WO2007020985A1 - 表面調整用組成物、その製造方法及び表面調整方法 - Google Patents

表面調整用組成物、その製造方法及び表面調整方法 Download PDF

Info

Publication number
WO2007020985A1
WO2007020985A1 PCT/JP2006/316193 JP2006316193W WO2007020985A1 WO 2007020985 A1 WO2007020985 A1 WO 2007020985A1 JP 2006316193 W JP2006316193 W JP 2006316193W WO 2007020985 A1 WO2007020985 A1 WO 2007020985A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface conditioning
mass
conditioning composition
parts
chemical conversion
Prior art date
Application number
PCT/JP2006/316193
Other languages
English (en)
French (fr)
Inventor
Toshio Inbe
Masahiko Matsukawa
Kotaro Kikuchi
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to JP2007531029A priority Critical patent/JPWO2007020985A1/ja
Priority to AU2006280671A priority patent/AU2006280671B2/en
Priority to EP06782806.1A priority patent/EP1930473B1/en
Priority to ES06782806.1T priority patent/ES2581248T3/es
Priority to BRPI0616003-4A priority patent/BRPI0616003B1/pt
Priority to CA2619723A priority patent/CA2619723C/en
Priority to CN2006800299074A priority patent/CN101243206B/zh
Publication of WO2007020985A1 publication Critical patent/WO2007020985A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds

Definitions

  • the present invention relates to a surface conditioning composition, a production method thereof, and a surface conditioning method.
  • Auto bodies, home appliances, and the like are made of a metal material such as a steel plate, a zinc-plated steel plate, and an aluminum alloy, and are usually subjected to a treatment such as coating after a chemical conversion treatment step as a pretreatment.
  • a phosphate treatment is generally performed.
  • a surface conditioning treatment is generally performed as a pre-process.
  • the surface conditioning yarn used in such a surface conditioning treatment includes a treatment liquid containing titanium phosphate particles called Jernstead salt and divalent or trivalent metal phosphate particles. It has been known.
  • Patent Document 1 includes at least one or more divalent or trivalent metal phosphate particles having a particle size of 5 ⁇ m or less, an alkali metal salt, an ammonium salt, or a mixture thereof. Further, a pretreatment liquid for surface adjustment before phosphating treatment of a metal having a pH adjusted to 4 to 13 is disclosed.
  • Patent Document 2 discloses a metal containing one or more phosphate particles selected from phosphates containing one or more divalent, Z, or trivalent metals, and various accelerators. Disclosed is a surface conditioning treatment solution prior to the phosphate chemical treatment.
  • Patent Document 3 contains 500 to 20000 ppm of zinc phosphate, the average particle size of zinc phosphate is 3 m or less, D force m or less, and pH 3 to: L 1 Phosphoric acid
  • Zinc-containing surface conditioners are disclosed.
  • the phosphate particles contained in the surface conditioning pretreatment liquid are obtained by pulverizing phosphate.
  • zinc phosphate is blended in a dispersion medium such as water or an organic solvent, and wet pulverization is performed in the presence of a dispersant.
  • a dispersion time of as long as 6 hours may be required, and it is desired to shorten this. It was.
  • an amine-based resin is used for the purpose of using polyamine as a dispersant, or neutralizing anionic resin as a ionic surfactant and a polymeric dispersant. It is disclosed that neutralizing agents can be used. However, even when these are used, a long dispersion time is required to obtain zinc phosphate particles having a target average particle diameter.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-245685
  • Patent Document 2 JP 2000-96256 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-068149
  • the present invention forms a finer chemical conversion film than conventional ones, and has a sufficient amount of chemical conversion skin for difficult-to-convert metal materials such as contact parts of different metals and high-tensile steel plates.
  • An object of the present invention is to provide a surface conditioning composition capable of forming a film.
  • the present invention also provides phosphate particles having a predetermined particle diameter in a shorter time than in the past. It is another object of the present invention to provide a method for producing a surface conditioning composition that can be used.
  • the surface conditioning composition of the present invention contains divalent or trivalent metal phosphate particles, and has a pH of 3 to 12, and is a divalent or trivalent metal phosphate. Below D force of particles ⁇ / zm
  • the divalent or trivalent metal phosphate particles contained in the surface conditioning composition of the present invention are zinc phosphate
  • the amine compound is a hydroxylamine compound containing at least one hydroxyl group in one molecule.
  • the surface conditioning composition of the present invention preferably further contains a layered clay mineral.
  • the surface conditioning composition of the present invention preferably further contains a chelating agent.
  • the surface conditioning composition of the present invention preferably further contains a phenolic compound.
  • the method for producing a surface conditioning composition of the present invention comprises wet pulverizing a divalent or trivalent metal raw material phosphate in a dispersion medium in the presence of an amine compound having a molecular weight of 1000 or less. It is a feature.
  • the surface conditioning method of the present invention is characterized in that the above-described surface conditioning composition is brought into contact with the metal material surface. /
  • the "surface conditioning composition” refers to a "surface conditioning treatment liquid” that is a treatment liquid that is actually brought into contact with a metal material in the surface conditioning treatment. It is a term that includes both a “concentrated dispersion” that is a dispersion of metal phosphate particles used to produce a treatment liquid.
  • the surface conditioning treatment liquid can be obtained by diluting the concentrated dispersion with a solvent such as water to a predetermined concentration, adding the necessary additives, and adjusting the pH.
  • the “surface conditioning treatment” is a first phosphating treatment, which means a step of attaching metal phosphate particles to the surface of a metal material.
  • the "chemical conversion treatment” is a second phosphate treatment following the surface conditioning treatment, which is a treatment for crystal growth of phosphate particles adhered to the surface of the metal material by the surface conditioning treatment. It means.
  • a film made of a metal phosphate formed by a surface conditioning treatment is referred to as a “phosphate film”, and a film made of a metal phosphate particle force formed by a chemical conversion treatment is made “chemical conversion”. It shall be indicated as “film”.
  • the surface conditioning composition of the present invention has a bivalent or trivalent metal phosphate particle and a molecular weight of 10 Contains no more than 00 amine compounds.
  • the above metal phosphate particles serve as crystal nuclei for obtaining the surface conditioning function, and it is considered that the chemical conversion treatment reaction is promoted by these particles adhering to the surface of the metal material during the surface conditioning treatment .
  • the divalent or trivalent metal phosphate particles are not particularly limited.
  • Zn Zn
  • Zinc phosphate particles are preferred because of their similarity to lead-treated film crystals.
  • D of the divalent or trivalent metal phosphate particles is 3 m or less.
  • the dispersion stability of the metal phosphate particles in the surface conditioning treatment solution may be lowered, and the metal phosphate particles may easily settle. D above
  • the lower limit value of the force that can be set to / z m or less is 0.01 m. If it is less than 0.01 / z m, the production efficiency is poor and uneconomical.
  • the lower limit value of D is more preferably 0.l ⁇ m,
  • the upper limit is 1 m.
  • the D of the divalent or trivalent metal phosphate particles is preferably 4 m or less.
  • the dispersion diameter is sharp and the dispersion state is extremely stable. If the D force m is exceeded, the resulting fine metal phosphate particles
  • the lower limit value of D is more preferably 0.05 ⁇ m and the upper limit value is 2 ⁇ m.
  • the metal phosphate particles in the liquid can efficiently generate crystal nuclei due to the low proportion of coarse particles.
  • Min The sharp distribution of the diameter is expected to form more uniform crystal nuclei in the surface conditioning process, and to form a uniform metal phosphate crystal film in the subsequent chemical conversion treatment. Is done.
  • the thus obtained chemical conversion treated steel sheet has a uniform and excellent surface texture, and this is also a treatment for difficult-formed steel sheets such as bag parts of metal materials having complex structures and black leather sheets. It is presumed to improve the performance.
  • the above D and D mean a 50% diameter and a 90% volume, respectively.
  • the particle size is the point at which the cumulative curve is 50% and 90%, respectively, when the total volume of the particles is 100%.
  • optical diffraction particle size measuring device for example, trade name “LA-500”, manufactured by Horiba, Ltd.
  • average particle size means D.
  • the content of the divalent or trivalent metal phosphate particles is 5 to 80% by mass of the concentrated dispersion. It is preferable. When the amount is less than 5% by mass, the production efficiency is lowered. When the amount exceeds 80% by mass, the dispersion stability of the resulting concentrated dispersion may not be sufficiently obtained. More preferably, the lower limit is 10% by mass, and a more preferable lower limit is 20% by mass. A more preferable upper limit value is 65% by mass, and a more preferable upper limit value is 50% by mass.
  • the surface conditioning composition of the present invention is a surface conditioning treatment solution
  • the content of the divalent or trivalent metal phosphate particles is 50 to 20000 ppm.
  • the surface conditioning treatment liquid is produced by diluting the concentrated dispersion at a dilution ratio of 5 to L0000. If it is less than 50 ppm, the phosphate that serves as a crystal nucleus is insufficient, There is a possibility that a sufficient surface adjustment effect cannot be obtained. Moreover, even if it exceeds 20000 ppm, the effect exceeding the desired effect is not obtained and it is not economical. More preferably, the lower limit is 15 Oppm, the upper limit is lOOOOppm, and the lower limit is 250 ppm, and the upper limit force is S2500 ppm.
  • the amine compound contained in the surface conditioning composition of the present invention has a molecular weight of 1000 or less.
  • a chemical conversion film can be suitably formed during the subsequent chemical conversion treatment.
  • the object of the present invention may not be achieved.
  • the molecular weight is preferably 500 or less, more preferably 200 or less.
  • the amine compound is not particularly limited as long as the molecular weight is 1000 or less. However, if the molecular weight is too small, handling may be difficult or toxicity may be high.
  • the lower limit of molecular weight is preferably 59.
  • the amine compound is preferably an aliphatic amine.
  • a primary to tertiary aliphatic amine compound can be used.
  • Such aliphatic amine compounds include alicyclic amines and hydroxy amine compounds containing at least one hydroxyl group in one molecule.
  • examples of amine compounds other than aliphatic amines include non-aliphatic hydroxyamine compounds, heterocyclic amino acids, basic amino acids such as lysine, aromatic amine compounds such as arin, and amine sulfones. Examples include acid compounds.
  • the amine compound may be a monoamine or a polyamine such as diamine, triamine or tetraamine having two or more amino groups in the molecule. Further, these amine compounds may be used alone or in combination of two or more. Among these, the amine compound is preferably a hydroxyamine compound in terms of the adsorptivity to metal phosphate particles and the affinity with water.
  • Examples of the hydroxyamine compound include monoethanolamine and diethanolamine. Amine, dimethylethanolamine, methyljetanolamine, triethanolamine, triisopropanolamine, aliphatic hydroxyamine compounds such as aminoethylethanolamine, ammine-modified resole, ammine-modified novolak, etc. Non-aliphatic hydroxyamine compounds and the like can be mentioned. Of these, dimethylethanolamine and triethanolamine, which are more preferred to be aliphatic hydroxyamine compounds, are particularly preferred in that the effects of the present invention can be easily obtained.
  • the content of the amine compound having a molecular weight of 1000 or less is a lower limit of 0.01 parts by mass and an upper limit of 100 parts by mass of the metal phosphate particles. It is preferably 1000 parts by mass. If the amount is less than 0.01 parts by mass, the effects of the present invention may not be obtained. Moreover, even if it exceeds 1000 parts by mass, an effect exceeding the desired effect cannot be obtained and it is not economical.
  • a more preferred lower limit is 0.1 part by mass, and a still more preferred lower limit is 0.5 part by mass.
  • a more preferable upper limit value is 100 parts by mass, and a more preferable V and upper limit value is 50 parts by mass.
  • the content of the amine compound having a molecular weight of S 1000 or less is preferably 1 to 10000 ppm. If it is less than lp pm, the phosphate particles cannot be sufficiently coated, and adsorption to the phosphate particles becomes insufficient, which may cause secondary aggregation. Even if it exceeds lOOOOppm, an effect exceeding the desired effect is not obtained and it is not economical. More preferably, the lower limit is 10 ppm and the upper limit is 5000 ppm, and the lower limit is 10 ppm, and the upper limit is 2500 ppm.
  • the amine compound having a molecular weight of 1000 or less is preferably present as a free amine. That is, in the surface adjustment composition of the present invention, it is preferable that the amine compound and the acid group such as a carboxyl group have as little interaction as possible. For that purpose, when the other components contained in the surface conditioning composition of the present invention do not have an acid group or have an acid group, the base is higher in basicity than the above-mentioned amine compound. Thus, it is possible to take measures such as neutralizing the acid group or increasing the amount of the amine compound above the equivalent of the acid group. By setting in this way, the phase between the amine compound having a molecular weight of 1000 or less and the metal phosphate particles is obtained. It is presumed that interaction is likely to occur and the effect of the present invention can be obtained.
  • the surface conditioning composition of the present invention contains a dispersion medium in which the divalent or trivalent metal phosphate particles are dispersed.
  • the dispersion medium include an aqueous medium containing 80% by mass or more of water, and various other water-soluble organic solvents can be used as a medium other than water.
  • the content of the organic solvent should be kept low. More preferably, it is 10 mass% or less of an aqueous medium, More preferably, it is 5 mass% or less. It can also be used as a dispersion medium with only water.
  • the water-soluble organic solvent is not particularly limited, and examples thereof include alcohol solvents such as methanol, ethanol, isopropanol, and ethylene glycol; ethylene glycol monopropyl ether, butyl dallicol, 1-methoxy 2-propanol, and the like.
  • alcohol solvents such as methanol, ethanol, isopropanol, and ethylene glycol
  • ethylene glycol monopropyl ether ethylene glycol monopropyl ether, butyl dallicol, 1-methoxy 2-propanol, and the like.
  • examples include ether solvents; ketone solvents such as acetone and diacetone alcohol; amide solvents such as dimethylacetamide and methylpyrrolidone; ester solvents such as ethyl carbitol acetate and the like. These may be used alone or in combination of two or more.
  • the pH of the surface conditioning composition of the present invention is 3-12. When the pH is less than 3, the metal phosphate particles are easily dissolved, which leads to instability of the liquid. If the pH exceeds 12, the pH of the chemical conversion bath to be performed next will be increased, and there is a possibility that the effect of chemical conversion failure may occur.
  • the lower limit value is preferably 6, and the upper limit value is preferably 11.
  • the surface conditioning composition of the present invention can be used as a surface conditioning composition as long as the function of the amine compound is not significantly impaired in addition to the metal phosphate particles and the amine compound. It can contain various components that are used in advance.
  • additives examples include layered clay minerals, metal alkoxides, chelating agents, phenolic compounds, and the like. These may use a plurality of components simultaneously.
  • the layered clay mineral When the layered clay mineral is contained in the surface conditioning composition of the present invention, it is expected that the dispersion stability of the metal phosphate particles is suppressed and the dispersion stability is maintained. This is on Due to the addition of the layered clay mineral, the layered clay mineral forms a three-dimensional structure containing water, commonly referred to as the card house structure, which is thought to exhibit a thickening effect.
  • the layered clay mineral is not particularly limited.
  • the smectite group such as montmorillonite, piderite, sabonite, and hectorite
  • the kaolinite group such as kaolinite and halosite
  • Vermiculite such as Mikijurite
  • Myolite such as theolite, tetrasilicic my strength, mascobite, illite, sericite, phlogopite, biotite, etc .
  • hydrotanolesite pyrophyllite
  • kanemite macatite
  • Examples thereof include layered polykeys such as Iraite, magadiite, and Kenyaite.
  • These layered clay minerals may be natural minerals or synthetic minerals by hydrothermal synthesis, melting method, solid phase method, or the like.
  • the layered clay mineral preferably has a cation exchange capacity (CEC) of 60 meqZ100 g or more.
  • the cation exchange capacity represents the total amount of negative charges of the layered clay mineral that contributes to cation exchange, and is measured here by the ammonium acetate method or the like.
  • the average particle diameter is a value obtained by observing a freeze-dried aqueous dispersion using a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like.
  • Examples of the layered clay mineral having a cation exchange capacity of 60 meq / 100 g or more include smectite groups such as saponite, hectorite, stevensite, and soconite, and layered clay minerals such as vermiculite. Of these, examples of those in which the average particle size in the water dispersion state tends to be 0.3 m or less include savonite and hectorite (natural hectorite and Z or synthetic hectorite).
  • saponite is preferable in that the average particle size in a water dispersion state is small and the cation exchange capacity is high. Also, two or more of these may be used at the same time. Yes. By containing these layered clay minerals, more excellent dispersion stability can be imparted, and the dispersion efficiency can also be improved.
  • These layered clay minerals may be natural minerals, or may be synthetic minerals by hydrothermal synthesis, melting method, solid phase method or the like.
  • the above layered clay mineral intercalation compound (Billard crystal, etc.), ion exchange treatment, silane coupling treatment, and surface modification such as composite treatment with organic binder Can be used as needed.
  • These layered clay minerals may be used alone or in combination of two or more.
  • the saponite is a trioctahedral layered clay mineral belonging to the smectite group represented by the following formula (I).
  • M is an exchangeable ion: Ca, Na, K, and satisfies 0 ⁇ a ⁇ 8, 0 ⁇ b ⁇ 6, and a ⁇ b> 0. ]
  • modified saponite examples include zinc-modified saponite, ammine-modified saponite, and the like.
  • examples of commercial products of the above-mentioned saponite include synthetic saponite (“Smetaton SA”, trade name, manufactured by Kunimine Kogyo Co., Ltd.).
  • the natural hectorite is a trioctahedral layered clay mineral represented by the following formula ( ⁇ ).
  • Examples of commercially available natural hectorite include "BENTON EW” and “BENT ON AD” (both trade names, manufactured by ELEMENTIS).
  • the synthetic hectorite has a crystal three-layer structure and approximates hectorite belonging to the unrestricted layer expansion type trioctor having an expansion lattice, and is represented by the following formula ( ⁇ ). .
  • Synthetic hectorite is also composed of magnesium, silicon, sodium, a small amount of lithium and fluorine power as main components.
  • Examples of the commercially available synthetic hectorite include “LABONITE B”, “LABONITE S”, “LABONITE RD”, “LABONITE RDS”, “LABONITE XLG”, “ROBOWOOD Additives Ltd.” Labo Knight XLS “. These are white powders that can be easily sol (“Labonite S”, “Labonite RDS”, “Labonite XLS”) or gels ("Labonite B”, “Labonite RD”, “Labonite XLG”) ). Another example is “Lucentite SWN” from Corp Chemical. These natural hectorites and synthetic hectorites may be used alone or in combination of two or more.
  • the content of the layered clay mineral is from 0.01 to about 100 parts by mass of the solid content of the metal phosphate particles. It is preferably LOOO parts by mass. If the amount is less than 01 parts by mass, the effect of suppressing sedimentation may not be sufficiently obtained. Moreover, even if it exceeds 1000 parts by mass, an effect exceeding the desired effect cannot be obtained, and it is not economical.
  • the lower limit value is more preferably 0.1 parts by mass and the upper limit value is more preferably 100 parts by mass.
  • the lower limit value is more preferably 0.5 parts by mass, and the upper limit value is more preferably 50 parts by mass. .
  • the surface conditioning composition of the present invention is a surface conditioning treatment solution
  • it is preferably 1 to: LOOOOp pm. Outside these ranges, the same problems as with concentrated dispersions may occur.
  • the lower limit value is more preferably 10 ppm and the upper limit value is more preferably 10 ppm and the upper limit value is more preferably 250 ppm.
  • the surface conditioning composition of the present invention contains at least one metal alkoxide selected from the group force of silane alkoxide, titanium alkoxide and aluminum alkoxide. It may be.
  • the metal alkoxide is not particularly limited as long as it is a compound having an M-OR bond, and examples thereof include those represented by the following general formula (IV).
  • M represents silicon, titanium, or aluminum.
  • R 1 is substituted or substituted with an organic group, such as an alkyl group having 1 to 6 carbon atoms, 1 to carbon atoms: an epoxy alkyl group having 1 L 1, an aryl group, 1 to carbon atoms having 1 to L 1 Represents a alkenyl group, an aminoalkyl group having 1 to 5 carbon atoms, a mercaptoalkyl group having 1 to 5 carbon atoms, or a halogenoalkyl group having 1 to 5 carbon atoms.
  • R 2 represents an alkyl group having 1 to 6 carbon atoms.
  • n is 0, 1 or 2.
  • the metal alkoxide is preferably an alkoxysilane compound having at least one mercapto group or (meth) attaoxy group.
  • the alkoxysilane compound is not particularly limited as long as it can be used in an aqueous system.
  • alkoxysilane compound is not particularly limited as long as it can be used in an aqueous system.
  • those having at least one mercapto group or (meth) atarioxy group in one molecule of the metal alkoxide are preferred, for example, 3-mercaptopropylmethyldimethoxy.
  • Sisilane, 3-mercaptopropylmethyljetoxysilane, 3- (meth) ataryloxypropylmethyltrimethoxysilane, or 3- (meth) atalyloxypropylmethyltriethoxysilane are particularly preferred.
  • the content of the metal alkoxide is 0.01 to about 100 parts by mass of the solid content of the metal phosphate particles:
  • the LOOO mass part is preferred. If the amount is less than 01 parts by mass, the amount of metal adsorbed on the phosphate particles is insufficient, so that the effect of grinding and surface conditioning during dispersion cannot be fully expected! There is it. Even if it exceeds 1000 parts by mass, the effect exceeding the desired effect is not obtained and it is not economical.
  • the lower limit value is more preferably 0.1 parts by mass and the upper limit value is more preferably 100 parts by mass.
  • the lower limit value is more preferably 0.5 parts by mass, and the upper limit value is more preferably 20 parts by mass. Yes.
  • the content of the metal alkoxide is preferably 1 to LOOOppm. Outside these ranges, the same problems as with concentrated dispersions may occur.
  • the lower limit value is more preferably 10 ppm and the upper limit value is more preferably 500 ppm.
  • the lower limit value is more preferably 10 ppm and the upper limit value is more preferably 250 ppm.
  • the surface conditioning composition of the present invention may contain a chelating agent.
  • a chelating agent By containing a chelating agent, it is possible to impart more excellent dispersion stability, and it is also possible to improve the properties in dispersion stability. That is, even in the case where magnesium ion calcium ions contained in the dilution water are mixed in the surface conditioning treatment liquid of the present invention, in the surface conditioning treatment liquid that does not cause aggregation of metal phosphate particles.
  • the dispersion stability of can be improved.
  • the chelating agent is not particularly limited, and includes, for example, EDTAs, polyacrylic acids, organic acids such as citrate, condensed phosphoric acids, phosphonic acids, chelating resins such as CMC, zeolite, A class of fillers having a chelating effect such as silicate and condensed aluminum phosphate can be listed.
  • the chelating agent should exhibit an effect upon dilution, the surface condition of the present invention
  • the preparation composition is a concentrated dispersion, it may not be contained.
  • the surface conditioning composition of the present invention is a surface conditioning treatment liquid, the content of the chelating agent is
  • 1 to 10000 ppm is preferable. If it is less than 1 ppm, the hardness component in tap water cannot be chelated sufficiently, and the metal polycation such as calcium ion, which is the hardness component, may cause aggregation of metal phosphate particles. Even if it exceeds lOOOOppm, the effect exceeding the desired effect is not obtained, and it may react with the active ingredient of the chemical conversion treatment agent to inhibit the chemical conversion reaction.
  • the lower limit value is more preferably 10 ppm and the upper limit value is more preferably 10 OO ppm.
  • the lower limit value is more preferably 20 ppm, and the upper limit value is more preferably 500 ppm.
  • the surface conditioning composition of the present invention may contain a phenol compound.
  • the phenol compound in combination with the surface conditioning composition, the adhesion of metal phosphate particles to the metal material is improved.
  • it has the effect of improving the stability of the surface conditioning composition. That is, the addition of the phenolic compound is expected to improve the storage stability when stored for a long period of time in a concentrated dispersion and the stability of the surface conditioning treatment bath comprising the surface conditioning treatment liquid.
  • the metal phosphate particles aggregate by acting in the same manner as the previous chelating agent. It is expected to be suppressed.
  • the phenolic compound is, for example, a compound having two or more phenolic hydroxyl groups such as catechol, gallic acid, pyrogallol, tannic acid, or a phenolic compound having these as a basic skeleton (for example, flavonoids, tannins). And polyphenol-type compounds including force-tickin, polybuhlphenol, water-soluble resole, novolac sesame, etc.), lignin and the like. Of these, tannin, gallic acid, catechin and pyrogallol are particularly preferred.
  • the flavonoid is not particularly limited, and for example, flavone, isoflavone, flavonol, flavanone, flavanol, anthocyanin, aurone, chalcone, sepio gallocatechin garade, gallocatechin, theaflavin, dice, inn, genistin, rutin, Examples include myricitrin and the like.
  • the tannin is a general term for an aromatic compound having a complex structure having a large number of phenolic hydroxyl groups widely distributed in the plant kingdom.
