WO2007004478A1 - 生分解性ポリマー、その製造方法および成形物ならびに用途 - Google Patents

生分解性ポリマー、その製造方法および成形物ならびに用途 Download PDF

Info

Publication number
WO2007004478A1
WO2007004478A1 PCT/JP2006/312857 JP2006312857W WO2007004478A1 WO 2007004478 A1 WO2007004478 A1 WO 2007004478A1 JP 2006312857 W JP2006312857 W JP 2006312857W WO 2007004478 A1 WO2007004478 A1 WO 2007004478A1
Authority
WO
WIPO (PCT)
Prior art keywords
imine
bond
biodegradable
biodegradable polymer
film
Prior art date
Application number
PCT/JP2006/312857
Other languages
English (en)
French (fr)
Inventor
Manabu Shimoda
Tomoyuki Kawabata
Tadahito Nobori
Makoto Sukegawa
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to PL06767474T priority Critical patent/PL1897901T3/pl
Priority to US11/988,008 priority patent/US7928180B2/en
Priority to EP20060767474 priority patent/EP1897901B1/en
Priority to JP2007523967A priority patent/JP4819049B2/ja
Priority to CN200680023189XA priority patent/CN101208375B/zh
Publication of WO2007004478A1 publication Critical patent/WO2007004478A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • Biodegradable polymer method for producing the same, molded product and use
  • the present invention relates to a novel biodegradable polymer. Specifically, water-degrading biodegradation has the property that it can be used stably without collapsing against moisture in the air or a small amount of moisture, and its shape collapses when it comes into contact with a large amount of water.
  • the present invention relates to a conductive polymer, a production method thereof, a molded product thereof, and an application.
  • thermoplastic bags such as polyethylene (hereinafter abbreviated as “PE”) and polypropylene (hereinafter abbreviated as “PP”) are used. Fats, cotton wool and paper are commonly used. Among them, thermoplastic resins such as PE and PP are frequently used because they have a high degree of freedom in molding processability.
  • PE polyethylene
  • PP polypropylene
  • a molded article made of such a resin does not easily collapse due to contact with water, and thus cannot be poured into a toilet after use. This is because if these moldings are poured into the toilet, the toilet piping and sewage treatment system will be blocked. Therefore, the user is forced to be bothered to throw away used sanitary goods in a trash can attached to the toilet, or to take away and throw away the worries about the post-treatment at the place where they are out or at the place of visit. There is a case. Therefore, the hygiene products, especially sanitary products and disposable diapers are more sanitary and convenient if they can be discharged into the toilet after use, like toilet paper.
  • biodegradable materials are preferred as materials to be discharged to toilets and the like from the viewpoint of reducing environmental impact. Its development is desired.
  • paper that has been conventionally used as a material for sanitary products has the advantage that it has a high water absorbency and can be drained to the toilet because it is a natural material. As such, it does not have a high degree of freedom of molding processability, so the touch and appearance such as the touch are poor. For this reason, it is unsuitable for use as a surface member of sanitary products where touch and appearance are important. For this reason, it is also desired that sanitary products and other materials should be provided with molding cache properties in order to improve the feel and appearance.
  • Patent Document 1 discloses poly (3-hydroxybutyric acid).
  • the use of thermoplastic biodegradable plastics has solved the problems of biodegradability and moldability, but poly (3-hydroxybutyric acid) has water-disintegrating properties. So we can solve the water collapse problem.
  • Patent Document 2 discloses a method of hydrolyzing poly (3-hydroxybutyric acid) under basic conditions. This method hydrolyzes the ester bond by hydrolysis under strong basic conditions (PH12 or more). However, since the reaction rate of ester bond hydrolysis is slow, sufficient water disintegration property is not obtained, and the problem of water disintegration property has been fully solved! .
  • Patent Document 3 discloses an acrylic polymer having a carboxyl group that exhibits water disintegration property under weakly basic conditions (pHIO).
  • This carboxyl group-containing acrylic polymer is water-resistant under neutral conditions, and has the ability to exhibit water disintegration by adding a base to water such as toilet and making it weakly basic.
  • This polymer is not biodegradable. The problem of environmental impact remains.
  • Patent Document 4 and Patent Document 5 that use water-soluble coagulants such as water are disclosed.
  • the material contains water-soluble coagulant, so it absorbs moisture over time and becomes wet before use, causing the surface to become sticky and causing mold problems. is there.
  • Patent Document 6 discloses a biodegradable resin composition obtained by mixing 20 to 80% by weight of a biodegradable plastic and 80 to 20% of a water-soluble thermoplastic resin.
  • This biodegradable rosin composition is one in which the shape of the molded product of the biodegradable rosin composition breaks, and in some cases, disintegrates when the water-soluble thermoplastic rosin dissolves or swells in water. Since the biodegradable plastics used are not water disintegratable, sufficient water disintegration cannot be obtained.
  • water-soluble thermoplastic resin since water-soluble thermoplastic resin is used, it also includes usage problems that it absorbs moisture over time and gets wet before use, causing the surface to become sticky and generating mold.
  • a polymer having an imine bond (also referred to as an azomethine bond) has high heat resistance and is easily decomposable only in an acidic aqueous solution, and is completely degradable in a neutral aqueous solution.
  • a polymer having a cyclic imine structure (Patent Document 7) is known.
  • Patent Document 8 Non-Patent Document 1, and Non-Patent Document 2 disclose various azomethine polymers. These references do not specifically mention degradability to water, but all the disclosed azomethine polymers are not biodegradable.
  • An example of the polymer having an acetal bond is polyoxymethylene, which is one of typical engineering plastics. This polymer has excellent heat resistance, water resistance and durability, and cannot be expected to have an unstable chemical structural force called an acetal bond that constitutes this polymer, and is used as a material for plastic water pipes and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-302845
  • Patent Document 2 European Patent No. 0142950
  • Patent Document 3 Japanese Patent Publication No. 7-57230
  • Patent Document 4 JP-A-5-29211
  • Patent Document 5 JP-A-6-134910
  • Patent Document 6 Japanese Patent Laid-Open No. 6-299077
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-73470
  • Patent Document 8 WO2004Z003044
  • Non-patent literature l J.MACROMOL.SCI.-CHEM., Al (7), 1161-1249 (1967)
  • Non-Patent Document 2 CHEM. COMMUN., 1522-1524 (2005)
  • Materials used for sanitary products include the following four problems.
  • an object of the present invention is to provide a novel biodegradable polymer that can be molded without water solubility (hygroscopicity) and has excellent water disintegration and biodegradability, a production method thereof, a molded product thereof, and an application. There is to do.
  • a polymer material having both an imine moiety having a specific imine bond and a specific biodegradable moiety can be used with a large amount of water that is not water-soluble (hygroscopic) such as stickiness and shape-disintegrating properties under normal conditions. It was found that the shape collapses easily only after contact, and that the shape collapses more quickly when it comes into contact with acidic water. Furthermore, surprisingly, it has been found that biodegradability is also improved, and the present invention has been completed.
  • the present invention provides the following [1] to [19].
  • the biodegradable polymer includes a biodegradable site and an imine site having one or more imine bonds, and the biodegradable sites are linked by the imine site.
  • the biodegradable site force is polyesters, oligoesters, poly (amide-esters), oligo (amide-esters) or polyethers according to [2] Biodegradable polymer.
  • R to R each independently represents a hydrocarbon group having 1 to 20 carbon atoms
  • Y and Y each independently represents a hydrocarbon group having 1 to 20 carbon atoms
  • the chemical bond for linking the biodegradable moiety and the imine moiety is an ester bond, an amide bond, a urethane bond, a urea bond, a carbonate bond, or the following general formula (2):
  • R ' represents a divalent hydrocarbon group having 1 to 20 carbon atoms
  • X and X are each independently German.
  • ester bond it stands for ester bond, amide bond, urethane bond, urea bond or carbonate bond.
  • the biodegradable site is a polyester, oligoester, poly (amide-ester), oligo (amide-ester) or polyether, and the imine site force
  • the biodegradable polymer according to [2] which is a bond represented by the general formula (2) described above.
  • a method for producing a biodegradable polymer comprising reacting a compound containing a biodegradable moiety, a compound containing an imine moiety having one or more imine bonds, and a condensing agent
  • the condensing agent is 2-chloro 1-methylpyridium iodide, 2-bromo-1-methylpyridium iodide, 2-chloro-1-ethylpyridyl-um tetrafluoroborate or 2-bromo 1 —The method for producing a biodegradable polymer according to [7], wherein the biodegradable polymer is ethyl pyridi-um tetrafluoroborate.
  • a method for producing a biodegradable polymer comprising reacting a compound containing a biodegradable moiety, a compound containing an imine moiety having one or more imine bonds, and a linking agent.
  • a molded product of the biodegradable polymer characterized by containing the biodegradable polymer described in any one of [1] to [6].
  • the molded product is a sheet, a film, a container, or a nonwoven fabric.
  • [1] A molded product of the biodegradable polymer according to [1].
  • a sanitary article comprising the biodegradable polymer according to any one of [1] to [6].
  • sanitary product is at least one selected from a sanitary napkin, a panty liner, a disposable diaper, or a sanitary tampon applicator.
  • the agricultural and horticultural material is at least one selected from a multi-film, a seedling pot, a horticultural tape, a fruit cultivation bag, a pile, a fumigation sheet, or a film strength for vinyl-nouse.
  • Agricultural and horticultural materials are at least one selected from a multi-film, a seedling pot, a horticultural tape, a fruit cultivation bag, a pile, a fumigation sheet, or a film strength for vinyl-nouse.
  • a civil engineering and building material comprising the biodegradable polymer according to any one of [1] to [6].
  • the novel biodegradable polymer provided by the present invention exhibits excellent water disintegration and biodegradability.
  • the biodegradable polymer of the present invention does not have water solubility (hygroscopicity)
  • the biodegradable polymer of the present invention has excellent moldability, it is possible to obtain a molded article having a good feel such as appearance and touch.
  • FIG. 1 is a graph showing the results of measuring the change in tensile strength with time after immersion in water of a film made of biodegradable polymer film in Example 9 and Example 10.
  • the water-disintegrating property in the present invention means that its form disintegrates when contacted with a large amount of water. More preferably, it refers to an 11 cm square film that is reduced to 4 cm square or less in 520 hours or less in distilled water (about pH 7) according to the JIS P 4501 toilet paper looseness test.
  • the biodegradability in the present invention means that polymer molecules are decomposed into low-molecular compounds by microorganisms in the sewage treatment process or in nature, and further decomposed into carbon dioxide gas or water. More preferably, according to IS014855, the film has a biodegradability of 60% or more in the biodegradability test of the film.
  • the biodegradable polymer according to the present invention is a biodegradable polymer having one or more imine bonds in the molecule, and the imine bond forms a part of the main chain structure of the biodegradable polymer.
  • it contains at least a biodegradable site having biodegradability and an imine site having one or more imine bonds. More preferably, it contains a chemical structure in which the biodegradable sites are linked by the imine sites.
  • the biodegradable site is composed of a biodegradable low molecular compound, oligomer or polymer, and the imine site is a low molecular compound, oligomer or polymer force having one or more imine bonds in the molecule.
  • the above-described biodegradable site may be any low molecular compound, oligomer or polymer that does not inhibit the purpose of the present invention and may have any chemical structure as long as it is derived from a biodegradable molecule. It's okay to be out of place.
  • molecules constituting such biodegradable sites include low molecular weight compounds, polyesters, oligoesters, polyamides, oligoamides, poly (amide-esters), and oligo (amide-esters). , Polypeptides, oligopeptides, polyethers or oligoethers. These may be used alone or in combination of two or more as the biodegradable site of the biodegradable polymer of the present invention.
  • the low molecular weight compound constituting the biodegradable site has 1 to 100 carbon atoms, preferably 2 to 50 carbon atoms, and has two functional groups such as a hydroxyl group, an amino group, or a carboxyl group in the molecule.
  • Examples of such compounds include divalent aliphatic alcohols, dibasic acids, hydroxycarboxylic acids, divalent aliphatic amines, and amino acids.
  • Examples of low molecular weight compounds that constitute such biodegradable sites include:
  • Ethylene glycol diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, 1,3 propanediol, 1,3 butanediol, 1,4 butanediol, 3-methyl-1,5 pentanediol, 1 , 6 hexanediol, 1,9-nonanediol, neopentyl glycol and divalent aliphatic alcohols such as 1,4 cyclohexanediol;
  • Dibasic acids such as succinic acid, malonic acid, gnoretanolic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid and terephthalic acid; glycolic acid, lactic acid, 2-hydroxybutyric acid, Hydroxycarboxylic acids such as 2-hydroxyvaleric acid, 2-hydroxycaproic acid, 2-hydroxycapric acid, malic acid and citrate;
  • amino acids such as norin, leucine, isoleucine, methionine, ferrolanine, aspartic acid, glutamic acid and lysine.
  • polyesters or oligoesters constituting the biodegradable site include polyesters or oligoesters having a chemical structure that can be produced by a dehydration reaction between a divalent aliphatic alcohol and a dibasic acid.
  • examples include esters.
  • divalent aliphatic alcohols examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene dalycol, oligoethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, oligopropylene glycol, polypropylene glycol, 1, 3 Propanediol, 1, 3 Pig Diols, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylendalol, and 1,4-cyclohexanediol.
  • dibasic acids examples include succinic acid, oxalic acid, malonic acid, daltaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and terephthalic acid. Can be mentioned. These constituent monomers can be used singly or in combination of two or more.
  • the polyesters or oligoesters may be produced by a ring-opening polymerization reaction of polyesters or oligoesters having a chemical structure that can be produced by a dehydration reaction of hydroxycarboxylic acids, or ratatones. Polyesters or oligoesters having a chemical structure of the form are also mentioned.
  • hydroxycarboxylic acids examples include glycolic acid, lactic acid, 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxycaproic acid, 2-hydroxycapric acid, phosphoric acid, and citrate.
  • latatones include benzyl malactonate, malite benzyl ester, 3-[(benzyloxycarbol) methyl] -1,4 dioxane 2,5 dione, 13 propiolatatane, ⁇ valerolatatane, ⁇ -unique prolatathone, ⁇ Benzyloxycarboxyl L-serine 13-latataton, 13-be tyrolataton, pivalola tatone, / 3 monobenzyl malolactonate, ⁇ -butyrolatatone and ⁇ -valerolataton. These constituent monomers can be used alone or in combination of two or more.
  • the polyesters or oligoesters may be produced by a dehydration reaction using one or more of each of the dibasic acids, the divalent aliphatic alcohols and the hydroxycarboxylic acids. Also included are polyesters or oligoesters having a chemical structure of the form.
  • polyamides or oligoamides constituting the biodegradable site examples include polyamides or oligoamides having a chemical structure that can be produced by dehydration reaction of divalent aliphatic amines and dibasic acids. .
  • Examples of the divalent aliphatic amines include ethylenediamine and 1,3diamineamino. Bread, 1,2 diaminopropane, 1,4-diaminobutane, 1,6 hexamethylenediamine, 2,2,1 (ethylenedioxy) bis (ethylamine), 3,3,1iminobis (propylamine) and N-methyl-3, 3, and iminobis (propylamine).
  • dibasic acids examples include succinic acid, oxalic acid, malonic acid, daltaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid and terephthalic acid. Etc. These constituent monomers can be used singly or in combination of two or more.
  • examples of the polyamides or oligoamides include polyamides or oligoamides having a chemical structure in a form produced by a ring-opening polymerization reaction of ratatas such as pyrrolidone or ⁇ -force prolatatam. These constituent monomers can be used alone or in combination of two or more.
  • Poly (amide-esters) or oligo (amide-esters) constituting the above biodegradable sites include dehydration reaction of dibasic acids, divalent aliphatic amines and divalent aliphatic alcohols.
  • dibasic acids examples include succinic acid, oxalic acid, malonic acid, dartaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid and terephthalic acid. Etc.
  • divalent aliphatic amines examples include ethylenediamine, 1,3 diamineaminopropane, 1,2 diamineaminopropane, 1,4 diaminebutane, 1,6 hexamethylenediamine, 2,2 ′-(ethylenedioxy) Bis (ethylamine), 3, 3, monoiminobis (propylamine) and ⁇ -methyl 3, 3, monoiminobis (polypyramine).
  • divalent aliphatic alcohols examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, oligoethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, oligopropylene glycol, polypropylene glycol, 1 , 3 Propanediol, 1,3 butanediol, 1,4 butanediol, 3-methyl-1,5 pentanediol, 1,6 hexanediol, 1,9-nonanediol, neopentyl dallicol, polytetramethylene glycol or 1, 4-cyclohexanediol Etc. These constituent monomers may be used alone or in combination of two or more.
  • the poly (amide-ester) or oligo (amide-ester) is a poly (amido-ester) having a chemical structure that can be produced by a ring-opening polymerization reaction between lactams and radon. Also included are amide-esters or oligo (amide-esters).
  • Examples of the ratatas include pyrrolidone and ⁇ -strength prolatatam.
  • latatones include benzyl malolactonate, malite benzyl ester, 3 [(benzyloxycarbol) methyl] 1,4 dioxane 2,5 dione, / 3 propiolatatane, ⁇ valerolatatone, ⁇ Prominent prolatatones, ⁇ Benzorex Shikanoleponinole L-serine 13-latatanes, 13 butyrolatatanes, pivalarolatones, 13 monobenzyl malolactonates, ⁇ butyrolatatanes, and ⁇ valerolatatanes. These constituent monomers may be used alone or in combination of two or more.
  • the poly (amide-ester) or oligo (amide-ester) is a poly (amide-ester) having a chemical structure produced by ring-opening polymerization reaction of depsipeptides such as morpholine 2,5-dione. Also included are (amide-esters) and oligo (amide-esters). These constituent monomers may be used alone or in combination of two or more.
  • Polypeptides or oligopeptides constituting the biodegradable site include, for example, Ranan, Norin, Leucine, Isoleucine, Methionine, Ferulanine, Glycine, Aspartic acid, Glutamic acid and Lysine These constituent monomers, including polypeptides or oligopeptides having a chemical structure in the form produced by the dehydration reaction of these amino acids, can be used alone or in combination of two or more. Good
  • polyethers or oligoethers constituting the biodegradable site examples include polyethers such as polyethylene glycol and polypropylene glycol, or oligoethers such as oligoethylene glycol and oligopropylene glycol. Is mentioned.
  • the biodegradable portion is preferably polyesters, oligoesters, poly (amide-esters), oligo (amide-esters) from the viewpoint of improving biodegradability and mechanical properties such as molded articles.
  • polyethers, more preferably polyesters, oligoesters, poly (amide-esters) or oligo (amide-esters), and more preferably polyesters or oligoesters. is there.
  • polyesters or oligoesters composed of one or more divalent alcohols having 1 to 48 carbon atoms and one or more dibasic acids having 2 to 10 carbon atoms, or one or more carbons. These are polyesters or oligoesters such as hydroxycarboxylic acids of 2 to 10.
  • the molecular weight of the biodegradable site is preferably in the range of 100,000 to 100,000, more preferably 400 to 30,000, and even more preferably 1,000 to 10,000 in order to improve water disintegration and biodegradability. It is a circle.
  • the imine moiety constituting the biodegradable polymer of the present invention is a low molecular weight compound that does not inhibit the object of the present invention and may have any chemical structure as long as it has one or more imine bonds. Either an oligomer or a polymer may be used.
  • the molecule constituting the imine moiety is not particularly limited in its structure, and examples thereof include organic groups represented by the following general formula (1) or general formula (). These may be used alone or in combination of two or more as the imine site of the biodegradable polymer of the present invention.
  • R 1 to R 5 are each independently a hydrocarbon having 1 to 20 carbon atoms
  • Y to Y each independently represent —CR 2 ⁇ — or — ⁇ 2 CR—, and R represents
  • R to R represent
  • the hydrocarbon group having 1 to 20 carbon atoms includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, and more specifically, the same or different carbon number.
  • these organic groups may have such a substituent as long as the object of the present invention is not impaired.
  • an aliphatic hydrocarbon group having 1 to 20 carbon atoms an aliphatic hydrocarbon group having 1 to 20 carbon atoms having one or more ester bonds, and a carbon number having one or more ether bonds.
  • An aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms which are preferred,
  • An aliphatic hydrocarbon group having 1 to 20 carbon atoms and an aromatic hydrocarbon group having 6 to 20 carbon atoms having one or more ether bonds are more preferable.
  • R in Y to Y may be the same or different and each represents a hydrogen atom or a carbon number of 1
  • k represents an integer of 0 to 1000, preferably in the range of 0 to 100.
  • a range of 0 to 50 is more preferable.
  • a range of 0 to 20 is more preferable.
  • the molecular weight of the imine moiety is not particularly limited, but in order to exhibit excellent water disintegration and biodegradability, 50,000 or less is preferable and 10,000 or less is more preferable 2000 or less. Further preferred.
  • the linking site for linking the biodegradable site and the imine site may have any chemical structure as long as the object of the present invention is not inhibited.
  • Examples of the chemical bond that enables such a connection include an ester bond, an amide bond, a urethane bond, a urea bond, a force-bondate bond, and a bond represented by the following general formula (2) (hereinafter referred to as “bond (2)”). , Etc.).
  • R ′ represents a divalent hydrocarbon group having 1 to 20 carbon atoms, and X and X are respectively
  • the divalent hydrocarbon group having 1 to 20 carbon atoms represented by R ′ includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, and more specifically, the number of carbon atoms.
  • a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms and 1 carbon atom having one or more ether bonds preferably a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms and 1 carbon atom having one or more ether bonds.
  • ⁇ 20 divalent aliphatic hydrocarbon groups, 1 to 20 carbon divalent aliphatic hydrocarbon groups having one or more ester bonds, or 6 to 20 carbon divalent aromatic hydrocarbon groups More preferably, it is a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms having one or more ether bonds, or one or more ester bonds.
  • a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms more preferably a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or one or more carbon atoms having one or more ether bonds. 20 divalent aliphatic hydrocarbon groups.
  • X and X are an ester bond, an amide bond, a urethane bond, a urea bond, or a carbon bond.
  • an ester bond, a urethane bond, a urea bond, or a carbonate bond is preferable, and an ester bond, a urethane bond, or a carbonate bond is more preferable. More preferably, they are ester bonds or urethane bonds.
  • the chemical bond used as the linking site may be used alone or in combination of two or more in order to link the biodegradable site and the imine site.
  • the chemical bond used as the linking site is preferably an ester bond, a urethane bond, a carbonate bond or a bond (2), and more preferably an ester bond or a urethane.
  • the biodegradable polymer of the present invention has a chemical structure in which a biodegradable moiety and an imine moiety are linked, and the ratio of the biodegradable moiety and the imine moiety is: Preferably in the range of 1: 9 to 9: 1, more preferably in the range of 1: 7 to 7: 1, still more preferably in the range of 1: 5 to 5: 1, particularly preferably 1: 3. ⁇ 3: 1 range.
  • the biodegradable site is a polyester, oligoester, poly (amide-ester), oligo (amide-ester) or polyether, and the imine site is represented by the above formula (The imine moiety represented by 1), and the chemical bond connecting the biodegradable moiety and the imine moiety is an ester bond, an amide bond, a urethane bond, a urea bond, a carbonate bond or a bond (2).
  • the biodegradable polymer of the present invention is such that the biodegradable moiety is a polyester, oligoester, poly (amide-ester) or oligo (amide-ester), and the imine moiety is the above.
  • the imine moiety represented by formula (1) is a chemical bond that links the biodegradable moiety and the imine moiety as an ester bond, an amide bond, a urethane bond, a urea bond, a carbonate bond, or a bond (2). is there.
  • the biodegradable polymer of the present invention is such that the biodegradable portion is a polyester, an oligoester, a poly (amide-ester) or an oligo (amide-ester), and the imine portion is the above-described one.
  • R to R in the formula (1) is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, one or more
  • C1-C20 aliphatic hydrocarbon group having an ester bond C1-C20 aliphatic hydrocarbon group having one or more ether bonds, C3-C20 alicyclic hydrocarbon group or An aromatic hydrocarbon group having 6 to 20 carbon atoms, and Y and Y are each independently
  • the most preferred biodegradable polymer of the present invention is that the biodegradable site is polyesters, oligoesters, poly (amide-esters) or oligo (amide-esters), and the imine site is the above.
  • R to R in the formula (1) is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, one or more
  • R is a hydrogen atom or an imine moiety that is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and has a chemical bond strength for linking the biodegradable moiety and the imine moiety. Ester bond, urethane bond, force-bonate bond or bond ( 2).
  • the molecular weight of the biodegradable polymer of the present invention is not particularly limited, but is preferably in the range of 10,000 to 1,000,000, more preferably in the range of 20,000 to 500,000 in view of strength as a molded product.
  • the glass transition temperature (Tg) of the biodegradable polymer is not particularly limited, but is ⁇ 120 to 80 ° C., preferably ⁇ 80 to 70 ° C., more preferably ⁇ 50 to 60 ° C.
  • Tg glass transition temperature
  • the biodegradable polymer exhibits excellent biodegradability and water disintegration property when the Tg of the polymerizable polymer is within the above range.
  • biodegradable site and the imine site described here are the same as the biodegradable site and the imine site defined in the biodegradable polymer of the present invention.
  • the method for producing the biodegradable polymer of the present invention differs depending on the type of chemical bond connecting the biodegradable site and the imine site, and is not uniform.
  • the compound containing each site needs to have two or more specific functional groups that enable the connection between the two, and two are preferable. Further, such functional groups are preferably located at both ends of the molecular chain of the molecule constituting the biodegradable site and the imine site. The functional group is determined depending on the chemical bond between the two sites.
  • the chemical bond for linking the biodegradable site and the imine site in the present invention may have any chemical structure as long as the purpose of the present invention is not inhibited.
  • the functional group that a compound containing a biodegradable site and a compound containing an imine site must possess include a carboxyl group, a hydroxyl group, and an amino group. There are various combinations of these functional groups.
  • the combination of the functional groups depending on the type of bond will be described.
  • the functional groups used at both positions are two types, a carboxyl group and a hydroxyl group.
  • the combination includes a combination of a compound containing a biodegradable moiety having two carboxyl groups and a compound containing an imine moiety having two hydroxyl groups, and a biodegradation having two hydroxyl groups.
  • part is mentioned. further,
  • compound (2′-1) a compound represented by the following general formula (2′-1) (hereinafter also referred to as “compound (2′-1)”) is newly used as the compound that induces the bond. Therefore, a new combination is generated. Table 1 shows the combinations.
  • R ′ has the same meaning as R ′ in the formula (2), and Z and Z are independent of each other.
  • a compound containing a biodegradable moiety A compound containing an imine moiety Compound (2'— 1) Having two carboxyl groups Having two hydroxyl groups ⁇ 1: Powered loxyl group
  • a compound containing a biodegradable moiety A compound containing an imine moiety ⁇ 2: Hydroxyl group Having two carboxyl groups Having two hydroxyl groups ⁇ 1: Hydroxyl group
  • a compound containing a biodegradable moiety A compound containing an imine moiety ⁇ 2 : A powerful loxyl group Two carboxyl groups Two carboxyl groups ⁇ 1: Hydroxyl groups
  • a compound containing a biodegradable moiety A compound containing an imine moiety ⁇ 2 : A forceful oxyl group having two hydroxyl groups >> A levoxyle group having two ⁇ ,
  • a compound containing a biodegradable moiety A compound containing an imine moiety ⁇ 2 : Carboxyl group Two hydroxyl groups ⁇ two carboxyl groups ⁇ 1: Forced loxyl group
  • a compound containing a biodegradable moiety A compound containing an imine moiety ⁇ 2 : Carboxyl group having two hydroxyl groups ⁇ 1: Hydroxyl group
  • a compound containing a biodegradable moiety and a compound containing an imine moiety ⁇ 2 Carboxylole group Carboxyl group “! And one hydroxyl group
  • a compound containing an imine moiety having a compound containing a biodegradable moiety having ⁇ 2 : carboxyl group Next, an amide bond, or a bond linked by a bond (2) in which X and X are amide bonds
  • a combination of a compound containing a biodegradable moiety having two carboxyl groups and a compound containing an imine moiety having two amino groups 2
  • a combination of a compound containing a biodegradable moiety having one amino group and a compound containing an imine moiety having two force lupoxyl groups, or a biodegradable having one force loxyl group and one amino group each Examples include a combination of a compound containing a moiety and a compound containing an imine moiety.
  • R ' has the same meaning as R' in the formula (2), and Z and Z are independent of each other.
  • a compound containing a biodegradable moiety A compound containing an imine moiety Compound (2'— 2) Two carboxyl groups and two amino groups Z 3 : Powered loxyl group
  • a compound containing a biogenic moiety A compound containing an imine moiety Z 4 : Powerful lupoxyl group 2 Powerful loxyl groups 2 amino groups Z 3 : Amino group
  • a compound containing a biodegradable moiety A compound containing an imine moiety Z 4 : Amino group having two carboxyl groups Z having two amino groups z 3 : A carboxyl group
