supplying current can be used with almost the same configuration with only minor changes.
  • FIG. 3 is a diagram showing a modified example of the driver channel that can handle both the function test and the DC test.
  • the driver channel 24A shown in FIG. 3 has a configuration in which switches 50, 52, 56 and a DC power supply 54 are added to the driver channel 24 shown in FIGS.
  • the switch 50 is arranged between the output terminal of the driver DR and one end of the coaxial cable 32-1 in the mother board 30, and the connection between them is interrupted.
  • the switch 52 is arranged between the terminating resistor 28 and one end of the coaxial cable 32-2 in the mother board 30, and the connection between them is interrupted.
  • the switch 56 is arranged between the DC power source 54 and one end of the coaxial cable 32-1 in the mother board 30, and the connection between them is interrupted.
  • the DC power source 54 generates a constant voltage and a constant current necessary for the DC test. Switches 50 and 56 correspond to the first switch, and switch 52 corresponds to the second switch.
  • FIG. 4 is a diagram showing a configuration of a modified example having a branch.
  • the driver channel 24B shown in FIG. 4 has a configuration in which a termination resistor 28B is added to the driver channel 24 shown in FIG.
  • the mother board 30B has a configuration in which one coaxial cable 32 (32-3) for connecting the driver channel 24B and the socket board 40B is added.
  • the socket board 40B has two signal lines composed of wirings C1 to C5 in the socket board 40 shown in FIG. 2, and each end of each of these two signal lines has a mother line. It has a branch structure commonly connected to the coaxial cable 32-1 in the board 30B.
  • the two signals when the impedance of the coaxial cable 32-1 is 50 ⁇ .
  • the impedance of each line is set to 100 ⁇ . Therefore, the impedance of the two termination resistors 28 and 28B in the driver channel 24B is also set to 100 ⁇ .
  • FIG. 5 is a diagram showing a connection configuration of a modified example that does not use a termination resistor, and shows a connection configuration in which the termination resistor 28 is deleted from the configuration shown in FIG. Even in this case, although the output terminal force of the driver channel 24 is 50 ⁇ , the impedance of the transmission line to the far end is 50 ⁇ , but the capacitance component is added at the connection points of the wirings C1 to C4 to each DUT. This causes a drop in impedance. When a DUT that does not terminate with the termination resistor 28 and allows the waveform quality of the test waveform to be acceptable, a connection configuration in which the termination resistor 28 is removed as shown in FIG. 5 may be employed.
  • the socket board 40 is connected to the pin electronics 22 via the mother board 30, and the names of these boards are the semiconductor test equipment manufacturers. It depends on etc.
  • the mother board 30 connected to the pin electronics 22 may be referred to as a performance board, or the combination of the mother board 30 and the socket board 40 may be realized by a combination of three or more boards.
  • the present invention can be applied to any configuration in which a plurality of DUTs 200 are connected in the middle of one signal line.
  • the present invention since it becomes possible to connect a plurality of devices under test to the signal line without increasing the impedance of the signal line, there is no restriction due to the impedance of the signal line, and the device under test that can be measured simultaneously You can increase the number.

Abstract

A semiconductor testing apparatus in which measurement accuracy is prevented from being reduced and the number of to-be-tested devices that can be simultaneously measured is increased. The semiconductor testing apparatus has a driver DR for inputting a signal to a pin of DUTs (200), a signal line connected at one end to the output end of the driver DR and having connection points provided in the middle of the signal line, and a termination resistor (28) connected to the other end of the signal line. The connection points provided in the signal line are respectively connected to the DUTs (200).

