以下、添付した図面を参照しながら、本発明の実施形態を説明する。図面において、同一の部材には同一の符号を付し、重複する説明を省略する。図面において、各部材の大きさや比率は、実施形態の理解を容易にするために誇張し、実際の大きさや比率とは異なる場合がある。
各図において、X、Y、およびZで表す矢印を用いて、燃料電池スタックを構成する部材の方位を示している。Xによって表す矢印の方向は、燃料電池スタックの短手方向Xを示している。Yによって表す矢印の方向は、燃料電池スタックの長手方向Yを示している。Zによって表す矢印の方向は、燃料電池スタックの積層方向Zを示している。
(燃料電池100の構成)
燃料電池100は、図1および図2に示すように、セルスタックアッセンブリー100Mを、外部からガスを供給する外部マニホールド111と、セルスタックアッセンブリー100Mを保護するカバー112によって上下から挟み込んで、構成している。
セルスタックアッセンブリー100Mは、図2および図3に示すように、燃料電池スタック100Sを、下部エンドプレート108と上部エンドプレート109によって上下から挟み込み、カソードガスCGを封止するエアーシェルター110によって覆って、構成している。
燃料電池スタック100Sは、図3および図4に示すように、上部モジュールユニット100P、複数の中部モジュールユニット100Qおよび下部モジュールユニット100Rを積層して、構成している。
上部モジュールユニット100Pは、図5に示すように、複数積層したセルユニット100Tを、セルユニット100Tで発電された電力を外部に出力する上部集電板106と、エンドプレートに相当するモジュールエンド105によって上下から挟み込んで構成している。
中部モジュールユニット100Qは、図6に示すように、複数積層したセルユニット100Tを、一対のモジュールエンド105によって上下から挟み込んで構成している。
下部モジュールユニット100Rは、図7に示すように、複数積層したセルユニット100Tを、モジュールエンド105と下部集電板107によって上下から挟み込んで構成している。
セルユニット100Tは、図8および図9に示すように、供給されたガスによって発電する発電セル101Mを設けたメタルサポートセルアッセンブリー101、積層方向Zに沿って隣り合うメタルサポートセルアッセンブリー101の発電セル101Mを隔てるセパレータ102、セルフレーム101Wとセパレータ102との間を電気的に絶縁する絶縁部材104を含んでいる。
ここで、燃料電池100の製造方法上、メタルサポートセルアッセンブリー101およびセパレータ102は、図8の中央に示すように、各々の外縁を接合ラインVに沿って環状に接合して接合体100Uを構成する。このため、積層方向Zに沿って隣り合う接合体100U(メタルサポートセルアッセンブリー101およびセパレータ102)の間に、絶縁部材104を配置する構成としている。すなわち、絶縁部材104は、図8の下方に示すように、一の接合体100Uのメタルサポートセルアッセンブリー101と、一の接合体100Uと積層方向Zに沿って隣り合う他の接合体100Uのセパレータ102との間に、配置している。セルユニット100Tは、上下に隣り合う接合体100Uと接合体100Uの間に絶縁部材104を配置して構成している。
以下、燃料電池スタック100Sを構成毎に説明する。
メタルサポートセルアッセンブリー101は、図9および図10に示すように、供給されたガスによって発電する発電セル101Mを設けたものである。
メタルサポートセルアッセンブリー101において、発電セル101Mは、図9および図10に示すように、電解質101Sを燃料極側の電極(アノード101T)と酸化剤極側の電極(カソード101U)で挟み込んで構成している。メタルサポートセル101Nは、発電セル101Mと、発電セル101Mを一方から支持するサポートメタル101Vによって構成している。メタルサポートセルアッセンブリー101は、一対のメタルサポートセル101Nと、一対のメタルサポートセル101Nを周囲から保持するセルフレーム101Wによって構成している。メタルサポートセルアッセンブリー101において、発電セル101Mは、図9および図10に示すように、電解質101Sをアノード101Tとカソード101Uで挟み込んで構成している。
電解質101Sは、図9および図10に示すように、カソード101Uからアノード101Tに向かって酸化物イオンを透過させるものである。電解質101Sは、酸化物イオンを通過させつつ、ガスと電子を通過させない。電解質101Sは、長方体形状から形成されている。電解質101Sは、例えば、イットリア、酸化ネオジム、サマリア、ガドリア、スカンジア等を固溶した安定化ジルコニアなどの固体酸化物セラミックスからなる。電解質101Sは、図9および図10に示すように、薄板状であって、アノード101Tよりも若干大きい長方形状からなる。電解質101Sの外縁は、図10に示すように、アノード101Tの側に向かって屈折して、アノード101Tの積層方向Zに沿った側面に接触している。電解質101Sの外縁の先端は、サポートメタル101Vに接触している。
アノード101Tは、図9および図10に示すように、燃料極であって、アノードガスAG(例えば水素)と酸化物イオンを反応させて、アノードガスAGの酸化物を生成するとともに電子を取り出す。アノード101Tは、還元雰囲気に耐性を有し、アノードガスAGを透過させ、電気伝導度が高く、アノードガスAGを酸化物イオンと反応させる触媒作用を有する。アノード101Tは、電解質101Sよりも大きい長方体形状から形成されている。アノード101Tは、例えば、ニッケル等の金属、イットリア安定化ジルコニア等の酸化物イオン伝導体を混在させた超硬合金からなる。アノード101Tは、図9および図10に示すように、薄板状であって長方形状からなる。
カソード101Uは、図9および図10に示すように、酸化剤極であって、カソードガスCG(例えば空気に含まれる酸素)と電子を反応させて、酸素分子を酸化物イオンに変換する。カソード101Uは、酸化雰囲気に耐性を有し、カソードガスCGを透過させ、電気伝導度が高く、酸素分子を酸化物イオンに変換する触媒作用を有する。カソード101Uは、電解質101Sよりも小さい長方体形状から形成されている。カソード101Uは、例えば、ランタン、ストロンチウム、マンガン、コバルト等の酸化物からなる。カソード101Uは、図9および図10に示すように、アノード101Tと同様に、薄板状であって長方形状からなる。カソード101Uは、電解質101Sを介して、アノード101Tと対向している。電解質101Sの外縁がアノード101T側に屈折していることから、カソード101Uの外縁は、アノード101Tの外縁と接触することがない。
サポートメタル101Vは、図9および図10に示すように、発電セル101Mをアノード101Tの側から支持するものである。サポートメタル101Vは、ガス透過性を有し、電気伝導度が高く、十分な強度を有する。サポートメタル101Vは、アノード101Tよりも十分に大きい長方体形状から形成されている。サポートメタル101Vは、例えば、ニッケルやクロムを含有する耐食合金や耐食鋼、ステンレス鋼からなる。
セルフレーム101Wは、図9および図10に示すように、メタルサポートセル101Nを周囲から保持するものである。セルフレーム101Wは、薄い長方形状から形成している。セルフレーム101Wは、一対の開口部101kを、長手方向Yに沿って設けている。セルフレーム101Wの一対の開口部101kは、それぞれ長方形状の貫通口からなり、サポートメタル101Vの外形よりも小さい。セルフレーム101Wは、金属からなり、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、セルフレーム101Wに酸化アルミニウムを固着させて構成する。セルフレーム101Wの開口部101kの内縁に、サポートメタル101Vの外縁を接合することによって、セルフレーム101Wにメタルサポートセルアッセンブリー101を接合している。
