WO2006134849A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2006134849A1
WO2006134849A1 PCT/JP2006/311699 JP2006311699W WO2006134849A1 WO 2006134849 A1 WO2006134849 A1 WO 2006134849A1 JP 2006311699 W JP2006311699 W JP 2006311699W WO 2006134849 A1 WO2006134849 A1 WO 2006134849A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing plate
electrolyte
fuel cell
separator
conductive separator
Prior art date
Application number
PCT/JP2006/311699
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Izawa
Satoshi Aoyama
Maiko Ikuno
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06747288A priority Critical patent/EP1892781B1/en
Priority to CN2006800216230A priority patent/CN101199070B/zh
Priority to US11/921,556 priority patent/US8137862B2/en
Priority to CA2611610A priority patent/CA2611610C/en
Priority to DE602006017544T priority patent/DE602006017544D1/de
Priority to AU2006258671A priority patent/AU2006258671B2/en
Publication of WO2006134849A1 publication Critical patent/WO2006134849A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell including a separator.
  • a fuel cell is generally a device that obtains electric energy using hydrogen and oxygen as fuel. This fuel cell has been widely developed as a future energy supply system because it is environmentally friendly and can achieve high energy efficiency.
  • the fuel cell has, for example, a structure in which a power generation unit in which an electrolyte is sandwiched between an anode and a cathode is stacked via a separator.
  • the power generation efficiency decreases when the separators come into mechanical contact and are electrically short-circuited. Therefore, it is necessary to maintain insulation between each separator. Therefore, a technique for disposing a ceramic layer using a brazing material between the separators is disclosed (for example, see Patent Document 1). According to this technique, insulation between the separators can be ensured. '
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 4-2 2 7 8 4 8
  • Patent Document 1 since the outer periphery of the separator and the ceramic layer are the same shape, electrically there fear force s shorted when the brazing material between the layers protruding.
  • An object of the present invention is to provide a fuel cell capable of preventing a short circuit due to a mouth material.
  • a fuel cell according to the present invention includes a joining portion in which a first conductive separator, an electrolyte reinforcing plate, and a second conductive separator are joined in order by a brazing material, and the electrolyte reinforcing plate is It is formed larger than the joint surface of the first conductive separator and the second conductive separator, and the electrolyte reinforcing plate has an insulating property at least at the contact portion with the brazing material. Is.
  • the electrolyte reinforcing plate is formed to be larger than the joint surface of the first conductive separator and the second conductive separator at the joint portion. Contact between the brazing material between the plate and the first conductive separator and the brazing material between the electrolyte reinforcing plate and the second conductive separator is prevented. This prevents a short circuit between the first conductive separator and the second conductive separator. From the above, the fuel cell according to the present invention can prevent a short circuit due to the brazing material.
  • the end portion of the electrolyte reinforcing plate may protrude outward by a predetermined distance from the end portions of the first conductive separator and the second conductive separator. In this case, contact between the electrolyte reinforcing plate and the first conductive separator and the brazing material between the electrolyte reinforcing plate and the second conductive separator is prevented.
  • the electrolyte reinforcing plate has an insulating layer formed on at least one side of the joint surface, and the insulating layer is a separator on the insulating layer forming side of the first conductive separator and the second conductive separator. It may be formed wider by a predetermined distance than the outer and inner end faces. In this case, a short circuit between the first conductive separator and the second conductive separator is prevented.
  • the electrolyte reinforcing plate may have an insulating layer formed on both sides at the joint.
  • the first separator and the second separator are insulated by the insulating layers on both sides of the electrolyte reinforcing plate.
  • At least one of the insulating layers may be an electrolyte.
  • the first separator and the second separator are insulated by the electrolyte.
  • the use of an electrolyte for the power generation part of the fuel cell eliminates the need for a new insulating layer. Thereby, the manufacturing process of the fuel cell according to the present invention is shortened, and the manufacturing cost is reduced.
  • the insulating layer is a ceramic, and a primer layer may be further provided between the insulating layer and the electrolyte reinforcing plate.
  • the adhesion between the primer layer and the electrolyte reinforcing plate and the adhesion between the primer layer and the insulating layer are higher than the adhesion between the insulating layer and the electrolyte reinforcing plate. This improves the adhesion between the electrolyte reinforcing plate and the insulating layer. As a result, separation between layers is prevented from occurring. From the above, the fuel dragon pond according to the present invention can perform stable power generation.
  • Another fuel cell according to the present invention includes a joining portion in which a first conductive separator, an electrolyte reinforcing plate, and a second conductive separator are joined in order by a conductive adhesive, and the electrolyte reinforcing plate is joined In the portion, the first conductive separator and the second conductive separator are formed to be larger than the joint surface, and the electrolyte reinforcing plate has an insulating property at least at a contact portion with the conductive adhesive. It is what.
  • the electrolyte reinforcing plate is formed larger than the joint surface of the first conductive separator and the second conductive separator at the joint portion.
  • the conductive adhesive between the first conductive separator and the conductive adhesive between the electrolyte reinforcing plate and the second conductive separator are prevented from coming into contact with each other. This prevents a short circuit between the first conductive separator and the second conductive separator. From the above, the fuel cell according to the present invention can prevent a short circuit due to the conductive adhesive.
  • FIG. 1 is a schematic cross-sectional view of a fuel cell according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a seal portion of the fuel cell in FIG.
