WO2007010833A1 - 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス - Google Patents

非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス Download PDF

Info

Publication number
WO2007010833A1
WO2007010833A1 PCT/JP2006/313990 JP2006313990W WO2007010833A1 WO 2007010833 A1 WO2007010833 A1 WO 2007010833A1 JP 2006313990 W JP2006313990 W JP 2006313990W WO 2007010833 A1 WO2007010833 A1 WO 2007010833A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
molar ratio
solvent
salt
aqueous electrolyte
Prior art date
Application number
PCT/JP2006/313990
Other languages
English (en)
French (fr)
Inventor
Tooru Matsui
Masaki Deguchi
Hiroshi Yoshizawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/919,419 priority Critical patent/US20090130565A1/en
Priority to EP06768198A priority patent/EP1906481A4/en
Publication of WO2007010833A1 publication Critical patent/WO2007010833A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Non-aqueous electrolyte and electrochemical energy storage device using the same
  • the present invention relates to a non-aqueous electrolyte used in an electrochemical energy storage device.
  • a polarizable electrode is used for a positive electrode and a negative electrode, and cations and ions in a non-aqueous electrolyte are adsorbed on the electrode surface during the charging process, thereby accumulating electrochemical energy.
  • the ion concentration in the non-aqueous electrolyte decreases, so the resistance inside the electric double layer capacitor increases.
  • the number of ions that can be adsorbed decreases, so the electric capacity stored in the electric double layer capacitor decreases.
  • the charging voltage of the electric double layer capacitor can be set high, and the energy density of the capacitor is further increased.
  • a non-aqueous electrolyte battery using lithium as an active material lithium ions move in the non-aqueous electrolyte between the positive electrode and the negative electrode.
  • the ion concentration in the non-aqueous electrolyte does not change during discharge in the primary battery and during charge / discharge in the secondary battery.
  • the amount of the active material for the positive electrode and the negative electrode may be increased and the amount of the non-aqueous electrolyte solution may be decreased.
  • it is necessary to maintain the amount of ions that can move between the positive and negative electrodes so it is necessary to increase the ion concentration in the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution is composed of a supporting salt and a nonaqueous solvent that dissolves the supporting salt.
  • Typical non-aqueous solvents include cyclic carbonate ethylene carbonate (hereinafter abbreviated as EC), propylene carbonate (hereinafter abbreviated as PC), butylene carbonate (hereinafter abbreviated as BC), and cyclic ester ⁇ -petite.
  • Mouth rataton hereinafter abbreviated as ⁇ — BL
  • DMC linear carbonate dimethyl carbonate
  • EMC ethylmethylcarbohydrate Net
  • DEC jetino carbonate
  • Supporting salts include lithium hexafluorophosphate (LiPF), lithium tetrafluoro
  • LiBF lithium park mouthpiece
  • LiCIO lithium park mouthpiece
  • LiTFSI Lithol] imide
  • TEA'BF tetraethylammonium 'tetrafluoroborate
  • TEMA'BF tetrafluoroborate
  • the concentration of the salt dissolved in the non-aqueous solvent for example, the concentration of the lithium salt in the non-aqueous solvent is usually about 0.8 mol Zkg.
  • a nonionic electrolyte with a high ion concentration for example, Li BF and EC are mixed at a molar ratio of 1: 4 (containing 2.2 mol of LiBF per kg of nonaqueous electrolyte).
  • TEMA'BF and EC are mixed at a molar ratio of 1: 3 (including 2.1 mol of TEMA'BF per kg of non-aqueous electrolyte).
  • EMI'BF 1-ethyl 3-methinoreimidazolium 'tetrafunoleroborate
  • a non-aqueous electrolyte is prepared by mixing this with LiBF and EC.
  • EMI'BF is a high ionic liquid of 5.1 mol Zkg by itself.
  • N N jetyl-N-methyl N- (2-methoxyethyl) ammonium bis [trifluoromethanesulfol] imide (hereinafter referred to as D EME ') is used as an ionic liquid. It is disclosed that a non-aqueous electrolyte is prepared by mixing this with LiTFSI and EC. DEME'TFSI is a high ion concentration liquid containing 2.3 moles per kg of nonaqueous electrolyte.
  • Patent Document 3 proposes an electrochemical energy storage device that combines a positive electrode including activated carbon and a negative electrode including a carbon material that absorbs and releases activated carbon and lithium.
  • the device uses a non-aqueous electrolyte containing a lithium salt and an ammonium salt.
  • the activated carbon in the negative electrode contains lithium ions. Ammonium ions are adsorbed and lithium ions are stored in the carbon material! / For this reason, charge / discharge characteristics at a large current are improved, and a high electric capacity can be accumulated.
  • the electrolyte contains 0.5 to 2.5 mol ZL of quaternary onium salt (salt with a cation power centered on N, P, and S atoms) and 0.5 to 2.0 mol ZL of lithium salt.
  • An electrolytic solution containing is disclosed. Specifically, LiBF and TEMA-BF
  • Each includes only non-aqueous electrolytes dissolved in PC at a concentration of 1 mol ZL.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-260400
  • Patent Document 2 JP 2004-146346 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-228222
  • Patent Documents 1 and 2 do not have oxidation resistance or reduction resistance required for an electric double layer capacitor or a nonaqueous electrolyte secondary battery.
  • the lithium salt solubility is low and the concentration of lithium ions cannot be increased, the amount of electrolyte cannot be reduced compared to non-aqueous electrolyte secondary batteries using lithium as an active material! /.
  • Patent Document 3 the present inventors examined Patent Document 3 in detail, and it was found that lithium ions were not occluded by the carbon material during charging in the composition of the exemplified electrolytic solution. This can also be estimated from the fact that the charging voltage of the proposed electrochemical energy storage device is only 3.2 V in the example of Patent Document 3. In fact, when the charging voltage of the device increases, triethylmethylammonium ion (hereinafter abbreviated as ⁇ ion) is inserted into the carbon material that absorbs and releases lithium ions, and the solvent PC is decomposed. Significant gas evolution occurred.
  • ⁇ ion triethylmethylammonium ion
  • Patent Document 3 describes a non-aqueous electrolytic solution in which 0.5 to 2.5 mol ZL of a quaternary onium salt and 0.5 to 2.0 mol ZL of a lithium salt are dissolved.
  • TE MA-BF alone is 2.1 mol per kg of electrolyte (calculated value of MA ⁇
  • the concentration of BF is approximately 2.5 mol ZL).
  • LiBF alone is 2.2 moles per kg of electrolyte (calculated value of BF ⁇
  • the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a non-aqueous electrolyte solution having high ion concentration and excellent oxidation resistance and reduction resistance. .
  • the present invention relates to a lithium salt (A), a quaternary ammonium salt (B) containing a linear alkyl group having 4 or less carbon atoms, ethylene carbonate, propylene carbonate, butylene carbonate.
  • a solvent (C) consisting of at least one selected from the group consisting of butyrolatatatone, dimethylolene carbonate, ethinolemethinolecarbonate, jetyl carbonate, dimethoxyethane, ethoxymethoxyethane, and diethoxyethane.
  • the molar ratio CZA of the solvent (C) to the lithium salt (A) or the molar ratio CZB of the solvent (C) to the ammonium salt (B) is 6 or less.
  • the present invention also relates to an electrochemical energy storage device comprising the above non-aqueous electrolyte, a positive electrode, and a negative electrode.
  • a high-ion concentration non-aqueous electrolyte composed of a single phase can be obtained by mixing lithium salt or ammonium salt with a specific composition.
  • a specific composition a specific composition obtained by mixing lithium salt or ammonium salt with a specific composition.
  • the ammonium ion in the ammonium salt into a structure containing a linear alkyl group, a nonaqueous electrolytic solution excellent in acid resistance and reduction resistance can be obtained.
  • the amount of electrolyte in an electrochemical energy storage device such as an electric double layer capacitor or a non-aqueous electrolyte secondary battery can be reduced, and the energy density can be improved.
  • an electrochemical energy storage device such as an electric double layer capacitor or a non-aqueous electrolyte secondary battery
  • it since it has excellent oxidation resistance and reduction resistance, a high-voltage electrochemical energy storage device can be obtained.
  • FIG. 1 is a diagram showing negative electrode charging curves in Example 11 and Comparative Example 1 of the present invention.
  • FIG. 2 is a graph showing a charge / discharge curve of a negative electrode in Example 12 of the present invention.
  • FIG. 3 is a graph showing negative electrode charging curves in Example 13 and Comparative Example 2 of the present invention.
  • FIG. 4 is a diagram showing a charge / discharge curve of a lithium secondary battery in Example 17 of the present invention.
  • FIG. 5 shows a charge / discharge curve of the lithium secondary battery of Comparative Example 3.
  • FIG. 6 is a graph showing a charge / discharge curve of a negative electrode in Example 14 of the present invention.
  • FIG. 7 is a graph showing a charge / discharge curve of a negative electrode in Example 15 of the present invention.
  • FIG. 8 is a graph showing a charge / discharge curve of a negative electrode in Example 16 of the present invention.
  • the present invention relates to a lithium salt (A), a quaternary ammonium salt (B) containing a linear alkyl group having 4 or less carbon atoms, ethylene carbonate (hereinafter abbreviated as EC).
  • A lithium salt
  • B quaternary ammonium salt
  • EC ethylene carbonate
  • PC Propylene carbonate
  • BC butylene carbonate
  • ⁇ -BL dimethyl carbonate
  • EMC ethylmethyl carbonate
  • DEC jetyl carbonate
  • DME dimethoxetane
  • EME ethoxymethoxyethane
  • DEE diethoxyethane
  • a solvent (C) consisting of at least one selected from the group consisting of: a molar ratio of the solvent (C) to the lithium salt (A) (hereinafter abbreviated as CZA), or the ammonium salt (B Before)
  • the solvent (C) has a molar ratio (hereinafter abbreviated as CZB) of 6 or less and relates to a non-aqueous electrolyte composed of a single phase.