セルフレーム101Wは、図9および図10に示すように、長手方向Yに沿った一辺の右端と中央と左端から、面方向に延ばした円形状の延在部(第1延在部101p、第2延在部101qおよび第3延在部101r)を設けている。セルフレーム101Wは、長手方向Yに沿った他辺の中央から離間した2箇所から、面方向に延ばした円形状の延在部(第4延在部101sおよび第5延在部101t)を設けている。セルフレーム101Wにおいて、第1延在部101p、第2延在部101qおよび第3延在部101rと、第4延在部101sおよび第5延在部101tは、一対の開口部101kを隔てて、長手方向Yに沿って交互に位置している。
セルフレーム101Wは、図9および図10に示すように、アノードガスAGを通過(流入)させるアノード側第1流入口101a、アノード側第2流入口101b、アノード側第3流入口101cを、第1延在部101p、第2延在部101qおよび第3延在部101rに設けている。セルフレーム101Wは、アノードガスAGを通過(流出)させるアノード側第1流出口101dおよびアノード側第2流出口101eを、第4延在部101sおよび第5延在部101tに設けている。アノードガスAGのアノード側第1流入口101a、アノード側第2流入口101b、アノード側第3流入口101c、アノード側第1流出口101dおよびアノード側第2流出口101eは、いわゆる、マニホールドである。
セルフレーム101Wは、図9に示すように、カソードガスCGを通過(流入)させるカソード側第1流入口101fを、第1延在部101pと第2延在部101qの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流入)させるカソード側第2流入口101gを、第2延在部101qと第3延在部101rの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第1流出口101hを、第4延在部101sよりも図9中の右側に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第2流出口101iを、第4延在部101sと第5延在部101tの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第3流出口101jを、第5延在部101tよりも図9中の左側に設けている。セルフレーム101Wにおいて、カソード側第1流入口101f、カソード側第2流入口101g、カソード側第1流出口101h、カソード側第2流出口101iおよびカソード側第3流出口101jは、セルフレーム101Wの外周面とエアーシェルター110の内側面との空間に相当する。
セパレータ102は、図15および図16に示すように、発電セル101Mとの間にアノードガスAGおよびカソードガスCGの流通路である流路部102Lを区画形成する。
セパレータ102は、発電セル101Mに導通接触する。セパレータ102は、集電補助層103を有する。セパレータ102は、集電補助層103を介して発電セル101Mに導通接触する。
セパレータ102は、メタルサポートセルアッセンブリー101と対向して配置している。セパレータ102は、メタルサポートセルアッセンブリー101と同様の外形形状からなる。セパレータ102は、金属からなり、発電セル101Mと対向する領域(流路部102L)を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、セパレータ102に酸化アルミニウムを固着させて構成する。セパレータ102は、一対の流路部102Lを、発電セル101Mと対向するように長手方向Yに並べて設けている。
セパレータ102において、流路部102Lは、図8および図11〜図15に示すように、ガスの流れの方向(短手方向X)に沿って延ばした流路を、ガスの流れの方向(短手方向X)と直交する方向(長手方向Y)に並べることによって形成している。流路部102Lは、図12、図14および図15に示すように、長手方向Yおよび短手方向Xの面内において平坦な平坦部102xから下方に突出するように、凸状のアノード側突起102yを一定の間隔で設けている。アノード側突起102yは、ガスの流れの方向(短手方向X)に沿って延びている。アノード側突起102yは、セパレータ102の下端から下方に向かって突出している。流路部102Lは、図12、図14および図15に示すように、平坦部102xから上方に突出するように、凸状のカソード側突起102zを一定の間隔で設けている。カソード側突起102zは、ガスの流れの方向(短手方向X)に沿って延びている。カソード側突起102zは、セパレータ102の上端から上方に向かって突出している。流路部102Lは、アノード側突起102yと凸状のカソード側突起102zを、平坦部102xを隔てて、長手方向Yに沿って交互に設けている。
セパレータ102は、図15に示すように、流路部102Lと、その下方(図15中では右方)に位置するメタルサポートセルアッセンブリー101との隙間175を、アノードガスAGの流路として構成している。アノードガスAGは、図13に示すセパレータ102のアノード側第2流入口102b等から、図13および図14に示す複数の溝102qを通り、アノード側の流路部102Lに流入する。セパレータ102は、図13および図14に示すように、複数の溝102qを、アノード側第1流入口102a、アノード側第2流入口102b、アノード側第3流入口102cから、それぞれアノード側の流路部102Lに向かって放射状に形成している。セパレータ102は、図12および図15に示すように、流路部102Lと、その上方(図15中では左方)に位置するメタルサポートセルアッセンブリー101との隙間175を、カソードガスCGの流路として構成している。カソードガスCGは、図11に示すセパレータ102のカソード側第1流入口102fおよびカソード側第2流入口102gから、図11および図12に示すセパレータ102のカソード側の外縁102pを越えて、カソード側の流路部102Lに流入する。セパレータ102は、図12に示すように、カソード側の外縁102pを、他の部分よりも肉薄に形成している。
セパレータ102は、図8、図11および図13に示すように、メタルサポートセルアッセンブリー101と積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口102a、アノード側第2流入口102b、アノード側第3流入口102c、アノード側第1流出口102dおよびアノード側第2流出口102eを設けている。セパレータ102は、メタルサポートセルアッセンブリー101と積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口102f、カソード側第2流入口102g、カソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jを設けている。セパレータ102において、カソード側第1流入口102f、カソード側第2流入口102g、カソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jは、セパレータ102の外周面とエアーシェルター110の内側面との空間に相当する。