  • FIG. 3 is a manufacturing flow diagram for explaining a method for manufacturing a seal portion of a fuel cell.
  • FIG. 4 is a schematic cross-sectional view of another example of a seal portion.
  • FIG. 5 is a manufacturing flow diagram for explaining a manufacturing method of a seal portion.
  • FIG. 6 is a schematic cross-sectional view of a fuel cell according to a second embodiment of the present invention.
  • FIG. 7 is an enlarged cross-sectional view of a seal portion of the fuel cell of FIG.
  • FIG. 1 is a schematic cross-sectional view of a fuel cell 100 according to a first embodiment of the present invention.
  • a hydrogen separation membrane battery was used as the fuel cell.
  • the hydrogen separation membrane battery is a fuel cell provided with a hydrogen separation membrane layer.
  • the hydrogen separation membrane layer is a layer formed of a metal having hydrogen permeability.
  • the hydrogen separation membrane battery has a structure in which the hydrogen separation membrane layer and an electrolyte having proton conductivity are laminated. Hydrogen supplied to the anode of the hydrogen separation membrane battery is converted into protons via a catalyst, moves through proton conductive electrolyte, and combines with oxygen in a force sword to become water.
  • the structure of the fuel cell 100 will be described.
  • the fuel cell 100 includes separators 1 and 8, current collectors 2 and 7, an electrolyte reinforcing plate 3, a hydrogen separation membrane 4, an electrolyte 5, and a force sword 6.
  • Separator 1 is made of a conductive material such as stainless steel, and has a convex portion formed on the upper surface of the outer peripheral portion.
  • the current collector 2 is made of, for example, a conductive material such as SUS 4 30 porous body, Ni porous body, Pt plating A 1 2 0 3 porous body, platinum mesh, etc., and is laminated on the central portion of the separator 1 Has been.
  • the electrolyte reinforcing plate 3 is made of a conductive material such as stainless steel and has a function of reinforcing the hydrogen separation membrane 4. Electrolyte t electrolyte reinforcing plate 3 is formed on the separators 1 via the protrusions and the power collector 2 of separator one motor 1. The electrolyte reinforcing plate 3 and the separator 1 are joined. A recess is formed in the center of the upper surface of the electrolyte reinforcing plate 3, and a hydrogen separation membrane 4 is embedded in the recess.
  • the hydrogen separation membrane 4 functions as an anode to which fuel gas is supplied and is made of a hydrogen permeable metal.
  • the metal constituting the hydrogen separation membrane 4 is, for example, palladium, vanadium, titanium, tantalum or the like.
  • Electrolyte 5 is laminated on the hydrogen separation membrane 4.
  • Electrolyte 5 is, for example, Velobs force Wells pro-ton electric conductor (B a C E_ ⁇ 3, etc.), solid acid-type pro ton conductor (C s HS_ ⁇ 4) consisting of a proton conductive material or the like.
  • the force sword 6 is made of a conductive material such as lanthanum cobaltite, lanthanum manganate, silver, platinum, or platinum-supported carbon, and is laminated on the electrolyte 5.
  • the current collector 7 is made of, for example, a conductive material such as SUS 4 30 porous body, Ni porous body, 1 plating 8 1 20 3 porous body, platinum mesh, etc., and is laminated on the force sword 6.
  • the separator 8 is made of a conductive material such as stainless steel and is laminated on the current collector 7. Further, the separator 8 has a convex portion formed on the lower surface of the outer peripheral portion.
  • the separator 8 and the electrolyte reinforcing plate 3 are joined via the convex portion of the separator 8.
  • a joint portion between the separators 1 and 8 and the electrolyte reinforcing plate 3 is referred to as a seal portion A.
  • the electrolyte reinforcing plate 3 has an insulating property. Details will be described later.
  • fuel gas containing hydrogen is supplied to the gas flow path of the separator 1.
  • This fuel gas is supplied to the hydrogen separation membrane 4 through the current collector 2 and the electrolyte reinforcing plate 3.
  • Hydrogen in the fuel gas is converted into protons in the hydrogen separation membrane 4.
  • the converted protons are conducted through the hydrogen separation membrane 4 and the electrolyte 5 and reach the cathode 6.
  • an oxidant gas containing oxygen is supplied to the gas flow path of the separator 8.
  • This oxidant gas is supplied to the force sword 6 through the current collector 7.
  • water is generated and electric power is generated from oxygen in the oxidant gas and protons reaching the cathode 6.
  • the generated power is collected through current collectors 2 and 7 and separators 1 and 8.
  • the electrolyte reinforcing plate 3 since the electrolyte reinforcing plate 3 has an insulating property at the seal portion A, the power generation efficiency of the fuel cell 100 is prevented from being lowered. The details will be described below.
  • FIG. 2 is an enlarged cross-sectional view of the seal portion A of the fuel cell 100 of FIG.
  • the electrolyte reinforcing plate 3 is interposed via the insulating layer 9 and the brazing material 11. It is fixed to the separator 1, and is fixed to the separator 8 via the insulating layer 10 and the brazing material 12. The end of the electrolyte reinforcing plate 3 protrudes in the direction of the outside of the fuel cell 100 from the separators 1, 8.
  • the insulating layers 9 and 10 are made of an insulating material such as A 1 2 O 3 .
  • the outer end of the insulating layers 9 and 10 extends outward from the outer end face of the separators 1 and 8 by several mm, and the inner end of the insulating layers 9 and 10 is separated. It extends about several millimeters inward from the inner end faces of the rolls 1 and 8. Therefore, the insulating layers 9 and 10 are formed larger than the joint surface between the separators 1 and 8 and the electrolyte reinforcing plate 3.
  • the film thickness of the insulating layers 9, 10 is, for example, about several tens of ⁇ . In this embodiment, since the insulating layers 9 and 10 are formed between the separators 1 and 8 and the electrolyte reinforcing plate 3, the separators 1 and 8 and the electrolyte reinforcing plate 3 are Electrical short circuit is prevented.
  • the brazing materials 1 1 and 1 2 are made of, for example, an Ag—Cu—Ti brazing material, and function as an adhesive for fixing the separators 1 and 8 and the electrolyte reinforcing plate 3.
  • the film thickness of the brazing material 1 1, 1 2 is, for example, about several meters.
  • the insulating layer 9 is formed larger than the joint surface between the separator 1 and the electrolyte reinforcing plate 3, and the insulating layer 10 is larger than the joint surface between the separator 8 and the electrolyte reinforcing plate 3. Therefore, even if pressure is applied from the separators 1 and 8 to the electrolyte reinforcing plate 3 and the brazing materials 11 and 12 protrude from between the separators 1 and 8 and the electrolyte reinforcing plate 3, Contact between the brazing material 1 1 and the brazing material 1 2 is prevented.