  • a compound containing a biodegradable moiety A compound containing an imine moiety z 4 : A force lpoxyl group Two force lpoxyl groups having two force lpoxyl groups z 3: Amino group
  • Carboxyl group z 3 having two force Rupokishiru group having two amino groups
  • Carboxyl group z 3 having two force Rupokishiru group having two amino groups
  • a compound containing a biodegradable moiety A compound containing an imine moiety z 4 : Carboxyl group Two amino groups Two amino groups z 3 : Carboxyl group
  • a compound containing a biodegradable moiety having a compound imine moiety z 4 Carboxyl tomb One carboxyl group and one amino group
  • Two carboxyl groups Z 3 A S group
  • R ' has the same meaning as R' in the formula (2), and Z and Z are independent of each other.
  • a combination of a compound containing a biodegradable moiety having two amino groups and a compound containing an imine moiety having two amino groups can be mentioned.
  • X and X are linked by a bond (2) in which X is a urea bond
  • compound (2'-4) When producing a biodegradable polymer, a compound represented by the general formula (2'-4) (hereinafter also referred to as "compound (2'-4)") is newly introduced as a compound that induces the bond. Used for. That set The combinations are shown in Table 4.
  • R ′ has the same meaning as R ′ in the above formula (2), and Z and Z represent an amino group.
  • the compound represented by the general formula (2′—5) (hereinafter also referred to as “compound (2′—5)”) is a compound that induces the bond. ).
  • Table 5 shows the combinations.
  • R ′ has the same meaning as R ′ in formula (2), and Z and Z represent a hydroxyl group.
  • the compound containing a biodegradable moiety and the imine moiety are different and their combinations are also different.
  • part are put together.
  • Examples of the compound containing a biodegradable site having two functional groups include a compound containing a biodegradable site having two carboxyl groups and a compound containing a biodegradable site having two hydroxyl groups.
  • a compound containing a biodegradable moiety having a biodegradable moiety having one hydroxyl group and one amino group are examples of the compound containing a biodegradable site having two functional groups.
  • a method for producing a compound containing a biodegradable moiety having the above two functional groups for example, in the case of a compound containing a biodegradable moiety having two carboxyl groups, a carboxy group Z hydroxyl group
  • a method of producing it from a divalent aliphatic amine by a dehydration reaction for example, in the case of a compound containing a biodegradable moiety having two carboxyl groups, a carboxy group Z hydroxyl group
  • a compound containing a biodegradable moiety having two hydroxyl groups it is produced by a dehydration reaction from a dibasic acid and a divalent fatty alcohol under the condition that the molar ratio of carboxyl group Z hydroxyl group is less than 1. The method of doing is mentioned.
  • a method of producing by a dehydration reaction of hydroxycarboxylic acids can be mentioned.
  • a dehydration reaction can be carried out from dibasic acids and divalent aliphatic amines under a condition where the molar ratio of the carboxyl group Z amino group is less than ⁇ .
  • the manufacturing method etc. are mentioned.
  • a method of producing it from amino acids by a dehydration reaction can be mentioned.
  • R to R, Y to Y, and k are the biodegradable polymers of the present invention.
  • Y-Y R is hydrogen and contains two imine moieties with two functional groups
  • a compound containing an imine moiety having two functional groups is obtained by a dehydration reaction between an aldehyde compound having a desired functional group and an amine compound.
  • R of the cocoon is an aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • a compound containing, for example, a compound containing an imine moiety having two functional groups is obtained by reaction of a ketone compound having a desired functional group with an amine compound.
  • the biodegradable polymer of the present invention can be produced by linking a compound containing a biodegradable moiety having two functional groups and a compound containing an imine moiety having two functional groups.
  • the production method differs depending on the type of chemical bond connecting the two, and is roughly divided into a method using a condensing agent and a method using a linking agent.
  • the chemical bond to be linked is an ester bond, amide bond or X
  • a production method using an agent may be carried out, or after carrying out a production method using a linking agent, a production method using a condensing agent may be carried out.
  • a biodegradable polymer linked by a bond (2) in which 2 is an ester bond or an amide bond can be produced.
  • the connecting part is an ester bond
  • a combination of constituent parts exemplified for the biodegradable polymer connected by the ester bond is used.
  • the linking site is an amide bond
  • a combination of constituent sites exemplified for the biodegradable polymer linked by the amide bond is used.
  • Examples of the condensing agent used in the production method of the present invention include yowi 2 chloro-1-methylpyridymume, 2-bromo-1-methylpyridyme iodide, and 2-chloro mouth 1 —Ethylpyridyl-mu-tetrafluoroborate, 2-bromo-1-ethylpyrudi-mu-tetrafluoroborate, and the like.
  • the above condensing agents may be used alone or in combination of two or more.
  • the amount of the condensing agent used is usually relative to the total number of moles of carboxyl groups contained in the compound containing the biodegradable site and the compound containing the imine site, which are constituent materials of the biodegradable polymer. 1.0 to 3.0 times mole, preferably 1.1 to 2.5 times mole, and more preferably 1.2 to 2.0 times mole.
  • a base is usually used to neutralize the hydrogen halide.
  • the bases include triethylamine, tripropylamine, triisopropylamine, tributylamine, tripentylamine, trioctylamine, triisooctylamine, N, N'-diisopropylethylamine, N, N —Dimethyl-n-octylamine, N, N-dimethylisopropylamine, tris (2-ethylethyl) amine, N, N-dimethylethylamine, N, N-jetylmethylamine, N, N-dicyclohexylmethyl Amine, N, N-dimethylcyclohexylamine, Tribenzylamine, Triphenylamine, N-Benzyljetylamine, Triethylenediamine, Hexamethylenetetramine, N,
  • the above bases may be used alone or in combination of two or more.
  • the amount of the base used is usually 1.0 to 6.0 times mol, preferably 2.2 to 5.0 times mol, more preferably 2.4 to mol, based on the number of moles of the condensing agent used. 4.
  • the range is 0 times mole.
  • the molar ratio of the compound containing the biodegradable moiety and the compound containing the imine moiety is usually in the range of 0.5 to 2.0, preferably 0.8 to 1. A range of 5 is more preferable, and a range of 0.9 to 1.1 is more preferable.
  • reaction temperature depends on the boiling point of the organic solvent used, but the range of 10-100 ° C is preferred, and the range of 20-50 ° C is more preferred. Reaction is condensation with moisture In order to prevent the deactivation of the agent, it is preferably performed in an inert gas atmosphere such as nitrogen or argon.
  • biodegradable polymer When the biodegradable polymer reaches a desired molecular weight, methanol, ethanol, isopropyl alcohol, etc., in which the impurities are soluble and the polymer is insoluble, are removed in order to remove impurities such as salts of hydrogen halide and base.
  • the biodegradable polymer is purified by reprecipitation and washing using the above organic solvent. After purification, the organic solvent used during purification is removed by drying under reduced pressure or drying by heating.
  • an acid chloride represented by the following general formula (4) (hereinafter simply referred to as “acid chloride”). Can also be produced.
  • R ' has the same meaning as R' in the above formula (2).
  • a compound containing a biodegradable moiety having two hydroxyl groups a combination of a compound containing an imine moiety having two hydroxyl groups and an acid chloride, or a biodegradable moiety having two amino groups
  • X a combination of a compound containing, a compound containing an imine moiety having two amino groups and an acid chloride
  • a biodegradable polymer is obtained in which 2 is linked by a bond (2), each of which is an ester bond or an amide bond.
  • the amount of acid chloride used in this production method is usually 0.25 to 4.0 times mol, preferably 0.3 to 3. mol, based on the total number of moles of hydroxyl groups contained in the above-mentioned constituent parts. It is in the range of 0-fold mole, more preferably in the range of 0.4 to 1.0 times monolith, more preferably in the range of 0.45 to 0.6 times monolith.
  • a biodegradable polymer When a biodegradable polymer is produced by a production method using the above acid chloride, it is usually exemplified by a production method using a condensing agent in order to neutralize by-product halogenated hydrogen.
  • Use the base These bases may be used alone or in combination of two or more.
  • the amount of the base used in this production method is usually 1.5 to 6.0 times mol, preferably 2.2 to 5.0 times mol, more preferably the mol number of acid chlorides used. 2.
  • the range is 4 to 4.0 moles.
  • the molar ratio of the compound containing a biodegradable moiety and the compound containing an imine moiety is usually in the range of 0.5 to 2.0, preferably 0. The range is from 8 to 1.5, and more preferably from 0.9 to 1.1.
  • an organic solvent such as dichloromethane or black mouth form.
  • the reaction temperature depends on the boiling point of the solvent used, but the range of 30-100 ° C is preferred, and the range of 10-50 ° C is more preferred.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon in order to prevent the deactivation of the acid chloride due to moisture.
  • biodegradable polymer When the biodegradable polymer reaches the desired molecular weight, in order to remove impurities such as hydrogen halide and base salts, methanol, ethanol, isopropyl alcohol, etc. in which the impurities are soluble and the polymer is insoluble
  • impurities such as hydrogen halide and base salts, methanol, ethanol, isopropyl alcohol, etc. in which the impurities are soluble and the polymer is insoluble
  • the biodegradable polymer is purified by reprecipitation and washing using the above organic solvent. After purification, the organic solvent used during purification is removed by drying under reduced pressure or heat drying.
  • the biodegradable polymer linked in 2) can be produced.
  • the connecting part is a urethane bond
  • a combination of constituent parts exemplified for the biodegradable polymer connected by the urethane bond is used.
  • the linking site is a urea bond
  • a combination of constituent sites exemplified for the biodegradable polymer linked by the urea bond is used.
  • part is a carbonate bond
  • the combination etc. of the structural part illustrated with the biodegradable polymer connected with the said carbonate bond are used.
  • the linking site is a bond (2) where X and X are urethane bonds, examples are shown in Table 3.
  • Linkage sites are X and X are urea bonds
  • these combinations may be used in combination of two or more, the combinations exemplified in the case of urethane bonds, the combinations exemplified in the case of urea bonds, the combinations exemplified in carbonate bonds, and X and
  • Examples of the linking agent used in the production method include phosgene, carbonate esters, or chloroformates.
  • chloroformates include, for example, chloroformate methinole, chloroformate chloroformate, chloroformate propynole, chloroformate butinole, chloroformate phenyl and the like
  • carbonate esters include, for example, dimethyl carbonate, jetino carbonate, Examples thereof include ethinolemethinolate carbonate, diphenolate carbonate, dipropyl carbonate, dibutyl carbonate and dibenzyl carbonate. Among these, dimethyl carbonate or jetyl carbonate is more preferable, and carbonates in which chloroethyl formate or carbonates are preferable are more preferable.
  • the amount of the linking agent used is based on the total number of moles of hydroxyl groups or amino groups contained in the compound containing a biodegradable site and the compound containing an imine site, which are constituent materials of the biodegradable polymer. Usually, 0.25 to 4.0 times mole, preferably 0.3 to 3.0 times mole, more preferably 0.4 to 1.0 times monole, more preferably 0.45 to 0.6 times monole It is a range.
  • a catalyst in order to promote the reaction between the compound containing the biodegradation site, the compound containing the imine site, and the linking agent.
  • the catalyst include dibutyltin diacetate, dibutyltin dilaurate, sodium methoxide, or tital (IV) acetylacetonate.
  • the above catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst used is a compound containing a biodegradation site having two functional groups and a compound containing an imine site. Is usually in the range of 10 to: LOOOppm, preferably 30 to 800ppm, more preferably 80 to 500ppm, based on the total weight of the binder and the binder.
  • the base exemplified in the production method using a condensing agent is usually used to neutralize by-product halogenated hydrogen.
  • a base may be used individually by 1 type, or may use 2 or more types together.
  • the amount of the base used in this production method is usually 1.5 to 6.0 times mol, preferably 2.2 to 5.0 times mol, more preferably 2 to the mol number of acid chlorides used. The range is 4 to 4.0 moles.
  • the molar ratio of the compound containing the biodegradable moiety and the compound containing the imine moiety is usually in the range of 0.5 to 2.0, preferably 0. It is in the range of 8 to 1.5, more preferably in the range of 0.9 to 1.1.
  • a solvent that can be produced using an organic solvent such as methylene chloride, black-form, tetrahydrofuran, or dimethylformamide as necessary. It may be produced under the condition that the raw material or product melts without using.
  • organic solvent such as methylene chloride, black-form, tetrahydrofuran, or dimethylformamide. It may be produced under the condition that the raw material or product melts without using.
  • phosgene or chloroformate it is preferable to use the above organic solvent.
  • the reaction temperature depends on the boiling point of the organic solvent used as necessary.
  • carbonate esters the range of 50-300 ° C is preferred. Range power is preferred.
  • phosgene or chloroformate is used as a linking agent, a range of ⁇ 78 to 60 ° C. is preferable, and a range of 10 to 40 ° C. is more preferable.
  • the reaction is preferably carried out under an inert gas stream such as nitrogen or argon or under reduced pressure in order to remove the by-produced alcohol.
  • the linking agent is phosgene or chloroformate
  • it is preferably carried out in an inert gas atmosphere such as nitrogen or argon in order to prevent deactivation of the linking agent by water in the atmosphere.
  • an organic solvent such as methanol, ethanol, isopropyl alcohol, hexane or the like in which the biodegradable polymer is insoluble Re-precipitate or wash using to refine the biodegradable polymer, remove the used organic solvent, and dry the biodegradable polymer.
  • an organic solvent such as methanol, ethanol, isopropyl alcohol, hexane or the like in which the biodegradable polymer is insoluble Re-precipitate or wash using to refine the biodegradable polymer, remove the used organic solvent, and dry the biodegradable polymer.
  • an organic solvent if an organic solvent is not used at the time of production, it is preferable to discharge the molten biodegradable polymer as it is, and then discharge the biodegradable polymer as methylene chloride, chloroform or dimethylformamide.
  • the same purification as in the case of using the organic solvent during the production may be performed. After purification or discharge, the biodegradable polymer is dried under reduced pressure or
  • a diisocyanate compound represented by the following general formula (5) (hereinafter, It can also be produced by simply using “diisocyanates”! /, U.) As a linking agent.
  • R ′ has the same meaning as R ′ in formula (2).
  • the amount of the diisocyanate used is usually relative to the total number of moles of hydroxyl groups or amino groups contained in the compound containing a biodegradable site and the compound containing an imine site, which are constituent materials of the biodegradable polymer. 0.25 to 4.0 times mole, preferably 0.3 to 3.0 times mole, more preferably 0.4 to 1.0 times monolayer, and even more preferably 0.45 to 0.6 times mole. Range. If the linking site is a bond (2) where X and X are urethane bonds,
  • Examples of the catalyst include stannous otate, dibutyltin diacetate, and dibutyl. Tin dioctate, dibutyltin dilaurate, dioctyltin dilaurate, sodium o-feurephenate, tetra (2-ethylhexyl) titanate, stannic chloride, ferric chloride, ferric oxalate iron, cobalt oxalate, zinc naphthenate, Examples include triethylamine or triethylenediamine.
  • dibutyltin diacetate dibutyltin dioctate, dibutyltin dilaurate, sodium o-phenol phenate, tetra (2-ethylhexyl) titanate, salt ⁇ stannic or salt ⁇ ferric.
  • the above catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst used is usually 10 to: LOOOppm, preferably 30 to 800ppm, based on the total weight of the compound containing a biodegradation site having two functional groups, the compound containing an imine site and diisocyanates. More preferably, it is in the range of 80 to 500 ppm.
  • the molar ratio of the compound containing the biodegradable moiety and the compound containing the imine moiety is usually in the range of 0.5 to 2.0, preferably 0. It is in the range of 8 to 1.5, more preferably in the range of 0.9 to 1.1.
  • the production method using the above linking agent it may be produced using an organic solvent such as methylene chloride, black mouth form, tetrahydrofuran or dimethylformamide, if necessary. No solvent is used. Alternatively, it may be produced under the condition that the raw material or product melts.
  • an organic solvent such as methylene chloride, black mouth form, tetrahydrofuran or dimethylformamide, if necessary. No solvent is used. Alternatively, it may be produced under the condition that the raw material or product melts.
  • the reaction temperature is preferably in the range of 10 to 200 ° C, depending on the boiling point of the organic solvent used, the compound containing the biodegradable moiety, and the melting point of the compound containing the Z or imine moiety. A range of ⁇ 180 ° C. is more preferable.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon in order to prevent the reaction between water in the atmosphere and the isocyanate group of the linking agent.
  • the reaction order of the compound containing the biodegradable site, the compound containing the imine site, and the diisocyanate is the same as that of the compound containing the biodegradable site, the compound containing the imine site, and the diisocyanate. Either a compound containing a biodegradable site or a compound containing an imine site that can be reacted simultaneously with a diisocyanate may be reacted first, and then a compound containing the other site may be reacted. .
  • the unreacted linking agent is removed with a high vacuum thin film evaporator or the like.
  • the other part React with compounds that contain.
  • biodegradable polymer has reached the desired molecular weight, in the case of using an organic solvent during production, an organic solvent such as methanol, ethanol, isopropyl alcohol, hexane or the like in which the biodegradable polymer is insoluble
  • an organic solvent such as methanol, ethanol, isopropyl alcohol, hexane or the like in which the biodegradable polymer is insoluble
  • the biodegradable polymer may be purified by re-precipitation or washing using, and the used organic solvent may be removed to dry the biodegradable polymer.
  • an organic solvent is not used at the time of production, it is preferable to discharge the molten biodegradable polymer as it is, and then discharge the biodegradable polymer as methylene chloride, chloroform or dimethylformamide.
  • a biodegradable polymer may be produced by using an extruder such as a single screw or twin screw extruder or a kneader such as a derder. Further, by adding diisocyanates after completion of the reaction or after purification, the unreacted hydroxyl group or amino group may react with the isocyanate group to increase the molecular weight of the biodegradable polymer!
  • the biodegradable polymer of the present invention is not particularly limited with respect to the processed product.
  • it can be formed into a molded product such as a film, a sheet, a container suitable for the application, and a nonwoven fabric by molding. Can do.
  • these molded products may contain ordinary biodegradable polymers such as polyethylene glycol, butyl alcohol, polylactic acid, and polybutylene succinate!
  • additives can be added to the biodegradable polymer of the present invention depending on the purpose.
  • additives include plasticizers, fillers, antioxidants, ultraviolet absorbers, heat stabilizers, flame retardants, mold release agents, inorganic additives, crystal nucleating agents, antistatic agents, pigments, antiblocking agents, etc. Is mentioned.
  • plasticizer those having biodegradability and excellent compatibility with the biodegradable polymer of the present invention are preferably used.
  • examples thereof include monovalent or polyvalent fatty acid ester plasticizers, monovalent or polyvalent aliphatic alcohol ester plasticizers, polyalkylene glycol plasticizers, and aliphatic polyester plasticizers.
  • Gee n-year-old Phthalic acid derivatives such as octyl phthalate, di-2-ethylhexyl phthalate, dibenzyl phthalate, isophthalic acid derivatives such as diisooctyl phthalate, adipic acid derivatives such as dimethyl butyl adipate and dioctyl adipate, gen butyl maleate Maleic acid derivatives such as tri-n-butyl citrate, itaconic acid derivatives such as monobutyl itaconate, oleic acid derivatives such as ptylcholate, ricinoleic acid derivatives such as glycerol monoricinoleate, tricresyl Examples thereof include phosphate ester derivatives such as phosphate and trixylyl phosphate, triethyl acetyl sulfonate, tributyl acetyl sulfonate, lactic acid, linear
  • citrate ester glycerin ester, phthalate ester, adipic acid ester, sebacic acid ester, azelaic acid ester and triethylene glycol ester power having at least two carboxylic acid ester groups in the molecule are also selected. It is preferable that it is a kind of ester compound.
  • plasticizers may be used alone or in combination of two or more.
  • additives of various additives such as plasticizers, inorganic fillers, dispersants and stabilizers to the biodegradable polymer of the present invention include, for example, Henschel mixer, super mixer, tumbler type mixer, etc. Can be carried out by continuous kneading using a single screw or twin screw extruder. Here, in order to further improve the dispersibility of biodegradable polymers and fillers, a twin screw extruder is preferred.
  • the method for obtaining the film or sheet having the biodegradable polymer strength of the present invention is formed into a film or sheet by a known molding method without any particular limitation.
  • the method include forming a film or a sheet by a T-die molding method, an inflation molding method, a calendar molding method, a hot press molding method, or the like. These films may be stretched in at least one direction.
  • the stretching method is not particularly limited, and examples thereof include a roll stretching method, a tenter method, and an inflation method.
  • a method for obtaining a molded product having a shape suitable for the application, which also has the biodegradable polymer power of the present invention it can be produced by a known method without any particular limitation. For example, extrusion molding or injection molding into a mold, etc. The method of performing etc. is mentioned.
  • the thickness of the molded product of the biodegradable polymer of the present invention increases its water disintegration and biodegradability. Therefore, it is preferable to form it thinly, but it can be freely adjusted to satisfy the strength and flexibility.
  • the preferred thickness of the film is 5 to 300 m, more preferably 10: LOO m force S.
  • the thickness of the sheet or container-shaped molded article is preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm.
  • the tensile elastic modulus is not particularly limited, but usually it is preferably 1200 MPa or less, more preferably 600 MPa or less.
  • the tensile strength is not particularly limited, but 10 to: the range of LOOMPa is preferred 15 to 70 MPa is more preferred The range of 20 to 50 MPa is more preferred
  • An inorganic additive can be added to the biodegradable polymer of the present invention, and by containing a specific inorganic additive, the water-disintegrating property of the biodegradable polymer of the present invention can be enhanced. You can.
  • Such inorganic additives are not particularly limited, but inorganic oxides and zeolites are preferred, and inorganic oxides are more preferred.
  • inorganic oxides examples include silica, alumina, titanium oxide, silicate clay, diatomaceous earth, and acid clay.
  • examples of zeolites include Philipsite, mordenite, clinoptilolite, harmotome, menorellinoite, shabasite, Examples include erionite, natrolite, hyurlandite, and faujasite.
  • the inorganic additives may be used alone or in combination of two or more.
  • the blending condition of the biodegradable polymer resin composition containing the biodegradable polymer and the inorganic additive of the present invention is such that the inorganic additive is 0.01 to 50 parts by weight with respect to 100 parts by weight of the biodegradable polymer.
  • the inorganic additive is in the range of 0.1 to 40 parts by weight, more preferably the inorganic additive is in the range of 0.5 to 30 parts by weight, and more preferably 1 to 20 parts by weight. The range of.
  • the average particle diameter of the inorganic additive is preferably 30 m or less, more preferably 10 m or less, and particularly preferably in the range of 0.7 to 5 ⁇ m. If the particle size is too large, the fineness of the pores of the film will deteriorate, and if it is too small, the dispersibility in the resin will deteriorate. Also, for example, when the molded product is a film, these inorganic additives should be added to improve the air permeability.
  • Inorganic fillers include calcium carbonate, talc, clay, kaolin, magnesium carbonate, barium carbonate, magnesium sulfate, sodium sulfate, calcium sulfate, aluminum hydroxide, zinc oxide, magnesium hydroxide, calcium oxide, magnesium oxide. , My power, etc. Of these, calcium carbonate, magnesium oxide, barium sulfate, talc and clay are preferred.
  • the organic filler include cellulose powder such as wood powder and pulp powder. These fillers may be used alone or in combination of two or more.
  • the average particle diameter of the filler is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably in the range of 0.7 to 5 m. If the particle size is too large, the fineness of the pores of the film will be poor, and if it is too small, the dispersibility in rosin will be poor. After forming a flat unstretched sheet, the film becomes porous and becomes air permeable by uniaxially stretching in the longitudinal direction or biaxially stretching in the longitudinal and lateral directions.
  • the method for obtaining the non-woven fabric of the biodegradable polymer of the present invention is produced by a known method without particular limitation, for example, a dry method, a spunbond method, a melt blow method, a wet method and the like. That is, it is obtained by spinning the composition containing the biodegradable polymer of the present invention or the biodegradable polymer and an additive, forming a web, and bonding the web by a conventionally known method.
  • a known spinning method is applied to the spinning method of the raw fiber.
  • single-spinning or composite spinning may be used.
  • composite spinning include core-sheath type or parallel type composite spinning.
  • the spinning method include a melt spinning method in which melt spinning is performed using an extruder, and the biodegradable polymer or composition is dissolved in a solvent to form a solution, and then the solution is discharged from a nozzle into a poor solvent.
  • a wet spinning method, dry spinning in which the solution is discharged into a dry gas from a nozzle, or the like is applied.
  • a known extruder such as a single screw extruder or a twin screw extruder can be used.
  • the diameter of the die (nozzle) of the extruder is a force that is appropriately determined according to the relationship between the required fiber diameter (thread diameter) and the discharge speed and take-up speed of the extruder, preferably 0.1 to 3 It is about Omm. In any spinning method, it is not always necessary to stretch the fiber after spinning, but in the case of stretching, it is 1. 1 to 10 times, preferably 2 to 8 times. Fiber The preferred yarn diameter is 0.5 to 40 denier. Further, the single fiber or the composite fiber constituting the nonwoven fabric of the present invention can be appropriately selected depending on the purpose of use, which may be either a long fiber or a short fiber.
  • a fiber lump called a web is formed.
  • a known method can be used as a method for producing the web, and is not particularly limited. Examples thereof include a card type using a flat card machine, a roller card machine, a garnet machine, and a melt blow type.
  • a spunbond type may be used in which high-speed air is blown when nozzle spinning fibers of the spinning machine are ejected and collected on a perforated conveyor perpendicular to the airflow to form a web.
  • a known method can be used to obtain the nonwoven fabric of the biodegradable polymer of the present invention from the web thus obtained. Examples include entanglement with needles-one-punch method, stitch bond method with entanglement with yarn, thermal bond method with heat bonding, chemical bond method with adhesive, and resin bond method.
  • the basis weight of the nonwoven fabric of the present invention is preferably 1 to 50 g / m 2 , more preferably 5 to 20 g / m 2 .
  • the molded product containing the biodegradable polymer of the present invention is not particularly limited in its use, but is used, for example, as a component (part) constituting a sanitary product, agricultural / horticultural material, civil engineering material, etc. can do. That is, it is possible to produce sanitary goods, agricultural and horticultural materials, civil engineering materials, etc. using a material containing the biodegradable polymer of the present invention.
  • Applications of the biodegradable polymer of the present invention include Hygiene products are preferred.
  • a method for producing sanitary products, agricultural and horticultural materials, civil engineering materials, etc. it can be produced by molding and processing the rosin composition containing the biodegradable polymer of the present invention into a desired shape. Furthermore, the molded product can be produced by bonding and fixing to each other by a known method such as hot melt bonding or heat bonding.
  • sanitary products examples include sanitary tampon applicators, sanitary napkins, panty liners, disposable paper diapers, and incontinence pads.
  • Examples of the agricultural and horticultural materials include multi-films, seedling pots, horticultural tapes, fruit cultivation bags, piles, fumigation sheets, greenhouse films, and the like.
  • Examples of the civil engineering materials include vegetation nets, vegetation pots, three-dimensional nets, civil engineering fibers, piles, and heat insulating materials.
  • the nonwoven fabric containing the biodegradable polymer of the present invention is suitable for use as, for example, a sanitary napkin surface material, a panty liner top sheet, a disposable diaper top sheet, or a fruit cultivation bag.
  • the film containing the biodegradable polymer of the present invention includes, for example, a sanitary napkin anti-wetting material, a back sheet of a panty liner, a back sheet of a disposable diaper, a multi-film, an agricultural and horticultural tape, or a film for a greenhouse. Suitable for use as.
  • a container-like molded body or sheet containing the biodegradable polymer of the present invention processed into a cylindrical shape is suitable for use as, for example, a sanitary tampon applicator.
  • the container-like molded product containing the biodegradable polymer of the present invention is suitable for use as, for example, a seedling pot or a vegetation pot.
  • the absorbent core may be used to prevent leakage or improve the mobility of the wearer.
  • the molecular weight of the polymer was determined by gel permeation chromatography (hereinafter referred to as “GPC”). Polystyrene was used as a standard substance.