  • the tannin may be hydrolyzed tannin or condensed tannin.
  • tannins examples include hamamelitan, kakitan, chia tannin, pentaploid tannin, gallic tannin, mirono lanthanum, dibidi tannin, anoregalobi tannin, puffer tantanine, catechin tannin, etc. Can be mentioned.
  • the tannin may be a hydrolyzed tannin obtained by decomposing tannin present in a plant by a method such as hydrolysis.
  • Examples of the tannin include commercially available products such as "tannic acid extract A”, “B tannic acid”, “N tannic acid”, “industrial tannic acid”, “purified tannic acid”, and “Hi tannic acid”.
  • “F tannic acid”, “local tannic acid” both trade names, manufactured by Dainippon Pharmaceutical Co., Ltd.
  • “tan-acid: AL” trade name, manufactured by Fuji Chemical Industry Co., Ltd.
  • two or more of the above tannins may be used at the same time.
  • the lignin is a reticulated polymer compound having a propyl group-bonded phenol derivative as a basic unit.
  • the content of the phenolic compound is 0.01- with respect to 100 parts by mass of the solid content of the metal phosphate particles. It is preferably 100 parts by mass. If the amount is less than 01 parts by mass, the amount of adsorption of the above-mentioned metal onto the phosphate particles is insufficient, and the effect of adhering the particles to the metal material is not sufficient, and there is a possibility that the additive calorie effect cannot be expected. . Even if it exceeds 1000 parts by mass, an effect exceeding the desired effect is not obtained and it is not economical.
  • the lower limit value is more preferably 0.1 parts by mass and the upper limit value is more preferably 100 parts by mass.
  • the lower limit value is more preferably 0.5 parts by mass, and the upper limit value is more preferably 25 parts by mass.
  • the content of the phenol compound is preferably 1 to: LOOOppm. Outside these ranges, the same problems as with concentrated dispersions may occur. More preferably, the lower limit is 1 Oppm and the upper limit is 500 ppm, and the lower limit is 10 ppm, and the upper limit is 25 Oppm. [0079] (Other additives)
  • additives other than those mentioned above include thickening polysaccharides such as monosaccharides and xanthan gum. These may be used alone or in combination of two or more. With respect to the various additives, the type, amount added, and the like can be appropriately selected.
  • the surface conditioning composition of the present invention may further contain a surfactant, an antifoaming agent, an antifungal agent, an antiseptic, and the like as long as the effects of the present invention are not impaired. .
  • surfactant examples include an anionic surfactant or a nonionic surfactant.
  • the nonionic surfactant is not particularly limited.
  • hydrophilic / lipophilic balance 6 or more.
  • polyoxyethylene alkyl ethers and polyoxyalkylene alkyl ethers having an HLB of 6 or more are preferred because the effects of the present invention can be further obtained.
  • the anionic surfactant is not particularly limited, and examples thereof include fatty acid salts, alkyl sulfate esters, alkyl ether sulfate esters, alkyl benzene sulfonates, alkyl naphthalene sulfonates, and alkyl sulfosuccinic acids.
  • alkyl diphenyl ether disulfonates polybisphenol sulfonates, alkyl phosphates, polyoxyethyl alkyl sulfates, polyoxyethyl alkyl aryl sulfates
  • Examples include ester salts, alpha olefin sulfonates, methyl taurates, polyaspartates, ether carboxylates, naphthalene sulfonate formalin condensates, polyoxyethylene alkyl phosphate esters, alkyl ether phosphate esters, and the like. .
  • alkyl ether phosphate ester salts are preferred because the effects of the present invention can be further obtained.
  • the acid group of the ionic surfactant interacts with the amine compound having a molecular weight of 1000 or less to form an amine compound.
  • the acid group of the ionic surfactant may be neutralized with ammonia or an amine-based neutralizing agent so that the amine compound having a molecular weight of 1000 or less exists as a free amine. preferable.
  • the amount of amine-based neutralizing agent to be used for the neutralization is as follows. Since these differ, it is preferable to appropriately set the conditions when using the above-described surfactant.
  • Examples of the amine-based neutralizer include jetylamine (DEA), triethylamine (TEA), monoethanolamine (META), diethanolamine (DETA), triethanolamine (TETA), and dimethylethanol.
  • Amines DMEA
  • Jetylethanolamine DEE A
  • Isopropylethanolamine IPEA
  • Diisopropanolamine DIPA
  • 2-Amino-2-methylpropanol AMP
  • morpholine MOR
  • NMM N-ethylmorpholine
  • NEM N-ethylmorpholine
  • An example of the amine-based neutralizing agent may be contained in the amine compound having a molecular weight of 1000 or less. That is, the amine-based neutralizer and the amine compound having a molecular weight of 1000 or less may be the same compound.
  • the above-described surfactant or non-ionic surfactant is not contained when the surface conditioning composition of the present invention is a concentrated dispersion, as in the case of the chelating agent. It doesn't matter.
  • the content of the nonionic surfactant or the nonionic surfactant is preferably 3 to 500 ppm.
  • the effect of this invention can be acquired favorably that it is in the said range. More preferably, the lower limit is 5 ppm and the upper limit is 300 ppm.
  • the above surfactants may be used alone or in combination of two or more.
  • a divalent or trivalent metal nitrite compound can be added as necessary in order to further suppress the generation of rust.
  • an alkali salt such as soda ash is added for the purpose of further stabilizing metal phosphate particles and forming a fine chemical conversion film in the subsequent phosphate chemical conversion treatment step.
  • the method for producing a surface conditioning composition of the present invention is characterized in that a raw material phosphate of a divalent or trivalent metal is wet-ground in a dispersion medium in the presence of an amine compound having a molecular weight of 1000 or less. It is a life.
  • the description in the metal surface conditioning composition is applied.
  • a phosphate hydrate can be used as the raw material phosphate of the divalent or trivalent metal.
  • zinc phosphate there are tetrahydrate, dihydrate, and monohydrate as the hydrates of the above-mentioned phosphates.
  • Tetrahydrate represented by ⁇ is common. This tetrahydrate is, for example, zinc sulfate and phosphorus
  • the tetrahydrate thus obtained is generally a colorless and crystalline solid, but a commercially available white powder can be used as it is.
  • an anhydride can also be used as a raw material phosphate of the above divalent or trivalent metal.
  • the shape of the above-mentioned divalent or trivalent metal raw material phosphate is not particularly limited, and any shape can be used. Commercially available products are generally in the form of white powder, but the shape of the powder may be any shape such as fine particles, plates, scales, and the like.
  • Raw material phosphate The particle size of the powder is not particularly limited, but is usually a powder having a D of about several zm. Dozens
  • It may have a primary particle diameter of m.
  • products that are commercially available as anti-bacterial pigments such as products that have a buffering effect enhanced by a treatment for imparting basicity, are preferably used.
  • the divalent or trivalent metal raw material phosphate is dispersed in the dispersion medium described above until a predetermined particle diameter is obtained. This is called wet grinding.
  • the amine compound effectively contributes to the dispersion of the metal phosphate, and the target can be obtained in a short time.
  • a metal phosphate with a particle size can be obtained.
  • the wet pulverization can be carried out using another dispersant without the presence of an amine compound having a molecular weight of 1000 or less, but in that case, the above effect cannot be obtained.
  • it is possible to exert an excellent effect as a surface adjustment composition by adding an amine compound having a molecular weight of 1000 or less after dispersion until a predetermined particle size is achieved. .
  • the amount of the raw material phosphate of the divalent or trivalent metal used is 5 to 80% by mass with respect to the total amount of the resulting dispersion. I like it. When the amount is less than 5% by mass, the production efficiency is lowered. When the amount exceeds 80% by mass, the dispersion stability of the resulting concentrated dispersion may not be sufficiently obtained.
  • a more preferred lower limit is 10% by mass, and a still more preferred lower limit is 20% by mass.
  • a more preferred upper limit is 65% by mass, and a more preferred upper limit is 50% by mass.
  • the amine compound having a molecular weight of 1000 or less is not present, it is extremely difficult to use the metal raw material phosphate at such a high concentration.
  • the amount of the amine compound having a molecular weight of 1000 or less in the method for producing the surface conditioning composition of the present invention has a lower limit of 0 with respect to 100 parts by mass of the metal raw material phosphate particles. .01 parts by mass, upper limit is preferably 1000 parts by mass. If the amount is less than 0.01 parts by mass, the effects of the present invention may not be obtained. Moreover, even if it exceeds 1000 parts by mass, an effect exceeding the desired effect is not obtained and it is not economical. A more preferred lower limit is 0.1 part by mass, and a more preferred lower limit is 0.5 part by mass. A more preferred upper limit is 100 parts by mass, and a still more preferred upper limit is 50 parts by mass.
  • additives and other components may be further added to the dispersion medium, and wet pulverization may be performed together with the amine compound! / .
  • additives include various components commonly used in surface conditioning compositions such as layered clay minerals, chelating agents, metal alkoxides, phenolic compounds and the like.
  • examples of the other components include surfactants, antifoaming agents, antifungal agents, and antiseptics. With regard to these contents and amounts used, the above description can be applied as it is to the surface conditioning composition of the present invention.
  • the wet pulverization method is not particularly limited, and general wet pulverization means can be used.
  • a bead mill represented by a disk type or a pin type
  • a high-pressure homogenizer represented by an ultrasonic disperser, or the like
  • D of the divalent or trivalent metal phosphate particles in the dispersion medium obtained by the method for producing a surface conditioning composition of the present invention is preferably 3 ⁇ m or less. Preferred lower limit
  • the D of the divalent or trivalent metal phosphate particles can be adjusted to 3 ⁇ m or less in accordance with the application, and dispersion stability can be improved. Excellent aqueous
  • a dispersion can be obtained.
  • D of divalent or trivalent metal phosphate particles is 1 m or less,
  • it can be 0.2 m or less.
  • D of the divalent or trivalent metal phosphate particles obtained is 4
  • D of the metal phosphate particles obtained by the method for producing a surface conditioning composition of the present invention is:
  • Lower limit force ⁇ 0. 01 ⁇ m, upper limit 4 ⁇ m If it is less than 0.01 ⁇ m, the particles may easily aggregate due to the phenomenon of overdispersion. If it exceeds 4 m, the proportion of fine metal phosphate particles decreases, which is inappropriate for obtaining a high-quality chemical conversion film.
  • the lower limit is more preferably 0.05 ⁇ m, and the upper limit is 2 ⁇ m.
  • the method for producing a surface conditioning composition of the present invention it is preferable to terminate the wet pulverization when the average particle diameter of the phosphate particles reaches a target value.
  • the time for performing the wet pulverization can be shortened. Since the specific time depends on the performance of the equipment, etc., it cannot be said clearly. However, if the same equipment is used, the dispersion time may be reduced to less than half. It should be noted that a minimum of 30 minutes is required in order to set the average particle size of phosphate particles to the desired value.
  • a concentrated dispersion can be obtained by adding a predetermined amount of necessary additives and other components to the dispersion obtained by the wet pulverization.
  • a concentrated dispersion can be obtained by performing the wet pulverization.
  • the concentrated dispersion obtained above is diluted with water at a dilution factor of 5 to L: 0000 times to obtain a preferred concentration as a surface conditioning treatment liquid. Adjust so that At that time, or after dilution, necessary amounts of additives and other components are added in a predetermined amount, and finally the pH is adjusted to 3 to 12 to obtain a surface conditioning treatment solution.
  • the surface conditioning treatment liquid thus obtained is also one aspect of the present invention.
  • the surface conditioning method of the present invention comprises a step (first phosphating treatment step) in which the surface conditioning treatment liquid is brought into contact with the metal material surface.
  • first phosphating treatment step a step in which the surface conditioning treatment liquid is brought into contact with the metal material surface.
  • second phosphate treatment step a good chemical conversion film is formed.
  • different metal materials having different metal contact portions such as iron or zinc metal materials and aluminum metal materials can be processed at the same time, and a chemical film having a sufficient film amount is formed on the metal material surface in the chemical conversion treatment process. Can be formed.
  • the method for bringing the surface conditioning treatment liquid into contact with the metal material surface in the surface conditioning method is not particularly limited, and a conventionally known method such as dipping or spraying can be appropriately employed.
  • the metal material to be subjected to the above surface adjustment is not particularly limited, and various metals that are generally subjected to a phosphate-forming process, such as zinc-plated steel sheets, aluminum-based metal materials such as aluminum or aluminum alloys, magnesium alloys, or cold metals. Applicable to ferrous metal materials such as rolled steel and high-tensile steel. Further, for example, it can also be suitably applied to applications in which different types of metal materials such as steel or zinc-plated steel plate and aluminum or aluminum alloy metal materials are simultaneously processed.
  • the surface conditioning treatment liquid of the present invention can be used for a degreasing and surface conditioning process. Thereby, the water washing process after a degreasing process can be skipped.
  • a known inorganic alkali builder, organic builder, etc. may be added in order to increase the detergency.
  • the contact time between the surface adjustment treatment liquid and the metal material surface and the temperature of the surface adjustment treatment liquid are not particularly limited, and can be performed under conventionally known conditions.
  • a chemical conversion treatment metal plate can be manufactured by performing the above-mentioned surface adjustment and chemical conversion treatment in the next step.
  • the chemical conversion treatment method is not particularly limited, and various known methods such as dipping treatment, spray treatment, and electrolytic treatment can be applied. Multiple combinations of these May be.
  • the phosphate of the metal constituting the chemical conversion film deposited on the surface of the metal material is not particularly limited as long as it is a metal phosphate, and zinc phosphate, iron phosphate, manganese phosphate, phosphorus Although it is not limited at all, such as zinc acid calcium, zinc phosphate is preferable.
  • the contact time between the chemical conversion treatment agent and the surface of the metal material and the temperature of the chemical conversion treatment agent are not particularly limited, and can be performed under conventionally known conditions.
  • the coating method is generally electrodeposition coating.
  • the paint used for the coating is not particularly limited, and various kinds of paints generally used for coating a chemical conversion-treated metal plate, such as epoxy melamine paint, cationic electrodeposition paint, polyester-based intermediate coating, and polyester-based top coating, may be mentioned. it can.
  • a known method is employed in which a cleaning process is performed prior to coating.
  • the surface conditioning composition of the present invention can form a chemical conversion film having a sufficient coating amount even when the surface adjustment treatment is simultaneously performed on the dissimilar metal materials that have been joined and contacted, and then the chemical conversion treatment is performed in the next step.
  • the surface adjustment treatment is simultaneously performed on the dissimilar metal materials that have been joined and contacted, and then the chemical conversion treatment is performed in the next step.
  • the surface conditioning composition of the present invention contains a specific amine compound together with a metal phosphate particle having a minute particle size. That is, in the surface conditioning composition of the present invention, the specific amine compound is considered to function as a dispersant for metal phosphate particles and to enhance its dispersion stability. On the other hand, at the time of surface adjustment, the amine compound generates an interaction such as hydrogen bonding to the metal to be processed, and thus it is considered that phosphate particles can be efficiently attached to the metal surface. It is done. In particular, this function is expected to be large when the amine compound has a hydroxyl group.
  • the improvement of the surface conditioning performance forms a denser chemical film compared to the conventional one, which is sufficient for difficult-to-form metal materials such as contact parts of dissimilar metals and high-tensile steel plates. It is thought that it has led to formation of a chemical film of the amount of film.
  • the method for producing a surface conditioning composition of the present invention can obtain phosphate particles having a predetermined particle size in a shorter time than in the past. This is considered to be due to the presence of the above specific amine compound during wet pulverization, whereby the amine compound interacts with the surface of the finely divided phosphate particles and acts as a dispersant.
  • a polymer that covers the entire particle is often used as a dispersant, but a fine dispersion state can be formed by using an amine compound smaller than the polymer. It is thought that it can be done.
  • the use of an amine compound makes it possible to produce a surface conditioning composition at a higher concentration than in the past.
  • FIG. 1 is a schematic view of an electrolytic corrosion aluminum test plate used in Examples.
  • the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
  • “part” or “%” means “part by mass” and “% by mass”, respectively.
  • the treatment liquid for actually contacting the metal material is called “surface adjustment treatment liquid” and metal phosphate particles used for diluting to produce the surface adjustment treatment liquid.
  • This dispersion is referred to as a “concentrated dispersion”.
  • the surface conditioning treatment solution is prepared by diluting the concentrated dispersion to a prescribed concentration with a solvent such as water. It is obtained by adjusting the pH after adding the necessary additives.
  • Example 3 uses N- ⁇ (aminoethyl) ethanolamine
  • the slurry was dispersed for 180 minutes by an SG mill at a filling rate of 80%.
  • the obtained concentrated dispersion was prepared in the same manner as in Example 1 to obtain a surface conditioning treatment liquid.
  • Example 1 69 parts by mass of pure water, 20 parts by mass of zinc phosphate particles, 10 parts by mass of triethanolamine, and 1 part by mass of 3-mercaptopropylmethyldimethoxysilane were added, and the zirconia beads (1 mm) filling rate was 80 % And dispersed by SG mill for 120 minutes.
  • the obtained concentrated dispersion was prepared in the same manner as in Example 1 to obtain a surface conditioning treatment liquid.
  • saponite 1 part by weight of saponite (“Smetaton SA”, trade name, cation exchange capacity lOOme q / 100 g, average particle size 0.02 m in water dispersion, manufactured by Kunimine Industries Co., Ltd.) is added to 78 parts by weight of pure water. Disperse at 3000 rpm, and then add 1 part by weight of N, N-dimethylethanolamine and 20 parts by weight of zinc phosphate particles, and fill with 80% zircoyu beads (lmm). Dispersed for 180 minutes. The resulting thick dispersion was prepared in the same manner as in Example 1 to obtain a surface conditioning treatment liquid.
  • Smetaton SA trade name, cation exchange capacity lOOme q / 100 g, average particle size 0.02 m in water dispersion, manufactured by Kunimine Industries Co., Ltd.
  • Example 1 0. 1M zinc nitrate and 1M sodium monophosphate were mixed with stirring, and heated at 80 ° C for 2 times to form a precipitate. Centrifugation (2000ppm, 5 minutes) and water washing 5 times, phosphorus A zinc acid paste was produced. The zinc phosphate paste was adjusted so that the solid content concentration was 20 parts by mass and methyldiethanolamine was 1 part by mass, and dispersed in the same manner as in Example 1.
  • the obtained concentrated dispersion was prepared in the same manner as in Example 1 to obtain a surface conditioning treatment liquid.
  • Example 17 After diluting the concentrated dispersion obtained in Example 17 with tap water so that the zinc phosphate concentration becomes 0.1%, the amount of epicatechin is 1 part by mass with respect to 20 parts by mass of zinc phosphate particles. Then, the pH was adjusted to 9 with NaOH to obtain a treatment liquid for surface adjustment.
  • Polyallylamine 20% liquid (“PAA-03”, trade name, molecular weight 3000, solid content 20%, manufactured by Toyobo Co., Ltd.) 5 parts by mass in 75 parts by mass of pure water with a Disper 3000 rpm preliminarily dispersed, zinc phosphate particles 20 A mass part was added and dispersed in an SG mill for 3180 minutes at a filling rate of 80% of zirconium beads (lmm). The obtained concentrated dispersion was prepared in the same manner as in Example 1 to prepare the surface condition. An adjustment treatment solution was obtained.
  • PAA-03 trade name, molecular weight 3000, solid content 20%, manufactured by Toyobo Co., Ltd.
  • Example 1 To 76 parts by mass of pure water, 4 parts by mass of 25% aqueous ammonia and 20 parts by mass of zinc phosphate particles were added, and dispersed with an SG mill for 180 minutes at a filling rate of zircoyour beads (lmm) of 80%. The resulting concentrated dispersion was prepared in the same manner as in Example 1 to obtain a surface conditioning treatment liquid.
  • a titanium-based powder surface conditioner (“5N10”, trade name, manufactured by Nippon Paint Co., Ltd.) was diluted to 0.1% with tap water and adjusted to pH 9 with NaOH.
  • Table 1 shows the composition of the surface conditioning treatment solution obtained above. Subsequently, each steel plate was subjected to chemical conversion treatment at 35 ° C for 2 minutes by immersion using a zinc phosphate treatment solution ("Surfdyne S D6350", trade name, manufactured by Nippon Paint Co., Ltd.). A test plate was obtained by drying.
  • a degreased aluminum plate 3 and a zinc plating plate 2 were prepared, and the degreased aluminum plate 3 and the zinc plating plate 2 were put into a clip 5 as shown in FIG. Connected. Then, the connected steel plates were subjected to surface conditioning treatment, chemical conversion treatment, water washing, pure water washing and drying in the same manner as in preparation of test plates 1 to obtain test plates.
  • Table 3 shows the stability and other results are as follows. It is shown in Table 2. With respect to the steel plate prepared in Preparation 2 of the test plate, the portion of the electrolytic corrosion portion 1 of the aluminum plate 3 was evaluated. In Table 2, the ones created in test plate creation 1 are ⁇ SPC '', ⁇ GA '', ⁇ A1 '', ⁇ high-tensile steel plate '', and those created in test plate creation 2 are ⁇ A1 (Electric corrosion part) ".
  • the appearance of the formed chemical conversion film was visually evaluated according to the following criteria. In addition, the presence or absence of rust after drying was observed, and when rust was generated, it was described as “rust generation”.
  • A The entire surface is uniformly thinly coated.
  • The entire surface is roughly covered.
  • the crystal size of the formed chemical conversion film was measured with an electron microscope.
  • the sample was allowed to stand for 1 minute and dried, and then a value was obtained using a fluorescent X-ray measurement apparatus (“XRF-1700”, trade name, manufactured by Shimadzu Corporation).
  • XRF-1700 fluorescent X-ray measurement apparatus
  • test plate after chemical conversion treatment was subjected to cationic electrodeposition coating with a cationic electrodeposition paint (“Powernix 110”, trade name, manufactured by Nippon Paint Co., Ltd.) to a dry film thickness of 20 m, washed with water at 170 ° C for 20 minutes.
  • a test plate was prepared by heating and baking. Two longitudinally parallel cuts were made to reach the substrate, and then subjected to a salt dip test (5% salt water, 35 ° C, 480 h immersion), and then the cut portion was peeled off with tape to evaluate the peel width.
  • a salt dip test 5% salt water, 35 ° C, 480 h immersion
  • Particle size Particle size after dispersion start time (, particle size winter): Concentration of concentrated dispersion
  • the production method of the present invention can obtain a surface conditioning composition containing zinc phosphate particles having a target particle size in a shorter time than conventional methods. It was. Further, as shown in Example 13, a satisfactory surface conditioning composition could be obtained even when dispersion was performed under a condition containing zinc phosphate at an extremely high concentration of 65%. On the other hand, in Comparative Example 7 in which the same experiment was performed using carboxymethylcellulose instead of the amine compound, the metal phosphate particles were aggregated and could not be well dispersed. It was hard to obtain a composition for adjustment.
  • the surface conditioning composition of the present invention is excellent in stability over time, and even when the surface conditioning treatment solution is prepared and used after 30 days, the chemical conversion film is formed. It was possible to form well.
  • the surface conditioning composition obtained by the production method of the present invention can be suitably used for various metal materials used in automobile bodies, home appliances, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 表面調整機能が改善されているため化成性を向上させることができ、例えば、金属材料表面に緻密な金属のリン酸塩皮膜が形成され、また異種金属材料を同時に化成処理する際の異種金属の接触部や、高張力鋼板等の難化成性金属材料に適用した場合においても充分な皮膜量の化成皮膜が形成され、また化成性の向上による化成処理工程の短時間化等、化成処理にかかる生産性を向上させる表面調整用組成物を提供する。  2価又は3価の金属のリン酸塩粒子を含有するpH3~12の表面調整用組成物であって、前記2価又は3価の金属のリン酸塩粒子は、D50が3μm以下であり、前記表面調整用組成物は、分子量が1000以下のアミン化合物を含有することを特徴とする表面調整用組成物。