Description

明 細 書  Specification
半導体試験装置  Semiconductor test equipment
技術分野  Technical field
[0001] 本発明は、複数の被試験デバイスに対して機能試験等を行う半導体試験装置に関 する。  The present invention relates to a semiconductor test apparatus that performs a function test on a plurality of devices under test.
背景技術  Background art
[0002] 従来から、半導体試験装置で複数の被試験デバイスに対して機能試験を実施する 際に、 1つのドライバの出力側を分岐して 2つの被試験デバイスを接続し、これら 2つ の被試験デバイスに対して 1つのドライノから共通の試験パターンを同時に入力する 手法が知られている(例えば、特許文献 1参照。 )oこのような接続を行うことにより、少 ない数のドライバで多くの被試験デバイスに対して機能試験を実施することが可能に なる。  Conventionally, when performing a functional test on a plurality of devices under test using a semiconductor test apparatus, the output side of one driver is branched to connect the two devices under test, and these two devices under test are connected. A method is known in which a common test pattern is simultaneously input to a test device from one dryno (see, for example, Patent Document 1). It is possible to perform functional tests on the device under test.
特許文献 1 :特開 2000— 292491号公報 (第 2— 6頁、図 1— 5)  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-292491 (Page 2-6, Fig. 1-5)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、特許文献 1に開示された手法では、例えばドライバの出力端側に接続さ れた信号線路のインピーダンスを 50 Ωとすると、分岐先となる 2本の信号線路のそれ ぞれのインピーダンスは 100 Ωにする必要がある。理論上は、分岐先の信号線路の インピーダンスを 200 Ωに設定してこの信号線路を 4本用いると、ドライバの出力側に 接続された 50 Ωの信号線路と整合をとることができることになり、さらに少ないドライ バの数で多くの被試験デバイスに対して機能試験を実施することができる。しかし、 実際には、被試験デバイスの電気的な接続を行うソケットボードにおける配線のイン ピーダンスは 100 Ω程度が上限であって、分岐数、すなわち同時に機能試験を実施 することが可能な被試験デバイスの数を増やすことができな 、という問題があった。 一方、このような低 、インピーダンスの信号線路を用いて分岐数を 4以上に設定する と、インピーダンスの不整合により信号の反射が発生して信号波形が乱れるため、測 定精度が低下すると 、う問題がある。 [0004] 本発明は、このような点に鑑みて創作されたものであり、その目的は、測定精度の 低下を防止するとともに同時に測定可能な被試験デバイスの数を増すことができる半 導体試験装置を提供することにある。 [0003] By the way, in the method disclosed in Patent Document 1, for example, if the impedance of the signal line connected to the output end side of the driver is 50 Ω, each of the two signal lines as branch destinations is provided. The impedance must be 100 Ω. Theoretically, if the impedance of the signal line at the branch destination is set to 200 Ω and four signal lines are used, matching can be achieved with the 50 Ω signal line connected to the output side of the driver. In addition, functional tests can be performed on many devices under test with a small number of drivers. However, in reality, the upper limit of the wiring impedance of the socket board that electrically connects the device under test is about 100 Ω, and the device under test that can perform functional tests at the same time as the number of branches There was a problem that the number of people could not be increased. On the other hand, if the number of branches is set to 4 or more using such a low-impedance signal line, signal reflection occurs due to impedance mismatch and the signal waveform is disturbed, so that the measurement accuracy decreases. There's a problem. [0004] The present invention was created in view of the above points, and its purpose is to prevent a decrease in measurement accuracy and to increase the number of devices under test that can be simultaneously measured. To provide an apparatus.
課題を解決するための手段  Means for solving the problem
[0005] 上述した課題を解決するために、本発明の半導体試験装置は、被試験デバイスの ピンに、試験に供する印加信号を入力するドライバと、ドライバの出力端子に一方端 が接続されており、途中に設けられた複数の接続点を有する信号線路と、信号線路 の他方端に接続された終端抵抗とを備え、複数の接続点のそれぞれに、複数の被 試験デバイスのそれぞれを接続している。これにより、信号線路のインピーダンスを 高くすることなく信号線路に複数の被試験デバイスを接続することが可能になるため 、信号線路のインピーダンスによる制約がなくなり、同時に測定可能な被試験デバィ スの数を増やすことができる。  In order to solve the above-described problems, a semiconductor test apparatus according to the present invention includes a driver for inputting an applied signal to be used for testing to a pin of a device under test, and one end connected to an output terminal of the driver. A signal line having a plurality of connection points provided in the middle and a termination resistor connected to the other end of the signal line, and connecting each of a plurality of devices under test to each of the plurality of connection points. Yes. This makes it possible to connect multiple devices under test to the signal line without increasing the impedance of the signal line, so there is no restriction due to the impedance of the signal line, and the number of devices under test that can be measured simultaneously is reduced. Can be increased.
[0006] また、上述した被試験デバイスの機能試験に必要な信号波形を生成する試験信号 波形生成手段をさらに備え、信号波形を受けてドライバで印加信号を生成し、生成し た印加信号を信号線路に接続された複数の被試験デバイスのそれぞれに対して入 力することが望ましい。これにより、数を増やした被試験デバイスに対して共通の印加 信号を入力して同時に機能試験を実施することが可能になる。  [0006] Further, the apparatus further includes a test signal waveform generating means for generating a signal waveform necessary for the functional test of the device under test described above, receives the signal waveform, generates an applied signal with a driver, and generates the generated applied signal as a signal. It is desirable to input to each of multiple devices under test connected to the track. As a result, it is possible to input a common applied signal to the devices under test whose number has been increased and simultaneously perform a function test.
[0007] また、上述したドライバの出力インピーダンス、終端抵抗のインピーダンス、信号線 路のインピーダンスを一致させることが望ましい。これにより、ドライバから出力される 信号の反射による信号波形の乱れを防止することができ、測定精度の低下を防止す ることができる。例えばドライバの出力インピーダンスを 50 Ωとすると、信号線路のィ ンピーダンスも 50 Ωに設定することになる力 このような信号線路は実現が容易であ り、同時測定の対象となる被試験デバイスの数の増カロ、測定精度の低下防止とともに 製造の容易化を実現することができる。  [0007] Further, it is desirable to match the output impedance of the driver, the impedance of the termination resistor, and the impedance of the signal line. As a result, the disturbance of the signal waveform due to the reflection of the signal output from the driver can be prevented, and the degradation of measurement accuracy can be prevented. For example, if the output impedance of the driver is 50 Ω, the signal line impedance is also set to 50 Ω. Such a signal line is easy to realize, and the number of devices under test that are subject to simultaneous measurement. This makes it possible to increase the amount of calories and prevent the measurement accuracy from being lowered, and to facilitate manufacturing.
[0008] また、上述したドライバと終端抵抗を有するドライバチャネルが搭載されたピンエレ タトロ二タスと、ピンエレクトロニクスに接続され、ドライバと終端抵抗のそれぞれに接 続される信号線路の一部を形成する同軸ケーブルによって配線がなされたマザーボ ードと、マザ一ボードに接続され、複数の被試験デバイスが搭載されるとともに、信号 線路の一部を形成する配線がなされたソケットボードとを備えることが望ま 、。これ により、ソケットボード内の配線のインピーダンスを必要以上に高くすることなく多くの 被試験デバイスに対して同時に試験を実施することが可能になる。 [0008] In addition, the above-described pin eletronics on which a driver channel having a driver and a terminating resistor is mounted, and a pin electronics, forming part of a signal line connected to each of the driver and the terminating resistor are formed. A mother board wired with a coaxial cable and a device connected to the mother board with multiple devices under test, It would be desirable to have a socket board with wiring that forms part of the track. This makes it possible to simultaneously test many devices under test without increasing the impedance of the wiring inside the socket board more than necessary.