  • the tensile strength at break and the tensile modulus of elasticity were obtained by measuring the stress of a film specimen punched into a dumbbell with a tensile tester at a tensile rate of 50 mm.
  • the film was immersed in distilled water at 35 ° C for 24 hours, and the film taken out was dried and the weight of the film was measured. A film having a weight retention of 98% or more after being immersed in distilled water at 35 ° C for 24 hours is judged not to be water-soluble. I refused.
  • the film was tested for water disintegration in distilled water (about pH 7) according to the JIS P 4501 toilet paper ease test. It was judged that an 11 cm square film or non-woven fabric was less than 520 hours and 4 cm square or less showed water disintegration.
  • the film was tested for biodegradability according to ISO 14855. Films with a biodegradability of 60% or higher were judged to be biodegradable.
  • a test piece having a length of 10 cm and a width of 5 cm was prepared, stretched in the longitudinal direction (MD) and the weft direction (CD), and the obtained load at break [kgZ5 cm] was obtained.
  • MD longitudinal direction
  • CD weft direction
  • a 300 mL separable flask equipped with a Dean Stark with condenser, thermometer, glass stirring blade and dropping funnel was charged with 13.4 g of terephthalaldehyde (0.1 mol, Aldrich, purity 99.0%) and 120 mL of toluene.
  • the mixture was stirred with a glass stirring blade and cooled to 3 to 5 ° C with ice water.
  • 2-Ethanolamine 12.2 g (0.2 mol, manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0%) was placed in a dropping funnel and dropped into the flask in 30 minutes. After dropping, the mixture was heated in an oil bath and heated to reflux until the by-product of water was finished.
  • NMR ⁇ vector ⁇ 4. 61 (s, 2H) ⁇ H 3. 67 (s, 8H) ⁇ 8. 31 (s, 2 H) ⁇ 7.71 (s, 4H).
  • the reaction procedure was the same as in Production Example 1 except that 18.5 g of hydroxyacetone (0.2 mol, Tokyo Chemical Industry Co., Ltd., purity 80.0%) was used instead of terephthalaldehyde. 28.2 g of imino) propane 1 ol (hereinafter referred to as “imine compound 3”) was obtained. From the results of measurement of proton nuclear magnetic resonance spectrum ( ⁇ H-NMR ⁇ vector) by dissolving imine compound 3 in deuterated DMSO, imine compound 3 has the chemical structure of the following formula (6). Have confirmed that.
  • Dissolve compound containing biodegradable moiety with COOH groups at both ends in black mouth form add several drops of indicator (bromothymol blue methanol solution), and add 0.05N alcoholic KOH solution.
  • indicator bromothymol blue methanol solution
  • 0.05N alcoholic KOH solution The acid value was determined by the following formula.
  • Moisture determination receiver with condenser, thermometer, curved pipe, SUS with SUS stirring blade In a 1 L separable flask, 202.5 g of oxalic acid (l. 7 lmol, Wako Pure Chemical Industries, Ltd., purity 99.5%) and 1,4 butanediol 143.6 g (l. 56 mol, Wako Pure Chemical Industries, Ltd.) (Purchased company, purity 98.0%) was added, heated to 60 ° C in an oil bath, and degassed for 30 minutes under reduced pressure. After the degassing was completed, the reaction temperature was gradually increased to 160 ° C by switching to nitrogen blowing.
  • the amount of oxalic acid used was changed to 291.0 g (2.45 mol), the amount of 1,4 butanediol was changed to 188.5 g (2. O5 mol), and the acid value was changed to 110.3 mg-KOHZg at 160 ° C.
  • the reaction was conducted in the same manner as in Production Example 5 except that the reaction was continued until the end of the reaction, yielding 395.3 g of polybutylene succinate (hereinafter referred to as “PBS3”) having COOH groups at both ends.
  • the acid value of PBS3 was 108. 6 mg-KOH / g, and the number average molecular weight of PBS3 was 1420.
  • PBS5 polybutylene succinate having COOH groups at both ends
  • the amount of oxalic acid used was changed to 206.9 g (l. 74 mol), the amount of 1,4 butanediol was changed to 106.5 g (l. 12 mol), and 51.2 g (0.48 mol, pure)
  • the same reaction procedure as in Production Example 5 was carried out except that the reaction was continued until the acid value reached 46.6 mg-KOHZg using a product manufactured by Shosei Kogyo Co., Ltd., purity 99.0%).
  • 282.6 g of oxalic acid Z 1, 4 butanediol Z diethylene glycol copolymer (hereinafter referred to as “PBDEGS”) having a COOH group was obtained.
  • the acid value of PBDEGS was 45.5 mg-KOH / g, and the number average molecular weight of PBD EGS was 2858.
  • the biodegradable moiety-containing compound having an OH group at both ends is acetylated with this acetylenic reagent, and a dozen drops of talesol red-thymol blue mixed indicator are added, and 0.5N alcoholic hydroxide is added. Titrated with sodium chloride solution. At the same time, a blank test was also conducted. These drops From the results, the acetyl group value was determined from the following formula.
  • Acetyl number [mg- KOH / g] (V— V) X f X 28. 05 / S
  • a biodegradable moiety-containing compound having OH groups at both ends is dissolved in a chloroform-form methanol mixed solvent, and a few drops of bromothymol blue-phenol red mixed indicator is added, and 0.1N alcoholic water is added. Titrated with potassium acid solution. At the same time, a blank test was also conducted. From these titration results, the acid value was determined by the following formula.
  • the hydroxyl value was determined from the following formula.
  • PBSA diol succinate adipate
  • the hydroxyl value was 57.6 mg-KOHZg and the acid value was 0.3 mg-KOHZg.
  • the molecular weight of PBSA diol was measured by GPC. As a result, the number average molecular weight was 1947.
  • the reaction was performed at 40-42 ° C for 12 hours under a nitrogen atmosphere. After the reaction, the reaction solution was cooled to room temperature, and the reaction solution was added dropwise to 1400 mL of dry methanol under a nitrogen atmosphere to precipitate a cottony polymer. This suspension was pressure filtered with nitrogen, and the resulting polymer was dried overnight at 30 ° C. under a nitrogen atmosphere. The dried polymer was added to 140 OmL of dry methanol, stirred under a nitrogen atmosphere, washed, and filtered under pressure. The same cleaning operation was performed again, and the film was dried overnight at 50 ° C. in a nitrogen atmosphere.
  • polybutylene succinate having an imine bond (hereinafter referred to as “imine-containing PBS”) was obtained. Obtained As a result of measuring the molecular weight of thymine-containing PBS by GPC, the number average molecular weight was 26984. In addition, NMR ⁇ vector was measured, and it was confirmed that imine bond was present in PBS containing methine peak of 8.29 ppm imine bond. As a result of analyzing the iH-NMR spectrum, it was estimated that it had a chemical structure of the following formula (8)!
  • the obtained imine-containing PBS was hot-pressed at 115 ° C for 3 minutes to prepare films having thicknesses of 15 m, m, and 100 m.
  • the 100 m thick film had a tensile strength of 25.5 MPa and a tensile modulus of 687 MPa. This film had good appearance and touch, was flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.7%, and it was confirmed that this film was not water-soluble.
  • a water disintegration test using a 15 m thick film an 11 cm square film collapsed to 1 to 2 cm square in 119 hours, and the number average molecular weight at that time decreased to 12700.
  • the biodegradability was 32.5% after 1 week, 66.4% after 2 weeks, and 81.0% after 3 weeks. After 4 weeks, it was 92.3%.
  • Example 1 except that the amount of tributylamine was changed to 38. lg (201.5 mmol) and the amount of 1-methylpyridium was changed to 26.3 g (100.8 mmol). In the same manner as in 1, 51.6 g of cotton-like imine-containing PBS was obtained. As a result of measuring the molecular weight of the obtained imine-containing PBS by GPC, the number average molecular weight was 31391. Further, to confirm the structure of Imin-containing PBS in the same manner as in Example 1, was sure to have the same chemical structure as Example 1 0
  • a film was produced in the same manner as in Example 1 using the obtained imine-containing PBS. 100
  • the tensile strength of the / z m-thick film was 25.6 MPa, and the tensile modulus was 680 MPa. This film was good in appearance and touch, flexible and high in strength.
  • PBS2 50 instead of PBS1, use PBS2 50. Og (COOH group; 16.4 mmol), change the amount of tributylamine to 9.31 g (49.2 mmol), and then add 2-chloro-1-chloropyridium iodide. The amount used was changed to 6.41 g (24.6 mmol) and the amount used for imine compound 1 was changed to 1.80 g (8.2 Ommol). Imine-containing PBS was obtained. The molecular weight of the obtained imine-containing PBS was measured by GPC. As a result, the number average molecular weight was 30686. Further, the structure of imine-containing PBS was confirmed in the same manner as in Example 1, and it was confirmed that it had the same chemical structure as in Example 1.
  • a film was produced in the same manner as in Example 1 using the obtained imine-containing PBS.
  • the 100 m thick film had a tensile strength of 37.7 MPa and a tensile modulus of 779 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble.
  • a water disintegration test using a 15 m thick film an 11 cm square film collapsed to a 23 cm square in 240 hours, and the number average molecular weight at that time dropped to 14400.
  • the biodegradation degree was 28.5% after 1 week 58.6% after 2 weeks 58.6% after 3 weeks 77. 3% 4 weeks Later it was 89. 7%.
  • PBS3 50 instead of PBS1, use PBS3 50. Og (COOH group; 96.8 mmol), change the amount of tributylamine to 54.9 g (290.4 mmol), and add 2-chloro 1-methylpyridium iodide. 57. lg flocculent imine was obtained in the same manner as in Example 1 except that the amount used was changed to 35.9 g (145.2 mmol) and the amount of imine compound 1 was changed to 10.6 g (48.4 mmol). Containing PBS was obtained. As a result of measuring the molecular weight of the obtained imine-containing PBS by GPC, the number average molecular weight was 31391. Further, the structure of imine-containing PBS was confirmed in the same manner as in Example 1, and it was confirmed that it had the same chemical structure as in Example 1.
  • a film was produced in the same manner as in Example 1 using the obtained imine-containing PBS. 100
  • the / zm thick film had a tensile strength of 20.7 MPa and a tensile modulus of 677 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was conducted using a film having a thickness of 100 / zm. As a result, the weight retention rate of the film was 98.7%, and it was confirmed that this film was not water-soluble.
  • As a result of a water disintegration test using a 15 m thick film an 11 cm square film collapsed to 1 to 2 cm square in 8 hours, and the number average molecular weight at that time was 7245.
  • the biodegradability was 14.5% after 1 week, 77.5% after 2 weeks, and 87.6% after 3 weeks. After 4 weeks, it was 95.3%.
  • PBS1 instead of PBS1, use PBS4 50.0 g (COOH group; 197.6 mmol), change the amount of tributylamine to 112. lg (592.8 mmol), and use the amount of yowi — 2-chloro-1-methinolepyridi-um Was changed to 77.3 g (296.4 mmol) and the amount of imine compound 1 was changed to 21.7 g (98.8 mmol) in the same manner as in Example 1, except that 68.2 g of flocculent imine-containing P I got BS. As a result of measuring the molecular weight of the obtained imine-containing PBS by GPC, the number average molecular weight was 32501. Further, the structure of imine-containing PBS was confirmed in the same manner as in Example 1, and it was confirmed that it had the same chemical structure as in Example 1.
  • a film was produced in the same manner as in Example 1 using the obtained imine-containing PBS. 100
  • the / z m thick film had a tensile strength of 20. lMPa and a tensile modulus of 595 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention of the film was 98.6%, and it was confirmed that this film was not water-soluble. In addition, as a result of a water disintegration test using a 15 m thick film, an 11 cm square film collapsed to 1 to 2 cm square in 2 hours, and the number average molecular weight at that time dropped to 5490. As a result of a biodegradability test using a 30 m thick film, the biodegradability was 46.3% after 1 week, 80.0% after 2 weeks, 90.0% after 3 weeks, After 4 weeks it was 96.0%.
  • PBS1 instead of PBS1, use 50.0 g of PBS5 (COOH group; 9.71 mmol), change the amount of tributylamine to 5.50 g (29. lmmol), and add 2-iodide 1-methylpyridyl iodide.
  • the amount of imine compound 1 was changed to 3.81 g (14.6 mmol) and the amount of imine compound 1 was changed to 1.07 g (4.8 6 mmol). Containing PBS was obtained.
  • Gain The molecular weight of the resulting imine-containing PBS was measured by GPC. As a result, the number average molecular weight was 27443. Further, the structure of imine-containing PBS was confirmed in the same manner as in Example 1, and it was confirmed that it had the same chemical structure as in Example 1.
  • a film was produced in the same manner as in Example 1 using the obtained imine-containing PBS. 100
  • the tensile strength of the / z m-thick film was 38.9 MPa, and the tensile modulus was 790 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble.
  • a water disintegration test using a 15 m thick film an 11 cm square film collapsed to 3-4 cm square in 520 hours, and the number average molecular weight at that time dropped to 15460.
  • the biodegradation degree was 28.0 after 1 week, 53.6% after 2 weeks, 72.5% after 3 weeks, After 4 weeks it was 85.5%.
  • a 100-m film prepared in the same manner as in Example 1 had a tensile strength of 30.9 MPa and a tensile modulus of 520 MPa. This The film had good appearance and touch, was flexible and high in strength.
  • a film was produced in the same manner as in Example 1 using the obtained polybutylene succinate.
  • the 100 m thick film had a tensile strength of 39.3 MPa and a tensile modulus of 371 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble. As a result of a water disintegration test using the above film, the film did not disintegrate even after 520 hours. Furthermore, the number average molecular weight of the film at this time is 33531, and no change in molecular weight is observed. Also, as a result of biodegradability tests using the same film, the degree of biodegradation was 27.0% after 1 week, 52.5% after 2 weeks, 69.0% after 3 weeks, 4 After 7 weeks, it was 79.0%, which was inferior to the biodegradability of PBS containing imine.
  • HDI hexamethylene diisocyanate 16.5 g (NCO group; 0.195 mol, “Takenate 700” manufactured by Mitsui Chemicals Polyurethanes Co., Ltd., NCO content 49.6% by weight ) was dripped in 10 minutes, and the remaining HDI in the dropping funnel was washed away with 1.3 g of toluene.
  • the reaction was performed at 130 ° C. for 3 hours under a nitrogen atmosphere, and then the molten polymer was discharged into a stainless steel vat to obtain 101. Og imine-containing PBS.
  • the obtained imine-containing PBS was hot-pressed at 130 ° C for 5 minutes to prepare films having thicknesses of 15 m, 30 m, and 100 m.
  • the 100 m thick film had a tensile strength of 31.9 MPa and a tensile modulus of 832 MPa. This film had good appearance and feel, was flexible and high in strength.
  • the biodegradability was 15.3% after 1 week, 27.5% after 2 weeks, and 4 0 after 3 weeks. 8%, 52.3% after 4 weeks, and 60.0% after 5 weeks.
  • polybutylene adipate diol (hereinafter referred to as “PBA diol” t) 100.0 g (OH group; 0.100 mol, “Takelac U-242 0” manufactured by Mitsui Chemicals Polyurethane Co., Ltd., hydroxyl value 56. lmg— KOH / g), the amount of imine compound 1 used was changed to 11.0 g (OH group; 0.1 lOOmol), and the amount of HDI used was changed to 16. lg (NCO group; 0.190 mol). Otherwise, 115.lg of polybutylene adipate having an imine bond (hereinafter referred to as "imine-containing PBA”) was obtained in the same manner as in Example 9.
  • PBA diol polybutylene adipate diol
  • the number average molecular weight was 34850.
  • the ⁇ H-NMR spectrum was measured, and it was confirmed that the imine bond was also present in the imine-containing PBA of the 8.29 ppm imine bond methine peak.
  • a film was produced in the same manner as in Example 9 using the obtained imine-containing PBA. 100
  • the / zm thick film had a tensile strength of 30.9 MPa and a tensile modulus of 520 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a film was produced in the same manner as in Example 9, using the obtained imine-containing PBS. 100
  • the / zm thick film had a tensile strength of 29.9 MPa and a tensile modulus of 785 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.7%, and it was confirmed that this film was not water-soluble.
  • a water disintegration test using a 15 m thick film an 11 cm square film collapsed to 1 to 2 cm square in 86 hours, and the number average molecular weight at that time dropped to 15870.
  • the biodegradability was 17.4% after 1 week, 30.6% after 2 weeks, and 45.5% after 3 weeks. It was 58.3% after 4 weeks and 63.9% after 5 weeks.
  • a film was produced in the same manner as in Example 9, using the obtained imine-containing PBA.
  • the 100 / zm thick film had a tensile strength of 29.3 MPa and a tensile modulus of 480 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble. As a result of a water disintegration test using a 15 m thick film, an 11 cm square film collapsed to 1 to 2 cm square in 2 hours, and the number average molecular weight at that time dropped to 11950. In addition, as a result of a biodegradability test using a 30 ⁇ m thick film, the biodegradation degree was 33.0% after 1 week, 45.5% after 2 weeks, and 59.3% after 3 weeks. After 4 weeks, it was 75.6%.
  • a film was produced in the same manner as in Example 9 using the obtained PBS.
  • the 100 / zm thick film had a tensile strength of 67.4 MPa and a tensile modulus of 455 MPa. This film was good in appearance and touch, flexible and strong.
  • a water solubility test was performed using a film having a thickness of 100 ⁇ m. As a result, the weight retention rate of the film was 99.6%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. As a result of a biodegradability test using a 30 m thick film, the biodegradability was 5.2% after 1 week, 15.7% after 2 weeks, 23.6% after 3 weeks, It was 37. 7% after 4 weeks and 46.8% after 5 weeks, which was less biodegradable than PBS containing imine.
  • Imine compound 1 was not used, except that PBAdiol was used at 100.0 g (OH group; 0.1 OOmol) instead of PBS6, and the amount of HDI used was changed to 8.0 g (NCO group; 0.095 mol).
  • PBA polybutylene adipate
  • the number average molecular weight was 45450.
  • a film was produced in the same manner as Example 9 using the obtained PBA. 100 ⁇ m thick The tensile strength of the film was 72.5 MPa and the tensile modulus was 250 MPa. This film was good in appearance and touch, flexible and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.7%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. As a result of a biodegradability test using a 30 m thick film, the biodegradability was 10.1% after 1 week, 16.0% after 2 weeks, 25.2% after 3 weeks, After 4 weeks, it was 40.3%, which was inferior in biodegradability to imine-containing PBA.
  • a film was prepared in the same manner as in Example 9 using the obtained imine-containing PBA-PBS.
  • the 100 m thick film had a tensile strength of 20.9 MPa and a tensile modulus of 630 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble.
  • a water disintegration test using a 15 m thick film an 11 cm square film collapsed to 1 to 2 cm square in 200 hours, and the number average molecular weight at that time dropped to 12930.
  • the biodegradation degree was 25.3% after 1 week, 38.5% after 2 weeks, and 55.7% after 3 weeks. 4 weeks later, it was 61.3%.
  • a film was produced in the same manner as in Example 9 using the obtained PBA-PBS.
  • the 100 m thick film had a tensile strength of 69. lMPa and a tensile modulus of 389 MPa. This film was good in appearance and feel, soft and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.7%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. As a result of a biodegradability test using a 30 m thick film, the biodegradability was 8.3% after 1 week, 16.3% after 2 weeks, 30.9% after 3 weeks, After 4 weeks, it was 50.7%, which was less biodegradable than imine-containing PBA—PBS.
  • a film was produced in the same manner as in Example 9 using the obtained imine-containing PBA-BD.
  • the 100 m thick film had a tensile strength of 40.9 MPa and a tensile modulus of 753 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.9%, and it was confirmed that this film was not water-soluble. As a result of a water disintegration test using a 15 m thick film, an 11 cm square film collapsed to a 4 cm square in 520 hours, and the number average molecular weight at that time dropped to 11050. In addition, as a result of a biodegradability test using a 30 ⁇ m-thick film, the biodegradability was 10.7% after 1 week, 21.8% after 2 weeks, and 35.7% after 3 weeks. 49.3% after 4 weeks, 55.8% after 5 weeks, and 62.3% after 6 weeks.
  • the polybutylene adipate butanediol copolymer (hereinafter referred to as “PBA-BD”) was used in the same manner as in Example 14 except that the imine compound 1 was not used and the amount of HDI used was changed to 16. lg (NCO group; 0.190 mol). ”81.6 g was obtained. As a result of measuring the molecular weight of the obtained PBA-BD by GPC, the number average molecular weight was 31450.
  • a film was produced in the same manner as Example 9 using the obtained PBA-BD.
  • the 100 / z m thick film had a tensile strength of 75.3 MPa and a tensile modulus of 544 MPa. This film was good in appearance and feel, soft and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.7%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. In addition, as a result of a biodegradability test using a 30 / zm-thick film, the biodegradation degree was 3.4%, 7.1% after 2 weeks, 18.4% after 3 weeks, 4 weeks later 26.8%, 58.5% after 5 weeks, and 45.8% after 6 weeks, which were less biodegradable than imine-containing PBA-BD.
  • the molecular weight of the resulting imine-containing PBS-PEG was measured by GPC. As a result, the number average molecular weight was 35705.
  • the NMR vector was measured, and it was confirmed from the methine peak of 8.29 ppm imine bond that imine bond was present in imine-containing PBS-PEG. As a result of analyzing the NMR ⁇ vector, it was estimated that it had a chemical structure of the following formula (16)!
  • a film was produced in the same manner as in Example 9 using the obtained imine-containing PBS-PEG.
  • the 100 m thick film had a tensile strength of 25. OMPa and a tensile modulus of 685 MPa. This film was good in appearance and touch, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention ratio of the film was 99.5%, and it was confirmed that this film was not water-soluble. As a result of a water disintegration test using a 15 m thick film, an 11 cm square film collapsed to 1 to 2 cm square in 180 hours, and the number average molecular weight at that time dropped to 15852. In addition, as a result of a biodegradability test using a 30-m thick film, the biodegradability was 1 week later.
  • Example 1 Polybutylene succinate polyethylene glycol copolymer (hereinafter referred to as “Example 1”) except that imine compound 1 was not used and the amount of HDI used was changed to 9. lg (NCO group; 0.106 mol). 80.6 g of “PBS—PEG” was obtained. As a result of measuring the molecular weight of the obtained PBS-PEG by GPC, the number average molecular weight was 42521.
  • a film was produced in the same manner as in Example 9 using the obtained PBS-PEG.
  • the 100 m thick film had a tensile strength of 65.3 MPa and a tensile modulus of 498 MPa. This film was good in appearance and feel, soft and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention ratio of the film was 99.5%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. In addition, as a result of a biodegradability test using a 30 m thick film, the biodegradation degree was 1 week later.
  • the molecular weight of the obtained imine-containing PC was measured by GPC. As a result, the number average molecular weight was 25200. Moreover, NMR ⁇ vector was measured, and it was confirmed that imine bonds exist in imine-containing PC from 8.29 ppm imine bond methine peak. As a result of praying the iH-NMR ⁇ vector, it was estimated that it had a chemical structure of the following formula (17)!
  • Example 9 Using the obtained imine-containing PC, a film was produced in the same manner as in Example 9.
  • the 100 m thick film had a tensile strength of 21. OMPa and a tensile modulus of 578 MPa. This film was good in appearance and feel, soft and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention ratio of the film was 99.5%, and it was confirmed that this film was not water-soluble. As a result of a water disintegration test using a 15 m thick film, an 11 cm square film collapsed to 1 to 2 cm square in 270 hours, and the number average molecular weight at that time dropped to 13600. In addition, as a result of a biodegradability test using a 30 m-thick film, the biodegradability was 40.3% after 1 week, 60.5% after 2 weeks, and 75.3% after 3 weeks. After 4 weeks, it was 86.4%.
  • PC polycarbonate
  • Example 9 Using the obtained PC, a film was produced in the same manner as in Example 9.
  • the 100 m thick film had a tensile strength of 22. OMPa and a tensile modulus of 530 MPa. This film was good in appearance and touch, flexible and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. In addition, as a result of conducting a biodegradability test using a 30 m thick film, the biodegradation degree was 21.3% after 1 week, 32.1% after 2 weeks, 40.6% after 3 weeks, After 4 weeks, it was 58.2%, which was inferior in biodegradability to the mine-containing PC.
  • the obtained imine-containing PBSA was hot-pressed at 130 ° C. for 5 minutes to produce films with thicknesses of m, 30 m, and 100 ⁇ m.
  • the 100 / xm thick film had a tensile strength of 28.5 MPa and a tensile modulus of 632 MPa. This film has good appearance and feel. Yes, it was flexible and strong.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.7%, and it was confirmed that this film was not water-soluble. As a result of a water disintegration test using a 15 m thick film, an 11 cm square film collapsed to 1 to 2 cm square in 249 hours, and the number average molecular weight at that time dropped to 16000. As a result of a biodegradability test using a 30 m thick film, the biodegradability was 16.8% after 1 week, 30.3% after 2 weeks, and 45.0% after 3 weeks. It was 58.2% after 4 weeks and 66.5% after 5 weeks.
  • Example 9 except that PBSA diol was used in an amount of 100.0 g (OH; 0.102 mol) instead of PBS6, and imine compound 2 was used in an amount of 15.8 g (OH; 0.102 mol) instead of imine compound 1.
  • 95.3 g of imine-containing PBSA was obtained.
  • the molecular weight of the resulting imine-containing PBSA was measured by GPC. As a result, the number average molecular weight was 30450.
  • iH-NMR spectrum was measured, and it was confirmed from the methine peak of 8.29 ppm imine bond that imine bond was present in imine-containing PBSA. As a result of analyzing the iH-NMR spectrum, it was estimated that it had a chemical structure of the following formula (19).
  • Minus-containing PBSA is hot-pressed at 130 ° C for 5 minutes, thickness is 15 m, 30 m And 100 m films were made.
  • the 100 m thick film had a tensile strength of 27.9 MPa and a tensile modulus of 530 MPa. This film had good appearance and feel, was flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.6%, and it was confirmed that this film was not water-soluble.
  • a water disintegration test using a 15 m thick film an 11 cm square film collapsed to 1 to 2 cm square in 75 hours, and the number average molecular weight at that time dropped to 15240.
  • the biodegradability was 19.1% after 1 week, 33.5% after 2 weeks, and 49.7% after 3 weeks. After 4 weeks, it was 63.9%.
  • a film was produced in the same manner as in Example 9 using the obtained PBS.
  • the 100 / zm thick film had a tensile strength of 65.2 MPa and a tensile modulus of 436 MPa. This film was good in appearance and touch, flexible and strong.
  • a water solubility test was performed using a film having a thickness of 100 ⁇ m. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble. In addition, the force of water disintegration test using a 15 m thick film. As a result of a biodegradability test using a 30 m thick film, the biodegradability was 5.7% after 1 week, 16.9% after 2 weeks, 25.0% after 3 weeks, It was 38.9% after 4 weeks and 50.8% after 5 weeks, which was inferior in biodegradability to imine-containing PBSA.
  • the obtained imine-containing PBS was hot-pressed at 130 ° C for 5 minutes to produce films with thicknesses of 15 m, 30 m, and 100 m.
  • the 100 m thick film had a tensile strength of 29.0 MPa and a tensile modulus of 577 MPa.
  • the film was good in appearance and feel, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.9%, and it was confirmed that this film was not water-soluble.
  • the film collapsed to 2 to 3 cm square in 33 hours with an 11 cm square film force, and the number average molecular weight at that time dropped to 19421.
  • the biodegradability was 14.4% after 1 week, 25.6% after 2 weeks, and 38.7% after 3 weeks. It was 50.8% after 4 weeks and 60.0% after 5 weeks.
  • the obtained imine-containing PBS was hot-pressed at 130 ° C for 5 minutes to produce films with thicknesses of 15 m, 30 m, and 100 m.
  • the 100 m thick film had a tensile strength of 28.7 MPa and a tensile modulus of 598 MPa.
  • the film was good in appearance and feel, flexible and high in strength.
  • a water solubility test was performed using a 100 m thick film. As a result, the weight retention rate of the film was 99.8%, and it was confirmed that this film was not water-soluble.
  • the film collapsed to 2 to 3 cm square in 45 hours of 11 cm square film force, and the number average molecular weight at that time decreased to 19540.
  • the biodegradability was 14.7% after 1 week, 25.9% after 2 weeks, and 39.0% after 3 weeks. It was 51.4% after 4 weeks and 60.0% after 5 weeks.
  • the biodegradable polymer and inorganic additive were mixed under the blending conditions shown in Table 6, and melted and mixed at 130 ° C for 5 minutes using a plastic. A 15 m thick film was prepared in the same manner as 9 and a water disintegration test was conducted. The water collapse time is shown in Table 6.
  • Compounding amount Compounding amount Time (A) / (B)
  • Example 21 Example 9 60 Silica 0.006 100 / 0.01 01 230 Example 22 Example 9 60 Silica 100 / 0.1 200 Example 23 Example 9 60 Silica 0.6 100/1 177 Example 24 Example 9 60 Silica 6 100/10 129 Example 25 Example 9 60 Silica 30 100/50 220 Reference Example 1 Example 9 60 ⁇ 0 100/0 259 Reference Example 2 Example 9 60 Silica 36 100/60 365 Example 26 Example 9 60 Mordenite 0.6 100/1 185 Example 27 Example 13 60 Silica 3 100/5 111 Reference Example 3 Example 13 60 ⁇ o 0 100/0 200 Example 28 Example 14 60 Silica 6 100 / 10 255 Reference Example 4 Example 14 60 ⁇ 0 100/0 520 Example 29 Example 14 60 Mordenite 6 100/10 261 Water disintegration test results The strength of the biodegradable polymer is 100 parts by weight.
  • the water disintegration property of the biodegradable polymer resin composition blended in the range of 01 to 50 parts by weight is improved as compared with the additive-free one.
  • the biodegradable polymer resin composition containing more than 50 parts by weight of the inorganic additive showed no improvement in water disintegration.
  • Biodegradable polymers shown in Table 7 were used.
  • the spinning temperature was 210 ° C and melt spinning was performed using a nozzle with 72 holes.
  • the spun yarn was cooled with a cooling air flow of 20 ° C, and then it was drawn using an air football at a take-up speed of 3500 mZ and collected on a net conveyor to produce a web. Thereafter, the web was partially heat bonded by an embossing roll and a flat roll under the conditions of a roll temperature of 105 ° C, a pressure contact area ratio of 17%, and a linear pressure of 30 kgZcm.
  • a nonwoven fabric of biodegradable polymer having a fineness of 3.0 denier and a basis weight of 50 g / m 2 was obtained by the spunbond method. About the obtained nonwoven fabric, KGSM strong (MDZCD) And a water disintegration test was conducted. The results are shown in Table 7,
  • the nonwoven fabrics (Examples 30 to 35) produced with the biodegradable polymer of the present invention have good appearance and feel, are flexible and have sufficient strength. It also showed excellent water disintegration.
  • the nonwoven fabric (Comparative Example 9-: L3) manufactured with a biodegradable polymer having no imine bond was good in appearance, touch and strength, but did not show water disintegration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Supports For Plants (AREA)
  • Protection Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Polyethers (AREA)