Description

明 細 書
表面調整用組成物、その製造方法及び表面調整方法
技術分野
[0001] 本発明は、表面調整用組成物、その製造方法及び表面調整方法に関する。
背景技術
[0002] 自動車車体、家電製品等は、鋼板、亜鉛メツキ鋼板、アルミニウム合金等の金属材 料からなり、通常、前処理としての化成処理工程を経た後で塗装等の処理が行われ る。このような化成処理として、リン酸塩処理が一般に行われている。化成処理にお いては、微細で緻密なリン酸塩の結晶を金属材料表面に析出させるために、前工程 として表面調整処理を行うのが一般的である。
[0003] このような表面調整処理において使用する表面調整用糸且成物としては、ジャーンス テッド塩と呼ばれるリン酸チタン粒子や 2価又は 3価の金属のリン酸塩粒子を含有し た処理液が知られている。
[0004] 特許文献 1には、粒径が 5 μ m以下の少なくとも 1種以上の 2価もしくは 3価の金属 のリン酸塩粒子と、アルカリ金属塩若しくはアンモ-ゥム塩又はこれらの混合物とを含 有し、かつ、 pHを 4〜13に調整した金属のリン酸塩化成処理前の表面調整用前処 理液が開示されている。
[0005] また、特許文献 2には、 2価及び Z又は 3価の金属を 1種以上含有するリン酸塩から 選ばれる 1種以上のリン酸塩粒子と、各種促進剤とを含有する金属のリン酸塩化成処 理前の表面調整用処理液が開示されている。
[0006] 更に、特許文献 3には、リン酸亜鉛を 500〜20000ppm含有し、リン酸亜鉛の平均 粒径が 3 m以下、 D 力 m以下であり、 pH3〜: L 1であることを特徴とするリン酸
90
亜鉛含有表面調整剤が開示されている。
[0007] し力しながら、近年の新たな素材開発や処理工程の簡略ィ匕によって、例えば、高張 力鋼板等の難化成性金属材料、複数種の異種金属材料を同時に化成処理する場 合等、これらの表面調整用処理液では十分に対応しきれない場合がある。また、耐 食性の要求レベルが上がっており、より緻密な化成皮膜の形成が求められている。こ のため、表面調整用処理液の性能を改善し、これによつて化成処理されて得られる 化成処理皮膜の物性を向上させることが要求されている。
[0008] 一方、上記表面調整用前処理液に含まれるリン酸塩粒子は、リン酸塩を粉砕するこ とにより得られている。先の特許文献 3においては、水あるいは有機溶媒等の分散媒 中にリン酸亜鉛を配合し、分散剤の存在下で湿式粉砕を行っている。しかし、目的と する微少な平均粒径を有するリン酸塩粒子を得るためには、 6時間程度と ヽぅ長時間 の分散時間を必要とする場合があり、これを短縮することが望まれていた。
[0009] なお、先の特許文献 3には、分散剤としてポリアミンを用いることや、ァ-オン系界 面活性剤及び高分子分散剤としてのァニオン性榭脂の中和を目的として、アミン系 中和剤を使用可能なことが開示されている。しかし、これらを用いた場合においても、 目的とする平均粒径のリン酸亜鉛粒子を得るためには、長時間の分散時間を必要と していた。
[0010] 特許文献 1 :特開平 10— 245685号公報
特許文献 2:特開 2000 - 96256号公報
特許文献 3:特開 2004— 068149号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上記現状に鑑み、従来に比べてより緻密な化成皮膜を形成し、異種金 属の接触部や高張力鋼板等の難化成性金属材料に対する充分な皮膜量の化成皮 膜を形成することができる表面調整用組成物を提供することを目的とするものである また、本発明は、所定の粒子径を有するリン酸塩粒子を従来に比べて短時間で得 ることができる表面調整用組成物の製造方法を提供することをも目的とする。
課題を解決するための手段
[0012] 本発明の表面調整用組成物は、 2価又は 3価の金属のリン酸塩粒子を含有し、そ の pH3〜12であって、上記 2価又は 3価の金属のリン酸塩粒子の D 力^ / z m以下で
50
あり、分子量が 1000以下のアミンィ匕合物を含有することを特徴としている。本発明の 表面調整用組成物に含有される 2価又は 3価の金属のリン酸塩粒子は、リン酸亜鉛 であることが好ましぐアミンィ匕合物は、 1分子中に少なくとも 1の水酸基を含有するヒ ドロキシァミンィ匕合物であることが好まし 、。
[0013] 本発明の表面調整用組成物は、更に、層状粘土鉱物を含有することが好ましい。
本発明の表面調整用組成物は、更に、キレート剤を含むことが好ましい。本発明の表 面調整用組成物は、更に、フ ノール系化合物を含むことが好ましい。
[0014] 本発明の表面調整用組成物の製造方法は、分子量が 1000以下のァミン化合物の 存在下で、 2価又は 3価の金属の原料リン酸塩を分散媒中で湿式粉砕することを特 徴としている。
本発明の表面調整方法は、先の表面調整用組成物を金属材料表面に接触させる 工程力 なることを特徴として!/、る。
[0015] 本明細書における「表面調整用組成物」とは、表面調整処理において、金属材料と 実際に接触させるための処理液である「表面調整用処理液」と、希釈して表面調整 用処理液を製造するために用いられる金属のリン酸塩粒子の分散液である「濃厚分 散液」との両方を含む用語である。なお、表面調整用処理液は、濃厚分散液を水な どの溶媒によって所定の濃度に希釈し、必要な添加剤を添加した後、 pHを調整する こと〖こより得られるちのである。
[0016] また、本発明にお 、ては、金属材料に必要な前処理を行った後、表面調整処理を 行い、次いで化成処理を行う。即ち、本明細書において、「表面調整処理」とは、第 一のリン酸塩処理であって、金属材料表面に金属のリン酸塩粒子を付着させる工程 を意味する。
[0017] また、「化成処理」とは、表面調整処理に続く第二のリン酸塩処理であって、表面調 整処理により金属材料表面に付着させたリン酸塩粒子を結晶成長させる処理を意味 するものとする。さらに、本明細書においては、表面調整処理により形成される金属 のリン酸塩からなる皮膜を「リン酸塩皮膜」と、化成処理により形成される金属のリン酸 塩粒子力 なる皮膜を「化成皮膜」と示すものとする。
以下、本発明を詳細に説明する。
[0018] <表面調整用組成物 >
本発明の表面調整用組成物は、 2価又は 3価の金属のリン酸塩粒子と分子量が 10 00以下のアミンィ匕合物とを含有して 、る。
[0019] [金属のリン酸塩粒子]
上記金属のリン酸塩粒子は、表面調整機能を得るための結晶核となるものであり、 表面調整処理時にこれらの粒子が金属材料表面に付着することによって化成処理 反応が促進されると考えられる。
[0020] 上記 2価又は 3価の金属のリン酸塩粒子としては、特に限定されず、例えば、 Zn (
3
PO ) 、 Zn Fe (PO ) 、 Zn Ni(PO ) 、 Ni (PO ) 、 Zn Mn (PO ) 、 Mn (PO )
4 2 2 4 2 2 4 2 3 4 2 2 4 2 3 4 2
、 Mn Fe (PO ) 、 Ca (PO ) 、 Zn Ca (PO ) 、 FePO、 A1PO、 CoPO、 Co (P
2 4 2 3 4 2 2 4 2 4 4 4 3
O )等の粒子を挙げることができる。なかでも、化成処理のリン酸処理、特にリン酸亜
4 2
鉛処理の皮膜結晶との類似性がある点で、リン酸亜鉛粒子であることが好まし 、。
[0021] 上記 2価又は 3価の金属のリン酸塩粒子の D は、 3 m以下である。 D を上記範
50 50 囲内とすることによって、短時間の表面調整処理で充分な皮膜量の微細なリン酸塩 皮膜をすることができ、これは緻密な化成皮膜の形成につながる。 D m
50力 S3 μ を超 えると、表面調整用処理液中での金属のリン酸塩粒子の分散安定性が低下し、金属 のリン酸塩粒子が沈降し易くなるおそれがある。上記 D
50は l /z m以下、更には 0. 2
/z m以下とすることも可能である力 下限値は 0. 01 mであることが好ましい。 0. 01 /z m未満では生産効率が悪く不経済である。より好ましい D の下限値は 0. l ^ m,
50
上限値は 1 mである。
[0022] また、上記 2価又は 3価の金属のリン酸塩粒子の D は 4 m以下であることが好ま
90
しい。 D だけでなぐ D をこのように設定することで、粒子径が粗大なリン酸塩粒子
50 90
の存在割合が減少するため、分散径の分布がシャープで、分散状態が極めて安定し た分散液となる。 D 力 mを超えると、結果的に微細な金属のリン酸塩粒子の割
90
合が少なくなるため、良質の化成皮膜を得に《なるおそれがある。上記 D は、 2. 6
90 μ m以下、更には 0. 3 μ m以下とすることも可能である力 下限値は 0. 01 μ mであ ることが好ましい。 0. 01 m未満であると、過分散の現象により粒子が凝集しやすく なるおそれがある。より好ましい D の下限値は 0. 05 μ m、上限値は 2 μ mである。
90
[0023] 本発明の表面調整用組成物においては、粗大粒子の割合が低いことにより、液中 の金属のリン酸塩粒子が効率的に結晶核を生成できているものと考えられる。また分 散径の分布がシャープであることにより、表面調整処理工程においては、より均一な 結晶核が形成され、引き続く化成処理においては、均一な金属のリン酸塩結晶皮膜 の形成をもたらされることが期待される。このようにして得られた化成処理鋼板は表面 性状が均一で優れたものとなり、更に、このことが複雑な構造を有する金属素材の袋 部や黒皮鋼板のような難ィ匕成鋼板に対する処理性を向上することが推測される。
[0024] なお、 3 μ m以下に分散するために粉砕等の手段を用いる場合、過度に粉砕を行う と、比表面積の増大に伴い分散剤が相対的に不足して再凝集を起こし、力えって粗 大粒子を形成して分散安定性を損なうおそれがある。また、表面調整用組成物の配 合成分や調製条件によっては上記リン酸塩の分散性にバラツキが生じ、微細粒子同 士の再凝集や増粘等の問題を引き起こしてしまうおそれがある。しかし、上記リン酸 塩の D 力 μ m以下である場合には、上述のような不都合が生じることを抑制できる
90
[0025] 上記 D 及び D は、それぞれ体積 50%径及び体積 90%径を意味するものであり
50 90
、分散液中での粒度分布に基づき、粒子の全体積を 100%として累積カーブを求め たとき、その累積カーブがそれぞれ 50%、 90%となる点の粒径である。これらの値は 光回折式粒度測定装置 (例えば、商品名「LA— 500」、堀場製作所社製)を用いて 粒度分布測定を行うことにより求めることができる。なお、本明細書において、「平均 粒径」と記載した場合には、 D を示す。
50
[0026] 本発明の表面調整用組成物が濃厚分散液である場合、上記 2価又は 3価の金属の リン酸塩粒子の含有量は、濃厚分散液の 5〜80質量%の量であることが好ましい。 5 質量%未満である場合、製造の効率が低下し、 80質量%を超える場合には、得られ る濃厚分散液の分散安定性が十分に得られな 、おそれがある。より好まし 、下限値 は 10質量%、更に好ましい下限値は 20質量%である。また、より好ましい上限値は 6 5質量%、更に好まし 、上限値は 50質量%である。
[0027] 一方、本発明の表面調整用組成物が表面調整用処理液である場合、上記 2価又 は 3価の金属のリン酸塩粒子の含有量は、 50〜20000ppmであること力 S好ま U、。 上記表面調整用処理液は、上記濃厚分散液を 5〜: L0000倍の希釈倍率で希釈する ことにより製造される。 50ppm未満であると、結晶核となる上記リン酸塩が不足し、充 分な表面調整効果が得られないおそれがある。また、 20000ppmを超えても所望の 効果を超える効果が得られるわけでなく経済的でない。上記含有量は、下限値が 15 Oppm、上限値が lOOOOppmであることがより好ましぐ下限値が 250ppm、上限値 力 S2500ppmであることが更に好まし!/、。
[0028] [アミンィ匕合物]
本発明の表面調整用組成物に含有されるアミンィ匕合物は、分子量が 1000以下で ある。このようなアミンィ匕合物を用いることで、高張力鋼版等の難化成性金属材料に 対して適用した場合、あるいはアルミニウム系金属材料や鉄系金属材料等の複数種 の異種金属材料に対して同時に適用した場合にも、続いて行われる化成処理時に 好適に化成皮膜を形成することができる。
[0029] 上記アミンィ匕合物の分子量が 1000を超えると、本発明の目的が達成されないおそ れがある。上記分子量は、 500以下であることが好ましぐ 200以下であることがより 好ましい。
上記アミンィ匕合物としては、分子量が 1000以下であれば、特に限定されないが、 分子量が小さすぎると取り扱いが困難になったり毒性が高力つたりするおそれがある ため、上記アミンィ匕合物の分子量の下限は 59であることが好ましい。
[0030] 上記アミンィ匕合物は、脂肪族ァミンであることが好ましぐ例えば、 1〜3級の脂肪族 ァミン化合物を用いることができる。このような脂肪族アミンィ匕合物には、脂環式ァミン や 1分子中に少なくとも 1の水酸基を含有するヒドロキシァミンィ匕合物が含まれる。ま た、脂肪族ァミン以外のアミンィ匕合物として、脂肪族以外のヒドロキシァミン化合物、 複素環式ァミン、リシン等の塩基性アミノ酸類、ァ-リン等の芳香族アミンィ匕合物、アミ ンスルホン酸ィ匕合物等が挙げられる。
[0031] また、上記アミン化合物はモノアミンでも、分子内に 2以上のアミノ基を有するジアミ ン、トリアミン、テトラアミン等のポリアミンでもよい。さらに、これらのアミンィ匕合物は単 独で又は二種以上組み合せて使用してもよい。なかでも、金属のリン酸塩粒子への 吸着性や、水との親和性などの点で、上記アミンィ匕合物はヒドロキシァミンィ匕合物で あることが好ましい。
[0032] 上記ヒドロキシァミン化合物としては、例えば、モノエタノールァミン、ジエタノールァ ミン、ジメチルエタノールァミン、メチルジェタノールァミン、トリエタノールァミン、トリイ ソプロパノールァミン、アミノエチルエタノールァミン等の脂肪族ヒドロキシァミンィ匕合 物、ァミン変性レゾール、ァミン変性ノボラック等の脂肪族以外のヒドロキシァミンィ匕合 物等を挙げることができる。これらの中で、本発明の効果が得られやすい点で脂肪族 ヒドロキシァミン化合物がより好ましぐジメチルエタノールァミン、トリエタノールァミン が特に好ましい。
[0033] 本発明の表面調整用組成物における、上記分子量が 1000以下のアミンィ匕合物の 含有量は、上記金属のリン酸塩粒子 100質量部に対して、下限 0. 01質量部、上限 1000質量部であることが好ましい。 0. 01質量部未満であると、本発明の効果が得ら れないおそれがある。また、 1000質量部を超えても所望の効果を超える効果が得ら れるわけでなく経済的でない。より好ましい下限値は 0. 1質量部、更に好ましい下限 値は 0. 5質量部である。また、より好ましい上限値は 100質量部であり、更に好まし V、上限値は 50質量部である。
[0034] また、本発明の表面調整用組成物が表面調整用処理液である場合、上記分子量 力 S 1000以下のァミン化合物の含有量は、 l〜10000ppmであることが好ましい。 lp pm未満であると、上記リン酸塩粒子を十分に被覆できず、リン酸塩粒子への吸着が 不充分となり、二次凝集するおそれがある。 lOOOOppmを超えても所望の効果を超 える効果が得られるわけでなく経済的でない。下限値が 10ppm、上限値が 5000pp mであることがより好ましぐ下限値が 10ppm、上限値が 2500ppmであることが更に 好ましい。
[0035] なお、本発明の表面調整用組成物において、上記分子量が 1000以下のアミンィ匕 合物は、フリーのァミンとして存在させておくことが好ましい。すなわち、本発明の表 面調整用組成物中で、上記アミン化合物とカルボキシル基等の酸基との相互作用が できるだけない状態にしておくことが好ましい。そのためには、本発明の表面調整用 組成物に含まれる、その他の成分に酸基を有さないようにしたり、酸基を有す場合に は、上記アミンィ匕合物より塩基性の高い塩基でその酸基を中和したり、上記アミン化 合物の量を酸基の当量よりも多くしたりするなどの手段を取り得る。このように設定す ることで、上記分子量が 1000以下のァミン化合物と上記金属のリン酸塩粒子との相 互作用が起こりやすくなり、本発明の効果が得られると推測される。
[0036] [分散媒]
本発明の表面調整用組成物は、上記 2価又は 3価の金属のリン酸塩粒子を分散さ せる分散媒を含有している。上記分散媒としては、水を 80質量%以上含む水性媒体 が挙げられる他、水以外の媒体としては各種水溶性の有機溶剤を用いることができる 力 上記有機溶剤の含有量は低く抑えるのが良ぐ好ましくは水性媒体の 10質量% 以下、より好ましくは 5質量%以下である。水のみ力もなる分散媒とすることもできる。
[0037] 上記水溶性の有機溶剤としては特に限定されず、例えば、メタノール、エタノール、 イソプロパノール、エチレングリコール等のアルコール系溶剤;エチレングリコールモ ノプロピルエーテル、ブチルダリコール、 1ーメトキシ 2—プロパノール等のエーテ ル系溶剤;アセトン、ジアセトンアルコール等のケトン系溶剤;ジメチルァセトアミド、メ チルピロリドン等のアミド系溶剤;ェチルカルビトールアセテート等のエステル系溶剤 等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。
[0038] [pH]
本発明の表面調整用組成物の pHは、 3〜12である。 pHが 3未満であると、上記金 属のリン酸塩粒子が溶解しやすくなり、液の不安定ィ匕につながる。 pHが 12を超える と、次に行われる化成処理浴の pH上昇を招くことになり、化成不良の影響が生じる おそれがある。上記下限値は、 6であることが好ましぐ上記上限値は、 11であること が好ましい。
[0039] [その他の成分]
本発明の表面調整用組成物は、上記金属のリン酸塩粒子及び上記アミン化合物 の他に、上記アミンィ匕合物が発現する機能を大きく阻害しない限り、表面調整用組成 物にお!ヽて使用される種々の成分を含有することができる。
上記各種添加剤として、層状粘土鉱物、金属アルコキシド、キレート剤、フエノール 系化合物等を挙げることができる。これらは複数の成分を同時に使用してもよい。
