WO2007013626A1 - 表面調整剤及び表面調整方法 - Google Patents
表面調整剤及び表面調整方法 Download PDFInfo
- Publication number
- WO2007013626A1 WO2007013626A1 PCT/JP2006/315055 JP2006315055W WO2007013626A1 WO 2007013626 A1 WO2007013626 A1 WO 2007013626A1 JP 2006315055 W JP2006315055 W JP 2006315055W WO 2007013626 A1 WO2007013626 A1 WO 2007013626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- chemical conversion
- surface conditioning
- mass
- acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D171/00—Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
- C09D171/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
Definitions
- the present invention relates to a surface conditioning agent and a surface conditioning method.
- Automobile bodies, home appliances, and the like have been commercialized by forming metal materials such as steel plates, galvanized steel plates, aluminum alloys, and the like into metal moldings, painting, assembling, and the like.
- the coating of such a metal molded product is performed through various processes such as degreasing, surface conditioning, chemical conversion treatment, and electrodeposition coating.
- the phosphate film forming treatment in the next step, a film that also has the crystal strength of phosphate is formed uniformly, rapidly, and at a high density on the entire metal surface.
- the crystal nuclei of phosphate are formed on the metal surface by dipping in a surface conditioning tank.
- Patent Document 1 includes at least one selected from phosphates containing at least one of divalent or trivalent metals including particles having a particle size of 5 ⁇ m or less, and an alkali. Metal salt or ammonia salt or a mixture of these and acid-on-particles that are charged and dispersed in a ionic state, ionic water-soluble organic polymer, non-ionic water-soluble It contains at least one selected from the group consisting of organic polymers, ionic surfactants and nonionic surfactants, and has a pH adjusted to 4 to 13 before the phosphate film conversion treatment.
- a surface preparation pretreatment liquid is disclosed.
- Patent Document 2 contains one or more phosphate particles selected from phosphates containing one or more of divalent and Z or trivalent metals, and (1 ) One or more selected from monosaccharides, polysaccharides and derivatives thereof, (2) Orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compound, vinyl acetate polymer or derivative thereof, or copolymerized with vinyl acetate One or more water-soluble polymer compounds consisting of a copolymer of a possible monomer and vinyl acetate, or (3) the neutrality of a specific monomer or ⁇ , j8 unsaturated carboxylic acid monomer A polymer obtained by polymerizing at least one selected from the above and 50% by weight or less of a monomer copolymerizable with the above monomer; Discloses a surface conditioning treatment solution containing a copolymer before the phosphate film chemical conversion treatment.
- Patent Document 3 discloses a method in which the zeta potential is adjusted in the surface treatment of the wrought aluminum alloy material.
- the surface conditioning treatment liquid disclosed in Patent Document 1 and Patent Document 2 is such that the aluminum alloy portion is the anode in the portion where the aluminum alloy and the steel plate or galvanized steel plate are in contact with each other. Since the steel plate or the galvanized steel plate portion is a force sword, there is a problem that a chemical conversion film is hardly formed on the aluminum alloy. For this reason, in the chemical conversion treatment, development of a surface conditioner that can suppress electrolytic corrosion on the aluminum alloy is desired.
- Patent Document 1 Japanese Patent Laid-Open No. 10-245685
- Patent Document 2 JP 2000-96256 A
- Patent Document 3 Japanese Patent Application Laid-Open No. 2001-262364
- the present invention has been made in view of the above situation, and an object of the present invention is to provide a surface conditioning agent that can prevent the occurrence of crease after surface conditioning and is excellent in dispersion stability in a treatment bath. is there.
- the present invention can suppress electrolytic corrosion on the aluminum alloy during the chemical conversion treatment, and reduce the difference in the amount of chemical conversion film formed on the contact portion and the general portion (non-contact portion) on the aluminum alloy. It is an object of the present invention to provide a surface conditioner capable of forming a good chemical conversion film on various metal materials.
- the present invention provides (A) zinc phosphate particles having a D force ⁇ ; z m or less, (B) a water-soluble organic polymer, and
- the (B) water-soluble organic polymer is
- R 1 is an alkyl group or alkylphenol group having 8 to 30 carbon atoms. 1 is 0 or 1. m is 1 to 20. n is 1, 2 or 3. is there. )
- h is an integer of 2 to 24.
- i is 1 or 2.
- polyester resin (3) polyester resin, (4) Phosphonic acid group-containing rosin, and
- the water-soluble organic polymer (B) is at least one selected from the group consisting of (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid and itaconic anhydride, and less than 50% by mass. And a carboxylic acid group-containing copolymer obtained by copolymerizing a monomer composition containing more than 50% by mass of the other monomer copolymerizable with the carboxylic acid group-containing monomer.
- the (D) function-imparting agent is zinc oxide and Z or sodium hydroxide, the zeta potential is -50 mV or less, and the pH is 8 to: L 1 Something (the third surface treatment agent) is preferred.
- the water-soluble organic polymer (B) is at least one selected from the group consisting of (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid and itaconic anhydride, and less than 50% by mass.
- a carboxylic acid group-containing copolymer obtained by copolymerizing a monomer composition containing more than 50% by mass of the other monomer copolymerizable with the carboxylic acid group-containing monomer.
- the (D) function-imparting agent is a non-one or a char-on surfactant.
- the other monomer copolymerizable with the carboxylic acid group-containing monomer preferably contains a sulfonic acid monomer and Z or styrene.
- the carboxylic acid group-containing copolymer is composed of an amount of less than 50% by mass of (meth) acrylic acid and a total amount of 2- (meth) acrylamide-2-methylpropanesulfonic acid and Z or arylsulfonic acid of 50 mass. It is preferable that it is obtained by polymerizing a monomer composition containing an amount exceeding%.
- the layered clay mineral is preferably natural hectorite and Z or synthetic hectorite.
- the layered clay mineral is bentonite represented by the following formula (III);
- R 2 is a saturated alkyl group having 1 to 22 carbon atoms.
- R 3 is the same or different and is a methyl group, an ethyl group, a propyl group or a butyl group. It is preferable that the surface is treated with alkyltrialkoxysilane.
- the phosphonic acid group-containing coffin preferably has a weight average molecular weight of 3000-20000.
- the above-mentioned non-ionic surfactant preferably has an HLB value of 6 or more.
- the present invention is also a surface conditioning method characterized by comprising a step of bringing the surface conditioning agent into contact with a metal surface.
- the step adsorbs zinc phosphate of 3 mgZm 2 or more as Zn.
- the surface conditioning agent of the present invention is used for surface conditioning, which is a pretreatment of a phosphate film chemical conversion treatment, to attach fine particles of zinc phosphate to a metal surface.
- a phosphate film chemical conversion treatment to attach fine particles of zinc phosphate to a metal surface.
- the formation of a zinc phosphate coating having the fine particles as crystal nuclei is promoted to form a good zinc phosphate coating.
- fine phosphate crystals can be deposited in a relatively short time to cover the metal surface.
- the surface conditioning agent of the present invention comprises (A) zinc phosphate particles having a D force of 3 ⁇ 4 m or less, (B) water-soluble
- the water-soluble organic polymer contains a specific (1) carboxylic acid group-containing copolymer, (2) a phosphate ester, (3) a polyester resin, (4 ) A phosphonic acid group-containing resin, and (5) at least one selected from the group consisting of polyamine-based resins, and (D) a function-imparting agent is a divalent or trivalent metal nitrite salt. And its content is calculated in terms of NO
- the (B) water-soluble organic polymer acts as a dispersant, and at the same time contains them, so that the chemical conversion treatment during the chemical conversion treatment can be promoted. For this reason, in the chemical conversion treatment, a dense chemical conversion film can be formed, and the corrosion resistance can be improved. Although it is not clear why the surface treatment agent containing these components can be used to accelerate the chemical conversion treatment and form a dense chemical conversion film, the ends of these components adsorb to the substrate. It is presumed that it is easy.
- the water-soluble organic polymer is a specific carboxylic acid group-containing copolymer
- the function-imparting agent is acid zinc and Z or water. If the zeta potential is -50 mV or less and the pH is 8 to: L 1 or is a non-on or key-on surfactant, it is described below. An effect can be obtained.
- an iron or zinc base and an aluminum base are used, and the iron or zinc base and the aluminum base are in contact with each other. May have.
- the aluminum base portion becomes an anode, and the iron or zinc base portion becomes a force sword in the contact portion during the chemical conversion treatment.
- the surface conditioning agent of the present invention increases the amount of adsorption to the object to be treated, thereby increasing the chemical conversion rate.
- the chemical conversion treatment is then performed.
- the amount of chemical film formed on the part (general part) that is not in contact with the iron or zinc base material and the amount of chemical film formed on the part that is in contact (contact part) The difference with can be reduced. For this reason, when the surface conditioner of the present invention is used, a chemical conversion film can be more uniformly formed on both the general part and the contact part of the aluminum-based substrate.
- the specific carboxylic acid group-containing copolymer belongs to the water-soluble organic polymer (B) contained in the surface conditioner of the present invention, and therefore, the chemical conversion during the chemical conversion treatment is performed. Processing can be facilitated. For this reason, in the chemical conversion treatment, a dense chemical conversion film can be formed, and the corrosion resistance can be improved.
- the function-imparting agent is acid zinc and Z or sodium hydroxide sodium,
- the position is -50 mV or less and the pH is 8 to: L 1
- the use of the surface conditioner can shorten the process by a short time treatment.
- the surface conditioner containing the above essential component has a zeta potential of 50 mV or less, it is presumed that the adsorption of the component in the surface conditioner to the substrate can be promoted.
- the zeta potential at 50 mV or less, the repulsive force between the component particles increases, and the number of particles that work effectively increases, so it is assumed that the number of microcell formation sites on the substrate also increases.
- the surface conditioning agent of the present invention includes (A) zinc phosphate particles having a D force ⁇ / z m or less.
- 50 is an average dispersion diameter and an average particle diameter.
- the lower limit of D of the zinc phosphate particles is preferably 0.01 ⁇ m and the upper limit is 3 ⁇ m. 0
- the particles may aggregate due to the phenomenon of overdispersion. If it exceeds 3 m, the proportion of fine zinc phosphate particles decreases, which is inappropriate.
- the lower limit is more preferably 0.05 ⁇ m, and the upper limit is more preferably 1 ⁇ m.
- the surface conditioner of the present invention contains zinc phosphate particles having D (volume 90% diameter) of 4 m or less. Preferred to have. In this case, the zinc phosphate particles have a D force of 3 ⁇ 4 ⁇ m or less.
- the existence ratio is relatively small.
- the average particle size (D) is 3 m or less
- the lower limit of D of the zinc phosphate particles is preferably 0.01 ⁇ m and the upper limit is 4 ⁇ m. 0
- the particles may aggregate due to the phenomenon of overdispersion. If it exceeds 4 / z m, the proportion of fine zinc phosphate particles decreases, which is inappropriate.
- the lower limit is more preferably 0.05 m, and the upper limit is more preferably 2 m.
- D volume 50% diameter
- D volume 90% diameter
- the particle size is the point at which the cumulative curve is 50% and 90%, respectively, when the total curve of the particles is 100%.
- D and D are, for example, laser
- D and D can be measured automatically.
- a particle size measuring device such as a puller type particle size analyzer (“MICROTRACK UPA150” manufactured by Nikkiso Co., Ltd.) is used, D and D can be measured automatically.
- the zinc phosphate particles are not particularly limited as long as the D force is m or less.
- It may also be a mixture of particles satisfying a D force of 3 ⁇ 4 ⁇ m or less.
- the surface conditioning agent of the present invention preferably has a zinc phosphate particle content of a lower limit of 50 ppm and an upper limit of 20000 ppm. If it is less than 50 ppm, there will be insufficient phosphate as crystal nuclei and a sufficient surface conditioning effect may not be obtained. Even if it exceeds 20000 ppm, an effect exceeding the desired effect is not obtained and it is not economical.
- the lower limit is 150ppm More preferably, the upper limit is lOOOOppm.
- the surface conditioning agent of the present invention contains (B) a water-soluble organic polymer.
- the (B) water-soluble organic polymer comprises (1) a carboxylic acid group-containing copolymer, (2) a phosphate ester, (3) a polyester resin, (4 At least one selected from the group consisting of) phosphonic acid group-containing rosin and (5) polyamine-based rosin.
- the (B) water-soluble organic polymer is a carboxylic acid group-containing copolymer, which is (1) a carboxylic acid group-containing copolymer. Is the same. Each of these will be described below.
- the specific carboxylic acid group-containing copolymer that is one of the water-soluble organic polymers is at least selected from the group consisting of (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid, and itaconic anhydride.
- Monomer containing an amount of less than 50% by mass of one kind of carboxylic acid group-containing monomer and an amount exceeding 50% by mass of other monomers copolymerizable with the above-described sulfonic acid group-containing monomer It is a carboxylic acid group-containing copolymer obtained by copolymerizing the composition.
- the effect of the present invention as described above can be obtained by using a carboxylic acid group-containing copolymer obtained by blending a specific amount of the specific monomer as described above.
- the sulfonic acid monomer is not particularly limited as long as it has a sulfonic acid group.
- Examples of the salt include alkali metal salts such as sodium and potassium, ammonium salts, substituted with organic groups such as methylamine, ethylamine, dimethylamine, jetylamine, and triethylamine! /, Ammonium salts and the like. Can be mentioned. These sulfonic acid monomers may be used alone or in combination of two or more.
- the carboxylic acid group-containing copolymer is selected from the group consisting of (meth) acrylic acid, 2- (meth) acrylamido 2-methylpropane sulfonic acid, aryl sulfonic acid, styrene, and styrene sulfonic acid. It is preferably a polymer obtained by copolymerizing a monomer composition containing at least one kind.
- the carboxylic acid group-containing copolymer includes (meth) acrylic acid in an amount of less than 50% by mass, 2- (meth) acrylamido-2-methylpropanesulfonic acid, and Z or aryl sulfonic acid.
- a polymer obtained by copolymerizing a monomer composition containing a total amount exceeding 50% by mass is preferred.
- a chemical conversion film is more applied to the aluminum base material at the contact portion between the iron or zinc base material and the aluminum base material. It can be formed satisfactorily, and the difference in the amount of chemical film formed at both the general part and the contact part can be reduced. In addition, it is possible to form a finer chemical conversion film on various metal materials. Furthermore, it is possible to form a chemical film having a sufficient amount of film on an aluminum-based substrate, a high-strength steel plate and the like.
- the carboxylic acid group-containing copolymer can be copolymerized with the above-mentioned (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, and the carboxylic acid group-containing monomer. It can be easily obtained by using a conventionally known method such as copolymerizing a monomer composition containing other monomers with a polymerization initiator such as peroxide.
- the carboxylic acid group-containing copolymer may be a hydrolyzate of the copolymer thus obtained.
- This hydrolyzate uses maleic anhydride and itaconic anhydride
- the copolymerized maleic anhydride unit and itaconic anhydride unit were hydrolyzed into maleic acid units and itaconic acid units.
- it may be a copolymer salt obtained in this manner.
- This salt is a salt formed from a (meth) acrylic acid unit, a maleic acid unit, or an itaconic acid unit, such as an alkali metal salt such as lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, etc.
- alkaline earth metal salts include ammonium salts and organic amine salts.
- Examples of the organic amine salt include methylamine salt, ethylamine salt, propylamine salt, petitamine salt, amylamine salt, hexylamine salt, octylamine salt, 2-ethylhexylamine salt, decylamine salt, dodecylamine salt, isotriamine salt, Decylamine salt, tetradecylamine salt, hexadecylamine salt, isohexadecylamine salt, octadecylamine salt, isooctadecylamine salt, otatildodecylamine salt, docosylamine salt, decyltetradecylamine salt, oleylamine salt, Aliphatic and aromatic monoamine salts such as linoleamine, dimethylamine, trimethylamine, and phosphorus salts, ethylenediamine salts, tetramethylenediamine salts, dodecylpropylened
- Salt monoethanolamine salt, diethanolamine salt, triethanolamine salt, monoisopropanolamine salt, diisopropanolamine salt, triisopropanolamine salt, salts of these alkylene oxide adducts, alkylene oxide addition of primary or secondary amines And amino acid salts such as alkanolamine salts, lysine salts, arginine salts and the like. Of these, alkali metal salts, ammonium salts, and alkanolamine salts are preferred.
- carboxylic acid group-containing copolymers include, for example, AALON A6020 (manufactured by Toa Gosei Co., Ltd.), A-221M (manufactured by Nippon Polyethylene Co., Ltd.), Polystar OM, Polystar OMA (manufactured by Nippon Oil & Fats Co., Ltd.) ), EFKA-4550 (manufactured by EFKA), PX1ELK-100 (manufactured by Nippon Shokubai Co., Ltd.), Mariarim AKM0531 (manufactured by Nippon Oil & Fats Co., Ltd.), SMA1440H (manufactured by Sartoma Co., Ltd.), John Tallyl 60 (manufactured by Johnson Polymer) be able to.
- AALON A6020 manufactured by Toa Gosei Co., Ltd.
- A-221M manufactured by Nippon Polyethylene Co., Ltd.
- Polystar OM Polystar
- (meth) acrylic acid, maleic acid, maleic anhydride The content of at least one selected from the group consisting of inacid, itaconic acid and itaconic anhydride (the total content thereof) is less than 50% by mass in 100% by mass of the monomer composition. is there. If it is 50% by mass or more, there is a risk of thickening when the stock solution is dispersed. Further, in the first surface treating agent of the present invention, there is a possibility that the occurrence of crease after the surface adjustment cannot be prevented.
- a chemical conversion film can be satisfactorily formed on the portion of the aluminum-based substrate at the contact portion between the iron or zinc-based substrate and the aluminum-based substrate. Therefore, there is a possibility that the difference in the amount of the chemical film between the general part and the contact part becomes large. In addition, there is a possibility that a dense chemical conversion film cannot be formed on various metal materials, and that a sufficient amount of chemical conversion film may not be formed on an aluminum-based substrate or a high-tensile steel plate.
- the lower limit of the content is more preferably 20% by mass, and further preferably 25% by mass.
- the upper limit of the content is more preferably 45% by mass, and even more preferably 40% by mass.
- the content of other monomers copolymerizable with the carboxylic acid group-containing monomer is 100 masses of the monomer composition.
- the amount exceeds 50% by mass. If it is 50% by mass or less, the first surface treating agent of the present invention may not be able to prevent the occurrence of crease after the surface adjustment.
- a chemical conversion film should be satisfactorily formed on the aluminum base material at the contact portion between the iron or zinc base material and the aluminum base material. There is a risk that the difference in the amount of chemical conversion film between the general part and the contact part becomes large.
- the lower limit of the content is more preferably 55% by mass, and even more preferably 60% by mass.
- the upper limit of the content is more preferably 75% by mass, more preferably 80% by mass.
- the acid value of the carboxylic acid group-containing copolymer (value expressed in mg of potassium hydroxide required to neutralize the acidic component contained in the sample lg) is a lower limit of 100 and an upper limit. 900 is preferred. If it is less than 100, the dispersibility of the zinc phosphate particles may be lowered. If it exceeds 900, the effect will not change.
- the above lower limit is more preferably 200.
- the upper limit is more preferably 800.
- the weight average molecular weight of the carboxylic acid group-containing copolymer is preferably a lower limit of 1000 and an upper limit of 30000. If it is less than 1000, a sufficient dispersion effect may not be obtained. If it exceeds 30000, a sufficient dispersion effect cannot be obtained, and aggregation may occur.
- the lower limit is more preferably 2000, and the upper limit is more preferably 20000.
- the specific phosphate ester which is one of the water-soluble organic polymers is a compound represented by the above formula (I) or the above formula ( ⁇ ).
- R 1 is an alkyl group or alkylphenol group having a lower limit of 8 and an upper limit of 30 carbon atoms.
- the above 1 is 0 or 1.
- the above m has a lower limit of 1 and an upper limit of 20.
- N is 1, 2 or 3.
- the alkyl group or alkylphenol group of R 1 may be linear or branched.
- R 1 is an isotridecyl group, 1 is 1, 1 is m, 3 to 15 and n is 1 or 2.
- Monoesters and phosphoric acid diesters are preferred. When these phosphate esters are used, it is possible to effectively prevent the occurrence of lip after the surface adjustment.
- h is an integer having a lower limit of 2 and an upper limit of 24.
- I is 1 or 2.
- phosphate esters represented by the above formula ( ⁇ ) 2-ethylhexyl acid phosphates in which h is 8 and i is 1 or 2 are preferable. Thereby, it is possible to effectively prevent the occurrence of crease after the surface adjustment.
- phosphate esters represented by the above formula (I) and the above formula ( ⁇ ) include, for example, Phosphanol RS-410, Phosphanol RS-610 (manufactured by Toho Chemical Co., Ltd.), EXQ — 2 300 (Enomoto Kasei Co., Ltd.), JP-508 (Johoku Chemical Industry Co., Ltd.), and the like.