集電補助層103は、図8に示すように、発電セル101Mとセパレータ102との間にガスを通す空間を形成しつつ面圧を均等にして、発電セル101Mとセパレータ102との電気的な接触を補助するものである。
集電補助層103は、いわゆる、エキスパンドメタルである。集電補助層103は、発電セル101Mとセパレータ102の流路部102Lとの間に配置している。集電補助層103は、発電セル101Mと同様の外形形状からなる。集電補助層103は、菱形等の開口を格子状に設けた金網状からなる。
図16に示すように、発電セル101Mと集電補助層103とは、接点材113を介して導通接触する。接点材113は、発電セル101Mと集電補助層103との間にある隙間を埋めることによって、発電セル101Mと集電補助層103との間の接触面積を増加させる。
接点材113は、粘性または弾性の少なくとも一方を備える第1状態と、第1状態において加熱されることによって固化された第2状態と、を備える。第1状態において、接点材113は、少なくとも積層方向Zに沿って弾性力を発揮する。
接点材113を構成する材料は特に限定されないが、融点600℃以上の遷移金属を主成分とするもので、より具体的には、銀を主成分とするものを使用できる。接点材113は、第1状態においてペースト状である。接点材113は、第1状態において加熱されることによって焼結固化される。
図17A、図17B、図17Cを参照して、絶縁部材104は、セルフレーム101W(支持部材に相当)とセパレータ102との間を電気的に絶縁しつつ、セルフレーム101Wとセパレータ102との間の間隔を規制する。
絶縁部材104は、スペーサーとシールの機能を備える。
絶縁部材104は、セルフレーム101Wとセパレータ102との間に配置され、セルフレーム101Wとセパレータ102との隙間175を部分的に封止してガスの流れを制限する。
絶縁部材104は、セパレータ102のアノード側流入口(例えばアノード側第1流入口102a)およびアノード側流出口(例えばアノード側第1流出口102d)から、セパレータ102のカソード側の流路に向かって、アノードガスAGが混入することを防止する。
モジュールエンド105は、図5〜図7に示すように、複数積層したセルユニット100Tの下端または上端を保持するプレートである。
モジュールエンド105は、複数積層したセルユニット100Tの下端または上端に配置している。モジュールエンド105は、セルユニット100Tと同様の外形形状からなる。モジュールエンド105は、ガスを透過させない導電性材料からなり、発電セル101Mおよび他のモジュールエンド105と対向する一部の領域を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、モジュールエンド105に酸化アルミニウムを固着させて構成する。
モジュールエンド105は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口105a、アノード側第2流入口105b、アノード側第3流入口105c、アノード側第1流出口105dおよびアノード側第2流出口105eを設けている。モジュールエンド105は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口105f、カソード側第2流入口105g、カソード側第1流出口105h、カソード側第2流出口105iおよびカソード側第3流出口105jを設けている。モジュールエンド105において、カソード側第1流入口105f、カソード側第2流入口105g、カソード側第1流出口105h、カソード側第2流出口105iおよびカソード側第3流出口105jは、モジュールエンド105の外周面とエアーシェルター110の内側面との空間に相当する。
上部集電板106は、図5に示し、セルユニット100Tで発電された電力を外部に出力するものである。
上部集電板106は、図5に示すように、上部モジュールユニット100Pの上端に配置している。上部集電板106は、セルユニット100Tと同様の外形形状からなる。上部集電板106は、外部の通電部材と接続される端子(不図示)を設けている。上部集電板106は、ガスを透過させない導電性材料からなり、セルユニット100Tの発電セル101Mと対向する領域および端子の部分を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、上部集電板106に酸化アルミニウムを固着させて構成する。
下部集電板107は、図7に示し、セルユニット100Tで発電された電力を外部に出力するものである。
下部集電板107は、図7に示すように、下部モジュールユニット100Rの下端に配置している。下部集電板107は、上部集電板106と同様の外形形状からなる。下部集電板107は、外部の通電部材と接続される端子(不図示)を設けている。下部集電板107は、ガスを透過させない導電性材料からなり、セルユニット100Tの発電セル101Mと対向する領域および端子の部分を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、下部集電板107に酸化アルミニウムを固着させて構成する。
下部集電板107は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口107a、アノード側第2流入口107b、アノード側第3流入口107c、アノード側第1流出口107dおよびアノード側第2流出口107eを設けている。下部集電板107は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口107f、カソード側第2流入口107g、カソード側第1流出口107h、カソード側第2流出口107iおよびカソード側第3流出口107jを設けている。下部集電板107において、カソード側第1流入口107f、カソード側第2流入口107g、カソード側第1流出口107h、カソード側第2流出口107iおよびカソード側第3流出口107jは、下部集電板107の外周面とエアーシェルター110の内側面との空間に相当する。
下部エンドプレート108は、図2および図3に示すように、燃料電池スタック100Sを下方から保持するものである。
下部エンドプレート108は、燃料電池スタック100Sの下端に配置している。下部エンドプレート108は、一部を除いて、セルユニット100Tと同様の外形形状からなる。下部エンドプレート108は、カソードガスCGの流入口および排出口を形成するために、長手方向Yに沿った両端を直線状に伸長させて形成している。下部エンドプレート108は、セルユニット100Tよりも十分に厚く形成している。下部エンドプレート108は、例えば、金属からなり、下部集電板107と接触する上面を、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、下部エンドプレート108に酸化アルミニウムを固着させて構成する。
下部エンドプレート108は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口108a、アノード側第2流入口108b、アノード側第3流入口108c、アノード側第1流出口108dおよびアノード側第2流出口108eを設けている。下部エンドプレート108は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口108f、カソード側第2流入口108g、カソード側第1流出口108h、カソード側第2流出口108iおよびカソード側第3流出口108jを設けている。
上部エンドプレート109は、図2および図3に示すように、燃料電池スタック100Sを上方から保持するものである。