Abstract

 本発明の課題は、水溶性(吸湿性)がなく、成形加工が可能で、優れた水崩壊性および生分解性を有する新規生分解性ポリマー、その製造方法およびその成形物ならびに用途を提供することにある。  本発明の生分解性ポリマーは、分子内に1つ以上のイミン結合を有する生分解性ポリマーであって、該イミン結合が該生分解性ポリマーの主鎖構造の一部を形成することを特徴とする。前記生分解性ポリマーは、生分解性部位と、1つ以上のイミン結合を有するイミン部位とを含有し、かつ、該生分解性部位間を該イミン部位によって連結した形の化学構造を含有することが好ましい。

Description

明 細 書
生分解性ポリマー、その製造方法および成形物ならびに用途
技術分野
[0001] 本発明は、新規な生分解性ポリマーに関するものである。詳しくは、空気中の水分 や少量の水分に対しては崩壊することなく安定して使用することができ、大量の水と 接触することによって、その形状が崩壊する特性を有する水崩壊型生分解性ポリマ 一、その製造方法およびその成形物ならびに用途に関する。
背景技術
[0002] 現在、生理用タンポン、ナプキン、ライナーおよび使い捨ておむつ等の衛生用品の 素材としては、ポリエチレン(以下「PE」と略す。)やポリプロピレン(以下「PP」と略す。 )などの熱可塑性榭脂、脱脂綿および紙が一般的に使用されている。その中でも PE や PPなどの熱可塑性榭脂は、自由度の高い成形加工性を有しているために多用さ れている。
[0003] し力しながら、このような榭脂を素材とする成形物は、水との接触によりその形状が 容易に崩壊しないため、使用後はトイレに流すことができない。これは、これらの成形 物をトイレに流すと、トイレ配管や下水処理システムに閉塞を引き起こするためである 。したがって、使用者は、使用した衛生用品をトイレに備え付けたゴミ箱に捨てたり、 外出時には、外出先や訪問先での後処理の心配や気遣いから持ち帰って捨てると いったような煩わしさを強いられる場合がある。そのため、上記衛生用品、特に生理 用品や使い捨ておむつは、使用後はトイレットペーパーなどと同様にトイレに放流処 理することができれば、より衛生的であり便利でもある。
[0004] このような背景から、衛生用品の素材として、使用時は体液などにより崩壊せず、使 用後はトイレ等に放出して大量の水と接触することによって崩壊する(水崩壊性)材 料の開発が強く望まれている。
一般に、生分解性を有しな!/、高分子素材を自然界へ廃棄もしくは放流する場合、 環境に与える負荷が増大することが指摘されている。したがって、トイレなどへ放流す る材料としては、環境負荷を低減する観点から、生分解性を有する素材が好ましぐ その開発が望まれている。
[0005] さらに、従来力も衛生用品の素材として使用されている紙は、吸水性が高くまた天 然素材であるためにトイレに流すことができるなどの利点を有している力 熱可塑性 榭脂のように自由度の高い成形加工性を有していないために、肌触りなどの触感や 外観が悪い。そのため、触感や外観が重視される生理用品の表面部材としての使用 は不向きである。このことから、衛生用品などの素材には触感や外観を良好にするた めに、成形カ卩ェ性の賦与も望まれている。
[0006] 以上のことから衛生用品などに使用される素材においては、以下の 3つの特性を満 たす素材の創出が求められて 、る。
1.空気中の水分や少量の水分に対しては強度劣化せずに安定であり、大量の水と の接触、特に中性条件下での接触により容易に形状が崩壊する水崩壊性、
2.地球環境に負荷を与えない生分解性、
3.肌触りなどの触感や外観を良好に維持するための成型加工性。
[0007] 以上の問題点を解決する方法として、特許文献 1にポリ(3—ヒドロキシ酪酸)が開示 されている。この例示では、熱可塑性生分解性プラスチックを使用することにより、生 分解性および成形加工性の問題は解決できているが、ポリ(3—ヒドロキシ酪酸)は水 崩壊性を有して 、な 、ので、水崩壊性の問題を解決できて 、な 、。
この問題を改善した例として、特許文献 2に塩基性条件下でポリ(3—ヒドロキシ酪 酸)を水崩壊させる方法が開示されている。この方法は強塩基性条件 (PH12以上) でエステル結合を加水分解させて水崩壊させるものである。しカゝしながら、エステル 結合の加水分解の反応速度が遅いため、充分な水崩壊性が得られておらず、水崩 壊性の問題を充分に解決するに至って!/、な!/、。
[0008] また、塩基性条件での水崩壊性を改良した例として、特許文献 3に弱塩基性条件( pHIO)で水崩壊性を示すカルボキシル基を有するアクリルポリマーが開示されて ヽ る。このカルボキシル基を有するアクリルポリマーは中性条件では耐水性を示し、トイ レなどの水に塩基を添加し弱塩基性にすることにより水崩壊性を示す力 このポリマ 一には生分解性がなく、環境負荷の問題が残つて 、る。
[0009] 次に中性条件で水崩壊する例として、ポリビュルアルコールやポリエチレングリコー ルなどの水溶性榭脂を使用した特許文献 4および特許文献 5などが公開されている 。し力しながら、この例では材料に水溶性榭脂が含まれるため、経時的に吸湿し、使 用前に湿潤して表面がべとべとになったり、カビが発生したりする使用上の問題があ る。
また、特許文献 6には、生分解性プラスチック 20〜80重量%と水溶性熱可塑性榭 脂 80〜20%とを混合して得られる生分解性榭脂組成物が開示されている。この生 分解性榭脂組成物は、水溶性熱可塑性榭脂が水に溶解あるいは膨潤することにより 、生分解性榭脂組成物の成形物の形状が破断、場合によっては崩壊するものである 力 使用している生分解性プラスチック自身に水崩壊性がないため、十分な水崩壊 性を得ることができていない。また、水溶性熱可塑性榭脂を使用しているため、経時 的に吸湿し、使用前に湿潤して表面がべとべとになったり、カビが発生したりする使 用上の問題も含んでいる。
[0010] 上述した以外に水崩壊性を向上させる方策として、化学的に加水分解し易い、イミ ン結合ゃァセタール結合などの化学結合を利用する方法が考えられるが、これまで に前述した 3つの要求特性を満足する素材は見出されて 、な 、。
例えば、ィミン結合 (ァゾメチン結合とも呼ぶ)を有するポリマーとしては、高い耐熱 性を有し、酸性水溶液中でのみ容易な分解性を示すポリフエニルァゾメチンや中性 水溶液中では全く分解性を示さな 、環状イミン構造を有するポリマー (特許文献 7)な どが公知である。
[0011] さらに、特許文献 8、非特許文献 1および非特許文献 2には、種々のァゾメチンポリ マーが開示されている。これらの文献は、水に対する分解性については特に言及し ていないが、開示されているァゾメチンポリマーは全て生分解性を有していない。ま た、ァセタール結合を有するポリマーとしては、代表的なェンジニヤリングプラステイツ クの一つであるポリオキシメチレンを挙げることができる。このポリマーは、これを構成 するァセタール結合という不安定な化学構造力 は予想できない、優れた耐熱性 -耐 水性 ·耐久性を有し、プラスチック製水道管などの素材として用いられている。
[0012] このように化学的に加水分解し易!、ィ匕学結合で構成させて 、る高分子であっても、 その水崩壊性を予想することや論ずることは極めて困難である。また、通常の使用で は崩壊することなぐ大量の水との接触により崩壊する水崩壊性と生分解性をあわせ もつ実用的材料は知られて ヽな ヽ。
特許文献 1:特開昭 63— 302845号公報
特許文献 2:欧州特許第 0142950号
特許文献 3:特公平 7— 57230号公報
特許文献 4:特開平 5— 29211号公報
特許文献 5:特開平 6 - 134910号公報
特許文献 6:特開平 6 - 299077号公報
特許文献 7:特開 2003 - 73470号公報
特許文献 8 :WO2004Z003044号
非特許文献 l :J.MACROMOL.SCI.-CHEM., Al(7), 1161-1249(1967)
非特許文献 2 : CHEM. COMMUN., 1522-1524(2005)
発明の開示
発明が解決しょうとする課題
[0013] 生理衛生用品などに用いられる材料には、以下の 4つの課題が挙げられる。
1.保管時に空気中の水分を吸湿してべトツキなどの原因となる水溶性 (吸湿性)が ないこと。
2.使用時は体液などにより崩壊することなく通常と全く同様に使用することができ、 使用後はトイレなどに放出して大量の水と接触した後に、その形状が崩壊する水崩 壊性を有すること。
3.トイレなどに放出処理した後、微生物などにより分解されて自然環境への影響を 最小限にできる生分解性を有すること。
4.肌触りなど触感や外観を良好に維持できる成形加工性を有すること。
[0014] 従来技術では、生理衛生用品等の材料として求められている上記 4つの課題を満 足するものがな力つた。
そこで、本発明の課題は、水溶性 (吸湿性)がなぐ成形加工が可能で、優れた水 崩壊性および生分解性を有する新規生分解性ポリマー、その製造方法およびその 成形物ならびに用途を提供することにある。 課題を解決するための手段
[0015] 本発明者らは、上記課題を達成するために鋭意検討した。その結果、特定のィミン 結合を有するィミン部位と特定の生分解性部位とを併せ持つ高分子材料が、通常の 状態ではべトツキなどの水溶性 (吸湿性)や形状崩壊性がなぐ大量の水と接触して 初めてその形状が容易に崩壊し、また酸性水と接触した場合にはその形状がより速 く崩壊することを見出した。さらに、驚くべきことに生分解性も向上することを見出し、 本発明の完成に至った。
[0016] すなわち、本発明は下記 [1]〜[19]を提供するものである。
[1]分子内に 1つ以上のィミン結合を有する生分解性ポリマーであって、該ィミン結 合が該生分解性ポリマーの主鎖構造の一部を形成することを特徴とする生分解性ポ リマー。
[2]前記生分解性ポリマーが、生分解性部位と、 1つ以上のィミン結合を有するイミ ン部位とを含有し、かつ、該生分解性部位間を該ィミン部位によって連結した形の化 学構造を含有することを特徴とする [1]に記載の生分解性ポリマー。
[0017] [3]前記生分解性部位力 ポリエステル類、オリゴエステル類、ポリ(アミド-エステル )類、オリゴ (アミド-エステル)類またはポリエーテル類であることを特徴とする [2]に 記載の生分解性ポリマー。
[4]前記イミン部位が下記一般式(1)で表されるィミン部位であることを特徴とする [ 2]に記載の生分解性ポリマー。
[0018] [化 1]
Figure imgf000006_0001
[0019] 式中、 R〜Rは、それぞれ独立に炭素数 1〜20の炭化水素基を表し、 Yおよび Y
1 3 1 1 は、それぞれ独立に— CR = N—または— N = CR—を表し、 Rは水素原子または炭 素数 1〜20の脂肪族炭化水素基を表し、 kは 0〜: LOOOの整数を表す。
[5]前記生分解性部位と前記イミン部位とを連結させる化学結合が、エステル結合 、アミド結合、ウレタン結合、ゥレア結合、カーボネート結合または下記一般式(2)で 表される結合であることを特徴とする [2]に記載の生分解性ポリマー。
[0020] [化 2]
Λ― R— Χ2—— ■ · · ( 2 )
[0021] 式中、 R'は炭素数 1〜20の 2価の炭化水素基を表し、 Xおよび Xは、それぞれ独
1 2
立にエステル結合、アミド結合、ウレタン結合、ゥレア結合またはカーボネート結合を 表す。
[6]前記生分解性部位が、ポリエステル類、オリゴエステル類、ポリ(アミド-エステル )類、オリゴ (アミド-エステル)類またはポリエーテル類であり、前記イミン部位力 [4] に記載の一般式(1)で表されるィミン部位であり、前記生分解性部位と前記イミン部 位とを連結させる化学結合が、エステル結合、アミド結合、ウレタン結合、ゥレア結合 、カーボネート結合または [5]に記載の一般式(2)で表される結合であることを特徴と する [2]に記載の生分解性ポリマー。
[0022] [7]生分解性部位を含む化合物と、 1個以上のィミン結合を有するィミン部位を含 む化合物と、縮合剤とを反応させることを特徴とする生分解性ポリマーの製造方法
[8]前記縮合剤が、ヨウ化 2 クロ口 1—メチルピリジ-ゥム、ヨウ化 2 ブロモ—1 メチルピリジ-ゥム、 2—クロロー 1 ェチルピリジ-ゥムテトラフルォロボレートまた は 2—ブロモ 1—ェチルピリジ-ゥムテトラフルォロボレートであることを特徴とする [ 7]に記載の生分解性ポリマーの製造方法。
[0023] [9]生分解性部位を含む化合物と、 1個以上のィミン結合を有するィミン部位を含 む化合物と、連結剤とを反応させることを特徴とする生分解性ポリマーの製造方法。
[10]前記連結剤がジイソシァネート類または炭酸エステル類であることを特徴とす る [9]に記載の生分解性ポリマーの製造方法。
[ 11] [ 1]〜 [6]の 、ずれかに記載の生分解性ポリマーを含有してなることを特徴と する生分解性ポリマーの成形物。
[0024] [12]前記成形物が無機添加剤を含有することを特徴とする [11]に記載の生分解 性ポリマーの成形物。
[13]前記成形物が、シート、フィルム、容器または不織布であることを特徴とする [1 1]に記載の生分解性ポリマーの成形物。
[ 14] [ 1]〜 [6]の ヽずれかに記載の生分解性ポリマーを含有することを特徴とする 衛生用品。
[0025] [15]前記衛生用品が、生理用ナプキン、パンティーライナー、使い捨ておむつま たは生理用タンポンアプリケータカも選ばれる少なくとも 1種であることを特徴とする [ 14]に記載の衛生用品。
[ 16] [ 1]〜 [6]の ヽずれかに記載の生分解性ポリマーを含有することを特徴とする 農園芸資材。
[0026] [17]前記農園芸資材が、マルチフィルム、育苗ポット、園芸テープ、果実栽培袋、 杭、薫蒸シートまたはビニールノヽウス用フィルム力も選ばれる少なくとも 1種であること を特徴とする [16]に記載の農園芸資材。
[ 18] [ 1]〜 [6]の ヽずれかに記載の生分解性ポリマーを含有することを特徴とする 土木建築資材。
[0027] [19]前記土木建築資材が、植生ネット、植生ポット、立体網状体、土木繊維、杭ま たは断熱材力 選ばれる少なくとも 1種であることを特徴とする [18]に記載の土木建 築資材。
発明の効果
[0028] 本発明により提供される新規な生分解性ポリマーは、優れた水崩壊性および生分 解性を示す。また、本発明の生分解性ポリマーは水溶性(吸湿性)を有さないので、 その成形物は空気中の水分や体液などにより表面状態が悪化したり、その形状が崩 壊することがない。そのため、本発明の生分解性ポリマー力 得られる成形物は、保 管時や使用時には全く問題がなぐ使用後はトイレや台所の流しなどに放流し、大量 の水と接触して初めてその形状が崩壊する。し力も、この水崩壊性は中性条件下 (p H7程度)においても発揮される。そして、放流処理後は下水処理工程や自然界で微 生物などにより生分解され、自然環境を汚染することがない。また、本発明の生分解 性ポリマーは優れた成形加工性を有するので、外観や肌触りなどの触感が良好な成 形物を得ることができる。
図面の簡単な説明 [0029] [図 1]図 1は、実施例 9および実施例 10で行った、生分解性ポリマーカゝらなるフィルム の水中浸漬後の引張強度経時変化を測定した結果を示すグラフである。
発明を実施するための最良の形態
[0030] 本発明における水崩壊性とは、大量の水と接触した場合、その形態が崩壊するも のをいう。さらに好ましくは、 JIS P 4501のトイレットペーパーのほぐれやすさ試験に 準じて、蒸留水(pH7程度)中で 11cm角のフィルムが 520時間以下で 4cm角以下 になるものをいう。また、本発明における生分解性とは、ポリマー分子が下水処理ェ 程や自然界などで微生物などにより低分子化合物に分解され、さらに炭酸ガスや水 などに分解されるものをいう。さらに好ましくは、 IS014855に準じて、フィルムの生分 解性試験で 60%以上の生分解度を有するものである。
[0031] [生分解性ポリマー]
本発明に係る生分解性ポリマーは、分子内に 1つ以上のィミン結合を有する生分解 性ポリマーであって、該ィミン結合が該生分解性ポリマーの主鎖構造の一部を形成 する。好ましくは、少なくとも生分解性を有する生分解性部位と、 1つ以上のイミン結 合を有するィミン部位とを含有する。より好ましくは、前記生分解性部位間を前記イミ ン部位によって連結した形の化学構造を含有する。前記生分解性部位は、生分解性 を有する低分子化合物、オリゴマーまたはポリマーからなり、前記イミン部位は、分子 内に 1個以上のィミン結合を有する低分子化合物、オリゴマーまたはポリマー力 な る。
[0032] <生分解性部位 >
上記生分解性部位は、本発明の目的を阻害せず、かつ生分解性を有する分子か ら導かれるものであればいかなる化学構造を有していてもよぐ低分子化合物、オリゴ マーまたはポリマーの 、ずれでもよ 、。このような生分解性部位を構成する分子とし ては、例えば、低分子化合物、ポリエステル類、オリゴエステル類、ポリアミド類、オリ ゴアミド類、ポリ(アミド-エステル)類、オリゴ (アミド-エステル)類、ポリペプチド類、ォ リゴペプチド類、ポリエーテル類またはオリゴエーテル類などが挙げられる。これらは 、本発明の生分解性ポリマーの生分解性部位として、 1種単独で用いても、 2種以上 を併用してもよい。 [0033] 上記生分解性部位を構成する低分子化合物としては、炭素数 1〜100、好ましくは 炭素数 2〜50であり、分子内に水酸基、アミノ基またはカルボキシル基などの官能基 を 2つ以上有する化合物であり、たとえば、 2価の脂肪族アルコール類、二塩基酸類 、ヒドロキシカルボン酸類、 2価の脂肪族ァミン類、アミノ酸類である。このような生分 解性部位を構成する低分子化合物としては、たとえば、
エチレングリコーノレ、ジエチレングリコール、トリエチレングリコール、テトラエチレング リコーノレ、プロピレングリコール、ジプロピレングリコール、 1, 3 プロパンジオール、 1 , 3 ブタンジオール、 1, 4 ブタンジオール、 3—メチルー 1, 5 ペンタンジオール 、 1, 6 へキサンジオール、 1, 9ーノナンジオール、ネオペンチルグリコールおよび 1 , 4 シクロへキサンジオールなどの 2価の脂肪族アルコール類;
コハク酸、マロン酸、グノレタノレ酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、 セバシン酸、ゥンデカン二酸、ドデカン二酸およびテレフタル酸などの二塩基酸類; グリコール酸、乳酸、 2—ヒドロキシ酪酸、 2—ヒドロキシ吉草酸、 2—ヒドロキシカプロ ン酸、 2—ヒドロキシカプリン酸、リンゴ酸およびクェン酸などのヒドロキシカルボン酸 類;
エチレンジァミン、 1, 3 ジァミノプロパン、 1, 2 ジァミノプロパン、 1, 4ージアミノブ タン、 1, 6 へキサメチレンジァミン、 2, 2 '—(エチレンジォキシ)ビス(ェチルァミン) 、 3, 3, 一イミノビス(プロピルァミン)および N—メチル 3, 3, 一イミノビス(プロピル ァミン)などの 2価の脂肪族ァミン類;
ノ リン、ロイシン、イソロイシン、メチォニン、フエ-ルァラニン、ァスパラギン酸、グルタ ミン酸およびリジンなどのアミノ酸類などが挙げられる。
[0034] 上記生分解性部位を構成するポリエステル類またはオリゴエステル類としては、 2価 の脂肪族アルコール類と二塩基酸類との脱水反応で製造し得る形の化学構造を有 するポリエステル類またはオリゴエステル類が挙げられる。
前記 2価の脂肪族アルコール類としては、例えば、エチレングリコール、ジエチレン グリコール、トリエチレングリコール、テトラエチレンダリコール、オリゴエチレングリコー ル、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、オリゴプ ロピレングリコール、ポリプロピレングリコール、 1, 3 プロパンジオール、 1, 3 ブタ ンジオール、 1, 4 ブタンジオール、 3—メチルー 1, 5 ペンタンジオール、 1, 6— へキサンジオール、 1, 9ーノナンジオール、ネオペンチルグリコール、ポリテトラメチ レンダリコールおよび 1, 4ーシクロへキサンジオールなどが挙げられる。前記二塩基 酸類としては、例えば、コハク酸、シユウ酸、マロン酸、ダルタル酸、アジピン酸、ピメリ ン酸、スベリン酸、ァゼライン酸、セバシン酸、ゥンデカン二酸、ドデカン二酸またはテ レフタル酸などが挙げられる。これらの構成モノマーは、 1種単独で用いても、 2種以 上を組み合わせて用いてもょ 、。
[0035] また、上記ポリエステル類またはオリゴエステル類としては、ヒドロキシカルボン酸類 の脱水反応により製造され得る形の化学構造を有するポリエステル類またはオリゴェ ステル類や、ラタトン類の開環重合反応により製造され得る形の化学構造を有するポ リエステル類またはオリゴエステル類も挙げられる。
前記ヒドロキシカルボン酸類としては、例えば、グリコール酸、乳酸、 2—ヒドロキシ 酪酸、 2—ヒドロキシ吉草酸、 2—ヒドロキシカプロン酸、 2—ヒドロキシカプリン酸、リン ゴ酸およびクェン酸などが挙げられる。前記ラタトン類としては、例えば、ベンジルマ ロラクトナート、マライトべンジルエステル、 3—〔(ベンジルォキシカルボ-ル)メチル〕 —1, 4 ジォキサン 2, 5 ジオン、 13 プロピオラタトン、 δ バレロラタトン、 ε 一力プロラタトン、 Ν べンジルォキシカルボ二ルー Lーセリン 13—ラタトン、 13ーブ チロラタトン、ピバロラタトン、 /3一べンジルマロラクトナート、 γ ブチロラタトンおよび Ύ—バレロラタトンなどが挙げられる。これらの構成モノマーは、 1種単独で用いても、 2種以上を組み合わせて用いてもょ 、。
[0036] さら〖こ、上記ポリエステル類またはオリゴエステル類としては、上記二塩基酸類、上 記 2価の脂肪族アルコール類および上記ヒドロキシカルボン酸類をそれぞれ 1種類以 上用いた脱水反応により製造され得る形の化学構造を有するポリエステル類または オリゴエステル類も挙げられる。
上記生分解性部位を構成するポリアミド類またはオリゴアミド類としては、 2価の脂肪 族ァミン類と二塩基酸類との脱水反応により製造され得る形の化学構造を有するポリ アミド類またはオリゴアミド類が挙げられる。
[0037] 前記 2価の脂肪族ァミン類としては、例えば、エチレンジァミン、 1, 3 ジァミノプロ パン、 1, 2 ジァミノプロパン、 1, 4ージアミノブタン、 1, 6 へキサメチレンジァミン 、 2, 2,一(エチレンジォキシ)ビス(ェチルァミン)、 3, 3,一イミノビス(プロピルァミン) および N—メチルー 3, 3,ーィミノビス(プロピルァミン)などが挙げられる。前記二塩 基酸類としては、例えば、コハク酸、シユウ酸、マロン酸、ダルタル酸、アジピン酸、ピ メリン酸、スベリン酸、ァゼライン酸、セバシン酸、ゥンデカン二酸、ドデカン二酸およ びテレフタル酸などが挙げられる。これらの構成モノマーは、 1種単独で用いても、 2 種以上を組み合わせて用いてもょ 、。
[0038] また、上記ポリアミド類またはオリゴアミド類としては、例えば、ピロリドンまたは ε 力プロラタタムなどのラタタム類の開環重合反応により製造される形の化学構造を有 するポリアミド類またはオリゴアミド類も挙げられる。これらの構成モノマーは、 1種単 独で用いても、 2種以上を組み合わせて用いてもょ 、。
上記生分解性部位を構成するポリ(アミド-エステル)類またはオリゴ (アミド-エステ ル)類としては、二塩基酸類と 2価の脂肪族ァミン類と 2価の脂肪族アルコール類との 脱水反応により製造される形の化学構造を有するポリ(アミド-エステル)類またはオリ ゴ (アミド-エステル)類が挙げられる。
[0039] 前記二塩基酸類としては、例えば、コハク酸、シユウ酸、マロン酸、ダルタル酸、アジ ピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸、ゥンデカン二酸、ドデカン 二酸およびテレフタル酸などが挙げられる。前記 2価の脂肪族ァミン類としては、例え ば、エチレンジァミン、 1, 3 ジァミノプロパン、 1, 2 ジァミノプロパン、 1, 4ージァ ミノブタン、 1, 6 へキサメチレンジァミン、 2, 2 '—(エチレンジォキシ)ビス(ェチル ァミン)、 3, 3,一イミノビス(プロピルァミン)および Ν—メチル 3, 3,一イミノビス(プ 口ピルァミン)などが挙げられる。前記 2価の脂肪族アルコール類としては、例えば、 エチレングリコーノレ、ジエチレングリコール、トリエチレングリコール、テトラエチレング リコーノレ、オリゴエチレングリコール、ポリエチレングリコール、プロピレングリコール、 ジプロピレングリコール、オリゴプロピレングリコール、ポリプロピレングリコール、 1, 3 プロパンジオール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 3—メチルー 1 , 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 9ーノナンジオール、ネオペ ンチルダリコール、ポリテトラメチレングリコールまたは 1, 4ーシクロへキサンジオール などが挙げられる。これらの構成モノマーは、 1種単独で用いても、 2種以上を組み合 わせて用いてもよい。
[0040] また、上記ポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類としては、ラクタ ム類とラ外ン類との開環重合反応により製造され得る形の化学構造を有するポリ (ァ ミド-エステル)類またはオリゴ (アミド-エステル)類も挙げられる。
前記ラタタム類としては、例えば、ピロリドンおよび ε一力プロラタタムなどが挙げら れる。前記ラタトン類としては、例えば、ベンジルマロラクトナート、マライトベンジルェ ステル、 3 〔(ベンジルォキシカルボ-ル)メチル〕 1, 4 ジォキサン 2, 5 ジォ ン、 /3 プロピオラタトン、 δ バレロラタトン、 ε 一力プロラタトン、 Ν べンジノレォキ シカノレポニノレー Lーセリン 13—ラタトン、 13 ブチロラタトン、ピバロラタトン、 13一べ ンジルマロラクトナート、 γ ブチロラタトンおよび γ バレロラタトンなどが挙げられ る。これらの構成モノマーは、 1種単独で用いても、 2種以上を組み合わせて用いても よい。
[0041] さらに、上記ポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類としては、モ ルホリン 2, 5 ジオンなどのデプシペプチド類の開環重合反応により製造される形 の化学構造を有するポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類も挙げ られる。これらの構成モノマーは、 1種単独で用いても、 2種以上を組み合わせて用 いてもよい。
[0042] 上記生分解性部位を構成するポリペプチド類またはオリゴペプチド類としては、例 えば、了ラニン、ノ リン、ロイシン、イソロイシン、メチォニン、フエ-ルァラニン、グリシ ン、ァスパラギン酸、グルタミン酸およびリジンなどのアミノ酸類の脱水反応により製造 される形の化学構造を有するポリペプチド類またはオリゴペプチド類が挙げられるこ れらの構成モノマーは、 1種単独で用いても、 2種以上を組み合わせて用いてもよい
[0043] 上記生分解性部位を構成するポリエーテル類またはオリゴエーテル類としては、例 えばポリエチレングリコールおよびポリプロピレングリコールなどのポリエーテル類、ま たは、オリゴエチレングリコールおよびオリゴプロピレングリコールなどのオリゴエーテ ル類が挙げられる。 上記生分解性部位は、生分解性と成形物などの機械物性とを良好にする観点から 、好ましくは、ポリエステル類、オリゴエステル類、ポリ(アミド-エステル)類、オリゴ (ァ ミド-エステル)類またはポリエーテル類であり、より好ましくは、ポリエステル類、オリゴ エステル類、ポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類であり、さら〖こ 好ましくは、ポリエステル類またはオリゴエステル類である。特に好ましくは、 1種以上 の炭素数 1〜48の 2価のアルコール類と 1種以上の炭素数 2〜10の二塩基酸類とか らなるポリエステル類もしくはオリゴエステル類、または、 1種以上の炭素数 2〜 10のヒ ドロキシカルボン酸類カゝらなるポリエステル類もしくはオリゴエステル類である。
[0044] 上記生分解性部位の分子量は、水崩壊性および生分解性を良好にするために、 好ましくは 100〜10万、より好ましくは 400〜3万、さらに好ましくは 1000〜1万の範 囲である。
<ィミン部位 >
本発明の生分解性ポリマーを構成するィミン部位は、本発明の目的を阻害せず、 かつ 1つ以上のィミン結合を有する分子であればいかなる化学構造を有していてもよ ぐ低分子化合物、オリゴマーまたはポリマーのいずれでもよい。このようなィミン部位 を構成する分子としては、その構造を特に限定するわけではないが、例えば、下記一 般式(1)または一般式( )で表される有機基が挙げられる。これらを、本発明の生 分解性ポリマーのィミン部位として、 1種単独で用いても、 2種以上を併用してもよい。
[0045] [化 3]
Figure imgf000014_0001
上記式(1)および(1 ' )中、 R 〜Rは、それぞれ独立に炭素数 1〜20の炭化水素
1 8
基を表し、 Y 〜Yは、それぞれ独立に— CR二 Ν—または— Ν二 CR—を表し、 Rは
1 6
水素原子または炭素数 1〜20の脂肪族炭化水素基を表し、 kは 0〜: LOOOの整数を 表す。上記式( 1 )または( 1 ' )のうち、式( 1 )が好まし!/、。
上記式(1)および(1 ' )中の R〜R
1 8は、ィミン部位を構成する基を表しており、本発 明の目的を阻害しない限りどのような化学構造の基を用いてもよい。 R〜Rが表す
1 8 炭素数 1〜20の炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基および芳 香族炭化水素基が含まれ、より具体的には、同種または異種の、炭素数 1〜20の脂 肪族炭化水素基、 1つ以上のエステル結合を有する炭素数 1〜20の脂肪族炭化水 素基、 1つ以上のエーテル結合を有する炭素数 1〜20の脂肪族炭化水素基、 1っ以 上のアミド結合を有する炭素数 1〜20の脂肪族炭化水素基、炭素数 3〜20の脂環 式炭化水素基、炭素数 6〜20の芳香族炭化水素基、または芳香族炭化水素基を有 する炭素数 7〜20の脂肪族炭化水素基などが挙げられる。さらに、本発明の目的を 阻害しなければ、これらの有機基が!/、かなる置換基を有して 、てもよ!/、。
[0047] これらの中では、炭素数 1〜20の脂肪族炭化水素基、 1つ以上のエステル結合を 有する炭素数 1〜20の脂肪族炭化水素基、 1つ以上のエーテル結合を有する炭素 数 1〜20の脂肪族炭化水素基、炭素数 3〜20の脂環式炭化水素基および炭素数 6 〜20の芳香族炭化水素基が好ましぐ炭素数 1〜20の脂肪族炭化水素基、 1っ以 上のエーテル結合を有する炭素数 1〜20の脂肪族炭化水素基および炭素数 6〜20 の芳香族炭化水素基がより好ましい。
[0048] 上記式(1)および(1 ' )中の Y〜Yは、それぞれ独立に CR=N—または Ν =
1 6
CR—を表し、これらは同一でも異なっていてもよい。上記式(1)では、 Υおよび Υが
1 2 同時に N = CR—または CR=N であること、 Yがー CR=N—かつ Yがー N
1 2
=CR—であること、あるいは、 Yがー N = CR かつ Yがー CR=N であることが
1 2
好ましい。上記式(1 ' )では、 Yおよび Yが同時に N = CR—かつ Yおよび Yが同
3 5 4 6 時に CR=N であること、または Yおよび Yが同時に CR=N—かつ Yおよび
3 5 4
Yが同時に N = CR—であることが好ましい。
6
[0049] 上記 Y〜Yの Rはそれぞれ同一でも異なっていてもよぐ水素原子または炭素数 1
1 6
〜20の脂肪族炭化水素基を表す。生分解性ポリマーの水崩壊性の観点から、好ま しくは水素原子または炭素数 1〜15の脂肪族炭化水素基であり、さらに好ましくは水 素原子または炭素数 1〜10の脂肪族炭化水素基であり、特に好ましくは水素原子ま たは炭素数 1〜5の脂肪族炭化水素基である。
[0050] 上記式(1)および(1 ' )中の kは 0〜1000の整数を表し、 0〜100の範囲が好ましく
、 0〜50の範囲がより好ましぐ 0〜20の範囲がさらに好ましい。
上記イミン部位の分子量を特に限定するわけではな 、が、優れた水崩壊性および 生分解性を発揮するためには、 5万以下が好ましぐ 1万以下がより好ましぐ 2000以 下がさらに好ましい。
[0051] <連結部位 >
上記生分解性部位と上記イミン部位とを連結させる連結部位は、本発明の目的を 阻害しなければどのような化学構造であっても構わな 、。このような連結を可能とする 化学結合としては、例えば、エステル結合、アミド結合、ウレタン結合、ゥレア結合、力 ーボネート結合および下記一般式 (2)で表される結合 (以下「結合 (2)」とも 、う。 )な どが挙げられる。
[0052] [化 4]
X1 — rv -人 2—— . . . ( 2 )
[0053] 式(2)中、 R'は炭素数 1〜20の 2価の炭化水素基を表し、 Xおよび Xは、それぞ
1 2 れ独立にエステル結合、アミド結合、ウレタン結合、ゥレア結合またはカーボネート結 合を表す。
R'が表す炭素数 1〜20の 2価の炭化水素基には、脂肪族炭化水素基、脂環式炭 化水素基および芳香族炭化水素基が含まれ、より具体的には、炭素数 1〜20の 2価 の脂肪族炭化水素基、 1つ以上のエーテル結合を有する炭素数 1〜20の 2価の脂 肪族炭化水素基、 1つ以上のエステル結合を有する炭素数 1〜20の 2価の脂肪族炭 化水素基、 1つ以上のアミド結合を有する炭素数 1〜20の 2価の脂肪族炭化水素基 、炭素数 3〜20の 2価の脂環式炭化水素基、炭素数 6〜20の 2価の芳香族炭化水 素基、または芳香族炭化水素基を有する炭素数 7〜20の 2価の脂肪族炭化水素基 などが挙げられる。
[0054] これらの中では、生分解性および水崩壊性を良好にする観点から、好ましくは炭素 数 1〜20の 2価の脂肪族炭化水素基、 1つ以上のエーテル結合を有する炭素数 1〜 20の 2価の脂肪族炭化水素基、 1つ以上のエステル結合を有する炭素数 1〜20の 2 価の脂肪族炭化水素基または炭素数 6〜20の 2価の芳香族炭化水素基であり、より 好ましくは炭素数 1〜20の 2価の脂肪族炭化水素基、 1つ以上のエーテル結合を有 する炭素数 1〜20の 2価の脂肪族炭化水素基または 1つ以上のエステル結合を有す る炭素数 1〜20の 2価の脂肪族炭化水素基であり、さらに好ましくは炭素数 1〜20の 2価の脂肪族炭化水素基または 1つ以上のエーテル結合を有する炭素数 1〜20の 2 価の脂肪族炭化水素基である。
[0055] Xおよび Xは、エステル結合、アミド結合、ウレタン結合、ゥレア結合またはカーボ
1 2
ネート結合を表し、それぞれ同一でも異なっていてもよい。これらの中では、生分解 性および水崩壊性を良好にする観点から、好ましくはエステル結合、ウレタン結合、 ゥレア結合またはカーボネート結合であり、より好ましくはエステル結合、ウレタン結合 、またはカーボネート結合であり、さらに好ましくはエステル結合またはウレタン結合 である。
[0056] 上記連結部位として使用される化学結合は、生分解性部位とィミン部位とを連結さ せるために、 1種単独で用いられても、 2種以上を組み合わせて用いられてもよい。生 分解性および水崩壊性を良好にする観点から、連結部位として使用される化学結合 としては、好ましくはエステル結合、ウレタン結合、カーボネート結合または結合(2) であり、より好ましくはエステル結合、ウレタン結合または結合(2)であり、さらに好まし くはエステル結合または結合(2)である。
[0057] 以上説明したように、本発明の生分解性ポリマーは、生分解性部位とィミン部位とを 連結させた形の化学構造を有し、生分解性部位とィミン部位との比は、好ましくは 1 : 9〜9 : 1の範囲であり、より好ましくは 1 : 7〜7 : 1の範囲であり、さらに好ましくは 1 : 5 〜5 : 1の範囲であり、特に好ましくは 1 : 3〜3: 1の範囲である。
本発明の好ましい生分解性ポリマーは、生分解性部位がポリエステル類、オリゴェ ステル類、ポリ(アミド-エステル)類、オリゴ (アミド-エステル)類またはポリエーテル類 であり、ィミン部位が上記式(1)で表されるィミン部位であり、生分解性部位とイミン部 位とを連結させる化学結合が、エステル結合、アミド結合、ウレタン結合、ゥレア結合 、カーボネート結合または結合(2)である。 [0058] 本発明のより好ま U、生分解性ポリマーは、生分解性部位がポリエステル類、オリゴ エステル類、ポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類であり、ィミン 部位が上記式(1)で表されるィミン部位であり、生分解性部位とィミン部位とを連結さ せる化学結合が、エステル結合、アミド結合、ウレタン結合、ゥレア結合、カーボネー ト結合または結合(2)である。
[0059] 本発明の特に好ま 、生分解性ポリマーは、生分解性部位がポリエステル類、オリ ゴエステル類、ポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類であり、ィミン 部位が、上記式(1)中の R〜Rが炭素数 1〜20の脂肪族炭化水素基、 1つ以上の
1 3