  • a high ion concentration non-aqueous electrolyte composed of a single phase can be obtained by combining a lithium salt, an ammonium salt, and a solvent.
  • a quaternary ammonium salt containing a linear alkyl group having 4 or less carbon atoms a nonaqueous electrolytic solution excellent in oxidation resistance and reduction resistance can be obtained.
  • the straight-chain alkyl group has more than 4 carbon atoms, ammonium ions can easily be inserted between the graphite layers in the negative electrode, the layer structure of the graphite is destroyed, and the charge / discharge cycle life of the negative electrode is shortened.
  • the alkyl group is not linear but has a secondary or tertiary branched structure, the ammonium ion is easily oxidized.
  • TEA-BF 4 is dissolved, and an electrolyte solution having a high ion concentration can be prepared in the form of a single phase even at a molar ratio of 6Z1.
  • cyclic carbonates such as EC are particularly preferred because of their excellent resistance to electrochemical redox.
  • CZA or CZB is preferably 4 or less.
  • the layer structure may be destroyed, and the amount of lithium ion insertion / release may be reduced.
  • an electrolytic solution having the above components, even when ammonium salt is present, the electrochemical occlusion / release characteristics of lithium ions in graphite are not deteriorated. This is thought to be because the degree of dissociation of the ammonium salt decreases to become a cluster, and the amount of ammonium ions released decreases.
  • a molar ratio between lithium salt and solvent CZA force or a combination below, or a molar ratio between ammonium salt and solvent CZB force a single phase cannot be obtained, but CZA or When the molar ratio of CZB is 4 or less and a lithium salt and an ammonium salt coexist in a solvent to form a single phase, an electrolyte with a higher ion concentration can be obtained.
  • the key of the lithium salt (A) is BF-, bis [trifluoromethanesulfol] imide.
  • TFSI ions Ions (hereinafter abbreviated as TFSI ions), and at least selected from the group consisting of CIO—
  • Salt is more soluble in non-aqueous solvents than lithium salt with PF-
  • the lithium salt (A) contained in the non-aqueous electrolyte of the present invention mainly includes LiBF, LiTFSI, and
  • LiPF lithium bis [pentafluoro]
  • LiBETI lithium [trifluoromethanesulfol] [nonafluorobutanesulfonyl] imide
  • LiMBSI lithium [trifluoromethanesulfol] [nonafluorobutanesulfonyl] imide
  • LiCHSI lithium cyclohexafluoropropane 1, 3 Bis [sulfo] imide
  • LiBOB Lithium bis [oxalate (2—)] borate
  • LiCF BF Lithium trifnoreo port Methyl trifluoroborate
  • LiCF BF Lithium penta Fluoroetilt Fluorobo
  • LiC F BF lithium heptafluoropropyl trifluoroborate
  • Any lithium salt may be used.
  • the concentration of lithium salt in the non-aqueous electrolyte should be determined so that the non-aqueous electrolyte exists stably.
  • lithium salts (A) in particular, LiPF, LiBETI, LiMBSI, LiCHSI, LiB
  • LiCF BF LiCF BF
  • LiC F BF LiC F BF
  • the quaternary ammonium salt (B) containing a linear alkyl group having 4 or less carbon atoms contained in the nonaqueous electrolytic solution of the present invention has four basic forces bonded to N, each independently. Thus, it has a structure that is any one of a methyl group, an ethyl group, a propyl group, and a butyl group. That is, the ammonium salt (B) has a structure represented by the general formula: [R N] + X—. In the formula, [R N] + is a click
  • X— is an anion
  • the anion (X—) of the above ammonium salt (B) is derived from BF—, TFSI ion, and CIO—.
  • the cation ([RN] +) of the above ammonium salt (B) is, in particular, trimethylpropyl ammonium.
  • the ammonium salt (B) is, for example, trimethylethyl ammonium-tetrafluoroborate (hereinafter abbreviated as TMEA-BF), trimethylpropyl ammonium-tetrafluoro.
  • TMPA-BF TMPA-BF
  • TEA'BF TEA'BF
  • TEMA-BF tetraptylammo
  • TBA'BF Tetrafluoroborate
  • TEMA'TFSI Trimethyl
  • TMPA'TF SI Propyl ammonium 'bis [trifluoromethanesulfol] imide
  • TMPA'CIO trimethylpropyl ammonium' park mouth rate
  • the concentration of ammonium salt in the non-aqueous electrolyte should be determined so that the non-aqueous electrolyte exists stably.
  • the amount of additive is adjusted so that the molar ratio CZA or CZB is 6 or less in the mixed solvent (C) obtained by adding these additives and the above solvent. Is preferred.
  • VC bi-ethylene carbonate
  • Vec butyl ethylene carbonate
  • DVec dibule ethylene strength-bonate
  • Pec Ethylene carbonate
  • DPec diethyleneethylene carbonate
  • MVC methyl vinyl carbonate
  • EVC ethyl vinyl carbonate
  • MCC divinyl carbonate
  • DVC arylmethyl carbonate
  • AMC arylethyl carbonate
  • AEC diallyl carbonate
  • DAC aryl carbonate
  • DPC diphenyl carbonate
  • An electrochemical energy storage device of the present invention includes a positive electrode, a negative electrode, and the non-aqueous electrolyte.
  • the above devices include lithium primary battery, lithium secondary battery, electric double A layer capacitor etc. are mentioned.
  • lithium metal As the negative electrode material, lithium metal or the like is used.
  • the positive electrode material is lithium such as LiCoO, LiNiO, LiMn O.
  • Transition metal oxides are used, and negative electrode materials include graphite and Li Ti O.
  • the positive electrode material is activated carbon, polypyrrole, polythiophene, or a conductive compound typified by graphite, which occludes / releases ions during charging / discharging, and the like.
  • activated carbon a conductive polymer such as polyacetylene, or the like is used.
  • the above positive electrode material and negative electrode material may be used alone or as a mixture of a plurality of materials.
  • graphite as a negative electrode material can occlude and release lithium ions and ammonium ions depending on the composition of the non-aqueous electrolyte.
  • TEA-BF LiBF
  • Table 1 shows the state of the electrolyte.
  • Compositions 1-1, 1-2, 1-8, and 1-9 are comparative examples.
  • compositions 1-1, 1-2, 1-8, and 1-9 were not able to prepare a single phase electrolyte at room temperature.
  • LiBF and TEMA'BF are mixed with non-aqueous solvent ZLiBF / TE
  • PA-BF makes it easy for LiBF and TMPA'BF to dissolve.
  • lithium ions can be electrochemically occluded and released from the graphite by using the electrolytic solution of the present invention.
  • An artificial graphite powder was used as a negative electrode material that occludes and releases lithium ions by charging and discharging, and a negative electrode was produced as follows.
  • Nonaqueous electrolytes include EC, LiTFSI, TEMA.TFSI, ECZLiTFSlZTEMA.
  • a non-aqueous electrolyte mixed with EC, LiTFSI, and TEMA'TFSI at a molar ratio of ECZLiTFSlZTEMA'T FSI 6.7ZlZl was used.
  • Fig. 1 shows the potential change when a force sword electricity of 60mAhZg is applied to the artificial graphite powder.
  • a shows the charging curve of Comparative Example 1
  • b shows the charging curve of Example 11.
  • the potential after energization was about 0.2 V, and it was remarkable that lithium ions had infiltrated between the black lead layers and started to form the third stage structure.
  • the third stage structure is a structure in which three graphite layers and one lithium ion layer are alternately stacked.
  • DME non-aqueous electrolyte
  • LiTFSI LiTFSI
  • the negative electrode of Example 11 was used as the test electrode, the lithium metal foil was used as the counter electrode and the reference electrode, and an attempt was made to electrochemically insert and release lithium ions into the artificial graphite powder.
  • the insertion conditions were an ambient temperature of 20 ° C and a current value of 0.03 mAZcm 2, and the cathode electricity was 60 mAhZg with respect to artificial graphite powder.
  • the discharge conditions were an atmospheric temperature of 20 ° C and a current value of 0.03 mAZcm 2 .
  • Fig. 2 shows changes in the negative electrode potential when a force sword current and an anode current are applied to the artificial graphite powder.
  • c indicates a charge curve
  • d indicates a discharge curve. From the charging curve c in Fig. 2, the potential after power sword current energization was about 0.2 V, indicating that lithium ions penetrated between the graphite layers and formed a third stage structure.
  • the discharge curve d in FIG. 2 it was found that artificial graphite powder power lithium was released by energization of the anode current.
  • Non-aqueous electrolytes include EC, LiBF, TEMA-BF, ECZLiBF / TEMA-BF
  • the negative electrode of Example 11 was used as the test electrode, the lithium metal foil was used as the counter electrode and the reference electrode, and electrochemical insertion of lithium ions into the artificial graphite powder was tried.
  • the insertion conditions were an ambient temperature of 20 ° C. and a current value of 0.03 mAZcm 2 .
  • Non-aqueous electrolytes include EC, LiBF, TEMA-BF, ECZLiBF / TEMA-BF
  • FIG. 3 shows a change in potential of the negative electrode when a force sword electricity of 60mAhZg is applied to the artificial graphite powder.
  • e indicates the charging curve of Comparative Example 2
  • f indicates the charging curve of Example 13.
  • the potential drops for 6 hours after the start of power sword current application. Force that caused a reaction that seems to be the insertion of TEMA ions between the graphite layers. After that, the potential dropped and lithium ions entered the graphite layers.
  • Non-aqueous electrolytes include EC, LiBF, TMPA-BF, ECZLiBF / TMPA-BF
  • the negative electrode of Example 11 was used as the test electrode, the lithium metal foil was used as the counter electrode and the reference electrode, and an attempt was made to electrochemically insert and release lithium ions into the artificial graphite powder.
  • the insertion conditions were an atmospheric temperature of 20 ° C. and a current value of 0.03 mAZcm 2, and the cathode electricity was 60 mAhZg with respect to artificial graphite powder.
  • the discharge conditions were an atmospheric temperature of 20 ° C and a current value of 0.03 mAZcm 2 .
  • Fig. 6 shows changes in the negative electrode potential when a force sword current and an anode current are applied to the artificial graphite powder.
  • k represents a charge curve
  • 1 represents a discharge curve. From the charging curve k in Fig. 6, the potential after power sword current energization was about 0.2 V, and it was found that lithium ions penetrated between the black ship layers and formed the third stage structure. Further, from the discharge curve 1 in FIG. 6, it was found that lithium ions were released from the artificial graphite powder when the anode current was applied.