[0009] また、上述した被試験デバイスの DC試験に必要な電圧、電流の少なくとも一方を 生成する DC電源と、 DC電源を信号線路に対して接続する第 1のスィッチと、ドライ ノ と信号線路との間に挿入されて線路を開閉する第 2のスィッチとをさらに備えること が望ましい。これ〖こより、同じ信号線路を用いて複数の被試験デバイスに対して機能 試験と DC試験の両方を選択的に実施することが可能になる。  [0009] In addition, a DC power source that generates at least one of the voltage and current necessary for the DC test of the device under test described above, a first switch that connects the DC power source to the signal line, a dryer, and a signal line It is desirable to further include a second switch that is inserted between the two and opens and closes the track. This makes it possible to selectively perform both functional tests and DC tests on multiple devices under test using the same signal line.
[0010] また、本発明の半導体試験装置は、被試験デバイスのピンに試験に供する印加信 号を入力する複数チャネル分のドライバと、ドライバの出力端子に一方端が接続され ており、複数の被試験デバイスの対応するピンに順次直列接続される接続経路を有 する信号線路とを備え、複数の被試験デバイス間を順次直列接続する信号線路の 配線長は、複数チャネルのそれぞれにおいて同一の伝搬遅延量に設定されている。 各チャネルの信号線路の配線長を同じにして同一の伝搬遅延時間とすることにより、 個別のタイミング制御が不要になる。  [0010] Further, the semiconductor test apparatus of the present invention includes a driver for a plurality of channels for inputting an applied signal to be used for testing to a pin of a device under test, and one end connected to an output terminal of the driver. A signal line having a connection path that is sequentially connected in series to the corresponding pins of the device under test, and the signal lines that are sequentially connected in series between the devices under test have the same propagation length in each of the plurality of channels. The amount of delay is set. By making the wiring length of the signal line of each channel the same and making the same propagation delay time, individual timing control becomes unnecessary.
[0011] また、上述したドライバに接続される信号線路の他方端に接続される終端抵抗をさ らに備えることが望ましい。これにより、信号の反射を抑えることができる。  [0011] Further, it is desirable to further include a termination resistor connected to the other end of the signal line connected to the driver described above. Thereby, reflection of a signal can be suppressed.
[0012] また、本発明のソケットボードは、上述した半導体試験装置に備わっており、複数の 被試験デバイスを搭載しており、複数の被試験デバイスの対応するピンを順次直列 接続する信号線路を備えている。このようなソケットボードを用いることにより、信号線 路のインピーダンスを高くすることなく信号線路に複数の被試験デバイスを接続する ことが可能になり、同時に測定可能な被試験デバイスの数を増やすことができる。  [0012] Further, the socket board of the present invention is provided in the above-described semiconductor test apparatus, has a plurality of devices under test, and has signal lines for sequentially connecting corresponding pins of the plurality of devices under test in series. I have. By using such a socket board, it becomes possible to connect a plurality of devices under test to the signal line without increasing the impedance of the signal line, and to increase the number of devices under test that can be measured simultaneously. it can.
[0013] また、上述した複数の被試験デバイスの間を順次直列接続する信号線路の配線長 に伴う伝搬遅延量に対応して、それぞれの被試験デバイスのピンに印加される印加 信号に生ずるタイミングの遅れに基づ 、て、複数の被試験デバイスのそれぞれの IO ピンに接続される IOチャネルに対する遅延タイミングの調整を行うことが望ま 、。こ れにより、印加信号の入力タイミングのずれに合わせて各被試験デバイスの出力信 号を取り込むタイミングを調整することができる。 o [0013] In addition, the timing generated in the applied signal applied to each pin of the device under test corresponding to the amount of propagation delay associated with the wiring length of the signal line sequentially connecting the plurality of devices under test in series. Based on the delay, it is desirable to adjust the delay timing for the IO channel connected to each IO pin of multiple devices under test. This makes it possible to adjust the timing for capturing the output signal of each device under test in accordance with the difference in the input timing of the applied signal. o
[0014] また、上述した IOチャネルに対する遅延タイミングの調整は、 IOチャネルに備わつ た第 〇 2のドライバに対して、信号線路の配線長の差に伴う伝搬遅延量の差を相殺す る遅延量を設定するとともに、 IOチャネルに備わったコンパレータに対して、信号線 路の配線長の差に伴う伝搬遅延量の差を相殺する遅延量を設定することが望ましい 。これにより、各 IOチャネルに備わったドライバとコンパレータの両方のタイミング調整 を行うことができる。  [0014] In addition, the adjustment of the delay timing for the IO channel described above cancels the difference in propagation delay amount due to the difference in wiring length of the signal line for the second driver provided in the IO channel. In addition to setting the delay amount, it is desirable to set a delay amount that offsets the difference in propagation delay amount due to the difference in signal line length for the comparator provided in the IO channel. This makes it possible to adjust the timing of both the driver and comparator provided in each IO channel.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]一実施形態の半導体試験装置の全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of a semiconductor test apparatus according to an embodiment.
[図 2]ピンエレクトロニクス内のドライバチャネルおよび IOチャネルと DUTとの接続状 態を示す図である。  FIG. 2 is a diagram showing a connection state between a driver channel and IO channel in the pin electronics and the DUT.
[図 3]機能試験と DC試験の両方に対応可能なドライバチャネルの変形例を示す図で ある。  FIG. 3 is a diagram showing a modified example of a driver channel that can support both a functional test and a DC test.
[図 4]分岐を有する変形例の構成を示す図である。  FIG. 4 is a diagram showing a configuration of a modified example having a branch.
[図 5]終端抵抗を用いな 、変形例の接続構成を示す図である。  FIG. 5 is a diagram showing a modified connection configuration without using a termination resistor.
符号の説明  Explanation of symbols
半導体試験装置本体  Semiconductor test equipment body
12 テスタ制御部  12 Tester control unit
14 タイミング発生器  14 Timing generator
16 パターン発生器  16 pattern generator
18 データセレクタ  18 Data selector
20 フォーマット制御部  20 Format controller
22 ピンエレクトロニクス  22 pin electronics
24、 24A、 24B ドライバチャネル(Dch)  24, 24A, 24B Driver channel (Dch)
26 IOチャネル(IOch)  26 IO channel (IOch)
28、 28B 終端抵抗  28, 28B termination resistor
30 マザ一ボード  30 Motherboard
32 同軸ケーブル  32 Coaxial cable
40 ソケットボード 60 ワークステーション 40 socket board 60 workstation
200 DUT (被試験デバイス)  200 DUT (device under test)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明を適用した一実施形態の半導体試験装置について詳細に説明する 。図 1は、一実施形態の半導体試験装置の全体構成を示す図である。この半導体試 験装置は、複数の DUT (被試験デバイス) 200に対して機能試験や DC試験等の各 種の試験を実施するために、半導体試験装置本体 10およびワークステーション 60を 含んで構成されている。ワークステーション 60は、機能試験等の一連の試験動作や タイミング 'キャリブレーション動作の全体を制御するとともに、ユーザとの間のインタ フェースを実現する。 DUT200としては、半導体メモリやロジック IC等の各種の半導 体デバイスが考えられる。 Hereinafter, a semiconductor test apparatus according to an embodiment to which the present invention is applied will be described in detail. FIG. 1 is a diagram illustrating an overall configuration of a semiconductor test apparatus according to an embodiment. This semiconductor test equipment includes a semiconductor test equipment main body 10 and a workstation 60 in order to perform various tests such as functional tests and DC tests on a plurality of DUTs (devices under test) 200. ing. The workstation 60 controls the entire series of test operations such as functional tests and timing 'calibration operations, and realizes an interface with the user. As the DUT 200, various semiconductor devices such as semiconductor memories and logic ICs can be considered.
[0018] 半導体試験装置本体 10は、ワークステーション 60から転送されてくる所定の試験 プログラムを実行することにより DUT200に対する各種の試験を行う。このために、 半導体試験装置本体 10は、テスタ制御部 12、タイミング発生器 14、パターン発生器 16、データセレクタ 18、フォーマット制御部 20、ピンエレクトロニクス 22を備えている 。これらのテスタ制御部 12、タイミング発生器 14、パターン発生器 16、データセレクタ 18、フォーマツト制御部 20が試験信号波形生成手段に対応して 、る。  [0018] The semiconductor test apparatus body 10 performs various tests on the DUT 200 by executing a predetermined test program transferred from the workstation 60. For this purpose, the semiconductor test apparatus body 10 includes a tester control unit 12, a timing generator 14, a pattern generator 16, a data selector 18, a format control unit 20, and pin electronics 22. These tester control unit 12, timing generator 14, pattern generator 16, data selector 18 and format control unit 20 correspond to the test signal waveform generating means.