  • the fuel cell 100 becomes high temperature and the brazing materials 1 1 and 1 2 are melted, the melted brazing material 11 and the brazing material 1 2 are prevented from coming into contact with each other. Therefore, in the fuel cell 100 according to the present embodiment, an electrical short circuit due to the brazing material can be prevented.
  • FIG. 3 is a manufacturing flow diagram for explaining a method of manufacturing the seal portion A of the fuel cell 100.
  • the insulating layer 9 is formed on the lower surface and the insulating layer 10 is formed on the upper surface of the outer periphery of the electrolyte reinforcing plate 3.
  • the insulating layers 9. and 10 can be formed by thermal spraying, ion plating, or the like. [0 0 3 1]
  • a brazing material 11 is formed under the insulating layer 9, and a brazing material 12 is formed over the insulating layer 10.
  • the insulating layer 9 and the separator 1 are brought into contact with each other through the brazing material 11, and the insulating layer 10 and the separator 8 are brought into contact with each other through the brazing material 12. Touch.
  • the insulating layers 9 and the separators 1 are joined by heat-treating the brazing materials 11 and 12, and the insulating layers 10 and the separators 8 are joined.
  • the seal part A shown in Fig. 3 (d) is completed by the above process.
  • the brazing materials 11 and 12 may protrude from between the separators 1 and 8 and the insulating layers 9 and 10.
  • the insulating layer 9 is formed larger than the joint surface between the separator 1 and the electrolyte reinforcing plate 3
  • the insulating layer 10 is formed larger than the joint surface between the separator 8 and the electrolyte reinforcing plate 3. Therefore, the protruding brazing material 1 1 and brazing material 1 2 are prevented from coming into contact with each other.
  • FIG. 4 is a schematic cross-sectional view of a seal part A ′ which is another example of the seal part A.
  • FIG. The seal part A ′ differs from the seal part A in FIG. 2 in that a primer layer 13 is formed between the electrolyte reinforcing plate 3 and the insulating layer 9, and between the electrolyte reinforcing plate 3 and the insulating layer 10.
  • a primer layer 14 is formed between them.
  • the primer layers 1 3 and 14 are made of an active metal such as an Ag—Cu—Ti alloy or an Ag—Ti alloy.
  • the adhesion between the active metal and the metal and the adhesion between the active metal and the ceramic are higher than the adhesion between the ceramic and the metal. Accordingly, in this embodiment, the primer layers 1 3 and 14 are formed between the electrolyte reinforcing plate 3 and the insulating layers 9 and 10, and therefore the electrolyte reinforcing plate 3 and the insulating layers 9 and 1 are formed. Adhesion with 0 is improved. Therefore, it is possible to prevent separation between the layers of the fuel cell 100. As a result, the fuel cell 100 according to the present embodiment can perform stable power generation.
  • FIG. 5 is a manufacturing flow diagram for explaining a manufacturing method of the seal portion A ′.
  • a primer layer 13 is formed on the lower surface
  • a primer layer 14 is formed on the upper surface.
  • the primer layers 1 3 and 14 can be formed by physical vapor deposition or the like. [0 0 3 6]
  • the insulating layer 9 is formed under the primer layer 13 and the insulating layer 10 is formed over the primer layer 14.
  • a brazing material 11 is formed under the insulating layer 9, and a brazing material 12 is formed over the insulating layer 10.
  • the insulating layer 9 and the separator 1 are brought into contact with each other through the brazing material 11, and the insulating layer 10 and the separator 8 are brought into contact with each other through the brazing material 12. Make contact.
  • the insulating layer 10 and the separator 1 are joined by subjecting the brazing materials 11 and 12 to a heat treatment so that the insulating layer 10 and the separator 1 are joined. Laser 8 is joined. With the above process, the seal part A ′ shown in FIG. 5 (e) is completed. [Example 2]
  • FIG. 6 is a schematic cross-sectional view of a fuel cell 10.0a according to a second embodiment of the present invention.
  • the fuel cell 10 0 a is different from the fuel cell 1 0 0 of FIG. 1 in that an electrolyte 5 a is formed instead of the electrolyte 5.
  • the electrolyte 5 a is formed so as to cover the entire upper surface of the electrolyte reinforcing plate 3.
  • the electrolyte 5 a is composed of the same material as the electrolyte 5.
  • the electrolyte reinforcing plate 3 and the separator 8 are insulated by the electrolyte 5a.
  • FIG. 7 is an enlarged cross-sectional view of the seal portion B of the fuel cell 100 a of FIG.
  • the difference between the seal part B and the seal part A in FIG. 2 is that an electrolyte 5 a is formed instead of the insulating layer 10.
  • the electrolyte 5 a is formed up to the end of the electrolyte reinforcing plate 3. Since the electrolyte 5 a is made of an insulating material, the electrolyte reinforcing plate 3 and the separator 8 are isolated.
  • the electrolyte 5 a can be coated on the electrolyte reinforcing plate 3 and the hydrogen separation membrane 4 by sputtering, laser, or the like.
  • the electrolyte 5a is also used as an insulating layer, the manufacturing process is shortened compared to the case where the electrolyte 5 and the insulating layer 10 are formed separately. Therefore, the manufacturing cost of the fuel cell 100 a is reduced.
  • the separator 1 corresponds to the first conductive separator
  • the separator 8 corresponds to the second conductive separator
  • the seal portions A and B are Corresponding to the joint
  • the brazing materials 1 1 and 12 correspond to the conductive adhesive. [0 0 4 1]
  • the first embodiment and the second embodiment can be combined.
  • a primer layer may be formed between the electrolyte 5 a and the electrolyte reinforcing plate 3.
  • the present invention can be applied to any fuel cell provided with a force electrolyte reinforcing plate in which the present invention is applied to a hydrogen separation membrane battery.
  • the first embodiment and the second embodiment have been described with respect to joining at the outer peripheral portion of the electrolyte reinforcing plate, the present invention is not limited to this.
  • the present invention can be applied to a location where a separator such as a manifold location and an electrolyte reinforcing plate are joined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池(100)は、第1の導電性セパレータ(1)、電解質補強板(3)および第2の導電性セパレータ(8)がロウ材(11,12)により順に接合される接合部(A)を備え、電解質補強板(3)は接合部(A)において第1の導電性セパレータ(1)および第2の導電性セパレータ(8)の接合面よりも大きく形成されており、電解質補強板(3)は少なくともロウ材(11,12)との接触部位において絶縁性を有することを特徴とする。