  • Non-aqueous electrolytes include EC, LiBF, TMEA-BF, ECZLiBF / TMEA-BF
  • the negative electrode of Example 11 was used as the test electrode, the lithium metal foil was used as the counter electrode and the reference electrode, and an attempt was made to electrochemically insert and release lithium ions into the artificial graphite powder.
  • the insertion conditions were an atmospheric temperature of 20 ° C. and a current value of 0.03 mAZcm 2, and the cathode electricity was 60 mAhZg with respect to artificial graphite powder.
  • the discharge conditions were an atmospheric temperature of 20 ° C and a current value of 0.03 mAZcm 2 .
  • Figure 7 shows the negative in the case where a force sword current and an anode current are applied to the artificial graphite powder.
  • the potential change of the pole was shown.
  • m represents a charging curve
  • n represents a discharging curve. From the charging curve m in Fig. 7, the potential after the end of energizing the sword current was about 0.2 V, and it was found that lithium ions penetrated between the graphite layers to form the third stage structure. In addition, from the discharge curve n in FIG. 7, it was found that lithium ions were released from the artificial graphite powder when the anode current was applied.
  • Non-aqueous electrolytes include EC, LiCIO, TMPA-CIO, ECZLiCIO / TMPA-C
  • the negative electrode of Example 11 was used as the test electrode, the lithium metal foil was used as the counter electrode and the reference electrode, and an attempt was made to electrochemically insert and release lithium ions into the artificial graphite powder.
  • the insertion conditions were an atmospheric temperature of 20 ° C. and a current value of 0.03 mAZcm 2, and the cathode electricity was 60 mAhZg with respect to artificial graphite powder.
  • the discharge conditions were an atmospheric temperature of 20 ° C and a current value of 0.03 mAZcm 2 .
  • FIG. 8 shows the potential change of the negative electrode when a force sword current and an anode current are applied to the artificial graphite powder.
  • o indicates a charge curve
  • p indicates a discharge curve. From the charging curve o in Fig. 8, the potential after the end of energizing the sword current was about 0.2 V, and it was found that lithium ions penetrated between the graphite layers to form the third stage structure. In addition, from the discharge curve p in FIG. 8, it was found that artificial graphite powder power lithium was released by energization of the anode current.
  • LiCoO is used as a cathode material that occludes and releases lithium ions during charge and discharge.
  • a slurry-like positive electrode mixture was prepared by mixing 5 parts by weight of polyvinylidene fluoride resin as an agent and dispersing them in dehydrated N-methyl-2-pyrrolidone.
  • This positive electrode material mixture was applied onto a positive electrode current collector having an aluminum foil force, dried and rolled to form an active material layer on the positive electrode current collector. Then, a positive electrode current collector having an active material layer formed on the surface was cut into a size of 35 mm ⁇ 35 mm, and ultrasonically welded to a 0.5 mm thick aluminum current collector with a lead to obtain a positive electrode.
  • the negative electrode was produced in the same manner as in Example 11 using artificial graphite powder.
  • EC non-aqueous electrolyte
  • LiTFSI LiTFSI
  • the positive electrode obtained above and the negative electrode of Example 11 were made to face each other through a polypropylene non-woven fabric, and the positive electrode and the negative electrode were fixed with tape, and these were integrated.
  • This integrated product was placed in a cylindrical aluminum laminate, and one opening was welded to the lead parts of both poles. And the non-aqueous electrolyte obtained above was dripped also in the other opening part force. Then, after degassing under 10 mmHg for 5 seconds, the other opening was welded and sealed to obtain a lithium secondary battery.
  • the lithium secondary battery was charged and discharged under the conditions of an atmospheric temperature of 20 ° C., a current value of 0.03 mAZcm 2 during charging and discharging, an upper limit voltage of 4.2 V, and a lower limit voltage of 1. OV.
  • Figure 4 shows the transition of battery voltage during charge and discharge in the second cycle.
  • g indicates a charge curve
  • h indicates a discharge curve.
  • a lithium secondary battery was assembled in the same manner as in Example 17.
  • EC non-aqueous electrolyte
  • LiTFSI LiTFSI
  • FIG. 5 shows the transition of battery voltage during charge / discharge in the second cycle.
  • i indicates a charging curve
  • j indicates a discharging curve.
  • Example 17 of the present invention the battery voltage reached 4.2 V within 110 hours after the start of charging, indicating that the discharge capacity was larger than that of the battery of Comparative Example 3. I got it. Therefore, a high energy density lithium secondary battery was obtained by using the non-aqueous electrolyte solution of Example 17 of the present invention.
  • a lithium secondary battery 18A was produced in the same manner as in Example 17 except that this nonaqueous electrolytic solution was used.
  • a lithium secondary battery 18B was produced in the same manner as in Example 11 except that this nonaqueous electrolytic solution was used.
  • the batteries 18A and 18B were repeatedly charged and discharged under the same conditions as in Example 17. Then, the value obtained by dividing the discharge capacity at the 10th cycle by the discharge capacity at the 2nd cycle was evaluated as the capacity retention rate.
  • the capacity retention rate was 0.93 for battery 18A and 0.97 for battery 18B. It can be seen that adding Vec to the non-aqueous electrolyte improves the capacity retention rate.
  • LiPF was added to the electrolyte, and the characteristics of the lithium secondary battery were investigated.
  • lithium secondary batteries Two types of lithium secondary batteries shown below were produced.
  • a lithium secondary battery 19A was produced in the same manner as in Example 17 except for the above.
  • the other is EC, LiTFSI, LiPF, TEMA.TFSI, ECZ, and non-aqueous electrolyte.
  • LiTFSl / LiPF ZTEMA'TFSI 4Z0.9Z0.1Z1 mole
  • a lithium secondary battery 19B was produced in the same manner as in Example 11 except that this non-aqueous electrolyte was used, using a mixture of 6 ratios.
  • a lithium primary battery was assembled in the following procedure.
  • the positive electrode was prepared in the same manner as in Example 17 except that ⁇ ⁇ ⁇ 8-MnO was used as the positive electrode material.
  • a lithium metal foil was cut into a size of 35 mm ⁇ 35 mm, and then bonded to a copper current collector plate with a thickness of 0.5 mm to produce a negative electrode.
  • EC non-aqueous electrolyte
  • LiTFSI LiTFSI
  • the positive electrode and the negative electrode were opposed to each other through a polyethylene porous film, and the positive electrode and the negative electrode were fixed with a tape to integrate them.
  • This monolithic container was housed in a cylindrical aluminum laminate, and one opening was welded at the lead portions of both electrodes. Then, the nonaqueous electrolytic solution obtained above was dropped from the other opening. Then, after deaeration for 5 seconds under lOmmHg, the other opening was sealed by welding to produce a lithium primary battery.
  • the batteries were stored at 60 ° C for 1 month, and changes in internal impedance before and after storage were examined.
  • the internal impedance before storage was 2.6 ⁇
  • the internal impedance after force storage was 2.9 ⁇ .
  • a lithium primary battery was prepared in the same manner as in Example 20 except that this non-aqueous electrolyte was used, and the change in internal impedance before and after storage was examined.
  • a polarizable electrode was prepared by the following procedure.
  • Activated carbon powder with a specific surface area of 1700 m 2 / g obtained using phenol resin, acetylene black as a conductive agent, ammonium salt of carboxymethyl cellulose as a binder, water and methanol as a dispersion medium Were mixed at a weight ratio of 10: 2: 1: 100: 40. This mixture was applied to one side of a current collector made of aluminum foil having a thickness of 20 / zm, and then dried to form an active material layer having a thickness of 80 m. This was cut to a size of 35 mm X 35 mm, and then ultrasonically welded to a 0.5 mm thick aluminum current collector plate with leads.
  • Non-aqueous electrolytes include EC, LiTFSI, TEMA'TFSI, ECZLiTFSlZTEMA '
  • the ambient temperature was 20 ° C and the current value was 0.3 m.
  • non-aqueous electrolyte EC, LiBF, N, N-jetyl N-methyl N- (2-metho
  • a hybrid capacitor was assembled in the same manner as in Example 21 except that this non-aqueous electrolyte was used, and the change in capacity was examined.
  • a polarizable electrode was produced in the same procedure as in Example 21.
  • Two polarizable electrodes facing each other through a separator made of polypropylene non-woven cloth were housed in an aluminum laminated tube to form an electric double layer capacitor.
  • Non-aqueous electrolytes include EC, LiClO, TMPA-CIO, ECZLiCIO / TEMA-C
  • charging / discharging was performed in the voltage range of 2.0 to 3.2 V at an ambient temperature of 20 ° C. and a current value of 0.3 mAZcm 2 . After 20 cycles The charge / discharge efficiency of the capacitor was approximately 96%. The charge / discharge efficiency is the ratio of the discharge capacity to the charge capacity at the 20th cycle.
  • EC LiBF, DEME-BF, ECZLiBF / DEME-BF
  • an electric double layer capacitor having high charge / discharge efficiency can be obtained even when a charge / discharge cycle is performed at a high voltage.
  • the non-aqueous electrolyte of the present invention is suitably used for electrochemical energy storage devices such as lithium secondary batteries, lithium primary batteries, hybrid capacitors, and electric double layer capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明の非水電解液は、リチウム塩(A)と、炭素数が4以下の直鎖状アルキル基を含む第4級アンモニウム塩(B)と、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、エトキシメトキシエタン、およびジエトキシエタンからなる群より選択された少なくとも1種の化合物からなる溶媒(C)とを含む。リチウム塩(A)に対する溶媒(C)のモル比C/A、またはアンモニウム塩(B)に対する溶媒(C)のモル比C/Bが6以下であり、非水電解液は単一の相からなる。 これにより、優れた耐酸化性および耐還元性を有する、高イオン濃度の非水電解液が得られる。