エステル結合を有する炭素数 1〜20の脂肪族炭化水素基、 1つ以上のエーテル結 合を有する炭素数 1〜20の脂肪族炭化水素基、炭素数 3〜20の脂環式炭化水素基 または炭素数 6〜20の芳香族炭化水素基であり、 Yおよび Yがそれぞれ独立に
1 2
N = CR—または CR= N であるィミン部位であり、生分解性部位とィミン部位とを 連結させる化学結合が、エステル結合、アミド結合、ウレタン結合、カーボネート結合 または結合(2)である。
[0060] 本発明の最も好ま 、生分解性ポリマーは、生分解性部位がポリエステル類、オリ ゴエステル類、ポリ(アミド-エステル)類またはオリゴ (アミド-エステル)類であり、ィミン 部位が、上記式(1)中の R〜Rが炭素数 1〜20の脂肪族炭化水素基、 1つ以上の
1 3
エステル結合を有する炭素数 1〜20の脂肪族炭化水素基、 1つ以上のエーテル結 合を有する炭素数 1〜20の脂肪族炭化水素基または炭素数 6〜20の芳香族炭化 水素基であり、 Yおよび Yがそれぞれ独立に N = CR または CR=N であり
1 2
、 Rが水素原子または炭素数 1〜5の脂肪族炭化水素基であるイミン部位であり、生 分解性部位とィミン部位とを連結させる化学結合力 エステル結合、ウレタン結合、力 ーボネート結合または結合(2)である。
[0061] 本発明の生分解性ポリマーの分子量は特に限定されないが、成形物などとしての 強度を考慮すると、好ましくは 1万〜 100万、より好ましくは 2万〜 50万の範囲である 本発明の生分解性ポリマーのガラス転移温度 (Tg)は特に限定されな ヽが、 - 120 〜80°C、好ましくは— 80〜70°C、より好ましくは— 50〜60°Cの範囲である。生分解 性ポリマーの Tgが前記範囲にあることにより、生分解性ポリマーは優れた生分解性 および水崩壊性を示す。
[0062] [生分解性ポリマーの製造方法]
次に、本発明の生分解性ポリマーの製造方法について、以下に詳細に説明する。 ここで述べる生分解性部位およびイミン部位は、本発明の生分解性ポリマーで定義 した生分解性部位およびイミン部位と同一である。
本発明の生分解性ポリマーの製造方法は、生分解性部位とィミン部位とを連結させ る化学結合の種類によって異なり一様ではな 、。生分解性部位とィミン部位とを連結 させるためには、各部位を含む化合物が両者間の連結を可能とする特定の官能基を 2個以上有する必要があり、 2個が好ましい。また、このような官能基は、生分解性部 位およびイミン部位を構成する分子の分子鎖の両末端に位置することが好ま 、。前 記官能基は、両部位間を如何なる化学結合で連結させるかによつて定まる。
[0063] 本発明における生分解性部位とィミン部位とを連結させる化学結合としては、本発 明の目的を阻害しなければどのような化学構造であっても構わないが、例えば、エス テル結合、アミド結合、ウレタン結合、ゥレア結合、カーボネート結合または上記結合 (2)などが挙げられる。
このような化学結合を可能にするために、生分解性部位を含む化合物およびイミン 部位を含む化合物が保有しなければならない官能基としては、カルボキシル基、水 酸基またはァミノ基が挙げられる。なお、これらの官能基の組み合わせは多様である
[0064] <官能基の組み合わせの具体例 >
具体的に結合の種類による前記官能基の組み合わせを説明する。生分解性部位 とィミン部位とをエステル結合で連結させた生分解性ポリマーを製造する場合、両部 位に使用される官能基はカルボキシル基と水酸基の 2種である。そして、その組み合 わせとしては、 2個のカルボキシル基を有する生分解性部位を含む化合物と 2個の水 酸基を有するィミン部位を含む化合物との組み合わせ、 2個の水酸基を有する生分 解性部位を含む化合物と 2個のカルボキシル基を有するィミン部位を含む化合物と の組み合わせ、または各々 1個のカルボキシル基と 1個の水酸基を有する生分解性 部位を含む化合物とィミン部位を含む化合物との組み合わせが挙げられる。さらに、
Xおよび Xがエステル結合である結合(2)で連結させた生分解性ポリマーを製造す
1 2
る場合、該結合を導く化合物として、下記一般式 (2'— 1)で表される化合物 (以下「 化合物(2'—1)」ともいう。)を新たに使用する。従って、新たな組み合わせが生じる 。その組み合わせを表 1に示す。
[0065] [化 5]
Zl R ― 2 . . . ( 2 ' _ 1 }
[0066] 式(2'— 1)中、 R'は、上記式(2)中の R'と同義であり、 Zおよび Zは、互いに独立
1 2
にカルボキシル基または水酸基を表す。
[0067] [表 1]
生分解性部位を含む化合物 ィミン部位を含む化合物 化合物 (2'— 1 ) カルボキシル基 2個を有する 水酸基 2個を有する Ζ1 :力ルポキシル基
1
生分解性部位を含む化合物 ィミン部位を含む化合物 Ζ2:水酸基 カルボキシル基 2個を ¾ る 水酸基 2個を有する Ζ1 :水酸基
2
生分解性部位を含む化合物 ィミン部位を含む化合物 Ζ2:力ルポキシル基 カルボキシル基 2個を有する カルボキシル基 2個を有する Ζ1 :水酸基
3
生分解性部位を含む化合物 ィミン部位を含む化合物 Ζ 水酸基 カルボキシル基 2個を有する 水酸基 2個を有する Ζ1 :水酸基
4
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2:水酸 ¾ カルボキシル基 2個を有する 水酸基 2個を有する ζ,:力ルポキシル基
5
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2:力ルポキシル基 水酸基 2個を有する 力》レボキシレ基 2個を有する ζ,:力ルポキシル基
6
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2 :水酸基 水酸基 2個を有する カルボキシル基 2個を有する ζ1 :水酸基
7
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2:カルポキシル基 水酸基 2個を有する 水酸基 2個を有する ζ,:カルボキシル基
8
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2:カルポキシル基 水酸基 2個を有する カルボキシル基 2個を有する ζ1 :力ルポキシル基
9
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2 :カルボキシル基 水酸基 2個を有する カルボキシル基 2個を有する ζ1 :水酸基
10
生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2 :水酸基 カルボキシル基 1個と水酸基 1個を カルボキシル基 2個を有する ζ1 :水酸基
1 1
有する生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2 :水酸基 カルボキシル基 1個と水酸基 1個を 水酸基 2個を有する ζ:カルボキシル基
12
有する生分解性部位を含む化合物 ィミン部位を含む化合物 ζ2 :カルボキシノレ基 カルボキシル基"!個と水酸基 1個を 力ルポキシル基 1個と水酸基 1個 ζ,:力ルポキシル基
13
有する生分解性部位を含む化合物 を有するィミン部位を含む化合物 ζ2 :水酸基 力ルポキシル基 1個と水酸基 1個を カルボキシル基 1個と水酸基 1個 ζ1 :水酸基
14
有する生分解性部位を含む化合物 を有するィミン部位を含む化合物 ζ2:カルボキシル基 次に、アミド結合、または Xおよび Xがアミド結合である結合(2)で連結させた生分
1 2
解性ポリマーを製造する場合の組み合わせについて述べる。
アミド結合で連結させた生分解性ポリマーを製造する場合は、 2個のカルボキシル 基を有する生分解性部位を含む化合物と 2個のアミノ基を有するィミン部位を含む化 合物との組み合わせ、 2個のアミノ基を有する生分解性部位を含む化合物と 2個の力 ルポキシル基を有するィミン部位を含む化合物との組み合わせ、または各々 1個の力 ルポキシル基と 1個のアミノ基を有する生分解性部位を含む化合物とィミン部位を含 む化合物との組み合わせが挙げられる。さらに、 Xおよび Xがアミド結合である結合 (2)で連結させた生分解性ポリマーを製造する場合、該結合を導く化合物として一般 式 (2 '— 2)で表される化合物(以下「化合物(2 '— 2)」とも 、う。)を新たに使用する。 その組み合わせを表 2に示す。
[0069] [化 6]
^3 R ~ ^4 . . . (2' -2)
[0070] 式(2' -2)中、 R'は、上記式(2)中の R'と同義であり、 Zおよび Zは、互いに独立
3 4
にカルボキシル基またはアミノ基を表す。
[0071] [表 2]
生分解性部位を含む化合物 ィミン部位を含む化合物 化合物 (2'— 2) カルボキシル基 2個を有する アミノ基 2個を有する Z3:力ルポキシル基
1
生 性部位を含む化合物 ィミン部位を含む化合物 Z4:ァミノ基 カルボキシル基 2個を有する アミノ基 2個を有する ァミノ基
2
生 性部位を含む化合物 ィミン部位を含む化合物 Z4:力ルポキジル基 力ルポキシル基 2個を有する アミノ基 2個を有する Z3:ァミノ基
3
生分解性部位を含む化合物 ィミン部位を含む化合物 Z4:アミノ基 カルボキシル基 2個を有する アミノ基 2個を有する z3:カルボキシル基
4
生分解性部位を含む化合物 ィミン部位を含む化合物 z4:力ルポキシル基 力ルポキシル基 2個を有する 力ルポキシル基 2個を有する z3 :アミノ基
5
生分解性部位を含む化合物 ィミン部位を含む化合物 z4:ァミノ基
アミノ基 2個を有する 力ルポキシル基 2個を有する z3:カルボキシル基
6
生分解性部位を含む化合物 ィミン部位を含む化合物 :ァミノ基
アミノ基 2個を有する 力ルポキシル基 2個を有する z3:アミノ基
7
生分解性部位を含む化合物 ィミン部位を含む化合物 z4:カルボキシル基 アミノ基 2個を有する 力ルポキシル基 2個を有する Z3:ァ 5ノ基
8
生分解性部位を含む化合物 ィミン部位を含む化合物 Z4:ァ Sノ基
アミノ基 2個を有する 力ルポキシル基 2個を有する z3:カルボキシル基
9
生分解性部位を含む化合物 ィミン部位を含む化合物 z4:カルボキシル基 アミノ基 2個を有する アミノ基 2個を有する z3:カルボキシル基
10
生分解性部位を含む化合物 ィミン部位を含む化合物 z4:カルボキシル基 カルポキシル基 1個とアミノ基 1個を アミノ基 2個を有する z3:カルボキシリレ基
11
有する生分解性部位を含む化合物 ィミン部位を含む化合物 z4:カルボキシル墓 カルボキシル基1個とアミノ基 1個を カルボキシル基 2個を有する Z3:ァ Sノ基
12
有する生分解性部位を含む化合物 ィミン部位を含む化合物 z+:ァミノ基 カルボキシル基 1個とアミノ基 1個を 力ルポキシル基 1個とアミノ基 1個 z3:カルボキシル基
13
有する生分解性部位を含む化合物 を有するィミン部位を含む化合物 z+:アミノ基 カルボキシル基 1個とアミノ基 1個を カルボキシル基 1個とアミノ基 1個 z3:アミノ基
14
有する生分解性部位を含む化合物 を有するィミン部位を含む化合物 z4:力ルポキシル基 次に、ウレタン結合または Xおよび Xがウレタン結合である結合(2)で連結させた
1 2
生分解性ポリマーを製造する場合の組み合わせについて述べる。
ウレタン結合で連結させた生分解性ポリマーを製造する場合は、 2個の水酸基を有 する生分解性部位を含む化合物と 2個のアミノ基を有するィミン部位を含む化合物と の組み合わせ、 2個のアミノ基を有する生分解性部位を含む化合物と 2個の水酸基 を有するィミン部位を含む化合物との組み合わせ、または各々 1個の水酸基と 1個の アミノ基を有する生分解性部位を含む化合物とィミン部位を含む化合物との組み合 わせが挙げられる。さらに、 Xおよび Xがウレタン結合である結合(2)で連結させた 生分解性ポリマーを製造する場合、該結合を導く化合物として一般式 (2'— 3)で表 される化合物(以下「ィ匕合物(2'— 3)」ともいう。)を新たに使用する。その組み合わせ を表 3に示す。
[0073] [化 7] ^ _ 6 . . . ( 2 ' - 3 )
[0074] 式(2'— 3)中、 R'は、上記式(2)中の R'と同義であり、 Zおよび Zは、互いに独立
5 6
に水酸基またはアミノ基を表す。
[0075] [表 3]
Figure imgf000024_0001
[0076] 次に、ゥレア結合または Xおよび Xがゥレア結合である結合(2)で連結させた生分
1 2
解性ポリマーを製造する場合の組み合わせについて述べる。
ゥレア結合で連結させた生分解性ポリマーを製造する場合は、 2個のアミノ基を有 する生分解性部位を含む化合物と 2個のアミノ基を有するィミン部位を含む化合物と の組み合わせが挙げられる。さらに、 Xおよび Xがゥレア結合である結合(2)で連結
1 2
させた生分解性ポリマーを製造する場合、該結合を導く化合物として一般式 (2'— 4 )で表される化合物(以下「ィ匕合物(2'— 4)」ともいう。)を新たに使用する。その組み 合わせを表 4に示す。
[0077] [化 8]
Z7一 一 ¾ . . . ( 2 ' _4 )
[0078] 式(2'— 4)中、 R'は、上記式(2)中の R'と同義であり、 Zおよび Zはアミノ基を表
7 8
す。
[0079] [表 4]
Figure imgf000025_0001
[0080] 次に、カーボネート結合または Xおよび Xがカーボネート結合である結合(2)で連
1 2
結させた生分解性ポリマーを製造する場合の組み合わせについて述べる。
カーボネート結合で連結させた生分解性ポリマーを製造する場合は、 2個の水酸基 を有する生分解性部位を含む化合物と 2個の水酸基を有するィミン部位を含む化合 物との組み合わせが挙げられる。さらに、 Xおよび Xがカーボネート結合である結合
1 2
(2)で連結させた生分解性ポリマーを製造する場合、該結合を導く化合物として一般 式 (2 '— 5)で表される化合物(以下「化合物(2 '— 5)」とも 、う。)を新たに使用する。 その組み合わせを表 5に示す。
[0081] [化 9]
Z9 _ 10 . . . (2, -5)
[0082] 式(2'— 5)中、 R'は、上記式(2)中の R'と同義であり、 Zおよび Z は水酸基を表
9 10
す。
[0083] [表 5]
Figure imgf000025_0002
[0084] 以上、連結させる結合の種類によって、生分解性部位を含む化合物とィミン部位を 含む化合物とが保有すべき官能基が異なり、またその組み合わせも異なることも記載 した。ここで、本発明の製造方法において使用する生分解性部位を含む化合物とイミ ン部位を含む化合物とをまとめると、以下のようになる。
まず、生分解性部位を含む化合物とその製造方法にっ 、て説明する。
[0085] 上記 2個の官能基を有する生分解性部位を含む化合物としては、 2個のカルボキシ ル基を有する生分解性部位を含む化合物、 2個の水酸基を有する生分解性部位を 含む化合物、 1個のカルボキシル基と 1個の水酸基を有する生分解性部位を含む化 合物、 2個のアミノ基を有する生分解性部位を含む化合物、 1個のカルボキシル基と 1個のアミノ基を有する生分解性部位を含む化合物、 1個の水酸基と 1個のアミノ基を 有する生分解性部位を含む化合物などが挙げられる。
[0086] 上記 2個の官能基を有する生分解性部位を含む化合物の製造方法としては、例え ば、 2個のカルボキシル基を有する生分解性部位を含む化合物の場合は、カルボキ シル基 Z水酸基のモル比が 1より大きい条件で二塩基酸類と 2価の脂肪族アルコー ル類とから脱水反応で製造する方法、またはカルボキシル基 Zアミノ基のモル比が 1 より大きい条件で二塩基酸類と 2価の脂肪族ァミン類とから脱水反応で製造する方法 などが挙げられる。また、 2個の水酸基を有する生分解性部位を含む化合物の場合 は、カルボキシル基 Z水酸基のモル比が 1より小さい条件で二塩基酸類と 2価の脂 肪族アルコール類とから脱水反応で製造する方法などが挙げられる。また、 1個の力 ルポキシル基と 1個の水酸基を有する生分解性部位を含む化合物の場合は、ヒドロキ シカルボン酸類の脱水反応で製造する方法などが挙げられる。また、 2個のアミノ基 を有する生分解性部位を含む化合物の場合は、カルボキシル基 Zアミノ基のモル比 力^より小さい条件で二塩基酸類と 2価の脂肪族ァミン類とから脱水反応で製造する 方法などが挙げられる。さらに、 1個のカルボキシル基と 1個のアミノ基を有する生分 解性部位を含む化合物の場合は、アミノ酸類から脱水反応で製造する方法などが挙 げられる。 1個の水酸基と 1個のアミノ基を有する生分解性部位を含む化合物の場合 は、カルボキシル基 Z (水酸基とァミノ基との和)のモル比が 1より小さい条件で、二塩 基酸類、 2価の脂肪族アルコール類および 2価の脂肪族ァミン類力 脱水反応で製 造する方法などが挙げられる。 [0087] 次に、上記 2個の官能基を有するィミン部位を含む化合物は、下記一般式 (3)また は(3' )で表される。
[0088] [化 10]
Figure imgf000027_0001
· - · ( 3, )
[0089] 上記式(3)および(3 ' )中の R〜R、 Y〜Yおよび kは、本発明の生分解性ポリマ
1 8 1 6
一で定義したィミン部位のものと同一であり、 X
3および X
4は、カルボキシル基、水酸 基またはアミノ基を表し、それぞれ同一でも、異なっていてもよい。
このような 2個の官能基を有するィミン部位を含む化合物は、公知の方法で製造す ることができる。 Y〜Yの Rが水素である 2個の官能基を有するィミン部位を含む化
1 6
合物の場合は、例えば、各々所望の官能基を有するアルデヒド化合物とァミン化合 物との脱水反応より 2個の官能基を有するィミン部位を含む化合物が得られる。 Υ〜
1
Υの Rが炭素数 1〜20の脂肪族炭化水素基である 2個の官能基を有するィミン部位
6
を含む化合物の場合は、例えば、各々所望の官能基を有するケトンィ匕合物とアミン 化合物との反応より 2個の官能基を有するィミン部位を含む化合物が得られる。
[0090] <生分解性ポリマーの製造方法の具体的態様 >
上記 2個の官能基を有する生分解性部位を含む化合物と、 2個の官能基を有する ィミン部位を含む化合物とを連結させることにより、本発明の生分解性ポリマーを製 造することができる。その製造方法は、両者を連結させる化学結合の種類によって異 なり、縮合剤を用いる方法と連結剤を用いる方法の 2つに大別される。前者は連結さ せる化学結合がエステル結合、アミド結合あるいは X
1および Ζまたは X
2がエステル 結合もしくはアミド結合である結合(2)の場合であり、後者はウレタン結合、ウレァ結 合、カーボネート結合あるいは X
1および Ζまたは X
2がウレタン結合、ゥレア結合もしく はカーボネート結合である結合(2)の場合である。
[0091] 生分解性ポリマーの製造において、縮合剤を用いる製造方法を実施した後、連結 剤を用いる製造方法を実施してもよいし、連結剤を用いる製造方法を実施した後、縮 合剤を用いる製造方法を実施してもよ ヽ。
まず、縮合剤を用いる製造方法について説明する。 2個の官能基を有する生分解 性部位を含む化合物と、 2個の官能基を有するィミン部位を含む化合物と、縮合剤と を反応させることによって、エステル結合、アミド結合あるいは X
1および Zまたは X
2が エステル結合もしくはアミド結合である結合(2)で連結させた生分解性ポリマーを製 造することができる。
[0092] ここで、本製造方法における構成部位の組み合わせとしては、連結部位がエステル 結合の場合は、前記のエステル結合で連結させた生分解性ポリマーで例示した構成 部位の組み合わせなどを使用する。また、連結部位がアミド結合の場合は、前記のァ ミド結合で連結させた生分解性ポリマーで例示した構成部位の組み合わせなどを使 用する。次に、連結部位が、 Xおよび Xがエステル結合である結合(2)の場合は、表
1 2
1で例示した構成部位の組み合わせなどを使用する。連結部位力 X
1および X
2がァ ミド結合である結合(2)の場合は、表 2で例示した構成部位の組み合わせなどを使用 する。さらに、これらの組み合わせを 2種以上併用してもよぐまた、エステル結合の 場合に例示した組み合わせと、アミド結合の場合に例示した組み合わせと、 X
1および
Xがエステル結合またはアミド結合である結合(2)に例示した組み合わせとを、 2種
2
以上互いに併用してもよい。
[0093] 本発明の製造方法で使用される縮合剤としては、例えば、ヨウィ匕 2 クロロー 1ーメ チルピリジ-ゥム、ヨウ化 2—ブロモ—1—メチルピリジ-ゥム、 2—クロ口— 1—ェチル ピリジ-ゥムテトラフルォロボレート、 2 ブロモ 1 ェチルピリジ-ゥムテトラフルォ ロボレートなどが挙げられる。好ましくは、ヨウ化 2—クロ口一 1—メチルピリジ-ゥム、 2 クロロー 1 ェチルピリジ-ゥムテトラフルォロボレート、 2—ブロモー 1 ェチルピリ ジ-ゥムテトラフルォロボレートである。より好ましくは、ヨウ化 2—クロロー 1ーメチルビ リジ-ゥム、 2—ブロモー 1 ェチルピリジ-ゥムテトラフルォロボレートである。
[0094] 上記縮合剤は、 1種単独で用いても、 2種以上を併用してもよ ヽ。また、上記縮合剤 の使用量は、生分解性ポリマーの構成原料である生分解性部位を含む化合物およ びィミン部位を含む化合物中に含まれるカルボキシル基の総モル数に対して、通常 、 1. 0〜3. 0倍モル、好ましくは 1. 1〜2. 5倍モル、より好ましくは 1. 2〜2. 0倍モ ルの範囲である。
[0095] この方法によって生分解性ポリマーを製造する際、ハロゲンィ匕水素が副生するので 、ハロゲン化水素を中和するために、通常塩基を使用する。その塩基としては、トリエ チルァミン、トリプロピルァミン、トリイソプロピルァミン、トリブチルァミン、トリペンチル ァミン、トリオクチルァミン、トリイソォクチルァミン、 N, N'—ジイソプロピルェチルアミ ン、 N, N—ジメチルー n—ォクチルァミン、 N, N—ジメチルイソプロピルァミン、トリス (2—ェチルへキシル)ァミン、 N, N—ジメチルェチルァミン、 N, N—ジェチルメチル ァミン、 N, N—ジシクロへキシルメチルァミン、 N, N—ジメチルシクロへキシルァミン 、トリベンジルァミン、トリフエニルァミン、 N—ベンジルジェチルァミン、トリエチレンジ ァミン、へキサメチレンテトラミン、 N, N, Ν' , Ν,一テトラメチルエチレンジァミン、ビ ス(2—ジメチルアミノエチル)エーテル、ピリジン、 4ージメチルァミノピリジン、ピコリン 、 Ν, Ν—ジメチルァニリン、 Ν, Ν—ジェチルァニリン、 Ν—ェチルー Ν—メチルァニ リン、 2, 6—ルイチジンなどが挙げられる。これらの中では、トリェチルァミン、トリプロ ピルァミン、トリイソプロピルァミン、トリブチルァミン、トリペンチルァミン、トリオクチル ァミン、トリイソォクチルァミン、 Ν, N'—ジイソプロピルェチルァミン、 Ν, Ν—ジメチ ルー η—ォクチルァミン、 Ν, Ν—ジメチルイソプロピルァミン、トリス(2—ェチルへキ シル)ァミンが好ましぐトリエチルァミン、トリプロピルァミン、トリイソプロピルァミン、ト リブチルァミンがより好ま U、。
[0096] 上記塩基は、 1種単独で用いても、 2種以上を併用してもよ 、。また、上記塩基の使 用量は、縮合剤の使用モル数に対して、通常、 1. 0〜6. 0倍モル、好ましくは 2. 2 〜5. 0倍モル、より好ましくは 2. 4〜4. 0倍モルの範囲である。
本製造方法にぉ ヽて、生分解性部位を含む化合物とィミン部位を含む化合物との 使用モル比は、通常、 0. 5〜2. 0の範囲であり、好ましくは 0. 8〜1. 5の範囲であり 、より好ましくは 0. 9〜1. 1の範囲である。
[0097] 上記縮合剤を用いる製造方法では、ジクロロメタン、クロ口ホルムなどの有機溶剤を 使用することが好ましい。反応温度は、用いられる有機溶剤の沸点にもよるが、 10〜 100°Cの範囲が好ましぐ 20〜50°Cの範囲がより好ましい。反応は、水分による縮合 剤の失活を防止するために、窒素やアルゴンなどの不活性ガス雰囲気下で行うこと が好ましい。
[0098] 生分解性ポリマーが所望の分子量に到達したら、ハロゲン化水素と塩基との塩など の不純物を取り除くために、不純物が可溶かつポリマーが不溶であるようなメタノール 、エタノール、イソプロピルアルコールなどの有機溶剤を使用して再沈殿や洗浄を行 い、生分解性ポリマーを精製する。精製後、減圧乾燥、加熱乾燥などにより精製時使 用した有機溶剤などの除去を行う。
[0099] 以上、縮合剤を用いる製造方法にっ 、て説明した力 Xおよび Xがエステル結合
1 2
またはアミド結合である結合 (2)で連結された生分解性ポリマーを製造する場合、そ の他の手段として、下記一般式 (4)で表される酸クロライド (以下、単に「酸クロライド」 という。)を用いても製造することができる。
[0100] [化 11]
Figure imgf000030_0001
[0101] 式 (4)中、 R'は、上記式(2)中の R'と同義である。
具体的には、 2個の水酸基を有する生分解性部位を含む化合物、 2個の水酸基を 有するィミン部位を含む化合物および酸クロライドの組み合わせ、または、 2個のアミ ノ基を有する生分解性部位を含む化合物、 2個のアミノ基を有するィミン部位を含む 化合物および酸クロライドの組み合わせを使用することにより、 X
1および X
2がそれぞ れエステル結合またはアミド結合である結合(2)で連結された生分解性ポリマーが得 られる。この製造方法での酸クロライドの使用量は、上記の構成部位中に含まれる水 酸基の総モル数に対し、通常、 0. 25〜4. 0倍モル、好ましくは 0. 3〜3. 0倍モル、 より好ましくは 0. 4〜1. 0倍モノレ、さらに好ましくは 0. 45〜0. 6倍モノレの範囲である
[0102] 上記酸クロリドを用いる製造方法によって生分解性ポリマーを製造する際には、通 常、副生するハロゲンィ匕水素を中和するために、縮合剤を用いる製造方法で例示し た塩基を使用する。この塩基は、 1種単独で用いても、 2種以上を併用してもよい。こ の製造方法での塩基の使用量は、酸クロライド類の使用モル数に対して、通常、 1. 5 〜6. 0倍モル、好ましくは 2. 2〜5. 0倍モル、より好ましくは 2. 4〜4. 0倍モルの範 囲である。
[0103] 上記酸クロリドを用いる製造方法において、生分解性部位を含む化合物とイミン部 位を含む化合物との使用モル比は、通常、 0. 5〜2. 0の範囲であり、好ましくは 0. 8 〜1. 5の範囲であり、より好ましくは 0. 9〜1. 1の範囲である。
上記酸クロライドを用いる製造方法では、ジクロロメタンやクロ口ホルムなどの有機溶 剤を使用することが好ましい。反応温度としては、使用する溶剤の沸点にもよるが、 30〜100°Cの範囲が好ましぐ 10〜50°Cの範囲がより好ましい。反応は、水分に よる酸クロライドの失活を防止するために、窒素やアルゴンなどの不活性ガス雰囲気 下で行うことが好ましい。
[0104] 生分解性ポリマーが所望の分子量に到達したら、ハロゲン化水素と塩基との塩など の不純物を取り除くために、不純物が可溶かつポリマーが不溶であるようなメタノール 、エタノール、イソプロピルアルコールなどの有機溶剤を使用して再沈殿や洗浄を行 い、生分解性ポリマーを精製する。精製後、減圧乾燥や加熱乾燥などにより精製時 に使用した有機溶剤などの除去を行う。
[0105] 次に、連結剤を用いる製造方法について説明する。 2個の官能基を有する生分解 性部位を含む化合物と、 2個の官能基を有するィミン部位を含む化合物と、連結剤と を反応させることによって、ウレタン結合、ゥレア結合、カーボネート結合あるいは X
1 および zまたは X
2がウレタン結合、ゥレア結合もしくはカーボネート結合である結合(
2)で連結させた生分解性ポリマーを製造することができる。
[0106] ここで、本製造方法における構成部位の組み合わせとしては、連結部位がウレタン 結合の場合は、前記のウレタン結合で連結された生分解性ポリマーで例示した構成 部位の組み合わせなどを使用する。また、連結部位がゥレア結合の場合は、前記の ゥレア結合で連結された生分解性ポリマーで例示した構成部位の組み合わせなどを 使用する。また、連結部位がカーボネート結合の場合は、前記のカーボネート結合で 連結された生分解性ポリマーで例示した構成部位の組み合わせなどを使用する。さ らに、連結部位が、 Xおよび Xがウレタン結合である結合(2)の場合は、表 3で例示
1 2
した構成部位の組み合わせなどを使用する。連結部位が、 Xおよび Xがゥレア結合
1 2
である結合(2)の場合は、表 4で例示した構成部位の組み合わせなどを使用する。 連結部位が、 Xおよび Xがカーボネート結合である結合(2)の場合は、表 5で例示し
1 2
た構成部位の組み合わせなどを使用する。さらに、これらの組み合わせを 2種以上併 用してもよぐまた、ウレタン結合の場合に例示した組み合わせ、ゥレア結合の場合に 例示した組み合わせ、カーボネート結合で例示した組み合わせ、ならびに、 Xおよび
1
Zまたは Xがウレタン結合、ゥレア結合もしくはカーボネート結合である結合(2)で例
2
示した組み合わせの中から 2種以上を互 ヽに併用しても構わな 、。
[0107] 本製造方法で使用される連結剤としては、例えば、ホスゲン、炭酸エステル類また はクロロギ酸エステル類などが挙げられる。クロロギ酸エステル類としては、例えば、ク ロロギ酸メチノレ、クロロギ酸ェチノレ、クロロギ酸プロピノレ、クロロギ酸ブチノレ、クロロギ酸 フエニルなどが挙げられ、炭酸エステル類としては、例えば、ジメチルカーボネート、 ジェチノレカーボネート、ェチノレメチノレカーボネート、ジフエ二ノレカーボネート、ジプロ ピルカーボネート、ジブチルカーボネートまたはジベンジルカーボネートなどが挙げ られる。これらの中では、クロ口ギ酸ェチル類または炭酸エステル類が好ましぐ炭酸 エステル類がより好ましぐさらに好ましくは、ジメチルカーボネートまたはジェチルカ ーボネートである。
[0108] 上記連結剤の使用量は、生分解性ポリマーの構成原料である生分解性部位を含 む化合物とィミン部位を含む化合物とに含まれる水酸基またはァミノ基の総モル数に 対して、通常、 0. 25〜4. 0倍モル、好ましくは 0. 3〜3. 0倍モル、より好ましくは 0. 4〜1. 0倍モノレ、さらに好ましくは 0. 45〜0. 6倍モノレの範囲である。
連結剤として炭酸エステル類を用いた場合は、上記生分解部位を含む化合物と、 上記イミン部位を含む化合物と、上記連結剤との反応を促進させるために、触媒を添 加することが好ましい。触媒としては、ジブチル錫ジアセテート、ジブチル錫ジラウレ ート、ナトリウムメトキシドまたはチタ-ル (IV)ァセチルァセトナートが挙げられる。
[0109] 上記触媒は、 1種単独で用いても、 2種以上を併用してもよ 、。また、上記触媒の使 用量は、 2個の官能基を有する生分解部位を含む化合物とィミン部位を含む化合物 と連結剤との総重量に対して、通常、 10〜: LOOOppm、好ましくは 30〜800ppm、よ り好ましくは 80〜500ppmの範囲である。
ホスゲンおよびクロロギ酸エステル類を連結剤として使用した場合は、通常、副生 するハロゲンィ匕水素を中和するために、縮合剤を用いる製造方法で例示した塩基を 使用する。塩基は、 1種単独で用いても、 2種以上を併用してもよい。この製造方法で の塩基の使用量は、酸クロライド類の使用モル数に対して、通常、 1. 5〜6. 0倍モル 、好ましくは 2. 2〜5. 0倍モル、より好ましくは 2. 4〜4. 0倍モルの範囲である。
[0110] 本製造方法において、上記生分解性部位を含む化合物と上記イミン部位を含む化 合物との使用モル比は、通常、 0. 5〜2. 0の範囲であり、好ましくは 0. 8〜1. 5の範 囲であり、より好ましくは 0. 9〜1. 1の範囲である。
上記連結剤を用いる製造方法では、炭酸エステル類を使用する場合は、必要に応 じて、塩化メチレン、クロ口ホルム、テトラヒドロフランまたはジメチルホルムアミドなどの 有機溶剤を使用して製造してもよぐ溶媒を使用せずに原料または生成物が溶融す る条件で製造してもよい。また、ホスゲンまたはクロロギ酸エステル類を使用する場合 は、上記の有機溶剤を使用することが好ましい。
[0111] 反応温度は、必要に応じて用いられる有機溶剤の沸点にもよる力 連結剤として炭 酸エステル類を使用する場合は 50〜300°Cの範囲が好ましぐ 60〜220°Cの範囲 力 り好ましい。また、連結剤としてホスゲンまたはクロロギ酸エステル類を使用する 場合は、— 78〜60°Cの範囲が好ましぐ— 10〜40°Cの範囲がより好ましい。
反応は、連結剤が炭酸エステル類である場合は、副生するアルコールを除去する ために、窒素やアルゴンなどの不活性ガス流通下または減圧下で行うことが好ま ヽ 。また、連結剤がホスゲンまたはクロロギ酸エステル類である場合は、大気中の水よる 連結剤の失活を防止するために、窒素やアルゴンなどの不活性ガス雰囲気下で行う ことが好ましい。
[0112] 生分解性ポリマーが所望の分子量に到達したら、製造時に有機溶剤を使用した場 合は、生分解性ポリマーが不溶であるようなメタノール、エタノール、イソプロピルアル コール、へキサンなどの有機溶剤を使用して再沈殿や洗浄を行い、生分解性ポリマ 一を精製してもよぐ使用した有機溶剤を除去し、生分解性ポリマーを乾固させてもよ い。一方、製造時に有機溶剤を使用しなカゝつた場合は、溶融状態の生分解性ポリマ 一をそのまま排出することが好ましぐ排出後、生分解性ポリマーを塩化メチレン、ク ロロホルムまたはジメチルホルムアミドなどの有機溶媒に溶解し、製造時に有機溶剤 を使用した場合と同様の精製を行ってもよい。精製または排出などを行った後、生分 解性ポリマーを減圧乾燥または加熱乾燥などを行う。
[0113] 以上、連結剤を用いる製造方法について説明した力 Xおよび Xがウレタン結合も
1 2
しくはゥレア結合である結合 (2)で連結された生分解性ポリマーを製造する場合、そ の他の手段として、下記一般式(5)で表されるジイソシァネートイヒ合物(以下、単に「 ジイソシァネート類」とも!/、う。)を連結剤として用いて製造することもできる。
[0114] [化 12]
0=C=N R'—— N^=C=0 - . . ( 5 )
[0115] 式(5)中、 R'は、上記式(2)中の R'と同義である。
具体的には、 2個の水酸基を有する生分解性部位を含む化合物、 2個の水酸基を 有するィミン部位を含む化合物およびジイソシァネート類の組み合わせを使用するこ とにより、 Xおよび Xがウレタン結合である結合(2)で連結された生分解性ポリマー
1 2
が得られる。また、 2個のアミノ基を有する生分解性部位を含む化合物、 2個のアミノ 基を有するィミン部位を含む化合物およびジイソシァネート類の組み合わせを使用 することにより、 Xおよび Xがゥレア結合である結合(2)で連結された生分解性ポリマ
1 2
1 2 ° 3 ° で例示した組み合わせの中から、 2種以上を互いに併用しても構わな 、。
[0116] 上記ジイソシァネート類の使用量は、生分解性ポリマーの構成原料である生分解 性部位を含む化合物とィミン部位を含む化合物とに含まれる水酸基またはァミノ基の 総モル数に対して、通常、 0. 25〜4. 0倍モル、好ましくは 0. 3〜3. 0倍モル、より好 ましくは 0. 4〜1. 0倍モノレ、さらに好ましくは 0. 45〜0. 6倍モノレの範囲である。 連結部位が、 Xおよび Xがウレタン結合である結合(2)の場合は、上記生分解部
1 2
位を含む化合物と、上記イミン部位を含む化合物と、上記連結剤との反応を促進させ るために、触媒を添加することが好ましい。
[0117] 上記触媒としては、例えば、スタナスオタテート、ジブチル錫ジアセテート、ジブチル 錫ジォクテート、ジブチル錫ジラウレート、ジォクチル錫ジラウレート、ナトリウム o—フ ェユルフェネート、テトラ(2—ェチルへキシル)チタネート、塩化第二錫、塩化第二鉄 、第二オタテート鉄、コバルトオタテート、ナフテン酸亜鉛、トリェチルァミンまたはトリ エチレンジァミンなどが挙げられる。好ましくは、ジブチル錫ジアセテート、ジブチル 錫ジォクテート、ジブチル錫ジラウレート、ナトリウム o—フエ-ルフエネート、テトラ(2 ーェチルへキシル)チタネート、塩ィ匕第二錫または塩ィ匕第二鉄である。
[0118] 上記触媒は、 1種単独で用いても、 2種以上を併用してもよい。また、上記触媒の使 用量は、 2個の官能基を有する生分解部位を含む化合物、ィミン部位を含む化合物 およびジイソシァネート類の総重量に対して、通常、 10〜: LOOOppm、好ましくは 30 〜800ppm、より好ましくは 80〜500ppmの範囲である。
本製造方法にぉ ヽて、上記生分解性部位を含む化合物と上記イミン部位を含む化 合物との使用モル比は、通常、 0. 5〜2. 0の範囲であり、好ましくは 0. 8〜1. 5の範 囲であり、より好ましくは 0. 9〜1. 1の範囲である。
[0119] 上記連結剤を用いる製造方法では、必要に応じて、塩化メチレン、クロ口ホルム、テ トラヒドロフランまたはジメチルホルムアミドなどの有機溶剤を使用して製造してもよぐ 溶媒を使用せずに原料または生成物が溶融する条件で製造してもよい。
反応温度は、必要に応じて用いられる有機溶剤の沸点や生分解性部位を含む化 合物および Zまたはィミン部位を含む化合物の融点にもよる力 10〜200°Cの範囲 が好ましぐ 20〜180°Cの範囲がより好ましい。反応は、大気中の水と連結剤のイソ シァネート基との反応を防止するために、窒素やアルゴンなどの不活性ガス雰囲気 下で行うことが好ましい。