Description

^ 鲁
燃料電池
【技術分野】
【0 0 0 1】
本発明は、 セパレ一タを備える燃料電池に関する。
【背景技術】
【0 0 0 2】
燃料電池は、 一般的には.水素及び酸素を燃料として電気エネルギーを得る装置であ る。 この燃料電池は、 環境面において優れかつ高いエネルギー効率が実現できること から、 今後のエネルギー供給システムとして広く開発が進められてきている。
【0 0 0 3】 - 燃料電池は、 例えば、 アノードとカソードとにより電解質が挟持された発電部がセ パレ一タを介して積層される構造を有する。 この構造においては、 各セパレ一タ同士 が機械的に接触して電気的に短絡すると、 発電効率が低下する。 したがって、 各セパ レ一タ間において絶縁性を維持する必要がある。 そこで、 セパレータとセパレータと の間にロウ材を用いてセラミックス層を配置する技術が開示されている (例えば、 特 許文献 1参照)。 この技術によれば、各セパレータ間における絶縁性を確保することが できる。'
【0 0 0 4】
【特許文献 1】 特開 2 0 0 4— 2 2 7 8 4 8号公報
【発明の開示】
【発明が解決しょうとする課題】
【0 0 0 5】
しかしながら、 特許文献 1の技術を用いれば、 セパレータとセラミックス層との外 周が同一形状であるため、 各層間のロウ材がはみ出た場合に電気的に短絡するおそれ 力 sある。
【0 0 0 6】
本発明は、 口ゥ材による短絡を防止することができる燃料電池を提供することを目 的とする。
【課題を解決するための手段】
【0 0 0 7】 本発明に係る燃料電池は、 第 1の導電性セパレ一タ、 電解質補強板および第 2の導 電性セパレ一タがロウ材により順に接合される接合部を備え、 電解質補強板は接合部 において第 1の導電性セパレ一タおよび第 2の導電性セパレ一タの接合面よりも大き く形成されており、 電解質補強板は少なくともロウ材との接触部位において絶縁性を 有することを特徴とするものである。
【0 0 0 8】
本発明に係る燃料電池においては、 電解質補強板が接合部において第 1の導電性セ パレ一タおよび第 2の導電性セパレ一タの接合面よりも大きく形成されていることか ら、 電解質補強板および第 1の導電性セパレ一.タの間のロウ材と電解質補強板および 第 2の導電性セパレ一タの間のロウ材とが接触することが防止される。 それにより、 第 1の導電性セパレータと第 2の導電性セパレータとが短絡することが防止される。 以上のことから、 本発明に係る燃料電池は、 ロウ材による短絡を防止することができ る。
【0 0 0 9】
電解質補強板は、 端部が第 1の導電性セパレ一タおよび第 2の導電性セパレ一タの 端部よりも所定距離外側へ突出していてもよい。 この場合、 電解質補強板および第 1 の導電性セパレ一タの間の口ゥ材と電解質補強板および第 2の導電性セパレータの間 のロウ材とが接触することが防止される。
【0 0 1 0】
電解質補強板は、 少なくとも接合面の片面に絶縁層が形成されており、 絶縁層は、 第 1の導電性セパレ一タおよび第 2の導電性セパレ一タのうち絶縁層形成側のセパレ —タの外側および内側端面よりも所定距離広く形成されていてもよい。 この場合、 第 1の導電性セパレータと第 2の導電性セパレータとの短絡が防止される。
【0 0 1 1】
電解質補強板は、 接合部において両面に絶縁層が形成ざれていてもよい。 この場合 、 電解質補強板の両面の絶縁層により第 1のセパレータと第 2のセパレ一タとが絶縁 される。 絶縁層の少なくとも一方は、 電解質であってもよい。 この場合、 電解質によ つて第 1のセパレ一タと第 2のセパレ一タとが絶縁される。 また、 燃料電池の発電部 分の電解質を用いることにより、 新たに絶縁層を設ける必要がない。 それにより、 本 発明に係る燃料電池の製造工程が短縮化され、 製造コス トが低減される。
【0 0 1 2】 絶縁層は、 セラミックスであり、 絶縁層と電解質補強板との間にプライマ層をさら に備えていてもよい。 この場合、 プライマ層と電解質補強板との密着性およびプライ マ層と絶縁層との密着性は、 絶縁層と電解質捕強板との密着性よりも高くなる。 それ により、 電解質補強板と絶縁層との密着性が向上する。 その結果、 各層間における剥 離が発生することが防止される。 以上のことから、 本発明に係る燃料竜池は安定した 発電を行うことができる。
【0 0 1 3】
本発明に係る他の燃料電池は、 第 1の導電性セパレ一タ、 電解質補強板および第 2 の導電性セパレータが導電性接着剤により順に接合される接合部を備え、 電解質補強 板は、 接合部において第 1の導電性セパレ一タおよび第 2の導電性セパレータの接合 面よりも大きく形成されており、 電解質補強板ほ、 少なくとも導電性接着剤との接触 部位において絶縁性を有することを特徴とするものである。
【0 0 1 4】
本発明に係る他の燃料電池においては、 電解質補強板が接合部において第 1の導電 性セパレータおよび第 2の導電性セパレ一タの接合面よりも大きく形成されているこ とから、 電解質補強板および第 1の導電性セパレータの間の導電性接着剤と電解質補 強板および第 2の導電十生セパレ一タの間の導電性接着剤とが接触することが防止され る。 それにより、 第 1の導電性セパレ一タと第 2の導電性セパレ一タとが短絡するこ とが防止される。 以上のことから、 本発明に係る燃料電池は、 導電性接着剤による短 絡を防止することができる。
【発明の効果】
【0 0 1 5】
本発明によれば、 口ゥ材による短絡を防止することができる。
【図面の簡単な説明】
【0 0 1 6】
【図 1】 本発明の第 1実施例に係る燃料電池の模式的断面図である。
【図 2】 図 1の燃料電池のシール部の拡大断面図である。
【図 3】 燃料電池のシール部の製造方法を説明するための製造フロー図である
【図 4】 シール部の他の例の模^的断面図である。
【図 5】 シール部の製造方法を説明するための製造フロー図である 【図 6】 本発明の第 2実施例に係る燃料電池の模式的断面図である。
【図 7】 図 6の燃料電池のシール部の拡大断面図である。
【発明を実施するための最良の形態】
【0 0 1 7】
以下、 本発明を実施するための最良の形態を説明する。
【実施例 1】
【0 0 1 8】