- Polyester resin which is one of the above water-soluble organic polymers, is a polydisperse polymer. Synthetic organic polymer of ester-based rosin. The effects of the present invention as described above can be obtained by using the above polyester-based resin. In the present invention, those having such actions can be used without particular limitation.
- the polyester-based resin preferably has a weight average molecular weight of 2000 to 20000. Within the above range, it is possible to effectively prevent the occurrence of crease after the surface adjustment.
- the weight average molecular weight is a value determined by the GPC method using styrene polymer as a standard.
- polyester-based rosins include, for example, Ajisper PB821 (manufactured by Ajinomoto Co., Inc.), Solsperse 24000GR (manufactured by General Electric Co., Ltd.), Solsperse 32550 (manufactured by Geneca Co., Ltd.), Di sperbykl90 (manufactured by Big Chemi Co., Ltd.), etc. Can be mentioned.
- the phosphonic acid group-containing rosin which is one of the water-soluble organic polymers, is a rosin having a phosphonic acid group as a functional group.
- the effects of the present invention as described above can be obtained by using the phosphonic acid group-containing coconut resin.
- the phosphonic acid group-containing rosin is esterified! Examples of the resin include a phosphonic acid group having a tiny hydroxyl group.
- the phosphonic acid group-containing coconut resin preferably has an acid value based on the phosphonic acid group of 5.0 to 50. Within the above range, it is possible to effectively prevent crease after the surface adjustment. More preferably, it is 10-35.
- the phosphonic acid group-containing resin is not particularly limited as long as it has a phosphonic acid group as a functional group.
- an acrylic resin a polyester obtained by condensing a polyhydric alcohol and a polybasic acid is used.
- polyester-based ones polyester-based ones further condensed with fatty acids, and polyurethane-based ones in which polyols are bonded with isocyanate.
- polyesters obtained by condensing a polyhydric alcohol and a polybasic acid are preferred from the viewpoint of effectively preventing the occurrence of crease after the surface adjustment.
- the weight average molecular weight of the phosphonic acid group-containing resin is preferably 3000 to 20000. Within the above range, it is possible to effectively prevent crease after the surface adjustment. [0072]
- Commercially available products of the phosphonic acid group-containing resin include SN Dispersant 2060 (manufactured by Sannop Conne), Kirest pH-325 (manufactured by Kirestne), and the like.
- Polyamine-based rosin which is one of the water-soluble organic polymers, is a rosin having an amino group as a functional group.
- the effect of the present invention as described above can be obtained by using the above polyamine-based resin.
- the polyamine-based resin include resin having at least a structural unit represented by the following formula (IV) and Z or the following formula (V).
- the production method of the polyamine-based resin is not particularly limited, and can be produced by a known method.
- the polyamine-based resin has only a structural unit represented by polybulaamine resin and Z or the general formula (V), which is a polymer that only has a structural unit represented by the general formula (IV).
- Polyvinylamine resin, which is a polymer, is particularly preferred.
- the polyvinylamine resin and the polyallylamine resin are preferable in that the effect of the present invention can be improved.
- the polyamine-based resin is modified by a method such as acetylation of a part of the amino group of the polybulamine resin and Z or polyallylamine resin within the range not impairing the object of the present invention, Those in which some or all of the amino groups are neutralized with an acid, and those crosslinked with a crosslinking agent within a range that does not affect the solubility can be used.
- the polyamine-based resin has a lower limit of 0.01 mol and an upper limit of 2.3 mol per 100 g of resin. It preferably has a mino group. If the amount is less than 01 mol, sufficient effects may not be obtained. 2. The effect does not change even if it exceeds 3 moles.
- the lower limit is more preferably 0.1 mol.
- the weight average molecular weight of the polyamine-based resin is preferably a lower limit of 500 and an upper limit of 100,000. Within the above range, it is possible to effectively prevent crease after the surface adjustment.
- the lower limit is more preferably 5000 forces, and the upper limit is more preferably 70,000 forces.
- polyamine-based resin Commercially available products of the polyamine-based resin include Ducens CP-102 (manufactured by Senriki), KZ-125K (manufactured by Senriki), and the like. Moreover, PVAM-0595B (manufactured by Mitsubishi Igaku Co., Ltd.) and the like can be mentioned as commercial products of the above polybulamine amine resin. Examples of the commercially available polyallylamine resin include PAA-01, PAA-10C, PAA-H-10C, and PAA-D11HC1 (all manufactured by Nittobo Co., Ltd.). These may be used alone or in combination of two or more.
- carboxylic acid group-containing copolymer can be effectively prevented from occurring after the surface conditioning. It is more preferable to use a carboxylic acid group-containing copolymer, in which it is preferable to use a polymer, a phosphate ester, a polyester-based resin, and a polyamine-based resin.
- the water-soluble organic polymer is a carboxylic acid group-containing copolymer.
- the content of the water-soluble organic polymer in the surface conditioning agent of the present invention is preferably a lower limit of 1 ppm and an upper limit of 50 Oppm. If it is less than lppm, the dispersing power is insufficient, the particle size of the zinc phosphate particles is increased, and at the same time the liquid stability is lowered, and there is a possibility that the particles are liable to settle. If it exceeds 500 ppm, it may be adsorbed on the metal surface, which may affect the subsequent chemical conversion process.
- the lower limit is more preferably lOppm, and the upper limit is more preferably 300 ppm.
- the content of the water-soluble organic polymer in the first surface conditioner is the same as that of the carboxylic acid group-containing copolymer, phosphate ester, polyester-based resin, phosphonic acid group-containing resin, and polyamine-based resin. The total amount.
- the surface conditioner of the present invention contains (C) a layered clay mineral.
- the layered clay mineral (clay) is a silicate mineral having a layered structure, such as a large number of sheets (a tetrahedral sheet composed of a key acid, an octahedral sheet composed of A1, Mg, etc.) ) Are laminated.
- the layered clay mineral in addition to the effects described above, it is possible to improve the dispersion efficiency when preparing the surface conditioner.
- the layered clay mineral is not particularly limited.
- the smectite group such as montmorillonite, piderite, sabonite, and hectorite
- the kaolinite group such as kaolinite and halosite
- Bamikyuraite such as Mikiyulite
- Teni, Wright, Tetralithic My Power Masconite, Mylite, Sericite, Phrogoite, Biotite, etc .
- Hyde Mouth Talsite Pyrophyllite
- Kanemite Ma Power Tight And lamellar polykeys such as Iraite, magadiite, and Kenyaite.
- These layered clay minerals may be natural minerals or synthetic minerals by hydrothermal synthesis, melting method, solid phase method or the like.
- intercalation compounds such as billard crystals
- layered clay minerals those subjected to ion exchange treatment, surface treatment (silane coupling treatment, composite binder treatment with organic binder, etc.)
- surface treatment silane coupling treatment, composite binder treatment with organic binder, etc.
- layered clay minerals may be used alone or in combination of two or more.
- the layered clay mineral is preferably natural hectorite and Z or synthetic hectorite.
- a chemical conversion film can be satisfactorily formed on the part of the aluminum-based substrate at the contact portion between the iron or zinc-based substrate and the aluminum-based substrate, and the difference in the amount of chemical coating between the general part and the contact part is reduced. can do.
- a dense chemical conversion film can be formed on various metal materials.
- a sufficient amount of chemical conversion film can be formed on the aluminum-based substrate and the high-tensile steel plate.
- excellent dispersion stability can be imparted and the dispersion efficiency Can be improved.
- the natural hectorite is a trioctahedral clay mineral belonging to the montmorillonite group represented by the following formula (VI).
- Examples of commercially available natural hectorites include BENTON EW and BENTON AD.
- the synthetic hectorite has a crystal three-layer structure and approximates to a hectorite belonging to an unlimited-layer-expanded trioctahedral with an expansion lattice, and is represented by the following formula (VII):
- Synthetic hectorite is also composed of magnesium, potassium, sodium, trace amounts of lithium and fluorine power as main components.
- the synthetic hectorite has a three-layer structure, and each crystal structure in the layered structure is composed of a two-dimensional platelet having a thickness of about 1 nm. And some of the magnesium atoms present in the middle layer of this platelet unit are isomorphously substituted with low-valent lithium atoms. As a result, the platelet unit is negatively charged. In the dry state, this negative charge is balanced with replaceable cations outside the lattice structure of the plate surface, and in the solid phase, these particles are bound together by van der Waalska to form a plate bundle! /
- Examples of commercially available synthetic hectorite include Labonite B, S, RD, RDS, XLG, and XLS under the trade names of Laporte Industries Ltd. It is a white powder and easily forms sol (labonite S, RDS, XLS) or gel (labonite B, RD, XLG) when placed in water. Another example is Lucentite SWN from Corp Chemical. These natural hectorites and synthetic hectorites may be used alone or in combination of two or more.
- the layered clay mineral is preferably a surface-treated bentonite (montmorillonite) with an alkyltrialkoxysilane represented by the above formula (III).
- bentonite montmorillonite
- alkyltrialkoxysilane represented by the above formula (III).
- the surface treatment of bentonite (montmorillonite) with alkyltrialkoxysilane is performed by adding alkyltrialkoxysilane to the hydrophilic hydroxyl group on the surface of bentonite and partially hydrophobizing the surface. Is.
- the dispersed particles of the modified bentonite surface-treated in the aqueous dispersion form a plastic structure due to the association with the hydrophobic group, and the apparent viscosity of the system is remarkably increased.
- Examples of commercially available products obtained by surface-treating the above bentonite (montmorillonite) with an alkyltrialkoxysilane represented by the above formula ( ⁇ ) include Bengel I SH (manufactured by Houjiyun Co., Ltd.). .
- Bengel SH forms a notch work structure as shown in Fig. 1, unlike the conventional card nose structure formed by montmorillonite in water.
- the layered crystal particles of montmorillonite are associated with a flat surface, and therefore, the surface conditioner of the present invention can exhibit further excellent high viscosity and thixotropy. That is, among the bentonite (montmorillonite) surface-treated with an alkyltrialkoxysilane represented by the above formula (III), those having such a patchwork structure exhibit the above-described effects more. Particularly preferred.
- the content of the layered clay mineral in the surface conditioner is preferably a lower limit of 3 ppm and an upper limit of 600 ppm. If it is less than 3 ppm, the effect of preventing the precipitation of zinc phosphate particles in the surface conditioner may not be sufficiently obtained. In addition, the effects of the present invention may not be obtained. If it exceeds 600 ppm, it may be adsorbed on the metal surface, which may affect the subsequent chemical conversion process.
- the lower limit is more preferably lOppm, and the upper limit is more preferably 300ppm.
- the surface conditioning agent of the present invention further includes (D) a function-imparting agent in addition to the components (A) to (C).
- a function-imparting agent in addition to the components (A) to (C).
- the function-imparting agent in the first surface conditioner of the present invention is a divalent or trivalent metal nitrite compound, and its content is 10 to 500 ppm in terms of NO.
- Surface adjustment is a treatment that is usually applied to a clean metal surface after degreasing and washing with water, so there may be problems such as oxidation and corrosion of the metal surface within the surface adjustment process.
- generation of defects on the metal surface after the surface adjustment can be sufficiently suppressed.
- the chemical conversion in the chemical conversion treatment can be greatly improved.
- the divalent or trivalent metal nitrite compound is not particularly limited as long as it is a nitrite containing a divalent or trivalent metal.
- a nitrite containing a divalent or trivalent metal For example, zinc nitrite, copper nitrite, nickel nitrite And alkaline earth metal nitrites such as magnesium nitrite, calcium nitrite, strontium nitrite, and barium nitrite. Of these, zinc nitrite is particularly preferred, with zinc nitrite and calcium nitrite being preferred.
- zinc nitrite for surface conditioning it is possible to prevent accumulation of different metals in the chemical conversion bath when forming a zinc phosphate chemical conversion film in the chemical conversion treatment step. Easy bath management. Moreover, generation
- the content of the above divalent or trivalent metal nitrous acid compound is 10 ppm in terms of NO and the upper limit in terms of NO.
- 500 ppm is preferred. If it is within the above range, the effect of crease after surface adjustment is effective. It can be effectively prevented. If it is less than lOppm, the antifungal property and metal substitution may not be seen well. If it exceeds 500 ppm, it is necessary to add a large amount of an alkali component to the surface conditioner, which is not economical.
- the lower limit is more preferably 40 ppm, and the upper limit is more preferably 250 ppm! /.
- a divalent or trivalent metal nitrite compound is included in the expectation of the same effect as the first surface conditioner. It doesn't matter. In this case, the explanation for the addition of the divalent or trivalent metal nitrite compound is the same as that for the first surface conditioner.
- the second surface conditioner of the present invention having a zeta potential of 50 mV or less can adjust the zeta potential by appropriately selecting zinc phosphate particles, a carboxylic acid group-containing copolymer and a layered clay mineral. It is preferable to add acid zinc and / or sodium hydroxide as a zeta potential regulator.
- the zeta potential represents the charged state of the surface of a substance (solid) in a solution such as colloidal particles. Issued on Jan. 31). Specifically, in the fields of paper pulp, photography, paints, oils and fats, cement, etc., the aggregation and dispersion state of individual colloidal solutions and the zeta potential of colloidal particles are measured to evaluate various properties of these solutions. That is what is done.
- the zeta potential of the surface conditioning agent of the present invention is a value obtained under the following measurement conditions using a measuring device "PALS Zeta Potential Analyzer Ver. 2. 14 J (manufactured by Brookhaven Instruments Corp.)". It is.
- the second surface conditioner of the present invention contains acid-zinc (ZnO), it becomes easy to control the zeta potential of the surface conditioner to a desired value.
- a chemical conversion film can be satisfactorily formed on the portion of the aluminum base material in the contact portion between the base material and the aluminum base material, and the difference in the amount of chemical conversion film between the general part and the contact part can be reduced.
- a dense chemical conversion film can be formed on various metal materials.
- a sufficient amount of chemical conversion film can be formed on the aluminum-based material and the high-tensile steel plate.
- the zinc oxide is preferably contained in the form of particles.
- the zinc oxide particles are D
- the average particle diameter of (volume 50% diameter) is preferably 3 ⁇ m or less. D force ⁇ ⁇ m or less
- the lower limit of D of the zinc oxide particles is 0.01 ⁇ m and the upper limit is 3 ⁇ m.
- the lower limit is more preferably 0.05 ⁇ m, and the upper limit is more preferably 1 ⁇ m.
- the value of D of the zinc oxide particles is obtained in the same manner as D of the zinc phosphate particles described above.
- the content of the zinc oxide particles is preferably a lower limit of 0.5 ppm and an upper limit of 200 ppm.
- the effect of this invention can be acquired favorably that it is in the said range.
- the lower limit is more preferably lppm, and the upper limit is more preferably lOOppm.
- the second surface conditioner of the present invention contains sodium hydroxide, it becomes easy to control the zeta potential of the surface conditioner to a desired value.
- the chemical conversion film can be satisfactorily formed on the part of the aluminum base material in the contact portion between the base material and the aluminum base material, and the difference in the amount of chemical conversion film between the general part and the contact part can be reduced.
- a dense chemical conversion film can be formed on various metal materials.
- aluminum A sufficient amount of chemical conversion film can be formed on the rubber-based substrate and the high-tensile steel plate.
- the content of sodium hydroxide is preferably 3 ppm as the lower limit and 500 ppm as the upper limit.
- the effect of this invention can be acquired favorably that it is in the said range.
- the lower limit is more preferably 5 ppm, and the upper limit is more preferably 300 ppm.
- the function-imparting agent in the third surface conditioner of the present invention is a non-one or a char-on surfactant.
- a chemical conversion film can be satisfactorily formed on the portion of the aluminum-based substrate at the contact portion between the iron- or zinc-based substrate and the aluminum-based substrate, The difference in the amount of chemical conversion film between the general part and the contact part can be reduced.
- a dense chemical conversion film can be formed on various metal materials.
- a sufficient amount of chemical conversion film can be formed on the aluminum-based substrate and the high-tensile steel plate.
- the function-imparting agent in the third surface conditioner is more preferably a non-one surfactant.
- nonionic surfactant examples include polyoxyethylene alkyl ethers, polyoxyalkylene alkyl ethers, polyoxyethylene derivatives, oxyethyleneoxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and polyoxyethylene alkyl ethers.
- fluorocarbon surfactants in which at least one hydrogen atom in the hydrophobic group of the hydrocarbon surfactant or hydrocarbon surfactant is substituted with a fluorine atom.
- polyoxyethylene alkyl ethers and polyoxyalkylene alkyl ethers are preferable from the viewpoint of obtaining the effects of the present invention. These may be used alone or in combination of two or more.
- anionic surfactant examples include fatty acid salts, alkyl sulfate esters, alkyl ether sulfate esters, alkyl benzene sulfonates, and alkyl naphthalates.
- alkylsulfosuccinates alkyl diphenyl ether disulfonates, polybisphenol sulfonates, alkyl phosphates, polyoxyalkylalkyl sulfates, polyoxyethyl alkylaryl sulfates , Alpha olefin sulfonate, methyl taurate, polyaspartate, ether carboxylate, naphthalene sulfonate formalin condensate, polyoxyethylene alkyl phosphate ester, alkyl ether phosphate ester salt, etc. it can.
- alkyl ether phosphates are preferred from the standpoint of obtaining the effects of the present invention. These may be used alone or in combination of two or more.
- the above-mentioned surfactant can be used after neutralization with ammonia or an amine-based neutralizing agent.
- amine-based neutralizer examples include jetylamine (DEA), triethylamine (TEA), monoethanolamine (META), diethanolamine (DETA), triethanolamine (TETA), dimethylethanolamine (DMEA).
- Jetylethanolamine (DEEA), Isopropylethanolamine (IPEA), Diisopropanolamine (DIP A), 2-Amino-2-methylpropanol (AMP), 2- (Dimethylamino) -2-methylpropanol (DMAMP) ), Morpholine (MOR), N-methylmorpholine (NMM), N-ethylmorpholine (NEM), and the like.
- AMP 2-amino-2-methylpropanol
- AMP 2-amino-2-methylpropanol
- the surface conditioner preferably has a content of the above-mentioned non-one or er-on surfactant of 3 ppm as the lower limit and 500 ppm as the upper limit. Within the above range, the effects of the present invention can be obtained satisfactorily.
- the lower limit is more preferably 5 ppm, and the upper limit is more preferably 300 ppm.
- the above-mentioned non-ionic surfactant preferably has an HLB value of 6 or more. Thereby, the effect of this invention can be acquired more favorably.
- the lower limit is more preferably 7, and the upper limit is more preferably 15.
- the above HLB value represents the degree of affinity of the surfactant with water and oil.
- the HLB value of the present invention is calculated based on the following general formula (Griffin method).
- HLB 20 X (Mw / M) (Mw: weight of hydrophilic group part, M: molecular weight of surfactant)
- the surface conditioner of the present invention can contain a dispersion medium for dispersing the zinc phosphate particles.
- the dispersion medium include an aqueous medium containing 80% by mass or more of water, and various organic solvents can be used as the medium other than water, but it is preferable that the content of the organic solvent is kept low. Is 10% by mass or less, more preferably 5% by mass or less of the aqueous medium.
- the dispersion liquid does not contain any dispersion medium other than water.
- an alkali salt such as soda ash may be added for the purpose of stabilizing the zinc phosphate particles and forming a fine chemical conversion film in the subsequent phosphate film chemical conversion treatment step.
- the surface conditioner of the present invention may contain a conventionally known thickener, polymer dispersant, coupling agent and the like, if necessary.
- the surface conditioning agent of the present invention has a lower limit of 3 and an upper limit of 12. If the pH is less than 3, the zinc phosphate particles are likely to dissolve and become unstable, which may affect the next process. If the ratio exceeds 1, the pH of the chemical bath in the next process may be increased, which may cause an adverse effect of chemical conversion.
- the above lower limit is preferably 11, and the above lower limit is preferably 11.
- the pH of the second surface conditioning agent of the present invention is a lower limit of 8 and an upper limit of 11. Within the above range, the above-described effects of the present invention can be obtained. If the pH is less than 8, the concentration of [H +] in the aqueous solution increases and the negative charge on the particle surface is taken away, so the zeta potential may not be maintained below 50 mV. If it exceeds 11, the pH of the chemical bath in the next step may be increased.
- the lower limit is more preferably 8.5, and the upper limit is more preferably 10.5.
- the surface conditioning agent of the present invention can be produced, for example, by the following method.
- the zinc phosphate particles can be obtained using, for example, zinc phosphate used as a raw material.
- the raw material zinc phosphate is expressed by Zn (PO) ⁇ 4 ⁇ ⁇ . In general, it is a colorless and crystalline solid, but a white commercial product is available.
- zinc phosphate tetrahydrate is obtained. It forms as a crystalline precipitate.