[0120] 上記生分解性部位を含む化合物と、上記イミン部位を含む化合物と、ジイソシァネ ート類との反応順序は、生分解性部位を含む化合物とィミン部位を含む化合物とジィ ソシァネート類とを同時に反応させてもよぐ生分解性部位を含む化合物またはィミン 部位を含む化合物のどちらか一方とジイソシァネート類とを先に反応させた後、もう一 方の部位を含む化合物を反応させてもよい。また、生分解性部位を含む化合物また はィミン部位を含む化合物のどちらか一方と大過剰のジイソシァネート類とを先に反 応させ、高真空の薄膜蒸発機などで未反応連結剤を取り除いた後、もう一方の部位 を含む化合物を反応させてもょ ヽ。
[0121] 生分解性ポリマーが所望の分子量に到達したら、製造時に有機溶剤を使用した場 合は、生分解性ポリマーが不溶であるようなメタノール、エタノール、イソプロピルアル コール、へキサンなどの有機溶剤を使用して再沈殿や洗浄を行い、生分解性ポリマ 一を精製してもよぐ使用した有機溶剤を除去し、生分解性ポリマーを乾固させてもよ い。一方、製造時に有機溶剤を使用しなカゝつた場合は、溶融状態の生分解性ポリマ 一をそのまま排出することが好ましぐ排出後、生分解性ポリマーを塩化メチレン、ク ロロホルムまたはジメチルホルムアミドなどの有機溶媒に溶解し、製造時に有機溶剤 を使用した場合と同様の精製を行ってもよい。精製または排出などを行った後、生分 解性ポリマーを減圧乾燥または加熱乾燥などを行う。ジイソシァネート類を用いた製 造方法では、一軸または二軸スクリュー型押出機などの押出機や-一ダーなどの混 練機を使用して生分解性ポリマーの製造を行ってもよい。また、反応終了後または精 製後にジイソシァネート類を添加することにより、未反応で残る水酸基またはアミノ基 とイソシァネート基とを反応させ、生分解性ポリマーを高分子量ィ匕してもよ!、。
[0122] [生分解性ポリマーの成形物]
本発明の生分解性ポリマーは、その加工物について特に限定するわけではないが 、例えば、成形カ卩ェすることによりフィルム、シート、用途に適した形状の容器および 不織布などの成形物にすることができる。この際、これら成形物中に、ポリエチレング リコール、ビュルアルコール、ポリ乳酸、ポリブチレンサクシネートなどの通常の生分 解性ポリマーを含んで!/ヽても構わな!/、。
[0123] 本発明の生分解性ポリマーには、 目的に応じて各種添加剤を添加することができる 。添加剤としては、例えば、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、熱安定剤 、難燃剤、離型剤、無機添加剤、結晶核剤、耐電防止剤、顔料、アンチブロッキング 剤などが挙げられる。
可塑剤としては、生分解性があって、かつ本発明の生分解性ポリマーとの相溶性に 優れるものが好適に用いられる。たとえば、 1価もしくは多価脂肪酸エステル系可塑 剤、 1価もしくは多価脂肪族アルコールエステル系可塑剤、ポリアルキレングリコール 系可塑剤、脂肪族ポリエステル系可塑剤などが挙げられる。具体的には、ジー n—才 クチルフタレート、ジ 2—ェチルへキシルフタレート、ジベンジルフタレート等のフタ ル酸誘導体、ジイソオタチルフタレート等のイソフタル酸誘導体、ジー n ブチルアジ ペート、ジォクチルアジペート等のアジピン酸誘導体、ジー n ブチルマレート等のマ レイン酸誘導体、トリー n—ブチルシトレート等のクェン酸誘導体、モノブチルイタコネ ート等のィタコン酸誘導体、プチルォレート等のォレイン酸誘導体、グリセリンモノリシ ノレート等のリシノール酸誘導体、トリクレジルフォスフェート、トリキシレ-ルフォスフエ ート等のリン酸エステル誘導体、ァセチルクェン酸トリエチル、ァセチルクェン酸トリブ チル、乳酸、直鎖状乳酸オリゴマー、環状乳酸オリゴマーおよびラクチドなどが例示 できる。特に、分子内に 2個以上のカルボン酸エステル基を有する、クェン酸エステ ル、グリセリンエステル、フタル酸エステル、アジピン酸エステル、セバシン酸エステル 、ァゼライン酸エステルおよびトリエチレングリコールエステル力も選ばれた少なくとも 1種のエステルイ匕合物であることが好ましい。これらの可塑剤は、単独で用いてもよく 、 2種以上を組み合わせて用いてもよい。
[0124] 本発明の生分解性ポリマーへの、可塑剤、無機充填剤、分散剤、安定剤などの各 種添加剤の添カ卩は、たとえば、ヘンシェルミキサー、スーパーミキサー、タンブラ一型 ミキサーなどを用いて混合した後、一軸または二軸スクリュー型押出機を用いて連続 混練することにより行うことができる。ここで、生分解性ポリマーおよび充填剤等の分 散性をより向上させるためには、二軸押出機の方が好ま 、。
[0125] 本発明の生分解性ポリマー力 なるフィルムまたはシートを得る方法としては特に 制限がなぐ公知の成形方法によりフィルム状またはシート状に成形される。 T ダイ 成形法、インフレーション成形法、カレンダー成形法、熱プレス成型法などにより、フ イルム状またはシート状に成形する方法が挙げられる。また、これらのフィルムゃシー トは少なくとも一方向に延伸されていてもよい。延伸法として特に制限はないが、ロー ル延伸法、テンター法、インフレーション法などが挙げられる。
[0126] 本発明の生分解性ポリマー力もなる、用途に適した形状の成形物を得る方法として は、特に制限がなぐ公知の方法で製造可能であり、例えば金型に押出成形や射出 成形などを行う方法などが挙げられる。
本発明の生分解性ポリマーの成形物の厚さは、その水崩壊性や生分解性を高める ために薄く成形することが好ましいが、強度や可とう性などを満足させるように自由に 調整可能である。フィルムの好ましい厚みは、 5〜300 mであり、 10〜: LOO m力 S より好ましい。シートや容器状の成形物の厚みとしては 0. l〜5mmが好ましぐより好 ましくは 0. 2〜2mmである。また、引張弾性率は、特にその値を限定するわけではな いが、通常、 1200MPa以下のものが好ましぐ 600MPa以下のものがさらに好まし い。引張強度は、特にその値を限定するわけではないが、 10〜: LOOMPaの範囲が 好ましぐ 15〜70MPaの範囲がより好ましぐ 20〜50MPaの範囲がさらに好ましい
[0127] 本発明の生分解性ポリマーには、無機添加剤を添加することが可能であり、特定の 無機添加剤を含有することにより、本発明の生分解性ポリマーの水崩壊性を高めるこ とができる。このような無機添加剤としては、特に制限されないが、無機酸化物類、ゼ オライト類が好ましぐより好ましくは無機酸ィ匕物類である。
上記無機酸ィ匕物類としては、シリカ、アルミナ、酸化チタン、珪酸白土、珪藻土、酸 性白土などが挙げられ、ゼォライト類としては、フィリップサイト、モルデナイト、クリノプ チロライト、ハーモトーム、メノレリノイト、シャバサイト、エリオナイト、ナトロライト、ヒユー ランダイト、フォージャサイトなどが挙げられる。
[0128] 上記無機添加剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。本発明 の生分解性ポリマーと無機添加剤とを含有する生分解性ポリマー榭脂組成物の配合 条件は、生分解性ポリマー 100重量部に対して、無機添加剤が 0. 01〜50重量部の 範囲であり、好ましくは無機添加剤が 0. 1〜40重量部の範囲であり、より好ましくは 無機添加剤が 0. 5〜30重量部の範囲であり、さらに好ましくは 1〜20重量部の範囲 である。
[0129] 上記無機添加剤の平均粒径としては、好ましくは 30 m以下、より好ましくは 10 m以下、特に好ましくは 0. 7〜5 μ mの範囲である。粒径が大きすぎるとフィルムの気 孔の緻密性が悪くなり、小さすぎると榭脂への分散性が悪くなる。また、これらの無機 添加剤は、例えば、成形物がフィルムである場合に、その通気性を向上させるために 添カロしてちょい。
[0130] さらに、本発明のフィルムの通気性を向上させるために、無機充填剤および Zまた は有機充填材を添加することも可能である。無機充填材としては、炭酸カルシウム、 タルク、クレー、カオリン、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸 ノ リウム、硫酸カルシウム、水酸ィ匕アルミニウム、酸化亜鉛、水酸化マグネシウム、酸 化カルシウム、酸化マグネシウム、マイ力、などが挙げられる。これらの中では、炭酸 カルシウム、酸化マグネシウム、硫酸バリウム、タルク、クレーが好ましい。また、有機 充填材としては、木粉、パルプ粉などのセルロース粉末が挙げられる。これらの充填 剤は、 1種単独で用いても、 2種以上を組み合わせて用いてもよい。
[0131] 上記充填材の平均粒径としては、好ましくは 30 μ m以下、より好ましくは 10 μ m以 下、特に好ましくは 0. 7〜5 mの範囲である。粒径が大きすぎるとフィルムの気孔の 緻密性が悪くなり、小さすぎると榭脂への分散性が悪くなる。なお、平面状の未延伸 シートにしたあと、縦方向に一軸延伸することにより、または縦および横方向に二軸 延伸することによりフィルムは多孔化し通気性を有するフィルムとなる。
[0132] 本発明の生分解性ポリマーの不織布を得る方法としては特に制限がなぐ公知の 方法、例えば、乾式法、スパンボンド法、メルトブロー法、湿式法などにより製造され る。すなわち、本発明の生分解性ポリマー、または該生分解性ポリマーと添加剤とを 含む組成物を紡糸した後、ウェブを形成し、該ウェブを従来公知の方法により結合す ることにより得られる。
[0133] 原料繊維の紡糸方法は、公知の紡糸方法が適用される。単独紡糸でも複合紡糸 でもよぐ特に、複合紡糸の形態としては、芯鞘型もしくは並列型複合紡糸が挙げら れる。紡糸方法としては、例えば、押出機を用いて溶融紡糸する溶融紡糸法、上記 生分解性ポリマーもしくは組成物を溶媒に溶解して溶液とした後、該溶液をノズルか ら貧溶媒中に吐出させる湿式紡糸法、該溶液をノズルから乾燥気体中に吐出させる 乾式紡糸等が適用される。溶融紡糸法には、一軸押出機、二軸押出機等の公知の 押出機を用いることができる。
[0134] 押出機の口金 (ノズル)の口径は、必要とする繊維の直径 (糸径)と、押出機の吐出 速度や引き取り速度との関係によって適宜決定される力 好ましくは 0. 1〜3. Omm 程度である。いずれの紡糸法においても、紡糸後の繊維の延伸は必ずしも行う必要 はないが、延伸を行う場合には、 1. 1〜10倍、好ましくは 2〜8倍に延伸する。繊維 の好ましい糸径は 0. 5〜40デニールである。また、本発明の不織布を構成する単繊 維または複合繊維は、長繊維または短繊維のいずれでもよぐ使用目的により適宜 選択できる。
[0135] 得られた繊維から、ウェブと呼ばれる繊維の塊状態を形成させる。ウェブの製造方 法としては公知の方法を用いることができ、特に限定されない。例えば、フラットカー ド機、ローラカード機、ガーネット機等を用いるカード式、メルトブロー式が挙げられる 。また、榭脂を紡糸する際、紡糸機のノズル力 繊維が出るときに高速空気を吹き付 け、気流に直角な穴あきコンベア上に集めてウェブを形成させるスパンボンド式でも よい。
[0136] このようにして得られたウェブから、本発明の生分解性ポリマーの不織布を得るには 公知の方法を用いることができる。例えば、針により交絡させる-一ドルパンチ法、糸 により交絡させるステッチボンド法、熱により接着させるサーマルボンド法、接着剤を 利用するケミカルボンド法、レジンボンド法が挙げられる。本発明の不織布の目付け は、好ましくは l〜50g/m2であり、より好ましくは 5〜20g/m2である。
[0137] [生分解性ポリマーの用途]
本発明の生分解性ポリマーを含有してなる成形物は、その用途を特に限定するわ けではないが、例えば、衛生用品を構成する部材 (部品)、農園芸資材、土木築資材 などとして使用することができる。すなわち、本発明の生分解性ポリマーを含有する 素材を使用して衛生用品、農園芸資材、土木築資材などを製造することが可能であ り、本発明の生分解性ポリマーの用途としては、衛生用品が好適である。
[0138] 衛生用品、農園芸資材、土木築資材などの製造法としては、本発明の生分解性ポ リマーを含有してなる榭脂組成物を所望の形状に成形加工することによって製造で きるし、さらにその成形物を公知のホットメルト接着あるいは熱接着などの方法により 相互に接着、固定して製造することができる。
上記衛生用品としては、例えば、生理用タンポンアプリケータ、生理用ナプキン、パ ンティーライナー、使い捨て紙おむつ、失禁用パッド等が挙げられる。
[0139] 上記農園芸資材としては、例えば、マルチフィルム、育苗ポット、園芸テープ、果実 栽培袋、杭、薫蒸シート、ビニールハウス用フィルムなどが挙げられる。 上記土木築資材としては、例えば、植生ネット、植生ポット、立体網状体、土木繊維 、杭、断熱材などが挙げられる。
本発明の生分解性ポリマーを含有してなる不織布は、例えば、生理用ナプキンの 表面材、パンティーライナーのトップシート、使い捨ておむつのトップシートまたは果 実栽培袋などとして使用することに適している。本発明の生分解性ポリマーを含有し てなるフィルムは、例えば、生理用ナプキンの防濡材、パンティーライナーのバックシ ート、使い捨ておむつのバックシート、マルチフィルム、農園芸テープまたはビニール ハウス用フィルムなどとして使用することに適している。本発明の生分解性ポリマー含 有してなる容器状成形体やシートを筒状に加工したものは、例えば、生理用タンポン アプリケータなどとして使用することに適している。本発明の生分解性ポリマーを含有 してなる容器状成形体は、例えば、育苗ポットまたは植生ポットなどとして使用するこ とに適している。
[0140] また、場合によっては、吸収コア、漏れ防止や装着者の運動性向上を目的として使 V、捨ておむつの肢周りにギャザーなどを装備してもよ!/、。
[実施例]
以下、実施例に基づいて、本発明をより具体的に説明するが、本発明はこれらに限 定されるものではない。なお、下記実施例における評価方法は、以下の通りである。
[0141] [1]ポリマーの分子量
ゲル.パーミエーシヨン.クロマトグラフィー(以下「GPC」という)により、ポリマーの分 子量を求めた。標準物質にはポリスチレンを用いた。
[2]フィルムの弓 I張強度および引張弾性率
ダンベル型に打ち抜いたフィルム試験片を、引張試験機を用いて、引張速度 50m mZ分で引張り、応力を測定することにより、引張破断強度および引張弾性率を求め た。
[0142] [3]水溶性試験
フィルムを 35°Cの蒸留水に 24時間浸漬し、取り出したフィルムを乾燥してフィルム の重量を測定することにより、フィルムの水溶性試験を行った。 35°Cの蒸留水に 24 時間浸漬した後のフィルムの重量保持率が 98%以上であるものを水溶性がないと判 断した。
[0143] [4]水崩壊性試験
JIS P 4501のトイレットペーパーのほぐれやすさ試験に準じて、蒸留水(pH7程度 )中でのフィルムの水崩壊性を試験した。 11cm角のフィルムまたは不織布が 520時 間以下で 4cm角以下になるものが水崩壊性を示したと判断した。
[5]生分解性試験
ISO 14855〖こ準じて、フィルムの生分解性試験を行った。フィルムの生分解度が 6 0%以上であるものが生分解性を示したと判断した。
[0144] [6]繊度
JIS L 1015に準じて測定した。
[7]目付け
標準状態の試料から 10cm角の試験片を作製し、平衡水分にした後、試験片の重 量 [g]を秤量し、得られた値を単位面積当りに換算して目付け [gZm2]とした。
[0145] [8]KGSM強力
JIS L 1096のストリップ法に準じて、長さ 10cm、幅 5cmの試験片を作製し、経方 向(MD)と緯方向(CD)について伸長して、得られた破断時荷重 [kgZ5cm]を単位 目付け当りに換算して KGSM強力とした。
〔ィミン部位含有化合物の製造〕
以下に生分解性ポリマーを構成するィミン部位を含む化合物の製造例について、 具体的に示す。
[0146] <製造例 1 >
コンデンサー付きのディーンスターク、温度計、ガラス製攪拌羽根および滴下ロート を付けた 300mLセパラブルフラスコに、テレフタルアルデヒド 13. 4g (0. lmol、アル ドリツチ社製、純度 99. 0%)およびトルエン 120mLを加え、ガラス製の攪拌羽根で 攪拌し、氷水で 3〜5°Cに冷却した。 2—エタノールァミン 12. 2g (0. 2mol、和光純 薬株式会社製、純度 99. 0%)を滴下ロートに入れ、 30分でフラスコに滴下した。滴 下した後、油浴で加熱し、水の副生が終了するまで加熱還流した。室温まで冷却し、 析出物を濾別し、トルエン 120mLを用いて濾過器上で洗浄した。得られた結晶を窒 素雰囲気下、 50°Cでー晚乾燥し、淡黄色の固体として N, N'—(1, 4 フエ-レン ジメチリデン)ビス (エタノールァミン)(以下「イミンィ匕合物 1」という) 21. 2gを得た。ィ ミンィ匕合物 1を重水素化 DMSOに溶解して測定したプロトン核磁気共鳴スペクトル H-NMRスペクトル)力 以下のように帰属し、ィミン化合物 1の生成を確認した。
[0147] NMR ^ベクトル: δΗ 4. 61 (s, 2H) δ H 3. 67(s, 8H) δΗ 8. 31 (s, 2 H) δΗ 7. 71 (s, 4H).
<製造例 2>
2 エタノールァミンの代わりに 2— (2 アミノエトキシ)エタノール 21.46g(0. 2m ol、東京化成工業株式会社製、純度 98. 0%)を使用し、室温で 3日間減圧乾燥した 以外は製造例 1と同様の反応操作を行い、淡黄色の固体の N, N'— (1, 4 フエ- レンジメチリデン)ビス(2— (2—アミノエトキシ)エタノール)(以下「イミンィ匕合物 2」と いう) 28. 3gを得た。イミンィ匕合物 2を重水素化 DMSOに溶解して測定したプロトン 核磁気共鳴スペクトル( - NMR ^ベクトル)から以下のように帰属し、ィミン化合物 2 の生成を確認した。
[0148] NMR ^ベクトル: 6H4. 58 (t, 2Η)、 δΗ3.44 (m, 8H)、 3. 68 (m, 8H)、
6H8. 37(s, 2H)、 δ H7. 79 (s, 4H) .
<製造例 3>
テレフタルアルデヒドの代わりにヒドロキシアセトン 18. 5g(0. 2mol、東京化成工業 株式会社、純度 80. 0%)を使用した以外は製造例 1と同様の反応操作を行い、 2- (2 ヒドロキシェチルイミノ)プロパン 1 オール(以下「ィミン化合物 3」という) 28. 2gを得た。イミンィ匕合物 3を重水素化 DMSOに溶解してプロトン核磁気共鳴スぺタト ル ^H-NMR ^ベクトル)を測定した結果から、イミンィ匕合物 3は下記式 (6)の化学構 造を有して 、ることを確認した。
[0149] [化 13]
Figure imgf000043_0001
[0150] <製造例 4> テレフタルアルデヒドの代わりにピルビン酸 2—ヒドロキシェチル 26. 0g (0. 2mol) を使用した以外は製造例 1と同様の反応操作を行い、 2—ヒドロキシェチル 2— (2- ヒドロキシェチルイミノ)プロパノエート(以下「イミンィ匕合物 4」という) 35. 6gを得た。ィ ミン化合物 4を重水素化 DMSOに溶解してプロトン核磁気共鳴スペクトル(^H-NMR スペクトル)を測定した結果から、イミンィ匕合物 4は下記式(7)の化学構造を有して!/、 ることを確認した。
[0151] [化 14]
Figure imgf000044_0001
[0152] 〔生分解性部位含有化合物の製造〕
<両末端に COOH基を有する生分解性部位含有化合物の製造 >
以下に生分解性ポリマーを構成する生分解性部位を含む化合物の製造例を具体 的に示す。なお、二塩基酸と 2価の脂肪族アルコールとから生分解性部位含有ィ匕合 物を製造する際の終点確認、および製造した生分解性部位含有化合物のカルボキ シル基量を測定するために、生分解性部位含有化合物の酸価測定を行った。その 測定方法を以下に示す。
[0153] <酸価測定方法 >
両末端に COOH基を有する生分解性部位含有ィ匕合物をクロ口ホルムに溶解し、指 示薬(ブロモチモールブルーメタノール溶液)を数滴添カ卩し、 0. 05Nアルコール性 K OH溶液で滴定し、以下の式で酸価を求めた。
酸価 [mg- KOH/g] = 2. 805 X f XV/S
f ;0. 05Nアルコール性 KOH溶液のファクター
V;0. 05Nアルコール性 KOH溶液の滴定量 [mL]
S;両末端に COOH基を有する生分解性部位のサンプル採取量 [g] <製造例 5 >
コンデンサー付き水分定量受器、温度計、曲管、 SUS製攪拌羽根を付けた SUS 製 1Lセパラブルフラスコに、琥珀酸 202. 5g (l. 7 lmol、和光純薬工業株式会社製 、純度 99. 5%)および 1, 4 ブタンジォール 143. 6g (l. 56mol、和光純薬工業株 式会社製、純度 98. 0%)を入れ、油浴で 60°Cまで加熱し、減圧下で 30分間脱気し た。脱気終了後、窒素吹き込みに切り替え、 160°Cまで段階的に反応温度を上げた 。 160°Cで反応物の酸価が 45. 7mg-KOHZgになるまで反応を継続し、反応終了 時に溶融物を SUS製バットに排出した。両末端に COOH基を有するポリブチレンサ クシネート(以下「PBS1」という) 278. 3gを得た。 PBS1の酸価を測定した結果、 45 . 2mg-KOHZgであった。また、 PBS1の分子量を GPCで測定した結果、数平均分 子量が 3169であった。
[0154] <製造例 6 >
琥珀酸の使用量を 351. lg (2. 96mol)に変え、 1, 4 ブタンジオールの使用量 を 262. 8g (2. 86mol)に変え、 180°Cまで段階的に反応温度を上げ、 180°Cで酸 価が 19. Omg-KOHZgになるまで反応を継続した以外は製造例 5と同様の反応操 作を行 、、両末端に COOH基を有するポリブチレンサクシネート(以下「PBS2」 t ヽ う) 485. 4gを得た。 PBS2の酸価は 18. 4mg-KOH/g, PBS2の数平均分子量は 10312であった。
[0155] <製造例 7>
琥珀酸の使用量を 291. 0g (2. 45mol)に変え、 1, 4 ブタンジオールの使用量 を 188. 5g (2. O5mol)に変え、 160°Cで酸価が 110. 3mg- KOHZgになるまで反 応を継続した以外は製造例 5と同様の反応操作を行 、、両末端に COOH基を有す るポリブチレンサクシネート(以下「PBS3」という) 395. 3gを得た。 PBS3の酸価は 1 08. 6mg-KOH/g, PBS3の数平均分子量は 1420であった。
[0156] <製造例 8 >
琥珀酸の使用量を 305. 9g (2. 58mol)に変え、 1, 4 ブタンジオールの使用量 を 163. 5g (l. 78mol)に変え、 160°Cで酸価が 224. 5mg- KOH/gになるまで反 応を継続した以外は製造例 5と同様の反応操作を行 、、両末端に COOH基を有す るポリブチレンサクシネート(以下「PBS4」という) 385. lgを得た。 PBS4の酸価は 2 21. 7mg-KOH/g, PBS4の数平均分子量は 653であった。 [0157] <製造例 9 >
琥珀酸の使用量を 305. 9g (2. 58mol)に変え、 1, 4 ブタンジオールの使用量 を 233. 3g (2. 54mol)に変え、 180°Cまで段階的に反応温度を上げ、 180°Cで酸 価が 11. 2mg-KOHZgになるまで反応を継続した以外は、製造例 5と同様の反応 操作を行い、両末端に COOH基を有するポリブチレンサクシネート(以下「PBS5」と いう) 428. 8gを得た。 PBS5の酸価は 10. 9mg-KOH/g, PBS5の数平均分子量 は 17400であった。
[0158] <製造例 10>
琥珀酸の使用量を 206. 9g (l. 74mol)に変え、 1, 4 ブタンジオールの使用量 を 106. 5g (l. 12mol)に変え、さらにジエチレングリコーノレ 51. 2g (0. 48mol、純 正化学工業株式会社製、純度 99. 0%)を使用して、酸価が 46. 6mg- KOHZgに なるまで反応を継続した以外は製造例 5と同様の反応操作を行 ヽ、両末端に COOH 基を有する琥珀酸 Z 1 , 4 ブタンジオール Zジエチレングリコール共重合体 (以下「 PBDEGS」という) 282. 6gを得た。 PBDEGSの酸価は 45. 5mg-KOH/g, PBD EGSの数平均分子量は 2858であった。
[0159] <両末端に OH基を有する生分解性部位含有化合物の製造 >
以下に生分解性ポリマーを構成する生分解性部位を含む化合物の製造例を具体 的に示す。なお、二塩基酸と 2価の脂肪族アルコールとから生分解性部位含有ィ匕合 物を製造する際の終点確認、および製造した生分解性部位含有化合物の水酸基量 を測定するために、生分解性部位含有化合物の水酸基価測定を行った。その測定 方法を以下に示す。
[0160] <ァセチル価測定方法 >
クロ口ホルム (和光純薬工業株式会社製、 1級試薬) 400mL、 70%過塩素酸 (和光 純薬工業株式会社製、特級試薬) 4gおよび無水酢酸 (和光純薬工業株式会社製、 特級試薬) 50mLよりァセチル化試薬を調製した。
このァセチルイ匕試薬で両末端に OH基を有する生分解性部位含有ィ匕合物をァセ チル化し、タレゾールレッドーチモールブルー混合指示薬を十数滴加え、 0. 5Nアル コール性水酸ィ匕ナトリウム溶液で滴定した。また、同時に空試験も実施した。これら滴 定結果から以下の式よりァセチル価を求めた。
[0161] ァセチル価 [mg- KOH/g] = (V— V ) X f X 28. 05/S
o 1
f ;0. 5Nアルコール性水酸化ナトリウム溶液のファクター
V;空試験に要した 0. 5Nアルコール性水酸ィ匕ナトリウム溶液の滴定量 [mL]
0
V;両末端に OH基を有する生分解性部位のサンプルの試験に要した 0. 5Nアル
1
コ一ル性水酸ィ匕ナトリゥム溶液の滴定量 [mL]
S;両末端に OH基を有する生分解性部位化合物のサンプル採取量 [g] <酸価測定方法 >
両末端に OH基を有する生分解性部位含有ィ匕合物をクロ口ホルム メタノール混 合溶剤に溶解し、ブロモチモールブル一—フエノールレッド混合指示薬を数滴添カロ し、 0. 1Nアルコール性水酸ィ匕カリウム溶液で滴定した。また、同時に空試験も実施 した。これらの滴定結果から以下の式で酸価を求めた。
[0162] 酸価 [mg— KOH/g] = (V—V ) X f X 5. 61/S
1 o
f ;0. INアルコール性水酸化カリウム溶液のファクター
V;空試験に要した 0. 1Nアルコール性水酸ィ匕カリウム溶液の滴定量 [mL]
0
V;両末端に OH基を有する生分解性部位のサンプルの試験に要した 0. 1Nアル
1
コ一ル性水酸ィ匕カリゥム溶液の滴定量 [mL]
S;両末端に OH基を有する生分解性部位化合物のサンプル採取量 [g] <水酸基価を求める方法 >
水酸基価は以下の式より求めた。
[0163] 水酸基価 [mg- KOH/g] =7セチル価 +酸価
<製造例 11 >
コンデンサー付き水分定量受器、温度計、曲管および SUS製攪拌羽根を付けたガ ラス製 1Lセパラブルフラスコに、琥珀酸 320. 4g (2. 70mol)および 1, 4 ブタンジ オール 303. 5g (3. 30mol)を入れ、窒素気流下で 180°Cまで段階的に反応温度を 上げた。 180°Cで生成水がほとんど認められなくなった時点で、 1%2—ェチルへキ サン酸すず(II)トルエン溶液 1. 32g (2 ェチルへキサン酸すず(II) : 0. 033mmol 、和光純薬工業株式会社製)を加え反応を継続した。さらに、 200°Cまで反応温度を 上げ、反応物の水酸基価および酸価が、それぞれ 57. 6mg- KOHZgおよび 0. 3m g-KOHZgになるまで反応を継続し、反応終了時に溶融物を SUS製バットに排出し た。両末端に OH基を有するポリブチレンサクシネート(以下「PBS6」という) 434. 4g を得た。 PBS6の水酸基価および酸価を測定した結果、水酸基価が 57. 5mg-KOH Zgであり、酸価が 0. 2mg-KOHZgであった。また、 PBS6の分子量を GPCで測定 した結果、数平均分子量が 1951であった。
[0164] <製造例 12>
琥珀酸の使用量を 288. 4g (2. 43mol)に変え、さらにアジピン酸 39. 7g (0. 27m ol、和光純薬工業株式会社製、純度 99. 5%)を使用して、水酸基価が 57. 7mg-K OH/gおよび酸価が 0. 4mg-KOH/gになるまで反応を継続した以外は製造例 1 1と同様の反応操作を行い、両末端に OH基を有するポリブチレンサクシナートアジ ペート(以下「PBSAジオール」と!ヽぅ) 480. 7gを得た。 PBSAジオールの水酸基価 および酸価を測定した結果、水酸基価が 57. 6mg-KOHZgであり、酸価が 0. 3mg -KOHZgであった。また、 PBSAジオールの分子量を GPCで測定した結果、数平 均分子量が 1947であった。
[0165] 〔実施例 1〕
コンデンサー、温度計および攪拌羽根を付けた 500mLの 4つ口フラスコに、 PBS1 を 50. 0g (COOH基; 40. 3mmol)、トリブチルァミンを 22. 9g (120. 9mmol、和光 純薬工業株式会社製、純度 98. 0%)、乾燥ジクロロメタンを 350mL入れ、窒素雰囲 気下で攪拌し溶解した。次に、ヨウ化 2—クロ口— 1—メチルピリジ-ゥム 15. 76g (60 . 5mmol、東京化成工業株式会社製、純度 98. 0%)を添加し、 15分間放置した後 にィミン化合物 1を 4. 44g (20. 2mmol)添カ卩した。窒素雰囲気下で 40〜42°Cで 12 時間反応を行った。反応後、室温まで冷却し、反応液を窒素雰囲気下で乾燥メタノ ール 1400mLに滴下し、綿状のポリマーを沈殿させた。この懸濁液を窒素で加圧濾 過し、得たポリマーを窒素雰囲気下、 30°Cで一晩乾燥した。乾燥したポリマーを 140 OmLの乾燥メタノールに加え、窒素雰囲気下で攪拌し、洗浄し、加圧濾過を行った。 再度、同様の洗浄作業を行い、窒素雰囲気下、 50°Cで一晩乾燥した。ィミン結合を 有するポリブチレンサクシネート(以下「ィミン含有 PBS」という) 51. 5gを得た。得られ たィミン含有 PBSの分子量を GPCで測定した結果、数平均分子量が 26984であつ た。また、 NMR ^ベクトルを測定し、 8. 29ppmのィミン結合のメチンピークカもィ ミン含有 PBSにィミン結合が存在することを確認した。 iH-NMRスペクトルを解析し た結果、下記式 (8)の化学構造を有して!/、ることを推定した。
[0166] [化 15]
Figure imgf000049_0001
· · · ( 8 )
[0167] 得られたィミン含有 PBSを、 115°Cで 3分間熱プレスし、厚みが 15 m、 m、 1 00 mのフィルムを作製した。 100 m厚のフィルムの引張強度は 25. 5MPa、引 張弾性率は 687MPaであった。このフィルムは、外観および肌触りともに良好であり、 柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 119時間 で l〜2cm角に崩壊し、そのときの数平均分子量は 12700まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 3 2. 5%、 2週間後で 66. 4%、 3週間後で 81. 0%、 4週間後で 92. 3%であった。
[0168] 〔実施例 2〕
トリブチルァミンの使用量を 18. 3g (96. 7mmol)に変え、ヨウィ匕 2—クロ口一 1—メ チルピリジ-ゥムの使用量を 12. 6g (48. 4mmol)に変えた以外は実施例 1と同様に して、 51. 4gの綿状のイミン含有 PBSを得た。得られたィミン含有 PBSの分子量を G PCで測定した結果、数平均分子量が 26035であった。また、実施例 1と同様にして ィミン含有 PBSの構造を確認し、実施例 1と同様の化学構造を有することを確認した [0169] 得られたィミン含有 PBSを用いて、実施例 1と同様にしてフィルムを作製した。 100 /z m厚のフィルムの引張強度は 24. 5MPa、引張弾性率は 678MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 118. 9時 間で l〜2cm角に崩壊し、そのときの数平均分子量は 11566まで低下していた。ま た、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後 で 32. 7%、 2週間後で 66. 8%、 3週間後で 81. 2%、 4週間後で 92. 5%であった
[0170] 〔実施例 3〕
トリブチルァミンの使用量を 38. lg (201. 5mmol)に変え、ヨウィ匕 2—クロ口一 1— メチルピリジ-ゥムの使用量を 26. 3g (100. 8mmol)に変えた以外は実施例 1と同 様にして、 51. 6gの綿状のイミン含有 PBSを得た。得られたィミン含有 PBSの分子 量を GPCで測定した結果、数平均分子量が 31391であった。また、実施例 1と同様 にしてィミン含有 PBSの構造を確認し、実施例 1と同様の化学構造を有することを確 した 0
[0171] 得られたィミン含有 PBSを用いて、実施例 1と同様にしてフィルムを作製した。 100
/z m厚のフィルムの引張強度は 25. 6MPa、引張弾性率は 680MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 6%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 118. 7時 間で l〜2cm角に崩壊し、そのときの数平均分子量は 11077まで低下していた。ま た、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後 で 32. 4%、 2週間後で 66. 3%、 3週間後で 80. 9%、 4週間後で 91. 8%であった [0172] 〔実施例 4〕
PBS1の代わりに PBS2を 50. Og (COOH基; 16. 4mmol)使用し、トリブチルアミ ンの使用量を 9. 31g (49. 2mmol)に変え、ヨウ化 2—クロ 1—メチルピリジ-ゥ ムの使用量を 6. 41g (24. 6mmol)に変え、ィミン化合物 1の使用量を 1. 80g (8. 2 Ommol)に変えた以外は実施例 1と同様にして、 49. 5gの綿状のイミン含有 PBSを 得た。得られたィミン含有 PBSの分子量を GPCで測定した結果、数平均分子量が 3 0686であった。また、実施例 1と同様にしてィミン含有 PBSの構造を確認し、実施例 1と同様の化学構造を有することを確認した。
[0173] 得られたィミン含有 PBSを用いて、実施例 1と同様にしてフィルムを作製した。 100 m厚のフィルムの引張強度は 37. 7MPa、引張弾性率は 779MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 240時間 で 2 3cm角に崩壊し、そのときの数平均分子量は 14400まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 2 8. 5% 2週間後で 58. 6% 3週間後で 77. 3% 4週間後で 89. 7%であった。
[0174] 〔実施例 5〕
PBS1の代わりに PBS3を 50. Og (COOH基; 96. 8mmol)使用し、トリブチルアミ ンの使用量を 54. 9g (290. 4mmol)に変え、ヨウ化 2—クロ 1—メチルピリジ-ゥ ムの使用量を 35. 9g (145. 2mmol)に変え、ィミン化合物 1の使用量を 10. 6g (48 . 4mmol)に変えた以外は実施例 1と同様にして、 57. lgの綿状のイミン含有 PBSを 得た。得られたィミン含有 PBSの分子量を GPCで測定した結果、数平均分子量が 3 1391であった。また、実施例 1と同様にしてィミン含有 PBSの構造を確認し、実施例 1と同様の化学構造を有することを確認した。
[0175] 得られたィミン含有 PBSを用いて、実施例 1と同様にしてフィルムを作製した。 100
/z m厚のフィルムの引張強度は 20. 7MPa、引張弾性率は 677MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。 100 /z m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 98. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 8時間で 1 〜2cm角に崩壊し、そのときの数平均分子量は 7245であった。また、 30 m厚のフ イルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 40. 5%、 2週間 後で 77. 5%、 3週間後で 87. 6%、 4週間後で 95. 3%であった。
[0176] 〔実施例 6〕
PBS1の代わりに PBS4を 50. 0g (COOH基; 197. 6mmol)使用し、トリブチルァ ミンの使用量を 112. lg (592. 8mmol)に変え、ヨウィ匕 2—クロロー 1ーメチノレピリジ -ゥムの使用量を 77. 3g (296. 4mmol)に変え、ィミン化合物 1の使用量を 21. 7g (98. 8mmol)に変えた以外は実施例 1と同様にして、 68. 2gの綿状のイミン含有 P BSを得た。得られたィミン含有 PBSの分子量を GPCで測定した結果、数平均分子 量が 32501であった。また、実施例 1と同様にしてィミン含有 PBSの構造を確認し、 実施例 1と同様の化学構造を有することを確認した。