Description

明 細 書
非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス 技術分野
[0001] 本発明は、電気化学エネルギー蓄積デバイスに用いられる非水電解液に関する。
背景技術
[0002] 電気二重層キャパシタでは、正極および負極に分極性電極を用い、充電過程で非 水電解液中のカチオンおよびァ-オンを電極表面に吸着させることで、電気化学ェ ネルギーを蓄積する。充電過程では、非水電解液中のイオン濃度が低下するため、 電気二重層キャパシタ内部の抵抗が増加する。また、低イオン濃度の非水電解液を 使用すると、吸着できるイオン数が減少するため電気二重層キャパシタに蓄えられる 電気容量が低下する。
電気二重層キャパシタのエネルギー密度を増やすためには、非水電解液中のィォ ン濃度を高くする必要がある。また、支持塩を溶解する溶媒に非水溶媒を用いている ため、電気二重層キャパシタの充電電圧を高く設定することができ、キャパシタのェ ネルギー密度が一層高くなる。
[0003] 一方、リチウムを活物質とする非水電解液電池では、リチウムイオンは、正極と負極 との間の非水電解液中を移動する。ここで、一次電池においては放電中、二次電池 においては充放電中、非水電解液中のイオン濃度は変化しない。非水電解液電池 のエネルギー密度を増やすためには、正極および負極の活物質の量を増やし、非 水電解液の量を減らせばよい。また、非水電解液の量を減らす一方で、正負極間を 移動可能なイオン量を保つ必要があるため、非水電解液中のイオン濃度を高くする 必要がある。
[0004] 非水電解液は、支持塩および支持塩を溶解する非水溶媒からなる。
代表的な非水溶媒としては、環状カーボネートであるエチレンカーボネート(以下、 ECと略記)、プロピレンカーボネート(以下、 PCと略記)、ブチレンカーボネート(以下 、 BCと略記)、環状エステルである γ—プチ口ラタトン (以下、 γ — BLと略記)、鎖状 カーボネートであるジメチルカーボネート(以下、 DMCと略記)、ェチルメチルカーボ ネート(以下、 EMCと略記)、ジェチノレカーボネート(以下、 DECと略記)などが挙げ られる。
[0005] 支持塩には、リチウムへキサフルォロホスフェート(LiPF )、リチウムテトラフルォロ
6
ボレート(LiBF )、リチウムパーク口レート(LiCIO )、リチウムビス [トリフルォロメタンス
4 4
ルホ -ル]イミド(以下、 LiTFSIと略記)などのリチウム塩や、テトラエチルアンモ-ゥ ム 'テトラフルォロボレート(以下、 TEA'BFと略記)、トリェチルメチルアンモ-ゥム'
4
テトラフルォロボレート(以下、 TEMA'BFと略記)などのアンモ-ゥム塩が挙げられ
4
る。
[0006] 非水溶媒に溶解させる塩の濃度としては、例えば、非水溶媒中のリチウム塩の濃度 は、通常 0.8モル Zkg程度である。高イオン濃度の非水電解液としては、例えば、 Li BFと ECとを、モル比で 1 :4に混合する(非水電解液 lkgあたり LiBFを 2.2モル含
4 4 む)場合や、 TEMA'BFと ECを、モル比で、 1: 3に混合する(非水電解液 lkgあた り TEMA'BFを 2.1モル含む)場合が限界である。
4
[0007] これ以上の高イオン濃度の電解液を得るには、常温で液体の塩であるイオン性液 体を使用する必要がある。例えば、特許文献 1では、イオン性液体として 1 ェチル 3—メチノレイミダゾリウム'テトラフノレオロボレート(以下、 EMI'BFと略記)を用い、
4
これと、 LiBFおよび ECとを混合して非水電解液を調製することが開示されている。
4
EMI'BFは、それ自体で、 5.1モル Zkgの高イオン濃度液体である。
4
[0008] また、特許文献 2では、イオン性液体として N, N ジェチルー N—メチル N— (2 —メトキシェチル)アンモ-ゥム ·ビス [トリフルォロメタンスルフォ -ル]イミド(以下、 D EME'TFSIと略記)を用い、これと、 LiTFSIおよび ECとを混合して非水電解液を調 製することが開示されている。 DEME'TFSIは、それ自体で、非水電解液 lkgあたり 2.3モル含む高イオン濃度液体である。
[0009] 一方、特許文献 3には、活性炭を含む正極と、活性炭およびリチウムを吸蔵 '放出 する炭素材料を含む負極とを組み合わせた電気化学エネルギー蓄積デバイスが提 案されている。そして、そのデバイスには、リチウム塩およびアンモ-ゥム塩を含む非 水電解液が用いられている。
[0010] 特許文献 3のデバイスでは、充電時において、負極中の活性炭にはリチウムイオン とアンモ-ゥムイオンが吸着し、炭素材料にはリチウムイオンが吸蔵されるとして!/、る。 このため、大電流での充放電特性が向上し、高い電気容量を蓄積することが可能と されている。電解液としては、 0.5〜2.5モル ZLの第 4級ォ-ゥム塩(N、 P、および S 原子などを核とするカチオン力 なる塩)を含み、かつ、 0.5〜2.0モル ZLのリチウム 塩を含む電解液が開示されている。具体的には、 LiBFと、 TEMA-BFとを、それ
4 4 ぞれ 1モル ZLの濃度で PCに溶解させた非水電解液のみが挙げられて 、る。なお、 1モル ZLの濃度は、モル比に換算すると、およそ PCZLiBF = 11/1, PC/TE
4
MA-BF = 10Zl
4 に相当する。
特許文献 1:特開平 11― 260400号公報
特許文献 2 :特開 2004— 146346号公報
特許文献 3:特開 2000 - 228222号公報
発明の開示
発明が解決しょうとする課題
[0011] 特許文献 1および 2のイオン性液体は、電気二重層キャパシタゃ非水電解液二次 電池に要求される耐酸化性ゃ耐還元性を有しない。また、リチウム塩の溶解度が低く リチウムイオンの濃度を上げることができないため、リチウムを活物質とする非水電解 液二次電池にぉ 、て電解液量を減らすことができな!/、。
[0012] また、本発明者らは特許文献 3を詳細に検討したところ、例示されている電解液の 組成では、充電時にリチウムイオンが炭素材料に吸蔵されないことが判明した。この ことは、特許文献 3の実施例で、提案されている電気化学エネルギー蓄積デバイスの 充電電圧が 3.2Vにとどまっていることからも推定できる。実際、デバイスの充電電圧 が大きくなると、リチウムイオンを吸蔵 ·放出する炭素材料に、トリェチルメチルアンモ -ゥムイオン (以下、 ΤΕΜΑイオンと略記)が挿入されるとともに、溶媒である PCが分 解し、著しいガス発生が起きた。
[0013] 特許文献 3では、 0.5〜2.5モル ZLの第 4級ォ -ゥム塩および 0.5〜2.0モル ZL のリチウム塩を溶解した非水電解液が記載されている。 ECを溶媒に用いる場合、 TE MA-BFは、単独で、電解液 lkgあたり 2.1モル(計算値として電解液中の ΤΕΜΑ·
4
BFの濃度はおよそ 2.5モル ZL)溶解することができる。また、 ECを溶媒に用いる場 合、 LiBFは、単独で、電解液 lkgあたり 2.2モル(計算値として電解液中の ΤΕΜΑ·
4
BFの濃度はおよそ 2.6モル/ L)溶解することができる。しかし、特許文献 3では、第
4
4級ォ -ゥム塩およびリチウム塩を、同時に、高イオン濃度で溶解できることは示され ていない。また、後述する本発明の実施例のように、溶媒の溶解度を超える高イオン 濃度の電解液の調製が可能であることは知られていな力つた。
[0014] そこで、本発明は上記従来の問題を鑑みてなされたものであり、耐酸化性ゃ耐還 元性に優れ、かつ、高イオン濃度の非水電解液を提供することを目的とする。
課題を解決するための手段
[0015] 本発明は、リチウム塩 (A)と、炭素数が 4以下の直鎖状アルキル基を含む第 4級ァ ンモ-ゥム塩(B)と、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボ ネート、 Ύ ブチロラタトン、ジメチノレカーボネート、ェチノレメチノレカーボネート、ジェ チルカーボネート、ジメトキシェタン、エトキシメトキシェタン、およびジエトキシェタン カゝらなる群より選択された少なくとも 1種からなる溶媒 (C)とを含む非水電解液であつ て、
前記リチウム塩 (A)に対する前記溶媒 (C)のモル比 CZA、または前記アンモ-ゥ ム塩 (B)に対する前記溶媒 (C)のモル比 CZBが 6以下であることを特徴とする。
[0016] また、本発明は、上記の非水電解液と、正極と、負極とを具備する電気化学エネル ギー蓄積デバイスに関する。
発明の効果
[0017] 本発明によれば、リチウム塩やアンモニゥム塩を特定の組成で混合することにより、 単一の相からなる高イオン濃度の非水電解液が得られる。また、アンモ-ゥム塩中の アンモ-ゥムイオンを直鎖状アルキル基を含む構造とすることで、耐酸ィ匕性および耐 還元性に優れた非水電解液を得ることができる。
[0018] したがって、電気二重層キャパシタゃ非水電解液二次電池などの電気化学ェネル ギー蓄積デバイスにおける電解液量を減らすことができ、エネルギー密度を向上させ ることができる。また、耐酸化性および耐還元性に優れるので、高電圧の電気化学ェ ネルギー蓄積デバイスが得られる。
図面の簡単な説明 [0019] [図 1]本発明の実施例 11および比較例 1における負極の充電曲線を示す図である。
[図 2]本発明の実施例 12における負極の充放電曲線を示す図である。
[図 3]本発明の実施例 13および比較例 2における負極の充電曲線を示す図である。
[図 4]本発明の実施例 17におけるリチウム二次電池の充放電曲線を示す図である。
[図 5]比較例 3のリチウム二次電池の充放電曲線を示す図である。
[図 6]本発明の実施例 14における負極の充放電曲線を示す図である。
[図 7]本発明の実施例 15における負極の充放電曲線を示す図である。
[図 8]本発明の実施例 16における負極の充放電曲線を示す図である。
発明を実施するための最良の形態
[0020] 本発明は、リチウム塩 (A)と、炭素数が 4以下の直鎖状アルキル基を含む第 4級ァ ンモ-ゥム塩(B)と、エチレンカーボネート(以下、 ECと略記)、プロピレンカーボネー ト(以下、 PCと略記)、ブチレンカーボネート(以下、 BCと略記)、 γ プチ口ラタトン( 以下、 γ— BLと略記)、ジメチルカーボネート(以下、 DMCと略記)、ェチルメチルカ ーボネート(以下、 EMCと略記)、ジェチルカーボネート(以下、 DECと略記)、ジメト キシェタン (以下、 DMEと略記)、エトキシメトキシェタン (以下、 EMEと略記)、およ びジエトキシェタン (以下、 DEEと略記)からなる群より選択された少なくとも 1種から なる溶媒 (C)とを含み、前記リチウム塩 (A)に対する前記溶媒 (C)のモル比(以下、 CZAと略記)、または前記アンモニゥム塩 (B)に対する前記溶媒 (C)のモル比(以 下、 CZBと略記)が 6以下であり、単一の相からなる非水電解液に関する。
[0021] 上記のようにリチウム塩と、アンモ-ゥム塩と、溶媒とを組み合わせて、単一の相から なる高イオン濃度の非水電解液が得られる。また、炭素数が 4以下の直鎖状アルキ ル基を含む第 4級アンモ-ゥム塩を含むことにより、耐酸化性および耐還元性に優れ た非水電解液が得られる。直鎖状アルキル基の炭素数が 4を超えると、負極における グラフアイト層間にアンモニゥムイオンが挿入しやすくなり、グラフアイトの層状構造が 破壊され、負極の充放電サイクル寿命が短くなる。また、アルキル基が直鎖状ではな ぐ 2級や 3級の枝分かれした構造を有する場合、アンモ -ゥムイオンは酸化されや すい。
[0022] 電気二重層キャパシタ用電解液の塩としてよく用いられる TEA'BFは、 EC/TE A-BF =7Zlのモル比では、すべて ECに溶解する力 6Z1のモル比では、 ΤΕΑ·
4
BFが溶解しきれず、電解液の上面に浮いてしまう。しかし、リチウム塩を共存させる
4
と、 TEA-BF 4は溶解し、 6Z1のモル比でも単一の相カゝらなる高イオン濃度の電解液 を調製することができる。
電気化学的酸化還元に対する耐性に優れているため、上記溶媒のなかでも、 EC などの環状カーボネートが特に好ま 、。
[0023] CZAまたは CZBが 4以下であるのが好ましい。アンモ-ゥム塩は、負極材料に用 いられるグラフアイトの層間に侵入すると、層状構造が破壊されて、リチウムイオンの 挿入'放出する量が減少する場合がある。しかし、上記のような成分の電解液を用い ることにより、アンモ-ゥム塩が存在しても、グラフアイトにおけるリチウムイオンの電気 化学的吸蔵'放出特性は低下しない。これは、アンモ-ゥム塩の解離度が低下してク ラスターとなり、遊離するアンモ-ゥムイオンの量が減少するためであると考えられる。 具体的には、 ECと、 LiTFSIと、トリェチルメチルアンモ -ゥム 'ビス [トリフルォロメタ ンスルフォ -ル]イミド(以下、 TEMA'TFSIと略記)とを、 ECZLiTFSlZTEMA'T FSI=4/1/ 1のモル比で混合した電解液が挙げられる。