- zinc phosphate tetrahydrate can be obtained by reacting a dilute phosphoric acid aqueous solution with zinc oxide or zinc carbonate. Tetrahydrate crystals are orthorhombic and have three transformations. When heated, it becomes a dihydrate at 100 ° C, a monohydrate at 190 ° C, and an anhydrate at 250 ° C.
- the zinc phosphate in the present invention can use any of these tetrahydrates, dihydrates, monohydrates, and anhydrous hydrates. It is sufficient to use tetrahydrates that are generally readily available.
- the raw material zinc phosphate those subjected to various surface treatments may be used.
- a metal alkoxide such as a silane coupling agent, rosin, a silicone compound, or a silicon alkoxide aluminum alkoxide.
- a finely divided zinc phosphate can be obtained by adding silica and polyphosphoric acid when reacting a zinc compound and phosphoric acid (JP-B-49-2005, etc.), phosphoric acid
- a part of zinc in zinc phosphate can be replaced with metals such as magnesium, calcium, and aluminum by wet kneading with various metal compounds by mechanical means and completing the reaction mechanochemically. 4-310511 Z, etc.), for example, such as those in which components other than phosphorus, oxygen, and zinc such as silica, calcium, and aluminum have been introduced by such means, and kai acid-modified zinc phosphate It may be commercially available. In this case, it contains 25% by mass or more of zinc phosphate in terms of ZnO and 15% by mass or more in terms of PO.
- the shape of the raw material zinc phosphate is not particularly limited, and any shape can be used. Commercially available products are generally in the form of white powder, but the shape of the powder may be any shape such as fine particles, plates, scales, etc.
- the particle diameter of the raw material zinc phosphate is not particularly limited, but is usually a powder having an average particle diameter of about several meters.
- products that are commercially available as anti-bacterial pigments, such as products that have a buffering effect enhanced by a treatment for imparting basicity are preferably used.
- zinc phosphate particles are finely dispersed. Therefore, a stable surface treatment effect can be obtained regardless of the primary particle size and shape of the raw material zinc phosphate.
- the raw material zinc phosphate be used as a dispersion by finely dispersing it.
- a method for preparing an aqueous dispersion in which zinc phosphate particles are dispersed in an aqueous medium is not limited, but preferably, the raw material zinc phosphate is blended in the above-described dispersion medium such as water or an organic solvent, and the above-described method is used.
- D When preparing a surface conditioner containing zinc oxide particles as a function-imparting agent, it is preferable to disperse zinc oxide and zinc phosphate at the same time.
- the blending amount of the raw material zinc phosphate is preferably 0.5% by mass and usually 50% by mass with respect to 100% by mass of the dispersion. If it is less than 0.5% by mass, the content of the zinc phosphate is too small, and the effect of the surface conditioner obtained using the dispersion may not be sufficiently obtained. If it exceeds 50% by mass, it may be difficult to obtain a uniform and fine particle size distribution by wet grinding, and it may be difficult to form a finely dispersed state.
- the above lower limit is more preferably 1% by mass, and the above upper limit is more preferably 40% by mass.
- the amount of the (B) water-soluble organic polymer added is 100% by mass of the dispersion, the lower limit is 0.1% by mass, and the upper limit is 50% by mass. Preferably there is. If the content is less than 0.1% by mass, the dispersibility may not be sufficient. If it exceeds 50% by mass, the dispersibility may deteriorate due to the interaction between excess (B) water-soluble organic polymers, etc. Even if the dispersion is sufficient, it is not economically advantageous. Absent.
- the lower limit is more preferably 0.5% by mass, and the upper limit is more preferably 20% by mass.
- the raw material zinc phosphate is present in a dispersion medium in an amount of 0.5 to 50% by mass and the water-soluble organic polymer (B) is present in an amount of 0.1 to 50% by mass.
- the wet pulverization method is not particularly limited, and an example of using a general wet pulverization means is sufficient.
- a bead mill represented by a disk type or a pin type, a high-pressure homogenizer, a medialess disperser represented by an ultrasonic disperser, or the like can be used.
- D is 4 m or less. Also overdispersed
- the D of zinc phosphate in an aqueous medium is reduced to 3 m or less.
- aqueous dispersion that can be adjusted, has excellent stability, and has excellent performance as a surface conditioner.
- D can usually be adjusted to the desired degree in the range of 0.01 to 3 m.
- the primary particle diameter of the pigment can be reduced by wet pulverization according to the above-described method without using zinc phosphate having a small primary particle diameter.
- the D of zinc phosphate particles in the aqueous dispersion is 3 ⁇ m or less, further 1 ⁇ m or less,
- the dispersion obtained as described above is used with a zinc phosphate particle D in the liquid of 3 m or less.
- the distribution of the dispersion diameter is D force / z m or less, and 2.
- D and D of zinc phosphate in the dispersion use a laser Doppler particle size analyzer.
- the particle size distribution can be measured and obtained.
- the aqueous dispersion can be a high-concentration aqueous dispersion containing zinc phosphate in an amount of 10% by mass or more, further 20% by mass or more, and further 30% by mass or more. Therefore, a surface conditioner that exhibits high performance can be easily prepared.
- the surface conditioning agent of the present invention is, for example, obtained as described above (A) D force ⁇ / z m or less.
- the surface conditioning method of the present invention comprises a step of bringing the surface conditioning agent into contact with a metal surface. Thereby, fine particles of zinc phosphate can be satisfactorily adhered to a metal surface such as iron, zinc, and aluminum, and a good chemical conversion film can be formed in the chemical conversion treatment step.
- the metal material after the surface conditioning of various metal materials is prevented from being creased. be able to.
- the aluminum-based contact portion between the iron or zinc-based substrate and the aluminum-based substrate is used.
- a chemical conversion film can be satisfactorily formed on the portion of the substrate, and the difference in the amount of chemical conversion film between the general part and the contact part can be reduced.
- a dense chemical conversion film can be formed on various metal materials.
- a sufficient amount of chemical conversion film can be formed on the aluminum-based substrate and the high-tensile steel plate.
- the metal material to be subjected to the surface adjustment is not particularly limited, and various materials that are generally subjected to phosphate chemical treatment, such as iron-based substrates such as steel, zinc-based substrates such as galvanized steel, It can be applied to aluminum-based substrates such as aluminum or aluminum alloys, high-tensile steel plates, and magnesium alloys. It can also be suitably applied to the contact portion between steel or galvanized steel sheet and aluminum or aluminum alloy.
- the above step is to adsorb zinc phosphate of 3 mgZm 2 or more as Zn! /.
- the adsorption amount is 3 mg / m 2 or more, the above-described effects of the present invention can be obtained better.
- the above process is more preferably a process of adsorbing 3.5 to 20 mg / m 2 of zinc phosphate.
- the surface conditioning agent of the present invention can be used in a degreasing and surface conditioning process. Thereby, the water washing process after a degreasing process can be skipped.
- a known inorganic alkali builder, organic builder, surfactant or the like may be added in order to increase the detergency.
- a known chelating agent, condensed phosphate, etc. may be added.
- the contact time between the surface conditioning agent and the metal surface and the temperature of the surface conditioning agent are not particularly limited, and can be performed under conventionally known conditions.
- a phosphate chemical conversion treated steel sheet can be manufactured by performing the above surface adjustment and then performing a phosphate chemical conversion treatment.
- the phosphate chemical conversion treatment method is not particularly limited, and various known methods such as immersion (dip) treatment, spray treatment, and electrolytic treatment can be applied. You may combine these two or more.
- the phosphate film to be deposited is not particularly limited as long as it is a phosphate, and is not limited at all, such as zinc phosphate, iron phosphate, manganese phosphate, and zinc calcium phosphate.
- the contact time between the chemical conversion treatment agent and the metal surface and the temperature of the chemical conversion treatment agent are not particularly limited, and can be performed under conventionally known conditions.
- a coated steel sheet can be produced by further coating.
- the coating method is generally electrodeposition coating. Used for painting There are no particular limitations on the coating material, and various materials generally used for the coating of phosphate chemical conversion steel sheets, such as epoxy melamine coating, cationic electrodeposition coating, polyester-based intermediate coating, and polyester-based top coating, can be mentioned. . It should be noted that after the chemical conversion treatment, a known method is used in which a cleaning process is performed prior to coating.
- the first surface conditioner of the present invention comprises zinc phosphate particles having a D force of 3 ⁇ 4 m or less, and a specific force.
- At least one water-soluble organic polymer selected from the group consisting of rubonic acid group-containing copolymers, phosphoric acid esters, polyester-based resin, phosphonic acid group-containing resin and polyamine-based resin, and layered clay minerals And a specific amount of a divalent or trivalent metal nitrite compound having a pH of 3 to 12, which is used before the metal phosphate conversion treatment. For this reason, when the surface conditioning of various metal materials is performed using the surface conditioning agent, it is possible to prevent the occurrence of creases in the metal material after the surface conditioning. A chemical conversion film having performance can be obtained.
- the surface conditioner is also excellent in dispersion stability in the bath.
- the second surface conditioning agent of the present invention is a zinc phosphate particle having a D force of 3 ⁇ 4 m or less, a specific calculant.
- It has a pH of 8 to 11 and contains a boric acid group-containing copolymer and a layered clay mineral, and has a zeta potential of 50 mV or less, and is used before the metal phosphate conversion treatment.
- the contact portion The chemical conversion film can be satisfactorily formed on the part of the aluminum-based substrate, the difference in the amount of chemical conversion film between the general part and the contact part can be reduced, and the chemical conversion film can be uniformly formed on both parts. .
- a dense chemical conversion film can be formed on various metal materials.
- a sufficient amount of chemical conversion film can be formed on the aluminum-based substrate and the high-tensile steel plate.
- the surface conditioning agent is excellent in dispersion stability in the bath.
- the third surface conditioner of the present invention comprises zinc phosphate particles having a D force of 3 ⁇ 4 m or less, a specific calculant.
- a boric acid group-containing copolymer, a lamellar clay mineral, and a non-one or char-on surfactant, having a pH of 3 to 12, are used before metal phosphate conversion treatment.
- the base having a portion where the iron or zinc-based substrate and the aluminum-based substrate are in contact with each other.
- a chemical conversion film can be satisfactorily formed on the aluminum-based substrate portion of the contact portion. Therefore, the difference in the amount of the chemical conversion film can be reduced, and a chemical conversion film can be formed uniformly at both sites.
- a dense chemical conversion film can be formed on various metal materials.
- a sufficient amount of chemical conversion film can be formed on the aluminum-based substrate and the high-tensile steel plate.
- the surface conditioner is excellent in dispersion stability in the bath. The invention's effect
- the surface conditioning agent of the present invention has the above-described configuration, it can prevent the occurrence of crease after the surface conditioning, can form a good chemical conversion film, and is excellent in dispersion stability. .
- a dense chemical conversion film can be formed on various metal materials.
- FIG. 1 is a schematic view of an alkyltrialkoxysilane-modified bentonite having a notchwork structure.
- FIG. 2 is a schematic view of an electrolytic corrosion aluminum test plate used in Examples.
- phosphanol RS-610 polyoxyethylene alkyl phosphate ester, manufactured by Toho Chemical Industry Co., Ltd.
- zinc phosphate particles were added to the obtained pregel, and dispersed with Zircoyu beads to a predetermined viscosity. Furthermore, calcium nitrite was added to the obtained dispersion and diluted with water, and the pH was adjusted with sodium hydroxide to obtain a surface conditioner.
- the particle size distribution was measured using an optical diffraction particle size analyzer (“LA-500”, manufactured by HORIBA, Ltd.), D (average diameter of the dispersion) was monitored, and D was measured.
- LA-500 optical diffraction particle size analyzer
- a surface conditioning agent was obtained in the same manner as in Example 1 except for the above.
- Untreated surface montmorillonite “OPTIGEL CK” manufactured by Zude Chemie
- Carboxylic acid group-containing copolymer “ALON A6020” acrylic acid 40% by mass-2-acrylamido 2-methylpropanesulfonic acid 60% by mass, number average (Molecular weight 3800, weight average molecular weight 6700, manufactured by Toagosei Co., Ltd.)
- Phosphonic acid group-containing resin “SN Dispersant 2060” manufactured by San Nopco
- the amount of metal nitrite compound added is the content in terms of NO.
- each metal plate was subjected to chemical conversion treatment at 35 ° C for 2 minutes using a zinc phosphate treatment solution (“Surfdyne SD6350” manufactured by Nippon Paint Co., Ltd.), washed with water, washed with pure water, and dried. A test plate was obtained.
- a zinc phosphate treatment solution (“Surfdyne SD6350” manufactured by Nippon Paint Co., Ltd.)
- test plate was immersed for 5 minutes in a 50 g Zl solution of chromium silicate trihydrate heated to 75 ° C to peel off the conversion coating.
- the mass of the obtained test plate is A (, the mass after peeling the chemical conversion film from the test plate by the above method is B (, and the difference between these (A ⁇ B) (g) is the surface area of the test plate. Calculated as a divided value.
- the first surface conditioning agent of the present invention When the first surface conditioning agent of the present invention is used, it is possible to prevent the occurrence of lip after the surface conditioning. Was possible. In addition, all the coating films formed on cold-rolled steel sheets, aluminum sheets, and zinc-plated steel sheets had sufficient film amounts and were dense films.
- Example B-1 Preparation of a metamorphic agent containing new lead oxide and / or 7k sodium oxide as a function-imparting agent
- Natural hectorite “: BENTON EW” (manufactured by ELEMENTIS) was added to water, and stirred at 3000 rpm for 30 minutes using a disperser to obtain a pregel.
- commercially available “ALON A6020” (acrylic acid 40 mass 0 / 0-2 -acrylamido-2-methylpropane sulfonic acid 60 mass% carboxylic acid group-containing copolymer, number average molecular weight 3800, weight (Average molecular weight 6700, manufactured by Toa Gosei Co., Ltd.), zinc phosphate particles, and zinc oxide particles were added and dispersed with zirconia beads to a predetermined viscosity.
- the obtained dispersion was diluted with water and the pH was adjusted with sodium hydroxide to obtain a surface conditioner.
- the amount of natural hectorite, carboxylic acid group-containing copolymer, zinc phosphate particles, zinc oxide, sodium hydroxide and sodium hydroxide, pH of the obtained surface conditioner, and D of zinc phosphate particles As shown in 2. Then obtained
- the data potential of the surface conditioner was measured by the measurement method shown above.
- Table 2 shows the zeta potential values obtained.
- Example The test was performed in the same manner as the evaluation test in the A series.
- Fluorescent X-ray measuring device “XRF-1700” manufactured by Shimadzu Corporation with the part that is connected to the galvanized steel sheet as the electrolytic corrosion part (contact part) and the part that is not connected to the galvanized steel sheet as the general part ) And measured.
- XRF-1700 Fluorescent X-ray measuring device “XRF-1700” (manufactured by Shimadzu Corporation) with the part that is connected to the galvanized steel sheet as the electrolytic corrosion part (contact part) and the part that is not connected to the galvanized steel sheet as the general part ) And measured.
- the amount of chemical film in the general part measured as described above was calculated as the amount of chemical film in the Z electrolytic corrosion part.
- Example The test was performed in the same manner as the evaluation test in the A series.
- the chemical conversion film is sufficiently formed also on the aluminum plate portion at the contact portion between the aluminum plate and the zinc-plated steel plate.
- the difference in the amount of film formed on the contact portion was small.
- a dense chemical conversion film was formed on all of the cold-rolled steel sheets, aluminum sheets, zinc-plated steel sheets, and high-tensile steel sheets.
- Example C 1 Nonion or anion field rif active agent is included as a function-imparting agent eTable rif adjustment Water is added with natural hectorite ": BENTON EW" (manufactured by ELEMENTIS) and dispasted. A pregel was obtained by stirring at 3000 rpm for 30 minutes using one.
- A6020 acrylic acid 40 mass 0 2 acrylamide-2-methylpropane sulfonic acid 60% by mass carboxylic acid group-containing copolymer, number average molecular weight 3800, weight average molecular weight 6700, Toa Gosei Co., Ltd.
- zinc phosphate particles were added, and dispersed with Zirco Your beads to the specified viscosity.
- a surfactant “Ade force Toll SO-135” addition of synthetic alcohol-based ethylene oxide, propylene oxide, manufactured by Asahi Denka Kogyo Co., Ltd. was added to the resulting dispersion, diluted with water, and pH adjusted with sodium hydroxide.
- a surface conditioner was obtained in the same manner as in Example C-1, except for 50.
- New Coal 564" synthetic alcohol ethylene oxide, caroten with propylene oxide, manufactured by Nippon Emulsifier Co., Ltd.
- New Coal 1120-PS alkyl ether phosphate ester, manufactured by Nippon Emulsifier Co., Ltd.
- Adecamine SF-101 cationic surfactant, manufactured by Asahi Denka Kogyo Co., Ltd.
- Example A series and B series test plates were prepared.
- the sample was immersed in a surface conditioning bath, dried at 50 ° C., and measured using a fluorescent X-ray measurement apparatus “XRF-1700” (manufactured by Shimadzu Corporation).
- a chemical conversion film is sufficiently formed on the aluminum plate portion in the contact portion between the aluminum plate and the zinc-plated steel plate.
- the difference in the amount of film formed on the contact portion was small.
- a dense chemical conversion film was formed on all of the cold-rolled steel sheets, aluminum sheets, zinc-plated steel sheets, and high-tensile steel sheets. This is presumably because the amount of adsorption as Zn could be adjusted in the surface adjustment.