[0177] 得られたィミン含有 PBSを用いて、実施例 1と同様にしてフィルムを作製した。 100
/z m厚のフィルムの引張強度は 20. lMPa、引張弾性率は 595MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 98. 6%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 2時間で 1 〜2cm角に崩壊し、そのときの数平均分子量は 5490まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 46. 3 %、 2週間後で 80. 0%、 3週間後で 90. 0%、 4週間後で 96. 0%であった。
[0178] 〔実施例 7〕
PBS1の代わりに PBS5を 50. 0g (COOH基; 9. 71mmol)使用し、トリブチルアミ ンの使用量を 5. 50g (29. lmmol)に変え、ヨウ化 2—クロ口一 1—メチルピリジ-ゥ ムの使用量を 3. 81g (14. 6mmol)に変え、ィミン化合物 1の使用量を 1. 07g (4. 8 6mmol)に変えた以外は実施例 1と同様にして、 49. 4gのィミン含有 PBSを得た。得 られたィミン含有 PBSの分子量を GPCで測定した結果、数平均分子量が 27443で あった。また、実施例 1と同様にしてィミン含有 PBSの構造を確認し、実施例 1と同様 の化学構造を有することを確認した。
[0179] 得られたィミン含有 PBSを用いて、実施例 1と同様にしてフィルムを作製した。 100
/z m厚のフィルムの引張強度は 38. 9MPa、引張弾性率は 790MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 520時間 で 3〜4cm角に崩壊し、そのときの数平均分子量は 15460まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 2 8. 0、 2週間後で 53. 6%、 3週間後で 72. 5%、 4週間後で 85. 5%であった。
[0180] 〔実施例 8〕
PBS1の代わりに PBDEGSを 50. 0g (COOH基; 40. 6mmol)使用し、トリブチノレ ァミンの使用量を 16. 8g (121. 8mmol)に変え、ヨウ化 2—クロ口一 1—メチルピリジ -ゥムの使用量を 15. 9g (60. 9mmol)に変え、ィミン化合物 1の使用量を 4. 5g (2 0. 3mmol)に変えた以外は実施例 1と同様にして、 50. lgのィミン含有 PBDEGSを 得た。得られたィミン含有 PBDEGSの分子量を GPCで測定した結果、数平均分子 量が 36700であった。また、実施例 1と同様にしてィミン含有 PBDEGSの構造を解 祈し、下記式 (9)の化学構造を有することを推定した。
[0181] [化 16]
Figure imgf000053_0001
( 9 ) 得られたィミン含有 PBDEGSを用 V、て、実施例 1と同様にしてフィルムを作製した 100 mのフィルムの引張強度は 30. 9MPa、引張弾性率は 520MPaであった。こ のフィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 206時間 で lmn!〜 lcm角に崩壊し、そのときの数平均分子量は 12800まで低下していた。ま た、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後 で 30. 2%、 2週間後で 64. 5%、 3週間後で 79. 0%、 4週間後で 89. 7%であった
[0183] 〔比較例 1〕
ィミン化合物 1の代わりに 1, 4 ブタンジオールを 0. 753g (8. 20mmol)使用した 以外は実施例 4と同様にして、綿状のポリブチレンサクシネート 49. 7gを得た。得ら れたポリブチレンサクシネートの分子量を GPCで測定した結果、数平均分子量が 34 465であった。
[0184] 得られたポリブチレンサクシネートを用いて、実施例 1と同様にしてフィルムを作製し た。 100 m厚のフィルムの引張強度は 39. 3MPa、引張弾性率は 371MPaであつ た。このフィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。上記のフィル ムを用いて水崩壊性試験を行った結果、 520時間後もフィルムは崩壊しなかった。さ らに、この時のフィルムの数平均分子量は 33531で分子量変化が認められない。ま た、同様のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 27 . 0%、 2週間後で 52. 5%、 3週間後で 69. 0%、 4週間後で 79. 0%であり、イミン含 有 PBSの生分解性より劣って 、た。
[0185] 〔実施例 9〕
コンデンサー、温度計および攪拌羽根を付けた 200mLのガラス製セパラブルフラ スコに、 PBS6を 100. 0g (OH基; 0. 102mol)、イミンィ匕合物 1を 11. 3g (OH基; 0 . 102mol)入れた。窒素雰囲気下で 130°Cで溶融した後、 1%ジラウリン酸ジブチル すず(IV)トルエン溶液 0. 89g (ジラウリン酸ジブチルすず(IV) : 0. 014mmol、和光 純薬工業株式会社製、純度 99. 0%)を添加した。次に、へキサメチレンジイソシァネ ート(以下「HDI」という) 16. 5g (NCO基; 0. 195mol、三井化学ポリウレタン株式会 社製「タケネート 700」、 NCO含有量 49. 6重量%)を 10分間で滴下し、滴下ロート 内に残量する HDIを 1. 3gのトルエンで洗い流した。次いで、窒素雰囲気下で 130 °Cで 3時間反応を行った後、溶融ポリマーをステンレス製バットに排出し、 101. Ogの ィミン含有 PBSを得た。得られたィミン含有 PBSの分子量を GPCで測定した結果、 数平均分子量が 26984であった。また、 - NMRスペクトルを測定し、 8. 29ppmの ィミン結合のメチンピークカもィミン含有 PBSにィミン結合が存在することを確認した。 iH-NMR ^ベクトルを解析した結果、下記式(10)の化学構造を有していることを推 し 7こ。
[化 17]
Figure imgf000056_0001
.S8ZTC/900Zdf/X3d [0187] 得られたィミン含有 PBSを、 130°Cで 5分間熱プレスし、厚みが 15 m、 30 mお よび 100 mのフィルムを作製した。 100 m厚のフィルムの引張強度は 31. 9MPa 、引張弾性率は 832MPaであった。このフィルムは、外観および肌触りともに良好で あり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 259時間 で l〜2cm角に崩壊し、そのときの数平均分子量は 15800まで低下していた。また、 100 /z m厚のフィルムを用いて水中浸漬後の引張強度経時変化を測定した結果、水 中浸漬 2時間で引張強度力 S12. 2MPaまで低下した。水中浸漬後の引張強度経時 変化を測定した結果を図 1に示す。また、 30 /z m厚のフィルムを用いて生分解性試 験を行った結果、生分解度が 1週間後で 15. 3%、 2週間後で 27. 5%、 3週間後で 4 0. 8%、 4週間後で 52. 3%、 5週間後で 60. 0%であった。
[0188] 〔実施例 10〕
PBS6の代わりにポリブチレンアジペートジオール(以下「PBAジオール」 t 、う)を 100. 0g (OH基; 0. 100mol、三井化学ポリウレタン株式会社製「タケラック U— 242 0」、水酸基価 56. lmg— KOH/g)使用し、イミンィ匕合物 1の使用量を 11. 0g (OH 基; 0. lOOmol)に変え、 HDIの使用量を 16. lg (NCO基; 0. 190mol)に変えた以 外は実施例 9と同様にして、ィミン結合を有するポリブチレンアジペート(以下「ィミン 含有 PBA」という) 115. lgを得た。得られたィミン含有 PBAの分子量を GPCで測定 した結果、数平均分子量が 34850であった。また、 ^H-NMRスペクトルを測定し、 8 . 29ppmのィミン結合のメチンピークカもィミン含有 PBAにィミン結合が存在すること を確認した。 ^H-NMRスペクトルを解析した結果、下記式(11)の化学構造を有して 、ることを推定した。
[0189] [化 18]
Figure imgf000058_0001
[0190] 得られたィミン含有 PBAを用いて、実施例 9と同様にしてフィルムを作製した。 100 /z m厚のフィルムの引張強度は 30. 9MPa、引張弾性率は 520MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 3時間で 1 〜2cm角に崩壊し、そのときの数平均分子量は 12930まで低下していた。また、 10 0 m厚のフィルムを用いて水中浸漬後の引張強度経時変化を測定した結果、水中 浸漬 2時間で引張強度が 7. IMPaまで低下した。水中浸漬後の引張強度経時変化 を測定した結果を図 1に示す。また、 30 m厚のフィルムを用いて生分解性試験を 行った結果、生分解度が 1週間後で 20. 0%、 2週間後で 31. 5%、 3週間後で 48. 3%、 4週間後で 61. 2%であった。
[0191] 〔実施例 11〕
イミンィ匕合物 1の代わりにイミンィ匕合物 2を 15. 8g (OH ;0. 102mol)使用した以外 は実施例 9と同様にして、 95. 3gのィミン含有 PBSを得た。得られたィミン含有 PBS の分子量を GPCで測定した結果、数平均分子量が 30240であった。また、 ^Η-ΝΜ Rスペクトルを測定し、 8. 29ppmのィミン結合のメチンピークカもィミン含有 PBSにィ ミン結合が存在することを確認した。 iH-NMRスペクトルを解析した結果、下記式(1 2)の化学構造を有して!/ヽることを推定した。
[0192] [化 19]
Figure imgf000060_0001
[0193] 得られたィミン含有 PBSを用いて、実施例 9と同様にしてフィルムを作製した。 100 /z m厚のフィルムの引張強度は 29. 9MPa、引張弾性率は 785MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 86時間で l〜2cm角に崩壊し、そのときの数平均分子量は 15870まで低下していた。また、 3 0 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 17 . 4%、 2週間後で 30. 6%、 3週間後で 45. 5%、 4週間後で 58. 3%、 5週間後で 6 3. 9%であった。
[0194] 〔実施例 12〕
イミンィ匕合物 1の代わりにイミンィ匕合物 2を 15. 4g (OH基; 0. lOOmol)使用した以 外は実施例 10と同様にして、 102. 3gのィミン含有 PBAを得た。得られたィミン含有 PBAの分子量を GPCで測定した結果、数平均分子量が 34200であった。また、 NMRスペクトルを測定し、 8. 29ppmのィミン結合のメチンピークからィミン含有 PBA にィミン結合が存在することを確認した。 iH-NMR ^ベクトルを解析した結果、下記 式(13)の化学構造を有していることを推定した。
[0195] [化 20]
Figure imgf000062_0001
LS8Zl£/900Zd /13d 19 8L 00/L00Z OAV [0196] 得られたィミン含有 PBAを用いて、実施例 9と同様にしてフィルムを作製した。 100 /z m厚のフィルムの引張強度は 29. 3MPa、引張弾性率は 480MPaであった。この フィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 2時間で 1 〜2cm角に崩壊し、そのときの数平均分子量は 11950まで低下していた。また、 30 μ m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 33. 0%、 2週間後で 45. 5%、 3週間後で 59. 3%、 4週間後で 75. 6%であった。
[0197] 〔比較例 2〕
イミンィ匕合物 1を用いず、 HDIの使用量を 8. 2g (NCO基; 0. 097mol)に変えた以 外は実施例 9と同様にして、 80. 5gの PBSを得た。得られた PBSの分子量を GPCで 測定した結果、数平均分子量が 24150であった。
得られた PBSを用いて、実施例 9と同様にしてフィルムを作製した。 100 /z m厚のフ イルムの引張強度は 67. 4MPa、引張弾性率は 455MPaであった。このフィルムは、 外観および肌触りともに良好であり、柔軟で強度が高力つた。
[0198] 100 μ m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 6%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 5. 2%、 2週間後で 15. 7%、 3週間後で 23. 6%、 4週間後で 37. 7%、 5週間後で 46. 8%であり、ィミン含有 PBSより生分解性が劣っていた。
[0199] 〔比較例 3〕
ィミン化合物 1を用いず、 PBS6の代わりに PBAジオールを 100. 0g (OH基; 0. 1 OOmol)使用し、 HDIの使用量を 8. 0g (NCO基; 0. 095mol)に変えた以外は実施 例 9と同様にして、ポリブチレンアジペート(以下「PBA」という) 91. 6gを得た。得られ た PBAの分子量を GPCで測定した結果、数平均分子量が 45450であった。
[0200] 得られた PBAを用いて、実施例 9と同様にしてフィルムを作製した。 100 μ m厚のフ イルムの引張強度は 72. 5MPa、引張弾性率は 250MPaであった。このフィルムは、 外観および肌触りともに良好であり、柔軟で強度が高力つた。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 10. 1%、 2週間後で 16. 0%、 3週間後で 25. 2%、 4週間後で 40. 3%であり、イミ ン含有 PBAより生分解性が劣って 、た。
[0201] 〔実施例 13〕
PBS6の代わりに PBS6を 50. 0g (OH基; 0. 051mol)および PBAジオールを 50 . 0g (OH基; 0.050mol)使用し、ィミン化合物 1の使用量を 11. lg (OH基; 0. 101 mol)に変え、 HDIの使用量を 16. 3g (NCO基; 0. 192mol)に変えた以外は実施 例 9と同様にして、ィミン結合を有するポリブチレンアジペートーポリブチレンサクシネ ート共重合体 (以下「ィミン含有 PBA— PBS」という) 112. 5gを得た。得られたィミン 含有 PBA— PBSの分子量を GPCで測定した結果、数平均分子量が 41200であつ た。また、 NMR ^ベクトルを測定し、 8. 29ppmのィミン結合のメチンピークカもィ ミン含有 PBA—PBSにィミン結合が存在することを確認した。 NMR ^ベクトルを 解析した結果、下記式(14)の化学構造を有して!/ヽることを推定した。
[0202] [化 21]
Figure imgf000065_0001
.S8ZTC/900Zdf/X3d ャ9 8L 00/L00Z OAV [0203] 得られたィミン含有 PBA— PBSを用いて、実施例 9と同様にしてフィルムを作製し た。 100 m厚のフィルムの引張強度は 20. 9MPa、引張弾性率は 630MPaであつ た。このフィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 200時間 で l〜2cm角に崩壊し、そのときの数平均分子量は 12930まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 2 5. 3%、 2週間後で 38. 5%、 3週間後で 50. 7%、 4週間後で 61.3%であった。
[0204] 〔比較例 4〕
イミンィ匕合物 1を用いず、 HDIの使用量を 8. lg (NCO基; 0. 096mol)に変えた以 外は実施例 13と同様にして、ポリブチレンアジペートーポリブチレンサクシネート共 重合体(以下「PBA—PBS」という) 81. 6gを得た。得られた PBA—PBSの分子量を GPCで測定した結果、数平均分子量が 30650であった。
[0205] 得られた PBA— PBSを用いて、実施例 9と同様にしてフィルムを作製した。 100 m厚のフィルムの引張強度は 69. lMPa、引張弾性率は 389MPaであった。このフ イルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 8. 3%、 2週間後で 16. 3%、 3週間後で 30. 9%、 4週間後で 50. 7%であり、ィミン 含有 PBA— PBSより生分解性が劣っていた。
[0206] 〔実施例 14〕
PBS6の代わりに PBAジオールを 100. 0g (OH基; 0. lOOmol)および 1, 4 ブタ ンジオールを 4. 6g (OH基; O. lOOmol)使用し、ィミン化合物 1の使用量を 22. 0g ( OH基; 0. 200mol)【こ変免、 HDIの使用量を 32. 2g (NCO基; 0. 380mol)【こ変免 た以外は実施例 9と同様にして、ィミン結合を有するポリブチレンアジペート ブタン ジオール共重合体 (以下「ィミン含有 PBA— BD」 t 、う) 90. 5gを得た。得られたイミ ン含有 PBA— BDの分子量を GPCで測定した結果、数平均分子量が 20530であつ た。また、 NMR ^ベクトルを測定し、 8. 29ppmのィミン結合のメチンピークカもィ ミン含有 PBA—BDにィミン結合が存在することを確認した。 NMRスペクトルを 解析した結果、下記式(15)の化学構造を有して!/ヽることを推定した。
[化 22]
Figure imgf000068_0001
[0208] 得られたィミン含有 PBA— BDを用いて、実施例 9と同様にしてフィルムを作製した 。 100 m厚のフィルムの引張強度は 40. 9MPa、引張弾性率は 753MPaであった 。このフィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 9%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 520時間 で 4cm角に崩壊し、そのときの数平均分子量は 11050まで低下していた。また、 30 μ m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 10. 7%、 2週間後で 21. 8%、 3週間後で 35. 7%、 4週間後で 49. 3%、 5週間後で 55 . 8%、 6週間後で 62. 3%であった。
[0209] 〔比較例 5〕
ィミン化合物 1を用いず、 HDIの使用量を 16. lg (NCO基; 0. 190mol)に変えた 以外は実施例 14と同様にして、ポリブチレンアジペート ブタンジオール共重合体( 以下「PBA—BD」という) 81. 6gを得た。得られた PBA—BDの分子量を GPCで測 定した結果、数平均分子量が 31450であった。
[0210] 得られた PBA—BDを用いて、実施例 9と同様にしてフィルムを作製した。 100 /z m 厚のフィルムの引張強度は 75. 3MPa、引張弾性率は 544MPaであった。このフィ ルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 /z m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 3. 4%、 2 週間後で 7. 1%、 3週間後で 18. 4%、 4週間後で 26. 8%、 5週間後で 38. 5%、 6 週間後で 45. 8%であり、ィミン含有 PBA—BDより生分解性が劣っていた。
[0211] 〔実施例 15〕
PBS6の代わりに PBS6を 100. 0g (OH基; 0. 102mol)およびポリエチレングリコ ールを 10. lg (OH基; 0.010mol、東邦化学工業株式会社製「PEG— 2000」、水 酸基価 57. lmg— KOH/g)使用し、イミンィ匕合物 1の使用量を 12. 4g (OH基; 0. 1 12mol)に変え、 HDIの使用量を 18. 2g (NCO基; 0. 214mol)に変えた以外は実 施例 9と同様にして、ィミン結合を有するポリブチレンサクシネート ポリエチレンダリ コール共重合体 (以下「ィミン含有 PBS— PEG」 t 、う) 90. 5gを得た。得られたイミ ン含有 PBS— PEGの分子量を GPCで測定した結果、数平均分子量が 35705であ つた。また、 NMR ^ベクトルを測定し、 8. 29ppmのィミン結合のメチンピークから ィミン含有 PBS— PEGにィミン結合が存在することを確認した。 NMR ^ベクトル を解析した結果、下記式(16)の化学構造を有して!/ヽることを推定した。
[化 23]
Figure imgf000071_0001
[0213] 得られたィミン含有 PBS— PEGを用いて、実施例 9と同様にしてフィルムを作製し た。 100 m厚のフィルムの引張強度は 25. OMPa、引張弾性率は 685MPaであつ た。このフィルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 5%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 180時間 で l〜2cm角に崩壊し、そのときの数平均分子量は 15852まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 1
7. 3%、 2週間後で 30. 5%、 3週間後で 45. 2%、 4週間後で 55. 5%、 5週間後で 64. 2%であった。
[0214] 〔比較例 6〕
イミンィ匕合物 1を用いず、 HDIの使用量を 9. lg (NCO基; 0. 106mol)に変えた以 外は実施例 15と同様にして、ポリブチレンサクシネート ポリエチレングリコール共重 合体(以下「PBS— PEG」という) 80. 6gを得た。得られた PBS— PEGの分子量を G PCで測定した結果、数平均分子量が 42521であった。
[0215] 得られた PBS— PEGを用いて、実施例 9と同様にしてフィルムを作製した。 100 m厚のフィルムの引張強度は 65. 3MPa、引張弾性率は 498MPaであった。このフ イルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 5%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で
8. 7%、 2週間後で 17. 3%、 3週間後で 25. 8%、 4週間後で 33. 4%、 5週間後で 45. 6%であり、ィミン含有 PBS— PEGより生分解性が劣っていた。
[0216] 〔実施例 16〕
コンデンサー付き水分定量受器、温度計、曲管および SUS製攪拌羽根を付けた S US製 200mLセノ ラブノレフラスコ【こ、 PBS6を 100. 0g (OH基; 0. 102mol)、ィミン 化合物 1を 11. 3g (OH基; 0. 102mol)、炭酸ジェチルを 12. 3g (0. 102mol、和 光純薬工業株式会社製、純度 98%)、ナトリウムメトキシドを 0. 03g (0. 528mmol、 和光純薬工業株式会社製、純度 95%)入れた。 120°Cまでゆっくりと昇温し、 120°C で生成エタノールの留去がなくなるまで反応を継続した。さらに、減圧下、 180°Cで 2 4時間反応させてィミン結合を有するポリカーボネート(以下「ィミン含有 PC」 t 、う) 1 01. 3gを得た。
[0217] 得られたィミン含有 PCの分子量を GPCで測定した結果、数平均分子量が 25200 であった。また、 NMR ^ベクトルを測定し、 8. 29ppmのィミン結合のメチンピー クからイミン含有 PCにィミン結合が存在することを確認した。 iH-NMR ^ベクトルを解 祈した結果、下記式( 17)の化学構造を有して!/、ることを推定した。
[0218] [化 24]
Figure imgf000073_0001
… (1 7〕
[0219] 得られたィミン含有 PCを用いて、実施例 9と同様にしてフィルムを作製した。 100 m厚のフィルムの引張強度は 21. OMPa、引張弾性率は 578MPaであった。このフ イルムは、外観および肌触りともに良好であり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 5%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 270時間 で l〜2cm角に崩壊し、そのときの数平均分子量は 13600まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 4 0. 3%、 2週間後で 60. 5%、 3週間後で 75. 3%、 4週間後で 86. 4%であった。
[0220] 〔比較例 7〕
イミンィ匕合物 1を用いず、炭酸ジェチルの使用量を 6. 2g (0. 050mol)に変えた以 外は実施例 16と同様にして、ポリカーボネート(以下「PC」という) 90. 6gを得た。得 られた PCの分子量を GPCで測定した結果、数平均分子量が 26528であった。
[0221] 得られた PCを用いて、実施例 9と同様にしてフィルムを作製した。 100 m厚のフィ ルムの引張強度は 22. OMPa、引張弾性率は 530MPaであった。このフィルムは、 外観および肌触りともに良好であり、柔軟で強度が高力つた。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 21. 3%、 2週間後で 32. 1%、 3週間後で 40. 6%、 4週間後で 58. 2%であり、イミ ン含有 PCより生分解性が劣っていた。
[0222] 〔実施例 17〕
PBS6の代わりに PBSAジオール 100. 0g (OH ; 0. 102mol)を使用した以外は実 施例 9と同様にして、 100. 3gのィミン結合を有するポリブチレンサクシナートアジべ ート(以下「ィミン含有 PBSA」 t 、う)を得た。得られたィミン含有 PBSAの分子量を G PCで測定した結果、数平均分子量が 31000であった。また、 NMRスペクトルを 測定し、 8. 29ppmのィミン結合のメチンピークカもィミン含有 PBSAにィミン結合が 存在することを確認した。 iH-NMRスペクトルを解析した結果、下記式(18)の化学 構造を有して 、ることを推定した。
[0223] [化 25]
Figure imgf000075_0001
得られたィミン含有 PBSAを 130°Cで 5分間熱プレスし、厚みが m、 30 mお よび 100 μ mのフィルムを作製した。 100 /x m厚のフィルムの引張強度は 28. 5MPa 、引張弾性率は 632MPaであった。このフィルムは、外観および肌触りともに良好で あり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 7%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 249時間 で l〜2cm角に崩壊し、そのときの数平均分子量は 16000まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 1 6. 8%、 2週間後で 30. 3%、 3週間後で 45. 0%、 4週間後で 58. 2%、 5週間後で 66. 5%であった。
[0225] 〔実施例 18〕
PBS6の代わりに PBSAジオールを 100. 0g (OH ;0. 102mol)使用し、ィミン化合 物 1の代わりにィミン化合物 2を 15. 8g (OH ;0. 102mol)使用した以外は実施例 9 と同様にして、 95. 3gのィミン含有 PBSAを得た。得られたィミン含有 PBSAの分子 量を GPCで測定した結果、数平均分子量が 30450であった。また、 iH-NMRスぺク トルを測定し、 8. 29ppmのィミン結合のメチンピークからィミン含有 PBSAにィミン結 合が存在することを確認した。 iH-NMRスペクトルを解析した結果、下記式(19)の 化学構造を有して ヽることを推定した。
[0226] [化 26]
-- ~
Figure imgf000077_0001
ミン含有 PBSAを 130°Cで 5分間熱プレスし、厚みが 15 m、 30 mお よび 100 mのフィルムを作製した。 100 m厚のフィルムの引張強度は 27. 9MPa 、引張弾性率は 530MPaであった。このフィルムは、外観および肌触りともに良好で あり、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 6%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルムが 75時間で l〜2cm角に崩壊し、そのときの数平均分子量は 15240まで低下していた。また、 3 0 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 19 . 1%、 2週間後で 33. 5%、 3週間後で 49. 7%、 4週間後で 63. 9%であった。
[0228] 〔比較例 8〕
イミンィ匕合物 1を用いず、 HDIの使用量を 8. 2g (NCO基; 0. 097mol)に変えた以 外は実施例 17と同様にして、 80. 5gの PBSAを得た。得られた PBSAの分子量を G PCで測定した結果、数平均分子量が 24150であった。
得られた PBSを用いて、実施例 9と同様にしてフィルムを作製した。 100 /z m厚のフ イルムの引張強度は 65. 2MPa、引張弾性率は 436MPaであった。このフィルムは、 外観および肌触りともに良好であり、柔軟で強度が高力つた。
[0229] 100 μ m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った力 水崩壊性は認められな力つた。また 、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 5. 7%、 2週間後で 16. 9%、 3週間後で 25. 0%、 4週間後で 38. 9%、 5週間後で 50. 8%であり、ィミン含有 PBSAより生分解性が劣っていた。
[0230] 〔実施例 19〕
イミンィ匕合物 1の代わりにイミンィ匕合物 3を 8. 2g (OH ;0. 102mol)使用した以外は 実施例 9と同様にして、 97. 7gのィミン含有 PBSを得た。得られたィミン含有 PBSの 分子量を GPCで測定した結果、数平均分子量が 29544であった。また、 ipi-NMR スペクトルを測定した結果を解析した結果、下記式(20)の化学構造を有して!/ヽること を推定した。 [0231] [化 27]
Figure imgf000079_0001
- * · ( 2 0 )
[0232] 得られたィミン含有 PBSを 130°Cで 5分間熱プレスし、厚みが 15 m、 30 mおよ び 100 mのフィルムを作製した。 100 m厚のフィルムの引張強度は 29. 0MPa、 引張弾性率は 577MPaであった。このフィルムは、外観および肌触りともに良好であ り、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 9%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルム力 33時間 で 2〜3cm角に崩壊し、そのときの数平均分子量は 19421まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 1 4. 4%、 2週間後で 25. 6%、 3週間後で 38. 7%、 4週間後で 50. 8%、 5週間後で 60. 0%であった。
[0233] 〔実施例 20〕
イミンィ匕合物 1の代わりにイミンィ匕合物 4を 11. lg (OH ;0. 102mol)使用した以外 は実施例 9と同様にして、 98. 3gのィミン含有 PBSを得た。得られたィミン含有 PBS の分子量を GPCで測定した結果、数平均分子量が 31000であった。また、 ^Η-ΝΜ Rスペクトルを測定した結果を解析した結果、下記式(21)の化学構造を有して!/ヽるこ とを推定した。
[0234] [化 28]
Figure imgf000080_0001
[0235] 得られたィミン含有 PBSを 130°Cで 5分間熱プレスし、厚みが 15 m、 30 mおよ び 100 mのフィルムを作製した。 100 m厚のフィルムの引張強度は 28. 7MPa、 引張弾性率は 598MPaであった。このフィルムは、外観および肌触りともに良好であ り、柔軟で強度が高かった。
100 m厚のフィルムを用いて水溶性試験を行った。その結果、フィルムの重量保 持率は 99. 8%であり、水溶性がこのフィルムにないことが確認できた。また、 15 m 厚のフィルムを用いて水崩壊性試験を行った結果、 11cm角のフィルム力 45時間 で 2〜3cm角に崩壊し、そのときの数平均分子量は 19540まで低下していた。また、 30 m厚のフィルムを用いて生分解性試験を行った結果、生分解度が 1週間後で 1 4. 7%、 2週間後で 25. 9%、 3週間後で 39. 0%、 4週間後で 51. 4%、 5週間後で 60. 0%であった。
[0236] <生分解性ポリマー榭脂組成物 >
〔実施例 21〜29および参考例 1〜4〕
表 6に示す配合条件で生分解性ポリマーと無機添加剤とを混合し、さらにプラストミ ルで 130°C、 5分間溶融混合し、排出した生分解性ポリマー榭脂組成物を用いて、 実施例 9と同様にして 15 m厚のフィルムを作成し、水崩壊性試験を実施した。その 水崩壊時間を表 6に示す。
[0237] [表 6] 生分解性ポリマ一 (A) 無機添加剤 (B) 水崩壊 重量比
配合量 配合量 時間 (A) / (B)
種類 種類 ( hr)
[g] [gl
実施例 21 実施例 9 60 シリカ 0 . 006 100/0. 01 230 実施例 22 実施例 9 60 シリカ 100/0 . 1 200 実施例 23 実施例 9 60 シリカ 0 . 6 100/1 177 実施例 24 実施例 9 60 シリカ 6 100/10 129 実施例 25 実施例 9 60 シリカ 30 100/50 220 参考例 1 実施例 9 60 ― 0 100/0 259 参考例 2 実施例 9 60 シリカ 36 100/60 365 実施例 26 実施例 9 60 モルデナイト 0 . 6 100/1 185 実施例 27 実施例 13 60 シリカ 3 100/5 111 参考例 3 実施例 13 60 ― o 0 100/0 200 実施例 28 実施例 14 60 シリカ 6 100/10 255 参考例 4 実施例 14 60 ― 0 100/0 520 実施例 29 実施例 14 60 モルデナイト 6 100/10 261 水崩壊性試験結果力も生分解性ポリマー 100重量部に対し、無機添加剤を 0. 01 〜50重量部の範囲で配合した生分解性ポリマー樹脂組成物の水崩壊性は、無添加 のものに比べ向上する。一方、無機添加剤を 50重量部を超えて配合した生分解性 ポリマー樹脂組成物は、水崩壊性の向上は認められな力つた。
<生分解性ポリマーの不織布製造 >
〔実施例 30〜35および比較例 9〜: 13〕
表 7に示す生分解性ポリマーを用いた。紡糸温度 210°Cとし、孔数が 72個のノズル を用いて溶融紡出した。この紡出糸条を 20°Cの冷却空気流で冷却した後、引き続き エアーサッカーを用いて引き取り速度 3500mZ分で引き取り、ネットコンベア 上に 捕集堆積させてウェブを作製した。その後、ロール温度 105°C、圧接面積率 17%、 線圧 30kgZcmの条件で、エンボスロールとフラットロールとによってウェブを部分熱 接着した。そして、スパンボンド法にて、繊度 3. 0デニール、 目付け 50g/m2の生分 解性ポリマーの不織布を得た。得られた不織布について、 KGSM強力(MDZCD) を測定するとともに、水崩壊性試験を行った。結果を表 7に示す,
[0239] [表 7]
Figure imgf000082_0001
(注) X : 520時間経っても水崩壊しない
[0240] 本発明の生分解性ポリマーで製造した不織布(実施例 30〜35)は、外観および肌 触りともに良好であり、柔軟で充分な強度を有している。また、優れた水崩壊性も示し た。一方、ィミン結合を有しない生分解性ポリマーで製造した不織布 (比較例 9〜: L 3) は外観、肌触りおよび強度は良好であるが、水崩壊性を示さな力つた。