[0024] リチウム塩と溶媒とのモル比 CZAが 6以下の組み合わせ、または、アンモニゥム塩 と溶媒とのモル比 CZBが 6以下の組み合わせにおいては、単一の相は得られない 力 CZAまたは CZBのモル比を 6以下として、溶媒中にリチウム塩とアンモ-ゥム塩 とを共存させること〖こより、単一の相からなる高イオン濃度の電解液が得られる。
また、リチウム塩と溶媒とのモル比 CZA力 以下の組み合わせ、または、アンモ- ゥム塩と溶媒とのモル比 CZB力 以下の組み合わせにおいては、単一の相は得ら れないが、 CZAまたは CZBのモル比を 4以下として、溶媒中にリチウム塩とアンモ -ゥム塩とを共存させて単一の相となる場合、一層、高イオン濃度の電解液が得られ る。
具体的には、 DMEと、 LiTFSIと、 TEMA'TFSIとを、 DME/LiTFSlZTEMA •TFSI= lZlZlのモル比で混合した電解液が挙げられる。なお、 DMEと LiTFSI とを、 DMEZLiTFSI= lZlのモル比で混合すると、常温では電解液は固体である [0025] 上記リチウム塩 (A)のァ-オンは、 BF―、ビス [トリフルォロメタンスルフォ -ル]イミド
4
イオン(以下、 TFSIイオンと略記)、および CIO—からなる群より選択された少なくとも
4
1種であるのが好ましい。 BF―、 TFSIイオン、または CIO—をァ二オンとするリチウム
4 4
塩は、 PF—をァ-オンとするリチウム塩と比べて、非水溶媒に対する溶解度が大きい
6
[0026] 本発明の非水電解液に含まれるリチウム塩 (A)としては、主に LiBF、 LiTFSI、お
4
よび LiCIOが挙げられる。これら以外に、さらに、 LiPF、リチウムビス [ペンタフルォ
4 6
ロェタンスルホ -ル]イミド(以下、 LiBETIと略記)、リチウム [トリフルォロメタンスルホ -ル] [ノナフルォロブタンスルホニル]イミド(以下、 LiMBSIと略記)、リチウムシクロ へキサフルォロプロパン 1, 3 ビス [スルホ -ル]イミド(以下、 LiCHSIと略記)、リ チウムビス [ォキサレート(2— ) ]ボレート(以下、 LiBOBと略記)、リチウムトリフノレオ口 メチルトリフルォロボレート(LiCF BF )、リチウムペンタフルォロェチルトリフルォロボ
3 3
レート(LiC F BF )、リチウムヘプタフルォロプロピルトリフルォロボレート(LiC F BF
2 5 3 3 7
)、リチウムトリス [ペンタフルォロェチル]トリフルォロホスフェート [Li (C F ) PF ]な
3 2 5 3 3 どのリチウム塩を用いてもよい。非水電解液中のリチウム塩の濃度は、非水電解液が 安定に存在するように決定すればょ 、。
上記リチウム塩(A)のなかでも、特に、 LiPF、 LiBETI, LiMBSI, LiCHSI, LiB
6
OB、 LiCF BF、 LiC F BFが好ましい。
3 3 2 5 3
[0027] 本発明の非水電解液に含まれる、炭素数が 4以下の直鎖状アルキル基を含む第 4 級アンモ-ゥム塩 (B)は、 Nに結合する 4つの基力 それぞれ独立して、メチル基、ェ チル基、プロピル基、ブチル基のいずれかである構造を有する。すなわち、上記アン モ-ゥム塩 (B)は、一般式: [R N]+X—で表される構造を有する。式中、 [R N]+はカチ
4 4 オンであり、 4つの Rはそれぞれ独立して C H (n= l〜4)で表される直鎖状アルキ n 2n+l
ル基であり、 X—はァニオンである。
[0028] 上記アンモニゥム塩(B)のァニオン(X—)は、 BF―、 TFSIイオン、および CIO—から
4 4 なる群より選択された少なくとも 1種であるのが好ましい。 BF―、 TFSIイオン、または C
4
lO—をァ二オンとするアンモニゥム塩は、 PF—をァ二オンとするアンモニゥム塩と比べ
4 6
て、非水溶媒に対する溶解度が大きい。 上記アンモ-ゥム塩(B)のカチオン([R N]+)は、特に、トリメチルプロピルアンモ-
4
ゥムイオンであるのが好まし 、。
[0029] 上記アンモ-ゥム塩(B)は、例えば、トリメチルェチルアンモ -ゥム 'テトラフルォロ ボレート(以下、 TMEA-BFと略記)、トリメチルプロピルアンモ-ゥム 'テトラフルォロ
4
ボレート(以下、 TMPA-BFと略記)、 TEA'BF、 TEMA-BF、テトラプチルアンモ
4 4 4
ユウム.テトラフルォロボレート(以下、 TBA'BFと略記)、 TEMA'TFSI、トリメチル
4
プロピルアンモ-ゥム 'ビス [トリフルォロメタンスルフォ -ル]イミド(以下、 TMPA'TF SIと略記)、トリメチルプロピルアンモ-ゥム 'パーク口レート(以下、 TMPA'CIOと略
4 記)などが挙げられる。非水電解液中のアンモ-ゥム塩の濃度は、非水電解液が安 定に存在するように決定すればょ ヽ。
[0030] 非水電解液は、さらに、 C = C不飽和結合を有する環状または鎖状カーボネートを 添加剤として含んでいてもよい。これにより、電気化学エネルギー蓄積デバイスの充 放電サイクル特性が向上する。高イオン濃度を維持する観点から、これらの添加剤と 、上記溶媒とを合計した混合溶媒 (C)において、モル比 CZAまたは CZBが 6以下 となるよう〖こ、添加剤の量を調整するのが好ましい。
[0031] C = C不飽和結合を有する環状カーボネートとしては、ビ-レンカーボネート(以下 、 VCと略記)、ビュルエチレンカーボネート(以下、 Vecと略記)、ジビュルエチレン力 ーボネート(以下、 DVecと略記)、フエ-ルエチレンカーボネート(以下、 Pecと略記) 、ジフエ-ルエチレンカーボネート(以下、 DPecと略記)などが挙げられ、特に Vec、 Pecが好ましい。
[0032] また、 C = C不飽和結合を有する鎖状カーボネートとしては、メチルビ-ルカーボネ ート(以下、 MVCと略記)、ェチルビ二ルカーボネート(以下、 EVCと略記)、ジビ- ルカーボネート(以下、 DVCと略記)、ァリルメチルカーボネート(以下、 AMCと略記 )、ァリルェチルカーボネート(以下、 AECと略記)、ジァリルカーボネート(以下、 DA Cと略記)、ァリルフエ-ルカーボネート(以下、 APCと略記)、ジフエ-ルカーボネー ト(以下、 DPCと略記)などが挙げられ、特に DAC、 APC、 DPCが好ましい。
[0033] 本発明の電気化学エネルギー蓄積デバイスは、正極と、負極と、上記の非水電解 液を具備する。上記デバイスには、リチウム一次電池、リチウム二次電池、電気二重 層キャパシタ等が挙げられる。
リチウム一次電池では、正極材料には、 MnOや CF (x=0.9〜: L1)などが用いら
2
れ、負極材料には、リチウム金属などが用いられる。
リチウム二次電池では、正極材料には、 LiCoO、 LiNiO、 LiMn Oなどのリチウム
2 2 2 4
含有遷移金属酸化物などが用いられ、負極材料には、グラフアイトや Li Ti O などが
4 5 12 用いられる。
[0034] 電気二重層キャパシタでは、正極材料には、活性炭、充放電でァ-オンを吸蔵 '放 出するポリピロール、ポリチォフェン、グラフアイトに代表される導電性ィ匕合物などが 用いられ、負極材料には、活性炭、ポリアセチレンのような導電性高分子などが用い られる。また、これらの混合物や複合物を正極材料に用いてもよい。
上記の正極材料や負極材料は、単独で用いてもよぐ複数の材料を混合して用い てもよい。
なお、負極材料としてのグラフアイトは、非水電解液の組成により、リチウムイオンお よびアンモニゥムイオンの吸蔵 '放出を行うことができる。
実施例
[0035] 以下に、本発明の実施例を詳細に説明するが、本発明は以下の実施例に限定さ れない。
リチウム塩とアンモ-ゥム塩とを共存させて、高イオン濃度の電解液を調製した実施 例を以下に示す。
《実施例 1》
ECと、 LiBFと、 TEA-BFとを、 ECZLiBF /TEA-BF
4 4 4 4 =6ZlZlのモル比で 混合した。その結果、全塩濃度が 2.4モル Zkgの常温で単一な相の電解液を調製 することができた。なお、目視によって、溶け残りの塩が浮遊していないことやにごり がなく透明であることを確かめることにより、電解液が単一な相であることを確認した。
[0036] ECと TEA 'BF
4とを、 ECZTEA'BF
4 =6Zlのモル比で混合した場合は、 ΤΕΑ·
BFは溶解しきれずに溶液の上面に浮遊した。ここで、 TEA'BFがすべて溶解した
4 4
ものと仮定すると、塩濃度は 1.3モル Zkgの電解液が得られる。 TEA-BFは、 LiBF
4 4 の存在によって溶解しやすくなるとともに、電解液中の塩濃度が少なくとも 1.8倍にな つたことがわかる。
[0037] 《実施例 2》
y— BLと、 LiBFと、 TEA'BFとを、 γ -BL/LiBF /TEA-BF =4/1/1の
4 4 4 4
モル比で混合した後、 60°Cで保持した。その結果、全塩濃度が 3.1モル Zkgの単一 な相の電解液を調製することができた。なお、 γ— BLと TEA'BFを、 γ -BL/TE
4
A-BF =4/1のモル比で混合した場合は、 TEA'BFは、 60°Cで溶解しきれずに
4 4
溶液の上面に浮遊した。ここで、 TEA'BFがすべて溶解していたと仮定すると、塩
4
濃度は 1.8モル Zkgの電解液が得られる。 TEA-BFは、 LiBFの存在によって溶解
4 4
しゃすくなるとともに、電解液中の塩濃度が少なくとも 1.7倍になったことがわかる。
[0038] 《実施例 3》
ECと、 LiBFと、 TEMA-BFとを、表 1に示す種々の割合で混合した。このとき、調
4 4
製された電解液の状態を表 1に示す。なお、組成 1— 1、 1— 2、 1— 8、および 1—9は 比較例である。
[0039] [表 1]
組成
組成
EC/Li BF4/TEMA-BF4 混合後の状態
番号
(モル比)
1一 1 2/1 /0. 2 L i BF4が沈殿
1 -2 2/\ /0.4 L i BF S沈殿
1一 3 2/1 /0.6 単一の相
1 -4 2/ 1 /0.8 単一の相
1 - 5 2/1 / 1 単一の相
1一 6 2/0. 8/1 単一の相
1一 7 2/0. 6/ 1 単一の相
1一 8 2/0.4/1 TEMA · BF 浮遊
1 - 9 2/0. 2/ 1 TEMA · BF4が浮遊
[0040] 組成 1 3〜1 7の混合条件では、常温で単一な相からなる高イオン濃度の電解 液を調製することができた。ここで、モル比が ECZLiBF /TEMA-BF =2/1/1
4 4
である電解液では、全塩濃度は、 4.2モル/ kgであった。一方、組成 1— 1、 1-2, 1 —8および 1—9では、常温で単一な相の電解液を調製できな力つた。また、 ECと、 L iBFとを、 ECZLiBF =2Zlのモル比で混合した場合、および ECと、 TEMA'BF
4 4 4 とを、 EC/TEMA-BF =2/1のモル比で混合した場合は、塩をすベて ECに溶解
4
させることはできなかった。
[0041] 《実施例 4》
溶媒として ECと、リチウム塩として LiBFと、アンモ-ゥム塩として TMA (テトラメチ
4
ルアンモ-ゥム) -BFとを、表 2に示す割合で混合した。このとき、調製された電解液
4
の状態を表 2に示す。
[0042] [表 2] 組成
組成
EC/L i BF4/TMA- BF4 混合後の状態
番号
(モル比)
2一 1 6 / 1 / 0 . 1 単一の相
[0043] TMA-BFの ECへの溶解度はきわめて低ぐ EC/TMA-BF = 6Zlのモル比で
4 4
は、 TMA-BFを溶解することはできないが、 LiBFを共存させることにより、常温で
4 4
単一な相からなる高イオン濃度の電解液を調製することができた。しかし、この電解 液は準安定であり、室温では、やがて、針状またはりん片状の結晶物が析出し、電解 液の上面に浮遊した。
[0044] 《実施例 5》
表 3に示す非水溶媒を用いて、 LiBFと TEMA'BFを、非水溶媒 ZLiBF /TE
4 4 4
MA-BF =2ZlZlのモル比で混合した。混合後の状態を表 3に示す。
4
[0045] [表 3]
Figure imgf000014_0001
[0046] その結果、表 3に示すように、いずれの場合も単一の相からなる高イオン濃度の電 解液を調製することができた。 なお、非水溶媒と、 LiBF
4とを、非水溶媒 ZLiBF = 2Zlのモル
4 比で混合した場合
、および非水溶媒と、 TEMA-BFとを、非水溶媒 ZTEMA'BF = 2Zlのモル比で
4 4
混合した場合は、 、ずれも塩をすベて溶媒に溶解させることはできな力 た。
[0047] 《実施例 6》
ECと、 LiBFと、 TBA-BFとを、 ECZLiBF /TBA-BF
4 4 4 4 =3ZlZlのモル比で 混合した。その結果、全塩濃度が 2.9モル Zkgである単一の相の電解液を調製する ことができた。なお、 ECと、 LiBFとを、 ECZLiBF