[0040] (層状粘土鉱物)
上記層状粘土鉱物が本発明の表面調整用組成物に含有されることにより、金属の リン酸塩粒子の沈降を抑制して分散安定性を維持することが期待される。これは、上 記層状粘土鉱物の添カ卩によって、上記層状粘土鉱物がカードハウス構造と通称され る水を含む立体構造を形成し、これが増粘効果を発現するものと考えられる。
[0041] 上記層状粘土鉱物としては特に限定されず、例えば、モンモリロナイト、パイデライト 、サボナイト、ヘクトライト等のスメクタイト族;カオリナイト、ハロサイト等のカオリナイト 族;ジォクタへドラルバ一ミキユライト、トリオクタへドラルバ一ミキユライト等のバーミキ ユライト族;テ-オライト、テトラシリシックマイ力、マスコバイト、イライト、セリサイト、フロ ゴパイト、バイオタイト等のマイ力等;ハイドロタノレサイト;パイロフイロライト;カネマイト、 マカタイト、アイラアイト、マガディアイト、ケニヤアイト等の層状ポリケィ酸塩等を挙げ ることができる。これらの層状粘土鉱物は、天然鉱物であってもよぐ水熱合成、溶融 法、固相法等による合成鉱物であってもよい。
[0042] 上記層状粘土鉱物は、陽イオン交換容量 (CEC)が 60meqZl00g以上であること が好ましい。上記陽イオン交換容量は、陽イオン交換に寄与する層状粘土鉱物の負 電荷の電荷量の総量を表すものであり、ここでは酢酸アンモニゥム法等によって測定 されるちのである。
[0043] 上記層状粘土鉱物は、イオン交換水中での分散状態における平均粒径が 0. 3 μ m以下であるものが好ましい。 0. 3 mを超えると、表面調整用組成物の分散安定 性が低下するおそれがある。また、上記層状粘土鉱物の平均アスペクト比(=最大寸 法 Z最小寸法の平均値)は、 10以上が好ましぐより好ましくは 20以上である。 10未 満であると、分散安定性が低下するおそれがある。なお、上記平均粒径は、水分散 溶液を凍結乾燥させたものを透過型電子顕微鏡 (TEM)や走査型電子顕微鏡 (SE M)等による観察により得られる値である。
[0044] 上記陽イオン交換容量が 60meq/100g以上である層状粘土鉱物としては、サボ ナイト、ヘクトライト、ステイーブンサイト、ソーコナイト等のスメクタイト族、バーミキユラ イト等の層状粘土鉱物を挙げることができるが、これらのうち、上記水分散状態にある 平均粒径が 0. 3 m以下になりやすいものとしては、サボナイト、ヘクトライト(天然へ クトライト及び Z又は合成へクトライト)を挙げることができる。
[0045] なかでも、水分散状態にある平均粒径が小さぐ陽イオン交換容量が高いという点 で、サボナイトが好ましい。また、これらの 2種以上を同時に使用するものであってもよ い。これらの層状粘土鉱物を含有することにより、より優れた分散安定性を付与するこ とができ、また、分散効率を向上させることもできる。
[0046] これらの層状粘土鉱物は、天然鉱物であってもよぐ水熱合成、溶融法、固相法等 による合成鉱物であってもよい。また、上記層状粘土鉱物のインターカレーシヨンィ匕 合物(ビラードクリスタル等)や、イオン交換処理したもの、シランカップリング処理、有 機バインダとの複合ィ匕処理等の表面修飾をしたものも必要に応じて使用することがで きる。これらの層状粘土鉱物は、単独で用いてもよぐ 2種以上を併用してもよい。
[0047] 上記サボナイトは、下記式 (I)で表されるスメクタイト族に属するトリオクタへドラル型 の層状粘土鉱物である。
[0048] [化 1]
[(Sis aAlaXMge bAlb) · O20■ (OH4)] - · M+(a b) ( I )
[0049] [式中、 Mは、交換性イオン: Ca、 Na、 Kであり、 0< a< 8、 0<b< 6、 a— b >0を満 たす。]
[0050] 上記サボナイトは、変性したものであってもよぐ変性したものとしては、例えば、亜 鉛変性サボナイト、ァミン変性サボナイト等を挙げることができる。上記サボナイトの巿 販品としては、例えば、合成サボナイト(「スメタトン SA」、商品名、クニミネ工業社製) 等を挙げることができる。
[0051] 上記天然へクトライトは、下記式 (Π)で表されるトリオクタへドラル型の層状粘土鉱 物である。
[0052] [化 2]
[Si8(Mg5.34Li0,66)O20(OH)4M+0.66 · n¾0] ( I I )
[0053] 上記天然へクトライトの市販品としては、例えば、「BENTON EW」及び「BENT ON AD」(いずれも商品名、 ELEMENTIS社製)等を挙げることができる。
[0054] 上記合成へクトライトは、結晶三層構造で、膨張格子を持つ無制限層膨張型トリオ クタへドラルに属するヘクトライトに近似するもので、下記式 (ΠΙ)で表されるものであ る。
[0055] [化 3] [Si8(MgaLib)O20(OH)cF4-c]x"Mx+ ( i l l )
[0056] [式中、 0< a≤6, 0<b≤6、 4く a+bく 8、 0≤c<4、 x= 12— 2a— bである。また 、 Mは、ほとんど Naである。 ]
[0057] 合成へクトライトは、主な成分としてマグネシウム、ケィ素、ナトリウム及び微量のリチ ゥム、フッ素力も成り立つている。
[0058] 上記合成へクトライトの市販品としては、例えば、 ROOKWOOD Additives Ltd .製の商品名で「ラボナイト B」、「ラボナイト S」、「ラボナイト RD」、「ラボナイト RDS」、 「ラボナイト XLG」、「ラボナイト XLS」等を挙げることができる。これらは、白色粉末で あり、水にカ卩えると容易にゾル(「ラボナイト S」、「ラボナイト RDS」、「ラボナイト XLS」) 又はゲル(「ラボナイト B」、「ラボナイト RD」、「ラボナイト XLG」)を形成するものである 。また、他にコープケミカル社の「ルーセンタイト SWN」も挙げることができる。これら の天然へクトライト、合成へクトライトは、単独で用いてもよぐ 2種以上を併用してもよ い。
[0059] 本発明の表面調整用組成物が濃厚分散液である場合、上記層状粘土鉱物の含有 量は、上記金属のリン酸塩粒子の固形分 100質量部に対して、 0. 01〜: LOOO質量 部であることが好ましい。 0. 01質量部未満であると、沈降抑制効果を充分に得られ ないおそれがある。また、 1000質量部を超えても所望の効果を超える効果が得られ るわけでなく経済的でない。上記含有量は、下限値が 0. 1質量部、上限値が 100質 量部であることがより好ましぐ下限値が 0. 5質量部、上限値が 50質量部であること が更に好ましい。
[0060] 一方、本発明の表面調整用組成物が表面調整用処理液である場合、 1〜: LOOOOp pmであることが好ましい。これらの範囲外では、濃厚分散液の場合と同じ不具合が 生じるおそれがある。上記含有量は、下限値が 10ppm、上限値が lOOOppmである ことがより好ましぐ下限値が 10ppm、上限値が 250ppmであることが更に好ましい。
[0061] (金属アルコキシド)
本発明の表面調整用組成物は、シランアルコキシド、チタンアルコキシド及びアルミ -ゥムアルコキシドカ なる群力 選択される少なくとも 1の金属アルコキシドを含有し ていてもよい。
[0062] 上記金属アルコキシドは、 M— OR結合を有する化合物であれば特に限定されず、 例えば、下記一般式 (IV)で表されるものを挙げることができる。
[0063] [化 4]
R1善 (R2)n(OR2)3 n ( I V )
[0064] [式中、 Mは、ケィ素、チタン又はアルミニウムを表す。 R1は、有機基で置換された 又は置換されて 、な 、炭素数 1〜6のアルキル基、炭素数 1〜: L 1のエポキシアルキ ル基、ァリール基、炭素数 1〜: L 1のァルケ-ル基、炭素数 1〜5のァミノアルキル基、 炭素数 1〜5のメルカプトアルキル基又は炭素数 1〜5のハロゲノアルキル基を表す。 R2は、炭素数 1〜6のアルキル基を表す。 nは、 0、 1又は 2である。 ]
[0065] 上記金属アルコキシドは、少なくとも 1つのメルカプト基又は (メタ)アタリ口キシ基を 有するアルコキシシランィ匕合物であることが好ましい。
上記アルコキシシランィ匕合物としては、水系で使用できるものであれば特に限定さ れず、例えば、ビュルメチルジメトキシシラン、ビュルトリメトキシシラン、ビュルェチル ジエトキシシラン、ビニルトリエトキシシラン、 3—ァミノプロピルトリエトキシシラン、 3— ン、 3—メルカプトプロピルトリメトキシシラン、 N— (1, 3—ジメチルブチリデン) 3— (トリエトキシシリル)— 1—プロパンァミン、 N, N,—ビス〔3— (トリメトキシシリル)プロ ピル〕エチレンジァミン、 N— ( j8—アミノエチル) Ί—ァミノプロピルメチルジメトキ シシラン、 N- ( j8—アミノエチル) 3—ァミノプロピルトリメトキシシラン、 3—アミノプ 口ピルトリメトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシ プロピルトリエトキシシラン、 3 グリシドキシプロピノレメチノレジメトキシシラン、 2- (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 3—メタクリロキシプロピルトリ エトキシシラン、 3—メルカプトプロピルトリエトキシシラン、 Ν—〔2— (ビニルベンジル ァミノ)ェチル〕 3—ァミノプロピルトリメトキシシラン等を挙げることができる。これらは 、単独で用いてもよぐ 2種以上を併用してもよい。
[0066] なかでも、上記金属アルコキシド 1分子中に少なくとも 1つのメルカプト基又は (メタ) アタリ口キシ基を有するものが好ましぐ例えば、 3—メルカプトプロピルメチルジメトキ シシラン、 3—メルカプトプロピルメチルジェトキシシラン、 3—(メタ)アタリロキシプロピ ルメチルトリメトキシシラン、又は 3— (メタ)アタリロキシプロピルメチルトリエトキシシラ ンが特に好ましい。
[0067] 本発明の表面調整用組成物が濃厚分散液である場合、上記金属アルコキシドの含 有量は、上記金属のリン酸塩粒子の固形分 100質量部に対して、 0. 01〜: LOOO質 量部であることが好ましい。 0. 01質量部未満であると、金属のリン酸塩粒子への吸 着量が不充分であるため分散時の粉砕効果、表面調整効果が充分期待できな!、お それがある。 1000質量部を超えても所望の効果を超える効果が得られるわけでなく 経済的でない。上記含有量は、下限値が 0. 1質量部、上限値が 100質量部であるこ とがより好ましぐ下限値が 0. 5質量部、上限値が 20質量部であることが更に好まし い。
[0068] 本発明の表面調整用組成物が表面調整用処理液である場合、上記金属アルコキ シドの含有量は、 1〜: LOOOppmであることが好ましい。これらの範囲外では、濃厚分 散液の場合と同じ不具合が生じるおそれがある。上記含有量は、下限値が 10ppm、 上限値が 500ppmであることがより好ましぐ下限値が 10ppm、上限値が 250ppmで あることが更に好ましい。
[0069] (キレート剤)
本発明の表面調整用組成物は、キレート剤を含有していてもよい。キレート剤を含 有することにより、より優れた分散安定性を付与することができ、更に、分散安定性に おける性質をも改善することができる。すなわち、希釈水に含まれるマグネシウムィォ ンゃカルシウムイオンが本発明の表面調整用処理液中に混入した場合でも、金属の リン酸塩粒子の凝集を生じることがなぐ表面調整用処理液中での分散安定性を向 上させることができる。
[0070] 上記キレート剤としては、特に限定されず、例えば、 EDTA類、ポリアクリル酸類、ク ェン酸等の有機酸類、縮合リン酸類、ホスホン酸類、 CMCなどキレート性榭脂、ゼォ ライト、シリケート、縮合リン酸アルミニウムなどのキレート効果があるフイラ一類等を挙 げることができる。
[0071] 上記キレート剤は、希釈時に効果を発現するべきものであるため、本発明の表面調 整用組成物が濃厚分散液である場合には、含有されていなくても構わない。本発明 の表面調整用組成物が表面調整用処理液である場合、上記キレート剤の含有量は
、 l〜10000ppmであることが好ましい。 lppm未満であると、水道水中の硬度成分 を充分キレートできず、上記硬度成分であるカルシウムイオン等の金属ポリカチオン が金属のリン酸塩粒子を凝集させるおそれがある。 lOOOOppmを超えても所望の効 果を超える効果が得られるわけでなぐまた、化成処理剤の有効成分と反応し、化成 処理反応を阻害するおそれがある。上記含有量は、下限値が 10ppm、上限値が 10 OOppmであることがより好ましぐ下限値が 20ppm、上限値が 500ppmであることが 更に好ましい。
[0072] (フエノール性化合物)
本発明の表面調整用組成物は、フエノール系化合物を含有していてもよい。上記 フエノール系化合物を上記表面調整用組成物に併用することによって、金属材料へ の金属のリン酸塩粒子の付着性が改善され、特にアルミニウム系金属材料、高張力 鋼板等の難化成性金属材料の化成処理反応性が向上することに加えて、上記表面 調整用組成物の安定性を向上させる効果を有する。すなわち、上記フ ノール系化 合物の添加により、濃厚分散液で長期間保存した場合の貯蔵安定性及び、表面調 整用処理液からなる表面調整処理浴の安定性を向上させることが期待される。また、 希釈水からのカルシウムイオンやマグネシウムイオン等の硬度部分が液中に混入し た場合であっても、先のキレート剤と同様の働きをすることによって、金属のリン酸塩 粒子の凝集が抑制することが期待される。
[0073] 上記フエノール系化合物は、例えば、カテコール、没食子酸、ピロガロール、タン二 ン酸等の 2以上のフ ノール系水酸基を有する化合物又はこれらを基本骨格とする フエノール系化合物(例えば、フラボノイド、タンニン、力テキン等を包含するポリフエノ ール系化合物、ポリビュルフエノールや水溶性レゾール、ノボラック榭脂等)、リグニン 等を挙げることができる。中でも、タンニン、没食子酸、カテキン及びピロガロールが 特に好ましい。上記フラボノイドは、特に限定されず、例えばフラボン、イソフラボン、 フラボノール、フラバノン、フラバノール、アントシァ-ジン、オーロン、カルコン、ェピ ガロカテキンガレード、ガロカテキン、テアフラビン、ダイス、イン、ゲニスチン、ルチン、 ミリシトリン等が挙げられる。
[0074] 上記タンニンは、広く植物界に分布する多数のフ ノール性水酸基を有する複雑な 構造の芳香族化合物の総称である。上記タンニンは、加水分解型タンニンでも縮合 型タンニンでもよい。
[0075] 上記タン-ンとしては、ハマメリタン-ン、カキタン-ン、チヤタンニン、五倍子タン- ン、没食子タンニン、ミロノ ランタンニン、ジビジビタンニン、ァノレガロビラタンニン、パ 口-ァタンニン、カテキンタン-ン等を挙げることができる。上記タンニンは、植物中に 存在するタンニンを加水分解等の方法によって分解した加水分解型タンニンであつ てもよい。
[0076] 上記タンニンとしては、市販のもの、例えば「タンニン酸エキス A」、「Bタンニン酸」、 「Nタンニン酸」、「工業用タンニン酸」、「精製タンニン酸」、「Hiタンニン酸」、「Fタン ニン酸」、「局タンニン酸」(いずれも商品名、大日本製薬社製)、「タン-ン酸: AL」( 商品名、富士化学工業製)等を使用することもできる。また、上記タンニンの 2種類以 上を同時に使用するものであってもよい。上記リグニンは、プロピル基の結合したフエ ノール誘導体を基本単位とする網状高分子化合物である。
[0077] 本発明の表面調整用組成物が濃厚分散液である場合、上記フ ノール系化合物 の含有量は、上記金属のリン酸塩粒子の固形分 100質量部に対して、 0. 01-100 0質量部であることが好ましい。 0. 01質量部未満であると、上記金属のリン酸塩粒子 への吸着量が不充分であるため粒子の金属材料への付着効果が充分でなぐ添カロ 効果が期待できな 、おそれがある。 1000質量部を超えても所望の効果を超える効 果が得られるわけでなく経済的でない。上記含有量は、下限値が 0. 1質量部、上限 値が 100質量部であることがより好ましぐ下限値が 0. 5質量部、上限値が 25質量部 であることが更に好ましい。
[0078] 一方、本発明の表面調整用組成物が表面調整用処理液である場合、上記フエノー ル系化合物の含有量は、 1〜: LOOOppmであることが好ましい。これらの範囲外では、 濃厚分散液の場合と同じ不具合が生じるおそれがある。上記含有量は、下限値が 1 Oppm、上限値が 500ppmであることがより好ましぐ下限値が 10ppm、上限値が 25 Oppmであることが更に好まし!/、。 [0079] (その他の添加剤)
上述した以外の添加剤としては、単糖類、キサンタンガム等の増粘多糖類等を挙げ ることができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記各種 添加剤に関しては、種類、添加量等を適宜選択することができる。
本発明の表面調整用組成物は、上述した成分以外に、本発明の効果を阻害しな い範囲で更に界面活性剤、消泡剤、防鲭剤、防腐剤等を配合していてもよい。
[0080] (界面活性剤)
上記界面活性剤としては、ァニオン性界面活性剤又はノニオン性界面活性剤を挙 げることができる。
上記ノニオン性界面活性剤としては特に限定されないが、例えば、ポリオキシェチ レンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン 誘導体、ォキシエチレン ォキシプロピレンブロックコポリマー、ソルビタン脂肪酸ェ ステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトー ル脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、 ポリオキシエチレンアルキルァミン、アルキルアルカノードアミド、ノユルフェノール、ァ ルキルノ-ルフエノール、ポリオキシアルキレングリコール、アルキルアミンオキサイド 、アセチレンジオール、ポリオキシエチレンノニルフエニルエーテル、ポリオキシェチ レンアルキルフエニルエーテル変性シリコン等のシリコン系界面活性剤、炭化水素系 界面活性剤の疎水基にある水素原子の少なくとも 1つがフッ素原子で置換されたフッ 素系界面活性剤等カゝら選ばれるノ-オン界面活性剤で親水性親油性バランス (HL B)が 6以上のものを挙げることができる。なかでも、本発明の効果をより得られる点か ら、 HLBが 6以上のポリオキシエチレンアルキルエーテル及びポリオキシアルキレン アルキルエーテルが好まし 、。