- the surface conditioning agent of the present invention can be suitably used for various metal materials used in automobile bodies, home appliances, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Treatment Of Metals (AREA)
- Paints Or Removers (AREA)
Abstract
化成処理中のアルミニウム合金上の電食を抑制することができ、アルミニウム合金上の接触部及び一般部(非接触部)に形成される化成皮膜量の差を小さくすることが可能になるとともに、各種金属材料に良好な化成皮膜を形成することができる表面調整剤を提供する。また、表面調整後の錆びの発生を防止することができ、処理浴中での分散安定性に優れる表面調整剤を提供する。
(A)D50が3μm以下であるリン酸亜鉛粒子、
(B)水溶性有機高分子、及び、
(C)層状粘土鉱物
を含み、金属のリン酸塩化成前に使用されるpH3~12の表面調整剤であって、更に(D)機能付与剤として、2価又は3価の金属亜硝酸化合物、酸化亜鉛及び/又は水酸化ナトリウム、ノニオン又はアニオン界面活性剤を含むことを特徴とする表面調整剤。
Description
明 細 書
表面調整剤及び表面調整方法
技術分野
[0001] 本発明は、表面調整剤及び表面調整方法に関する。
背景技術
[0002] 自動車車体、家電製品等は、鋼板、亜鉛めつき鋼板、アルミニウム合金等の金属材 料を金属成形物とした後、塗装し、組立て等を行うことにより製品化されている。この ような金属成形物の塗装は、脱脂、表面調整、化成処理、電着塗装等の各種工程を 経ること〖こより行われて ヽる。
[0003] 表面調整処理は、次の工程であるリン酸塩皮膜ィ匕成処理において、リン酸塩の結晶 力もなる皮膜が、金属表面全体に均一に、迅速に、高い密度で形成されるために施 される処理であり、通常、表面調整槽に浸漬することにより金属表面にリン酸塩の結 晶核を形成させるものである。
[0004] 例えば、特許文献 1には、粒径が 5 μ m以下の粒子を含む 2価若しくは 3価の金属の 少なくとも 1種を含有するリン酸塩の中から選ばれる 1種以上と、アルカリ金属塩若しく はアンモ-ゥム塩又はこれらの混合物と、ァ-オン性に帯電し分散した酸ィ匕物微粒 子、ァ-オン性の水溶性有機高分子、ノ-オン性の水溶性有機高分子、ァ-オン性 界面活性剤及びノ-オン性界面活性剤の群から選ばれる少なくとも 1種とを含有し、 pHを 4〜 13に調整した金属のリン酸塩皮膜化成処理前の表面調整用前処理液が 開示されている。
[0005] また、特許文献 2には、 2価及び Z又は 3価の金属の 1種以上を含有するリン酸塩か ら選ばれる 1種以上のリン酸塩粒子を含有し、更に、(1)単糖類、多糖類及びその誘 導体から選ばれる 1種以上、(2)正リン酸、ポリリン酸又は有機ホスホン酸ィ匕合物、酢 酸ビニルの重合体又はその誘導体若しくは酢酸ビニルと共重合可能な単量体と酢 酸ビニルとの共重合体からなる水溶性高分子化合物の 1種以上、又は、(3)特定の 単量体若しくは α , j8不飽和カルボン酸単量体の中力 選ばれる少なくとも 1種以上 と上記単量体と共重合可能な単量体 50重量%以下とを重合して得られる重合体又
は共重合体を含有するリン酸塩皮膜化成処理前の表面調整用処理液が開示されて いる。
更に特許文献 3には、アルミニウム合金展伸材の表面処理において、ゼータ電位を 調整して行う方法が開示されている。
[0006] しかしながら、特許文献 1および特許文献 2として開示されている表面調整用処理液 を使用した場合、表面調整後に鲭びが発生すると!、う問題が生じる場合があるため、 改良が望まれている。
[0007] また、特許文献 1および特許文献 2として開示されている表面調整用処理液は、アル ミニゥム合金と鋼板又は亜鉛めつき鋼板とが接触して 、る部分では、アルミニウム合 金部分がアノード、鋼板又は亜鉛めつき鋼板部分が力ソードとなるため、アルミニウム 合金上に化成皮膜が形成されにくいという問題がある。このため、化成処理において 、アルミニウム合金上での電食を抑制することができる表面調整剤の開発が望まれて いる。
[0008] 更に、これらの表面調整用処理液は、アルミニウム合金、高張力鋼板等の金属に対 して適用した場合には、金属表面上に、充分な化成皮膜が形成されないという問題 がある。また、これらの表面調整用処理液を用いた場合、各種金属材料に緻密な化 成皮膜を形成することができな 、と 、う問題や、表面調整用処理液の粒子径が大きく 、処理浴中の粒子の安定性が不充分であるため、容易に沈降してしまうという問題も ある。
[0009] また、特許文献 3に開示されて ヽる処理液を用いて、表面調整を行った場合にぉ ヽ ても、上述したような問題を充分に解決することはできな 、。
[0010] 特許文献 1 :特開平 10— 245685号公報
特許文献 2:特開 2000 - 96256号公報
特許文献 3:特開 2001 - 262364号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上記現状に鑑み、表面調整後の鲭びの発生を防止することができ、処理 浴中での分散安定性に優れる表面調整剤を提供することを目的とするものである。
また、本発明は、化成処理中のアルミニウム合金上の電食を抑制することができ、了 ルミニゥム合金上の接触部及び一般部 (非接触部)に形成される化成皮膜量の差を 小さくすることが可能になるとともに、各種金属材料に良好な化成皮膜を形成するこ とができる表面調整剤を提供することを目的とするものである。
課題を解決するための手段
本発明は、(A) D 力^ ; z m以下であるリン酸亜鉛粒子、(B)水溶性有機高分子、及
50
び、(C)層状粘土鉱物を含み、金属のリン酸塩化成前に使用される pH3〜12の表 面調整剤であって、更に (D)機能付与剤を含むことを特徴とする表面調整剤である。 上記 (B)水溶性有機高分子は、
(1) (メタ)アクリル酸、マレイン酸、無水マレイン酸、ィタコン酸及び無水ィタコン酸か らなる群より選択される少なくとも 1種 50質量%未満の量と、前記カルボン酸基含有 単量体と共重合可能なその他の単量体 50質量%を超える量とを含有する単量体組 成物を共重合して得られるカルボン酸基含有共重合体、
(2)下記式 (I) ;
(式中、 R1は、炭素数 8〜30のアルキル基又はアルキルフエノール基である。 1は、 0 又は 1である。 mは、 1〜20である。 nは、 1、 2又は 3である。 )
若しくは下記式 (Π) :
(式中、 hは、 2〜24の整数である。 iは、 1又は 2である。 )
で表されるリン酸エステル、
(3)ポリエステル榭脂、
(4)ホスホン酸基含有榭脂、並びに、
(5)ポリアミン系榭脂からなる群より少なくとも 1種を選択されるものであり、
上記 (D)機能付与剤力 2価又は 3価の金属亜硝酸ィ匕合物であって、その含有量が NO換算で 10〜500ppmであること(第 1の表面処理剤)が好ましい。
2
[0013] また、上記 (B)水溶性有機高分子が、(メタ)アクリル酸、マレイン酸、無水マレイン酸 、ィタコン酸及び無水ィタコン酸力 なる群より選択される少なくとも 1種 50質量%未 満の量と、前記カルボン酸基含有単量体と共重合可能なその他の単量体 50質量% を超える量とを含有する単量体組成物を共重合して得られるカルボン酸基含有共重 合体であり (第 2の表面処理剤)、上記 (D)機能付与剤が、酸化亜鉛及び Z又は水 酸化ナトリウムであって、ゼータ電位が— 50mV以下、かつ、 pHが 8〜: L 1であること( 第 3の表面処理剤)が好ま Uヽ。
[0014] また、上記 (B)水溶性有機高分子が、(メタ)アクリル酸、マレイン酸、無水マレイン酸 、ィタコン酸及び無水ィタコン酸力 なる群より選択される少なくとも 1種 50質量%未 満の量と、前記カルボン酸基含有単量体と共重合可能なその他の単量体 50質量% を超える量とを含有する単量体組成物を共重合して得られるカルボン酸基含有共重 合体であり、上記 (D)機能付与剤が、ノ-オン又はァ-オン界面活性剤であることが 好ましい。
[0015] 上記カルボン酸基含有単量体と共重合可能なその他の単量体は、スルホン酸単量 体及び Z又はスチレンを含有することが好まし 、。
[0016] 上記カルボン酸基含有共重合体は、(メタ)アクリル酸 50質量%未満の量と、 2—(メ タ)アクリルアミドー 2—メチルプロパンスルホン酸及び Z又はァリルスルホン酸の合 計量 50質量%を超える量とを含有する単量体組成物を重合して得られるものである ことが好ましい。
[0017] 上記層状粘土鉱物は、天然へクトライト及び Z又は合成へクトライトであることが好ま しい。
上記層状粘土鉱物は、ベントナイトを下記式 (III);
[0018] [化 3]
OR3
R2— Si— OR3 ( I I I )
OR3
[0019] (式中、 R2は、炭素数 1〜22の飽和アルキル基である。 R3は、同一若しくは異なって 、メチル基、ェチル基、プロピル基又はブチル基である。)で表されるアルキルトリアル コキシシランで表面処理したものであることが好ましい。
[0020] 上記ホスホン酸基含有榭脂は、重量平均分子量が 3000〜20000であることが好ま しい。
上記ノ-オン界面活性剤は、 HLB値が 6以上のものであることが好ましい。
[0021] 本発明はまた、上述の表面調整剤を金属表面に接触させる工程カゝらなることを特徴 とする表面調整方法でもある。
上記表面調整方法において、上記工程は、 Znとして 3mgZm2以上のリン酸亜鉛を 吸着させるものであることが好まし 、。
以下に、本発明を詳細に説明する。
[0022] 本発明の表面調整剤は、リン酸塩皮膜化成処理の前処理である表面調整に使用す ることによって、金属表面にリン酸亜鉛の微細粒子を付着させるものであり、リン酸亜 鉛化成処理工程にお!、て、上記微細粒子を結晶核とするリン酸亜鉛皮膜の生成を 促進し、良好なリン酸亜鉛皮膜を形成させるものである。これを用いて金属材料を表 面調整した後に化成処理を行うと、比較的短時間で微細なリン酸塩結晶を析出させ 、金属表面を覆いつくすことができる。
[0023] 本発明の表面調整剤は、(A) D 力 ¾ m以下であるリン酸亜鉛粒子、(B)水溶性有
50
機高分子、及び、(C)層状粘土鉱物を基本的な構成とし、ここに更に (D)機能付与 剤を含有させることによって、種々の課題を解決するものである。
[0024] 従来公知の 2価又は 3価のリン酸塩粒子を含む表面調整剤は、リン酸塩粒子の粒子 径が大きいものであるため、表面調整処理浴中での粒子の安定性が不充分である。 このため、リン酸塩粒子が沈降し易いという問題がある。これに対して、本発明の表面 調整剤は、 D 力 ¾ μ m以下のリン酸亜鉛粒子を含むものであるため、粒子の処理浴
中での安定性に優れ、リン酸亜鉛粒子の処理浴中での沈降を抑制することができる
[0025] 本発明の表面調整剤において、(B)水溶性有機高分子が、特定の(1)カルボン酸基 含有共重合体、(2)リン酸エステル、 (3)ポリエステル榭脂、(4)ホスホン酸基含有榭 脂、及び、(5)ポリアミン系榭脂からなる群より選択される少なくとも 1種であり、(D)機 能付与剤が、 2価又は 3価の金属亜硝酸ィ匕合物であって、その含有量が NO換算で
2
10〜500ppmである場合には、本発明の表面調整剤を用いて、各種金属材料の表 面調整を行うことにより、表面調整後の金属材料において、鲭びが発生することを防 止することができる。このため、各種金属材料に対して、本発明の表面調整剤によつ て表面調整を施し、次いで化成処理を行った場合、優れた性能を有する化成皮膜を 形成することが可能となる。
[0026] 上記 (B)水溶性有機高分子は、分散剤として作用するものであると同時に、これらを 含有するものであることにより、化成処理時における化成処理を促進することができる 。このため、化成処理において、緻密な化成皮膜を形成することができ、耐食性を向 上させることができる。これらの成分を含む表面調整剤を使用することによって化成 処理を促進し、緻密な化成皮膜を形成することができる理由は明らかではないが、こ れらの成分の端部が基材に吸着し易いためであると推察される。
[0027] 本発明の表面調整剤において、(B)水溶性有機高分子が、特定のカルボン酸基含 有共重合体であり、(D)機能付与剤が、酸ィ匕亜鉛及び Z又は水酸ィ匕ナトリウムであ つて、ゼータ電位が— 50mV以下、かつ、 pHが 8〜: L 1である場合、又は、ノ-オン又 はァ-オン界面活性剤である場合には、以下に述べる効果を得ることができる。
[0028] 表面調整剤が施される金属材料として、鉄又は亜鉛系基材とアルミニウム系基材とが 使用され、上記鉄又は亜鉛系基材と上記アルミニウム系基材とが接触している部分 を有する場合がある。このような基材に対して、化成処理を行うと、化成処理時に接 触部において、アルミニウム系基材の部分がアノード、鉄又は亜鉛系基材の部分が 力ソードとなるため、結果として、接触部におけるアルミニウム系基材の部分に化成皮 膜が形成され難くなつてしまうという問題がある。本発明の表面調整剤は、被処理物 への吸着量が増加することにより、化成速度が速められ、その結果、鉄又は亜鉛系
基材とアルミニウム系基材との接触部のアルミニウム系基材の部分にぉ 、て、従来の 表面調整剤を使用する場合に比べて電食を抑制することができると推察される。この ため、鉄又は亜鉛系基材とアルミニウム系基材とが接触している部分を有する基材に 対して、本発明の表面調整剤によって表面調整を施し、次いで化成処理を行った場 合に、接触部のアルミニウム系基材の部分に化成皮膜を良好に形成することができ る。
[0029] また、鉄又は亜鉛系基材とアルミニウム系基材とが接触している部分を有する基材に 対して、本発明の表面調整剤によって表面調整を施し、次いで化成処理を行った場 合、アルミニウム系基材のうち、鉄又は亜鉛系基材と接触していない部分 (一般部)に 形成される化成皮膜量と、接触している部分 (接触部)に形成される化成皮膜量との 差を小さくすることができる。このため、本発明の表面調整剤を用いると、アルミニウム 系基材の一般部及び接触部の両部位に、より均一に化成皮膜を形成することができ る。
[0030] アルミニウム系基材、高張力鋼板等に、従来公知の 2価又は 3価のリン酸塩粒子を含 む表面調整剤を適用する場合には、化成処理において充分な皮膜量の化成皮膜が 形成されないため、これらの基材に充分な耐食性を付与することができないという問 題がある。一方、本発明の表面調整剤を使用する場合には、アルミニウム系基材、高 張力鋼板等に対しても化成処理時に充分な皮膜量の化成皮膜を形成することがで きるため、これらの基材でも充分な耐食性を付与することが可能である。
[0031] また、鉄系基材、亜鉛系基材、アルミニウム系基材、高張力鋼板等の各種金属材料 に、本発明の表面調整剤による表面調整を施し、次いで化成処理を行った場合、各 種金属材料上に、緻密な化成皮膜を形成することができる。従って、各種金属材料 の耐食性を向上させることが可能となる。
[0032] また、上記特定のカルボン酸基含有共重合体は、先の本発明の表面調整剤に含ま れている(B)水溶性有機高分子に属するものであるため、化成処理時における化成 処理を促進することができる。このため、化成処理において、緻密な化成皮膜を形成 することができ、耐食性を向上させることができる。
[0033] 特に、(D)機能付与剤が、酸ィ匕亜鉛及び Z又は水酸ィ匕ナトリウムであって、ゼータ電
位が— 50mV以下、かつ、 pHが 8〜: L 1である場合には、上記表面調整剤を用いると 、短時間処理による工程短縮も可能である。
また、ゼータ電位が 50mV以下であることにより、上述したような効果を効果的に得 ることがでさる。
[0034] 上記表面調整剤のゼータ電位が 50mV以下であることによって、上述した効果を 効果的に得ることができる理由は明らかではないが、以下のような作用 ·機能によると 推察される。
[0035] 上記必須成分を含む表面調整剤が 50mV以下のゼータ電位を有するものである ため、表面調整剤中の成分の基材への吸着を促進することが可能になると推察され る。ゼータ電位を 50mV以下に保つことで、成分粒子間の反発力が大きくなり、有 効に働く粒子数が多くなるため、基材上でのマイクロセル形成サイトも多くなると推察 される。そして、その結果、鉄又は亜鉛系基材とアルミニウム系基材とが接触している 部分を有する基材において、接触部に充分な化成皮膜量を有する皮膜を形成する ことが可能になり、一般部及び接触部の両部位に形成される化成皮膜量の差を小さ くすることが可能になったと推察される。また、同様の作用,機能により、各種金属材 料に緻密な化成皮膜を形成することが可能になったと推察される。
[0036] (A)リン酸 ffi鉛粒早
本発明の表面調整剤は、 (A) D 力 ^ /z m以下であるリン酸亜鉛粒子を含んでいる。
50
D (体積 50%径)が 3 μ m以下であるリン酸亜鉛を使用することにより、リン酸塩化成
50
処理前に結晶の核を多く付与することができるため、比較的短時間の化成処理で微 細なリン酸塩結晶を析出させることができる。なお、本明細書において、上記 D
50は平 均分散径及び平均粒径である。
[0037] 上記リン酸亜鉛粒子の D は、下限が 0. 01 μ m、上限 3 μ mであることが好ましい。 0
50
. 01 μ m未満であると、過分散の現象により粒子が凝集するおそれがある。 3 mを 超えると、微細なリン酸亜鉛粒子の割合が少なくなるため、不適当である。上記下限 は、 0. 05 μ mであることがより好ましぐ上記上限は、 1 μ mであることがより好ましい
[0038] 本発明の表面調整剤は、 D (体積 90%径)が 4 m以下であるリン酸亜鉛粒子を含
有するものであることが好ま 、。この場合、上記リン酸亜鉛粒子は、 D 力 ¾ μ m以
50
下であるだけでなぐ D 力 μ m以下であるため、リン酸亜鉛粒子における粗大粒子
90
の存在割合が比較的少な 、ものである。上述のように、平均粒径 (D )が 3 m以下
50
であるリン酸亜鉛を用いることによって、短時間の化成処理で微細なリン酸塩結晶を 析出させることができるが、 3 m以下に分散するために粉砕等の手段を用いる場合 、過度に粉砕を行うと、比表面積の増大に伴う分散剤として作用する成分の不足が 生じ、過分散粒子が凝集を起こし、カゝえって粗大粒子を形成して分散安定性を損なう 過分散の現象が生じてしまう。また、表面調整剤の配合や分散条件によって分散性 のノ ツキが生じ、粗大粒子や微細粒子が最密に充填することによる凝集や増粘、 微細粒子同士の凝集といった現象を引き起こしてしまう。しかし、上記リン酸亜鉛が D (体積 90%径)が 4 m以下である場合には、上述のような不都合が生じることをよ
90
り防止することができる。
[0039] 上記リン酸亜鉛粒子の D は、下限が 0. 01 μ m、上限 4 μ mであることが好ましい。 0
90
. 01 μ m未満であると、過分散の現象により粒子が凝集するおそれがある。 4 /z mを 超えると、微細なリン酸亜鉛粒子の割合が少なくなるため、不適当である。上記下限 は、 0. 05 mであることがより好ましぐ上記上限は、 2 mであることがより好ましい
[0040] 上記 D (体積 50%径)及び上記 D (体積 90%径)は、分散液中での粒度分布に
50 90
基づき、粒子の全体積を 100%として累積カーブを求めたとき、その累積カーブが各 々50%、 90%となる点の粒径である。上記 D 及び上記 D は、例えば、レーザード
50 90
ップラー式粒度分析計(日機装社製、「マイクロトラック UPA150」)等の粒度測定装 置を用いれば、 D 、D を自動的に測定することができる。
50 90
[0041] 上記リン酸亜鉛粒子は、 D 力^ m以下であれば特に限定されるものではな 、。ま
50
た、 D 力 ¾ μ m以下を満たす粒子の混合物であってもよ ヽ。
50
[0042] 本発明の表面調整剤は、リン酸亜鉛粒子の含有量が下限 50ppm、上限 20000pp mであることが好ましい。 50ppm未満であると、結晶核となるリン酸塩が不足し、充分 な表面調整効果が得られないおそれがある。 20000ppmを超えても、所望の効果を 超える効果が得られるわけではなく経済的でない。上記下限は、 150ppmであること
力 り好ましぐ上記上限は、 lOOOOppmであることがより好ましい。
[0043] (B)水溶件有機高分子
本発明の表面調整剤は (B)水溶性有機高分子を含んで 、る。本発明の第 1の表面 処理剤の場合、上記 (B)水溶性有機高分子は、(1)カルボン酸基含有共重合体、 ( 2)リン酸エステル、(3)ポリエステル榭脂、(4)ホスホン酸基含有榭脂、及び、(5)ポリ アミン系榭脂からなる群より少なくとも 1種が選択される。また、本発明の第 2及び第 3 の表面処理剤の場合、上記 (B)水溶性有機高分子はカルボン酸基含有共重合体で あり、これは、(1)カルボン酸基含有共重合体と同じものである。以下、これらについ て、それぞれ説明を行う。
[0044] < ( 1)カルボン酸基含有共重合体 >
上記水溶性有機高分子の 1種である特定のカルボン酸基含有共重合体は、(メタ)ァ クリル酸、マレイン酸、無水マレイン酸、ィタコン酸及び無水ィタコン酸からなる群より 選択される少なくとも 1種のカルボン酸基含有単量体 50質量%未満の量と、上記力 ルボン酸基含有単量体と共重合可能なその他の単量体 50質量%を超える量とを含 有する単量体組成物を共重合して得られるカルボン酸基含有共重合体である。上記 のような特定の単量体を特定量配合して得られるカルボン酸基含有共重合体を使用 することによって、上述したような本発明の効果を得ることができる。
[0045] 上記カルボン酸基含有単量体と共重合可能なその他の単量体は、特に限定されな いが、スルホン酸単量体及び Z又はスチレンを用いること力 表面調整後の鲭びの 発生を効果的に防止することができる点から、好ましい。
[0046] 上記スルホン酸単量体は、スルホン酸基を有する単量体であれば特に限定されず、 例えば、 2— (メタ)アクリルアミド— 2—メチルプロパンスルホン酸、 3— (メタ)アクリル アミドプロパン— 1—スルホン酸、 2— (メタ)アクリルアミドエチル— 1—スルホン酸、 3 - (メタ)アクリルアミドー 2—ヒドロキシプロパンスルホン酸、 p— (メタ)アクリルアミドメ チルベンゼンスルホン酸等のスルホン酸含有 (メタ)アクリルアミド;スチレンスルホン 酸、スチレンジスノレホン酸、 aーメチノレスチレンスノレホン酸、ビニノレフエ二ノレメタンス ルホン酸等の芳香族炭化水素ビニルスルホン酸; 3—(メタ)アタリロイロキシプロパン —1—スルホン酸、 4— (メタ)アタリロイロキシブタン— 2—スルホン酸塩、 2— (メタ)ァ