上部エンドプレート109は、燃料電池スタック100Sの上端に配置している。上部エンドプレート109は、下部エンドプレート108と同様の外形形状からなる。上部エンドプレート109は、下部エンドプレート108と異なり、ガスの流入口および排出口を設けていない。上部エンドプレート109は、例えば、金属からなり、上部集電板106と接触する下面を、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、上部エンドプレート109に酸化アルミニウムを固着させて構成する。
エアーシェルター110は、図2および図3に示すように、燃料電池スタック100Sとの間において、カソードガスCGの流路を形成するものである。
エアーシェルター110は、図2および図3に示すように、下部エンドプレート108と上部エンドプレート109によって挟み込まれた燃料電池スタック100Sを上方から覆っている。エアーシェルター110は、エアーシェルター110の内側面と燃料電池スタック100Sの側面との隙間175の部分によって、燃料電池スタック100Sの構成部材のカソードガスCGの流入口と流出口を形成する。エアーシェルター110は、箱形状からなり、下部の全てと側部の一部を開口している。エアーシェルター110は、例えば、金属からなり、内側面を絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、エアーシェルター110に酸化アルミニウムを固着させて構成する。
外部マニホールド111は、図1および図2に示すように、外部から複数のセルユニット100Tにガスを供給するものである。
外部マニホールド111は、セルスタックアッセンブリー100Mの下方に配置している。外部マニホールド111は、下部エンドプレート108の形状を単純化した外形形状からなる。外部マニホールド111は、下部エンドプレート108よりも十分に厚く形成している。外部マニホールド111は、例えば、金属からなる。
外部マニホールド111は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口111a、アノード側第2流入口111b、アノード側第3流入口111c、アノード側第1流出口111dおよびアノード側第2流出口111eを設けている。外部マニホールド111は、カソードガスCGを通過させるセルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソード側第1流入口111f、カソード側第2流入口111g、カソード側第1流出口111h、カソード側第2流出口111iおよびカソード側第3流出口111jを設けている。
カバー112は、図1および図2に示すように、セルスタックアッセンブリー100Mを被覆して保護するものである。
カバー112は、セルスタックアッセンブリー100Mを、外部マニホールド111とともに上下から挟み込んでいる。カバー112は、箱形状からなり、下部を開口させている。カバー112は、例えば、金属からなり、内側面を絶縁材によって絶縁している。
(絶縁部材104)
以下、絶縁部材104について詳説する。
図17A、図17Bおよび図17Cを参照して、絶縁部材104は、セルフレーム101W(支持部材に相当)に接合される第1接合面121aと、セパレータ102に接合される第2接合面122aと、第1接合面121aと第2接合面122aとの間に配置され、第1接合面121aと第2接合面122aとの間を絶縁する絶縁層123を有する。
第1接合面121aとセルフレーム101Wおよび第2接合面122aとセパレータ102は、例えば、レーザー溶接などの接合方法によって固着される。
第1接合面121aは、セルフレーム101Wに面全体が接触した状態で接合される。第2接合面122aは、セパレータ102に面全体が接触した状態で接合される。第1接合面121a、第2接合面122aおよび絶縁層123は、互いに並行である。
図18A、図18B、図18Cおよび図18Dを参照して、絶縁部材104は、第1接合面121aを備える第1部材121と、第2接合面122aを備える第2部材122と、を有する。絶縁層123は、第1部材121と第2部材122との間に配置される。
第1部材121および第2部材122は、絶縁層123を介して積層されている。
第1部材121および第2部材122は、金属で構成される。第1部材121および第2部材122を構成する金属の種類は特に限定されない。
絶縁層123を構成する材料は、第1接合面121aと第2接合面122aとの間を絶縁し得る限りにおいて特に限定されない。絶縁層123を構成する材料は、例えば、低融点ガラスである。
絶縁部材104は、リング状の形状を備える。絶縁部材104は、リング状の形状を備えた第1部材121および第2部材122を、絶縁層123を介して積層して構成される。
絶縁部材104は、第1部材121と第2部材122とが絶縁層123を介して接合される接合部130を有する。接合部130は、第1部材121と絶縁層123とが接合される第1接合部131と、第2部材122と絶縁層123とが接合される第2接合部132と、を有する。
第1接合面121aおよび第2接合面122aは、絶縁部材104の平面視において互いにオフセットしている。
第1接合面121aおよび第2接合面122aは、絶縁部材104の平面視において、絶縁部材104の径方向に互いにオフセットしている。第1接合面121aは、接合部130よりも絶縁部材104の径方向の内方に配置されている。第2接合面122aは、接合部130よりも絶縁部材104の径方向の外方に配置されている。
第1接合面121aと第2部材122との間には、空隙SPがある。
第2部材122は、絶縁部材104の平面視において、第1接合面121aに重複する位置に配置され、セパレータ102に接触する補助部125を有する。空隙SPは、積層方向Zにおいて、第1接合面121aと補助部125との間に設けられている。
補助部125は、第2接合面122aがセパレータ102に接合された状態においてセパレータ102に接触する接触面125aを有する。
第1接合面121aは、セルフレーム101Wに接合される第1接合領域AR1と、第1接合領域AR1とは異なる位置に配置され、セルフレーム101Wに接合される第2接合領域AR2と、を有する。第2接合面122aは、セパレータ102に溶接される第1接合領域AR1と、第1接合領域AR1とは異なる位置に配置され、セパレータ102に接合される第2接合領域AR2と、を有する。
絶縁部材104は、第1部材121および第2部材122の積層方向Zに弾性力を発生させるばね構造150を備える。
絶縁部材104は、絶縁層123と第1接合面121aとを接続する第1接続部161と、絶縁層123と第2接合面122aとを接続する第2接続部162と、絶縁層123と接触面125aとを接続する第3接続部163を有する。
ばね構造150は、接続部161、162、163が曲げ変形することによって、絶縁部材104の積層方向Zに弾性力を発生させる。
(燃料電池スタック100Sにおけるガスの流れ)
図19Aは、燃料電池スタック100SにおけるアノードガスAGおよびカソードガスCGの流れを模式的に示す斜視図である。図19Bは、燃料電池スタック100SにおけるカソードガスCGの流れを模式的に示す斜視図である。図19Cは、燃料電池スタック100SにおけるアノードガスAGの流れを模式的に示す斜視図である。