図 1は、 本発明の第 1実施例に係る燃料電池 1 0 0の模式的断面図である。 本実施 例においては、 燃料電池として水素分離膜電池を用いた。 ここで、 水素分離膜電池と は、 水素分離膜層を備えた燃料電池である。 水素分離膜層は水素透過性を有する金属 によって形成される層である。 水素分離膜電池は、 この水素分離膜層及びプロ トン導 電性を有する電解質を積層した構造をとつている。 水素分離膜電池のアノードに供給 された水素は触媒を介してプロトンに変換され、プロトン導電性の電解質中を移動し、 力ソードにおいて酸素と結合して水となる。 以下、 燃料電池 1 0 0の構造について説 明する。
【0 0 1 9】
図 1に示すように、 燃料電池 1 0 0は、 セパレータ 1, 8、 集電材 2, 7、 電解質 補強板 3、 水素分離膜 4、 電解質 5および力ソード 6を含む。 セパレ一タ 1は、 ステ ンレス等の導電性材料からなり、 外周部上面に凸部が形成されている。 集電材 2は、 例えば、 S U S 4 3 0多孔体、 N i多孔体、 P tめっき A 1 20 3多孔体、 白金メッシ ュ等の導電性材料から構成され、 セパレータ 1の中央部上に積層されている。
【0 0 2 0】
電解質補強板 3は、 ステンレス等の導電性材料からなり、 水素分離膜 4を補強する 機能を有する。 電解 t質補強板 3は、 セパレ一タ 1の凸部および集電材 2を介してセパ レータ 1上に形成されている。 電解質補強板 3とセパレ一タ 1とは接合されている。 電解質捕強板 3の上面中央部には凹部が形成されており、 その凹部には水素分離膜 4 が埋め込まれている。水素分離膜 4は、燃料ガスが供給されるアノードとして機能し、 水素透過性金属からなる。 水素分離膜 4を構成する金属は、 例えば、 パラジウム、 バ ナジゥム、 チタン、 タンタル等である。
【0 0 2 1】
水素分離膜 4上には電解質 5が積層されている。 電解質 5は、 例えば、 ベロブス力 イ ト型プロ トン導電体 (B a C e〇3等)、 固体酸型プロ トン導電体 (C s H S〇4) 等のプロトン導電性材料からなる。力ソード 6は、例えば、ランタンコバルトタイ ト、 ランタンマンガネート、 銀、 白金、 白金担持カーボン等の導電性材料から構成され、 電解質 5上に積層されている。
【0 0 2 2】
集電材 7は、 例えば、 S U S 4 3 0多孔体、 N i多孔体、 1めっき八 1 203多孔 体、 白金メッシュ等の導電性材料からなり、 力ソード 6上に積層されている。 セパレ —タ 8は、ステンレス等の導電性材料からなり、集電材 7上に積層されている。また、 セパレ一タ 8は、 外周部下面に凸部が形成されている。 セパレ一タ 8と電解質補強板 3とはセパレ一タ 8の凸部を介して接合されている。 以下、 セパレ一タ 1 , 8と電解 質補強板 3との接合部のことをシール部 Aと呼ぶ、 シール部 Aにおいては、 電解質補 強板 3は絶縁性を有する。 詳細は後述する。
【0 0 2 3】
次に、 燃料電池 1 0 0の動作について説明する。 まず、 水素を含有する燃料ガスが セパレ一タ 1のガス流路に供給される。 この燃料ガスは、 集電材 2および電解質補強 板 3を介して水素分離膜 4に供給される。 燃料ガス中の水素は、 水素分離膜 4におい てプロ トンに変換される。 変換されたプロトンは、 水素分離膜 4および電解質 5を伝 導し、 カソード 6に到達する。
【0 0 2 4】
一方、 セパレータ 8のガス流路には酸素を含有する酸化剤ガスが供給される。 この 酸化剤ガスは、 集電材 7を介して力ソード 6に供給される。 力ソード 6においては、 酸化剤ガス中の酸素とカソード 6に到達したプロトンとから水が発生するとともに電 力が発生する。 発生した電力は、 集電材 2, 7およびセパレータ 1 , 8を介して回収 される。
【0 0 2 5】
本実施例においては、 電解質補強板 3はシール部 Aにおいて絶縁性を有することか ら、 燃料電池 1 0 0の発電効率が低下することが防止される。 以下、 その詳細につい て説明する。
【0 0 2 6】
図 2は、 図 1の燃料電池 1 0 0のシール部 Aの拡大断面図である。 図 2に示すよう に、 シール部 Aにおいては、 電解質補強板 3は、 絶縁層 9およびロウ材 1 1を介して セパレータ 1と固定されており、 絶縁層 1 0およびロウ材 1 2を介してセパレータ 8 と固定されている。 電解質補強板 3の端部は、 セパレ一タ 1 , 8よりも燃料電池 1 0 0の外側の方向に突出している。
【00 2 7】
絶縁層 9 , 1 0は、 A 1 2 O 3等の絶縁性材料からなる。 また、 絶緣層 9 , 1 0の外 側の端部はセパレータ 1 , 8の外側の端面よりも数 mm程度外側の方向に広がってお り、 絶縁層 9, 1 0の内側の端部はセパレ一タ 1, 8の内側の端面よりも数 mm程度 内側の方向に広がっている。 したがって、 絶縁層 9, 1 0は、 セパレータ 1 , 8と電 解質補強板 3との接合面よりも大きく形成されていることになる。 絶縁層 9, 1 0の 膜厚は、 例えば、 数十 μπι程度である。 本実施例においては、 セパレ一タ 1 , 8と電 解質補強板 3との間に絶縁層 9, 1 0が形成されていることから、 セパレ一タ 1 , 8 と電解質補強板 3とが電気的に短絡することが防止される。
【00 28】
ロウ材 1 1, 1 2は、 例えば、 Ag— C u— T i系ロウ材等からなり、 セパレ一タ 1, 8と電解質補強板 3とを固定する接着剤として機能する。 ロウ材 1 1 , 1 2の膜 厚は、 例えば、 数 m程度である。
【00 2 9】
シール部 Aにおいては、 絶縁層 9がセパレ一タ 1と電解質補強板 3との接合面より も大きく形成されかつ絶縁層 1 0がセパレ一タ 8と電解質補強板 3との接合面よりも 大きく形成されていることから、 セパレ一タ 1 , 8から電解質補強板 3に対して圧力 がかかってロウ材 1 1, 1 2がセパレータ 1 , 8と電解質補強板 3との間からはみ出 ても、 ロウ材 1 1とロウ材 1 2とが接触することが防止される。 また、 燃料電池 1 0 0が高温になってロウ材 1 1 , 1 2が溶け出しても、 溶け出したロウ材 1 1とロウ材 1 2とが接触することが防止される。 したがって、 本実施例に係る燃料電池 1 00に おいては、 ロウ材による電気的短絡を防止することができる。