[0019] テスタ制御部 12は、タイミング発生器 14等の各構成部とバスを介して接続されてお り、ワークステーション 60から転送された試験プログラムを実行することにより、各構成 部に対して各種の試験動作に必要な制御を行う。  [0019] The tester control unit 12 is connected to each component such as the timing generator 14 via a bus, and by executing the test program transferred from the workstation 60, the tester controller 12 controls each component. Control necessary for various test operations.
[0020] タイミング発生器 14は、試験動作の基本周期を設定するとともに、この設定した基 本周期内に含まれる各種のタイミングエッジを生成する。パターン発生器 16は、各種 のパターンデータを発生する。データセレクタ 18は、パターン発生器 16から出力され る各種のパターンデータである論理的なピン番号を DUT200の物理的なピン番号 に割付対応させる。フォーマット制御部 20は、ノターン発生器 16によって発生して データセレクタ 18によって選択されたパターンデータと、タイミング発生器 14によって 生成されたタイミングエッジとに基づ 、て、 DUT200に印加する波形制御を行う。  [0020] The timing generator 14 sets a basic period of the test operation and generates various timing edges included in the set basic period. The pattern generator 16 generates various pattern data. The data selector 18 assigns the logical pin numbers, which are various pattern data output from the pattern generator 16, to the physical pin numbers of the DUT 200 and associates them. The format control unit 20 performs waveform control applied to the DUT 200 based on the pattern data generated by the no-turn generator 16 and selected by the data selector 18 and the timing edge generated by the timing generator 14. .
[0021] ピンエレクトロニクス 22は、 DUT200に対して物理的なインタフェースをとるための ものであり、フォーマット制御部 20の波形制御によって生成される波形信号 FDやスト ローブ信号 STBに基づいて、実際に DUT200との間で入出力される信号を生成す る。このために、ピンエレクトロニクス 22は、複数のドライバチャネル(Dch) 24と複数 の IOチャネル(IOch) 26とを備えている。なお、ピンエレクトロニクス 22は、専用のテ ストヘッドに収容されて、装置本体とは分離できる構造となっているのが通常である。 [0021] The pin electronics 22 is used to physically interface the DUT 200. Based on the waveform signal FD and strobe signal STB generated by the waveform control of the format control unit 20, a signal that is actually input / output from / to the DUT 200 is generated. For this purpose, the pin electronics 22 includes a plurality of driver channels (Dch) 24 and a plurality of IO channels (IOch) 26. In general, the pin electronics 22 is housed in a dedicated test head and has a structure that can be separated from the apparatus main body.
[0022] ドライバチャネル 24は、 DUT200のドライバピンに入力する実際の試験波形を生 成する。このために、ドライバチャネル 24は、ドライバ DRとこのドライバ DRに入力す る波形信号 FDのタイミングを調整する可変遅延素子 VDとを有する。ここで、「ドライ ノ ピン」とは、メモリデバイスのアドレスピンや各種のコントロールピンのように DUT20 0へ試験波形の印加のみを行うピンである。ドライバ DRは、フォーマット制御部 20か ら出力される波形信号 FDを可変遅延素子 VDに通して任意のタイミングに遅延した 試験波形を DUT200へ印加する。なお、可変遅延素子 VDはフォーマット制御部 20 内に備える構成としてもよい。  [0022] The driver channel 24 generates an actual test waveform that is input to the driver pins of the DUT 200. For this purpose, the driver channel 24 includes a driver DR and a variable delay element VD that adjusts the timing of the waveform signal FD input to the driver DR. Here, the “dry pin” is a pin that only applies a test waveform to the DUT 200, such as an address pin of a memory device and various control pins. The driver DR passes the waveform signal FD output from the format control unit 20 through the variable delay element VD and applies a test waveform delayed to an arbitrary timing to the DUT 200. The variable delay element VD may be provided in the format control unit 20.
[0023] IOチャネル 26は、 DUT200の IOピンに印加する実際の試験波形を生成するとと もに、 IOピン力も実際に出力される応答信号を受けてストローブ信号 STBに同期し たタイミング判定を行う。このために、 IOチャネル 26は、ドライバ DRおよびこのドライ バ DRに入力する波形信号 FDのタイミングを調整する可変遅延素子 VDと、コンパレ ータ CPおよびこのコンパレータ CPに入力するストローブ信号 STBのタイミングを調 整する可変遅延素子 VDとを有する。ここで、「IOピン」とは、入力 Z出力ピンであり、 メモリデバイスのデータピンのように試験波形の印加と応答信号のタイミング判定を行 うピンである。コンパレータ CPは、フォーマット制御部 20から出力されて可変遅延素 子 VDを介して入力されるストローブ信号 STBに基づくタイミングで、応答信号のサン プリングを行 、、このサンプリングされた信号を後段の良否判定回路(図示せず)へ 供給する。  [0023] The IO channel 26 generates an actual test waveform to be applied to the IO pin of the DUT200, and also receives the response signal that is actually output from the IO pin force and performs timing determination in synchronization with the strobe signal STB. . For this purpose, the IO channel 26 adjusts the timing of the driver DR and the variable delay element VD that adjusts the timing of the waveform signal FD input to the driver DR, and the timing of the comparator CP and the strobe signal STB input to the comparator CP. And a variable delay element VD to be adjusted. Here, the “IO pin” is an input Z output pin, which is a pin for applying a test waveform and determining the timing of a response signal like a data pin of a memory device. The comparator CP samples the response signal at a timing based on the strobe signal STB output from the format control unit 20 and input via the variable delay element VD, and determines whether the sampled signal is good or bad in the subsequent stage. Supply to a circuit (not shown).
[0024] また、半導体試験装置本体 10には、ソケットボード 40とピンエレクトロニクス 22との 間を仲介するマザ一ボード 30が搭載されており、このマザ一ボード 30内の同軸ケー ブル 32を介して上述したピンエレクトロニクス 22がソケットボード 40に接続されている 。ソケットボード 40は、複数の DUT200が ICソケット(図示なし)を介して搭載されて おり、これらの DUT200のドライバピンや IOピンをマザ一ボード 30に接続するための 配線がなされている。 In addition, a mother board 30 that mediates between the socket board 40 and the pin electronics 22 is mounted on the semiconductor test apparatus main body 10, and the coaxial cable 32 in the mother board 30 is connected to the mother board 30. The pin electronics 22 described above is connected to the socket board 40. The socket board 40 has multiple DUTs 200 mounted via IC sockets (not shown). Wiring for connecting these DUT200 driver pins and IO pins to the mother board 30 is provided.
[0025] 図 2は、ピンエレクトロニクス 22内のドライバチャネル 24および IOチャネル 26と複数 n (例えば 4つ)の DUT200との接続状態を示す図である。本実施形態では、ピンェ レクト口-タス 22内の一つのドライバチャネル 24と 4つの DUT200 (200— 1、 200— 2、 200— 3、 200— 4)とが対応している。すなわち、このドライバチャネル 24内のドラ ィバ DRから出力される共通の信号力 つの DUT200— 1〜200— 4のそれぞれの 同一のドライバピンに入力されて、 4っの0171200—1〜200—4に対する機能試験 等が同時に行われる。  FIG. 2 is a diagram illustrating a connection state between the driver channel 24 and the IO channel 26 in the pin electronics 22 and a plurality of n (for example, four) DUTs 200. In this embodiment, one driver channel 24 in the pinpoint mouth 22 is associated with four DUTs 200 (200-1, 200-2, 200-3, 200-4). That is, the common signal power output from the driver DR in the driver channel 24 is input to the same driver pin of each of the DUT 200-1 to 200-4, and four 0171200-1 to 200-4 are input. A functional test is performed at the same time.