アノードガスAGは、外部マニホールド111、下部エンドプレート108、モジュールエンド105、セパレータ102、およびメタルサポートセルアッセンブリー101の各々の流入口を通過して、各々の発電セル101Mのアノード101Tに供給される。すなわち、アノードガスAGは、外部マニホールド111から終端の上部集電板106に至るまで、交互に積層されたセパレータ102とメタルサポートセルアッセンブリー101との隙間175に設けられたアノード側の流路に分配して供給される。その後、アノードガスAGは、発電セル101Mで反応し、上記の各構成部材の各々の流出口を通過して排ガスの状態で排出される。
アノードガスAGは、図19Aに示すように、セパレータ102を隔てて、カソードガスCGと交差するように、流路部102Lに供給される。アノードガスAGは、図19Cにおいて、図19Cの下方に位置するセパレータ102のアノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102cを通過し、メタルサポートセルアッセンブリー101のアノード側第1流入口101a、アノード側第2流入口101bおよびアノード側第3流入口101cを通過した後、図19Cの上方に位置するセパレータ102の流路部102Lに流入して、メタルサポートセルアッセンブリー101の発電セル101Mのアノード101Tに供給される。アノード101Tで反応した後のアノードガスAGは、排気ガスの状態で、図19Cの上方に位置するセパレータ102の流路部102Lから流出して、メタルサポートセルアッセンブリー101のアノード側第1流出口101dおよびアノード側第2流出口101eを通過し、図19C中の下方に位置するセパレータ102のアノード側第1流出口102dおよびアノード側第2流出口102eを通過して外部に排出される。
カソードガスCGは、外部マニホールド111、下部エンドプレート108、モジュールエンド105、セパレータ102、およびメタルサポートセルアッセンブリー101の各々の流入口を通過して、発電セル101Mのカソード101Uに供給される。すなわち、カソードガスCGは、外部マニホールド111から終端の上部集電板106に至るまで、交互に積層されたメタルサポートセルアッセンブリー101とセパレータ102との隙間175に設けられたカソード側の流路に分配して供給される。その後、カソードガスCGは、発電セル101Mで反応し、上記の各構成部材の各々の流出口を通過して排ガスの状態で排出される。上記の各構成部材におけるカソードガスCGの流入口および流出口は、各々の構成部材の外周面と、エアーシェルター110の内側面との間の隙間175によって、構成している。
カソードガスCGは、図19Bにおいて、図19Bの下方に位置するセパレータ102のカソード側第1流入口102fおよびカソード側第2流入口102gを通過し、そのセパレータ102の流路部102Lに流入して、メタルサポートセルアッセンブリー101の発電セル101Mのカソード101Uに供給される。カソード101Uで反応した後のカソードガスCGは、排気ガスの状態で、図19B中の下方に位置するセパレータ102の流路部102Lから流出して、そのセパレータ102のカソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jを通過して外部に排出される。
(燃料電池スタック100Sの製造方法)
図20Aを参照して、実施形態に係る燃料電池スタック100Sの製造方法は、接合体100Uを形成する工程S1と、絶縁部材104を形成する工程S2と、セルユニット100Tを積層する工程S3と、を有する。
接合体100Uを形成する工程S1では、メタルサポートセルアッセンブリー101とセパレータ102とを組み付ける。メタルサポートセルアッセンブリー101とセパレータ102とを組み付ける際には、セルフレーム101W(支持部材に相当)の外周部とセパレータ102の外周部とを、発電セル101Mとセパレータ102とが接触した状態(図15参照)において接合する。セルフレーム101Wの外周部とセパレータ102の外周部との接合は、例えば、レーザー溶接によって接合する。
絶縁部材104を形成する工程S2では、第1部材121と第2部材122とを絶縁層123を介して接合する。
図20Bを参照して、セルユニット100Tを積層する工程S3は、接合体100Uに絶縁部材104を配置する工程S31と、セパレータ102に絶縁部材104を接合する第1接合工程S32と、接合体100Uを積層する工程S33と、セルフレーム101Wに絶縁部材104を接合する第2接合工程S34と、を有する。
接合体100Uに絶縁部材104を配置する工程S31では、接合体100Uのセパレータ102に絶縁部材104を配置する。
第1接合工程S32では、セパレータ102に絶縁部材104を配置した状態において、セパレータ102に絶縁部材104を接合する。
接合体100Uを積層する工程S33では、セパレータ102に接合された絶縁部材104の第1接合面121aとセルフレーム101Wとが接触するように、接合体100Uを積層する。接合体100Uを積層する工程では、発電セル101Mと集電補助層103との間に接点材113を配置する(図16参照)。接合体100Uを積層する工程では、接点材113が第1状態のときに、接合体100Uを積層する。
第2接合工程S34では、セパレータ102に接合された絶縁部材104の第1接合面121aにセルフレーム101Wを接合する。
図20Cを参照して、第1接合工程S32(第2接合工程S34)では、第1接合領域AR1(図17C参照)において絶縁部材104をセパレータ102(セルフレーム101W)に接合し、第1接合領域AR1における絶縁部材104とセパレータ102(セルフレーム101W)との接合状態が良好か否かを判断する。そして、第1接合工程S32(第2接合工程S34)では、第1接合領域AR1における絶縁部材104とセパレータ102(セルフレーム101W)との接合状態が良好ではないと判断された場合、第2接合領域AR2(図17C参照)において絶縁部材104をセパレータ102(セルフレーム101W)に接合する
第1接合工程S32および第2接合工程S34では、レーザー溶接によって、第1接合面121aとセルフレーム101Wおよび第2接合面122aとセパレータ102を接合する。
上述したように、第1接合面121aおよび第2接合面122aは、絶縁部材104の平面視において互いにオフセットしている。そのため、第1接合工程S32におけるレーザーの照射および第2接合工程S34におけるレーザーの照射は、セルユニット100Tの積層方向Zにおいて同じ側、例えば、添付した図面において積層方向Zの正の側(積層方向Zにおける上部側)から行うことができる(図17C等参照)。
第1接合工程S32(第2接合工程S34)において、第1接合面121a(第2接合面122a)とセルフレーム101W(セパレータ102)は、貫通溶接によって溶接可能である(図17Cにおいて、M1は、貫通溶接箇所を示している)。
以下、絶縁部材104を形成する工程について詳説する。
絶縁部材104を形成する工程は、第1部材121と第2部材122とを押し付ける工程と、第1部材121および第2部材122を接合する工程と、を有する。
図21A、図21B、図21Cおよび図21Dを参照して、第1部材121と第2部材122とを押し付ける工程では、治具200を用いて、絶縁層123を介して第1接合部131と第2接合部132とを互いに押し付ける(加圧する)。このとき、絶縁部材104において、第1接合部131および第2接合部132以外の部分は加圧しない。これにより、第1部材121と絶縁層123および第2部材122と絶縁層123を接合する際に絶縁部材104を加熱した際に、第1接合部131および第2接合部132以外の部分の強度等が低下するなどの弊害を防止できる。
治具200は、リング状の押圧部材210と、押圧部材210との間に絶縁部材104を挟み込む基台220と、を有する。