【00 30】
続いて、 燃料電池 1 00のシール部 Aの製造方法について説明する。 図 3は、 燃料 電池 1 00のシール部 Aの製造方法を説明するための製造フロー図である。 まず、 図 3 (a)に示すように、電解質補強板 3の外周部において、下面に絶縁層 9を形成し、 上面に絶縁層 1 0を形成する。 絶縁層 9., 1 0は、 溶射法、 イオンプレーティング法 等により形成することができる。 【0 0 3 1】
次に、 図 3 ( b ) に示すように、 絶縁層 9下にロウ材 1 1を形成し、 絶縁層 1 0上 にロウ材 1 2を形成する。 次いで、 図 3 ( c ) に示すように、 絶縁層 9とセパレ一タ 1とをロウ材 1 1を介して接触させ、 絶縁層 1 0とセパレ一タ 8とをロウ材 1 2を介 して接触させる。 次に、 ロウ材 1 1 , 1 2に加熱処理を施すことによって絶縁層 9と セパレータ 1とが接合され、 絶縁層 1 0とセパレータ 8とが接合される。 以上の行程 により、 図 3 ( d ) のシール部 Aが完成する。
【0 0 3 2】
なお、 セパレータ 1, 8を絶縁層 9 , 1 0に接触させる際にロウ材 1 1, 1 2がセ パレータ 1 , 8と絶縁層 9 , 1 0との間からはみ出ることがある。 しかしながら、 絶 縁層 9がセパレ一タ 1と電解質補強板 3との接合面よりも大きく形成されかつ絶縁層 1 0がセパレ一タ 8と電解質補強板 3との接合面よりも大きく形成されていることか ら、 はみ出たロウ材 1 1とロウ材 1 2とが接触することが防止される。
【0 0 3 3】
図 4は、 シール部 Aの他の例であるシール部 A ' の模式的断面図である。 シール部 A ' が図 2のシール部 Aと異なる点は、 電解質補強板 3と絶縁層 9との間にプライマ 層 1 3が形成されている点および電解質補強板 3と絶縁層 1 0との間にプライマ層 1 4が形成されている点である。 プライマ層 1 3, 1 4は、 A g— C u— T i合金、 A g— T i合金等の活性金属等からなる。
【0 0 3 4】
ここで、 一般的に、 活性金属と金属との密着性および活性金属とセラミックスとの 密着性は、 セラミックスと金属との密着性よりも高くなる。 それにより、 本実施例に おいてはプライマ層 1 3 , 1 4が電解質補強板 3と絶縁層 9 , 1 0との間に形成され ていることから、 電解質補強板 3と絶縁層 9, 1 0との密着性が向上する。 したがつ て、 燃料電池 1 0 0の各層間における剥離が発生することが防止される。 その結果、 本実施例に係る燃料電池 1 0 0は、 安定した発電を行うことができる。
【0 0 3 5】
続いて、 シール部 A ' の製造方法について説明する。 図 5は、 シール部 A ' の製造 方法を説明するための製造フロー図である。 まず、 図 5 ( a ) に示すように、 電解質 補強板 3の外周部において、 下面にブラ.イマ層 1 3を形成し、 上面にプライマ層 1 4 を形成する。 プライマ層 1 3, 1 4は、 物理蒸着法等により形成することができる。 【0 0 3 6】
次に、 図 5 ( b ) に示すように、 プライマ層 1 3下に絶縁層 9を形成し、 プライマ 層 1 4上に絶縁層 1 0を形成する。 次いで、 図 5 ( c ) に示すように、 絶縁層 9下に ロウ材 1 1を形成し、 絶縁層 1 0上にロウ材 1 2を形成する。 次に、 図 5 ( d ) に示 すように、 絶縁層 9とセパレ一タ 1とをロウ材 1 1を介して接触させ、 絶縁層 1 0と セパレータ 8とをロウ材 1 2を介して接触させる。 次いで、 ロウ材 1 1 , 1 2に加熱 処理を施すことによって絶緣層 9とセパレ一タ 1 とが接合され、 絶縁層 1 0とセノ、。レ —タ 8とが接合される。 以上の行程により、 図 5 ( e ) のシール部 A ' が完成する。 【実施例 2】
【0 0 3 7】
図 6は、 本発明の第 2実施例に係る燃料電池 1 0. 0 aの模式的断面図である。 燃料 電池 1 0 0 aが図 1の燃料電池 1 0 0と異なる点は、 電解質 5の代わりに電解質 5 a が形成されている点である。 電解質 5 aは、 電解質補強板 3の上面全体を覆うように 形成されている。 なお、 電解質 5 aは、 電解質 5と同様の材料から構成されている。 本実施例においては、 電解質 5 aにより電解質補強板 3とセパレータ 8とが絶縁され ている。
【0 0 3 8】
図 7は、 図 6の燃料電池 1 0 0 aのシール部 Bの拡大断面図である。 シール部 Bが 図 2のシール部 Aと異なる点は、 絶縁層 1 0の代わりに電解質 5 aが形成されている 点である。 図 7に示すように、 電解質 5 aは、 電解質補強板 3の端部にまで形成され ている。 電解質 5 aは、 絶縁材料から構成されていることから、 電解質補強板 3とセ パレ一タ 8とを絶緣する。
【0 0 3 9】
電解質 5 aは、 電解質補強板 3および水素分離膜 4上に、 スパッタ、 レーザ等によ りコートすることができる。 本実施例においては、 電解質 5 aを絶縁層としても用い ることから、 電解質 5および絶縁層 1 0を個別に形成する場合に比較して、 製造工程 が短縮化される。 したがって、 燃料電池 1 0 0 aの製造コストが低減される。
【0 0 4 0】
第 1の実施例および第 2の実施例においては、 セパレータ 1が第 1の導電性セパレ ータに相当し、 セパレータ 8が第 2の導電性セパレ一タに相当し、 シール部 A, Bが 接合部に相当し、 ロウ材 1 1 , 1 2が導電性接着剤に相当する。 【0 0 4 1】
なお、 第 1実施例と第 2実施例を組み合わせることもできる。 例えば、 本実施例に おいて電解質 5 aと電解質補強板 3との間にプライマ層が形成されていてもよい。 ま た、 第 1実施例および第 2実施例においては水素分離膜電池に本発明を適用した力 電解質補強板を備える燃料電池であれば本発明を適用することができる。 さらに、 第 1実施例および第 2実施例にぉレ、ては電解質捕強板の外周部における接合について説 明したが、 それに限られない。 例えば、 マ二ホールド部位等のセパレ一タと電解質捕 強板とが接合される箇所についても本発明を適用することができる。