クリロイ口キシェチル一 1—スルホン酸、 3— (メタ)アタリロイ口キシ一 2—ヒドロキシプロ パンスルホン酸等のスルホン酸塩含有 (メタ)アタリレート;ビュルスルホン酸、(メタ)ァ リルスルホン酸等の脂肪族炭化水素ビニルスルホン酸;及びこれらの塩等を挙げるこ とがでさる。
[0047] 上記塩としては、ナトリウム、カリウム等のアルカリ金属塩、アンモニゥム塩、メチルアミ ン、ェチルァミン、ジメチルァミン、ジェチルァミン、トリェチルァミン等の有機基で置 換されて!/、るアンモ-ゥム塩等を挙げることができる。これらのスルホン酸単量体は、 単独で用いてもよぐ 2種以上を併用してもよい。
[0048] 上記カルボン酸基含有共重合体としては、(メタ)アクリル酸と、 2—(メタ)アクリルアミ ドー 2—メチルプロパンスルホン酸、ァリルスルホン酸、スチレン及びスチレンスルホン 酸力 なる群より選ばれる少なくとも 1種とを含有する単量体組成物を共重合して得ら れる重合体であることが好まし 、。
[0049] なかでも、上記カルボン酸基含有共重合体としては、(メタ)アクリル酸 50質量%未満 の量と、 2- (メタ)アクリルアミドー 2—メチルプロパンスルホン酸及び Z又はァリルス ルホン酸の合計量 50質量%を超える量とを含有する単量体組成物を共重合して得 られる重合体であることが好ま 、。
[0050] 好ましい例として挙げたカルボン酸基含有共重合体を使用する場合には、鉄又は亜 鉛系基材とアルミニウム系基材との接触部のアルミニウム系基材の部分に化成皮膜 をより良好に形成することができ、一般部及び接触部の両部位に形成される化成皮 膜量の差を小さくすることができる。また、各種金属材料に、より緻密な化成皮膜を形 成することができる。更に、アルミニウム系基材、高張力鋼板等に対してより充分な皮 膜量の化成皮膜を形成することができる。
[0051] 上記カルボン酸基含有共重合体は、上述した (メタ)アクリル酸、マレイン酸、無水マ レイン酸、ィタコン酸、無水ィタコン酸と、上記カルボン酸基含有単量体と共重合可能 なその他の単量体とを含有する単量体組成物を過酸化物等の重合開始剤を用いて 共重合させる等の従来公知の方法を用いることによって容易に得ることができる。
[0052] また、上記カルボン酸基含有共重合体は、このようにして得られた共重合体の加水 分解物であってもよい。この加水分解物とは、無水マレイン酸、無水ィタコン酸を使用
した場合に共重合した無水マレイン酸単位、無水ィタコン酸単位が加水分解してマ レイン酸単位、ィタコン酸単位となったものである。更に、このようにして得られた共重 合体の塩でもよい。この塩とは、(メタ)アクリル酸単位、マレイン酸単位、ィタコン酸単 位が塩を形成したものであり、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属 塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩のほ力 アンモニゥム塩 や有機アミン塩等を挙げることができる。
[0053] 上記有機アミン塩としては、メチルァミン塩、ェチルァミン塩、プロピルアミン塩、プチ ルァミン塩、アミルァミン塩、へキシルァミン塩、ォクチルァミン塩、 2—ェチルへキシ ルァミン塩、デシルァミン塩、ドデシルァミン塩、イソトリデシルァミン塩、テトラデシル アミン塩、へキサデシルァミン塩、イソへキサデシルァミン塩、ォクタデシルァミン塩、 イソォクタデシルァミン塩、オタチルドデシルァミン塩、ドコシルァミン塩、デシルテトラ デシルァミン塩、ォレイルァミン塩、リノールアミン塩、ジメチルァミン塩、トリメチルアミ ン塩、ァ-リン塩等の脂肪族や芳香族のモノアミン塩、エチレンジァミン塩、テトラメチ レンジアミン塩、ドデシループロピレンジァミン塩、テトラデシループロピレンジァミン 塩、へキサデシループロピレンジァミン塩、ォクタデシループロピレンジァミン塩、ォレ ィル一プロピレンジァミン塩、ジエチレントリアミン塩、トリエチレンテトラミン塩、テトラ エチレンペンタミン塩、ペンタエチレンへキサミン塩等のポリアミン塩、モノエタノール アミン塩、ジエタノールアミン塩、トリエタノールアミン塩、モノイソプロパノールアミン塩 、ジイソプロパノールアミン塩、トリイソプロパノールアミン塩、これらのアルキレンォキ シド付加物の塩、第一又は第二ァミンのアルキレンォキシド付加物の塩等のアルカノ ールァミン塩、リジン塩、アルギニン塩等のアミノ酸塩等を挙げることができる。なかで も、アルカリ金属塩、アンモニゥム塩、アルカノールァミン塩が好ましい。
[0054] 上記カルボン酸基含有共重合体の市販品としては、例えば、ァロン A6020 (東亜合 成社製)、 A— 221M (日本ポリエチレン社製)、ポリスター OM、ポリスター OMA(日 本油脂社製)、 EFKA-4550 (EFKA社製)、 PX1ELK— 100 (日本触媒社製)、 マリアリム AKM0531 (日本油脂社製)、 SMA1440H (サートマ一社製)、ジョンタリ ル 60 (ジョンソンポリマー社製)等を挙げることができる。
[0055] 上記カルボン酸基含有共重合体において、(メタ)アクリル酸、マレイン酸、無水マレ
イン酸、ィタコン酸及び無水ィタコン酸力 なる群より選択される少なくとも 1種の含有 量 (これらの合計の含有量)は、単量体組成物 100質量%中に、 50質量%未満の量 である。 50質量%以上であると、原液の分散時に増粘し易くなるおそれがある。また 、本発明の第 1の表面処理剤において、表面調整後の鲭びの発生を防止することが できないおそれがある。更に、本発明の第 2および第 3の表面処理剤において、鉄又 は亜鉛系基材とアルミニウム系基材との接触部のアルミニウム系基材の部分に化成 皮膜を良好に形成することができず、一般部及び接触部の化成皮膜量の差が大きく なるおそれがある。また、各種金属材料に、緻密な化成皮膜を形成することができな いおそれや、アルミニウム系基材、高張力鋼板に充分な量の化成皮膜を形成するこ とができないおそれがある。上記含有量の下限は、 20質量%であることがより好ましく 、 25質量%であることが更に好ましい。上記含有量の上限は、 45質量%であることが より好ましぐ 40質量%であることが更に好ましい。
[0056] 上記カルボン酸基含有共重合体において、上記カルボン酸基含有単量体と共重合 可能なその他の単量体の含有量 (これらの合計含有量)は、単量体組成物 100質量 %中に、 50質量%を超える量である。 50質量%以下であると、本発明の第 1の表面 処理剤において、表面調整後の鲭びの発生を防止することができないおそれがある 。また、本発明の第 2および第 3の表面処理剤において、鉄又は亜鉛系基材とアルミ -ゥム系基材との接触部のアルミニウム系基材の部分に化成皮膜を良好に形成する ことができず、一般部及び接触部の化成皮膜量の差が大きくなるおそれがある。また 、各種金属材料に、緻密な化成皮膜を形成することができないおそれや、アルミ-ゥ ム系基材、高張力鋼板に充分な量の化成皮膜を形成することができな 、おそれがあ る。上記含有量の下限は、 55質量%であることがより好ましぐ 60質量%であることが 更に好ましい。上記含有量の上限は、 80質量%であることがより好ましぐ 75質量% であることが更に好ましい。
[0057] 上記カルボン酸基含有共重合体の酸価 (試料 lg中に含まれる酸性成分を中和する のに要する水酸ィ匕カリウムの mg数で表される値)は、下限 100、上限 900であること が好ましい。 100未満の場合、リン酸亜鉛粒子の分散性が低下するおそれがある。 9 00を超えると、効果は変わらない。上記下限は、 200であることがより好ましぐ上記
上限は、 800であることがより好ましい。
[0058] 上記カルボン酸基含有共重合体の重量平均分子量は、下限 1000、上限 30000で あることが好ましい。 1000未満であると、充分な分散効果が得られないおそれがある 。 30000を超えると、充分な分散効果が得られない上、凝集のおそれもある。上記下 限は、 2000であることがより好ましぐ上記上限は、 20000であることがより好ましい。
[0059] < (2)リン酸エステル >
上記水溶性有機高分子の 1種である特定のリン酸エステルは、上記式 (I)若しくは上 記式 (Π)で表される化合物である。上記のようなリン酸エステルを使用することによつ て、上述したような本発明の効果を得ることができる。
[0060] 上記式 (I)で表されるリン酸エステルにおいて、上記 R1は、炭素数の下限 8、上限 30 のアルキル基又はアルキルフエノール基である。上記 1は、 0又は 1である。上記 mは、 下限 1、上限 20である。上記 nは、 1、 2又は 3である。上記 R1のアルキル基又はアル キルフエノール基は、直鎖状、分岐状のいずれであってもよい。
[0061] 上記式 (I)で表されるリン酸エステルのなかでも、上記 R1がイソトリデシル基、上記 1が 1、上記 mが 3〜15、上記 nが 1又は 2で表されるリン酸モノエステル、リン酸ジエステ ルが好ましい。これらのリン酸エステルを使用する場合には、表面調整後の鲭びの発 生を効果的に防止することができる。
[0062] 上記式 (Π)で表されるリン酸エステルにお 、て、上記 hは、下限 2、上限 24の整数で ある。上記 iは、 1又は 2である。上記式 (Π)中の C H で表される飽和アルキル基
h 2h+l
は、直鎖状、分岐状のいずれであってもよい。
[0063] 上記式 (Π)で表されるリン酸エステルのなかでも、上記 hが 8、上記 iが 1又は 2で表さ れる 2—ェチルへキシルアシッドフォスフェートが好ましい。これにより、表面調整後の 鲭びの発生を効果的に防止することができる。
[0064] 上記式 (I)及び上記式 (Π)で表されるリン酸エステルの市販品としては、例えば、フォ スファノール RS— 410、フォスファノール RS— 610 (東邦化学工業社製)、 EXQ— 2 300 (楠本化成社製)、 JP - 508 (城北化学工業社製)等を挙げることができる。
[0065] < (3)ポリエステル榭脂 >
上記水溶性有機高分子の 1種であるポリエステル系榭脂は、分散作用を有するポリ
エステル系榭脂の合成有機高分子である。上記ポリエステル系榭脂を使用すること によって、上述したような本発明の効果を得ることができる。本発明においては、この ような作用を有するものを特に限定されることなく用いることができる。
[0066] 上記ポリエステル系榭脂の重量平均分子量は、 2000〜20000であることが好ましい 。上記範囲内であると、表面調整後の鲭びの発生を効果的に防止することができる。 なお、本明細書において、上記重量平均分子量は、スチレンポリマーを標準とする G PC法において、決定される値である。
[0067] 上記ポリエステル系榭脂の市販品としては、例えば、ァジスパー PB821 (味の素社 製)、ソルスパース 24000GR (ゼネ力社製)、ソルスパース 32550 (ゼネカ社製)、 Di sperbykl90 (ビックケミ一社製)等を挙げることができる。
[0068] < (4)ホスホン酸基含有榭脂 >
上記水溶性有機高分子の 1種であるホスホン酸基含有榭脂は、官能基としてホスホ ン酸基を有する榭脂である。上記ホスホン酸基含有榭脂を使用することによって、上 述したような本発明の効果を得ることができる。上記ホスホン酸基含有榭脂としては、 エステル化されて!/ヽな ヽ水酸基を有するホスホン酸基を含有する榭脂等を挙げること ができる。
[0069] 上記ホスホン酸基含有榭脂は、ホスホン酸基に基づく酸価が 5. 0〜50であるものが 好ましい。上記範囲内であると、表面調整後の鲭びの発生を効果的に防止すること ができる。より好ましくは、 10〜35である。
[0070] 上記ホスホン酸基含有榭脂としては、官能基としてホスホン酸基を有するものであれ ば特に限定されず、例えば、アクリル系のもの、多価アルコールと多塩基酸とを縮合 させたポリエステル系のもの又はこれに更に脂肪酸が縮合しているポリエステル系の もの、ポリオールをイソシアナートで結合したポリウレタン系のもの等を挙げることがで きる。なかでも、表面調整後の鲭びの発生を効果的に防止することができる点から、 多価アルコールと多塩基酸とを縮合させたポリエステル系のものが好ましい。
[0071] 上記ホスホン酸基含有樹脂の重量平均分子量は、 3000〜20000であること力 S好ま しい。上記範囲内であると、表面調整後の鲭びの発生を効果的に防止することがで きる。
[0072] 上記ホスホン酸基含有樹脂の市販品としては、 SNデイスパーサント 2060 (サンノプ コネ土製)、キレスト pH— 325 (キレストネ土製)等を挙げることができる。
[0073] < (5)ポリアミン系榭脂 >
上記水溶性有機高分子の 1種であるポリアミン系榭脂は、官能基としてアミノ基を有 する榭脂である。上記ポリアミン系榭脂を使用することによって、上述したような本発 明の効果を得ることができる。上記ポリアミン系榭脂としては、例えば、少なくとも一部 に下記式 (IV)及び Z又は下記式 (V)で表される構成単位を有する榭脂を挙げるこ とがでさる。
[0075] [化 5]
[0076] 上記ポリアミン系榭脂の製造方法は、特に限定されるものではなぐ公知の方法によ つて製造することができる。上記ポリアミン系榭脂は、上記一般式 (IV)で表される構 成単位のみ力もなる重合体であるポリビュルアミン榭脂及び Z又は上記一般式 (V) で表される構成単位のみ力 なる重合体であるポリビニルアミン榭脂が特に好ましい 。上記ポリビニルアミン榭脂及びポリアリルアミン榭脂は、本発明の効果を向上させる ことができる点で好ましい。
[0077] 上記ポリアミン系榭脂は、本発明の目的を損なわない範囲で、上記ポリビュルァミン 榭脂及び Z又はポリアリルアミン榭脂のアミノ基の一部をァセチルイ匕する等の方法に よって修飾したもの、ァミノ基の一部又は全部が酸により中和されたもの、溶解性に 影響を与えない範囲で架橋剤によって架橋したもの等も使用することができる。
[0078] ポリアミン系榭脂は、榭脂 lOOg当たり、下限 0. 01モル、上限 2. 3モルの範囲内のァ
ミノ基を有することが好ましい。 0. 01モル未満であると、充分な効果が得られないお それがある。 2. 3モルを超えても、効果は変わらない。上記下限は、 0. 1モルがより 好ましい。
[0079] 上記ポリアミン系榭脂の重量平均分子量は、下限 500、上限 100000であること力 子 ましい。上記範囲内であると、表面調整後の鲭びの発生を効果的に防止することが できる。上記下限は、 5000力 り好ましく、上記上限は、 70000力 り好ましい。
[0080] 上記ポリアミン系榭脂の市販品としては、例えば、ュ-センス CP— 102 (セン力社製) 、 KZ— 125K (セン力社製)等を挙げることができる。また、上記ポリビュルアミン榭脂 の市販品としては、 PVAM— 0595B (三菱ィ匕学株式会社製)等を挙げることができ る。上記ポリアリルアミン榭脂の市販品としては、 PAA— 01、 PAA- 10C, PAA— H— 10C、 PAA— D11HC1 (いずれも日東紡株式会社製)等を挙げることができる。 これらは、単独で用いてもよぐ 2種以上を併用してもよい。
[0081] 本発明の第 1の表面調整剤では、上記水溶性有機高分子のなかでも、表面調整後 の鲭びの発生を効果的に防止することができる点から、カルボン酸基含有共重合体 、リン酸エステル、ポリエステル系榭脂、及びポリアミン系榭脂を使用することが好まし ぐカルボン酸基含有共重合体を使用することが更に好ましい。本発明の第 2および 第 3の表面調整剤では、上記水溶性有機高分子はカルボン酸基含有共重合体であ る。
[0082] 本発明の表面調整剤における水溶性有機高分子の含有量は、下限 lppm、上限 50 Oppmであることが好ましい。 lppm未満であると、分散力が不足し、リン酸亜鉛粒子 の粒径が大きくなると同時に液安定性も低下し、沈降し易くなるおそれがある。 500p pmを超えると、金属表面に吸着すること等が生じるため、後の化成工程に影響を与 えるおそれがある。上記下限は、 lOppmであることがより好ましぐ上記上限は、 300 ppmであることがより好ましい。なお、第 1の表面調整剤における上記水溶性有機高 分子の含有量は、上記カルボン酸基含有共重合体、リン酸エステル、ポリエステル系 榭脂、ホスホン酸基含有榭脂及びポリアミン系榭脂の合計量とする。
[0083] (C)腿粘 ·
本発明の表面調整剤は、(C)層状粘土鉱物を含んでいる。これにより、上述した本発
明の効果を得ることができる。上記層状粘土鉱物 (クレイ)は、層状構造を有するケィ 酸塩鉱物等であり、多数のシート(ケィ酸で構成された四面体シート、 A1や Mg等を 更に含んで構成された八面体シート等)が積層されたものである。上記層状粘土鉱 物を含むことにより、上述した効果以外に、表面調整剤の調製の際に、分散効率を 向上させることちでさる。
[0084] 上記層状粘土鉱物としては特に限定されず、例えば、モンモリロナイト、パイデライト、 サボナイト、ヘクトライト等のスメクタイト族;カオリナイト、ハロサイト等のカオリナイト族; ジォクタへドラルバ一ミキユライト、トリオクタへドラルバ一ミキユライト等のバーミキユラ イト族;テニ才ライト、テトラシリシックマイ力、マスコノイト、イライト、セリサイト、フロゴパ イト、バイオタイト等のマイ力等;ハイド口タルサイト;パイロフイロライト;カネマイト、マ力 タイト、アイラアイト、マガディアイト、ケニヤアイト等の層状ポリケィ酸塩等を挙げること ができる。これらの層状粘土鉱物は、天然鉱物であってもよぐ水熱合成、溶融法、 固相法等による合成鉱物であってもよい。
[0085] また、上記層状粘土鉱物のインターカレーシヨン化合物(ビラードクリスタル等)や、ィ オン交換処理を施したもの、表面処理 (シランカップリング処理、有機バインダとの複 合ィ匕処理等)を施したものも使用することができる。これらの層状粘土鉱物は、単独で 用いてもよぐ 2種以上を併用してもよい。
[0086] 上記層状粘土鉱物は、平均粒径(=最大寸法の平均値)が 以下が好ましぐよ り好ましくは、 1 μ m以下である。 5 μ mを超えると、分散安定性が低下するおそれが ある。また、上記層状粘土鉱物の平均アスペクト比(=最大寸法 Z最小寸法の平均 値)は、 10以上が好ましぐより好ましくは 20以上、更に好ましくは 40以上である。 10 未満であると、分散安定性が低下するおそれがある。
[0087] 上記層状粘土鉱物は、天然へクトライト及び Z又は合成へクトライトであることが好ま しい。これにより、鉄又は亜鉛系基材とアルミニウム系基材との接触部のアルミニウム 系基材の部分に化成皮膜を良好に形成することができ、一般部及び接触部の化成 皮膜量の差を小さくすることができる。また、各種金属材料に、緻密な化成皮膜を形 成することができる。また、アルミニウム系基材、高張力鋼板に充分な量の化成皮膜 を形成することができる。更に、優れた分散安定性を付与することができ、分散効率
を向上させることちできる。
[0088] 上記天然へクトライトは、下記式 (VI)で表されるモンモリロナイト族に属するトリオクタ へドラル型の粘土鉱物である。
[0089] [化 6]
[Si8(Mg5.34Li0.66)O20(OH)4M+ 0 66■ n¾0] (V I )
[0090] 上記天然へクトライトの市販品としては、例えば、 BENTON EW, BENTON AD
(ELEMENTIS社製)等を挙げることができる。
[0091] 上記合成へクトライトは、結晶三層構造で、膨張格子を持つ無制限層膨張型トリオク タへドラルに属するヘクトライトに近似するもので、下記式 (VII)で表されるものである
[0092] [化 7]
[Si8(MgaLib)O20(OH)cF4.c]X— MX+ (V I I )
[0093] (式中、 0< a≤6、 0<b≤6、 4く a+b く 8、 0≤c<4、 x= 12— 2a— bである。また 、 Mは、ほとんど Naである。)合成へクトライトは、主な成分としてマグネシウム、ケィ素 、ナトリウム及び微量のリチウム、フッ素力も成り立つている。
[0094] 上記合成へクトライトは 3層構造をしており、層状構造における結晶構造各層は、厚さ 約 lnmの二次元小板よりなって 、る。そしてこの小板ユニットの中層に存在するマグ ネシゥム原子の一部が低原子価のリチウム原子と同型置換しており、その結果、小板 ユニットは負に帯電して 、る。乾燥状態ではこの負電荷はプレート面の格子構造外 側にある置換可能な陽イオンと釣り合っており、固相ではこれらの粒子はファンデル ワールスカにより互いに結合し平板の束を形成して!/、る。
[0095] このような合成へクトライトを水相に分散すると、置換可能な陽イオンが水和されて粒 子が膨潤を起こし、高速ディソルバー等の通常の分散機を用いて分散させると安定 なゾルを得ることができる。このように水相に分散された状態では小板は表面が負の 電荷となり、相互に静電気的に反発し、小板状の一次粒子にまで細分化された安定 なゾルになる。しかし、粒子濃度を増加したり、イオン濃度を増加した場合、表面負電
荷による反発力が減少して、負電荷を帯びた小板面に、正電荷を帯びた他の小板端 部が電気的に配向することが可能になり、いわゆるカードハウス構造を形成し、増粘 '性を呈するようになる。
[0096] 上記合成へクトライトの市販品としては、例えば、 Laporte Industries Ltd.製の 商品名でラボナイト B、 S、 RD、 RDS、 XLG、 XLS等を挙げることができる。 白色粉 末であり、水にカ卩えると容易にゾル (ラボナイト S、 RDS、 XLS)又はゲル (ラボナイト B 、 RD、 XLG)を形成するものである。また、他にコープケミカル社のルーセンタイト S WNも挙げることができる。これらの天然へクトライト、合成へクトライトは、単独で用い てもよく、 2種以上を併用してもよい。
[0097] 上記層状粘土鉱物は、ベントナイト(モンモリロナイト)を上記式 (III)で表されるアル キルトリアルコキシシランで表面処理したものであることが好ましい。これにより、上述 した効果を効果的に得ることができる。また、分散効率を向上させることができる。上 記式 (III)中の R3は、直鎖状、分岐状のいずれであってもよい。