第1部材121と第2部材122とを押し付ける工程では、押圧部材210と基台220との間に第1接合部131と第2接合部132とを絶縁層123とともに挟み込んだ状態において、絶縁層123を介して第1接合部131と第2接合部132とを互いに押し付ける。
第1部材121および第2部材122を接合する工程では、絶縁層123を介して第1接合部131と第2接合部132とを互いに押し付けた状態において、第1接合部131において第1部材121と絶縁層123を接合するとともに、第2接合部132において第2部材122と絶縁層123とを接合する。
接合部130において、第1部材121と絶縁層123および第2部材122と絶縁層123を接合する方法は特に限定されず、例えば、低融点ガラスを用いた接合方法を選択できる。低融点ガラスを用いた場合には、当該低融点ガラスは、第1部材121と第2部材122とを接合するとともに、絶縁層としても機能する。
実施形態に係る燃料電池スタック100Sの製造方法では、絶縁部材104を形成する工程S2は、セルユニット100Tを積層する工程S3とは独立して行われる。そのため、第1部材121と絶縁層123および第2部材122と絶縁層123を接合する方法として、ろう付けによる接合方法等のように高温処理が必要な接合方法を選択しても、発電セル101M、セルフレーム101Wおよびセパレータ102等に対して熱による悪影響が及ぶことを回避できる。
以上説明した第1実施形態の作用効果を説明する。
燃料電池スタック100Sは、電解質101Sを両側からアノード101Tおよびカソード101Uで狭持してなり、供給されたアノードガスAGおよびカソードガスCGによって発電する発電セル101Mと、発電セル101Mとの間にアノードガスAGおよびカソードガスCGの流通路である流路部102Lを区画形成するとともに発電セル101Mのアノード101Tおよびカソード101Uに導通接触するセパレータ102と、を有するセルユニット100Tを複数積層した燃料電池スタックである。セルユニット100Tの積層方向Zにセパレータ102から離間した位置において、発電セル101Mを支持するセルフレーム101Wと、セルフレーム101Wとセパレータ102との間を電気的に絶縁しつつ、セルフレーム101Wとセパレータ102との間の間隔を規制する絶縁部材104と、を有する。絶縁部材104は、セルフレーム101Wに接合される第1接合面121aを備える第1部材121と、セパレータ102に接合される第2接合面122aを備える第2部材122と、第1部材121と第2部材122との間に配置され、第1部材121と第2部材122との間を絶縁する絶縁層123と、を有する。
かかる燃料電池スタック100Sによれば、絶縁層123によって第1部材121と第2部材122との間の電気的な絶縁が確保されるから、第1部材121および第2部材122を構成する材料を、セルフレーム101Wおよびセパレータ102との接合性を考慮して選択できる。これにより、第1接合面121aとセルフレーム101Wとの間の接合力および第2接合面122aとセパレータ102との間の接合力を向上させることができる。そのため、第1接合面121aをセルフレーム101Wに対してより確実に固定できるとともに、第2接合面122aをセパレータ102に対してより確実に固定できる。その結果、セルフレーム101Wおよびセパレータ102の撓み変形などをより確実に規制できるから、発電セル101Mとセパレータ102との間に、より確実に面圧を付与できる。従って、かかる燃料電池スタック100Sによれば、発電セル101Mの発電セル101Mとセパレータ102との間の集電抵抗を低減できる。
特に、本実施形態に係る燃料電池スタック100Sは、電解質101Sとして固体酸化物セラミックスを用いた固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)であるため、稼働温度が約700〜1000℃と非常に高い。このため、固体高分子膜形燃料電池に比べて、稼働時に構成部材が比較的変形し易い。上記構成により、燃料電池スタック100Sは、高温状態での長期間の運転においても、セルフレーム101Wおよびセパレータ102の撓み変形などを規制して、発電性能を維持できる。
また、上記構成によれば、燃料電池スタック100Sに対して大きなスタッキング荷重をかけなくても、第1接合面121aとセルフレーム101Wとの間および第2接合面122aとセパレータ102との間に滑りが生じることはない。すなわち、上記構成によれば、スタッキング荷重が小さくて済むから、燃料電池スタック100Sを構成する部材の剛性を小さくできる。これにより、燃料電池スタック100Sを構成する部材の熱容量が小さくなるから、稼働時に、燃料電池スタック100Sをより短時間に昇温できる。当該効果は、稼働温度が高い固体酸化物形燃料電池の場合において顕著である。
また、かかる燃料電池スタック100Sにおいては、セルフレーム101W、セパレータ102、第1部材121および第2部材122は、金属で構成されている。
かかる燃料電池スタック100Sによれば、第1部材121とセルフレーム101Wとを溶接によって接合できるとともに、第2部材122とセパレータ102とを溶接によって接合できる。これにより、第1接合面121aをセルフレーム101Wに対してより確実に固定できるとともに、第2接合面122aをセパレータ102に対してより確実に固定できる。そのため、セルフレーム101Wおよびセパレータ102の撓み変形などをさらに確実に規制できるから、発電セル101Mとセパレータ102との間に、さらに確実に面圧を付与できる。従って、かかる燃料電池セルユニットによれば、発電セル101Mの発電セル101Mとセパレータ102との間の集電抵抗をより確実に低減できる。
また、かかる燃料電池スタック100Sにおいて、第1接合面121aおよび第2接合面122aは、絶縁部材104の平面視において互いにオフセットしている。
かかる燃料電池スタック100Sによれば、絶縁部材104の平面視において、第1接合面121aと第2接合面122aとが重ならないから、第1接合面121aとセルフレーム101Wとを接合する作業および第2接合面122aとセパレータ102とを接合する作業を、絶縁部材104の積層方向Zにおける正の側(図17C等参照)から行うことができる。そのため、かかる燃料電池セルユニットを用いることによって、燃料電池100の製造が容易になる。
また、かかる燃料電池スタック100Sにおいて、第1接合面121aと第2部材122との間または第2接合面122aと第1部材121との間には、空隙SPがある。
かかる燃料電池スタック100Sによれば、第1接合面121aとセルフレーム101Wとを接合するためにセルフレーム101Wの側から照射したエネルギーを空隙SPに吸収させることによって、当該エネルギーが第2部材122に到達することを防止できる。これにより、上記エネルギーのエネルギー量の調節を高精度に行うことなく、上記エネルギーが第2部材122に到達することを回避できる。そのため、かかる燃料電池スタック100Sを用いることによって、燃料電池100の製造がより容易になる。
また、かかる燃料電池スタック100Sにおいて、第1接合面121aおよび第2接合面122aは、セルフレーム101Wまたはセパレータ102に接合される第1接合領域AR1と、第1接合領域AR1とは異なる位置に配置され、セルフレーム101Wまたはセパレータ102に接合される第2接合領域AR2と、を有する。