[0026] 具体的には、ドライバチャネル 24内のドライバ DRの出力端子は、マザ一ボード 30 内の同軸ケーブル 32 (32— 1)、ソケットボード 40内の配線 Cl、 C2、 C3、 C4、 C5、 マザ一ボード 30内の同軸ケーブル 32 (32— 2)を介して、ドライバチャネル 24内の終 端抵抗 28に接続されている。ドライバチャネル 24内のドライバ DRの出力インピーダ ンスは 50 Ωに設定されている。また、マザ一ボード 30内の同軸ケーブル 32—1、 32 2、ソケットボード 40内の配線 Cl、 C2、 C3、 C4、 C5、ドライバチャネル 24内の終 端抵抗 28のそれぞれのインピーダンスもそれぞれ 50 Ωに設定されている。したがつ て、ドライバチャネル 24内のドライバ DR力も出力された信号は、反射を生じることなく 終端抵抗 28まで伝送される。なお、終端抵抗 28は、ソケットボード 40またはマザ一 ボード 30に備えるようにしてもょ ヽ。  Specifically, the output terminal of the driver DR in the driver channel 24 is the coaxial cable 32 (32—1) in the mother board 30 and the wiring Cl, C2, C3, C4, C5 in the socket board 40. It is connected to the terminal resistor 28 in the driver channel 24 via the coaxial cable 32 (32-2) in the mother board 30. The output impedance of driver DR in driver channel 24 is set to 50 Ω. Also, the coaxial cables 32-1 and 32 2 in the motherboard 30 and the wiring in the socket board 40 Cl, C2, C3, C4, C5, and the impedance of the terminal resistor 28 in the driver channel 24 are also 50 Ω. Is set to Therefore, the signal that is also output as the driver DR force in the driver channel 24 is transmitted to the terminating resistor 28 without causing reflection. The termination resistor 28 may be provided on the socket board 40 or the mother board 30.
[0027] また、ソケットボード 40において、配線 Cl、 C2の接続点に DUT200— 1のドライバ ピンが接続される。同様に、配線 C2、 C3の接続点に DUT200— 2のドライバピンが 接続される。配線 C3、 C4の接続点に DUT200— 3のドライバピンが接続される。配 線 C4、 C5の接続点に DUT200— 4のドライバピンが接続される。このように、本実施 形態では、ソケットボード 40内の配線 Cl、 C2、 C3、 C4、 C5が縦続接続 (直列接続) され、それぞれの配線の接続点に複数の DUT200— 1〜200— 4が接続されている  [0027] In the socket board 40, the driver pins of the DUT 200-1 are connected to the connection points of the wirings Cl and C2. Similarly, the driver pin of DUT200-2 is connected to the connection point of wirings C2 and C3. The driver pin of DUT200-3 is connected to the connection point of wiring C3 and C4. The driver pins of DUT200-4 are connected to the connection points of wirings C4 and C5. As described above, in this embodiment, the wirings Cl, C2, C3, C4, and C5 in the socket board 40 are connected in cascade (series connection), and a plurality of DUTs 200-1 to 200-4 are connected to the connection points of the respective wirings. It is connected
[0028] なお、 DUT200— 1〜200—4のそれぞれに含まれる IOピンとピンエレクトロニクス 22内の各 IOチャネル 26との接続は従来と同様に行われる。すなわち、 DUT200- 1の各 IOピンと各 IOチャネル 26とが 1対 1となるように接続されており、各 IOピンから 出力される信号に対するパス Zフェイルの判定が別々に行われる。 [0028] It should be noted that the connection between the IO pins included in each of the DUTs 200-1 to 200-4 and the respective IO channels 26 in the pin electronics 22 is performed in the same manner as in the prior art. That is, DUT200- Each IO pin 1 and each IO channel 26 are connected in a one-to-one relationship, and the path Z fail judgment is performed separately for the signal output from each IO pin.
[0029] ここで、図 2において遅延時間 DL1〜DL4で示されるように、各 DUTのドライバピ ンに印加される波形は、各々異なったタイミングで印加されることになる。一方、 4つ の IOチャネル 26a〜26dの遅延時間 DL21〜DL24は同一とする。この場合、各 DU T毎に、 IOチャネル 26側に備わったドライバ DRの可変遅延素子 VD、およびスト口 ーブ信号 STBの可変遅延素子 VDに対して、オフセット遅延量 DLxを付与する遅延 補正が必要である。即ち、 IOチャネル 26bの場合には、オフセット遅延量 DLx = DL 2— DL1を付与する。 IOチャネル 26cの場合には、オフセット遅延量 DLx=DL3— DL1を付与する。 IOチャネル 26dの場合には、オフセット遅延量 DLx=DL4— DLl を付与する。なお、オフセット遅延量 DLxが最小となるように、隣接した複数の DUT を配線することが望ましい。また、ドライバチャネル 24は複数チャネル存在するので、 各ドライバチャネル 24に対応する遅延時間 DL1〜DL4は、各々同一となるようにソ ケットボード 40における配線パターンを設計する必要がある。また、チャネル間のス キューが最小となるようにするために、複数の IOチャネル 26および複数のドライバチ ャネル 24に対してタイミングキャリブレーションを実施して、スキュー調整することが望 ましい。 Here, as shown by delay times DL1 to DL4 in FIG. 2, the waveforms applied to the driver pins of each DUT are applied at different timings. On the other hand, the delay times DL21 to DL24 of the four IO channels 26a to 26d are the same. In this case, for each DUT, the delay correction that gives the offset delay DLx to the variable delay element VD of the driver DR provided on the IO channel 26 side and the variable delay element VD of the stove signal STB is necessary. That is, in the case of the IO channel 26b, an offset delay amount DLx = DL2-DL1 is assigned. In the case of IO channel 26c, the offset delay amount DLx = DL3—DL1 is assigned. For IO channel 26d, the offset delay DLx = DL4—DLl is assigned. It is desirable to wire a plurality of adjacent DUTs so that the offset delay DLx is minimized. Further, since there are a plurality of driver channels 24, it is necessary to design a wiring pattern in the socket board 40 so that the delay times DL1 to DL4 corresponding to the driver channels 24 are the same. It is also desirable to adjust the skew by performing timing calibration on multiple IO channels 26 and multiple driver channels 24 to minimize skew between channels.
[0030] 本実施形態の半導体試験装置では、ドライバチャネル 24内のドライバ DRに、同軸 ケーブル 32— 1、配線 Cl、 C2、 C3、 C4、 C5、同軸ケーブル 32— 2力もなる 1本の 信号線路の一方端が接続されており、この信号線路の途中の異なる箇所に 4つの D UT200— 1〜200— 4が接続されている。同軸ケーブル 32— 1や配線 C1等のイン ピーダンスを合わせるとともにこの信号線路の先端に終端抵抗 28を接続することによ り、この信号線路の途中および先端での信号の反射をなくすことができるため、反射 による信号波形の乱れに起因する測定精度の低下を防止することができる。また、従 来のように、 DUT200の数を増やすためにソケットボード 40内の配線 C1等のインピ 一ダンスを高くする必要もないため、同時に測定可能な DUT200の数を 2以上に容 易に増やすことができる。これにより、数百〜数千チャネル備えるドライバチャネル 24 の場合には、大幅にチャネル数を削減できるので、より安価な半導体試験装置を実 現することができる。 [0030] In the semiconductor test apparatus of this embodiment, the driver DR in the driver channel 24 is connected to the coaxial cable 32-1, the wiring Cl, C2, C3, C4, C5, and the coaxial cable 32-2 as one signal line. Are connected to each other, and four DUT200-1 to 200-4 are connected to different locations along the signal line. By matching the impedance of the coaxial cable 32-1 and wiring C1, etc., and connecting a termination resistor 28 to the tip of this signal line, it is possible to eliminate signal reflection at the middle and at the tip of this signal line. Therefore, it is possible to prevent a decrease in measurement accuracy due to signal waveform disturbance due to reflection. In addition, it is not necessary to increase the impedance of the wiring C1 etc. in the socket board 40 in order to increase the number of DUTs 200 as before, so the number of DUTs 200 that can be measured simultaneously can be easily increased to 2 or more. be able to. As a result, in the case of driver channel 24 having hundreds to thousands of channels, the number of channels can be greatly reduced, so that a cheaper semiconductor test apparatus can be realized. Can appear.
[0031] このように、信号線路のインピーダンスを高くすることなく信号線路に複数の DUT2 00を接続することが可能になるため、信号線路のインピーダンスによる制約がなくな り、同時に測定可能な DUT200の数を増やすことができる。また、数を増やした複数 の DUT200に対して共通の印加信号を入力して同時に機能試験を実施することが 可會 になる。  [0031] As described above, since it becomes possible to connect a plurality of DUTs 200 to the signal line without increasing the impedance of the signal line, there is no restriction due to the impedance of the signal line, and the DUT 200 that can be measured simultaneously is eliminated. You can increase the number. In addition, it is possible to input a common applied signal to a plurality of DUTs 200 with an increased number and simultaneously perform a function test.
[0032] なお、本発明は上述した実施形態に限定されるものではなぐ本発明の要旨の範 囲内で種々の変形実施が可能である。例えば、上述した実施形態では、機能試験を 行う際にドライバ DRから出力された信号を 4つの DUT200— 1〜 200— 4に入力す る場合の構成について説明したが、定電圧を印加したり定電流を供給する DC試験 についても若干の変更を行うだけでほぼ同じ構成を用いることができる。  [0032] It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention. For example, in the embodiment described above, the configuration in which the signal output from the driver DR is input to the four DUTs 200-1 to 200-4 when performing the function test has been described. The DC test for supplying current can be used with almost the same configuration with only minor changes.