[0098] 上記ベントナイト(モンモリロナイト)のアルキルトリアルコキシシランでの表面処理は、 精製ベントナイトにぉ 、て、ベントナイトの表面にある親水性水酸基にアルキルトリア ルコキシシランが付加し、部分的に表面を疎水化するものである。これにより、水分散 系中で表面処理した変性ベントナイトの分散粒子が、疎水性基による会合によって 塑性構造を形成し、系の見掛け粘度を顕著に増大させる。
[0099] 上記ベントナイト(モンモリロナイト)を上記式 (ΠΙ)で表されるアルキルトリアルコキシシ ランで表面処理したものの市販品としては、例えば、ベンゲル一 SH (ホージユン社製 )等を挙げることがでさる。
[0100] 上記ベンゲル SHは、従来のモンモリロナイトが水中で形成するカードノヽウス構造と 異なり、図 1に示すようなノツチワーク構造を形成するものである。このパッチワーク構 造は、モンモリロナイトの層状結晶粒子が平面に会合したものであるため、本発明の 表面調整剤中にお 、て、一段と優れた高 、粘性とチクソトロピー性を発揮させること ができる。即ち、上記ベントナイト (モンモリロナイト)を上記式 (III)で表されるアルキ ルトリアルコキシシランで表面処理したもののなかでも、このようなパッチワーク構造を 有するものは、上述したような効果をより発揮するため特に好ましいものである。
[0101] 上記表面調整剤における上記層状粘土鉱物の含有量は、下限 3ppm、上限 600pp mであることが好ましい。 3ppm未満であると、表面調整剤中のリン酸亜鉛粒子の沈 降防止効果を充分に得られないおそれがある。また、本発明の効果を得ることができ ないおそれがある。 600ppmを超えると、金属表面に吸着すること等が生じるため、 後の化成工程に影響を与えるおそれがある。上記下限は、 lOppmであることがより 好ましぐ上記上限は、 300ppmであることがより好ましい。
[0102] (D)機能付与剤
本発明の表面調整剤は、上記 (A)〜(C)成分に加え、更に (D)機能付与剤を含ん でいる。この機能付与剤を含有することにより、種々の課題を解決することができる。 <金属亜硝酸化合物 >
本発明の第 1の表面調整剤における機能付与剤は、 2価又は 3価の金属亜硝酸ィ匕 合物であり、その含有量が NO換算で 10〜500ppmである。
2
表面調整は、通常脱脂、水洗後の清浄な金属表面に施される処理であるため、表面 調整工程内での金属表面の酸化、腐食等の不具合が生じる場合があるが、 2価又は 3価の金属亜硝酸化合物を含有する場合には、表面調整後における金属表面の鲭 の発生を充分に抑制することができる。また、鲭の発生を抑制できる結果、化成処理 での化成性も大幅に向上させることができる。
[0103] 上記 2価又は 3価の金属亜硝酸化合物としては、 2価又は 3価の金属を含有する亜 硝酸塩であれば特に限定されず、例えば、亜硝酸亜鉛、亜硝酸銅、亜硝酸ニッケル や、亜硝酸マグネシウム、亜硝酸カルシウム、亜硝酸ストロンチウム、亜硝酸バリウム 等のアルカリ土類金属亜硝酸塩等を挙げることができる。なかでも、亜硝酸亜鉛、亜 硝酸カルシウムが好ましぐ亜硝酸亜鉛が特に好ましい。表面調整で亜硝酸亜鉛を 使用する場合には、化成処理工程でリン酸亜鉛化成皮膜を形成する際に、異種金 属が化成処理浴内に蓄積することが防止されるため、化成処理液の浴管理が容易と なる。また、表面調整後における金属表面の鲭の発生をより抑制することもできる。こ れらは、単独で用いてもよぐ 2種以上を併用してもよい。
[0104] 上記 2価又は 3価の金属亜硝酸化合物の含有量は、 NO換算で下限 10ppm、上限
2
500ppmであることが好ましい。上記範囲内であると、表面調整後の鲭びの発生を効
果的に防止することができる。 lOppm未満であると、防鲭性及び金属置換が良好に 見られないおそれがある。 500ppmを超えると、表面調整剤中にアルカリ成分を多量 に添加する必要があり、経済的でない。上記下限は、 40ppmであることがより好ましく 、上記上限は 250ppmであることがより好まし!/、。
[0105] また、本発明の第 2及び第 3の表面調整剤において、第 1の表面調整剤と同様の効 果を期待して、 2価又は 3価の金属亜硝酸ィ匕合物を含ませても構わない。この場合の 2価又は 3価の金属亜硝酸ィ匕合物添加についての説明は、第 1の表面調整剤にお ける説明がそのまま適用される。
[0106] <ゼータ電位調整剤 >
50mV以下のゼータ電位を有する本発明の第 2の表面調整剤は、リン酸亜鉛粒子 、カルボン酸基含有共重合体及び層状粘土鉱物を適当に選択してゼータ電位を調 節することができるものの、酸ィ匕亜鉛及び/又は水酸ィ匕ナトリウムをゼータ電位調整 剤として添加することが好ま 、。
なお、上記ゼータ電位は、コロイド科学の分野等において、コロイド粒子等の溶液中 にある物質(固体)表面の帯電状態を表すものとして、「ゼータ電位 微粒子界面の 物理化学」(サイエンティスト社、 1995年 1月 31日発行)等により公知である。具体的 には、紙パルプ、写真、塗料、油脂、セメント等の分野で、個々のコロイド溶液の凝集 や分散状態を、コロイド粒子のゼータ電位を測定して、これら溶液の種々の特性を評 価することが行われて 、るものである。
[0107] 本発明の表面調整剤のゼータ電位は、測定装置「PALS Zeta Potential Analy zer Ver. 2. 14 J (Brookhaven Instruments Corp.社製)を使用して、以下 の測定条件下で得られる値である。
[0108] 〔測定条件〕
(Measurement Parameters)
Zeta Potential Model = ¾moluchows y
Liquid = Aqueous
Temperature = 20. 0C°
Viscosity = 1. 002cPRefractive Index = 1. 331
(Instrument Parameters)
Sample Count Rate = 703kcps
Ref. Count Rate= 1430kcps
Wavelength =675. OnmField Frequency = 3. 00Hz
Voltage = 3. OOvolts
Electric Field=4. 20V/cm
[0109] 本発明の第 2の表面調整剤が酸ィ匕亜鉛 (ZnO)を含有することにより、表面調整剤の ゼータ電位を所望の値に制御することが容易になるため、鉄又は亜鉛系基材とアル ミニゥム系基材との接触部のアルミニウム系基材の部分に化成皮膜を良好に形成す ることができ、一般部及び接触部の化成皮膜量の差を小さくすることができる。また、 各種金属材料に、緻密な化成皮膜を形成することができる。また、アルミニウム系基 材、高張力鋼板に充分な量の化成皮膜を形成することができる。
[0110] 上記酸ィ匕亜鉛は粒子の形態で含有させることが好ましい。上記酸化亜鉛粒子は、 D
5
(体積 50%径)の平均粒径は、 3 μ m以下であることが好ましい。 D 力^ μ m以下で
0 50
ある酸ィ匕亜鉛粒子を使用することにより、本発明の効果を効率的に得ることができる。
[0111] 上記酸化亜鉛粒子の D は、下限が 0. 01 μ m、上限 3 μ mであることが好ましい。上
50
記範囲内であると、本発明の効果をより効率的に得ることができる。上記下限は、 0. 05 μ mであることがより好ましぐ上記上限は、 1 μ mであることがより好ましい。なお、 上記酸化亜鉛粒子の D の値は、上述のリン酸亜鉛粒子の D と同様にして得られる
50 50
値である。
[0112] 上記酸化亜鉛粒子の含有量は下限 0. 5ppm、上限 200ppmであることが好ましい。
上記範囲内であると、本発明の効果を良好に得ることができる。上記下限は、 lppm であることがより好ましぐ上記上限は、 lOOppmであることがより好ましい。
[0113] 一方、本発明の第 2の表面調整剤が水酸ィ匕ナトリウムを含有することにより、表面調 整剤のゼータ電位を所望の値に制御することが容易になるため、鉄又は亜鉛系基材 とアルミニウム系基材との接触部のアルミニウム系基材の部分に化成皮膜を良好に 形成することができ、一般部及び接触部の化成皮膜量の差を小さくすることができる 。また、各種金属材料に、緻密な化成皮膜を形成することができる。また、アルミ-ゥ
ム系基材、高張力鋼板に充分な量の化成皮膜を形成することができる。
[0114] 上記水酸化ナトリウムの含有量は下限 3ppm、上限 500ppmであることが好ましい。
上記範囲内であると、本発明の効果を良好に得ることができる。上記下限は、 5ppm であることがより好ましぐ上記上限は、 300ppmであることがより好ましい。
[0115] <ノ-オン又はァ-オン界面活'性剤 >
本発明の第 3の表面調整剤における機能付与剤は、ノ-オン又はァ-オン界面活性 剤である。ノ-オン又はァ-オン界面活性剤を含むことにより、鉄又は亜鉛系基材と アルミニウム系基材との接触部のアルミニウム系基材の部分に化成皮膜を良好に形 成することができ、一般部及び接触部の化成皮膜量の差を小さくすることができる。ま た、各種金属材料に、緻密な化成皮膜を形成することができる。また、アルミニウム系 基材、高張力鋼板に充分な量の化成皮膜を形成することができる。本発明の効果が 効率的に得られる点から、第 3の表面調整剤における機能付与剤はノ-オン界面活 性剤であることがより好まし 、。
[0116] 上記ノ-オン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、 ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ォキシエチレン ォキシプロピレンブロックコポリマー、ソルビタン脂肪酸エステル、ポリオキシェチレ ンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ダリ セリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアル キルァミン、アルキルアルカノードアミド、ノニルフエノール、アルキルノニルフエノール 、ポリオキシアルキレングリコール、アルキルアミンオキサイド、アセチレンジオール、 ポリオキシエチレンノニルフエニルエーテル、ポリオキシエチレンアルキルフエニルェ 一テル変性シリコーン等のシリコーン系界面活性剤、炭化水素系界面活性剤の疎水 基にある水素原子の少なくとも 1つがフッ素原子で置換されたフッ素系界面活性剤等 を挙げることができる。なかでも、本発明の効果をより得られる点から、ポリオキシェチ レンアルキルエーテル、ポリオキシアルキレンアルキルエーテルが好ましい。これらは 、単独で用いてもよぐ 2種以上を併用してもよい。
[0117] 上記ァニオン界面活性剤としては、例えば、脂肪酸塩、アルキル硫酸エステル塩、ァ ルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレ
ンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフヱ-ルエーテルジスルホ ン酸塩、ポリビスフエノールスルホン酸塩、アルキルリン酸塩、ポリオキシェチルアル キル硫酸エステル塩、ポリオキシェチルアルキルァリル硫酸エステル塩、アルファオ レフインスルホン酸塩、メチルタウリン酸塩、ポリアスパラギン酸塩、エーテルカルボン 酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルリン酸ェ ステル、アルキルエーテルリン酸エステル塩等を挙げることができる。なかでも、本発 明の効果をより得られる点から、アルキルエーテルリン酸エステル塩が好ましい。これ らは、単独で用いてもよぐ 2種以上を併用してもよい。
[0118] 上記ァ-オン界面活性剤は、アンモニア又はアミン系中和剤で中和させて用いること ができる。上記アミン系中和剤としては、例えば、ジェチルァミン (DEA)、トリェチル ァミン(TEA)、モノエタノールァミン(META)、ジエタノールァミン(DETA)、トリエタ ノールァミン(TETA)、ジメチルエタノールァミン(DMEA)、ジェチルエタノールアミ ン(DEEA)、イソプロピルエタノールァミン(IPEA)、ジイソプロパノールァミン(DIP A)、 2—アミノー 2—メチルプロパノール (AMP)、 2—(ジメチルァミノ)ー2—メチル プロパノール(DMAMP)、モルホリン(MOR)、 N—メチルモルホリン(NMM)、 N— ェチルモルホリン(NEM)等を挙げることができる。なかでも、 2—ァミノ— 2—メチル プロパノール (AMP)を使用することが好ましい。これらは、単独で用いてもよぐ 2種 以上を併用してもよい。
[0119] 上記表面調整剤は、上記ノ-オン又はァ-オン界面活性剤の含有量が下限 3ppm、 上限 500ppmであることが好ましい。上記範囲内であると、本発明の効果を良好に得 ることができる。上記下限は、 5ppmであることがより好ましぐ上記上限は、 300ppm であることがより好ましい。
[0120] 上記ノ-オン界面活性剤は、 HLB値が 6以上のものであることが好ましい。これにより 、本発明の効果をより良好に得ることができる。上記下限は、 7であることがより好まし ぐ上記上限は、 15であることがより好ましい。上記 HLB値は、界面活性剤の水と油 への親和性の程度を表す値である。本発明の HLB値は、下記の一般式 (グリフィン 法)に基づいて計算したものである。
HLB = 20 X (Mw/M)
(Mw:親水基部分の重量、 M :界面活性剤の分子量)
[0121] その他の成分
本発明の表面調整剤は、上記成分以外に、リン酸亜鉛粒子を分散させる分散媒を含 有させることができる。上記分散媒としては、水を 80質量%以上含む水性媒体が挙 げられる他、水以外の媒体としては各種有機溶剤を用いることができるが、有機溶剤 の含有量は低く抑えるのが良ぐ好ましくは水性媒体の 10質量%以下、更に好ましく は 5質量%以下とする。本発明により水以外の分散媒を全く含まない分散液とするこ とちでさる。
[0122] 更にリン酸亜鉛粒子を安定させ、次に行われるリン酸塩皮膜化成処理工程において 微細な化成皮膜を形成する目的でソーダ灰等のアルカリ塩が添加されてもよい。 本発明の表面調整剤は、必要に応じて、従来公知の増粘剤、高分子分散剤、カップ リング剤等を含んでも良い。
[0123] PH
本発明の表面調整剤の pHは、下限 3、上限 12である。 pHが 3未満であると、リン酸 亜鉛粒子が溶解しやすくなり、不安定となり、次工程に影響を与えるおそれがある。 1 2を超えると、次工程の化成浴の pH上昇を招くことにより化成不良の影響が見られる おそれがある。本発明の第 1および第 3の表面調整剤における pHは、上記下限は 6 であることが好ましぐ上記上限は、 11であることが好ましい。
[0124] 本発明の第 2の表面調整剤の pHは、下限 8、上限 11である。上記範囲内であると、 上述した本発明の効果を得ることができる。 pHが 8未満であると、水溶液中の [H + ] 濃度が上昇し、粒子表面の負電荷を奪うため、ゼータ電位を 50mV以下に維持で きないおそれがある。 11を超えると、次工程の化成浴の pH上昇を招くおそれがある 。上記下限は、 8. 5であることがより好ましぐ上記上限は、 10. 5であることがより好 ましい。
[0125] 製造方法
本発明の表面調整剤は、例えば、以下の方法により製造することができる。
上記リン酸亜鉛粒子は、例えば、原料として使用するリン酸亜鉛を用いて得ることが できるものである。原料のリン酸亜鉛は Zn (PO ) ·4Η Οで表されるものであり、一
般に無色、結晶性の固体であるが、白色の粉末状態の市販品を入手可能なもので ある。
[0126] 上記原料のリン酸亜鉛の製造方法としては、例えば、硫酸亜鉛とリン酸水素ニナトリ ゥムの希釈液をモル比 3: 2で混合加温すると、リン酸亜鉛の四水和物が結晶性沈殿 物として生成する。また、希リン酸水溶液と酸化亜鉛又は炭酸亜鉛とを反応させてもリ ン酸亜鉛の四水和物を得ることができる。四水和物の結晶は斜方晶系で、 3種の変 態がある。加熱すると、 100°Cで二水和物、 190°Cで一水和物、 250°Cで無水和物と なる。本発明におけるリン酸亜鉛は、これら四水和物、二水和物、一水和物、無水和 物のいずれも利用可能である力 一般に入手容易な四水和物をそのまま用いれば 足りる。
[0127] また、上記原料のリン酸亜鉛としては、各種の表面処理を行ったものを用いてもよい 。例えば、シランカップリング剤、ロジン、シリコーン化合物、ケィ素アルコキシドゃァ ルミ-ゥムアルコキシド等の金属アルコキシドで表面処理したものでもよい。
[0128] 亜鉛ィ匕合物とリン酸とを反応させる際にシリカとポリリン酸を添加することによって微粒 子化したリン酸亜鉛を得られること (特公昭 49— 2005号公報等)、リン酸亜鉛を各種 の金属化合物と機械的手段で湿式練和しメカノケミカル的に反応を完結させることで リン酸亜鉛中の亜鉛の一部をマグネシウム、カルシウム、アルミニウム等の金属で置 換できること (特開平 4— 310511号 Z公報等)が知られている力 例えば、このような 手段によりシリカ、カルシウム、アルミニウム等のリン、酸素、亜鉛以外の成分が導入 されたものや、ケィ酸変性リン酸亜鉛として市販されるものであってもよい。この場合、 ZnO換算で 25質量%以上、 P O換算で 15質量%以上のリン酸亜鉛を含んでいる
2 5
ことが好ましい。
[0129] 上記原料のリン酸亜鉛の形状としては特に限定されず、任意の形状のものを使用す ることができる。市販品は白色の粉末状が一般的であるが、粉末の形状は、微粒子 状、板状、鱗片状等、いずれの形状でも構わない。上記原料のリン酸亜鉛の粒径も 特に限定されないが、通常、平均粒径が数 m程度の粉末である。特に塩基性付与 の処理をすることにより緩衝作用を高めた製品等、防鲭顔料として市販されているも のが好適に使用される。後述するように、本発明ではリン酸亜鉛粒子が微細に分散し
た安定な分散液を調製することができるので、原料のリン酸亜鉛としての一次粒径や 形状には左右されず、安定した表面処理効果を得ることができるのである。
[0130] 上記原料のリン酸亜鉛をあら力じめ分散液とすることによって微細に分散させて用い ることが好ま U、。リン酸亜鉛粒子を水性媒体中に分散させた水性分散液の調製方 法は限定されないが、好ましくは、水又は有機溶媒等の上述した分散媒中に原料の リン酸亜鉛を配合し、上述した (B)水溶性高分子の存在下で湿式粉砕を行うことによ り達成できる。 (D)機能付与剤としての酸化亜鉛粒子を含む表面調整剤を調製する 場合には、酸ィ匕亜鉛もリン酸亜鉛と同時に分散させることが好ましい。なお、上記リン 酸亜鉛粒子の水性分散液を得るにあたっては、分散液の調製時に原料のリン酸亜 鉛を水性媒体に配合して湿式粉砕を行うのが工程上好都合であるが、湿式粉砕を水 性媒体以外の分散媒中で行って力 溶媒置換を行って調製してもよい。
[0131] 上記水性分散液の調製において、上記原料のリン酸亜鉛の配合量は、分散液 100 質量%中、通常、下限 0. 5質量%、上限 50質量%であることが好ましい。 0. 5質量 %未満であると、リン酸亜鉛の含有量が少なすぎるため分散液を用いて得られる表 面調整剤の効果が充分に得られないおそれがある。 50質量%を超えると、湿式粉砕 により均一で微細な粒度分布を得ることが困難となり、また、微細な分散状態を形成 するのが困難となるおそれがある。上記下限は、 1質量%であることがより好ましぐ上 記上限は、 40質量%であることがより好ましい。
[0132] また、上記水性分散液の調製にお!、て、上記 (B)水溶性有機高分子の添加量は、 分散液 100質量%中、下限 0. 1質量%、上限 50質量%であることが好ましい。 0. 1 質量%未満であると、分散性が充分でないおそれがある。 50質量%を超えると、余 剰な (B)水溶性有機高分子等同士の相互作用により分散性が悪くなる場合があり、 また、分散が充分であったとしても、経済的には有利ではない。上記下限は、 0. 5質 量%であることがより好ましぐ上記上限は、 20質量%であることがより好ましい。
[0133] 上記リン酸亜鉛粒子が D を 3 m以下に微細に分散した分散液を得る方法は限定
50
されないが、好ましくは、分散媒に原料のリン酸亜鉛を 0. 5〜50質量%と、上記 (B) 水溶性有機高分子を 0. 1〜50質量%となるように存在させて、湿式粉砕する。上記 湿式粉砕の方法は特に限定されず、一般的な湿式粉砕の手段を用いれば良ぐ例
えば、ディスク型、ピン型等に代表されるビーズミル、高圧ホモジェナイザー、超音波 分散機等に代表されるメディアレス分散機等を用いることができる。
[0134] 上記湿式粉砕において、リン酸亜鉛粒子の D をモニターすることによって、過分散
90
の現象を防止し、凝集や増粘、微細粒子同士の凝集といった現象を防止することが できる。本発明では、 D を 4 m以下となるようにすることが好ま U、。また、過分散
90
を生じな!/ヽ程度の配合及び分散条件を選択することが望ま ヽ。
[0135] 上述した分散液の調製方法により、水性媒体中でのリン酸亜鉛の D を 3 m以下に
50
調節することができ、安定性に優れ、表面調整剤として優れた性能を有する水性分 散液を得ることができる。 D は通常、 0. 01〜3 mの範囲で所望の程度に調節でき
50
る。
[0136] 上述した分散液の調製方法によって水性分散液を調製することにより、 3 mを超え るリン酸亜鉛であっても D 力^ μ m以下の状態で液中に分散することができる。数十
50
μ mの一次粒子径を有するリン酸亜鉛であっても同様である。これは、もともと一次粒 子径の小さなリン酸亜鉛を用いなくとも、上述した方法に従って湿式粉砕することによ り顔料の一次粒子径を小さくすることができることも意味して 、る。上述の方法によれ ば、水性分散液中のリン酸亜鉛粒子の D を 3 μ m以下、更には 1 μ m以下、更には
50
0. 2 μ m以下とすることもできるのである。
[0137] 上述のようにして得られた分散液は、液中のリン酸亜鉛粒子の D を 3 m以下で用
50
途に合わせて調節することができ、分散安定性に優れ、表面調整剤として優れた性 能を有する水性分散液である。
[0138] 上記湿式粉砕法により、 D を超える粒径の粒子として示される粗大粒子の割合を低
90
減できるため、特に、分散径の分布として D 力 /z m以下、更には 2. 以下、
90