かかる燃料電池スタック100Sによれば、第1接合領域AR1において第1接合面121aとセルフレーム101Wとの間の接合が良好になされなかった場合であっても、第2接合領域AR2を使用して、第1接合面121aとセルフレーム101Wとの間の接合を再度行うことができる。これにより、第1接合領域AR1において第1接合面121aとセルフレーム101Wとの間の接合が良好になされなかった場合において、セルフレーム101Wを交換することなく、第1接合面121aとセルフレーム101Wとを接合できる。そのため、かかる燃料電池スタック100Sを用いることによって、燃料電池100を製造する際の歩留まりが向上する。
また、かかる燃料電池スタック100Sにおいて、セパレータ102は、カソード101Uとの間に配置され、カソード101Uとの間にある隙間を埋めることによって、カソード101Uとの間の接触面積を増加させる接点材113をさらに有する。そして、接点材113は、粘性または弾性の少なくとも一方を備える第1状態と、焼結されることによって固化された第2状態と、を備える。
かかる燃料電池スタック100Sによれば、発電セル101Mとセパレータ102とを組み付ける際に、第1状態において粘性または弾性の少なくとも一方を備える接点材113が弾性力を発揮することによって、発電セル101Mとセパレータ102との間に過剰な面圧が作用することを防止できる。これにより、かかる燃料電池スタック100Sは、発電セル101Mが損傷することを回避しつつ、発電セル101Mとセパレータ102との間に均一な面圧を付与できる。
また、かかる燃料電池スタック100Sにおいて、絶縁部材104は、第1部材121および第2部材122の積層方向Zに沿って弾発力を発生させるばね構造150を備える。
かかる燃料電池スタック100Sによれば、ばね構造150が、第1部材121および第2部材122の積層方向Zに沿って弾発力を発生させることによって、発電セル101Mとセパレータ102との間に過剰な面圧が作用することを防止できる。これにより、かかる燃料電池スタック100Sは、発電セル101Mが損傷することを回避しつつ、発電セル101Mとセパレータ102との間に均一な面圧を付与できる。
また、絶縁部材104がばね構造150を備えることによって、発電セル101Mと集電補助層103との間に配置される接点材113の厚みを減らすことができるため、接点材113の使用量を削減できる。
また、ばね構造150が弾性変形することによって、燃料電池スタック100Sの構成要素の寸法誤差を吸収できる。これにより、発電セル101Mとセパレータ102との間の流路部102Lの変形によって寸法誤差が吸収されることを回避できる。そのため、流路部102LにおいてアノードガスAGおよびカソードガスCGの圧力損失が生じることを防止できる。
また、かかる燃料電池スタック100Sにおいて、絶縁部材104は、絶縁層123に固定され、絶縁層123と接合面とを接続する接続部161、162、163を有する。そして、ばね構造150は、接続部161、162、163が曲げ変形することによって弾発力を発生させる。
かかる燃料電池スタック100Sによれば、接続部161、162、163を曲げ変形させるという簡便な方法によって、ばね構造150を製造できる。そのため、かかる燃料電池スタック100Sによれば、燃料電池100をより容易に製造できる。
また、かかる燃料電池スタック100Sにおいて、絶縁部材104は、セルフレーム101Wと第1接合面121aとの間およびセパレータ102と第2接合面122aとの間においてアノードガスAGおよびカソードガスCGを封止する機能を備えるである。
かかる燃料電池スタック100Sによれば、絶縁部材104が封止部材も兼ねることによって、部品点数を削減することができる。そのため、かかる燃料電池スタック100Sによれば、燃料電池100の製造コストを低減できる。
(改変例1)
図22A、図22Bおよび図22Cに示すように、第2部材122は、補助部125を有していなくてもよい。かかる絶縁部材104によっても、上述した実施形態に係る絶縁部材104と同様に、アノード101Tおよびカソード101Uとセパレータ102との間の集電抵抗を低減できる。
(改変例2)
上述した実施形態では、ばね構造150は、接続部161、162、163を曲げ変形させることによって弾発力を発生させた。
しかしながら、図23A、図23Bおよび図23Cを参照して、絶縁部材104は、第1部材121の一部と第2部材122の一部とを接触させることによって、第1部材121と第2部材122との間に反力を生じさせる干渉部170をさらに有してもよい。そして、ばね構造150は、第1部材121および第2部材122が、干渉部170において生じる反力によって弾性変形することによって弾発力を発生させてもよい。
第1部材121(第2部材122)の表面のうち、干渉部170において、第2部材122(第1部材121)と接触する部分には、絶縁材またはコーティングを用いて絶縁処理を施している。絶縁材は、例えば、第1部材121(第2部材122)に酸化アルミニウムを固着させて構成する。
本改変例に係る絶縁部材104であっても、上述した実施形態1に係る絶縁部材104と同様に、ばね構造150が弾発力を発生させることによって、発電セル101Mとセパレータ102との間に過剰な面圧が作用することを防止できる。これにより、かかる燃料電池セルユニットは、発電セル101Mが損傷することを回避しつつ、発電セル101Mとセパレータ102との間に均一な面圧を付与できる。
(改変例3)
上述した実施形態では、絶縁部材104は、セパレータ102のアノード側流入口(例えばアノード側第1流入口102a)およびアノード側流出口(例えばアノード側第1流出口102d)に設けられた(図19C参照)。
しかしながら、図24A、図24B、図25A、図25Bおよび図25Cを参照して、絶縁部材104は、セルフレーム101Wの外周部に設けられていてもよい。以下、本改変例に係る絶縁部材104について説明する。なお、上述した実施形態と同一の部材には同一の符号を付して説明を省略する。
絶縁部材104は、セルフレーム101Wの外周に沿って延びている。
第1接合面121aおよび第2接合面122aは、絶縁部材104がセルフレーム101Wおよびセパレータ102に接合された状態において、接合部130よりもセルフレーム101Wおよびセパレータ102の外周側に配置される。第2接合面122aは、第2接合面122aがセパレータ102に接合された状態において、第1接合面121aよりも、セパレータ102の外周側に配置される。
絶縁部材104は、第1部材121の一部と第2部材122の一部とを接触させることによって、第1部材121と第2部材122との間に反力を生じさせる干渉部170を有する。
ばね構造150は、第1部材121および第2部材122が、干渉部170において生じる反力によって弾性変形することによって、弾性力を生じさせる。
干渉部170は、第1部材121の一部と第2部材122の一部とが接触する接触領域171と、接触領域171において第1部材121の一部と第2部材122の一部とが接触した状態において、第1部材121と第2部材122との間に隙間175が形成される非接触領域172と、を有する。
絶縁部材104は、セルフレーム101Wの面方向に沿って直線的に延びる直線部104Aと、セルフレーム101Wの隅部の輪郭に沿って湾曲する湾曲部104Bと、を有する。接触領域171は、直線部104Aに配置される。非接触領域172は、湾曲部104Bに配置される。
干渉部170は、接合部130に並行に配置されている。干渉部170は、絶縁部材104がセルフレーム101Wおよびセパレータ102に接合された状態において、接合部130よりもセルフレーム101Wの外周側に配置される。干渉部170は、第1接合面121aと第2接合面122aとの間に配置される。