[0081] 上記ァニオン性界面活性剤としては特に限定されな ヽが、例えば、脂肪酸塩、アル キル硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルベンゼンスルホ ン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフ ェ-ルエーテルジスルホン酸塩、ポリビスフヱノールスルホン酸塩、アルキルリン酸塩 、ポリオキシェチルアルキル硫酸エステル塩、ポリオキシェチルアルキルァリル硫酸 エステル塩、アルファオレフインスルホン酸塩、メチルタウリン酸塩、ポリアスパラギン 酸塩、エーテルカルボン酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシェ チレンアルキルリン酸エステル、アルキルエーテルリン酸エステル塩等を挙げることが できる。なかでも、本発明の効果をより得られる点から、アルキルエーテルリン酸エス テル塩が好ましい。
[0082] ただし、先のアミンィ匕合物における説明で述べたように、上記ァ-オン性界面活性 剤が有する酸基は、上記分子量が 1000以下のアミンィ匕合物と相互作用して、ァミン 化合物の機能が充分に発現されないおそれがある。このため、上記分子量が 1000 以下のアミンィ匕合物をフリーのァミンとして存在するよう、上記ァ-オン性界面活性剤 が有する酸基をアンモニア又はアミン系中和剤で中和しておくことが好ましい。上記 ァ-オン性界面活性剤が有する酸基および上記アミン系中和剤、ならびに上記分子 量が 1000以下のアミンィ匕合物の種類により、上記中和に用いるべきアミン系中和剤 の量が異なってくるため、上記ァ-オン性界面活性剤を使用する際には、条件を適 宜設定することが好ましい。
[0083] 上記アミン系中和剤としては、例えば、ジェチルァミン(DEA)、トリェチルァミン (T EA)、モノエタノールァミン(META)、ジエタノールァミン(DETA)、トリエタノールァ ミン(TETA)、ジメチルエタノールァミン(DMEA)、ジェチルエタノールァミン(DEE A)、イソプロピルエタノールァミン(IPEA)、ジイソプロパノールァミン(DIPA)、 2— アミノー 2—メチルプロパノール (AMP)、 2—(ジメチルァミノ)ー2—メチルプロパノー ル(DMAMP)、モルホリン(MOR)、 N—メチルモルホリン(NMM)、 N—ェチルモ ルホリン (NEM)等を挙げることができる。なかでも、 2—ァミノ一 2—メチルプロパノー ル (AMP)を使用することが好まし!/、。
[0084] 上記アミン系中和剤の例は、上記分子量が 1000以下のアミンィ匕合物に含まれ得る 。すなわち、上記アミン系中和剤と上記分子量が 1000以下のアミンィ匕合物とが同じ 化合物であっても構わな 、。
[0085] 上記ァ-オン性界面活性剤又はノ-オン性界面活性剤は、先のキレート剤と同様、 本発明の表面調整用組成物が濃厚分散液である場合には、含有されていなくても構 わない。本発明の表面調整用組成物が表面調整用処理液である場合、上記ァニォ ン性界面活性剤又はノ-オン性界面活性剤の含有量は、 3〜500ppmであることが 好ましい。上記範囲内であると、本発明の効果を良好に得ることができる。上記含有 量は、下限値が 5ppm、上限値が 300ppmであることがより好ましい。上記界面活性 剤は、単独で用いてもよぐ 2種以上を併用してもよい。
[0086] (金属亜硝酸化合物)
本発明の表面調整用組成物は、サビの発生をより抑制するために、必要に応じて 2 価又は 3価の金属亜硝酸ィ匕合物を添加することができる。
[0087] (アルカリ塩)
本発明の表面調整用組成物は、更に金属のリン酸塩粒子を安定させ、次に行われ るリン酸塩化成処理工程において微細な化成皮膜を形成する目的でソーダ灰等の アルカリ塩が添加されてもよ!ヽ。
[0088] <金属表面調整用組成物の製造方法 >
本発明の表面調整用組成物の製造方法は、分子量が 1000以下のァミン化合物の 存在下で、 2価又は 3価の金属の原料リン酸塩を分散媒中で湿式粉砕することを特 徴とするちのである。
[0089] 上記分子量が 1000以下のアミンィ匕合物については、先の金属表面調整用組成物 における説明が適用される。一方、上記 2価又は 3価の金属の原料リン酸塩としては 、リン酸塩の水和物を用いることができる。リン酸亜鉛の場合、上記リン酸塩の水和物 として四水和物、二水和物、一水和物が存在するが、これらの中で、 Zn (PO ) ·4
3 4 2
Η Οで表される四水和物が一般的である。この四水和物は、例えば、硫酸亜鉛とリン
2
酸水素ニナトリウムの希釈液をモル比 3 : 2で混合加温することによって、また、希リン 酸水溶液と酸ィ匕亜鉛又は炭酸亜鉛とを反応させることによって、それぞれ得ることが できる。このようにして得られる四水和物は、一般に無色、結晶性の固体であるが、白 色の粉末状態で市販されているものをそのまま利用することができる。この他に、上 記 2価又は 3価の金属の原料リン酸塩として無水和物も使用可能である。
[0090] 上記の 2価又は 3価の金属の原料リン酸塩の形状は特に限定されず、任意の形状 のものを使用することができる。市販品は白色の粉末状が一般的であるが、粉末の形 状は、微粒子状、板状、鱗片状等、いずれの形状でも構わない。上記原料リン酸塩 の粒径も特に限定されないが、通常、 D が数; z m程度の粉末である。また、数十
50
mの一次粒子径を有するものであっても構わな 、。特に塩基性付与の処理をするこ とにより緩衝作用を高めた製品等、防鲭顔料として市販されているものが好適に使用 される。
[0091] 本発明の表面調整用組成物の製造方法では、先に述べた分散媒中で、 2価又は 3 価の金属の原料リン酸塩を所定の粒子径になるまで分散を行う。これを湿式粉砕と 呼ぶ。上記湿式粉砕の際に、上記分子量が 1000以下のァミン化合物を存在させて おくことにより、このアミンィ匕合物が上記金属のリン酸塩の分散に効果的に寄与し、短 時間で目的とする粒子径の金属のリン酸塩を得ることができる。上記分子量が 1000 以下のアミンィ匕合物を存在させずに他の分散剤を用いて、上記湿式粉砕を行うことも できるが、その場合には、上記効果は得られない。ただし、所定の粒子径になるまで 分散を行った後、上記分子量が 1000以下のアミンィ匕合物を添加することにより、表 面調整用組成物としての優れた効果を発揮することは可能である。
[0092] 本発明の表面調整用組成物の製造方法における、 2価又は 3価の金属の原料リン 酸塩の使用量は、得られる分散液の合計量に対して 5〜80質量%であることが好ま しい。 5質量%未満である場合、製造の効率が低下し、 80質量%を超える場合には 、得られる濃厚分散液の分散安定性が十分に得られないおそれがある。より好ましい 下限値は 10質量%、更に好ましい下限値は 20質量%である。また、より好ましい上 限値は 65質量%、更に好ましい上限値は 50質量%である。上記分子量が 1000以 下のアミンィ匕合物を存在させな 、場合、このような高 、濃度で金属の原料リン酸塩を 使用することは極めて困難である。
[0093] 一方、本発明の表面調整用組成物の製造方法における、分子量が 1000以下のァ ミンィ匕合物の使用量は、上記金属の原料リン酸塩粒子 100質量部に対して、下限 0. 01質量部、上限 1000質量部であることが好ましい。 0. 01質量部未満であると、本 発明の効果が得られないおそれがある。また、 1000質量部を超えても所望の効果を 超える効果が得られるわけでなく経済的でない。より好ましい下限値は 0. 1質量部、 更に好ましい下限値は 0. 5質量部である。また、より好ましい上限値は 100質量部で あり、更に好ましい上限値は 50質量部である。 [0094] また、本発明の表面調整用組成物の製造方法では、分散媒中に更に添加剤およ びその他の成分を加えて、上記アミン化合物とともに湿式粉砕を行っても構わな!/、。 このような添加剤として、層状粘土鉱物、キレート剤、金属アルコキシド、フエノール系 化合物等の表面調整用組成物にお 、て一般的に使用される種々の成分を挙げるこ とができる。一方、上記その他の成分としては、界面活性剤、消泡剤、防鲭剤、防腐 剤等を挙げることができる。これらの内容及び使用量については、本発明の表面調 整用組成物につ 、ての説明がそのまま適用され得る。
[0095] 本発明の表面調整用組成物の製造方法では、上記湿式粉砕の方法は特に限定さ れず、一般的な湿式粉砕の手段を用いることができる。例えば、ディスク型、ピン型等 に代表されるビーズミル、高圧ホモジェナイザー、超音波分散機等に代表されるメデ ィアレス分散機等を用いることができる。なお、湿式粉砕を水性媒体以外の分散媒中 で行い、その後、分散媒を水性媒体に溶媒置換を行うことも可能である。
[0096] 本発明の表面調整用組成物の製造方法で得られる、分散媒中における 2価又は 3 価の金属のリン酸塩粒子の D は 3 μ m以下であることが好ましい。好ましい下限値
50
は 0. 01 mである。この範囲外では、安定性に問題が生じる力 または表面調整用 組成物として優れた性能を有することができないおそれがある。
[0097] 本発明の表面調整用組成物の製造方法では、 2価又は 3価の金属のリン酸塩粒子 の D を 3 μ m以下で用途に合せて調節することができ、分散安定性に優れた水性
50
分散液を得ることができる。 2価又は 3価の金属のリン酸塩粒子の D は 1 m以下、
50
更には 0. 2 m以下とすることも可能である。
[0098] 上記湿式粉砕において、得られる 2価又は 3価の金属のリン酸塩粒子の D は、 4
90 m以下となるようモニターすることが好ましい。こうすることによって、過分散を抑制 し、凝集や増粘、微細粒子同士の再凝集等を抑制することができる。また、過分散を 生じな ヽ程度の配合及び分散条件を選択することが望まし ヽ。
[0099] 本発明の表面調整用組成物の製造方法で得られる金属のリン酸塩粒子の D は、
90 下限力 ^0. 01 μ m、上限 4 μ mであること力 子まし!/ヽ。 0. 01 μ m未満であると、過分 散の現象により粒子が凝集しやすくなるおそれがある。 4 mを超えると、微細な金属 のリン酸塩粒子の割合が少なくなるため、良質の化成皮膜を得る上で不適当である。 上記下限値は、 0. 05 μ mであることがより好ましぐ上記上限値は、 2 μ mであること 力 り好ましい。
[0100] 本発明の表面調整用組成物の製造方法では、金属の原料リン酸塩として、 D 力 S3
50 mを超えるものや数十; z mの一次粒子径を有するものを用いても、 D 力 ^ /z m以
50 下の状態で分散媒中に短時間で分散することができる。これは、もともと一次粒子径 の小さな 2価又は 3価の金属のリン酸塩粒子を用いなくとも、上述した方法に従って 湿式粉砕することにより、 2価又は 3価の金属のリン酸塩粒子の一次粒子径を小さく することがでさることち意味して!/ヽる。
[0101] 本発明の表面調整用組成物の製造方法においては、リン酸塩粒子の平均粒径が 目的の値となった時点で、上記湿式粉砕を終了することが好ましい。本発明の表面 調整用組成物の製造方法によれば、上記湿式粉砕を行う時間を短縮することができ る。具体的な時間は機器の性能等に左右されるため、明確には言えないが、同一の 機器を使用した場合には分散時間を半分以下に削減することができる場合がある。 なお、リン酸塩粒子の平均粒径を目的の値とするためには、最低 30分は必要である
[0102] 上記湿式粉砕を行うことによって得られた分散液に、必要な添加剤およびその他の 成分を所定量加えることによって、濃厚分散液が得られる。上記必要な添加剤およ びその他の成分が、上記湿式粉砕時に加えられている場合には、上記湿式粉砕を 行うことによって濃厚分散液が得られることになる。なお、この段階で上記分子量が 1 000以下のアミンィ匕合物を添加することも可能である。これは、先に述べたように湿式 粉砕時に上記アミンィ匕合物を用いて 、な 、場合に加え、上記アミン化合物の量を調 整する意味での更に添加する場合を含む。
[0103] 本発明の表面調整用組成物の製造方法においては、上記得られた濃厚分散液を 水により、 5〜: L 0000倍の希釈倍率で希釈し、表面調整用処理液として好ましい濃 度となるように調整する。その際、又は希釈後に必要な添加剤およびその他の成分 を所定量カ卩え、最終的に pHを 3〜12に調整することにより、表面調整用処理液が得 られる。このようにして得られる表面調整用処理液も本発明の 1つである。
[0104] <表面調整方法 > 本発明の表面調整方法は、上記表面調整用処理液を金属材料表面に接触させる 工程 (第一のリン酸塩処理工程)からなるものである。これにより、鉄系及び亜鉛系の 金属材料に加え、アルミニウム系金属材料及び高張力鋼板等の難化成性金属材料 表面に、 2価又は 3価の金属のリン酸塩の微細粒子を充分な量で付着させることがで き、続く化成処理工程 (第二のリン酸塩処理工程)で良好な化成皮膜を形成させる。 また、例えば、鉄又は亜鉛系金属材料とアルミニウム系金属材料等の異種金属接触 部を有する異種金属材料を同時に処理することができ、化成処理工程において充分 な皮膜量の化成皮膜を金属材料表面に形成することができる。
[0105] [表面調整処理工程]
上記表面調整方法における表面調整用処理液と金属材料表面とを接触させる方 法は特に限定されず、浸漬、スプレー等の従来公知の方法を適宜採用することがで きる。
上記表面調整が行われる金属材料としては特に限定されず、一般にリン酸塩ィ匕成 処理を行う種々の金属、例えば亜鉛メツキ鋼板、アルミニウム又はアルミニウム合金 等のアルミニウム系金属材料、マグネシウム合金、或いは冷延鋼板、高張力鋼板等 の鉄系金属材料に適用可能である。また、例えば、鉄鋼又は亜鉛メツキ鋼板とアルミ ニゥム又はアルミニウム合金系金属材料等の異種金属材料を同時に処理する用途 にも好適に適用することができる。
[0106] また、本発明の表面調整用処理液を用いて、脱脂兼表面調整工程に使用すること ができる。これにより、脱脂処理後の水洗工程を省略することができる。上記脱脂兼 表面調整工程では、洗浄力を高めるために公知の無機アルカリビルダー及び有機ビ ルダ一等を添加しても構わない。また、公知の縮合リン酸塩等を添加しても構わない
。上記表面調整において、表面調整用処理液と金属材料表面との接触時間、表面 調整用処理液の温度は特に限定されず、従来公知の条件で行うことができる。
[0107] [化成処理工程]
上記表面調整を行!ヽ、次!ヽで化成処理を行って化成処理金属板を製造することが できる。上記化成処理方法は特に限定されず、浸漬 (ディップ)処理、スプレー処理、 電解処理等の種々の公知の方法を適用することができる。これらを複数組み合わせ てもよい。
[0108] 金属材料表面上に析出させる化成皮膜を構成する金属のリン酸塩に関しても、金 属のリン酸塩であれば特に限定されず、リン酸亜鉛、リン酸鉄、リン酸マンガン、リン 酸亜鉛カルシウム等、何ら制限されるものではないが、リン酸亜鉛が好ましい。上記 化成処理において、化成処理剤と金属材料表面との接触時間、化成処理剤の温度 は特に限定されず、従来公知の条件で行うことができる。
[0109] [塗装工程]
上記表面調整及び上記化成処理を行った後、更に塗装を行うことにより塗装鋼板 を製造することができる。上記塗装方法は電着塗装が一般的である。
塗装に用いられる塗料は特に限定されず、一般に化成処理金属板の塗装に用い られる種々のもの、例えばエポキシメラミン塗料、カチオン電着塗料とポリエステル系 中塗り塗料とポリエステル系上塗り塗料等を挙げることができる。なお、化成処理後、 塗装に先だっては洗浄工程を行うといった公知の方法が採用される。
発明の効果
[0110] 本発明の表面調整用組成物は、接合 '接触された異種金属材料に同時に表面調 整処理を施し、次!ヽで化成処理しても充分な皮膜量の化成皮膜を形成することがで き、また、高張力鋼板等の難ィ匕成性金属材料に適用した場合においても、化成処理 後に充分な皮膜量の化成皮膜を形成することができるものである。また、分散安定性 にも優れるものである。
[0111] これは、本発明の表面調整用組成物が、微少な粒子径を有する金属のリン酸塩粒 子とともに特定のアミンィ匕合物を含有していることによるものと思われる。すなわち、本 発明の表面調整用組成物において、上記特定のアミンィ匕合物は、金属のリン酸塩粒 子の分散剤として機能して、その分散安定性を高めていると考えられる。一方、表面 調整時には、アミンィ匕合物が被処理物である金属に対して水素結合などの相互作用 を生じるため、金属の表面にリン酸塩粒子を効率的に付着させることができるものと 考えられる。特に、ァミン化合物が水酸基を有している場合にこの機能が大きいもの と予想される。このように表面調整性能の向上が、従来に比べてより緻密な化成皮膜 を形成し、異種金属の接触部や高張力鋼板等の難化成性金属材料に対する充分な 皮膜量の化成皮膜を形成につながっているものと考えられる。
[0112] また、本発明の表面調整用組成物の製造方法は、所定の粒子径を有するリン酸塩 粒子を従来に比べて短時間で得ることができる。これは、湿式粉砕時に上記特定の ァミン化合物を存在させることで、微粒ィ匕されたリン酸塩粒子の表面にアミンィ匕合物 が相互作用して、分散剤として働いているものと考えられる。従来技術では、分散剤 として、粒子全体を被覆する高分子が利用されることが多力 たが、高分子よりも小さ なアミンィ匕合物を用いることにより、微細な分散状態を形成することができるものと考 えられる。また、ァミン化合物を用いることにより、従来に比べて、高濃度で表面調整 用組成物を製造することも可能となった。