更には 0. 3 m以下の、粗大粒子の割合が低減された分散径の分布のシャープな 分散液とすることができる。このため、微細な分散径でリン酸亜鉛が分散し、かつ分 散状態が極めて安定しているものと推測される。また、粗大粒子の割合が低いことか ら液中のリン酸亜鉛が効率的に結晶核の生成に寄与すること、また分散径の分布が シャープで粒径が均一であることから、表面調整処理工程においては、より均一な結 晶核が形成され、引き続く化成処理により均一なリン酸亜鉛結晶の形成をもたらし、
得られる化成処理鋼板の表面性状が均一で優れたものとなること、更にこのことが複 雑な構造の部材の袋部や黒皮鋼板のような難化成鋼板に対する処理性を向上して いることが推測される。
[0139] なお、分散液中のリン酸亜鉛の D 、D は、レーザードップラー式粒度分析計を用
50 90
、て粒度分布測定を行 、求めることができる。
上記水性分散液は、特に、リン酸亜鉛を 10質量%以上、更には 20質量%以上、更 には 30質量%以上まで配合した高濃度の水性分散液を得ることもできる。このため、 高!ヽ性能を発揮する表面調整剤を容易に調製することができる。
[0140] 本発明の表面調整剤は、例えば、上述のようにして得られた (A) D 力^ / z m以下で
50
あるリン酸亜鉛粒子、及び、(B)水溶性高分子を含む水性分散液と、所定量の (C) 層状粘土鉱物、(D)機能付与剤、及び、その他の成分とを混合することによって調製 することができる。上記混合方法は特に限定されず、例えば、水性分散液にそれ以 外の成分を添加して混合してもよ!ヽし、水性分散液の調製中にそれ以外の成分が配 合されてもよい。
[0141] ^ m ^
本発明の表面調整方法は、上記表面調整剤を金属表面に接触させる工程からなる ものである。これにより、鉄、亜鉛、アルミニウム系等の金属表面にリン酸亜鉛の微細 粒子を良好に付着させることができ、化成処理工程で良好な化成皮膜を形成させる ことができる。
本発明の表面調整方法において、先の第 1の表面調整剤を用いた場合には、各種 金属材料の表面調整を行った後の金属材料にぉ 、て、鲭びが発生することを防止 することができる。
[0142] 一方、本発明の表面調整方法において、先の第 2及び第 3の表面調整剤を用いた場 合には、鉄又は亜鉛系基材とアルミニウム系基材との接触部のアルミニウム系基材の 部分に化成皮膜を良好に形成することができ、一般部及び接触部の化成皮膜量の 差を小さくすることができる。また、各種金属材料に、緻密な化成皮膜を形成すること ができる。更に、アルミニウム系基材、高張力鋼板に充分な量の化成皮膜を形成する ことができる。
[0143] 上記表面調整方法における表面調整剤と金属表面とを接触させる方法は、特に限 定されず、浸漬、スプレー等の従来公知の方法を適宜採用することができる。
上記表面調整が施される金属材料としては特に限定されず、一般にリン酸塩化成処 理を施す種々の材料、例えば、鉄鋼等の鉄系基材、亜鉛めつき鋼板等の亜鉛系基 材、アルミニウム又はアルミニウム合金等のアルミニウム系基材、高張力鋼板、マグネ シゥム合金等に適用可能である。また、鉄鋼又は亜鉛めつき鋼板とアルミニウム又は アルミニウム合金との接触部にも好適に適用することができる。
[0144] 本発明の表面調整方法において、第 3の表面調整剤を用いる場合、上記工程は、 Z nとして 3mgZm2以上のリン酸亜鉛を吸着させるものであることが好まし!/、。 3mg/ m2以上の吸着量である場合、上述した本発明の効果をより良好に得ることができる。 上記工程は、 3. 5〜20mg/m2のリン酸亜鉛を吸着させる工程であることがより好ま しい。
[0145] また、本発明の表面調整剤は脱脂兼表面調整工程に使用することができる。これに より、脱脂処理後の水洗工程を省略することができる。上記脱脂兼表面調整工程で は、洗浄力を高めるために公知の無機アルカリビルダー、有機ビルダー、界面活性 剤等を添加しても構わない。また、公知のキレート剤、縮合リン酸塩等を添加しても構 わない。上記表面調整において、表面調整剤と金属表面との接触時間、表面調整剤 の温度は特に限定されず、従来公知の条件で行うことができる。
[0146] 上記表面調整を行い、次いでリン酸塩化成処理を行ってリン酸塩化成処理鋼板を製 造することができる。
上記リン酸塩化成処理方法は特に限定されず、浸漬 (ディップ)処理、スプレー処理 、電解処理等の種々の公知の方法を適用することができる。これらを複数組み合わ せてもよい。析出させるリン酸塩皮膜に関しても、リン酸塩であれば特に限定されず、 リン酸亜鉛、リン酸鉄、リン酸マンガン、リン酸亜鉛カルシウム等、何ら制限されるもの ではない。上記リン酸塩ィ匕成処理において、化成処理剤と金属表面との接触時間、 化成処理剤の温度は特に限定されず、従来公知の条件で行うことができる。
[0147] 上記表面調整及び上記化成処理を行った後、更に塗装を行うことにより塗装鋼板を 製造することができる。上記塗装方法は電着塗装が一般的である。塗装に用いられ
る塗料は特に限定されず、一般にリン酸塩化成処理鋼板の塗装に用いられる種々の もの、例えばエポキシメラミン塗料、カチオン電着塗料とポリエステル系中塗塗料とポ リエステル系上塗塗料等を挙げることができる。なお、化成処理後、塗装に先だって は洗浄工程を行う t ヽつた公知の方法が採用される。
[0148] 本発明の第 1の表面調整剤は、 D 力 ¾ m以下であるリン酸亜鉛粒子と、特定の力
50
ルボン酸基含有共重合体、リン酸エステル、ポリエステル系榭脂、ホスホン酸基含有 榭脂及びポリアミン系榭脂からなる群より選択される少なくとも 1種の水溶性有機高分 子と、層状粘土鉱物と、特定量の 2価又は 3価の金属亜硝酸化合物とを含有する pH 3〜12のもので、金属のリン酸塩化成処理前に使用されるものである。このため、上 記表面調整剤を用いて、各種金属材料の表面調整を行った場合、表面調整後の金 属材料において、鲭びが発生することを防止することができ、その結果、優れた性能 を有する化成皮膜を得ることができる。また、上記表面調整剤は、浴中での分散安定 性にも優れている。
[0149] 本発明の第 2の表面調整剤は、 D 力 ¾ m以下であるリン酸亜鉛粒子、特定のカル
50
ボン酸基含有共重合体及び層状粘土鉱物を含有する pH8〜l lのものであり、かつ 、ゼータ電位が 50mV以下のもので、金属のリン酸塩化成処理前に使用されるも のである。これにより、鉄又は亜鉛系基材とアルミニウム系基材とが接触している部分 を有する基材に対して、上記表面調整剤によって表面調整を施し、次いで化成処理 を行った場合に、接触部のアルミニウム系基材の部分に化成皮膜を良好に形成する ことができ、一般部及び接触部の化成皮膜量の差を小さくすることができ、両部位に 均一に化成皮膜を形成することができる。また、各種金属材料に、緻密な化成皮膜を 形成することができる。また、アルミニウム系基材、高張力鋼板に充分な量の化成皮 膜を形成することができる。更に、上記表面調整剤は、浴中での分散安定性にも優 れている。
[0150] 本発明の第 3の表面調整剤は、 D 力 ¾ m以下であるリン酸亜鉛粒子、特定のカル
50
ボン酸基含有共重合体、層状粘土鉱物及びノ-オン又はァ-オン界面活性剤を含 有する pH3〜12のもので、金属のリン酸塩化成処理前に使用されるものである。こ れにより、鉄又は亜鉛系基材とアルミニウム系基材とが接触している部分を有する基
材に対して、上記表面調整剤によって表面調整を施し、次いで化成処理を行った場 合に、接触部のアルミニウム系基材の部分に化成皮膜を良好に形成することができ、 一般部及び接触部の化成皮膜量の差を小さくすることができ、両部位に均一に化成 皮膜を形成することができる。また、各種金属材料に、緻密な化成皮膜を形成するこ とができる。また、アルミニウム系基材、高張力鋼板に充分な量の化成皮膜を形成す ることができる。更に、上記表面調整剤は、浴中での分散安定性にも優れている。 発明の効果
[0151] 本発明の表面調整剤は、上述した構成よりなるので、表面調整後の鲭びの発生を防 止し、良好な化成皮膜を形成することができ、分散安定性にも優れている。また、各 種金属材料上に、緻密な化成皮膜を形成することができる。更に、アルミニウム合金 、高張力鋼板に適用した場合に充分な化成皮膜を形成することができ、処理浴中で の分散安定性に優れ、化成処理中のアルミニウム合金上の電食を抑制することがで きる。
図面の簡単な説明
[0152] [図 1]ノツチワーク構造を有するアルキルトリアルコキシシラン変性ベントナイトの模式 図である。
[図 2]実施例で使用した電食アルミニウム試験板の概略図である。
符号の説明
[0153] 1 電食部
2 亜鉛めつき鋼板
3 アルミニウム板
4 一般部
5 クリップ
発明を実施するための最良の形態
[0154] 以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施 例のみに限定されるものではない。また実施例中、「部」、「%」は特に断りのない限り 「質量部」、「質量%」を意味する。
[0155] 実窗列 A_ 1 余厲新硝酸化合物を機能付与剤 して含す e表麵周整剤の調製 水に、合成へクトライト「ラポナイト RD」(Laporte Industries Ltd.製)を添カ卩し、デ イスパーを使用して 3000rpmで 30分間攪拌してプレゲルを得た。得られたプレゲル に、市販の「フォスファノール RS— 610」(ポリオキシエチレンアルキルリン酸エステル 、東邦化学工業社製)、リン酸亜鉛粒子を添加し、ジルコユアビーズで所定粘度まで 分散した。更に、得られた分散液に亜硝酸カルシウムを添加して水で希釈し、水酸化 ナトリウムで pHを調整して表面調整剤を得た。
[0156] なお、合成へクトライト、ポリオキシエチレンアルキルリン酸エステル、リン酸亜鉛粒子 、亜硝酸カルシウム、水酸ィ匕ナトリウムの添加量、得られた表面調整剤の pH、リン酸 亜鉛粒子の D (測定方法は、以下の通り)は、表 1に示した通りである。
50
[0157] 〔リン酸亜鉛粒子の粒径の測定〕
光回折式粒度測定装置(「LA— 500」、堀場製作所社製)を用いて粒度分布測定を 行い、 D (分散体の平均径)をモニターし、 D を測定した。
50 50
[0158] 実施例 A— 2〜A— 5及び比較例 A— 1〜A— 5
表 1に示したように、層状粘土鉱物、水溶性有機高分子、リン酸亜鉛粒子、金属亜硝 酸化合物の種類や添加量、得られた表面調整剤の pH、リン酸亜鉛粒子の D を変
50 更した以外は、実施例 1と同様にして表面調整剤を得た。
使用した市販品を以下に示した。
天然へクトライト「: BENTON EW」(ELEMENTIS社製)
モンモリロナイトのアルキルトリアルコキシシラン表面処理物「ベンゲル— SH」(ホージ ユン社製)
表面処理されていないモンモリロナイト「OPTIGEL CK」(ズードケミー社製) カルボン酸基含有共重合体「ァロン A6020」(アクリル酸 40質量% - 2-アクリルアミ ドー 2—メチルプロパンスルホン酸 60質量%、数平均分子量 3800、重量平均分子 量 6700、東亜合成社製)
ポリエステル系榭脂「Disperbykl90」(ビックケミ一社製)
ホスホン酸基含有榭脂「SNデイスパーサント 2060」(サンノプコ社製)ポリアミン 系榭脂「KZ— 125K」(セン力社製)
なお、表 1において、金属亜硝酸化合物の添加量は、 NO換算での含有量である。
2
[0159] 表 rif調整後の饍びの発牛.の評価
予め脱脂処理した冷延鋼板(SPC) (70mm X I 50mm X O. 8mm)を、実施例及び 比較例で得られた表面調整剤に室温で 2分間浸漬処理し、次いで液きりした。鲭び の発生状態を皮膜上に点サビが発生して 、る割合で評価した。結果を表 1に示した
[0160] 〔試験板の作成〕
冷延鋼板(SPC) (70mm X I 50mm X O. 8mm)、アルミニウム板(# 6000系) (70 mm X 150mm X O. 8mm)、亜鉛めつき鋼板(GA) (70mm X 150mm X O. 8mm) のそれぞれに、サーフクリーナー EC92 (日本ペイント社製脱脂剤)を使用して、 40°C で 2分間脱脂処理し、次いで、実施例及び比較例で得られた表面調整剤を用いて、 室温で 30秒間表面調整処理した。続いて、それぞれの金属板に、リン酸亜鉛処理液 (日本ペイント社製「サーフダイン SD6350」)を用いて浸漬法で 35°C、 2分間化成処 理し、水洗、純水洗、乾燥して試験板を得た。
[0161] 〔評価試験〕
下記の方法により評価を行 、、結果を表 1に示した。
リン のィ [^' (化 蹲皙
(1) SPC試験板の化成皮膜質量の測定
試験板を 75°Cに加温した三酸ィ匕クロムの 50gZl溶液中に 5分間浸漬して化成皮膜 を剥離した。得られた試験板の質量を A ( とし、上記方法で試験板から化成皮膜を 剥離した後との質量を B ( とし、これらの差 (A— B) (g)を、試験板の表面積で割つ た値として求めた。
[0162] (2)アルミニウム試験板及び GA試験板の化成皮膜質量の測定
蛍光 X線測定装置「XRF— 1700」(島津製作所社製)を使用して化成皮膜質量を測 し 7こ。
[0163] (3)結晶サイズの測定
各試験板のリン酸亜鉛ィヒ成皮膜を走査型電子顕微鏡 (SEM)「JSM5600」で観察し た(1500倍)。それにより得られた結晶サイズを表 1に示した。
[0164] [表 1]
[0165] 本発明の第 1の表面調整剤を用いた場合、表面調整後の鲭びの発生を防止すること
が可能であった。また、冷延鋼板、アルミニウム板、亜鉛めつき鋼板に形成されたィ匕 成皮膜は、すべて充分な皮膜量であり、緻密な皮膜であった。
[0166] 実施例 B— 1 酸化新鉛及び/又は 7k酸化ナトリウムを機能付与剤 して含む表而 調整剤の調製
水に、天然へクトライト「: BENTON EW」(ELEMENTIS社製)を添カ卩し、ディスパ 一を使用して 3000rpmで 30分間攪拌してプレゲルを得た。得られたプレゲルに、巿 販の「ァロン A6020」(アクリル酸 40質量0 /0 - 2-アクリルアミドー 2—メチルプロパン スルホン酸 60質量%のカルボン酸基含有共重合体、数平均分子量 3800、重量平 均分子量 6700、東亜合成社製)、リン酸亜鉛粒子、酸ィ匕亜鉛粒子を添加し、ジルコ 二ァビーズで所定粘度まで分散した。更に、得られた分散液を水で希釈し、水酸ィ匕 ナトリウムで pHを調整して表面調整剤を得た。なお、天然へクトライト、カルボン酸基 含有共重合体、リン酸亜鉛粒子、酸化亜鉛、水酸ィ匕ナトリウムの添加量、得られた表 面調整剤の pH、リン酸亜鉛粒子の D は、表 2に示した通りである。次に、得られた
50
表面調整剤のデータ電位を先に示した測定方法によって測定した。得られたゼータ 電位の値を表 2に示した。
[0167] 実施例 B— 2〜: B— 5及び比較例 B— 1〜: B— 6
表 2に示したように、天然へクトライト、カルボン酸基含有共重合体、リン酸亜鉛粒子、 酸化亜鉛、水酸ィ匕ナトリウムの添加量、得られた表面調整剤の pH、リン酸亜鉛粒子 の D を変更した以外は、実施例 B—1と同様にして表面調整剤を得た。また、得られ
50
た表面調整剤のゼータ電位も同様に測定し、測定値を表 2に示した。なお、比較例 B
— 1〜B— 3については、アルカリ成分として、炭酸ナトリウムを添加して調整した。
[0168] 比較例 B— 7
日本ペイント社製表面調整剤「サーフファイン 5N— 8」(Ti系)を用い、所定の濃度 (0
. 1質量%希釈液)となるように水を加えて調整した。
[0169] 〔試験板の作成 1〕
実施例 Aシリーズの「試験板の作成」において、鋼板として更に高張力鋼板(70mm
X 150mm X l. 0mm)を追加した以外は同様にして行った。
[0170] 〔試験板の作成 2〕
「試験板の作成 1」と同様に、表面調整処理したアルミニウム板及び亜鉛めつき鋼板 を作成し、表面調整処理後のアルミニウム板と亜鉛めつき鋼板とをクリップにて接続し た。次いで、接続した鋼板に対して、「試験板の作成 1」と同様に化成処理、水洗、純 水洗、乾燥して試験板を得た。
[0171] 〔評価試験〕
下記の方法により評価を行い、結果を表 2に示した。
リン酸亜鉛皮膜の化成性 (化成皮膜質量 (CZW) )
(1) SPC試験板及び高張力鋼板試験板の化成皮膜質量の測定
(2)アルミニウム試験板及び GA試験板の化成皮膜質量の測定
実施例 Aシリーズにおける評価試験と同様にして行った。
[0172] (3)電食アルミニウム試験板の化成皮膜質量の測定
亜鉛めつき鋼板と接続して ヽた部位を電食部 (接触部)、亜鉛めつき鋼板と接続して いない部位を一般部として、蛍光 X線測定装置「XRF— 1700」(島津製作所社製) にて測定した。なお、電食アルミニウム試験板の概略図を図 2に示した。
[0173] (4)電食部 (接触部)及び一般部の化成皮膜量比 (八 匕)
上記によって測定された一般部における化成皮膜量 Z電食部における化成皮膜量 の値を算出した。
(5)結晶サイズの測定
実施例 Aシリーズにおける評価試験と同様にして行った。
[0174] [表 2]
( ) 結晶サイス'
[0175] 本発明の第 2の表面調整剤を使用した場合には、アルミニウム板と亜鉛めつき鋼板と の接触部におけるアルミニウム板の部分にも充分に化成皮膜が形成されており、一 般部及び接触部に形成される皮膜量の差が小さかった。また、冷延鋼板、アルミ-ゥ ム板、亜鉛めつき鋼板、高張力鋼板のすべてに対して、緻密な化成皮膜が形成され ていた。
[0176] 実施例 C 1 ノニオン又はァニオン界 rif活件剤を機能付与剤 して含す e表 rif調整 水に、天然へクトライト「: BENTON EW」(ELEMENTIS社製)を添カ卩し、ディスパ 一を使用して 3000rpmで 30分間攪拌してプレゲルを得た。得られたプレゲルに、巿 販の「ァロン A6020」(アクリル酸 40質量0 2 アクリルアミドー 2 メチルプロパン スルホン酸 60質量%のカルボン酸基含有共重合体、数平均分子量 3800、重量平 均分子量 6700、東亜合成社製)、リン酸亜鉛粒子を添加し、ジルコユアビーズで所 定粘度まで分散した。更に、得られた分散液に界面活性剤「アデ力トール SO— 135 」(合成アルコール系エチレンオキサイド、プロピレンオキサイド付加、旭電化工業社 製)を添加して水で希釈し、水酸化ナトリウムで pHを調整して表面調整剤を得た。 なお、天然へクトライト、カルボン酸基含有共重合体、リン酸亜鉛粒子、界面活性剤、 水酸化ナトリウムの種類や添加量、得られた表面調整剤の pH、リン酸亜鉛粒子の D
5 は、表 3に示した通りである。
0
[0177] 実施例 C 2〜C 5及び比較例 C 1〜C 4
表 1に示したように、天然へクトライト、カルボン酸基含有共重合体、リン酸亜鉛粒子、 界面活性剤の添加量、得られた表面調整剤の pH、リン酸亜鉛粒子の D を変更した
50 以外は、実施例 C—1と同様にして表面調整剤を得た。
使用した市販品の界面活性剤を以下に示した。
「ニューコール 564」(合成アルコール系エチレンオキサイド、プロピレンオキサイド付 カロ、 日本乳化剤社製)
「アデ力トール LA—765B」(天然アルコール系エチレンオキサイド、プロピレンォキ サイド付加、旭電化工業社製)
「アデ力ノール B— 4009」(特殊ポリエーテル系エチレンオキサイド、プロピレンォキ
サイド付加、旭電化工業社製)
「ニューコール 1120— PS」(アルキルエーテルリン酸エステル、 日本乳化剤社製) 「アデカミン SF— 101」(カチオン系界面活性剤、旭電化工業社製)
[0178] 〔試験板の作成 1〕
〔試験板の作成 2〕
それぞれ実施例 Aシリーズおよび Bシリーズ試験板の作成方法に基づいて行った。
[0179] 〔評価試験〕
下記の方法により評価を行い、結果を表 3に示した。
リン酸亜鉛皮膜の化成性 (化成皮膜質量 (CZW) )
(1) SPC試験板及び高張力鋼板試験板の化成皮膜質量の測定
(2)アルミニウム試験板及び GA試験板の化成皮膜質量の測定
(3)電食アルミニウム試験板の化成皮膜質量の測定
(4)電食部 (接触部)及び一般部の化成皮膜量比 匕)
(5)結晶サイズの測定
それぞれ、実施例 Aシリーズ又は Bシリーズにおける評価試験と同様にして行った。
[0180] (6) Znとしての吸着量
表面調整処理浴に浸漬後、 50°Cで乾燥し、蛍光 X線測定装置「XRF— 1700」(島 津製作所社製)を使用して測定を行った。
[0181] [表 3]
( ) 結晶サイス'
[0182] 本発明の第 3の表面調整剤を使用した場合には、アルミニウム板と亜鉛めつき鋼板と の接触部におけるアルミニウム板の部分にも充分に化成皮膜が形成されており、一 般部及び接触部に形成される皮膜量の差が小さかった。また、冷延鋼板、アルミニゥ ム板、亜鉛めつき鋼板、高張力鋼板のすべてに対して、緻密な化成皮膜が形成され ていた。これは、表面調整において、 Znとしての吸着量を多く調整することができた ためであると推察された。
産業上の利用可能性
[0183] 本発明の表面調整剤は、自動車車体、家電製品等に使用されている各種金属材料 に対して、好適に使用することができるものである。
Claims
(式中、 R1は、炭素数 8〜30のアルキル基又はアルキルフエノール基である。 1は、 0 又は 1である。 mは、 1〜20である。 nは、 1、 2又は 3である。 )
若しくは下記式 (Π) :
(式中、 hは、 2〜24の整数である。 iは、 1又は 2である。 )
で表されるリン酸エステル、
(3)ポリエステル榭脂、
(4)ホスホン酸基含有榭脂、並びに、
(5)ポリアミン系榭脂からなる群より少なくとも 1種を選択されるものであり、
前記 (D)機能付与剤が、 2価又は 3価の金属亜硝酸ィ匕合物であって、その含有量が NO換算で 10〜500ppmである請求項 1記載の表面調整剤。
2
[3] 前記 (B)水溶性有機高分子が、
(メタ)アクリル酸、マレイン酸、無水マレイン酸、ィタコン酸及び無水ィタコン酸からな る群より選択される少なくとも 1種 50質量%未満の量と、前記カルボン酸基含有単量 体と共重合可能なその他の単量体 50質量%を超える量とを含有する単量体組成物 を共重合して得られるカルボン酸基含有共重合体であり、
前記 (D)機能付与剤が、酸ィ匕亜鉛及び Z又は水酸ィ匕ナトリウムであって、 ゼータ電位が 50mV以下、かつ、 pHが 8〜: L 1である請求項 1記載の表面調整剤。
[4] 前記 (B)水溶性有機高分子が、
(メタ)アクリル酸、マレイン酸、無水マレイン酸、ィタコン酸及び無水ィタコン酸からな る群より選択される少なくとも 1種 50質量%未満の量と、前記カルボン酸基含有単量 体と共重合可能なその他の単量体 50質量%を超える量とを含有する単量体組成物 を共重合して得られるカルボン酸基含有共重合体であり、
前記 (D)機能付与剤が、ノニオン又はァニオン界面活性剤である請求項 1記載の表 面調整剤。