[0033] 図 3は、機能試験と DC試験の両方に対応可能なドライバチャネルの変形例を示す 図である。図 3に示すドライバチャネル 24Aは、図 1および図 2に示したドライバチヤ ネル 24〖こ対して、スィッチ 50、 52、 56、 DC電源 54が追加された構成を有している。 スィッチ 50は、ドライバ DRの出力端子とマザ一ボード 30内の同軸ケーブル 32—1の 一方端との間に配置されており、これらの間の接続を断続する。スィッチ 52は、終端 抵抗 28とマザ一ボード 30内の同軸ケーブル 32— 2の一方端との間に配置されてお り、これらの間の接続を断続する。スィッチ 56は、 DC電源 54とマザ一ボード 30内の 同軸ケーブル 32— 1の一方端との間に配置されており、これらの間の接続を断続す る。 DC電源 54は、直流試験に必要な定電圧や定電流を生成する。スィッチ 50、 56 が第 1のスィッチに、スィッチ 52が第 2のスィッチにそれぞれ対応する。  [0033] FIG. 3 is a diagram showing a modified example of the driver channel that can handle both the function test and the DC test. The driver channel 24A shown in FIG. 3 has a configuration in which switches 50, 52, 56 and a DC power supply 54 are added to the driver channel 24 shown in FIGS. The switch 50 is arranged between the output terminal of the driver DR and one end of the coaxial cable 32-1 in the mother board 30, and the connection between them is interrupted. The switch 52 is arranged between the terminating resistor 28 and one end of the coaxial cable 32-2 in the mother board 30, and the connection between them is interrupted. The switch 56 is arranged between the DC power source 54 and one end of the coaxial cable 32-1 in the mother board 30, and the connection between them is interrupted. The DC power source 54 generates a constant voltage and a constant current necessary for the DC test. Switches 50 and 56 correspond to the first switch, and switch 52 corresponds to the second switch.
[0034] 上述したドライバチャネル 24Aを用いて機能試験を実施する場合には、スィッチ 50 、 52をオンし、スィッチ 56をオフする。このようなスィッチ制御を行うことにより、図 2に 示したドライバチャネル 24と同じ接続状態が実現され、その後機能試験が実施され る。なお、上記のスィッチ制御はテスタ制御部 12によって行われる。  When a functional test is performed using the driver channel 24A described above, the switches 50 and 52 are turned on and the switch 56 is turned off. By performing such switch control, the same connection state as that of the driver channel 24 shown in FIG. 2 is realized, and then a functional test is performed. The switch control is performed by the tester control unit 12.
[0035] また、 DC試験を実施する場合には、スィッチ 50、 52をオフし、スィッチ 56をオンす る。このようなスィッチ制御を行うことにより、同軸ケーブル 32— 1、配線 C1等によって 形成される信号線路の一方端に DC電源 54のみが接続され、この信号線路の他方 端が開放された接続状態が実現され、その後 DC試験が実施される。このように、同 じ信号線路を用いて複数の DUT200に対して機能試験と DC試験の両方を選択的 に実施することが可能になる。なお、終端抵抗 28やスィッチ 52は、ソケットボード 40 またはマザ一ボード 30に備えるようにしてもょ 、。 [0035] When a DC test is performed, the switches 50 and 52 are turned off and the switch 56 is turned on. By performing such switch control, only the DC power supply 54 is connected to one end of the signal line formed by the coaxial cable 32-1, wiring C1, etc., and the other end of this signal line is connected. A connection state with open ends is realized, after which a DC test is performed. In this way, it is possible to selectively perform both functional tests and DC tests on multiple DUTs 200 using the same signal line. The terminal resistor 28 and switch 52 may be provided on the socket board 40 or the mother board 30.
[0036] また、上述した実施形態では、従来のような分岐と本発明を組み合わせるようにして もよい。図 4は、分岐を有する変形例の構成を示す図である。図 4に示すドライバチヤ ネル 24Bは、図 2に示したドライバチャネル 24に対して終端抵抗 28Bが追加された 構成を有している。また、マザ一ボード 30Bは、ドライバチャネル 24Bとソケットボード 40Bとを接続する同軸ケーブル 32 (32- 3)が 1本追加された構成を有して 、る。ソ ケットボード 40Bは、図 2に示したソケットボード 40内に配線 C1〜C5によって構成さ れた信号線路を 2系統備えており、し力もこれら 2系統の信号線路のそれぞれの一方 端がマザ一ボード 30B内の同軸ケーブル 32— 1に共通に接続された分岐構造を有 している。同軸ケーブル 32— 1と 2本の信号線路との接続点(分岐点)において信号 の反射が生じないようにするために、同軸ケーブル 32—1のインピーダンスを 50 Ωと したときに 2本の信号線路のそれぞれのインピーダンスが 100 Ωに設定されている。 したがって、ドライバチャネル 24B内の 2つの終端抵抗 28、 28Bのインピーダンスも 1 00 Ωに設定されている。このように、ソケットボード 40B内の配線を分岐させる手法を 組み合わせることにより、信号の反射を生じさせることなく同時に測定可能な DUT20 0の数を増やすことができる。  [0036] In the above-described embodiment, a conventional branch may be combined with the present invention. FIG. 4 is a diagram showing a configuration of a modified example having a branch. The driver channel 24B shown in FIG. 4 has a configuration in which a termination resistor 28B is added to the driver channel 24 shown in FIG. The mother board 30B has a configuration in which one coaxial cable 32 (32-3) for connecting the driver channel 24B and the socket board 40B is added. The socket board 40B has two signal lines composed of wirings C1 to C5 in the socket board 40 shown in FIG. 2, and each end of each of these two signal lines has a mother line. It has a branch structure commonly connected to the coaxial cable 32-1 in the board 30B. To prevent signal reflection at the connection point (branch point) between the coaxial cable 32-1 and the two signal lines, the two signals when the impedance of the coaxial cable 32-1 is 50 Ω. The impedance of each line is set to 100 Ω. Therefore, the impedance of the two termination resistors 28 and 28B in the driver channel 24B is also set to 100 Ω. Thus, by combining the methods of branching the wiring in the socket board 40B, the number of DUTs 200 that can be measured simultaneously without causing signal reflection can be increased.
[0037] 図 5は、終端抵抗を用いない変形例の接続構成を示す図であり、図 2に示す構成 において終端抵抗 28を削除した接続構成が示されている。この場合でも、ドライバチ ャネル 24の出力端子力も遠端までの伝送線路のインピーダンスは 50 Ωであるが、各 DUTへの配線 C1〜C4の接続点において、容量成分が付与されることに伴い、わ ず力にインピーダンスの低下を生じる。終端抵抗 28を用いて終端しな 、場合の試験 波形の波形品質が許容できる DUTを用いる場合には、図 5に示すように終端抵抗 2 8を削除した接続構成を採用してもよい。  FIG. 5 is a diagram showing a connection configuration of a modified example that does not use a termination resistor, and shows a connection configuration in which the termination resistor 28 is deleted from the configuration shown in FIG. Even in this case, although the output terminal force of the driver channel 24 is 50 Ω, the impedance of the transmission line to the far end is 50 Ω, but the capacitance component is added at the connection points of the wirings C1 to C4 to each DUT. This causes a drop in impedance. When a DUT that does not terminate with the termination resistor 28 and allows the waveform quality of the test waveform to be acceptable, a connection configuration in which the termination resistor 28 is removed as shown in FIG. 5 may be employed.
[0038] また、上述した実施形態では、ピンエレクトロニクス 22にマザ一ボード 30を介してソ ケットボード 40を接続したが、これら各ボードの名称は半導体試験装置の製造メーカ 等によって異なっている。例えば、ピンエレクトロニクス 22に接続されるマザ一ボード 30をパフォーマンスボードと称する場合があったり、マザ一ボード 30とソケットボード 40の組み合わせを 3つ以上のボードの組み合わせで実現する場合があるが、図 2に 示したように、 1本の信号線路の途中に複数の DUT200を接続する形態であれば本 発明を適用することができる。 [0038] In the above-described embodiment, the socket board 40 is connected to the pin electronics 22 via the mother board 30, and the names of these boards are the semiconductor test equipment manufacturers. It depends on etc. For example, the mother board 30 connected to the pin electronics 22 may be referred to as a performance board, or the combination of the mother board 30 and the socket board 40 may be realized by a combination of three or more boards. As shown in FIG. 2, the present invention can be applied to any configuration in which a plurality of DUTs 200 are connected in the middle of one signal line.
産業上の利用可能性 Industrial applicability
本発明によれば、信号線路のインピーダンスを高くすることなく信号線路に複数の 被試験デバイスを接続することが可能になるため、信号線路のインピーダンスによる 制約がなくなり、同時に測定可能な被試験デバイスの数を増やすことができる。  According to the present invention, since it becomes possible to connect a plurality of devices under test to the signal line without increasing the impedance of the signal line, there is no restriction due to the impedance of the signal line, and the device under test that can be measured simultaneously You can increase the number.