本改変例に係る燃料電池スタック100Sによっても、上述した実施形態1に係る燃料電池セルユニットと同様に、発電セル101Mとセパレータ102との間の集電抵抗を低減できる。
また、燃料電池スタック100Sにおいて、干渉部170は、第1部材121の一部と第2部材122の一部とが接触する接触領域171と、接触領域171において第1部材121の一部と第2部材122の一部とが接触した状態において、第1部材121と第2部材122との間に隙間175が形成される非接触領域172と、を有する。
かかる燃料電池スタック100Sによれば、第1部材121および第2部材122が、干渉部170において生じる反力によって弾性変形した際に、当該弾性変形の一部を、非接触領域172によって吸収できる。そのため、接触領域171において第1部材121と第2部材122との間に過剰な反力が作用することを防止できる。そのため、絶縁部材104の信頼性を向上させることができる。
また、かかる燃料電池スタック100Sにおいて、絶縁部材104は、第1部材121と第2部材122とが絶縁層123を介して接合される接合部130を有する。そして、干渉部170は、接合部130に並行に配置されている。
また、かかる燃料電池スタック100Sによれば、干渉部170が接合部130に並行に配置されていることによって、干渉部170に交差する方向において、第1部材121および第2部材122が過度に弾性変形することを防止できる。そのため、発電セル101Mとセパレータ102との間に過剰な面圧が作用することを防止できる。
また、本改変例に係る燃料電池スタック100Sによれば、絶縁部材104がセルフレーム101Wの外周部に設けられることによって、セルフレーム101Wの撓み変形をより効率的に防止できる。
なお、干渉部170は、接合部130に交差する方向に配置されていてもよい。
かかる燃料電池スタック100Sによれば、干渉部170が接合部130に交差する方向に配置されていることによって、干渉部170に沿う方向において、第1部材121および第2部材122が過度に弾性変形することを防止できる。そのため、発電セル101Mの発電セル101Mとセパレータ102との間に過剰な面圧が作用することを防止できる。
(改変例4)
上述した実施形態1では、第2部材122の内径は、第1部材121の内径よりも大きかった。しかしながら、図26Aおよび図26Bに示すように、第2部材122の内径は、第1部材121の内径よりも小さくてもよい。
図26Aに示すように、第1接合面121aと第2部材122との間に絶縁層123が存在している場合には、第1接合面121aとセルフレーム101Wとは非貫通溶接になる。図26Bに示すように、第1接合面121aと第2部材122との間に絶縁層123が存在していない場合には、絶縁層123の厚みを調節することによって、第1接合面121aとセルフレーム101Wとを貫通溶接できる。なお、図26Aおよび図26Bにおいて、貫通溶接箇所をM1で示し、非貫通溶接箇所をM2で示している。
(改変例5)
また、図27Aおよび図27Bに示すように、第1部材121の内径および第2部材122の内径を同じにして、第2部材122の外径を第1部材121の外径よりも大きくしてもよい。
図27Aに示すように、第1接合面121aと第2部材122との間に絶縁層123が存在している場合には、第1接合面121aとセルフレーム101Wとは非貫通溶接になる。図27Bに示すように、第1接合面121aと第2部材122との間に絶縁層123が存在していない場合には、絶縁層123の厚みを調節することによって、第1接合面121aとセルフレーム101Wとを貫通溶接できる。なお、図27Aおよび図27Bにおいて、貫通溶接箇所をM1で示し、非貫通溶接箇所をM2で示している。
(改変例6)
図28A、図28Bおよび図28Cに示すように、絶縁層123は、ガラスGSと、絶縁コートCTと、を有してもよい。
絶縁コートCTは、例えば、酸化アルミニウムを固着させることによって形成できる。
図28Aに示すように、絶縁コートCTは、第1部材121においてガラスGSに接合される部位に形成してもよい。また、図28Bに示すように、絶縁コートCTは、第2部材122においてガラスGSに接合される部位に形成してもよい。また、図28Bに示すように、絶縁コートCTは、第1部材121においてガラスGSに接合される部位および第2部材122においてガラスGSに接合される部位に形成してもよい。絶縁コートCTを施すことによって、ガラスGSの濡れ性が向上して、第1部材121および第2部材122の接合を容易にできる。
(改変例7)
また、図29Aに示すように、絶縁層123は、第1部材121に絶縁コートCTを施して、絶縁コートCTと第2部材122とをろう付けすることによって形成してもよい。
また、図29Bに示すように、絶縁層123は、第2部材122に絶縁コートCTを施して、絶縁コートCTと第1部材121とをろう付けすることによって形成してもよい。
また、図29Cに示すように、絶縁層123は、第1部材121に絶縁コートCTを施すとともに第2部材122に絶縁コートCTを施して、第1部材121の絶縁コートCTと第2部材122の絶縁コートCTとの間をろう付けすることによって形成してもよい。
(改変例8)
また、図30に示すように、絶縁層123は、絶縁性のスペーサーSCを介して、第1部材121および第2部材122をろう付けすることによって形成してもよい。
(改変例9)
図31に示すように、干渉部170において、第1部材121および第2部材122は、絶縁層123を介して接触してもよい。
(改変例10)
また、図32Aおよび図32Bに示すように、接合部130は、積層方向Zに向かって傾斜していてもよい。図32Bに示すように、干渉部170において、第1部材121および第2部材122は、絶縁層123を介して接触してもよい。
(改変例11)
改変例4では、干渉部170は、接合部130よりもセルフレーム101Wの外周側に配置された。しかしながら、図33に示すように、接合部130を、干渉部170よりもセルフレーム101Wの外周側に配置してもよい。
(改変例12)
また、図34に示すように、干渉部170を2箇所設けてもよい。
これにより、絶縁部材104に対して積層方向Zに力が作用した際に、絶縁部材104がせん断変形することを防止できる。そのため、絶縁部材104の積層方向Zにおける剛性が向上するから、発電セル101Mとセパレータ102との間の間隔を適正な間隔により確実に維持できる。その結果、当該発電セル101Mとセパレータ102との間を流動するカソードガスCGの圧力損失をより確実に減少させることができるから、燃料電池100の発電性能をより向上させることができる。
そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
例えば、上述した実施形態および改変例では、燃料電池スタックは、固体酸化物形燃料電池(SOFC、Solid Oxide Fuel Cell)に適用する燃料電池スタックとして説明したが、固体高分子膜形燃料電池(PEMFC、Polymer Electrolyte Membrane Fuel Cell)、リン酸形燃料電池(PAFC、Phosphoric Acid Fuel Cell)または溶融炭酸塩形燃料電池(MCFC、Molten Carbonate Fuel Cell)として構成してもよい。すなわち、燃料電池スタックは、固体酸化物形燃料電池(SOFC)に加えて、固体高分子膜形燃料電池(PEMFC)、リン酸形燃料電池(PAFC)または溶融炭酸塩形燃料電池(MCFC)に適用することができる。
また、上述した実施形態および改変例では、第1接合面と第2部材との間に空隙が形成された。しかしながら、第2接合面と第1部材との間に空隙が形成されていてもよい。