[5] 前記カルボン酸基含有単量体と共重合可能なその他の単量体は、スルホン酸単量 体及び Z又はスチレンを含有するものである請求項 2、 3又は 4記載の表面調整剤。
[6] カルボン酸基含有共重合体は、(メタ)アクリル酸 50質量%未満の量と、 2 (メタ)ァ クリルアミドー 2 メチルプロパンスルホン酸及び Z又はァリルスルホン酸の合計量 5 0質量%を超える量とを含有する単量体組成物を重合して得られるものである請求項 2、 3、 4又は 5記載の表面調整剤。
[7] 層状粘土鉱物は、天然へクトライト及び Z又は合成へクトライトである請求項 1記載の 表面調整剤。
[8] 層状粘土鉱物は、ベントナイトを下記式 (ΠΙ);
[化 3]
3
OR3
¾ o o———— 3
(式中、 R2は、炭素数 1〜22の飽和アルキル基である。 R3は、同一若しくは異なって 、メチル基、ェチル基、プロピル基又はブチル基である。 )
で表されるアルキルトリアルコキシシランで表面処理したものである請求項 1記載の表 面調整剤。
[9] ホスホン酸基含有榭脂は、重量平均分子量が 3000〜20000である請求項 2記載の 表面調整剤。
[10] ノ-オン界面活性剤は、 HLB値が 6以上のものである請求項 4記載の表面調整剤。
[11] 請求項 1、 2、 3、 4、 5、 6、 7、 8、 9又は 10記載の表面調整剤を金属表面に接触させ る工程力 なることを特徴とする表面調整方法。
[12] 請求項 4記載の表面調整剤を金属表面に接触させる工程からなり、前記工程は、 Zn として 3mgZm2以上のリン酸亜鉛を吸着させるものである表面調整方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006800279140A CN101233261B (zh) | 2005-07-29 | 2006-07-28 | 表面调节剂和表面调节方法 |
JP2007526928A JPWO2007013626A1 (ja) | 2005-07-29 | 2006-07-28 | 表面調整剤及び表面調整方法 |
US11/996,820 US8043531B2 (en) | 2005-07-29 | 2006-07-28 | Surface conditioner and surface conditioning method |
EP06781965A EP1959031A4 (en) | 2005-07-29 | 2006-07-28 | SURFACE TREATMENT PRODUCTS AND SURFACE TREATMENT METHOD |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005221307 | 2005-07-29 | ||
JP2005-221307 | 2005-07-29 | ||
JP2005-221308 | 2005-07-29 | ||
JP2005221308 | 2005-07-29 | ||
JP2005-221306 | 2005-07-29 | ||
JP2005221306 | 2005-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013626A1 true WO2007013626A1 (ja) | 2007-02-01 |
Family
ID=37683514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315055 WO2007013626A1 (ja) | 2005-07-29 | 2006-07-28 | 表面調整剤及び表面調整方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8043531B2 (ja) |
EP (1) | EP1959031A4 (ja) |
JP (1) | JPWO2007013626A1 (ja) |
CN (1) | CN101233261B (ja) |
WO (1) | WO2007013626A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013067790A (ja) * | 2011-09-07 | 2013-04-18 | Nippon Paint Co Ltd | 電着塗料組成物 |
WO2017170274A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | 表面処理鋼線材及びその製造方法 |
JP2017186640A (ja) * | 2016-03-31 | 2017-10-12 | 株式会社神戸製鋼所 | 表面処理鋼線材及びその製造方法 |
WO2019087320A1 (ja) * | 2017-10-31 | 2019-05-09 | 日本パーカライジング株式会社 | 前処理剤、前処理方法、化成皮膜を有する金属材料及びその製造方法、並びに塗装金属材料及びその製造方法 |
JP2020517827A (ja) * | 2017-04-21 | 2020-06-18 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | 層を形成するためのスラッジフリー方式で連続して金属部品をリン酸亜鉛処理する方法 |
JP2021011612A (ja) * | 2019-07-08 | 2021-02-04 | 日本製鉄株式会社 | 化成処理鋼板 |
JP7049517B1 (ja) | 2021-12-27 | 2022-04-06 | 日本パーカライジング株式会社 | リン酸亜鉛化成処理用表面調整剤 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5446052B2 (ja) * | 2008-02-28 | 2014-03-19 | 株式会社村田製作所 | 酸化亜鉛超微粒子分散溶液、及び該酸化亜鉛超微粒子分散溶液の製造方法、並びに酸化亜鉛薄膜 |
AR085378A1 (es) * | 2011-02-23 | 2013-09-25 | Omya Development Ag | Composicon para recubrimiento que comprende particulas que comprenden carbonato de calcio submicron, proceso para preparar la misma y uso de particulas que comprenden carbonato de calcio submicron en composiciones para recubrimiento |
US9255332B2 (en) * | 2013-09-05 | 2016-02-09 | Ppg Industries Ohio, Inc. | Activating rinse and method for treating a substrate |
CN104498924A (zh) * | 2014-11-28 | 2015-04-08 | 安徽华灿彩钢薄板科技有限公司 | 一种钢板表面的磷化处理剂 |
CN104498946A (zh) * | 2014-11-28 | 2015-04-08 | 安徽华灿彩钢薄板科技有限公司 | 一种钢板表面的磷化方法 |
CN105349980B (zh) * | 2015-11-20 | 2018-06-15 | 重庆工商大学 | 一种钢铁工件表面自润滑薄膜的原位合成方法 |
EP3494990A4 (en) * | 2016-08-04 | 2020-03-25 | Zenoaq Resource Co. Ltd. | IMMUNE STIMULATOR, PHARMACEUTICAL COMPOSITION AND FOOD OR DRINK |
KR20190043155A (ko) | 2016-08-24 | 2019-04-25 | 피피지 인더스트리즈 오하이오 인코포레이티드 | 금속 기판을 처리하기 위한 알칼리성 조성물 |
CN106380900A (zh) * | 2016-08-31 | 2017-02-08 | 立邦涂料(重庆)化工有限公司 | 液体表调剂及其生产方法 |
US20180274107A1 (en) * | 2017-03-22 | 2018-09-27 | Hamilton Sundstrand Corporation | Corrosion protection via nanomaterials |
US11214692B2 (en) | 2017-12-04 | 2022-01-04 | Hamilton Sundstrand Corporation | Increasing anti-corrosion through nanocomposite materials |
CA3111776A1 (en) | 2018-09-06 | 2020-03-12 | Ecolab Usa Inc. | Oleyl propylenediamine-based corrosion inhibitors |
CZ309976B6 (cs) * | 2022-10-31 | 2024-03-27 | České vysoké učení technické v Praze | Způsob předúpravy povrchu ocelových komponent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171533A (ja) * | 1997-12-04 | 1999-06-29 | Houjun Kogyo Kk | シラン処理スメクタイトの製造方法 |
WO2002014458A1 (fr) * | 2000-08-11 | 2002-02-21 | Nihon Parkerizing Co., Ltd. | Composition aqueuse permettant la formation d'une pellicule protectrice |
JP2004068149A (ja) * | 2002-06-13 | 2004-03-04 | Nippon Paint Co Ltd | リン酸亜鉛含有表面調整剤、リン酸塩化成処理鋼板及び塗装鋼板並びにリン酸亜鉛分散液 |
JP2006183144A (ja) * | 2004-11-30 | 2006-07-13 | Honda Motor Co Ltd | アルミニウム合金の表面処理方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3898037A (en) * | 1972-06-01 | 1975-08-05 | Betz Laboratories | Acrylamido-sulfonic acid polymers and their use |
US5453416A (en) * | 1986-07-30 | 1995-09-26 | W. R. Grace & Co.-Conn. | Composition and method for controlling phosphonates tending to precipitate metal ions in water |
JPH0723211B2 (ja) * | 1992-03-09 | 1995-03-15 | 豊順鉱業株式会社 | 変性ベントナイト |
US5320673A (en) * | 1992-05-15 | 1994-06-14 | Basf Lacke+Farben Aktiengesellschaft | Dispersants for pigments in waterborne coatings compositions |
US6214132B1 (en) | 1997-03-07 | 2001-04-10 | Henkel Corporation | Conditioning metal surfaces prior to phosphate conversion coating |
JP3451334B2 (ja) | 1997-03-07 | 2003-09-29 | 日本パーカライジング株式会社 | 金属のりん酸塩皮膜化成処理前の表面調整用前処理液及び表面調整方法 |
US6478860B1 (en) | 1998-07-21 | 2002-11-12 | Henkel Corporation | Conditioning metal surfaces before phosphating them |
JP3451337B2 (ja) | 1998-07-21 | 2003-09-29 | 日本パーカライジング株式会社 | 金属のりん酸塩被膜化成処理前の表面調整用処理液及び表面調整方法 |
JP2001262364A (ja) | 2000-03-16 | 2001-09-26 | Kobe Steel Ltd | 耐糸さび性に優れたアルミニウム合金展伸材 |
ATE353987T1 (de) | 2002-06-13 | 2007-03-15 | Nippon Paint Co Ltd | Zinkphosphatkonditioniermittel für phosphatkonversionsbeschichtung von stahlplatte und entsprechendes produkt |
US6791275B2 (en) * | 2002-08-05 | 2004-09-14 | Robertson Worldwide, Inc. | Low pressure gas discharge lamp ballast with on-off indicator |
KR20060042089A (ko) * | 2004-02-20 | 2006-05-12 | 니폰 페인트 가부시키가이샤 | 표면 조정제 및 표면 조정 방법 |
GB2420565A (en) * | 2004-11-30 | 2006-05-31 | Honda Motor Co Ltd | Surface conditioner and zinc phosphate treatment agent for aluminium alloys |
-
2006
- 2006-07-28 JP JP2007526928A patent/JPWO2007013626A1/ja active Pending
- 2006-07-28 US US11/996,820 patent/US8043531B2/en active Active
- 2006-07-28 WO PCT/JP2006/315055 patent/WO2007013626A1/ja active Application Filing
- 2006-07-28 CN CN2006800279140A patent/CN101233261B/zh active Active
- 2006-07-28 EP EP06781965A patent/EP1959031A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171533A (ja) * | 1997-12-04 | 1999-06-29 | Houjun Kogyo Kk | シラン処理スメクタイトの製造方法 |
WO2002014458A1 (fr) * | 2000-08-11 | 2002-02-21 | Nihon Parkerizing Co., Ltd. | Composition aqueuse permettant la formation d'une pellicule protectrice |
JP2004068149A (ja) * | 2002-06-13 | 2004-03-04 | Nippon Paint Co Ltd | リン酸亜鉛含有表面調整剤、リン酸塩化成処理鋼板及び塗装鋼板並びにリン酸亜鉛分散液 |
JP2006183144A (ja) * | 2004-11-30 | 2006-07-13 | Honda Motor Co Ltd | アルミニウム合金の表面処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1959031A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013067790A (ja) * | 2011-09-07 | 2013-04-18 | Nippon Paint Co Ltd | 電着塗料組成物 |
WO2017170274A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | 表面処理鋼線材及びその製造方法 |
JP2017186640A (ja) * | 2016-03-31 | 2017-10-12 | 株式会社神戸製鋼所 | 表面処理鋼線材及びその製造方法 |
JP2020517827A (ja) * | 2017-04-21 | 2020-06-18 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | 層を形成するためのスラッジフリー方式で連続して金属部品をリン酸亜鉛処理する方法 |
JP7223707B2 (ja) | 2017-04-21 | 2023-02-16 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | 層を形成するためのスラッジフリー方式で連続して金属部品をリン酸亜鉛処理する方法 |
WO2019087320A1 (ja) * | 2017-10-31 | 2019-05-09 | 日本パーカライジング株式会社 | 前処理剤、前処理方法、化成皮膜を有する金属材料及びその製造方法、並びに塗装金属材料及びその製造方法 |
JP6547088B1 (ja) * | 2017-10-31 | 2019-07-17 | 日本パーカライジング株式会社 | 前処理剤、前処理方法、化成皮膜を有する金属材料及びその製造方法、並びに塗装金属材料及びその製造方法 |
JP2021011612A (ja) * | 2019-07-08 | 2021-02-04 | 日本製鉄株式会社 | 化成処理鋼板 |
JP7299489B2 (ja) | 2019-07-08 | 2023-06-28 | 日本製鉄株式会社 | 化成処理鋼板 |
JP7049517B1 (ja) | 2021-12-27 | 2022-04-06 | 日本パーカライジング株式会社 | リン酸亜鉛化成処理用表面調整剤 |
WO2023127680A1 (ja) * | 2021-12-27 | 2023-07-06 | 日本パーカライジング株式会社 | リン酸亜鉛化成処理用表面調整剤 |
JP2023096362A (ja) * | 2021-12-27 | 2023-07-07 | 日本パーカライジング株式会社 | リン酸亜鉛化成処理用表面調整剤 |
Also Published As
Publication number | Publication date |
---|---|
US8043531B2 (en) | 2011-10-25 |
CN101233261B (zh) | 2010-11-24 |
EP1959031A4 (en) | 2009-01-07 |
US20100144945A1 (en) | 2010-06-10 |
CN101233261A (zh) | 2008-07-30 |
JPWO2007013626A1 (ja) | 2009-02-12 |
EP1959031A1 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007013626A1 (ja) | 表面調整剤及び表面調整方法 | |
CA2497752C (en) | Surface conditioner and method of surface conditioning | |
WO2007089015A1 (ja) | 表面調整用組成物及び表面調整方法 | |
CN101243208B (zh) | 用于表面调整的组合物以及表面调整方法 | |
ES2561465T3 (es) | Disolución concentrada para preparar un acondicionador de superficies | |
US9096935B2 (en) | Surface conditioning composition, method for producing the same, and surface conditioning method | |
WO2007020985A1 (ja) | 表面調整用組成物、その製造方法及び表面調整方法 | |
US20120160129A1 (en) | Surface conditioning composition, method for producing the same, and surface conditioning method | |
WO2007021024A1 (ja) | 表面調整用組成物及び表面調整方法 | |
JP3733372B2 (ja) | 表面調整剤及び表面調整方法 | |
JP2005264326A (ja) | 表面調整剤及び表面調整方法 | |
JP2007297709A (ja) | 表面調整用組成物及びその製造方法、並びに表面調整方法 | |
JP5456223B2 (ja) | 表面調整剤調製用の濃厚液、表面調整剤及び表面調整方法 | |
CN116004085B (zh) | 长效防腐水性环氧锌粉底漆及其制备方法 | |
KR100956081B1 (ko) | 금속의 표면 처리제 및 이의 제조 방법 | |
JP2008063612A (ja) | 表面調整用組成物、表面調整方法及び表面調整処理物 | |
JP2007297710A (ja) | 表面調整用組成物及びその製造方法、並びに表面調整方法 | |
JP2007077498A (ja) | 表面調整用組成物及び表面調整方法 | |
JP2007077499A (ja) | 表面調整用組成物及び表面調整方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680027914.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007526928 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006781965 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11996820 Country of ref document: US |