Claims

請求の範囲 The scope of the claims
[1] 被試験デバイスのピンに、試験に供する印加信号を入力するドライバと、  [1] A driver for inputting an applied signal to be used for testing to a pin of a device under test;
前記ドライバの出力端子に一方端が接続されており、途中に設けられた複数の接 続点を有する信号線路と、  A signal line having one end connected to the output terminal of the driver and having a plurality of connection points provided in the middle;
前記信号線路の他方端に接続された終端抵抗と、  A terminating resistor connected to the other end of the signal line;
を備え、前記複数の接続点のそれぞれに、複数の前記被試験デバイスのそれぞれ を接続する半導体試験装置。  A semiconductor test apparatus for connecting each of the plurality of devices under test to each of the plurality of connection points.
[2] 請求項 1において、  [2] In claim 1,
前記被試験デバイスの機能試験に必要な信号波形を生成する試験信号波形生成 手段をさらに備え、  A test signal waveform generating means for generating a signal waveform required for a function test of the device under test;
前記信号波形を受けて前記ドライバで印加信号を生成し、生成した印加信号を前 記信号線路に接続された複数の前記被試験デバイスのそれぞれに対して入力する 半導体試験装置。  A semiconductor test apparatus that receives the signal waveform, generates an applied signal by the driver, and inputs the generated applied signal to each of the plurality of devices under test connected to the signal line.
[3] 請求項 1において、 [3] In claim 1,
前記ドライバの出力インピーダンス、前記終端抵抗のインピーダンス、前記信号線 路のインピーダンスを一致させる半導体試験装置。  A semiconductor test apparatus that matches the output impedance of the driver, the impedance of the termination resistor, and the impedance of the signal line.
[4] 請求項 3において、 [4] In claim 3,
前記ドライバと前記終端抵抗を有するドライバチャネルが搭載されたピンエレクト口 二タスと、  A pin-elect port on which a driver channel having the driver and the termination resistor is mounted;
前記ピンエレクトロニクスに接続され、前記ドライバと前記終端抵抗のそれぞれに接 続される前記信号線路の一部を形成する同軸ケーブルによって配線がなされたマザ 一ボードと、  A mother board connected to the pin electronics and wired by a coaxial cable forming part of the signal line connected to each of the driver and the termination resistor;
前記マザ一ボードに接続され、複数の前記被試験デバイスが搭載されるとともに、 前記信号線路の一部を形成する配線がなされたソケットボードと、  A socket board connected to the mother board, mounted with a plurality of the devices under test, and wired to form part of the signal line;
を備える半導体試験装置。  A semiconductor testing apparatus comprising:
[5] 請求項 2〜4のいずれかにおいて、 [5] In any one of claims 2 to 4,
前記被試験デバイスの DC試験に必要な電圧、電流の少なくとも一方を生成する D C電源と、 前記 DC電源を前記信号線路に対して接続する第 1のスィッチと、 A DC power source that generates at least one of a voltage and a current necessary for a DC test of the device under test; A first switch for connecting the DC power source to the signal line;
前記ドライバと前記信号線路との間に挿入されて線路を開閉する第 2のスィッチと、 をさらに備える半導体試験装置。  A semiconductor test apparatus further comprising: a second switch that is inserted between the driver and the signal line to open and close the line.
[6] 被試験デバイスのピンに試験に供する印加信号を入力する複数チャネル分のドラ ィバと、 [6] A driver for multiple channels that inputs an applied signal to be used for testing to the pins of the device under test;
前記ドライバの出力端子に一方端が接続されており、複数の被試験デバイスの対 応するピンに順次直列接続される接続経路を有する信号線路と、  A signal line having one end connected to the output terminal of the driver and having a connection path sequentially connected in series to corresponding pins of a plurality of devices under test;
を備え、前記複数の被試験デバイス間を順次直列接続する前記信号線路の配線 長は、前記複数チャネルのそれぞれにおいて同一の伝搬遅延量に設定されている 半導体試験装置。  A wiring length of the signal line that sequentially connects the plurality of devices under test in series with each other. The semiconductor test apparatus is set to have the same propagation delay amount in each of the plurality of channels.
[7] 請求項 6において、 [7] In claim 6,
前記ドライバに接続される前記信号線路の他方端に接続される終端抵抗をさら〖こ 備える半導体試験装置。  A semiconductor test apparatus further comprising a termination resistor connected to the other end of the signal line connected to the driver.
[8] 請求項 1記載の半導体試験装置に備わっており、複数の被試験デバイスを搭載す るソケットボードであって、 [8] A socket board for mounting a plurality of devices under test provided in the semiconductor test apparatus according to claim 1.
前記複数の被試験デバイスの対応するピンを順次直列接続する前記信号線路を 備えるソケットボード。  A socket board comprising the signal line for sequentially connecting corresponding pins of the plurality of devices under test in series.
[9] 請求項 6において、 [9] In claim 6,
前記複数の被試験デバイスの間を順次直列接続する前記信号線路の配線長に伴 う伝搬遅延量に対応して、それぞれの被試験デバイスのピンに印加される印加信号 に生ずるタイミングの遅れに基づ 、て、前記複数の被試験デバイスのそれぞれの IO ピンに接続される IOチャネルに対する遅延タイミングの調整を行う半導体試験装置。  Corresponding to the amount of propagation delay associated with the wiring length of the signal line that is sequentially connected in series between the plurality of devices under test, it is based on the timing delay that occurs in the applied signal applied to the pin of each device under test. A semiconductor test apparatus that adjusts delay timing for the IO channels connected to the IO pins of the plurality of devices under test.
[10] 請求項 9において、 [10] In claim 9,
前記 IOチャネルに対する遅延タイミングの調整は、前記 IOチャネルに備わった第 2 のドライバに対して、前記信号線路の配線長の差に伴う伝搬遅延量の差を相殺する 遅延量を設定するとともに、前記 IOチャネルに備わったコンパレータに対して、前記 信号線路の配線長の差に伴う伝搬遅延量の差を相殺する遅延量を設定する半導体 試験装置。  The adjustment of the delay timing for the IO channel is performed by setting a delay amount that cancels a difference in propagation delay amount due to a difference in the wiring length of the signal line for the second driver provided in the IO channel, and A semiconductor test apparatus for setting a delay amount that cancels a difference in propagation delay amount due to a difference in wiring length of the signal line with respect to a comparator provided in an IO channel.
PCT/JP2006/314347 2005-08-09 2006-07-20 Semiconductor testing apparatus WO2007018020A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007529472A JP5038137B2 (en) 2005-08-09 2006-07-20 Semiconductor test equipment
KR1020097010892A KR101088203B1 (en) 2005-08-09 2006-07-20 Semiconductor testing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-230198 2005-08-09
JP2005230198 2005-08-09