Claims

請求の範囲
[1] 分子内に 1つ以上のィミン結合を有する生分解性ポリマーであって、該ィミン結合 が該生分解性ポリマーの主鎖構造の一部を形成することを特徴とする生分解性ポリ マー。
[2] 前記生分解性ポリマーが、生分解性部位と、 1つ以上のィミン結合を有するイミン部 位とを含有し、かつ、該生分解性部位間を該ィミン部位によって連結した形の化学構 造を含有することを特徴とする請求項 1に記載の生分解性ポリマー。
[3] 前記生分解性部位が、ポリエステル類、オリゴエステル類、ポリ(アミド-エステル)類 、オリゴ (アミド-エステル)類またはポリエーテル類であることを特徴とする請求項 2に 記載の生分解性ポリマー。
[4] 前記イミン部位が下記一般式(1)で表されるィミン部位であることを特徴とする請求 項 2に記載の生分解性ポリマー。
[化 1]
Figure imgf000083_0001
(式中、 R〜Rは、それぞれ独立に炭素数 1〜20の炭化水素基を表し、 Yおよび Y
1 3 1 2 は、それぞれ独立に— CR = N—または— N = CR—を表し、 Rは水素原子または炭 素数 1〜20の脂肪族炭化水素基を表し、 kは 0〜: LOOOの整数を表す。 )
前記生分解性部位と前記イミン部位とを連結させる化学結合が、エステル結合、ァ ミド結合、ウレタン結合、ゥレア結合、カーボネート結合または下記一般式(2)で表さ れる結合であることを特徴とする請求項 2に記載の生分解性ポリマー。
[化 2]
Χ —Ι - X2― . . . ( 2 )
(式中、 R'は炭素数 1〜20の 2価の炭化水素基を表し、 Xおよび Xは、それぞれ独
1 2
立にエステル結合、アミド結合、ウレタン結合、ゥレア結合またはカーボネート結合を 表す。)
[6] 前記生分解性部位力 ポリエステル類、オリゴエステル類、ポリ(アミド-エステル)類
、オリゴ (アミド-エステル)類またはポリエーテル類であり、
前記イミン部位力 請求項 4に記載の一般式(1)で表されるィミン部位であり、 前記生分解性部位と前記イミン部位とを連結させる化学結合が、エステル結合、ァ ミド結合、ウレタン結合、ゥレア結合、カーボネート結合または請求項 5に記載の一般 式(2)で表される結合であることを特徴とする請求項 2に記載の生分解性ポリマー。
[7] 生分解性部位を含む化合物と、 1個以上のィミン結合を有するィミン部位を含む化 合物と、縮合剤とを反応させることを特徴とする生分解性ポリマーの製造方法
[8] 前記縮合剤が、ヨウ化 2 クロ口 1—メチルピリジ-ゥム、ヨウ化 2 ブロモ—1—メ チルピリジ-ゥム、 2—クロロー 1 ェチルピリジ-ゥムテトラフルォロボレートまたは 2
—プロモー 1 ェチルピリジ-ゥムテトラフルォロボレートであることを特徴とする請求 項 7に記載の生分解性ポリマーの製造方法。
[9] 生分解性部位を含む化合物と、 1個以上のィミン結合を有するィミン部位を含む化 合物と、連結剤とを反応させることを特徴とする生分解性ポリマーの製造方法。
[10] 前記連結剤がジイソシァネート類または炭酸エステル類であることを特徴とする請 求項 9に記載の生分解性ポリマーの製造方法。
[11] 請求項 1〜6のいずれかに記載の生分解性ポリマーを含有してなることを特徴とす る生分解性ポリマーの成形物。
[12] 前記成形物が無機添加剤を含有することを特徴とする請求項 11に記載の生分解 性ポリマーの成形物。
[13] 前記成形物が、シート、フィルム、容器または不織布であることを特徴とする請求項
11に記載の生分解性ポリマーの成形物。
[14] 請求項 1〜6のいずれかに記載の生分解性ポリマーを含有することを特徴とする衛 生用品。
[15] 前記衛生用品が、生理用ナプキン、パンティーライナー、使い捨ておむつまたは生 理用タンポンアプリケータカ 選ばれる少なくとも 1種であることを特徴とする請求項 1 4に記載の衛生用品。
[16] 請求項 1〜6のいずれかに記載の生分解性ポリマーを含有することを特徴とする農 園芸資材。
[17] 前記農園芸資材が、マルチフィルム、育苗ポット、園芸テープ、果実栽培袋、杭、薫 蒸シートまたはビニールノヽウス用フィルム力も選ばれる少なくとも 1種であることを特徴 とする請求項 16に記載の農園芸資材。
[18] 請求項 1〜6のいずれかに記載の生分解性ポリマーを含有することを特徴とする土 木建築資材。
[19] 前記土木建築資材が、植生ネット、植生ポット、立体網状体、土木用繊維、杭また は断熱材力も選ばれる少なくとも 1種であることを特徴とする請求項 18に記載の土木 建築資材。
PCT/JP2006/312857 2005-06-30 2006-06-28 生分解性ポリマー、その製造方法および成形物ならびに用途 WO2007004478A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL06767474T PL1897901T3 (pl) 2005-06-30 2006-06-28 Biodegradowalny polimer, jego sposób wytwarzania, formowany produkt i zastosowanie
US11/988,008 US7928180B2 (en) 2005-06-30 2006-06-28 Biodegradable polymer, production method thereof, molded product thereof, and use thereof
EP20060767474 EP1897901B1 (en) 2005-06-30 2006-06-28 Biodegradable polymer, production method thereof, molded product thereof, and use thereof
JP2007523967A JP4819049B2 (ja) 2005-06-30 2006-06-28 生分解性ポリマー、その製造方法および成形物ならびに用途
CN200680023189XA CN101208375B (zh) 2005-06-30 2006-06-28 生物降解性聚合物、其制造方法及成型物以及用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005191203 2005-06-30
JP2005-191203 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004478A1 true WO2007004478A1 (ja) 2007-01-11

Family

ID=37604347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312857 WO2007004478A1 (ja) 2005-06-30 2006-06-28 生分解性ポリマー、その製造方法および成形物ならびに用途

Country Status (7)

Country Link
US (1) US7928180B2 (ja)
EP (1) EP1897901B1 (ja)
JP (1) JP4819049B2 (ja)
KR (1) KR20080031349A (ja)
CN (1) CN101208375B (ja)
PL (1) PL1897901T3 (ja)
WO (1) WO2007004478A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042655A (ja) * 2008-03-19 2010-02-25 Tohcello Co Ltd 積層フィルム及びそれからなる包装材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329977B2 (en) 2007-08-22 2012-12-11 Kimberly-Clark Worldwide, Inc. Biodegradable water-sensitive films
US8907155B2 (en) 2010-11-19 2014-12-09 Kimberly-Clark Worldwide, Inc. Biodegradable and flushable multi-layered film
US20150065650A1 (en) 2013-08-29 2015-03-05 Nylon Corporation Of America, Inc. Biodegradable nylon and method for the manufacture thereof
US9453099B2 (en) * 2014-03-12 2016-09-27 The Regents Of The University Of Colorado, A Body Corporate Covalently cross-linked malleable polymers and methods of use
CN109651774A (zh) * 2018-12-21 2019-04-19 付传英 一种可生物降解医用材料及其制备方法
WO2020243321A1 (en) * 2019-05-28 2020-12-03 Delstar Technologies, Inc. Pleated polymeric sheet having apertures
CN112175176A (zh) * 2020-10-26 2021-01-05 徐州工程学院 一种海水可降解呋喃二甲酸共聚酯及制备方法
CN113307959A (zh) * 2021-06-02 2021-08-27 徐州工程学院 一种海水可降解丁二酸丁二醇共聚酯及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306298A (ja) * 1990-03-27 1994-11-01 Korea Res Inst Chem Technol 生分解性及び高吸収性樹脂組成物、この組成物からなる不織布及びその用途
JP2002526383A (ja) * 1998-05-16 2002-08-20 モガン バイオテクノロジー リサーチ インスティチュート 薬物分子と生分解性高分子の共有結合を用いた薬物分子伝達システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038223A (en) * 1975-09-30 1977-07-26 Neste Oy Novel segmented copolymers containing free hydroxyl groups and method of preparing the same
GB8330414D0 (en) * 1983-11-15 1983-12-21 Ici Plc Disposable bags
US4900299A (en) * 1987-05-11 1990-02-13 Mcneil-Ppc, Inc. Biodegradable tampon application comprising poly(3-hydroxybutyric acid)
US5066765A (en) * 1990-04-11 1991-11-19 Nippon Steel Chemical Co., Ltd. Poly(azomethine-ester) having film-forming ability, and heat resistance pre and regulated monomer sequences in the polymer backbone
JPH0529211A (ja) 1991-07-18 1993-02-05 Sharp Corp 多層レジスト法
JP3209591B2 (ja) 1992-10-28 2001-09-17 東洋インキ製造株式会社 水崩壊性不織布積層物
JP3420794B2 (ja) 1993-04-15 2003-06-30 住友精化株式会社 生分解性樹脂組成物
JPH0757230A (ja) 1993-08-19 1995-03-03 Alps Electric Co Ltd 磁気ヘッドおよびその製造方法
US5968222A (en) * 1997-02-07 1999-10-19 Cargill, Incorporated Dust reduction agents for granular inorganic substances
US7037992B2 (en) 1999-09-29 2006-05-02 Sri International Olefin copolymers containing hydrolytically cleavable linkages and use thereof in degradable products
KR100448170B1 (ko) * 2001-06-23 2004-09-10 주식회사 태평양 폴리에틸렌이민을 친수성 블록으로 갖고 폴리에스테르계고분자를 소수성 블록으로 갖는 양친성 생분해성 블록공중합체 및 이를 이용한 수용액 상에서의 고분자자기조합 회합체
JP2003073470A (ja) * 2001-08-31 2003-03-12 Keio Gijuku 酸分解性ポリアゾメチン
JP4053799B2 (ja) * 2002-03-19 2008-02-27 三井化学ポリウレタン株式会社 ポリオール、その製造方法、当該ポリオールから得られるポリウレタン樹脂または発泡体
WO2004003044A2 (en) 2002-06-28 2004-01-08 Jean-Marie Lehn Dynamers: polymeric materials exhibiting reversible formation and component exchange

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306298A (ja) * 1990-03-27 1994-11-01 Korea Res Inst Chem Technol 生分解性及び高吸収性樹脂組成物、この組成物からなる不織布及びその用途
JP2002526383A (ja) * 1998-05-16 2002-08-20 モガン バイオテクノロジー リサーチ インスティチュート 薬物分子と生分解性高分子の共有結合を用いた薬物分子伝達システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042655A (ja) * 2008-03-19 2010-02-25 Tohcello Co Ltd 積層フィルム及びそれからなる包装材

Also Published As

Publication number Publication date
JPWO2007004478A1 (ja) 2009-01-29
CN101208375A (zh) 2008-06-25
EP1897901A1 (en) 2008-03-12
KR20080031349A (ko) 2008-04-08
US20090142982A1 (en) 2009-06-04
PL1897901T3 (pl) 2015-08-31
JP4819049B2 (ja) 2011-11-16
CN101208375B (zh) 2012-03-21
EP1897901B1 (en) 2015-03-11
US7928180B2 (en) 2011-04-19
EP1897901A4 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2007004478A1 (ja) 生分解性ポリマー、その製造方法および成形物ならびに用途
CN105073784B (zh) 微细纤维素纤维复合体
CN105121734B (zh) 微细纤维素纤维复合体
Fukuda et al. Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units
KR100768628B1 (ko) 수지조성물 및 그 용도
US5295985A (en) Polyesters and their use in compostable products such as disposable diapers
CN111801385B (zh) 成形体、片材及容器,以及管状体、吸管、棉签及气球用杆
TW318858B (ja)
JPH06505040A (ja) 新規なポリエステル類および使い捨て可能おむつの如き堆肥化可能製品におけるそれらの使用
KR20020057961A (ko) 락트산계 수지조성물 및 그것으로 이루어진 성형체
TW565578B (en) Biodegradable PHA copolymers
JP2004532360A (ja) ポリヒドロキシアルカノエートコポリマー/ポリ乳酸ポリマー又はコポリマーブレンドを含む繊維
WO2001019887A1 (fr) Resine de polyuretane biodegradable
CZ95799A3 (cs) Biodegradovatelné polyestery
TW470654B (en) Plastic articles comprising biodegradable PHA copolymers
JP4409601B2 (ja) 生分解性ポリエステル繊維
JP4870071B2 (ja) 生分解性を有する水環境応答型ポリマー、その製造方法および水崩壊性材料
TW200526729A (en) Poly(3-hydroxyalkanoate) composition and molded object thereof
JP4884865B2 (ja) 生分解性組成物、その成形体ならびに用途
WO1993007199A1 (en) Sulfonated polyesters and their use in compostable products such as disposable diapers
JP2008024849A (ja) 生分解性を有する水環境応答型ポリマーを含む水崩壊性組成物および水崩壊性成形体
JP5199574B2 (ja) 生分解性ポリマーの製造方法
JPH0748768A (ja) ポリエステル製不織布
TW211030B (ja)
JP6407600B2 (ja) 生分解性ポリエステル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023189.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523967

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11988008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006767474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087002415

Country of ref document: KR