4 4 =3Zlのモル比で混合した場合 は、 LiBFは溶解しきれずに沈殿することから、 TBA-BFの存在によって LiBFが溶
4 4 4 解しやすくなつたことがわかる。
[0048] 《実施例 7》
ECと、 LiBFと、 TMEA-BFとを、 ECZLiBF /TMEA-BF = 2ZlZlのモル
4 4 4 4
比で混合した。その結果、全塩濃度力 .5モル Zkgである単一の相の電解液を調製 することができた。なお、 ECと、 LiBF ル
4とを、 ECZLiBF = 2Zl
4 のモ 比で混合した 場合は、 LiBFは溶解しきれずに沈殿することから、 TMEA-BFの存在によって LiB
4 4
Fが溶解しやすくなつたことがわかる。
4
[0049] 《実施例 8》
ECと、 LiBFと、 TMPA'BFとを、 ECZLiBF /TMPA-BF = 1/1/1のモル
4 4 4 4
比で混合した。その結果、全塩濃度が 5.4モル/ kgである単一の相の電解液を調製 することができた。なお、 ECと、 TMPA'BFとを、 EC/TMPA'BF = 1/1のモノレ
4 4
比で混合した場合は、 TMPA'BFは溶解しきれずに沈殿することから、 LiBFと TM
4 4
PA-BFが共存することによって、 LiBFおよび TMPA'BFが溶解しやすくなつたこ
4 4 4
とがわかる。
[0050] 《実施例 9》
非水溶媒として EC、 DME、 EME、または DEEを用い、リチウム塩として LiTFSIを 用い、アンモ-ゥム塩として TEMA.TFSIまたは TMPA.TFSIを用いて、表 4に示 すように、非水溶媒と、 LiTFSIと、アンモニゥム塩とを、非水溶媒 ZLiTFSlZアンモ -ゥム塩 = 1Z1Z1のモル比で混合した。混合後の状態を表 4に示す。
[0051] [表 4] 組成番号 組成 混合後の状態
4- 1 EC /L i TFS I/TEMA · TFS I 単一の相
4-2 DME/L i TFS I/TEMA · TFS I 単一の相
4-3 EME/L i TFS I/TEMA - TFS I 単一の相
4-4 DEE/L i TFS I/TEMA - TFS I 単一の相
4-5 DME/L i TFS I/TMPA · TFS I 単一の相
[0052] その結果、いずれの組成でも、常温で単一の相からなる高イオン濃度の電解液を 調製することができた。
なお、 ECと、 LiTFSIとを、 ECZLiTFSI=lZlのモル比で混合した場合は、 LiT FSIをすベて ECに溶解させることはできなかった。また、 DMEと、 LiTFSIとを、 DM EZLiTFSI=lZlのモル比で混合した場合、および EMEと、 LiTFSIとを、 EME ZLiTFSI= 1Z1のモル比で混合した場合は、混合物は固体状になった。
[0053] 《実施例 10》
ECと、 LiCIOと、 TMPA-CIOとを、 ECZLiCIO /TMPA-CIO =2ZlZlの
4 4 4 4
モル比で混合した。その結果、全塩濃度が 4.1モル Zkgである単一の相の電解液を 調製することができた。なお、 ECと LiCIOとを、 EC/LiCIO =3/1のモル比で混
4 4
合した場合は、 LiCIOは溶解しきれずに沈殿することから、 TMPA-CIOが存在す
4 4 ることによって、 LiCIOが溶解しやすくなつたことがわかる。
4
次に、本発明の電解液を使用することにより、グラフアイトへのリチウムイオンの電気 化学的吸蔵,放出が可能になる例を示す。
[0054] 《実施例 11》
充放電でリチウムイオンを吸蔵 ·放出する負極材料に人造黒鉛粉末を用い、以下の ように負極を作製した。
人造黒鉛粉末 75重量部と、導電剤としてアセチレンブラックを 20重量部と、結着剤 としてポリフッ化ビ-リデン榭脂 5重量部とを、脱水 N—メチル 2 ピロリドン中にて 混合した。次に、この混合物を厚さ 20 mの銅箔集電体の片面に、塗布した後、乾 燥して厚さ 80 mの活物質層を形成した。そして、活物質層を形成した銅箔集電体 を 35mm X 35mmサイズに切り出し、リードのついた厚さ 0.5mmの銅集電板に超音 波溶接した。
[0055] 非水電解液には、 ECと、 LiTFSIと、 TEMA.TFSIとを、 ECZLiTFSlZTEMA.
TFSI = 4/1/ 1のモル比で混合したものを用 、た。
試験極に上記で作製した負極を用い、対極および参照極にリチウム金属箔を用い
、人造黒鉛粉末へのリチウムイオンの電気化学的挿入を試みた。挿入条件を雰囲気 温度 20°Cおよび電流値 0.03mA/cm2とした。
[0056] 《比較例 1》
非水電解液に、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTEMA'T FSI = 6.7ZlZlのモル比で混合したものを用いた。
上記の非水電解液を用いて、実施例 11と同様の方法により、人造黒鉛粉末へのリ チウムイオンの電気化学的挿入を試みた。
[0057] 図 1に、人造黒鉛粉末に対し 60mAhZgの力ソード電気量を流した場合の電位変 化を示す。図 1中において、 aは比較例 1の充電曲線を示し、 bは実施例 11の充電曲 線を示す。実施例 11では、通電終了後の電位は約 0.2Vであり、リチウムイオンが黒 鉛層間に侵入し、第 3ステージ構造を形成し始めていることがわ力つた。この第 3ステ ージ構造とは、 3つの黒鉛層と 1つのリチウムイオン層とが交互に積層された構造をい
[0058] 一方、比較例 1では、通電終了後の電位は、第 3ステージ構造の形成を示す電位 までは下がらず、リチウムイオンを挿入することができな力つた。
これは、比較例 1では、電解液中に遊離する TEMAイオンの量が多いためであると 考えられる。 TEMAイオンは ECに溶媒和されたリチウムイオンよりも小さいため、黒 鉛層間に挿入されやすい。このため、リチウムイオンではなく TEMAイオンが黒鉛層 間に挿入されることにより、黒鉛の層状構造が破壊されたと推測される。
[0059] よって、本発明の高イオン濃度の非水電解液を用いることで、リチウム二次電池な ど負極に黒鉛材料を用いた電気化学エネルギー蓄積デバイスにお 、て、アンモ-ゥ ムカチオンが黒鉛層間に挿入されにくぐリチウムイオンの吸蔵 ·放出が可能となった [0060] 《実施例 12》
非水電解液には、 DMEと、 LiTFSIと、 TMPA'TFSIとを、 DMEZLiTFSlZT MPA · TFSI = 1/1/ 1のモル比で混合したものを用 、た。
上記の非水電解液を用い、試験極に実施例 11の負極を用い、対極および参照極 にリチウム金属箔を用い、人造黒鉛粉末へのリチウムイオンの電気化学的挿入と放 出を試みた。挿入条件を雰囲気温度 20°Cおよび電流値 0. 03mAZcm2とし、カソ ード電気量を、人造黒鉛粉末に対して 60mAhZgとした。また、放出条件を雰囲気 温度 20°Cおよび電流値 0. 03mAZcm2とした。
[0061] 図 2に、人造黒鉛粉末に対し、力ソード電流およびアノード電流を流した場合の負 極の電位変化を示した。図 2中において、 cは充電曲線を示し、 dは放電曲線を示す 。図 2の充電曲線 cより力ソード電流通電終了後における電位は約 0.2Vであり、リチ ゥムイオンが黒鉛層間に侵入し、第 3ステージ構造を形成していることがわ力つた。ま た、図 2中の放電曲線 dよりアノード電流の通電により人造黒鉛粉末力 リチウムィォ ンが放出されて 、ることがわ力つた。
[0062] 《実施例 13》
非水電解液には、 ECと、 LiBFと、 TEMA-BFとを、 ECZLiBF /TEMA-BF
4 4 4 4
= 2/1/1のモル比で混合したものを用 、た。
上記の非水電解液を用い、試験極に実施例 11の負極を用い、対極および参照極 にリチウム金属箔を用い、人造黒鉛粉末へのリチウムイオンの電気化学的挿入を試 みた。挿入条件を、雰囲気温度 20°Cおよび電流値 0. 03mAZcm2とした。
[0063] 《比較例 2》
非水電解液には、 ECと、 LiBFと、 TEMA-BFとを、 ECZLiBF /TEMA-BF
4 4 4 4
= 6.7/1/1のモル比で混合したものを用 、た。
上記の非水電解液を用いて、実施例 13と同様の方法により、人造黒鉛粉末へのリ チウムイオンの電気化学的挿入を試みた。
[0064] 図 3に、人造黒鉛粉末に対し、 60mAhZgの力ソード電気量を流した場合の負極 の電位変化を示した。図 3中において、 eは比較例 2の充電曲線を示し、 fは実施例 1 3の充電曲線を示す。実施例 13では、力ソード電流の通電開始後 6時間は電位が下 がらず、 TEMAイオンの黒鉛層間への挿入と思われる反応が起きた力 その後は、 電位が下がり、リチウムイオンが黒鉛層間に侵入する反応が起こった。
[0065] 一方、比較例 2では、通電を続けても電位は下がらず、リチウムイオンの挿入が起こ らなカゝつた。これは、 TEMAイオンが黒鉛層間に挿入し黒鉛の層状構造が破壊され るとともに、 ECの分解が起きているからと推測される。
[0066] 《実施例 14》
非水電解液には、 ECと、 LiBFと、 TMPA-BFとを、 ECZLiBF /TMPA-BF
4 4 4 4
= 2/1/1のモル比で混合したものを用 、た。
上記の非水電解液を用い、試験極に実施例 11の負極を用い、対極および参照極 にリチウム金属箔を用い、人造黒鉛粉末へのリチウムイオンの電気化学的挿入と放 出を試みた。挿入条件を、雰囲気温度 20°Cおよび電流値 0. 03mAZcm2とし、カソ ード電気量を、人造黒鉛粉末に対して 60mAhZgとした。また、放出条件を雰囲気 温度 20°Cおよび電流値 0. 03mAZcm2とした。
[0067] 図 6に、人造黒鉛粉末に対し、力ソード電流およびアノード電流を流した場合の負 極の電位変化を示した。図 6中において、 kは充電曲線を示し、 1は放電曲線を示す。 図 6の充電曲線 kより力ソード電流通電終了後における電位は約 0.2Vであり、リチウ ムイオンが黒船層間に侵入し、第 3ステージ構造を形成していることがわ力つた。また 、図 6中の放電曲線 1よりアノード電流の通電により人造黒鉛粉末からリチウムイオン が放出されて 、ることがわ力つた。
[0068] 《実施例 15》
非水電解液には、 ECと、 LiBFと、 TMEA-BFとを、 ECZLiBF /TMEA-BF
4 4 4 4
= 2/1/1のモル比で混合したものを用 、た。
上記の非水電解液を用い、試験極に実施例 11の負極を用い、対極および参照極 にリチウム金属箔を用い、人造黒鉛粉末へのリチウムイオンの電気化学的挿入と放 出を試みた。挿入条件を、雰囲気温度 20°Cおよび電流値 0. 03mAZcm2とし、カソ ード電気量を、人造黒鉛粉末に対して 60mAhZgとした。また、放出条件を雰囲気 温度 20°Cおよび電流値 0. 03mAZcm2とした。
[0069] 図 7に、人造黒鉛粉末に対し、力ソード電流およびアノード電流を流した場合の負 極の電位変化を示した。図 7中において、 mは充電曲線を示し、 nは放電曲線を示す 。図 7の充電曲線 mより力ソード電流通電終了後における電位は約 0.2Vであり、リチ ゥムイオンが黒鉛層間に侵入し、第 3ステージ構造を形成していることがわ力つた。ま た、図 7中の放電曲線 nよりアノード電流の通電により人造黒鉛粉末からリチウムィォ ンが放出されて 、ることがわ力つた。
[0070] なお、図 3の充電曲線 f、図 6の充電曲線 k、および図 7の充電曲線 mの比較から、 T EMA-BFよりも、 TMPA'BFや TMEA'BFを電解液中に含むほう力 充電開始
4 4 4
後に起きる 0.8V付近でのアンモ-ゥムイオンの黒鉛層間への挿入と思われる反応が 抑制されて 、ることがわかった。
[0071] 《実施例 16》
非水電解液には、 ECと、 LiCIOと、 TMPA-CIOとを、 ECZLiCIO /TMPA-C
4 4 4
lO のモル
4 =2ZlZl 比で混合したものを用いた。
上記の非水電解液を用い、試験極に実施例 11の負極を用い、対極および参照極 にリチウム金属箔を用い、人造黒鉛粉末へのリチウムイオンの電気化学的挿入と放 出を試みた。挿入条件を、雰囲気温度 20°Cおよび電流値 0. 03mAZcm2とし、カソ ード電気量を、人造黒鉛粉末に対して 60mAhZgとした。また、放出条件を雰囲気 温度 20°Cおよび電流値 0. 03mAZcm2とした。
[0072] 図 8に、人造黒鉛粉末に対し、力ソード電流およびアノード電流を流した場合の負 極の電位変化を示した。図 8中において、 oは充電曲線を示し、 pは放電曲線を示す 。図 8の充電曲線 oより力ソード電流通電終了後における電位は約 0.2Vであり、リチ ゥムイオンが黒鉛層間に侵入し、第 3ステージ構造を形成していることがわ力つた。ま た、図 8中の放電曲線 pよりアノード電流の通電により人造黒鉛粉末力 リチウムィォ ンが放出されて 、ることがわ力つた。