Claims

請求の範囲
【請求項 1】 第 1の導電性セパレータ、 電解質補強板および第 2の導電性セパ レ一タがロウ材により順に接合される接合部を備え、
前記電解質補強板は、 前記接合部において前記第 1の導電性セパレ一タおよび前記 第 2の導電性セパレータの接合面よりも大きく形成されており、
前記電解質補強板は、 少なくとも前記ロウ材との接触部位において絶緣性を有する ことを特徴とする燃料電池。
【請求項 2】 前記電解質補強板は、 端部が前記第 1の導電性セパレータおよび 前記第 2の導電性セパレータの端部よりも所定距離外側へ突出していることを特徴と する請求項 1記載の燃料電池。
【請求項 3】 前記電解質補強板は、 少なくとも前記接合面の片面に絶縁層が形 成されており、
前記絶縁層は、 前記第 1の導電性セパレ一タおよび前記第 2の導電性セパレ一タの うち前記絶縁層形成側のセパレ一タの外側および内側端面よりも所定距離広く形成さ れていることを特徴とする請求項 1または 2記載の燃料電池。
【請求項 4】 前記電解質補強板は、 前記接合部において、 両面に絶縁層が形成 されていることを特徴とする請求項 1〜 3のいずれかに記載の燃料電池。
【請求項 5】 前記絶縁層の少なくとも一方は、 電解質であることを特徴とする 請求項 3または 4記載の燃料電池。
【請求項 6】 前記絶縁層は、 セラミックスであり、
前記絶縁層と前記電解質補強板との間にプライマ層をさらに備えることを特徴とす る請求項 3〜 5のいずれかに記載の燃料電池。
【請求項 7】 第 1の導電性セパレ一タ、 電解質補強板および第 2の導電性セパ レ一タが導電性接着剤により順に接合される接合部を備え、
前記電解質補強板は、 前記接合部において前記第 1の導電性セパレ一タおよび前記 第 2の導電性セパレ一タの接合面よりも大きく形成されており、
前記電解質補強板は、 少なくとも前記導電性接着剤との接触部位において絶縁性を 有することを特徴とする燃料電池。
PCT/JP2006/311699 2005-06-17 2006-06-06 燃料電池 WO2006134849A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06747288A EP1892781B1 (en) 2005-06-17 2006-06-06 Fuel cell
CN2006800216230A CN101199070B (zh) 2005-06-17 2006-06-06 燃料电池
US11/921,556 US8137862B2 (en) 2005-06-17 2006-06-06 Fuel cell
CA2611610A CA2611610C (en) 2005-06-17 2006-06-06 Fuel cell having an electrolyte-strengthening substrate
DE602006017544T DE602006017544D1 (de) 2005-06-17 2006-06-06 Brennstoffzelle
AU2006258671A AU2006258671B2 (en) 2005-06-17 2006-06-06 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005177432A JP4894175B2 (ja) 2005-06-17 2005-06-17 燃料電池
JP2005-177432 2005-06-17

Publications (1)

Publication Number Publication Date
WO2006134849A1 true WO2006134849A1 (ja) 2006-12-21

Family

ID=37532211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311699 WO2006134849A1 (ja) 2005-06-17 2006-06-06 燃料電池

Country Status (10)

Country Link
US (1) US8137862B2 (ja)
EP (1) EP1892781B1 (ja)
JP (1) JP4894175B2 (ja)
KR (1) KR100925251B1 (ja)
CN (1) CN101199070B (ja)
AU (1) AU2006258671B2 (ja)
CA (1) CA2611610C (ja)
DE (1) DE602006017544D1 (ja)
RU (1) RU2361328C1 (ja)
WO (1) WO2006134849A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036444A (ja) * 2017-08-10 2019-03-07 日産自動車株式会社 燃料電池スタックおよび燃料電池スタックに用いられる絶縁部材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855030B2 (en) * 2009-05-01 2010-12-21 Delphi Technologies, Inc. Inhibitor for prevention of braze migration in solid oxide fuel cells
CN106257728B (zh) * 2016-01-28 2018-01-12 中国科学院过程工程研究所 一种生产3.5价高纯钒电解液的系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317743A (ja) * 2002-02-22 2003-11-07 Ngk Spark Plug Co Ltd 固体電解質型燃料電池
JP2004227848A (ja) 2003-01-21 2004-08-12 Mitsubishi Materials Corp 燃料電池
JP2004319291A (ja) * 2003-04-16 2004-11-11 Tokyo Gas Co Ltd 支持膜式固体酸化物形燃料電池スタック及びその作製方法
JP2004319290A (ja) * 2003-04-16 2004-11-11 Ngk Spark Plug Co Ltd 固体電解質型燃料電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942099A (en) * 1988-11-28 1990-07-17 Kabushiki Kaisha Toshiba Fuel cell
DE19805142C2 (de) * 1998-02-09 1999-12-30 Siemens Ag Hochtemperatur-Brennstoffzelle sowie deren Verwendung
US6677069B1 (en) * 2000-08-18 2004-01-13 Hybrid Power Generation Systems, Llc Sealless radial solid oxide fuel cell stack design
JP2002358975A (ja) 2001-03-26 2002-12-13 Hitachi Cable Ltd 固体高分子型燃料電池のセパレータ及びそれを用いた固体高分子型燃料電池セル
JP3940946B2 (ja) 2002-05-01 2007-07-04 日産自動車株式会社 燃料電池用セル体およびその製造方法
JP4087216B2 (ja) 2002-10-22 2008-05-21 東京瓦斯株式会社 固体酸化物形燃料電池のシール構造体及びシール方法
JP2004146129A (ja) 2002-10-22 2004-05-20 Tokyo Gas Co Ltd 固体酸化物形燃料電池のシール構造体及びシール方法
JP4640906B2 (ja) 2002-12-26 2011-03-02 日本特殊陶業株式会社 積層体及び固体電解質型燃料電池
US7217300B2 (en) 2003-06-27 2007-05-15 Delphi Technologies, Inc. Method and apparatus for gasketing a fuel cell
JP2006073393A (ja) * 2004-09-03 2006-03-16 Toyota Motor Corp 水素分離膜型燃料電池およびその単位セル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317743A (ja) * 2002-02-22 2003-11-07 Ngk Spark Plug Co Ltd 固体電解質型燃料電池
JP2004227848A (ja) 2003-01-21 2004-08-12 Mitsubishi Materials Corp 燃料電池
JP2004319291A (ja) * 2003-04-16 2004-11-11 Tokyo Gas Co Ltd 支持膜式固体酸化物形燃料電池スタック及びその作製方法
JP2004319290A (ja) * 2003-04-16 2004-11-11 Ngk Spark Plug Co Ltd 固体電解質型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1892781A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036444A (ja) * 2017-08-10 2019-03-07 日産自動車株式会社 燃料電池スタックおよび燃料電池スタックに用いられる絶縁部材
JP7009828B2 (ja) 2017-08-10 2022-02-10 日産自動車株式会社 燃料電池スタックおよび燃料電池スタックに用いられる絶縁部材

Also Published As

Publication number Publication date
DE602006017544D1 (de) 2010-11-25
US20080226951A1 (en) 2008-09-18
CN101199070A (zh) 2008-06-11
CA2611610A1 (en) 2006-12-21
KR100925251B1 (ko) 2009-11-05
KR20080012970A (ko) 2008-02-12
EP1892781B1 (en) 2010-10-13
RU2361328C1 (ru) 2009-07-10
CN101199070B (zh) 2011-07-27
CA2611610C (en) 2010-11-23
EP1892781A4 (en) 2009-08-05
JP4894175B2 (ja) 2012-03-14
AU2006258671A1 (en) 2006-12-21
AU2006258671B2 (en) 2009-08-13
EP1892781A1 (en) 2008-02-27
JP2006351402A (ja) 2006-12-28
US8137862B2 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
JP2003272671A (ja) 固体高分子電解質型燃料電池のセルユニット
JP5130692B2 (ja) 電気化学デバイスおよびその製造方法
JP2002280049A (ja) 集積タイプ燃料電池セル
JP2004303508A (ja) 燃料電池用単セル構造及びこれを用いた固体酸化物形燃料電池
WO2007043366A1 (ja) 燃料電池およびその製造方法
WO2006134849A1 (ja) 燃料電池
WO2006018705A2 (en) Membrane-electrode assembly and fuel cell
JP4984518B2 (ja) 燃料電池の製造方法
JP2009076395A (ja) チューブ型燃料電池セル及び該チューブ型燃料電池セルを備えるチューブ型燃料電池
JP4929720B2 (ja) 燃料電池
WO2007043368A1 (ja) 燃料電池およびその製造方法
JP5061544B2 (ja) 燃料電池
JP2006107898A (ja) 平面型の高分子電解質型燃料電池用のセパレータ
WO2007043370A1 (ja) 支持体付水素分離膜およびそれを備えた燃料電池
JP4639853B2 (ja) 燃料電池およびその製造方法
JP2008047319A (ja) 燃料電池
JP2008269879A (ja) 燃料電池
JP2005310700A (ja) 燃料電池
JP2012084416A (ja) 燃料電池用の電極の製造方法
JP2007149427A (ja) セパレータ、それを備える燃料電池、および、セパレータの製造方法
JP2005116180A (ja) セパレータの機能を併せ持つ拡散層を備えた燃料電池と拡散層用の材料
JP2008034210A (ja) 燃料電池
JP2006172906A (ja) 燃料電池セル及びその製造方法
JP2005285495A (ja) 小型燃料電池とその製造方法並びに小型燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021623.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11921556

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2611610

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 9575/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077029163

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006747288

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006258671

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008101773

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006258671

Country of ref document: AU

Date of ref document: 20060606

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006258671

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006747288

Country of ref document: EP