Publications (1)

Publication Number Publication Date
WO2007018020A1 true WO2007018020A1 (en) 2007-02-15

Family

ID=37727209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314347 WO2007018020A1 (en) 2005-08-09 2006-07-20 Semiconductor testing apparatus

Country Status (4)

Country Link
JP (1) JP5038137B2 (en)
KR (2) KR20080014995A (en)
TW (1) TWI317814B (en)
WO (1) WO2007018020A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149973A1 (en) * 2007-06-07 2008-12-11 Advantest Corporation Test device and calibration device
WO2010001440A1 (en) * 2008-07-03 2010-01-07 株式会社アドバンテスト Test device and socket board
CN101784906A (en) * 2007-08-22 2010-07-21 惠瑞捷(新加坡)私人有限公司 Chip tester, method for providing timing information, test fixture set, apparatus for post-processing propagation delay information, method for post-processing delay information, chip test set up and method for testing devices under test
JPWO2010007770A1 (en) * 2008-07-15 2012-01-05 株式会社アドバンテスト Test equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151686B1 (en) * 2012-02-29 2012-06-14 주식회사 유니테스트 Burn-In Tester
TWI569278B (en) * 2015-04-28 2017-02-01 晨星半導體股份有限公司 Circuit for generating memory test data and method thereof
CN109591658B (en) * 2018-10-23 2022-05-27 大唐恩智浦半导体有限公司 Battery management device, method and chip
KR102440440B1 (en) * 2020-12-16 2022-09-06 와이아이케이 주식회사 Semiconductor device inspection equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352686U (en) * 1989-09-29 1991-05-22
JP2000082300A (en) * 1998-06-24 2000-03-21 Advantest Corp Device and method for testing semiconductor memory
JP2000090692A (en) * 1998-09-08 2000-03-31 Samsung Electronics Co Ltd Memory module test device
JP2000292502A (en) * 1999-02-03 2000-10-20 Hitachi Electronics Eng Co Ltd Semiconductor device-testing apparatus and method for testing semiconductor device
JP2002005999A (en) * 2000-06-20 2002-01-09 Advantest Corp Semiconductor testing device
JP2002040108A (en) * 2000-07-27 2002-02-06 Advantest Corp Semiconductor device testing apparatus and method for timing calibration of the same
JP2002107406A (en) * 2000-09-29 2002-04-10 Advantest Corp Semiconductor testing device
JP2003043066A (en) * 2001-07-26 2003-02-13 Hoya Corp Contact probe member and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091893A (en) * 1998-09-14 2000-03-31 Hitachi Ltd Pulse generating circuit and tester using the same
JP2002323539A (en) * 2001-04-26 2002-11-08 Advantest Corp Semiconductor testing device and its correcting method
JP4214361B2 (en) * 2002-04-24 2009-01-28 横河電機株式会社 IC test apparatus and output signal timing adjustment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352686U (en) * 1989-09-29 1991-05-22
JP2000082300A (en) * 1998-06-24 2000-03-21 Advantest Corp Device and method for testing semiconductor memory
JP2000090692A (en) * 1998-09-08 2000-03-31 Samsung Electronics Co Ltd Memory module test device
JP2000292502A (en) * 1999-02-03 2000-10-20 Hitachi Electronics Eng Co Ltd Semiconductor device-testing apparatus and method for testing semiconductor device
JP2002005999A (en) * 2000-06-20 2002-01-09 Advantest Corp Semiconductor testing device
JP2002040108A (en) * 2000-07-27 2002-02-06 Advantest Corp Semiconductor device testing apparatus and method for timing calibration of the same
JP2002107406A (en) * 2000-09-29 2002-04-10 Advantest Corp Semiconductor testing device
JP2003043066A (en) * 2001-07-26 2003-02-13 Hoya Corp Contact probe member and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149973A1 (en) * 2007-06-07 2008-12-11 Advantest Corporation Test device and calibration device
JPWO2008149973A1 (en) * 2007-06-07 2010-08-26 株式会社アドバンテスト Test equipment and calibration devices
CN101784906A (en) * 2007-08-22 2010-07-21 惠瑞捷(新加坡)私人有限公司 Chip tester, method for providing timing information, test fixture set, apparatus for post-processing propagation delay information, method for post-processing delay information, chip test set up and method for testing devices under test
JP2010537174A (en) * 2007-08-22 2010-12-02 ヴェリジー(シンガポール) プライベート リミテッド Chip tester, method for providing timing information, test equipment set, apparatus for post-processing propagation delay information, method for post-processing delay information, chip test configuration, and method for testing a subject.
WO2010001440A1 (en) * 2008-07-03 2010-01-07 株式会社アドバンテスト Test device and socket board
JPWO2010001440A1 (en) * 2008-07-03 2011-12-15 株式会社アドバンテスト Test equipment and socket board
JPWO2010007770A1 (en) * 2008-07-15 2012-01-05 株式会社アドバンテスト Test equipment

Also Published As

Publication number Publication date
KR101088203B1 (en) 2011-11-30
JP5038137B2 (en) 2012-10-03
KR20090061083A (en) 2009-06-15
JPWO2007018020A1 (en) 2009-02-19
TWI317814B (en) 2009-12-01
KR20080014995A (en) 2008-02-15
TW200712521A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
JP5038137B2 (en) Semiconductor test equipment
KR100649648B1 (en) Remote test module for automatic test equipment
US7337377B2 (en) Enhanced loopback testing of serial devices
KR100861602B1 (en) System for calibrating timing of an integrated circuit wafer tester
KR100548199B1 (en) Analog/Digital Mixed Signal Semiconductor Device Test apparatus
US7208937B2 (en) Hybrid AC/DC-coupled channel for testing
US8326565B2 (en) Chip tester, method for providing timing information, test fixture set, apparatus for post-processing propagation delay information, method for post-processing delay information, chip test set up and method for testing devices under test
JP2004198191A (en) Interface circuit
US20060270357A1 (en) Channel switching circuit
JP5460574B2 (en) Calibration of test equipment using ESD protection circuit
JP2003130938A (en) System and method for calibrating timing of electronic circuit tester and verifying timing calibration
US6856158B2 (en) Comparator circuit for semiconductor test system
US7847573B2 (en) Test apparatus and performance board
JP2004028983A (en) Measuring apparatus and measuring method
US20050057257A1 (en) Apparatus and method for automatic elimination of round-trip delay errors induced by automatic test equipment calibration
KR101315506B1 (en) Signal topology circuit for adjust of length of trace to improve of signal integrity
JP4846134B2 (en) Test apparatus and calibration method
JP4486718B2 (en) Semiconductor test equipment
JPH11190760A (en) Semiconductor test apparatus
JP2004361111A (en) Semiconductor testing device and test method of semiconductor integrated circuit
JP2000266820A (en) Semiconductor testing apparatus
WO2010007770A1 (en) Testing device
JP4729212B2 (en) Semiconductor test equipment
JP2001074805A (en) Test board for ic tester
JPH0458170A (en) Semiconductor testing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529472

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077028618

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097010892

Country of ref document: KR