次に、リチウム二次電池を組み立て、電池特性を確認した例を示す。
[0073] 《実施例 17》
充放電時にリチウムイオンを吸蔵 ·放出する正極材料として LiCoOを用い、以下の
2
ように正極を作製した。
まず、 LiCoO粉末 85重量部と、導電剤としてアセチレンブラック 10重量部と、結着 剤としてポリフッ化ビ-リデン榭脂 5重量部とを混合し、これらを脱水 N—メチル—2— ピロリドン中に分散させてスラリー状の正極合剤を調製した。
この正極合剤をアルミニウム箔力 なる正極集電体上に塗布し、乾燥後、圧延して 、正極集電体上に活物質層を形成した。そして、表面に活物質層が形成された正極 集電体を 35mm X 35mmのサイズに切り出し、リードのついた厚さ 0.5mmのアルミ ユウム集電板に超音波溶接して、正極を得た。
[0074] 負極は、人造黒鉛粉末を用い、実施例 11と同様にして作製した。
非水電解液には、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTEMA' TFSI = 2Z 1 Z 1のモル比で混合したものを用いた。
ポリプロピレン製の不織布を介して、上記で得られた正極と、実施例 11の負極とを 対向させ、正極および負極をテープで固定し、これらを一体化した。この一体化物を 筒状のアルミラミネートに納め、両極のリード部分において、一方の開口部を溶着し た。そして、他方の開口部力も上記で得られた非水電解液を滴下した。そして、 10m mHg下で 5秒間、脱気した後、他方の開口部を溶着して封止し、リチウム二次電池を 得た。
[0075] リチウム二次電池について、雰囲気温度 20°C、充電時および放電時の電流値 0. 0 3mAZcm2、上限電圧 4. 2V、および下限電圧 1. OVの条件で充放電を行った。図 4に、 2サイクル目の充放電時における電池電圧の推移を示す。なお、図 4中におい て、 gは充電曲線を示し、 hは放電曲線を示す。
[0076] 《比較例 3》
実施例 17と同様にして、リチウム二次電池を組み立てた。
非水電解液には、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTEMA' TFSI = 6.7/1/1のモル比で混合したものを用 、た。
上記の非水電解液を用いた以外は、実施例 17と同様の方法により、リチウム二次 電池を作製して、充放電を行った。図 5に、 2サイクル目の充放電時における電池電 圧の推移を示す。なお、図 5中において、 iは充電曲線を示し、 jは放電曲線を示す。
[0077] 比較例 3の電池では、充電開始後 120時間経っても電池電圧は 4.2Vに到達せず 、電池内ではエチレンガスが多量に発生していた。これは、負極材料である人造黒 鉛粉末の層間に TEMAイオンが挿入し、黒鉛構造が破壊され、 ECの分解が続いた ためである。
[0078] これに対して、本発明の実施例 17の電池では、充電開始後 110時間以内に電池 電圧は 4. 2Vに到達し、比較例 3の電池よりも放電容量が大きいことがわ力つた。 よって、本発明の実施例 17の非水電解液を用いることにより、高エネルギー密度の リチウム二次電池が得られた。
次に、非水電解液中に C = C不飽和結合を有する環状カーボネートを添加し、リチ ゥム二次電池の特性が向上した例を示す。
[0079] 《実施例 18》
以下に示す 2種類の電池を作製した。
1つは、電解液に、 ECと、 LiTFSIと、 TEMA'TFSIとを、 EC/LiTFSl/TEMA • TFSI = 2Z 1Z 1のモル比で混合したものを用 、た。この非水電解液を使用した以 外は、実施例 17と同様の方法によりリチウム二次電池 18Aを作製した。
もう 1つは、電解液に、 ECと、 Vecと、 LiTFSIと、 TEMA'TFSIとを、 ECZVecZ LiTFSl/TEMA · TFSI = 1.9/0.1/1/ 1のモル比で混合したものを用いた。こ の非水電解液を使用した以外は、実施例 11と同様の方法によりリチウム二次電池 18 Bを作製した。
[0080] 電池 18Aおよび 18Bに対して、実施例 17と同じ条件で充放電を繰り返した。そして 、 10サイクル目の放電容量を 2サイクル目の放電容量で除した値を容量維持率とし て評価した。
容量維持率は、電池 18Aでは 0.93であり、電池 18Bでは 0.97であった。非水電解 液に Vecを添加することで、容量維持率が向上することがわかる。なお、本実施例で は C = C不飽和結合を有する環状カーボネートに Vecを用いたが、他の C = C不飽 和結合を有する環状カーボネートまたは鎖状カーボネートを用いた場合にも同様な 結果が得られる。
次に電解液に LiPFを添加し、リチウム二次電池の特性を調べた。
6
[0081] 《実施例 19》
以下に示す 2種類のリチウム二次電池を作製した。 1つは、非水電解液に、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTE MA · TFSI = 4/1/ 1のモル比で混合したものを用い、この非水電解液を使用した 以外は実施例 17と同様の方法によりリチウム二次電池 19Aを作製した。
[0082] もう 1つは、非水電解液に、 ECと、 LiTFSIと、 LiPFと、 TEMA.TFSIとを、 ECZ
6
LiTFSl/LiPF ZTEMA'TFSI=4Z0.9Z0.1Z1のモル
6 比で混合したものを用 い、この非水電解液を使用した以外は実施例 11と同様の方法によりリチウム二次電 池 19Bを作製した。
[0083] 電池 19Aおよび 19Bに対して、実施例 18と同様の方法により、容量維持率を求め た。
電池 19Aでは、 5サイクルを経過すると集電体であるアルミニウムが腐食し、充放電 ができなくなった。一方、電池 19Bの容量維持率は 0.94であった。
よって、非水電解液に LiPFを添加することで、容量維持率が向上することがわか
6
る。なお、本実施例では LiPFを添加した場合を用いた力 他のリチウム塩を添加し
6
た場合にも同様な結果が得られる。
次に、リチウム一次電池を構成し、保存特性の評価を行った。
[0084] 《実施例 20》
リチウム一次電池を次の手順で組み立てた。
正極材料に γ Ζ ι8—MnOを用いた以外は、実施例 17と同様の方法により正極を
2
作製した。
リチウム金属箔を 35mm X 35mmのサイズに切り出した後、リードのつ!、た厚さ 0.5 mmの銅集電板に圧着して負極を作製した。
非水電解液には、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTEMA' TFSI = 2Z 1 Z 1のモル比で混合したものを用いた。
[0085] ポリエチレン製の多孔性フィルムを介して正極と、負極とを対向させ、正極および負 極をテープで固定して、これらを一体化した。この一体ィ匕物を筒状のアルミラミネート 内に収納し、両極のリード部分において、一方の開口部を溶着した。そして、他方の 開口部から上記で得られた非水電解液を滴下した。そして、 lOmmHg下で 5秒間、 脱気した後、他方の開口部を溶着により封止し、リチウム一次電池を作製した。 [0086] このリチウム一次電池を、雰囲気温度 20°Cおよび電流値 0. 03mAZcm2の条件で 、 Li/Mn=0. 05Z1のモル比になるまで予備放電した。その後、電池を 60°Cで 1 ヶ月保存し、保存前後の内部インピーダンスの変化を調べた。 10kHzでの抵抗を測 定した結果、保存前の内部インピーダンスは 2.6 Ωであった力 保存後の内部インピ 一ダンスは 2.9 Ωであった。
[0087] 《比較例 4》
非水電解液には、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTEMA' TFSI = 6.7ZlZlのモル比で混合したものを用いた。そして、この非水電解液を用 いた以外は、実施例 20と同様の方法により、リチウム一次電池を作製し、保存前後の 内部インピーダンスの変化を調べた。
[0088] 10kHzでの抵抗を測定した結果、保存前の内部インピーダンスは 2.2 Ωであった 1S 保存後の内部インピーダンスは 5.6 Ωであった。比較例 4の電池の内部インピー ダンスは、実施例 20の電池と比較して 1.9倍に増加した。これは、比較例 4では、電 解液中に存在する多量の ECにより MnOが溶解し、負極のリチウム金属上に高抵抗
2
の皮膜が形成したためと考えられる。
次に、正極にキャパシタで使用される分極性電極、および負極にリチウム二次電池 で使用される黒鉛電極を用いたノ、イブリツドキャパシタにつ 、て評価を行った。
[0089] 《実施例 21》
分極性電極を以下に示す手順で作製した。
フエノール榭脂を用いて得られた比表面積 1700m2/gの活性炭粉末と、導電剤と してアセチレンブラックと、結着剤としてカルボキシメチルセルロースのアンモ-ゥム 塩と、分散媒として水およびメタノールとを、重量比 10 : 2 : 1 : 100 : 40の割合で混合 した。この混合物を厚さ 20 /z mのアルミニウム箔製の集電体の片面に、塗布した後、 乾燥して厚さ 80 mの活物質層を形成した。これを 35mm X 35mmのサイズに切断 した後、リードのついた厚さ 0.5mmのアルミニウム集電板に超音波溶接した。
[0090] 正極として上記で得られた分極性電極と、実施例 11の負極とを、ポリプロピレン製 の不織布力もなるセパレータを介して対向させたものを、アルミニウムラミネートチュ ーブ内に収納してハイブリッドキャパシタとした。 非水電解液には、 ECと、 LiTFSIと、 TEMA'TFSIとを、 ECZLiTFSlZTEMA'
TFSI = 4/1/ 1のモル比で混合したものを用 、た。
[0091] 組み立てたハイブリッドキャパシタを用いて、雰囲気温度 20°Cおよび電流値 0. 3m
AZcm2で、 2. 0〜3. 8Vの電圧範囲において充放電を繰り返し、充放電サイクルに ともなう放電容量の推移を調べた。このとき、 1000サイクル後の容量を 10サイクル目 の容量で除した容量維持率は 0.91であった。
[0092] 《比較例 5》
非水電解液として、 ECと、 LiBFと、 N, N—ジェチルー N—メチルー N—(2—メト
4
キシェチル)アンモ-ゥム ·ビス [トリフルォロメタンスルフォ -ル]イミド(以下、 DEME •BFと略記)とを、 EC/LiBF /DEME-BF
4 4 =4ZlZlのモル比で混合したもの
4
を用いた。この非水電解液を用いた以外は、実施例 21と同様の方法により、ノ、イブリ ッドキャパシタを組み立て、容量の推移を調べた。
[0093] その結果、 200サイクル後には、キャパシタの容量は、ほぼ 0となった。これは、充 電時に負極の電位が卑にならないために、分極性電極である正極の電位が過充電 状態になり、電解液が酸化分解されたためと推定される。
よって、本発明の電解液を用いることにより、サイクル寿命の長いハイブリッドキャパ シタを得ることがでさる。
次に、正極および負極に分極性電極を用いた電気二重層キャパシタについて評価 を行った。
[0094] 《実施例 22》
分極性電極は、実施例 21と同様の手順で作製した。
2枚の分極性電極を、ポリプロピレン製の不織布カゝらなるセパレータを介して対向さ せたものを、アルミニウムラミネートチューブ内に収納して電気二重層キャパシタとし た。
非水電解液には、 ECと、 LiClOと、 TMPA-CIOとを、 ECZLiCIO /TEMA-C
4 4 4
lO
4 =2ZlZlのモル比で混合したものを用いた。
組み立てた電気二重層キャパシタを用いて、雰囲気温度 20°Cおよび電流値 0. 3 mAZcm2で、 2. 0〜3. 2Vの電圧範囲において充放電を行った。 20サイクル後の キャパシタの充放電効率は、およそ 96%であった。なお、充放電効率は、 20サイク ル目における充電容量に対する放電容量の割合である。
[0095] 《比較例 6》
非水電解液として、 ECと、 LiBFと、 DEME-BFとを、 ECZLiBF /DEME-BF
4 4 4 4
=4ZlZlのモル比で混合したものを用いた。この非水電解液を用いた以外は、実 施例 22と同様の方法により、電気二重層キャパシタを組み立て、充放電効率を測定 した。
その結果、 20サイクル後の充放電効率は 67%であった。これは、比較例 5と同様の 理由で、分極性電極である正極の電位が過充電状態になり、電解液が酸化分解され たためと推定される。
よって、本発明の電解液を用いることにより、高電圧で充放電サイクルを行っても、 充放電効率の高い電気二重層キャパシタを得ることができる。
産業上の利用可能性
[0096] 本発明の非水電解液は、リチウム二次電池、リチウム一次電池、ハイブリッドキャパ シタ、および電気二重層キャパシタ等の電気化学エネルギー蓄積デバイスに好適に 用いられる。