[0113] これらの効果は、中和剤としてアミンィ匕合物を用いただけでは得られない。すなわ ち、アミンィ匕合物が直接リン酸亜鉛の分散剤として機能する必要がある。すなわち、 フリーであったァミン化合物がリン酸塩粒子と相互作用している状態を作り出すことで 、優れた効果が発揮されると考えられる。
図面の簡単な説明
[0114] [図 1]実施例で使用した電食アルミニウム試験板の概略図である。
符号の説明
[0115] 1 電食部
2 亜鉛メツキ板
3 アルミニウム板
4 一般部
5 クリップ
発明を実施するための形態
[0116] 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれらの実施 例のみに限定されるものではない。尚、以下の実施例において、「部」又は「%」はそ れぞれ「質量部」、「質量%」を意味する。また、表面調整処理において、金属材料と 実際に接触させるための処理液を「表面調整用処理液」と、希釈して表面調整用処 理液を製造するために用いられる金属のリン酸塩粒子の分散液を「濃厚分散液」と示 す。表面調整用処理液は、濃厚分散液を水などの溶媒によって所定の濃度に希釈 し、必要な添加剤を添加した後、 pHを調整することにより得られるものである。
[0117] く実施例 1 >
純水 79質量部に、リン酸亜鉛粒子 20質量部、及び、 N, N—ジメチルエタノールァ ミン 1質量部を添カ卩し、ジルコ-ァビーズ(lmm)充填率 80%で、 SGミルにより 180 分間分散した。得られた濃厚分散液を、水道水でリン酸亜鉛濃度 0. 1%になるように 希釈し、ジメチルエタノールァミンで pHを 9に調整し、表面調整用処理液を得た。
[0118] <実施例 2、3 >
純水 79質量部に、リン酸亜鉛粒子 20質量部、及び、トリエタノールァミン (実施例 3 は、 N— β (アミノエチル)エタノールアミンを使用) 1質量部を添カロし、ジルコ-アビー ズ(lmm)充填率 80%で、 SGミルにより 180分間分散した。得られた濃厚分散液を、 実施例 1と同様に調製して、表面調整用処理液を得た。
[0119] く実施例 4 >
純水 69質量部に、リン酸亜鉛粒子 20質量部、トリエタノールァミン 10質量部、及び 、 3—メルカプトプロピルメチルジメトキシシラン 1質量部添カ卩し、ジルコユアビーズ(1 mm)充填率 80%で、 SGミルにより 120分間分散した。得られた濃厚分散液を、実施 例 1と同様に調製して、表面調整用処理液を得た。
[0120] <実施例 5 >
純水 78質量部に、サボナイト(「スメタトン SA」、商品名、陽イオン交換容量 lOOme q/100g,水分散状態にある平均粒径 0. 02 m、クニミネ工業社製) 1質量部を添 加してデイスパー 3000rpmで予備分散し、その後 N, N—ジメチルエタノールァミン 1質量部とリン酸亜鉛粒子 20質量部とを添カ卩し、ジルコユアビーズ(lmm)充填率 80 %で、 SGミルにより 180分間分散した。得られた濃厚分散液を、実施例 1と同様に調 製して、表面調整用処理液を得た。
[0121] <実施例 6 >
純水 138質量部に、リン酸亜鉛粒子 40質量部、及び、 N, N—ジメチルエタノール ァミン 2質量部を添カ卩し、ジルコ-ァビーズ(lmm)充填率 80%で、 SGミルにより 12 0分間分散した後、ポリエチレングリコール(「アルマックス R400」、商品名、明和化学 社製) 20重量部添加した。得られた濃厚分散液を、水道水でリン酸亜鉛濃度 0. 1% になるように希釈し、 NaOHで pHを 9に調整し、表面調整用処理液を得た。
[0122] <実施例 7>
純水 78. 8質量部に、 3—メルカプトプロピルメチルジメトキシシラン 0. 2質量部とトリ エタノールァミン 1質量部をデイスパー 3000rpmで予備分散し、その後リン酸亜鉛粒 子 20質量部を添カ卩し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルで 120分間 分散した後、濃厚分散液を水道水でリン酸亜鉛濃度 0. 1%になるように希釈した後、 トリポリリン酸 Na2質量部を添加し、アンモニアで pHを 9に調整した。
[0123] <実施例 8 >
純水 79質量部に、リン酸亜鉛粒子 20質量部、及び、ジエタノールァミン 1質量部を 添加し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルにより 120分間分散した。 得られた濃厚分散液を、純水でリン酸亜鉛濃度 0. 1%になるように希釈した後、ポリ アクリル酸スルホン酸共重合体(「ァロン A6020」、商品名、固形分 40%、東亞合成 化学社製)を固形分として 2質量部を添加し、ジエタノールァミン (前出)で pHを 9に 調整した。
[0124] <実施例 9 >
純水 76. 5質量部に、リン酸亜鉛粒子 20質量部、ジエタノールァミン 1質量部、及 び、「ァロン A6020」(前出) 2. 5質量部を添カ卩し、ジルコ-ァビーズ(lmm)充填率 8 0%で、 SGミルにより 120分間分散した。得られた濃厚分散液を、実施例 1と同様に 調製して、表面調整用処理液を得た。
[0125] <実施例 10>
純水 77質量部に、 3—メルカプトプロピルメチルジメトキシシラン 1質量部、及び、ト リエタノールアミン 1質量部をデイスパー 3000rpmで予備分散した。その後リン酸亜 鉛粒子 20質量部及びカルボキシメチルセルロース(CMC) (「APP84」、商品名、 日 本製紙社製) 1質量部を添カ卩し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルで 120分間分散した。得られた濃厚分散液を、実施例 1と同様に調製して、表面調整 用処理液を得た。
[0126] く実施例 11 >
純水 78質量部に、リン酸亜鉛粒子 20質量部、ジェチルエタノールァミン 1質量部、 及び、ウレタン榭脂(「TAFIGEL PUR40J、商品名、楠本化成社製) 1質量部を添 加し、ジルコユアビーズ(lmm)充填率 80%で、 SGミル〖こより 60分間分散した。得ら れた濃厚分散液を、実施例 1と同様に調製して、表面調整用処理液を得た。
[0127] <実施例 12>
純水 77質量部に、 3—メタクリロキシプロピルメチルトリメトキシシラン 1質量部とトリエ タノールァミン 1質量部をデイスパー 3000rpmで予備分散し、その後リン酸亜鉛粒子 20質量部、ポリアマイド(「AQ— 50」、商品名、楠本化成社製) 1質量部を添加し、ジ ルコ-ァビーズ(lmm)充填率 80%で、 SGミルで 120分間分散した。得られた濃厚 分散液を、実施例 1と同様に調製して、表面調整用処理液を得た。
[0128] <実施例 13 >
純水 31. 7質量部に、トリエタノールァミン 3. 3質量部とリン酸亜鉛粒子 65質量部を 添加し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルで 180分間分散し、純水 で倍に希釈した。得られた濃厚分散液を、実施例 1と同様に調製して、表面調整用 処理液を得た。
[0129] <実施例 14>
純水 79. 8質量部に、トリエタノールァミン 0. 2質量部とリン酸亜鉛粒子 20質量部を 添加し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルで 180分間分散した。得ら れた濃厚分散液を、実施例 1と同様に調製して、表面調整用処理液を得た。
[0130] <実施例 15 >
純水 77. 9質量部に、合成へクトライト(「ラボナイト RD」、商品名、陽イオン交換容 量 120meqZl00g、水分散状態にある平均粒径 0. 05 ^ m,東新化成社製) 2質量 部を添カ卩して、デイスパー 3000rpmで予備分散し、その後トリエタノールァミン 0. 1 質量部とリン酸亜鉛粒子 20質量部とを添カ卩し、ジルコユアビーズ(lmm)充填率 80 %で、 SGミルにより 120分間分散した。得られた濃厚分散液を、実施例 1と同様に調 製して、表面調整用処理液を得た。
[0131] <実施例 16 >
0. 1Mの硝酸亜鉛と 1Mの第一リン酸 Naを攪拌しながら混合し、 80°C X 2加温し沈 殿物を生成させた。遠心分離(2000ppm、 5分間)及び水洗浄を 5回繰り返し、リン 酸亜鉛ペーストを生成させた。上記リン酸亜鉛ペーストの固形分濃度が 20質量部、メ チルジエタノールァミンが 1質量部になるように調整し、実施例 1と同様に分散させた
。得られた濃厚分散液を、実施例 1と同様に調製して、表面調整用処理液を得た。
[0132] <実施例 17>
純水 78質量部に、メチルジェタノールァミン 1質量部、リン酸亜鉛粒子 20質量部、 及び、没食子酸 1質量部を添加し、ジルコユアビーズ(lmm)充填率 80%で、 SGミ ルで 120分間分散した。得られた濃厚分散液を、実施例 1と同様に調製して、表面調 整用処理液を得た。
[0133] <実施例 18 >
実施例 17で得られた濃厚分散液を、水道水でリン酸亜鉛濃度 0. 1 %になるよう〖こ 希釈した後、さらにェピカテキンをリン酸亜鉛粒子 20質量部に対し 1質量部となる量 添加し、 NaOHで pHを 9に調整し、表面調整用処理液を得た。
[0134] <比較例 1 >
純水 79質量部にトリエタノールァミン 1質量部とリン酸亜鉛粒子 20質量部を添加し 、ジルコユアビーズ(lmm)充填率 80%で、 SGミルで 15分間分散して粒子径 3. 9 μ mの濃厚分散液を得た。得られた濃厚分散液を、実施例 1と同様にして、表面調整 用処理液を得た。
[0135] <比較例 2>
純水 78質量部に、コロイダルシリカ(「ァエロジル 300」、商品名、 Si02、 日本ァェ 口ジル社製) 1質量部を添加しデイスパー 3000rpmで予備分散し、その後第三リン酸 ナトリウム 1質量部とリン酸亜鉛粒子 20質量部を添加し、ジルコユアビーズ(lmm)充 填率 80%で、 SGミルに 180分間分散した。得られた濃厚分散液を、実施例 1と同様 に調製して、表面調整用処理液を得た。
[0136] <比較例 3 >
純水 75質量部にポリアリルアミン 20%液(「PAA— 03」、商品名、分子量 3000、 固形分 20%、東洋紡績社製) 5質量部をデイスパー 3000rpmで予備分散し、リン酸 亜鉛粒子 20質量部を添カ卩し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルによ り 3180分間分散した。得られた濃厚分散液を、実施例 1と同様に調製して、表面調 整用処理液を得た。
[0137] <比較例 4>
純水 76質量部に 25%アンモニア水 4質量部とリン酸亜鉛粒子 20質量部を添加し、 ジルコユアビーズ(lmm)充填率 80%で、 SGミルにより 180分間分散した。得られた 濃厚分散液を、実施例 1と同様に調製して、表面調整用処理液を得た。
[0138] <比較例 5 >
純水 79質量部にカルボキシメチルセルロース(前出) 1質量部を添カ卩し、デイスパー 3000rpmで予備分散し、リン酸亜鉛粒子 20質量部ジルコユアビーズ(lmm)充填 率 80%で、 SGミルにより 360分間分散した。得られた濃厚分散液を、実施例 1と同 様に調製して、表面調整用処理液を得た。
[0139] <比較例 6 >
純水 77. 5質量部に、リン酸亜鉛粒子 20質量部及び分子量 1万 40のポリアクリル 酸ナトリウム 2. 5質量部を添加し、ジルコ-ァビーズ(lmm)充填率 80%で、 SGミル により 360分間分散した。得られた濃厚分散液を、実施例 1と同様に調製して、表面 調整用処理液を得た。
[0140] <比較例 7>
純水 31. 7質量部に、リン酸亜鉛粒子 65質量部及びカルボキシメチルセルロース( 前出) 3. 3質量部を添カ卩し、ジルコユアビーズ(lmm)充填率 80%で、 SGミルにより 180分間分散した。得られた濃厚分散液を、実施例 1と同様に調製して、表面調整 用処理液を得た。
[0141] <比較例 8 >
チタン系粉体表面調整剤(「5N10」、商品名、 日本ペイント社製)を水道水で 0. 1 %に希釈し、 NaOHで pH9に調製した。
[0142] [試験板の作成 1]
冷延鋼板(SPC) (70mm X I 50mm X O. 8mm)、アルミニウム板 (Al) ( # 6000系 、 70mm X I 50mm X O. 8mm) ,亜鉛メツキ板(GA) (70mm X 150mm X O. 8mm )、高張力鋼板(70mm X 150mm X 1. 0mm)のそれぞれに、脱脂剤(「サ一フクリ ーナー EC92」、商品名、 2%、日本ペイント社製)を使用して、 40°Cで 2分間脱脂処 理し、次いで、上記で得られた実施例 1〜 18及び比較例 1〜8の表面調整用処理液 を用いて、室温で 30秒間表面調整処理した。上記で得られた表面調整用処理液の 組成を表 1に示す。続いて、それぞれの鋼板に、リン酸亜鉛処理液(「サーフダイン S D6350」、商品名、 日本ペイント社製)を用いて浸漬法で 35°C、 2分間化成処理し、 水洗、純水洗、乾燥して試験板を得た。
[0143] [試験板の作成 2]
上述した試験板の作成 1と同様に、脱脂処理したアルミニウム板 3及び亜鉛メツキ板 2を作成し、脱脂処理後のアルミニウム板 3と亜鉛メツキ板 2とを図 1に示すようにクリツ プ 5にて接続した。次いで、接続した鋼板に対して、試験板の作成 1と同様に表面調 整処理、化成処理、水洗、純水洗、乾燥して試験板を得た。
[0144] [評価試験]
下記の方法により、得られた表面調整用処理液のリン酸亜鉛粒子の粒径及び安定 性、並びに、得られた試験板の各種評価を行い、安定性については表 3に、その他 の結果は表 2に示した。試験板の作成 2で作成した鋼板については、アルミニウム板 3の電食部 1の部分について評価を行った。なお、表 2において、試験板の作成 1で 作成したものは、「SPC」、「GA」、「A1」、「高張力鋼板」と、試験板の作成 2で作成し たものは、「A1 (電食部)」と記す。
[0145] (リン酸亜鉛粒子の粒径の測定)
実施例又は比較例で得られた表面調整用処理液に含まれるリン酸亜鉛粒子の粒 径について、光回折式粒度測定装置(「LA— 500」、商品名、堀場製作所社製)を 用いて、粒度分布測定を行い、 D (分散体の平均粒径)及び D をモニターし、 D
50 90 50
、D を測定した。
90
実施例 1、 2、 3、 4、 5、 9及び 13、並びに、比較例 5及び 6については、分散開始か ら 1時間後の D を測定した。
50
[0146] (皮膜外観)
形成された化成皮膜の外観を、目視にて、下記の基準で評価した。また、乾燥後の サビの発生の有無について観察し、サビが発生した場合は、「サビ発生」と記載した。
◎:全面に均一に細力べ被覆されて 、る 〇:全面に粗く被覆されて ヽる
△:一部被覆されていない
X:ィ匕成皮膜がほとんど形成されていない
また、形成された化成皮膜の結晶の大きさを電子顕微鏡により測定した。
[0147] (付着量)
表面調整処理後、 1分間静置して乾燥後、蛍光 X線測定装置(「XRF— 1700」、商 品名、島津製作所社製)により値を得た。
[0148] (化成皮膜量)
蛍光 X線測定装置(「XRF— 1700」、商品名、島津製作所社製)を使用して化成皮 膜質量を測定した。
なお、 SPCや GAのように比較的化成処理性に優れた金属材料を使用した場合は 、できるだけ緻密な結晶皮膜が形成されることが望ましいため、粒子径が小さぐ皮膜 量が少ないほうが、化成性能が高いと判断される。一方、アルミニウム系金属材料や 高張力鋼板等の難化成性金属材料の場合は、化成処理性が低いため、結晶皮膜量 を増加させることが必要とされる。このため、皮膜量は多いほうが、化成性能が高いと 判断される。
[0149] (耐食性)
化成処理後の試験板を、カチオン電着塗料(「パワーニックス 110」、商品名、 日本 ペイント社製)で乾燥膜厚 20 mとなるようにカチオン電着塗装を施し、水洗後 170 °C20分間加熱して焼付け、試験板を作成した。素地まで達するよう縦平行カットを 2 本入れた後、ソルトディップ試験(5%塩水、 35°C、 480h浸漬)に供した後、カット部 をテープ剥離し、剥離幅を評価した。
[0150] (経時安定性)
実施例 4、 6、 7、 11、 15、 19及び比較例 5、 8で得られた表面調整用処理液の経 時安定性について、処理液について室温 30日経過後の SPCの化成性を、初期と比 較して、目視により、下記の基準で評価した。
〇;初期と同等の皮膜外観
△;初期より劣るが皮膜が形成される X;ィ匕成皮膜がほとんど形成されていない 表 1]
〔〕^
Figure imgf000035_0001
粒径 分散開始 時間後の粒径( 、 粒径 冬):濃厚分散液の翻圣
s〔〕^0153w
Figure imgf000036_0001
Figure imgf000037_0001
[0154] 表 1に示すように、本発明の製造方法は、目的とする粒子径のリン酸亜鉛粒子を含 む表面調整用組成物を、従来の方法に比べて短時間で得ることができた。また、実 施例 13に示したように、リン酸亜鉛を 65%という極めて高濃度で含有する条件下で 分散を行っても、良好な表面調整用組成物を得ることができた。これに対して、ァミン 化合物に代えてカルボキシメチルセルロースを使用して同様の実験を行った比較例 7においては、金属のリン酸塩粒子の凝集を生じ良好な分散を行うことができず、表 面調整用組成物を得ることができな力つた。
[0155] また、表 2に示すように、本発明の表面調整用組成物を使用した場合には、冷延鋼 板、アルミニウム板、亜鉛メツキ板のすべてに対して、充分な皮膜量の化成皮膜が形 成され、更に、アルミニウム板と亜鉛メツキ板との異種金属接触部におけるアルミ-ゥ ム板の部分にも充分な皮膜量の化成皮膜が形成されていた。すなわち、異種金属材 料を同時に処理しても充分な皮膜量の化成皮膜を形成することができた。
[0156] 更に表 3に示すように、本発明の表面調整用組成物は、経時安定性に優れ、表面 調整用処理液を調整して 30日経過後に使用した場合であっても化成皮膜を良好に 形成することができた。
産業上の利用可能性
[0157] 本発明の製造方法で得られる表面調整用組成物は、自動車車体、家電製品等に 使用されている各種金属材料に対して、好適に使用することができるものである。

Claims

請求の範囲
[1] 2価又は 3価の金属のリン酸塩粒子を含有する pH3〜12の表面調整用糸且成物であ つて、前記 2価又は 3価の金属のリン酸塩粒子は、 D 力 ¾ μ m以下であり、前記表面
50
調整用組成物は、分子量が 1000以下のァミン化合物を含有することを特徴とする表 面調整用組成物。
[2] 2価又は 3価の金属のリン酸塩粒子は、リン酸亜鉛である請求項 1記載の表面調整 用組成物。
[3] アミンィ匕合物は、 1分子中に少なくとも 1の水酸基を含有するヒドロキシァミンィ匕合物 である請求項 1又は 2記載の表面調整用組成物。
[4] 更に、層状粘土鉱物を含有する請求項 1、 2又は 3記載の表面調整用組成物。
[5] 更に、キレート剤を含む請求項 1、 2、 3又は 4記載の表面調整用組成物。
[6] 更に、フ ノール系化合物を含む請求項 1、 2、 3、 4又は 5記載の表面調整用組成 物。
[7] 分子量が 1000以下のアミンィ匕合物の存在下で、 2価又は 3価の金属の原料リン酸 塩を分散媒中で湿式粉砕することを特徴とする表面調整用組成物の製造方法。
[8] 請求項 7記載の製造方法により得られる表面調整用組成物。
[9] 請求項 1、 2、 3、 4、 5、 6、又は 8記載の表面調整用組成物を金属材料表面に接触 させる工程からなることを特徴とする表面調整方法。
PCT/JP2006/316193 2005-08-19 2006-08-17 表面調整用組成物、その製造方法及び表面調整方法 WO2007020985A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007531029A JPWO2007020985A1 (ja) 2005-08-19 2006-08-17 表面調整用組成物、その製造方法及び表面調整方法
AU2006280671A AU2006280671B2 (en) 2005-08-19 2006-08-17 Surface-conditioning composition, method for production thereof, and surface conditioning method
EP06782806.1A EP1930473B1 (en) 2005-08-19 2006-08-17 Surface-conditioning composition, method for production thereof, and surface conditioning method
ES06782806.1T ES2581248T3 (es) 2005-08-19 2006-08-17 Composición para acondicionamiento de superficies, método para la producción de la misma, y método de acondicionamiento de superficies
BRPI0616003-4A BRPI0616003B1 (pt) 2005-08-19 2006-08-17 Composição e método para o condicionamento de superfície e método para a produção de uma composição para o condicionamento de superfície
CA2619723A CA2619723C (en) 2005-08-19 2006-08-17 Surface-conditioning composition, method for production thereof, and surface conditioning method
CN2006800299074A CN101243206B (zh) 2005-08-19 2006-08-17 用于表面调整的组合物、其制造方法以及表面调整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005239231 2005-08-19
JP2005-239231 2005-08-19

Publications (1)

Publication Number Publication Date
WO2007020985A1 true WO2007020985A1 (ja) 2007-02-22

Family

ID=37757642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316193 WO2007020985A1 (ja) 2005-08-19 2006-08-17 表面調整用組成物、その製造方法及び表面調整方法

Country Status (11)

Country Link
US (1) US7749319B2 (ja)
EP (1) EP1930473B1 (ja)
JP (1) JPWO2007020985A1 (ja)
CN (1) CN101243206B (ja)
AU (1) AU2006280671B2 (ja)
BR (1) BRPI0616003B1 (ja)
CA (1) CA2619723C (ja)
ES (1) ES2581248T3 (ja)
RU (1) RU2392353C2 (ja)
WO (1) WO2007020985A1 (ja)
ZA (1) ZA200802441B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505332A (ja) * 2007-12-06 2011-02-24 ジュート−ヒェミー アクチェンゲゼルシャフト ナノ粒子組成物及びその製造方法
JP2017510709A (ja) * 2014-04-11 2017-04-13 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag リン酸塩処理すべき金属表面、好適には亜鉛メッキされた鋼板を活性化するための方法
JP2020517827A (ja) * 2017-04-21 2020-06-18 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 層を形成するためのスラッジフリー方式で連続して金属部品をリン酸亜鉛処理する方法
WO2022264949A1 (ja) * 2021-06-17 2022-12-22 日本ペイント・サーフケミカルズ株式会社 表面処理金属部材の製造方法および加工成型金属部材用の水系表面処理剤

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077500A (ja) * 2005-08-19 2007-03-29 Nippon Paint Co Ltd 表面調整用組成物及び表面調整方法
US9574093B2 (en) * 2007-09-28 2017-02-21 Ppg Industries Ohio, Inc. Methods for coating a metal substrate and related coated metal substrates
EP3396020B1 (en) 2015-12-25 2021-04-07 Nihon Parkerizing Co., Ltd. Surface-conditioning agent, as well as magnesium member or magnesium alloy material with film, and manufacturing method therefor
US20170306498A1 (en) * 2016-04-25 2017-10-26 Ppg Industries Ohio, Inc. Activating rinse and method for treating a substrate
US20170306497A1 (en) * 2016-04-25 2017-10-26 Ppg Industries Ohio, Inc. System for nickel-free zinc phosphate pretreatment
MX2018016254A (es) * 2016-06-22 2019-04-22 Chemetall Gmbh Metodo mejorado para pretratamiento anticorrosion de una superficie de metal que contiene acero, acero galvanizado, aluminio, magnesio y/o aleacion de zinc-magnesio.
KR20190039560A (ko) 2016-08-12 2019-04-12 피알시-데소토 인터내쇼날, 인코포레이티드 밀봉 조성물
US20180044796A1 (en) * 2016-08-12 2018-02-15 Ppg Industries Ohio, Inc. Two-step pretreatment system and method
KR20190043155A (ko) 2016-08-24 2019-04-25 피피지 인더스트리즈 오하이오 인코포레이티드 금속 기판을 처리하기 위한 알칼리성 조성물
CN110976496A (zh) * 2019-12-27 2020-04-10 成都新柯力化工科技有限公司 一种可移除土壤中重金属的修复方法
US11584900B2 (en) 2020-05-14 2023-02-21 Corrosion Innovations, Llc Method for removing one or more of: coating, corrosion, salt from a surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068149A (ja) * 2002-06-13 2004-03-04 Nippon Paint Co Ltd リン酸亜鉛含有表面調整剤、リン酸塩化成処理鋼板及び塗装鋼板並びにリン酸亜鉛分散液

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516008A (en) * 1948-06-19 1950-07-18 Westinghouse Electric Corp Composition and process for treating metal surfaces
US3864139A (en) * 1970-12-04 1975-02-04 Amchem Prod Pretreatment compositions and use thereof in treating metal surfaces
ZA801283B (en) * 1979-03-07 1981-03-25 Decor Innovations Decoration of flexible substrates
JP3451334B2 (ja) 1997-03-07 2003-09-29 日本パーカライジング株式会社 金属のりん酸塩皮膜化成処理前の表面調整用前処理液及び表面調整方法
US6361623B1 (en) * 1997-06-13 2002-03-26 Henkel Corporation Method for phosphatizing iron and steel
JP3451337B2 (ja) * 1998-07-21 2003-09-29 日本パーカライジング株式会社 金属のりん酸塩被膜化成処理前の表面調整用処理液及び表面調整方法
AU4566900A (en) * 1999-05-28 2000-12-18 Henkel Kommanditgesellschaft Auf Aktien Post-passivation of a phosphatized metal surface
JP2001207270A (ja) * 2000-01-24 2001-07-31 Nippon Parkerizing Co Ltd 亜鉛含有めっき鋼板のりん酸塩化成処理方法
US6562142B2 (en) * 2001-01-30 2003-05-13 The Procter & Gamble Company System and method for cleaning and/or treating vehicles and the surfaces of other objects
CN1287008C (zh) * 2001-10-25 2006-11-29 杰富意钢铁株式会社 耐剥离性、滑动性和耐划伤性优良的镀锌钢板及其制造方法
US6692583B2 (en) * 2002-02-14 2004-02-17 Jon Bengston Magnesium conversion coating composition and method of using same
DE60311708D1 (de) * 2002-06-13 2007-03-29 Nippon Paint Co Ltd Zinkphosphatkonditioniermittel für Phosphatkonversionsbeschichtung von Stahlplatte und entsprechendes Produkt
JP2004149896A (ja) * 2002-10-31 2004-05-27 Nippon Parkerizing Co Ltd 表面処理用組成物、表面処理用処理液、表面処理方法、及び金属材を有する製品
CN1657652B (zh) * 2004-02-20 2011-05-11 日本油漆株式会社 表面调整剂及表面调整方法
ES2561465T3 (es) * 2004-02-20 2016-02-26 Chemetall Gmbh Disolución concentrada para preparar un acondicionador de superficies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068149A (ja) * 2002-06-13 2004-03-04 Nippon Paint Co Ltd リン酸亜鉛含有表面調整剤、リン酸塩化成処理鋼板及び塗装鋼板並びにリン酸亜鉛分散液

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505332A (ja) * 2007-12-06 2011-02-24 ジュート−ヒェミー アクチェンゲゼルシャフト ナノ粒子組成物及びその製造方法
JP2013166696A (ja) * 2007-12-06 2013-08-29 Sued-Chemie Ip Gmbh & Co Kg ナノ粒子組成物の製造方法
US9242871B2 (en) 2007-12-06 2016-01-26 Johnson Matthey Plc Nanoparticulate composition and method for its production
JP2017510709A (ja) * 2014-04-11 2017-04-13 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag リン酸塩処理すべき金属表面、好適には亜鉛メッキされた鋼板を活性化するための方法
US10480080B2 (en) 2014-04-11 2019-11-19 Thyssenkrupp Steel Europe Ag Method for activating metal surfaces to be phosphated
JP2020517827A (ja) * 2017-04-21 2020-06-18 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 層を形成するためのスラッジフリー方式で連続して金属部品をリン酸亜鉛処理する方法
JP7223707B2 (ja) 2017-04-21 2023-02-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 層を形成するためのスラッジフリー方式で連続して金属部品をリン酸亜鉛処理する方法
WO2022264949A1 (ja) * 2021-06-17 2022-12-22 日本ペイント・サーフケミカルズ株式会社 表面処理金属部材の製造方法および加工成型金属部材用の水系表面処理剤

Also Published As

Publication number Publication date
RU2392353C2 (ru) 2010-06-20
US20070240604A1 (en) 2007-10-18
JPWO2007020985A1 (ja) 2009-03-26
AU2006280671A1 (en) 2007-02-22
RU2008109841A (ru) 2009-09-27
BRPI0616003A2 (pt) 2011-05-31
AU2006280671B2 (en) 2011-01-20
CN101243206A (zh) 2008-08-13
BRPI0616003B1 (pt) 2018-04-17
CA2619723C (en) 2014-05-27
CN101243206B (zh) 2010-11-24
ES2581248T3 (es) 2016-09-02
EP1930473A4 (en) 2009-06-24
EP1930473A1 (en) 2008-06-11
EP1930473B1 (en) 2016-04-06
CA2619723A1 (en) 2007-02-22
US7749319B2 (en) 2010-07-06
ZA200802441B (en) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2007020985A1 (ja) 表面調整用組成物、その製造方法及び表面調整方法
RU2428519C2 (ru) Состав для подготовки металлической поверхности перед нанесением покрытия и способ подготовки металлической поверхности перед нанесением покрытия
EP2007921B1 (en) Method for producing a surface conditioning composition and surface conditioning method
US9096935B2 (en) Surface conditioning composition, method for producing the same, and surface conditioning method
US8119239B2 (en) Surface-conditioning composition comprising metal phosphate particles, metal alkoxide and stabilizer, and method of production thereof
WO2007021024A1 (ja) 表面調整用組成物及び表面調整方法
JP2007297709A (ja) 表面調整用組成物及びその製造方法、並びに表面調整方法
JP2007077498A (ja) 表面調整用組成物及び表面調整方法
JP2007297710A (ja) 表面調整用組成物及びその製造方法、並びに表面調整方法
JP2007077499A (ja) 表面調整用組成物及び表面調整方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029907.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007531029

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2619723

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006280671

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006782806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008109841

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006280671

Country of ref document: AU

Date of ref document: 20060817

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0616003

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080131