Claims

請求の範囲
[1] リチウム塩 (A)と、炭素数力 以下の直鎖状アルキル基を含む第 4級アンモ-ゥム 塩(B)と、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、 y ブチロラタトン、ジメチルカーボネート、ェチルメチルカーボネート、ジェチルカーボ ネート、ジメトキシェタン、エトキシメトキシェタン、およびジエトキシェタンからなる群よ り選択された少なくとも 1種力もなる溶媒 (C)とを含む非水電解液であって、
前記リチウム塩 (A)に対する前記溶媒 (C)のモル比 CZA、または前記アンモ-ゥ ム塩 (B)に対する前記溶媒 (C)のモル比 CZBが 6以下であり、単一の相からなること を特徴とする非水電解液。
[2] 前記リチウム塩 (A)に対する前記溶媒 (C)のモル比 CZA、または前記アンモニゥ ム塩 (B)に対する前記溶媒 (C)のモル比 CZB力 以下である請求項 1記載の非水 電解液。
[3] 前記リチウム塩 (A)のァ-オンは、 BF―、ビス [トリフルォロメタンスルフォ -ル]イミド
4
イオン、および CIO—からなる群より選択された少なくとも 1種である請求項 1または 2
4
記載の非水電解液。
[4] 前記アンモ-ゥム塩(B)のァ-オンは、 BF―、ビス [トリフルォロメタンスルフォ -ル]
4
イミドイオン、および CIO—からなる群より選択された少なくとも 1種である請求項 1また
4
は 2記載の非水電解液。
[5] 前記アンモ-ゥム塩(B)のカチオンは、トリメチルプロピルアンモ-ゥムイオンである 請求項 1〜4のいずれかに記載の非水電解液。
[6] 請求項 1〜5のいずれかに記載の非水電解液と、正極と、負極とを具備することを 特徴とする電気化学エネルギー蓄積デバイス。
PCT/JP2006/313990 2005-07-19 2006-07-13 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス WO2007010833A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/919,419 US20090130565A1 (en) 2005-07-19 2006-07-13 Non-aqueous electrolyte and electrochemical energy storage device using the same
EP06768198A EP1906481A4 (en) 2005-07-19 2006-07-13 NON-ACID ELECTROLYTE SOLUTION AND THIS USING ELECTROCHEMICAL ENERGY STORAGE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-208300 2005-07-19
JP2005208300 2005-07-19

Publications (1)

Publication Number Publication Date
WO2007010833A1 true WO2007010833A1 (ja) 2007-01-25

Family

ID=37668713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313990 WO2007010833A1 (ja) 2005-07-19 2006-07-13 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス

Country Status (5)

Country Link
US (1) US20090130565A1 (ja)
EP (1) EP1906481A4 (ja)
KR (1) KR100992299B1 (ja)
CN (1) CN101223670A (ja)
WO (1) WO2007010833A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283048A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd 電気化学エネルギー蓄積デバイス
US7722994B2 (en) 2007-03-28 2010-05-25 Gm Global Technology Operations, Inc. Lithium-ion battery non-aqueous electrolytes
US20120127631A1 (en) * 2009-08-03 2012-05-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Electrolyte system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935547B1 (fr) * 2008-08-29 2011-03-25 Commissariat Energie Atomique Electrolytes liquides ioniques et dispositifs electrochimiques tels que des accumulateurs les comprenant.
WO2011086664A1 (ja) * 2010-01-12 2011-07-21 トヨタ自動車株式会社 液状の疎水性相転移物質およびそれを用いた電池
US9614252B2 (en) * 2012-03-26 2017-04-04 The University Of Tokyo Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9548511B2 (en) 2012-07-18 2017-01-17 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
TWI680883B (zh) 2012-07-18 2020-01-01 澳大利亞商印製能源技術有限公司 能量儲存裝置與用於印刷薄膜之墨水
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9520598B2 (en) 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
FR3005199B1 (fr) * 2013-04-24 2015-05-29 Commissariat Energie Atomique Dispositif electrochimique du type supercondensateur a base d'un electrolyte comprenant, comme sel conducteur, au moins un sel a base d'un element alcalin autre que le lithium
WO2015009867A1 (en) 2013-07-17 2015-01-22 Nthdegree Technologies Worldwide Inc. Printed silver oxide batteries
JP5965445B2 (ja) 2013-09-25 2016-08-03 国立大学法人 東京大学 非水電解質二次電池
US20160240858A1 (en) * 2013-09-25 2016-08-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
CN105580184B (zh) 2013-09-25 2019-03-12 国立大学法人东京大学 非水电解质二次电池
US10109885B2 (en) * 2014-05-07 2018-10-23 Sila Nanotechnologies, Inc. Complex electrolytes and other compositions for metal-ion batteries
KR102379565B1 (ko) * 2014-12-22 2022-03-29 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357168A (ja) * 1989-07-26 1991-03-12 Yuasa Battery Co Ltd リチウム二次電池
JPH11144759A (ja) * 1997-11-07 1999-05-28 Asahi Glass Co Ltd 二次電源
JPH11260400A (ja) 1998-03-12 1999-09-24 Toshiba Corp 非水電解質二次電池
JP2000228222A (ja) 1999-02-05 2000-08-15 Asahi Glass Co Ltd 二次電源
JP2002367675A (ja) * 2001-06-12 2002-12-20 Yuasa Corp 非水電解質電池
US20030096163A1 (en) 2001-10-29 2003-05-22 Masahide Miyake Non aqueous electrolyte secondary battery
WO2003054986A1 (fr) * 2001-12-21 2003-07-03 Sanyo Electric Co.,Ltd. Accumulateur secondaire a electrolyte non aqueux
JP2004051784A (ja) * 2002-07-19 2004-02-19 Nippon Paint Co Ltd 自動車用水性ベース塗料組成物及びこれを用いた複層塗膜形成方法
JP2004071340A (ja) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd 非水電解液及び非水電解質二次電池
JP2004146346A (ja) 2002-08-28 2004-05-20 Nisshinbo Ind Inc 非水電解質および非水電解質二次電池
JP2005190978A (ja) * 2003-03-27 2005-07-14 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276711A (ja) * 1988-04-28 1989-11-07 Taiyo Yuden Co Ltd 電気二重層コンデンサ
JPH08245493A (ja) * 1995-03-07 1996-09-24 Mitsubishi Chem Corp 常温溶融塩
US7754388B2 (en) * 2002-11-29 2010-07-13 Gs Yuasa Corporation Nonaqueous electrolyte and nonaqueous-electrolyte battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357168A (ja) * 1989-07-26 1991-03-12 Yuasa Battery Co Ltd リチウム二次電池
JPH11144759A (ja) * 1997-11-07 1999-05-28 Asahi Glass Co Ltd 二次電源
JPH11260400A (ja) 1998-03-12 1999-09-24 Toshiba Corp 非水電解質二次電池
JP2000228222A (ja) 1999-02-05 2000-08-15 Asahi Glass Co Ltd 二次電源
JP2002367675A (ja) * 2001-06-12 2002-12-20 Yuasa Corp 非水電解質電池
US20030096163A1 (en) 2001-10-29 2003-05-22 Masahide Miyake Non aqueous electrolyte secondary battery
WO2003054986A1 (fr) * 2001-12-21 2003-07-03 Sanyo Electric Co.,Ltd. Accumulateur secondaire a electrolyte non aqueux
JP2004051784A (ja) * 2002-07-19 2004-02-19 Nippon Paint Co Ltd 自動車用水性ベース塗料組成物及びこれを用いた複層塗膜形成方法
JP2004071340A (ja) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd 非水電解液及び非水電解質二次電池
JP2004146346A (ja) 2002-08-28 2004-05-20 Nisshinbo Ind Inc 非水電解質および非水電解質二次電池
JP2005190978A (ja) * 2003-03-27 2005-07-14 Sanyo Electric Co Ltd 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1906481A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722994B2 (en) 2007-03-28 2010-05-25 Gm Global Technology Operations, Inc. Lithium-ion battery non-aqueous electrolytes
JP2008283048A (ja) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd 電気化学エネルギー蓄積デバイス
US20120127631A1 (en) * 2009-08-03 2012-05-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Electrolyte system
US8920669B2 (en) * 2009-08-03 2014-12-30 Merck Patent Gmbh Electrolyte system

Also Published As

Publication number Publication date
KR20080009322A (ko) 2008-01-28
EP1906481A1 (en) 2008-04-02
CN101223670A (zh) 2008-07-16
KR100992299B1 (ko) 2010-11-05
US20090130565A1 (en) 2009-05-21
EP1906481A4 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
WO2007010833A1 (ja) 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
KR100838932B1 (ko) 비수전해질 이차전지
US8586250B2 (en) Non-aqueous electrolyte solution for storage battery devices, and storage battery device
CN101132083B (zh) 电解溶液和电池
EP1879252A1 (en) Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JP3422769B2 (ja) 非水系電池用電解液およびこれを用いた二次電池
JP4830279B2 (ja) 非水電解質二次電池
KR20190105096A (ko) 비수계 전해액, 비수계 이차 전지, 셀 팩, 및 하이브리드 시스템
JP6865555B2 (ja) 非水系二次電池
JP5545292B2 (ja) 蓄電デバイス用電解液および蓄電デバイス
JP2003151623A (ja) 非水系二次電池
JP2010123287A (ja) 非水電解液および非水電解液二次電池
JP5165862B2 (ja) 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
US20130101904A1 (en) Non-aqueous electrolyte solution for secondary batteries, and secondary battery
JP6767151B2 (ja) 非水系電解液及び非水系二次電池
WO2012093616A1 (ja) 蓄電デバイス
JPWO2013073288A1 (ja) リチウムイオン二次電池
WO2020121850A1 (ja) 電池用非水電解液及びリチウム二次電池
JP2004363086A (ja) 非水系電解液及び非水系電解液二次電池
JP7067385B2 (ja) リチウム二次電池
JP4078542B2 (ja) 蓄電デバイス
JP4512776B2 (ja) リチウムイオン電池の容量向上用添加剤を含有する非水系電解液およびこれを用いたリチウムイオン電池
JP2021125416A (ja) リチウム二次電池及び電解液
JP2001023691A (ja) 非水電解液および非水電解液二次電池
JP7395816B2 (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025938.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006768198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11919419

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077028634

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE