WO2006128937A2 - Nanoparticulas que comprenden quitosano y ciclodextrina - Google Patents

Nanoparticulas que comprenden quitosano y ciclodextrina Download PDF

Info

Publication number
WO2006128937A2
WO2006128937A2 PCT/ES2006/000322 ES2006000322W WO2006128937A2 WO 2006128937 A2 WO2006128937 A2 WO 2006128937A2 ES 2006000322 W ES2006000322 W ES 2006000322W WO 2006128937 A2 WO2006128937 A2 WO 2006128937A2
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
chitosan
nanoparticles
biologically active
active molecule
Prior art date
Application number
PCT/ES2006/000322
Other languages
English (en)
French (fr)
Other versions
WO2006128937A3 (es
Inventor
Mª José ALONSO FERNÁNDEZ
Marcos GARCÍA FUENTES
Francesca Maestrelli
Paola Mura
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to CA002610403A priority Critical patent/CA2610403A1/en
Priority to JP2008514129A priority patent/JP5191884B2/ja
Priority to BRPI0613234-0A priority patent/BRPI0613234A2/pt
Priority to EP06778444A priority patent/EP1891943A2/en
Priority to AU2006254128A priority patent/AU2006254128A1/en
Priority to US11/916,283 priority patent/US20080220030A1/en
Priority to CN2006800208889A priority patent/CN101217947B/zh
Publication of WO2006128937A2 publication Critical patent/WO2006128937A2/es
Publication of WO2006128937A3 publication Critical patent/WO2006128937A3/es
Priority to IL187696A priority patent/IL187696A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention is directed to nanoparticulate systems for the release of biologically active molecules. Specifically, it is directed to nanoparticulate systems, consisting of a mixture of the chitosan polymer and a cyclodextrin in which a biologically active molecule can be located, as well as procedures for obtaining it.
  • Polymeric nanoparticles are being given special attention due to their interest in improving stability and promoting the transport and controlled release of drugs to certain regions of the body, overcoming the problems associated with the limited permeability of epithelial barriers.
  • chitosan has received great attention in recent years due to its properties as a mucoadhesive (CM. Lehr, JA Bouwstra, EH Schacht, and HE Junginger, Int. J. Pharm., 1992, 78, 43- 48) and absorption promoter (P. Artursson, T. Lindmark, SS Davis, and L. Illum, Pharm. Res., 1994, 11, 1358-1361).
  • Chitosan As a material of acceptable toxicological profile (SB Rao and CP Sharma, J. Biomed. Mater. Res., 1997, 34, 21-28), which has already been approved by the FDA as an additive in animal feed (JD McCurdy, Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1992, pp. 757-764).
  • Chitosan [ ⁇ (l-4) 2-amino 2-deoxy- ⁇ -D-Glucan] is a naturally occurring polysaccharide from the deacetylation of chitin.
  • the chitosans used as a food supplement or for medical applications are random polymers of acetylated and deacetylated monomers.
  • Chitosan nanoparticles have been widely studied as vehicles for the transmucosal administration of a large number of therapeutic molecules (AM De Campos, Y. Diebold, El Carvalho, A. Sánchez, and MJ Alonso, Pharm. Res., 2004, 21, 803-810; R. Femandez-Urrusuno, P. Calvo, C. Remu ⁇ án-López, JL Vila-Jato, and MJ Alonso, Pharm. Res., 1999, 16, 1576-1581; A. Prokov, E. Kozlov, GW Newman, and MJ Newman, Biotechnology and bioengineering, 2002, 78, 459-466; A. ViIa, A. Sánchez, K.
  • cyclodextrins are known as complex agents before poorly soluble molecules and as vehicles for the administration of active ingredients.
  • chemically modified cyclodextrins are currently the most widely used in pharmaceutical technology due to their greater chemical versatility.
  • the replacement of hydroxyls with methyl, hydroxypropyl or carboxymethyl groups gives the molecules greater water solubility and better toxicity characteristics.
  • Other cyclodextrins allow the complexes to have reduced solubility (used for the formulation of sustained release systems) or temperature dependent solubility.
  • cyclodextrin complexing has been shown to be able to reduce the degradation kinetics of certain labile drugs, or the tendency to form inactive aggregates of peptides such as insulin.
  • certain cyclodextrins have the ability to promote the absorption of drugs because they produce slight disruptions in cell membranes by complexing their lipids.
  • US5843347, US5840341 and US5639473 describe polymer compositions in solution, in macroscopic particles or microparticles.
  • the methods described for the formation of particles such as extrusion (US5843347) or the formation of water-in-oil emulsions (US5639473) do not allow obtaining particles smaller than several micrometers in size.
  • WO9961062 refers to the preparation of polymeric microparticles with cyclodextrins, where cyclodextrins have the function of protecting the drug from possible unfavorable interactions with the polymer matrix.
  • US6630169 patent describes the formation of microstructures as vehicles of vaccines by transmucosal routes.
  • US5639473 refers to the modification by crosslinking with disulfide groups of hydrophilic polymers (such as chitosan) or oligosaccharides (such as cyclodextrins).
  • hydrophilic polymers such as chitosan
  • oligosaccharides such as cyclodextrins
  • WO03027169 describes the formation of hydrophilic polymer derivatives with covalently linked cyclodextrins and their usefulness for the formation of pharmaceutical systems (including micro- and nanoparticles).
  • a preparation method is described which includes emulsion cross-linking of the matrix poly- or oligosaccharides to give rise to ether type bonds between these molecules.
  • US5700459 and US6649192 describe methods for the formation of chitosan nanoparticles for pharmaceutical applications.
  • the nanoparticles are formed by the interaction of a polycation (such as chitosan) with a polyanion (such as tripolyphosphate).
  • a polycation such as chitosan
  • a polyanion such as tripolyphosphate
  • US5700459 mentions the possible use of cyclodextrins (aminocyclodextrins) as a substitute for another potential polycation such as chitosan.
  • WO9704747 proposes the encapsulation of drugs or drug-cyclodextrin complexes in nanometric hydrogel matrices that can be subsequently coated by liposomes and / or mucoadhesion adjuvants.
  • the proposed method requires precipitation of the polymer from an organic phase in an aqueous phase, and the cyclodextrin drugs are added in the aqueous phase where the polymer precipitates, and not in conjunction with it. This factor in the procedure can lead to poorly encapsulations of certain drugs.
  • microencapsulation techniques aimed at the formation of microparticles generally differ from nanotechnologies applied to the formation of nanoparticles.
  • WO 9804244 describes the formation of chitosan nanoparticles.
  • a system consisting of chitosan nanoparticles and a cyclodextrin, allows an effective association of biologically active molecules, as well as their subsequent release in a suitable biological environment.
  • These nanoparticles have an improved ability to encapsulate or associate hydrophobic drugs with respect to chitosan nanoparticles without cyclodextrin.
  • cyclodextrins provide new characteristics to the nanoparticulate system such as better protection of the associated biologically active molecule as well as greater absorption promoting power especially for those poorly permeable molecules.
  • nanoparticles present in the system of the invention is its high stability in cell culture media and, more significantly, in simulated intestinal fluids, where it has been shown that the nanoparticles do not vary their physical properties. chemical for at least four hours. This property makes these systems suitable for your use by different routes of administration and, particularly, for oral administration, allowing the drug to be released in the appropriate biological environment. Likewise, through release studies with different drugs, it has been shown that nanoparticles allow the active substance to be released at a gradual and controlled rate.
  • an object of the present invention is directed to a system comprising nanoparticles for the release of a biologically active molecule, where the nanoparticles comprise a) at least 40% by weight of chitosan or a derivative thereof and b) less than one 60% by weight of a cyclodextrin or a derivative thereof, where both components a) and b) are mixed without covalent bonds.
  • the nanoparticles can also comprise an ionic crosslinking agent that allows the chitosan to gel in the form of nanometric structures.
  • a second aspect of the present invention relates to a nanoparticulate system as previously defined which further comprises a biologically active molecule.
  • the invention is directed to a pharmaceutical composition
  • a pharmaceutical composition comprising a nanoparticulate system as defined previously and a biologically active molecule capable of preventing, alleviating or curing diseases.
  • peptides, proteins or polysaccharides that are not considered active biological molecules "per se” but can contribute to the effectiveness of the administration system can be found trapped in the nano structure.
  • composition or vaccine is for mucosal administration.
  • the invention is directed to a cosmetic composition comprising a nanoparticulate system as defined above.
  • Another aspect of the invention is a method of obtaining a system for the release of a biologically active molecule as defined, comprising: a. preparation of a chitosan solution or a derivative thereof in aqueous medium or in a mixture of water with a polar solvent; b. preparation of a solution of a cyclodextrin or a derivative thereof in aqueous medium or in a mixture of water with a polar solvent and, optionally a crosslinking agent; and c. mixing, with stirring, the solutions of steps a) and b) so that the chitosan-cyclodextrin nanoparticles are spontaneously obtained. or optionally: a.
  • the biologically active molecule can be incorporated directly into the solutions of steps a) or b), however, in a variant of the process the active molecule can be dissolved prior to the addition to phases a) or b) in aqueous medium or in a mixture of water and a polar solvent.
  • a final aspect of the invention is directed to the use of a system as previously described for the preparation of a medicament for gene therapy.
  • Figure 1 TEM images of chitosan- (hydroxypropyl- ⁇ -cyclodextrin) formulations. Formulations prepared with 25 mM hydroxypropyl- ⁇ -cyclodextrin and 2 mg / mL tripolyphosphate (left image) or 1.25 mg / mL (right image).
  • Figure 2 SEM image of chitosan- (hydroxypropyl- ⁇ -cyclodextrin) formulations. Formulation prepared from 25 mM cyclodextrin and 2 mg / mL tripolyphosphate.
  • CS chitosan
  • SBE-CD sulfobutylether-cyclodextrin
  • CM-CD carboxymethyl-cyclodextrin
  • TPP sodium tripolyphosphate
  • HBSS Hanks offset salt solution.
  • (•) CS / CM-CD / TPP 4 / 4.5 / 0.25.
  • CS chitosan;
  • SBE-CD sulfobutyleter- ⁇ -cyclodextrin;
  • CM-CD carboxymethyl- ⁇ -cyclodextrin;
  • TPP sodium tripolyphosphate.
  • CS / CM-CD / TPP 4/3 / 0.5;
  • CS chitosan; CM-CD: carboxymethyl- ⁇ -cyclodextrin; TPP: sodium tripolyphosphate.
  • FIG. 6 Triclosan and furosemide drug release profile from chitosan- (hydroxypropylcyclodextrin) formulations.
  • Formulations: TRIC HPaCD (formulation of triclosan with hydroxypropyl- ⁇ -cyclodextrin), TRIC HP ⁇ CD (formulation of triclosan with hydroxypropyl- ⁇ -cyclodextrin), FUR HPaCD (formulation of furosemide with hydroxypropyl- ⁇ -cyclodextrin), FUR HP ⁇ CD (formulation of furosemide with hydroxypropyl- ⁇ -cyclodextrin) (Means ⁇ Desv. Est, n 3).
  • Figure 7 Chitosan-sulfobutylcyclodextrin nanoparticle agarose GeI. Lines: (1) molecular weight marker, (2) DNA in solution, (3) nanoparticles without DNA, (4) nanoparticles with DNA, (5) nanoparticles with DNA degraded with chitosanase. Incubation time 30 minutes.
  • Figure 8 Fluorescence images of cells transfected with 1 ⁇ g of plasmid pGFP in chitosan-sulfobutylcyclodextrin nanoparticles. Transfection levels achieved at 48 h.
  • Figure 9 Stability of fluorescein-cyclodextrin-labeled chitosan nanoparticles in trehalose (5%).
  • O FI-CS / SBE-CD 4/4;
  • D FI-CS / CM-CD 4/6.
  • FI-CS fluorescein-labeled chitosan;
  • SBE-CD sulfobutyleter- ⁇ -cyclodextrin;
  • CM-CD carboxymethyl- ⁇ -cyclodextrin;
  • TPP sodium tripolyphosphate.
  • the system of the present invention comprises nanoparticles that are dispersed in an aqueous medium, wherein said nanoparticles have a structure comprising chitosan and cyclodextrin, in which a biologically active molecule can be incorporated. This structure is held together by electrostatic interactions between both components, without covalent bonds between them.
  • the nanoparticles can also comprise an ionic crosslinking agent that allows the cross-linking of the chitosan by ionotropic gelation favoring the spontaneous formation of the nanoparticles.
  • nanoparticle means a structure formed by the electrostatic interaction between the chitosan and the cyclodextrin, where said structure can also be crosslinked when a polyanionic salt that acts as a crosslinking agent is added to the system.
  • the resulting electrostatic interaction between the different components of the nanoparticles, and optionally cross-linking the chitosan by the addition of a crosslinking agent generates characteristic, independent and observable physical entities, whose average size is less than 1 ⁇ m, that is, an average size between 1 and 999 nm.
  • average size is meant the average diameter of the population of nanoparticles comprising chitosan and cyclodextrin, which move together in the aqueous medium.
  • the average size of these systems can be measured by standard procedures known to the person skilled in the art, and which are described, for example, in the experimental part below.
  • the nanoparticles described in the present invention are characterized by having an average particle size of less than 1 ⁇ m, preferably having an average size between 1 and 999 nm, preferably between 10 and 800 nm.
  • the average particle size is mainly influenced by the proportion of chitosan with respect to cyclodextrin, by the degree of deacetylation of chitosan and also by the conditions of particle formation (chitosan concentration, decyclodextrin concentration, crosslinking agent concentration , when there is, and relationship between them).
  • the nanoparticles can present an electric charge (measured by the Z potential, using CLK as a dilution medium) whose magnitude can vary from 0 mV to + 60 mV, depending on the variables mentioned.
  • the positive charge of the nanoparticles may be of interest to favor their interaction with biological surfaces, and in particular with the mucous surfaces that are negatively charged.
  • the neutral charge may be more suitable for parenteral administration.
  • the system comprising nanoparticles for the release of a biologically active molecule that has been defined above has a chitosan content in the mixture greater than 40% by weight, preferably between at least 40% and 95.5% by weight.
  • the content of cyclodextrin in the mixture is less than 60% by weight, preferably between 0.5% and less than 60% by weight.
  • Chitosan is a naturally occurring polymer derived from chitin (poly-N-acetyl-D-glucosamine), where an important part of the N-acetyl groups have been removed by hydrolysis.
  • the degree of deacetylation is preferably in a range between 30 and 95%, more preferably between 50 and 95%, indicating that between 5% and 50% of the amino groups are acetylated. It therefore presents an aminopolysaccharide structure and cationic character. It includes the repetition of monomer units of formula (I):
  • n is an integer, and also m units where the amino group is acetylated.
  • the sum of n + m represents the degree of polymerization, that is, the number of monomer units in the chitosan chain.
  • the chitosan used to obtain the nanocapsules of the present invention has a molecular weight between 1 and 2000 kDa, preferably between 5 and 500 kDa, more preferably between 5 and 200 kDa.
  • Examples of commercial chitosans that can be used are UPG 1 13, UP CL 213 and UP CLl 13 which can be obtained from NovaMatrix, Drammen, Norway.
  • the number of monomer units comprising the chitosan used in obtaining the nanoparticles is between 5 and 5000 monomers, preferably between 60 and 600 monomers.
  • a derivative thereof can also be used, which is understood as a chitosan in which one or more hydroxyl groups and / or one or more amino groups have been modified, in order to increase the solubility of the chitosan or increase the Adhesive character thereof.
  • These derivatives include, among others, acetylated, alkylated or sulphonated chitosans, thiolated derivatives, as described in Roberts, Chitin Chemistiy, Macmillan, 1992, 166.
  • a derivative is selected from 0-alkyetres, O- acylesters, trimethylchitosan, chitosans modified with polyethylene glycol, etc.
  • Cyclodextrins structurally consist of 6, 7 or 8 units of D-glucopyranosyl linked by ⁇ (1-4) glycosidic bonds, denominating ⁇ ⁇ or ⁇ , respectively.
  • the most stable three-dimensional configuration of these oligosaccharides is a toroid in which the primary and secondary hydroxyl groups are presented to the solvent. In this conformation, the cavity formed within this toroid presents a high hydrophobia, responsible together with Van der Waals forces and hydrogen bridges for the formation of inclusion complexes between cyclodextrins and drugs.
  • cyclodextrin derivative is meant a cyclodextrin or mixtures thereof in which the hydrogen (s) of a part or of all hydroxyl groups of positions 2-, 3- and 6- of glucose is / n substituted / s by Another functional group (s) is such as a dihydroxyalkyl group, a saccharide residue, a hydroxyalkyl group, a sulfonate group, a sulfoalkyl group, an alkyl group, an alkanoyl group, an acetyl group or a benzoyl group.
  • cyclodextrin or its derivatives employed in the present invention may be commercially available or may be synthesized by a method known per se.
  • Examples of cyclodextrin and its derivatives comprise natural cyclodextrins (alpha, beta or.
  • the cyclodextrin is hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, sulfobutylethyl- ⁇ -cyclodextrin or mixtures thereof. Any of them can be used in the systems of the invention.
  • the average degree of substitution (GS) refers to the average number of hydroxyls substituted per unit of cyclodextrin
  • the degree of molar substitution (SM) refers to the number of hydroxyl groups per unit of anhydroglucose.
  • the cyclodextrins used have an average degree of substitution ranging from 4.2 to 7, although the application of cyclodextrins whose GS is outside that range is also possible.
  • the nanoparticle system of the invention is characterized in that it has been formed by spontaneous precipitation of the nanoparticles after mixing a polycationic phase, comprising the chitosan, and optionally the cyclodextrin, with a polyanionic phase, which may be formed by a cyclodextrin or by a crosslinking agent or by a combination of both. It is significant that both phases are aqueous, avoiding or minimizing the use of organic solvents in the preparation of the systems of the invention.
  • the crosslinking agent is an anionic salt that allows the cross-linking of chitosan, favoring the spontaneous formation of nanoparticles.
  • the crosslinking agent is a polyphosphate salt, the use of sodium tripolyphosphate (TPP) being preferred.
  • the cyclodextrin When the cyclodextrin is anionic, it can constitute the polyanionic phase on its own and the presence of TPP is not necessary, since the nanoparticles are formed by the electrostatic interaction between the negatively charged cyclodextrins and the positively charged chitosan.
  • the addition of TPP in addition to anionic cyclodextrin can, in some cases, change the cross-linking density and favor the stability of the nanoparticles.
  • cyclodextrins that do not have an anionic charge (no charge or positive charge) it is necessary to incorporate the TPP in the polyanionic phase to crosslink the chitosan and allow the formation of nanoparticles.
  • Chitosan-cyclodextrin nanoparticles are systems that have a high capacity to associate bioactive molecules. This association capacity depends on the type of molecule incorporated as well as the indicated formulation parameters. In the present invention this type of nanoparticles is particularly directed to associate hydrophobic active molecules and hydrophobic and hydrophilic active molecules, which are not very permeable. Therefore, a second aspect of the present invention is a nanoparticulate system as previously defined which also comprises a biologically active molecule. 00322
  • biologically active molecule refers to any substance that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals.
  • biologically active molecules can include from low molecular weight drugs to polysaccharide-like molecules, proteins, peptides, lipids and nucleic acid-based molecules and combinations thereof.
  • the biologically active molecules are the drugs class II (non-permeable water soluble), class III (permeable hydrophobic) and preferably class IV (non permeable hydrophobic) according to the FDA definition.
  • class II molecules Danazol; Ketoconazole; mefenamic acid; Nisoldipine; Nifedipine; Nicardipine; Felodipine, Atovaquone, Griseofulvin, Troglitazone, Glibenclamide, Carbamazepine; Class III: Acyclovir; Neomycin B; Captopril; Enalaprilat; Alendronate, Atenolol, Cimetidine, Ranitidine; Class IV: Chlorothiazide; Furosemide; Tobramycin, Cefuroxime, Itraconazole, Cyclosporine.
  • the biologically active molecule is triclosan. In another preferred embodiment the biologically active molecule is furosemide. In another particular embodiment, the biologically active molecules are peptide, polysaccharide, protein or nucleic acid-based macromolecules (oligonucleotides, DNA, siRNA).
  • the biologically active molecule is insulin. In another preferred embodiment, the biologically active molecule is heparin. In another preferred embodiment the biologically active molecule is DNA.
  • a vaccine comprising the previously defined nano-linked system and an antigen.
  • the administration of an antigen by the system consisting of the nanoparticles allows to achieve an immune response.
  • the vaccine can comprise a protein, polysaccharide or it can be a DNA vaccine.
  • a DNA vaccine is a DNA molecule that encodes the expression of an antigen that will result in an immune response.
  • the association of the biologically active molecule can occur by combined processes comprising non-covalent interactions between the active molecule and the polymer or the association of the active molecule to a cyclodextrin forming an inclusion complex and the non-covalent interaction of this complex with the matrix.
  • Another object of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising the previously defined nanoparticulate system and a biologically active molecule capable of preventing, alleviating or curing diseases.
  • pharmaceutical compositions include any liquid (nanoparticle suspension) or solid composition (lyophilized or atomized nanoparticles forming a powder that can be used to make granules, tablets or capsules) for administration either orally, orally, sublingually, or in liquid or semi-solid form for administration by transdermal, ocular, nasal, vaginal or parenteral route.
  • non-parenteral pathways the contact of the nanoparticles with the skin or mucous membranes can be improved by giving the particles a significant positive charge, which will favor their interaction with the aforementioned negatively charged surfaces.
  • parenteral routes more specifically for intravenous administration, these systems offer the possibility of modulating the in vivo distribution of associated drugs or molecules.
  • the pharmaceutical composition is administered mucosally.
  • the positive charge presented by the chitosan-cyclodextrin mixture provides better absorption of drugs on the mucosal surface through its interaction with the mucosa and the surfaces of epithelial cells that are negatively charged.
  • the proportion of active ingredient incorporated into the nanoparticles can be up to 40% by weight with respect to the total weight of the system. However, the appropriate proportion will depend in each case on the active ingredient to be incorporated, on the indication to which it is directed and on the release efficiency.
  • the nanoparticulate systems of the present invention can also incorporate cosmetically active molecules that have no therapeutic effect but give rise to cosmetic compositions.
  • These cosmetic compositions include any liquid composition (nanoparticle suspension) or emulsion for topical administration.
  • the cosmetically active molecules that can be incorporated into the nanoparticles are anti-acne, antifungal, antioxidant, deodorant, antiperspirant, anti-dandruff, skin bleaches, bronzers, UV light absorbers, enzymes, cosmetic biocides, among others.
  • Another aspect of the present invention relates to a process for the preparation of chitosan-cyclodextrin nanoparticles as previously defined, which comprises: a) preparation of a chitosan solution or a derivative thereof in aqueous medium or in a mixture of water with a polar solvent; b) preparation of a cyclodextrin solution or a derivative thereof in aqueous medium or in a mixture of water with a polar solvent and, optionally a crosslinking agent; and c) mixing, with stirring, the solutions of steps a) and b) so that the chitosan-cyclodextrin nanoparticles are spontaneously obtained, or optionally: a.
  • non-toxic solvents can be used, among others, acetonitrile, alcohols and acetone.
  • the aqueous medium used may contain salts of different nature.
  • the mass ratio chitosan / cyclodextrin / resulting crosslinking agent is between 4/4/1 and 4/80/1.
  • the use of higher chitosan ratios against cyclodextrin or crosslinking agent is also possible depending on the type of cyclodextrin used.
  • neutral cyclodextrins such as HP ⁇ CD
  • the presence of cyclodextrin does not seem to affect the process of formation of the nanoparticles.
  • the biologically active molecule can be incorporated directly into the solutions of steps a) or b), so that chitosan-cyclodextrin nanoparticles containing the biologically active molecule are spontaneously obtained.
  • the molecule in a variant of the process can be dissolved at a previous stage in an aqueous phase or in a mixture of aqueous phase and polar solvent and incorporate it into phases a) or b) before the preparation of the particles (step c )).
  • higher concentrations are achieved if the dissolution of the active molecule is carried out in the phase with the cyclodextrin.
  • the process for making the chitosan-cyclodextrin nanoparticles can also comprise an additional step, in which said nanoparticles are lyophilized. From a pharmaceutical point of view it is important to be able to dispose of the nanoparticles in lyophilized form since this improves their stability during storage and reduces the volume of the product to be handled.
  • Chitosan-cyclodextrin nanoparticles can be lyophilized in the presence of a cryoprotectant, such as glucose, sucrose or trehalose, at a concentration ranging from 1 to 5% by weight.
  • a cryoprotectant such as glucose, sucrose or trehalose
  • the system of the present invention has proven to be a highly effective vehicle for interacting with epithelial cells and promoting the transfection of a polynucleotide in a cell.
  • the nanoparticles comprised in the system can incorporate into the cell genetic material such as a nucleic acid based molecule, an oligonucleotide, siRNA or a polynucleotide, preferably a DNA plasmid encoding a protein of interest, which allows the system to be potentially suitable for use in gene therapy.
  • the DNA plasmid is pEGFP.
  • nanoparticulate system of the invention in the preparation of a medicament for gene therapy.
  • it comprises a polynucleotide comprising a gene capable of expressing functionally in the cells of the patient to be treated.
  • some examples of diseases that can be treated using the system of the invention are macular degeneration with antisense against VEGF, bulbous epidermolysis and cystic fibrosis. It can also be used in wound healing with transient transformation schemes.
  • the system and compositions of the invention which contain synthetic or natural polynucleotides, allow their use for transfection of target cells, preferably neoplastic or "normal" mammalian cells, as well as cells mother or cell lines. It also constitutes a useful tool for the genetic manipulation of cells.
  • the invention is also directed to the use of the system of the invention for the genetic manipulation of cells. Preferably, it is used for nucleic acid release in vitro or ex vivo. Such release is directed to target cells comprising: eukaryotic cells, such as mammalian cells, cell lines, and can lead to cell transfection or transformation in vitro or ex vivo. Therefore, the invention also relates to a cell transfection kit eukaryotes, comprising the system of the invention and suitable diluents and / or buffers for cell washing.
  • the physicochemical properties of formulations of different composition and different ratio of polymers have been characterized using the techniques of photonic correlation spectroscopy (PCS) and laser-Doppler anemometry.
  • PCS photonic correlation spectroscopy
  • the morphology of the nanoparticles was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM).
  • TEM transmission electron microscopy
  • SEM scanning electron microscopy
  • the composition of the prepared nanoparticles was studied through the use of elementary analysis techniques. This study evidenced the presence of chitosan-cyclodextrin mixtures in the nanoparticle matrices.
  • the size of the nanoparticles was determined by photonic correlation spectroscopy (PCS).
  • PCS photonic correlation spectroscopy
  • the nanoparticles were isolated by centrifugation at 16000xg and resuspended in water.
  • the size of the resulting particles and their polydispersion were characterized by photonic correlation spectroscopy (PCS), the zeta potential by doppler laser anemometry and the production yield by weighing the dried sample residue of isolated nanoparticles. Results are shown in table 2.
  • Figure 1 shows the morphology of particles prepared from 25 mM HP ⁇ CD analyzed by TEM and SEM respectively, confirming the formation of spherical nanoparticles.
  • Figure 1 shows the morphology of particles prepared from 25 mM HP ⁇ CD analyzed by TEM.
  • Chitosan nanoparticles with two types of cyclodextrin were prepared by mixing an aqueous solution of sulfobutylether- ⁇ -cyclodextrin (SBE-CD) or carboxymethyl- ⁇ -cyclodextrin (CM-CD) with a low aqueous chitosan (CS) solution magnetic stirring in the presence of the TPP crosslinking agent so that the relationship between the different components is:
  • HBSS Hanks solution
  • Example 5 Stability of chitosan and cyclodextrin nanoparticles in simulated intestinal fluid.
  • Chitosan and carboxymethyl- ⁇ -CD nanoparticles were prepared as described in example 4 by ionic gelation, in the presence and absence of TPP.
  • the nanoparticles showed stability for more than 4 hours, as shown in Figure 4, so they are configured as suitable systems for different routes of administration.
  • Example 6 Evaluation of insulin encapsulation capacity in chitosan and cyclodextrin nanoparticles.
  • Chitosan and carboxymethyl- ⁇ -CD nanoparticles were prepared as described in example 4 or 5 using different concentrations of cyclodextrin and TPP and, in some cases, incorporating a 0.24% insulin concentration into the initial aqueous solutions. Subsequently the nanoparticles were isolated by centrifugation. Table 4 shows the physical-chemical characteristics of nanoparticles loaded or not with insulin.
  • the size of the fallen nanopaiticles ranges between 430 and 635 nm, said size being up to twice as large as when the nanopaiticles are not dropped with insulin.
  • table 5 shows the capacity of the insulin to fall in nanopaiticles. It is observed that insulin can be incorporated very efficiently to nanopaiticles, presenting association efficiencies of May to 85%.
  • Example 7 Evaluation of the solubility of triclosan, the encapsulation efficiency and its charge in nanoparticles depending on the type and concentration of cyclodextrin.
  • Chitosan-cyclodextrin nanoparticles were obtained according to the method set forth in Example 2, only by adding to the initial solutions an amount of the triclosan drug sufficient to supersaturate the solution.
  • Table 6 shows the solubility achieved for triclosan in the initial solutions used for particle formation, the encapsulation efficiency of triclosan in the nanoparticles and the triclosan loading achieved in these nanoparticles.
  • the encapsulation efficiency refers to the percentage of drug that is trapped in the chitosan-cyclodextrin system with respect to the amount of drug added in the nanoparticle preparation process.
  • the drug load is determined indirectly from the calculation of the non-encapsulated drug that remains dissolved in the suspension medium of the nanoparticles. The difference between this value and the theoretical content of the drug is taken as the amount of drug loaded in the nanoparticles.
  • the percentage of drug loading that appears in the table is the percentage referred to the amount of drug encapsulated in 100 mg of nanoparticle.
  • Chitosan-cyclodext ⁇ na nanoparticles were prepared according to the method set forth in Example 3, but adding to the initial solutions an amount of the furosemide drug sufficient to sobiesatuiai the solution The drug not dissolved by the cyclodext ⁇ na-polymer mixture was discarded in the process of filtration (through 0 45 ⁇ m) that is carried out prior to the crosslinking of the polymer (see example 3).
  • Chitosan-cyclodextrin nanoparticles are made with triclosan and furosemide.
  • the process described in example 7 (formulations with 25 mM HPCD ⁇ or ⁇ ) was followed and for the formulation of furosemide, the method described in example 8 (formulations with 25 mM HPCD ⁇ or ⁇ ).
  • the nanoparticles were isolated and resuspended in an acetate buffer (pH 6.0, low ionic strength). The nanoparticles were incubated in this medium under horizontal agitation (100 rpm) at 37 0 C.
  • Chitosan-sulfobutylcyclodextrin nanoparticles with DNA were formulated with an agarose electrophoresis gel prior to isolation.
  • As controls were included plasmid in solution, formulation without plasmid and formulation with plasmid degraded with chitosanase (Chitosanase-RD, Pias Co, Japan). The results are shown in Figure 7.
  • a nanoparticle formulation was prepared as described in Example 1 1.
  • the formulation was isolated by centrifugation (16000xg, 30 min) and resuspended in a pH 6.0 buffer of low ionic strength.
  • An amount of formulation such that it contained 1 or 2 ⁇ g of DNA was incubated with cell cultures.
  • the results of cell transfection achieved are shown in Figure 8.
  • the fluorescence image shows the cell colonies expressing the green fluorescent protein as a consequence of the transfection by the nanoparticle-pGFP system.
  • the vehicle-free plasmid showed no ability to transfect the cells, that is, no fluorescent cell colonies were observed.
  • a suspension of these nanoparticles (on which their stability was previously evaluated in a 5% w / w trehalose transport medium, figure 9), was administered intranasally to fully awake rats. After a predetermined time (specifically 10 min after administration) the rats were sacrificed by cervical dislocation and the nasal mucosa was fixed with paraformaldehyde, excision was performed and subsequently observed with a confocal microscope (CLSM, Zeiss 501, Jena, Germany ) at 488 nm. The images observed showed that these nanoparticles had an important interaction with the nasal mucosa.
  • CLSM confocal microscope

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Otolaryngology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La presente invención se refiere a un sistema que comprende nanopartículas para la liberación de moléculas biológicamente activas, donde las nanopartículas comprenden a) al menos un 40% en peso de quitosano o un derivado del mismo y b) menos de un 60% en peso de una ciclodextrina o un derivado de la misma, donde ambos componentes a) y b) se encuentran mezclados, sin que exista una unión covalente entre ellos. Este sistema permite una eficaz asociación de moléculas biológicamente activas, así como su posterior liberación en un entorno biológico adecuado.

Description

NANOPARTICULAS QUE COMPRENDEN QUITOSANO Y
CICLODEXTRINA
CAMPO DE LA INVENCIÓN La presente invención se dirige a sistemas nanoparticulados para la liberación de moléculas biológicamente activas. En concreto se dirige a sistemas nanoparticulados, constituidos por una mezcla del polímero quitosano y una ciclodextrina en los cuales se puede ubicar una molécula biológicamente activa, así como a procedimientos para su obtención.
ANTECEDENTES DELA INVENCIÓN
Las nanopartí culas poliméricas están siendo objeto de especial atención debido a su interés para mejorar la estabilidad y promover el transporte y liberación controlada de fármacos a determinadas regiones del organismo, superando los problemas asociados a la limitada permeabilidad de las barreras epiteliales. Entre los polímeros biodegradables, el quitosano ha recibido una gran atención en los últimos años debido a sus propiedades como mucoadhesivo (C-M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger, Int. J. Pharm., 1992, 78, 43-48) y promotor de la absorción (P. Artursson, T. Lindmark, S. S. Davis, and L. Illum, Pharm. Res., 1994, 11, 1358-1361). Además, estudios científicos, avalan al quitosano como un material de aceptable perfil toxicológico (S. B. Rao and C. P. Sharma, J. Biomed. Mater. Res., 1997, 34, 21-28), que ya ha sido aprobado por la FDA como aditivo en alimentación animal (J. D. McCurdy, Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1992, pp. 757- 764). El quitosano [α(l-4) 2-amino 2-deoxy-β-D-Glucano] es un polisacárido de origen natural procedente de la deacetilación de la quitina. Sin embargo, en la práctica, los quitosanos utilizados como suplemento alimenticio o para aplicaciones médicas son polímeros aleatorios de monómeros acetilados y deacetilados.
Las nanopartículas de quitosano han sido ampliamente estudiadas como vehículos para la administración transmucosa de un amplio número de moléculas terapéuticas (A. M. De Campos, Y. Diebold, E. L. Carvalho, A. Sánchez, and M. J. Alonso, Pharm. Res., 2004, 21, 803-810; R. Femandez-Urrusuno, P. Calvo, C. Remuñán-López, J. L. Vila-Jato, and M. J. Alonso, Pharm. Res., 1999, 16, 1576-1581; A. Prokov, E. Kozlov, G. W. Newman, and M. J. Newman, Biotechnology and bioengineering, 2002, 78, 459-466; A. ViIa, A. Sánchez, K. Janes, I. Behrens, T. Kissel, J. L. ViIa- Jato, and M. J. Alonso, Eur. J. Pharm. Biopharm., 2004, 57, 123-131). Una característica destacable de estos sistemas de partículas es su capacidad para mejorar las características de absorción de moléculas con una baja permeabilidad (R. Fernandez-Urrusuno, P. Calvo, C. Remuñán-López, J. L. Vila-Jato, and M. J. Alonso, Pharm. Res., 1999, 16, 1576-1581 ; A. ViIa, A. Sánchez, K. Janes, I. Behrens, T. Kissel, J. L. Vila-Jato, and M. J. Alonso, Eur. J. Pharm. Biopharm., 2004, 57, 123-131). Si bien, las nanopartículas de quitosano han mostrado ser capaces de asociar con eficacia fármacos hidrófilos, estos sistemas presentan habitualmente limitaciones para la asociación de fármacos hidrófobos y en particular, aquellos con una baja solubilidad acuosa. En este momento, tan sólo se ha recogido una referencia de utilización de nanopartículas de quitosano con un fármaco de muy baja solubilidad (A. M. De Campos, A. Sánchez, and M. J. Alonso, Int. J. Pharm., 2001, 224, 159-168), si bien, en este estudio, fue necesaria la utilización de un método de preparación que requiere el uso de solventes orgánicos.
Por su parte, las ciclodextrinas son conocidas como agentes complej antes de moléculas poco solubles y como vehículos para la administración de principios activos. Entre ellas las ciclodextrinas modificadas químicamente son en la actualidad las más utilizadas en tecnología farmacéutica por su mayor versatilidad química. Así, por ejemplo, la sustitución de los hidroxilos con grupos metilo, hidroxipropil o carboximetil confiere a las moléculas mayor hidrosolubilidad y mejores características de toxicidad. Otras ciclodextrinas permiten dotar á los complejos de solubilidad reducida (utilizada para la formulación de sistemas de liberación sostenida) o solubilidad dependiente de la temperatura.
Recientemente, se han puesto de manifiesto otras utilidades potenciales de las ciclodextrinas como excipientes farmacéuticos. Así, la complejación en ciclodextrinas ha mostrado ser capaz de reducir la cinética de degradación de ciertos fármacos lábiles, o la tendencia a la formación de agregados inactivos de péptidos como la insulina. Además, se ha demostrado que ciertas ciclodextrinas presentan la capacidad de promover la absorción de fármacos debido a que producen ligeras desestructuraciones en las membranas celulares por complejación de sus lípidos. Existen diversos documentos que describen la utilización conjunta de ciclodextrinas y quitosano como polímero en disolución, geles o como matrices macroscópicas sólidas (US2002150616, US5476654, US5330764, US6677346, US6497901, US5849327). La solicitud de patente americana US2002150616 propone una mezcla consistente en un fármaco poco soluble, una ciclodextrina y un polímero hidrófilo. EP0730869, describe sistemas de liberación de fármacos compuestos también por mezclas de polímeros y ciclodextrinas.
Los documentos US5843347, US5840341 y US5639473 describen composiciones de polímero en disolución, en partículas macroscópicas o micropartículas. Los métodos descritos para la formación de partículas como la extrusión (US5843347) o la formación de emulsiones agua en aceite (US5639473) no permiten la obtención de partículas de tamaño inferior a varios micrómetros.
WO9961062 hace referencia a la preparación de micropartículas poliméricas con ciclodextrinas, donde las ciclodextrinas tienen la función de proteger al fármaco de posibles interacciones desfavorables con la matriz de polímero. La patente US6630169, describe la formación de microestructuras como vehículos de vacunas por vías transmucosas.
La patente US5639473 se refiere a la modificación mediante reticulación con grupos disulfuro de polímeros hidrófilos (como el quitosano) u oligosacáridos (como ciclodextrinas). El método propuesto, da lugar a sistemas particulados de entre 0.1 y 20 micrómetros según la descripción de dicha invención.
WO03027169 describe la formación de derivados de polímeros hidrófilos con ciclodextrinas unidas covalentemente y su utilidad para la formación de sistemas farmacéuticos (incluidas micro- y nanopartículas). En la patente US619757 se describe un método de preparación que incluye la reticulación en emulsión de los poli- u oligosacáridos componentes de la matriz para dar lugar a uniones tipo éter entre estas moléculas.
Las patentes US5700459 y US6649192 describen métodos para la formación de nanopartículas de quitosano para aplicaciones farmacéuticas. En ambas patentes, las nanopartículas son formadas mediante la interacción de un policatión (como el quitosano) con un polianión (como el tripolifosfato). US5700459 menciona el posible uso de unas ciclodextrinas (aminociclodextrinas) como material sustitutivo de otro potencial policatión como el quitosano.
WO9704747 propone la encapsulación de fármacos o complejos fármaco- ciclodextrinas en matrices de hidrogel nanométricas que pueden ser posteriormente recubiertas por liposomas y/o adyuvantes de la mucoadhesión. El método propuesto requiere la precipitación del polímero desde una fase orgánica en una acuosa, y los fármacos con ciclodextrina son añadidos en la fase acuosa donde precipita el polímero, y no en conjunto con este. Este factor en el procedimiento, puede dar lugar a encapsulaciones poco eficientes de ciertos fármacos. Conviene resaltar que las técnicas de microencapsulación destinadas a la fomiación de micropartículas difieren generalmente de las nanotecnologías aplicadas a la formación de nanopartículas. WO 9804244 describe la formación de nanopartículas de quitosano.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Los inventores han encontrado que un sistema constituido por nanopartículas de quitosano y una ciclodextrina, permite una eficaz asociación de moléculas biológicamente activas, así como su posterior liberación en un entorno biológico adecuado. Estas nanopartículas presentan una capacidad mejorada de encapsular o asociar fármacos hidrófobos con respecto a las nanopartículas de quitosano sin ciclodextrina. Además, las ciclodextrinas aportan características nuevas al sistema nanoparticulado como una mejor protección de la molécula biológicamente activa asociada así como un mayor poder promotor de la absorción especialmente para aquellas moléculas poco permeables. Así, mediante estudios in vivo se ha podido evidenciar la capacidad que presenta el sistema de la invención para transportar fármacos poco permeables a través de las barreras epiteliales, mediante interacción con la mucosa nasal, atravesando además el epitelio nasal.
Una característica adicional que presentan las nanopartículas presentes en el sistema de la invención es su elevada estabilidad en medios de cultivo celulares y, lo que es más significativo, en fluidos intestinales simulados, donde se ha podido demostrar que las nanopartículas no varían sus propiedades físico-químicas al menos durante cuatro horas. Esta propiedad hace que estos sistemas sean adecuados para su empleo por diferentes vías de administración y, particularmente, para su administración por vía oral, permitiendo liberar el fármaco en el entorno biológico adecuado. Asimismo, mediante estudios de liberación con diferentes fármacos, se ha podido demostrar que las nanopartículas permiten liberar el principio activo a una velocidad gradual y controlada.
Por otra parte, la posibilidad de incorporar y liberar macromoléculas basadas en ácidos nucleicos, como plásmidos de ADN, ha permitido observar mediante estudio in vitro la capacidad de las nanopartículas para transfectar cultivos celulares de manera muy eficaz, lo que permite al sistema de la invención ser potencialmente adecuado para su empleo en terapia génica.
Así, un objeto de la presente invención se dirige a un sistema que comprende nanopartículas para la liberación de una molécula biológicamente activa, donde las nanopartículas comprenden a) al menos un 40% en peso de quitosano o un derivado del mismo y b) menos de un 60% en peso de una ciclodextrina o un derivado de la misma, donde ambos componentes a) y b) se encuentran mezclados sin que existan uniones covalentes.
Opcionalmente las nanopartículas pueden comprender además un agente reticulante iónico que permite la gelificación del quitosano en forma de estructuras nanométricas. Un segundo aspecto de la presente invención se refiere a un sistema nanoparticulado como el definido previamente que además comprende una molécula biológicamente activa.
En otro aspecto la invención se dirige a una composición farmacéutica que comprende un sistema nanoparticulado como el definido previamente y una molécula biológicamente activa capaz de prevenir, paliar o curar enfermedades. Asimismo, atrapados en la nano estructura se pueden encontrar péptidos, proteínas o polisacáridos que no son considerados moléculas biológicas activas "per se" pero que pueden contribuir a la eficacia del sistema de administración.
Otro aspecto de la invención lo constituye una vacuna que comprende un sistema nanoparticulado como el definido previamente y un antígeno. En un aspecto preferente, la composición o vacuna es para administración por vía mucosa. En otro aspecto la invención se dirige a una composición cosmética que comprende un sistema nanoparticulado como el definido anteriormente.
Otro aspecto de la invención lo constituye un procedimiento de obtención de un sistema para la liberación de una molécula biológicamente activa tal como se ha definido, que comprende: a. preparación de una disolución de quitosano o un derivado del mismo en medio acuoso o en una mezcla de agua con un disolvente polar; b. preparación de una disolución de una ciclodextrina o un derivado de la misma en medio acuoso o en una mezcla de agua con un disolvente polar y, opcionalmente un agente reticulante; y c. mezclado, bajo agitación, de las disoluciones de las etapas a) y b) de modo que se obtienen espontáneamente las nanopartículas de quitosano- ciclodextrina. u opcionalmente: a. preparación de una disolución del quitosano o un derivado del mismo y una ciclodextrina o un derivado de la misma en medio acuoso o en una mezcla de agua con un disolvente polar; b. preparación de una disolución del agente reticulante en medio acuoso o en una mezcla de agua con un disolvente polar; c. mezclado, bajo agitación, de las disoluciones de las etapas a) y b) de modo que se obtienen espontáneamente las nanopartículas de quitosano- ciclodextrina.
La molécula biológicamente activa se puede incorporar directamente a las disoluciones de las etapas a) ó b), no obstante, en una variante del procedimiento la molécula activa puede disolverse previamente a la adición a las fases a) ó b) en medio acuoso o en una mezcla de agua y un disolvente polar.
Un último aspecto de la invención se dirige al uso de un sistema tal como se ha descrito previamente para la elaboración de un medicamento para terapia génica. DESCRIPCIÓN DETALLADA DE LAS FIGURAS
Figura 1: Imágenes de TEM de formulaciones de quitosano-(hidroxipropü-β- ciclodextrina). Formulaciones preparadas con 25 mM hidroxipropil-β-ciclodextrina y 2 mg/mL de tripolifosfato (imagen izquierda) o 1.25 mg/mL (imagen derecha).
Figura 2: Imagen de SEM de formulaciones de quitosano-(hidroxipropil-β- ciclodextrina). Formulación preparada a partir de 25 mM de ciclodextrina y 2 mg/mL de tripolifosfato.
Figura 3: Estabilidad de nanopartículas de quitosano y ciclodextrina en HBSS a pH 6.4 a 370C (media+D.E., n=3). CS:quitosano; SBE-CD: sulfobutileter-ciclodextrina; CM- CD: carboximetil-ciclodextrina; TPP: tripolofosfato sódico; HBSS: solución salada compensada de Hanks.
Figura 4: Estabilidad de nanopartículas de quitosano y ciclodextrina en fluido intestinal simulado, a pH=6.8 a 370C (media+D.E., n=3). (D) CS/CM-CD/TPP-4/5.5/0; (•) CS/CM-CD/TPP= 4/4.5/0.25. CS:quitosano; SBE-CD: sulfobutileter-β-ciclodextrina; CM-CD: carboximetil-β-ciclodextrina; TPP: tripolofosfato sódico. Figura 5: Estabilidad de nanopartículas de quitosano y carboximetil-β-ciclodextrina en fluido intestinal simulado a pH 6.8 y 370C (media+D.E., n=3). (D) CS/CM- CD/TPP=4/3/0.5; (•) CS/CM-CD/TPP- 4/1.5/0.75. CS:quitosano; CM-CD: carboximetil-β-ciclodextrina; TPP: tripolofosfato sódico.
Figura 6: Perfil de liberación de los fármacos triclosan y furosemida a partir de formulaciones de quitosano-(hidroxipropilciclodextrina). Formulaciones: TRIC HPaCD (formulación de triclosan con hidroxipropil-α-ciclodextrina), TRIC HPβCD (formulación de triclosan con hidroxipropil-β-ciclodextrina), FUR HPaCD (formulación de furosemida con hidroxipropil-α-ciclodextrina), FUR HPβCD (formulación de furosemida con hidroxipropil- β -ciclodextrina) (Medias ± Desv. Est, n=3).
Figura 7: GeI de agarosa de nanopartículas quitosano-sulfobutilciclodextrina. Lineas: (1) marcador de peso molecular, (2) ADN en solución, (3) nanopartículas sin ADN, (4) nanopartículas con ADN, (5) nanopartículas con ADN degradadas con quitosanasa. Tiempo de incubación 30 minutos. Figura 8: Imágenes de fluorescencia de células transfectadas con 1 μg de plásmido pGFP en nanopartículas de quitosano-sulfobutilciclodextrina. Niveles de transfección conseguidos a las 48 h.
Figura 9: Estabilidad de las nanopartículas de quitosano marcado con fluoresceína- ciclodextrina en trehalosa (5%). O) FI-CS/SBE-CD 4/4; (D) FI-CS/CM-CD 4/6. FI- CS:quitosano marcado con fluoresceína; SBE-CD: sulfobutileter-β-ciclodextrina; CM- CD: carboximetil-β-ciclodextrina; TPP: tripolofosfato sódico.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN El sistema de la presente invención comprende nanopartículas que se encuentran dispersas en un medio acuoso, donde dichas nanopartículas tienen una estructura que comprende quitosano y ciclodextrina, en la cual se puede incorporar una molécula biológicamente activa. Dicha estructura se mantiene unida mediante interacciones electrostáticas entre ambos componentes, sin que existan uniones covalentes entre ellos. Opcionalmente las nanopartículas pueden comprender además un agente reticulante iónico que permite la reticulación del quitosano mediante gelificación ionotrópica favoreciendo la formación espontánea de las nanopartículas.
Por el término "nanopartícula" se entiende una estructura formada por la interacción electrostática entre el quitosano y la ciclodextrina, donde dicha estructura puede encontrarse además reticulada cuando se adiciona al sistema una sal polianiónica que actúa como agente reticulante. La interacción electrostática resultante entre los diferentes componentes de las nanopartículas, y opcionalmente la reticulación del quitosano mediante la adición de un agente reticulante, genera entidades físicas características, independientes y observables, cuyo tamaño medio es inferior a 1 μm, es decir, un tamaño medio comprendido entre 1 y 999 nm.
Por "tamaño medio" se entiende el diámetro promedio de la población de nanopartículas que comprenden el quitosano y la ciclodextrina, que se mueven conjuntamente en el medio acuoso. El tamaño medio de estos sistemas se puede medir por procedimientos estándar conocidos del experto en la materia, y que se describen, por ejemplo, en la parte experimental más abajo. Las nanopartículas descritas en la presente invención se caracterizan por presentar un tamaño medio de partícula inferior a 1 μm, preferentemente tienen un tamaño medio comprendido entre 1 y 999 nm, preferentemente entre 10 y 800 nm. El tamaño medio de las partículas se ve influenciado principalmente por la proporción de quitosano con respecto a la ciclodextrina, por el grado de desacetilación del quitosano y también por las condiciones de formación de las partículas (concentración de quitosano, concentración deciclodextrina, concentración de agente reticulante, cuando lo hay, y relación entre ellos).
Por otra paite, las nanopartículas pueden presentar una carga eléctrica (medida mediante el potencial Z, haciendo uso de CLK como medio de dilución) cuya magnitud puede variar desde 0 mV hasta + 60 mV, dependiendo de las variables mencionadas. La carga positiva de las nanopartículas puede ser de interés para favorecer la interacción de las mismas con superficies biológicas, y en particular con las superficies mucosas que se encuentran cargadas negativamente. No obstante, la carga neutra puede resultar más adecuada para la administración parenteral de las mismas.
El sistema que comprende nanopartículas para la liberación de una molécula biológicamente activa que se ha definido más arriba tiene un contenido de quitosano en la mezcla superior al 40 % en peso, preferentemente está comprendido entre al menos un 40% y un 95.5% en peso. Por su parte el contenido de ciclodextrina en la mezcla es inferior al 60% en peso, preferentemente está comprendido entre 0.5% y menos del 60% en peso.
Quitosano
El quitosano es un polímero de origen natural derivado de la quitina (poli-N- acetil-D-glucosamina), donde una parte importante de los grupos acetilo de los N se han eliminado por hidrólisis. El grado de desacetilación se encuentra preferentemente en un intervalo comprendido entre 30 y 95%, más preferentemente entre 50 y 95%, lo que indica que entre un 5% y un 50% de los grupos amino están acetilados. Presenta por lo tanto una estructura aminopolisacárida y carácter catiónico. Comprende la repetición de unidades monoméricas de fórmula (I):
Figure imgf000011_0001
(i) donde n es un número entero, y además m unidades donde el grupo amino está acetilado. La suma de n+m representa el grado de polimerización, es decir, el número de unidades monoméricas en la cadena de quitosano.
El quitosano empleado para la obtención de las nanocápsulas de la presente invención tiene un peso molecular comprendido entre 1 y 2000 kDa, preferentemente entre 5 y 500 kDa, más preferentemente entre 5 y 200 kDa. Ejemplos de quitosanos comerciales que se pueden utilizar son UPG 1 13, UP CL 213 y UP CLl 13 que se pueden obtener de NovaMatrix, Drammen, Norway.
El número de unidades monoméricas que comprenden el quitosano empleado en la obtención de las nanopartículas está comprendido entre 5 y 5000 monómeros, preferentemente entre 60 y 600 monómeros.
Como alternativa al quitosano se puede utilizar asimismo un derivado del mismo, entendiéndose como tal un quitosano en el que se ha modificado uno o más grupos hidroxilos y/o uno o más grupos amino, con el fin de elevar la solubilidad del quitosano o incrementar el carácter adhesivo del mismo. Estos derivados incluyen, entre otros, quitosanos acetilados, alquilados o sulfonatados, derivados tiolados, tal como se describe en Roberts, Chitin Chemistiy, Macmillan, 1992, 166. De forma preferente cuando se utiliza un derivado se selecciona entre 0-alquüetéres, O-acilésteres, trimetilquitosano, quitosanos modificados con polietilenglicol, etc. Otros derivados posibles son las sales, tales como citrato, nitrato, lactato, fosfato, glutamato, etc. En cualquier caso, el experto en la materia sabe identificar las modificaciones que se pueden realizar sobre el quitosano sin afectar a la estabilidad y viabilidad comercial de la formulación final. Ciclodextrina
Las ciclodextrinas consisten estructuralmente en 6, 7 u 8 unidades de D- glucopiranosil unidas por enlaces glicosídicos α(l-4), denominándose α β ó γ, respectivamente. La configuración tridimensional más estable de estos oligosacáridos es un toroide en la que se presentan los grupos hidroxilos primarios y secundarios hacia el disolvente. En esta conformación, la cavidad formada dentro de este toroide presenta una elevada hidrofobia, responsable junto con fuerzas de Van der Waals y puentes hidrógeno de la formación de complejos de inclusión entre las ciclodextrinas y los fármacos. Como derivado de ciclodextrina se entiende una ciclodextrina o mezclas de ellas en las cuales el/los hidrógeno/s de una parte o de todos los grupos hidroxilo de las posiciones 2-, 3- y 6- de glucosa está/n sustituido/s por otro/s grupo/s funcional/es tal/es como un grupo dihidroxialquil, un residuo sacárido, un grupo hidroxialquil, un grupo sulfonato, un grupo sulfoalquil, un grupo alquilo, un grupo alcanoílo, un grupo acetilo o un grupo benzoílo.
La ciclodextrina o sus derivados empleados en la presente invención pueden estar disponibles comercialmente o pueden sintetizarse por un método conocido per se. Ejemplos de ciclodextrina y sus derivados comprenden ciclodextrinas naturales (alfa, beta o . gamma) hidroxipropilciclodextrinas, carboximetilciclodextrinas, sulfobutilciclodextrinas, aminociclodextrina, dimetilciclodextrina, ciclodextrina fosfato, hydroxietilciclodextrina, acetil-ciclodextrina, etilciclodextrinas, trimetilciclodextrinas, carboxietilciclodextrina, glucosilcilcodextrina, 6-O-α-maltosilciclodeextrinas, butil- ciclodextrinas, ciclodextrina sulfatadas, N,N-dietilaminoetilciclodextrina, tert- butilsilil ciclodextrinas, silil[(6-O-tert-butildimetil)-2,3,-di-O-acetil)- cyclodextrinas, succinil-(2-hidroxipropil)-ciclodextrinas, succinil-ciclodextrinas, sulfopropil- ciclodex trinas, policiclodextrinas. En una realización particular de la presente invención la ciclodextrina es hidroxipropil-α-ciclodextrina, hidroxipropil-β- ciclodextrina, sulfobutiletil-β-ciclodextrina o mezclas de las mismas. Cualquiera de ellas pude ser utilizada en los sistemas de la invención. El grado de sustitución promedio (GS) se refiere al promedio en número de hidroxilos sustituidos por unidad de ciclodextrina, mientras que el grado de sustitución molar (SM) se refiere al número de grupos hidroxilo por unidad de anhidroglucosa. En la presente invención las ciclodextrinas empleadas presentan un grado de sustitución promedio que oscila entre 4.2 y 7 aunque también es posible la aplicación de ciclodextrinas cuyo GS esté fuera de ese rango.
El sistema de nanopartículas de la invención se caracteriza porque se ha formado mediante precipitación espontánea de las nanopartículas tras el mezclado de una fase policatiónica, que comprende al quitosano, y opcionalmente a la ciclodextrina, con una fase polianiónica, que puede estar formada por una ciclodextrina o por un agente reticulante o por una combinación de ambos. Es significativo que ambas fases son acuosas, evitando o minimizando el uso de disolventes orgánicos en la preparación de los sistemas de la invención.
El agente reticulante es una sal aniónica que permite la reticulación del quitosano, favoreciendo la formación espontánea de las nanopartículas. En la presente invención, el agente reticulante es una sal de polifosfato, siendo preferente el empleo de tripolifosfato sódico (TPP).
Cuando la ciclodextrina es aniónica, ésta puede constituir por sí sola la fase polianiónica y no es necesaria la presencia de TPP, ya que las nanopartículas se forman por la interacción electrostática entre la ciclodextrinas cargadas negativamente y el quitosano cargado positivamente. No obstante, la adición de TPP además de la ciclodextrina aniónica, puede, en algunos casos, cambiar la densidad de reticulación y favorecer la estabilidad de las nanopartículas. Por otro lado, en el caso de ciclodextrinas que no poseen carga aniónica (sin carga o con carga positiva), se hace necesario incorporar el TPP en la fase polianiónica para reticular el quitosano y permitir la formación de las nanopartículas. Las nanopartículas de quitosano-ciclodextrina son sistemas que presentan una alta capacidad de asociación de moléculas bioactivas. Esta capacidad de asociación depende del tipo de molécula incorporada así como de los parámetros de formulación señalados. En la presente invención este tipo de nanopartículas está particularmente dirigido a asociar moléculas activas hidrofóbicas y moléculas activas, hidrofóbicas e hidrofílicas, poco permeables. Por tanto, un segundo aspecto de la presente invención lo constituye un sistema nanoparticulado como el definido previamente que además comprende una molécula biológicamente activa. 00322
13
El término "molécula biológicamente activa" se refiere a cualquier sustancia que se emplea en el tratamiento, curación, prevención o diagnosis de una enfermedad o que es empleada para mejorar el bienestar físico y mental de humanos y animales. Estas moléculas biológicamente activas pueden incluir desde fármacos de bajo peso molecular hasta moléculas del tipo de polisacáridos, proteínas, péptidos, lípidos y moléculas basadas en ácidos nucleicos y combinaciones de las mismas.
En una realización particular, las moléculas biológicamente activas son los fármacos de clase II (hidrosolubles no permeables), de clase III (hidrofóbicos permeables) y preferentemente de clase IV (hidrofóbicos no permeables) según la definición de la FDA.
Entre las moléculas biológicamente activas que se pueden utilizar con el sistema de la invención podemos citar entre otros las siguientes moléculas de clase II: Danazol; Ketoconazol; ácido mefenámico; Nisoldipina; Nifedipina; Nicardipina; Felodipina, Atovaquona, Griseofulvina, Troglitazona, Glibenclamida, Carbamazepina; de clase III: Aciclovir; Neomicina B; Captopril; Enalaprilato; Alendronato, Atenolol, Cimetidina, Ranitidina; de Clase IV: Clorotiazida; Furosemida; Tobramicina, Cefuroxima, Itraconazol, Ciclosporina.
En una realización preferente, la molécula biológicamente activa es triclosan. En otra realización preferente la molécula biológicamente activa es furosemida. En otra realización particular, las moléculas biológicamente activas son macromoléculas de tipo peptídico, polisacarídico, proteico o basadas en ácidos nucleicos (oligonucleótidos, ADN, siRNA).
En una realización preferente la molécula biológicamente activa es insulina. En otra realización preferente, la molécula biológicamente activa es heparina. En otra realización preferente la molécula biológicamente activa es ADN.
Otro aspecto de la presente invención lo constituye una vacuna que comprende el sistema nanopaticulado previamente definido y un antígeno. La administración de un antígeno por parte del sistema constituido por las nanopartículas permite conseguir una respuesta inmune. La vacuna puede comprender una proteína, polisacárido o bien puede ser una vacuna ADN. Estrictamente hablando, una vacuna ADN es una molécula de ADN que codifica la expresión de un antígeno que dará lugar a una respuesta inmune. La asociación de la molécula biológicamente activa puede ocurrir por procesos combinados que comprenden interacciones no covalentes entre la molécula activa y el polímero o la asociación de la molécula activa a una ciclodextrina formando un complejo de inclusión y la interacción no covalente de este complejo con la matriz polimérica.
Con el fin de realizar una adecuada incorporación de la molécula biológicamente activa a las nanopartículas de quitosano, empleando la aproximación complej ación molécula activa-ciclodextrina, es necesario primeramente solubilizar una cantidad razonable de molécula activa debido a su complej ación con la ciclodextrina y, posteriormente encapsular una cantidad suficiente de complejo en la estructura de las nanopartículas.
Otro objeto de la presente invención lo constituye una composición farmacéutica que comprende el sistema nanoparticulado previamente definido y una molécula biológicamente activa capaz de prevenir, paliar o curar enfermedades. Ejemplos de composiciones farmacéuticas incluyen cualquier composición líquida (suspensión de nanopartículas) o sólida (nanopartículas liofilizadas o atomizadas formando un polvo que se puede utilizar para elaborar granulados, comprimidos o cápsulas) para su administración bien por vía oral, bucal, sublingual, o bien en forma líquida o semisólida para su administración por vía transdérmica, ocular, nasal, vaginal o bien parenteral. En el caso de las vías no parenterales el contacto de las nanopartículas con la piel o mucosas podrá mejorarse dotando a las partículas de una importante carga positiva, lo que favorecerá su interacción con las citadas superficies cargadas negativamente. En el caso de las vías parenterales, más en concreto para la administración intravenosa, estos sistemas ofrecen la posibilidad de modular la distribución in vivo de los fármacos o moléculas que puedan llevar asociadas.
En un aspecto preferente la composición farmacéutica se administra por vía mucosa. La carga positiva que presenta la mezcla quitosano-ciclodextrina proporciona una mejor absorción de los fármacos sobre la superficie mucosa a través de su interacción con la mucosa y las superficies de las células epiteliales que están cargadas negativamente.
La proporción de ingrediente activo incorporado en las nanopartículas puede ser de hasta un 40% en peso con respecto al peso total del sistema. No obstante, la proporción adecuada dependerá en cada caso del ingrediente activo que va a ser incorporado, de la indicación a la que está dirigido y de la eficiencia de liberación.
Los sistemas nanoparticulados de la presente invención también pueden incorporar moléculas cosméticamente activas que no presentan efecto terapéutico pero que dan lugar a composiciones cosméticas. Estas composiciones cosméticas incluyen cualquier composición líquida (suspensión de nanopartículas) o emulsión para su administración por vía tópica. Entre las moléculas cosméticamente activas que pueden incorporarse a las nanopartículas cabe citar agentes anti-acné, antifiingicos, antioxidantes, desodorantes, antitranspirantes, anticaspa, blanqueadores de piel, bronceadores, absorbentes de luz UV, enzimas, biocidas cosméticos, entre otros.
Otro aspecto de la presente invención se refiere a un procedimiento para la preparación de nanopartículas de quitosano-ciclodextrina como las definidas previamente, que comprende: a) preparación de una disolución del quitosano o un derivado del mismo en medio acuoso o en una mezcla de agua con un disolvente polar; b) preparación de una disolución de ciclodextrina o un derivado de la misma en medio acuoso o en una mezcla de agua con un disolvente polar y, opcionalmente un agente reticulante; y c) mezclado, bajo agitación, de las disoluciones de las etapas a) y b) de modo que se obtienen espontáneamente las nanopartículas de quitosano- ciclodextrina, u opcionalmente: a. preparación de una disolución del quitosano o un derivado del mismo y una ciclodextrina o un derivado de la misma en medio acuoso o en una mezcla de agua con un disolvente polar; b. preparación de una disolución del agente reticulante en medio acuoso o en una mezcla de agua con un disolvente polar; c. mezclado, bajo agitación, de las disoluciones de las etapas a) y b) de modo que se obtienen espontáneamente las nanop articulas de quitosano- ciclodextrina.
Como disolventes polares pueden emplearse disolventes no tóxicos, entre otros, acetonitrilo, alcoholes y acetona. Asimismo, el medio acuoso utilizado puede contener sales de distinta naturaleza.
En una variante del procedimiento la relación en masa quitosano/ciclodextrina/agente reticulante resultante está comprendida entre 4/4/1 y 4/80/1. No obstante, el empleo de relaciones mayores quitosano frente a ciclodextrina o frente a agente reticulante también es posible dependiendo del tipo de ciclodextrina empleado. Así, para ciclodextrinas neutras (como la HPβCD), la presencia de la ciclodextrina no parece afectar al proceso de formación de las nanop articulas.
La molécula biológicamente activa se puede incorporar directamente a las disoluciones de las etapas a) ó b), de modo que se obtienen espontáneamente las nanopartículas de quitosano-ciclodextrina conteniendo la molécula biológicamente activa. No obstante, en una variante del procedimiento la molécula puede disolverse en una etapa previa en una fase acuosa o en una mezcla de fase acuosa y disolvente polar e incorporarla a las fases a) ó b) antes de la preparación de las partículas (etapa c)). Sin embargo, para fármacos de baja solubilidad, se consiguen concentraciones superiores si la disolución de la molécula activa se realiza en la fase con la ciclodextrina.
El procedimiento de elaboración de las nanopartículas de quitosano- ciclodextrina puede comprender además una etapa adicional, en la cual dichas nanopartículas son liofilizadas. Desde un punto de vista farmacéutico es importante poder disponer de las nanopartículas en forma liofilizada ya que así se mejora su estabilidad durante el almacenamiento y reduce el volumen del producto que va a manipularse. Las nanopartículas de quitosano-ciclodextrina pueden ser liofilizadas en presencia de un crioprotector, tal como glucosa, sacarosa o trehalosa, a una concentración que oscila entre 1 al 5% en peso. De hecho, las nanopartículas de la invención presentan la ventaja adicional de que el tamaño de partícula antes y después de la liofilización no se ve significativamente afectado. Es decir, las nanopartículas presentan la ventaja de poder liofilizarse y resuspenderse sin sufrir ninguna alteración en las características físicas de las mismas.
El sistema de la presente invención ha demostrado ser un vehículo altamente eficaz para interaccionar con células epiteliares y promover la transfección de un polinucleótido en una célula. Las nanopartículas comprendidas en el sistema pueden incorporar en la célula material genético tal como una molécula basada en ácidos nucleicos, un oligonucleótido, siARN o un polinucleótido, preferiblemente un plásmido de ADN que codifica una proteína de interés, lo que permite al sistema ser potencialmente adecuado para su empleo en terapia génica. En una realización particular, el plásmido de ADN es pEGFP.
Estudios in vitro han permitido observer la liberación del plásmido de AND de una manera muy eficaz, alcanzando importantes niveles de transfección cellular. En consecuencia, otro aspecto de la invención se refiere al uso del sistema nanoparticulado de la invención en la preparación de un medicamento para terapia génica. En un aspecto particular, comprende un polinucleótido que comprende un gen capaz de expresarse funcionalmente en las células del paciente a ser tratado.
En este sentido, algunos ejemplos de enfermedades que pueden ser tratadas utilizando el sistema de la invención son degeneración macular con antisentidos contra VEGF, epidermolisis bulbosa y fibrosis quística. También puede utilizarse en la curación de heridas con esquemas de transformación transitoria.
Finalmente, debido a su alta capacidad de transfección, el sistema y las composiciones de la invención, que contienen polinucleótidos sintéticos o naturales, permiten su uso para la transfección de células diana, preferentemente células de mamífero neoplásticas o "normales", así como de células madre o líneas celulares. Asimismo, se constituye como una herramienta útil para la manipulación genética de células. En este sentido, la invención también se dirige al uso del sistema de la invención para la manipulación genética de células. Preferiblemente, se emplea para la liberación de ácidos nucleicos in vitro o ex vivo. Tal liberación se dirige a células diana que comprenden: células eucariotas, tales como células de mamífero, líneas celulares, y pueden conducir a la transfección o transformación celular in vitro o ex vivo. Por lo tanto, la invención también se relaciona con un kit para la transfección de células eucariotas, que comprende el sistema de la invención y diluyentes adecuados y/o tampones para lavado celular.
A continuación se describen algunos ejemplos ilustrativos de la invención, no obstante, no deben considerarse como limitativos de la misma.
EJEMPLOS
Las propiedades físico-químicas de las formulaciones de distinta composición y de diferente relación de polímeros han sido caracterizadas empleando las técnicas de espectroscopia de correlación de fotónica (PCS) y anemometría láser-Doppler. La morfología de las nanopartículas se estudió mediante microscopía electrónica de transmisión (TEM) y microscopía electrónica de barrido (SEM). La composición de las nanopartículas preparadas se estudio mediante el uso de técnicas de análisis elemental. Este estudio evidenció la presencia de mezclas quitosano-ciclodextrina en las matrices de las nanopartículas.
Ejemplo 1.
Evaluación de las características de nanopartículas de quitosano-ciclodextrina en función del tipo de quitosano y de la concentración de TTP.
Se realizaron disoluciones (3 mL) de hidroxipropil-β-ciclodextrina (HPβCD) a concentración fija (6.29 raM) con diferentes quitosanos (CS) (0.2% p/p). Estas disoluciones se incubaron durante 24 h bajo agitación magnética y, posteriormente, fueron filtradas por un filtro de 0.45 μm y reticuladas mediante la adición de distintos volúmenes de tripolifosfato a concentraciones de 1.25 mg/mL o 2 mg/mL de forma que se mantuvo siempre una relación de masa quitosano/ tripolifosfato de 4: 1. Las nanopartículas fueron aisladas mediante centrifugación a 16000xg y resuspendidas en agua. El tamaño de las nanopartículas se determinó mediante espectroscopia de correlación fotónica (PCS). Los resultados relativos al tamaño medio e índice de polidispersión de las nanopartículas en función del peso molecular del quitosano empleado y de la concentración de tripolifosfato empleada como reticulante, se muestran en la tabla 1. Tabla 1: Efecto del tamaño molecular del quitosano (CS Mw), de la presencia de HPβCD y de la concentración del agente reticulante tripolifosfato (TPP) en el tamaño medio y la polidipersión de las nanopartículas (Media ±desv.est., n=3).
Figure imgf000020_0001
110 0 1.25 484 ± 32 0.3
110 6.29 1.25 454 ± 19 0.3
110 0 2.0 578 + 1 0.3
110 6.29 2.0 590+ 1 0.2
272 0 2.0 887 ±5 0.5
272 " 6.29 2.0 808 ±0 0.5
Ejemplo 2.
Evaluación de las características de nanopartículas de quitosano-ciclodextrina en función del tipo y concentración de ciclodextrina (concentración de TTP = 2 mg/mL). Se realizaron disoluciones (3 raL) de quitosano, en concreto el clorhidrato de quitosano (Protasan C1110) al 0.2% (p/p) con diferentes cantidades de hidroxipropilciclodextrina (α- o β-) (0 a 25 mM). Las disoluciones fueron incubadas por 24 h bajo agitación magnética y, posteriormente, fueron filtradas a través de un tamaño de poro de 0.45 μm y reticuladas mediante la adición de 0.75 mL de tripolifosfato a concentraciones de 2 mg/mL. Las nanopartículas fueron aisladas mediante centrifugación a 16000xg y resuspendidas en agua. El tamaño de las partículas resultantes y su polidispersión fueron caracterizadas mediante espectroscopia de correlación fotónica (PCS), el potencial zeta mediante anemometría láser doppler y el rendimiento de producción pesando el residuo seco de muestra de nanopartículas aisladas. Los resultados se muestran en la tabla 2.
La Figura 1 (imagen izquierda) y la Figura 2 muestran la morfología de unas partículas preparadas a partir de 25 mM de HPβCD analizadas mediante TEM y SEM respectivamente, confirmando la formación de nanopartículas esféricas. Tabla 2 Efecto del tipo y concentración de la hidroxφropilciclodextπna en las características de nanopartículas quitosano-ciclodextπna (tamaño, pohdispersión, potencial zeta y rendimiento de producción) (Medias ± desv est , n=3) tipo índice de concentración tamaño (nm) HPCD potencial zeta (mV) polidispeisión (P I ) HPCD (mM)
0 686 ± 1 0 5 +33 8 ± 3 4 α 625 ± 4 0 6 +34 7 ± 2 3
3 14 β 590 ± 1 0 3 +35 3 ± 3 8 α 645 ± 7 0 6 +33 8 ± 0 5
6 29 β 624 ± 0 0 3 +36 2 ± 0 5 α 690 ± 3 0 4 +35 3 ± 3 8
25 β 670 ± 4 0 6 +33 1 ± 3 3
Ejemplo 3.
Evaluación de las características de nanopartículas de quitosano-ciclodextiina en función del tipo y concentración de ciclodextrina (concentración de TTP = 1.25 mg/mL) Se realizaron disoluciones (3 mL) de quitosano (Piotasan C1110) al 0.2% (p/p) con diferentes cantidades de hidroxipropilciclodextnna (α- o β-) (0 a 25 mM) Las disoluciones fueron incubadas por 24 h bajo agitación magnética y, posteriormente, las disoluciones fueron filtradas a través de un tamaño de poro de 0.45 μm y reticuladas mediante la adición de 1.2 mL de tπpolifosfato a concentraciones de 1 25 mg/mL Las nanopartículas fueron aisladas mediante centrifugación a lóOOOxg y resuspendidas en agua El tamaño de las partículas resultantes y su pohdispersión fueron caracteπzadas mediante espectroscopia de correlación fotómca (PCS), el potencial zeta mediante anemometría láser doppler y el rendimiento de producción pesando el residuo seco de muestra de nanopartículas aisladas. Los resultados se muestran en la tabla 3.
La Figura 1 (imagen derecha) muestra la morfología de unas partículas preparadas a partir de 25 mM de HPβCD analizadas mediante TEM. Tabla 3: Efecto del tipo y concentración de la hidroxipropilciclodextrina en las características de nanopartículas quitosano-ciclodextrina (tamaño, polidispersión, potencial zeta y rendimiento de producción) (Medias ± Est. Desv., n=3).
índice de rendimiento de concentración tipo HPCD tamaño (nm) polidispersión ^ ° ' . . z a producción HPCD (mM) (P.I.) (mV) (%)
484 ± 32 0.3 +37.6 ± 0.9 42 ± 7
410 ± 29 0.2 +36.9 ± 0.6 45 ± 6
3.14
456 ± 37 0.3 +34.2 ± 1.0 51 ± 6 α 398 ± 14 0.2 +35.! ? ± 3.8 48 ± 7
6.29
454 ± 19 0.3 +34.Í S ± 3.2 54 ± 4 α 361 ± 18 0.2 +35.Í S ± l .7 65 ± 9
25 β 443 ± 27 0.5 +29.Í 3 ± 2.9 74 ± 3
Los resultados obtenidos en los ejemplos 2 y 3 demuestran que la inclusión de las ciclodextrinas influye en el tamaño de las nanopartículas resultantes pero sin variar en exceso su valor. Por lo que se refiere al potencial Z, las nanopartículas preparadas en presencia de ciclodextrinas, presentan valores muy similares. De estos datos se deduce que las ciclodextrinas no interfieren en el proceso de formación de las nanopartículas y que no están necesariamente asociadas a ellas.
Por su paite, el rendimiento de producción se incrementa notablemente al aumentar la concentración de cíclodextrina.
Ejemplo 4.
Estabilidad de nanopartículas de quitosano y ciclodextrina en cultivos celulares.
Se prepararon nanopartículas de quitosano con dos tipos de ciclodextrina mediante el mezclado de una disolución acuosa de sulfobutileter-β-ciclodextrina (SBE-CD) o de carboximetil-β-ciclodextrina (CM-CD) con una disolución acuosa de quitosano (CS) bajo agitación magnética en presencia del agente reticulante TPP de manera que la relación entre los distintos componentes es:
CS/SBE-CD/TPP: (4/3/0.25)
CS/CM-CD)/TPP: (4/4/0.25)
A continuación las nanopartículas se aislaron mediante centrifugación y posteriormente se incubaron en una solución salada de Hanks (HBSS) a 370C. Esta solución tamponada (que contiene sales inorgánicas y glucosa) es probablemente la más utilizada en experimentos con cultivos celulares dado que permite mantener las células a pH fisiológico y presión osmótica, preservándolas así en un estado viable durante cortos periodos de tiempo sin facilitar su crecimiento. Los estudios de estabilidad se llevaron a cabo mediante la medida del cambio de tamaño de las nanopartículas.
Como muestra la figura 3, las nanopartículas de quitosano y ciclodextrina fueron estables bajo las condiciones experimentales.
Ejemplo 5. Estabilidad de nanopartículas de quitosano y ciclodextrina en fluido intestinal simulado. Se prepararon nanopartículas de quitosano y carboximetil-β-CD como se describió en el ejemplo 4 mediante gelifϊcación iónica, en presencia y ausencia de TPP. La estabilidad de estas nanopartículas se evaluó en un fluido intestinal simulado a pH=6.6 y 370C. Este medio reproduce las condiciones del intestino delgado pero también puede reflejar la estabilidad de las nanopartículas sobre la mucosa nasal. Las nanopartículas mostraron una estabilidad durante más de 4 horas, tal como se muestra en la figura 4, por lo que configuran como sistemas adecuados para diferentes vías de administración.
Ejemplo 6. Evaluación de la capacidad de encapsulación de insulina en nanopartículas de quitosano y ciclodextrina.
Se prepararon nanopartículas de quitosano y carboximetil-β-CD tal como se describió en el ejemplo 4 ó 5 empleando diferentes concentraciones de ciclodextrina y de TPP y, en algunos casos, incorporando a las disoluciones acuosas iniciales una concentración de insulina al 0.24%. Posteriormente las nanopartículas fueron aisladas por centrifugación. La tabla 4 muestra las características físicas-químicas de las nanopartículas cargadas o no con insulina.
Tabla 4: Características físico-químicas de las nanopartículas CS/CM-CD/TPP cargadas o no con insulina. (*) nanopartículas cargadas con insulina índice de
CS/CM-CD/TPP tamaño (nm) potencial zeta (mV) polidispersidad
4/3/0 200+13 0 11-0 16 +2 0+1 4
4/4/0 238+16 0 08-0 10 +27 0+2 4
4/3 5/0 (*) 482±33 0 04-0 19 +29 6±0 8
4/2/0 5 299+25 0 36-0 46 +32 O±O 3
4/3/0 25 264±18 0 23-0 37 +27 0+0 6
4/4/0 25 (*) 436+34 0 10-0 23 +25 9±1 8
4/3/0 5 H 555+119 0 02-0 52 +31 4+1 4
4/2/0 75 (*) 631±153 0 29-0 41 +31 2+1 5
4/1 5/0 75 C+) 613+124 0 1 1-0 58 31 0+1 5
4/0/1 ( ") 454+120 0 22-0 31 37 1+1 3
Como se aprecia el tamaño de las nanopaitículas caigadas oscila entre 430 y 635 nm, siendo dicho tamaño hasta dos veces superior a cuando las nanopaitículas no están caigadas con insulina
Por su parte, la tabla 5 muestra la capacidad de caiga de la insulina en nanopaitículas Se observa que la insulina puede incorporal se de forma muy eficiente a las nanopaitículas presentando unas eficiencias de asociación mayoies a 85%
Tabla 5 Eficacia en la encapsulacion de insulina en las nanoparticulas CS/CM-CD/TPP (concentración de insulina 0 24%) eficacia de asociación
CS/CM-CD/TPP capacidad de carga (%) rendimiento (%' (%)
4/3 5/0 68 4+0 5 85 5±0 4 22 6
4/4/0 25 46 7+0 8 88 6+0 8 33 0
4/3/0 5 38 5+0 4 92 6±0 6 41 7
4/2/0 75 33 l±O 1 94 7±0 2 57 3
4/1 5/0 75 38 7±0 5 93 3+0 7 50 9
4/0/1 34 7+0 3 91 4+0 4 69 3
Asimismo se evaluó la estabilidad de las nanopaitículas de CS/CM-CD/TPP cargadas con insulina en fluido intestinal simulado a pH 6 8 y 370C como se describió en el ejemplo 5. El tamaño de las nanopartículas no aumentó con respecto al inicial dentro de las dos primeras horas (Figura 5).
Ejemplo 7. Evaluación de la solubilidad de triclosán, de la eficacia de encapsulación y de su carga en nanopartículas en función del tipo y concentración de ciclodextrina. Se obtuvieron nanopartículas de quitosano-ciclodextrina de acuerdo con el método expuesto en el ejemplo 2, sólo que añadiendo a las disoluciones iniciales una cantidad del fármaco triclosán suficiente para sobresaturar la disolución. El fármaco no disuelto por la mezcla ciclodextrina-polímero, fue descartado en el proceso de filtración (a través de 0.45 μm) que se realiza previamente a la reticulación del polímero mediante entrecruzamiento ionotrópico (ver ejemplo 2). La tabla 6 muestra la solubilidad alcanzada para el triclosán en las disoluciones iniciales utilizadas para la formación de las partículas, la eficacia de encapsulación del triclosán en las nanopartículas y la carga de triclosán alcanzada en estas nanopartículas. El triclosán se midió mediante un método espectrofotométrico (λ=280 nm).
La eficacia de encapsulación (EE) se refiere al porcentaje de fármaco que es atrapado en el sistema quitosano-ciclodextrina respecto a la cantidad de fármaco adicionado en el proceso de preparación de las nanopartículas. La carga del fármaco se determina indirectamente a partir del cálculo del fármaco no encapsulado que permanece disuelto en el medio de suspensión de las nanopartículas. La diferencia entre este valor y el contenido teórico del fármaco se toma como la cantidad de fármaco cargado en las nanopartículas. El porcentaje de carga de fármaco que aparece en la tabla es el porcentaje referido a la cantidad de fármaco encapsulado en 100 mg de nanopartícula.
Tabla 6: Efecto del tipo y concentración de la ciclodextrina empleada en la solubilización del triclosán, eficacia de encapsulación resultante (EE) y su carga en las nanopartículas finales. (Media ± Desv. Est., n=3).
tipo HPCD concentración solubilidad del triclosán carga de triclosán
HPCD (mM) triclosán (mg/L) EE (%) (%)
— 0 68 ± 17 12.5 ± 8 0 .8 ± 0.3 β 3.14 21 1 ± 24 5.2 ± 7 1 .1 ± 0.2 β 6.29 588 ± 18 4.8 ± 3 2 .2 ± 0.1 W
25
β 25 1120 ± 13 55±5 3 l±O 1 α 25 870 ± 59 46±4 20±01
Ejemplo 8.
Evaluación de la solubilidad de furosemida, de la eficacia de encapsulactón y de su carga en nanopartículas en función del tipo y concentración de ciclodextπna
Se prepararon nanopartículas de quitosano-ciclodextπna de acuerdo con el método expuesto en el ejemplo 3, pero añadiendo a las disoluciones iniciales una cantidad del fármaco furosemida suficiente para sobiesatuiai la disolución El fármaco no disuelto por la mezcla ciclodextπna-polímero, fue descartado en el proceso de filtración (a través de 0 45 μm) que se realiza previamente a la reticulación del polímero (ver ejemplo 3) La tabla 7 muestra la solubilidad alcanzada para la fuiOsenuda en las disoluciones iniciales utilizadas para la formación de las partículas, la eficacia, de encapsulación de la furosemida en las nanopartículas y la carga de furosemida alcanzada en estas nanopartículas La furosemida se midió mediante un método espectiofotométπco (λ=230 nm) Para la determinación de la cantidad de fuiosemida encapsulada, se determinó la cantidad de tπclosan en el sobrenadante de las partículas tras su aislamiento (cantidad no asociada) y se calculó la diferencia
Tabla 7 El efecto del tipo y concentración de la ciclodextπna empleada en la solubihzacion del furosemida, la eficacia de encapsulación iesultante (EE) y su carga en las nanopartículas finales (Media ± Desv Est , n=3)
Figure imgf000026_0001
— 0 7 8 ± 1 3 22 3 -t 1 4 0 23 ± 0 07 β 3 14 42 3 ± 2 4 17 1 ± 3 0 0 89 ± 0 04 β 6 29 95 4 ± 10 1 12 1 ± 1 3 1 43 ± 0 24 β 25 387 3 ± 10 3 7 2 ± 3 1 2 39 ± 0 72 α 25 253 5 ± 9 8 8 8 ± 2 7 1 92 ± 0 55 Ejemplo 9.
Liberación del fármaco triclosán o furosemida de las nanopartículas de quitosano- ciclodextrina.
Se realizaiOn nanopartículas de quitosano-ciclodextrina con triclosán y furosemida. Para la realización de la formulación con triclosán, se siguió el proceso descrito en el ejemplo 7 (formulaciones con 25 mM de HPCD α o β) y para la formulación de furosemida, el método descrito en el ejemplo 8 (formulaciones con 25 mM de HPCD α o β). Las nanopartículas fueron aisladas y resuspendidas en un tampón acetato (pH 6.0, baja fuerza iónica). Las nanopartículas fueron incubadas en este medio en agitación horizontal (100 rpm) a 370C. A diversos tiempos (0.5, 1.5 y 4.5 h), se tomaron muestras de los medios de incubación, se aisló el fármaco en disolución (centrifugación a 200000xg por 30 min) y se valoró por métodos espectro fotométricos tal como esta descrito en los ejemplos 7 y 8. El perfil de cesión del fármaco de las formulaciones preparadas se recoge en la figura 6.
Ejemplo 10.
Evaluación de la solubilidad de triclosán, de la eficacia de encapsulación y de su carga en nanopartículas en función del tipo y concentración de ciclodextrina.
Se prepararon disoluciones en una mezcla 80% agua y 20% etanol (3 mL) de quitosano (Protasan CIl 10, 0.2%), HPβCD (0, 1.28 y 2.56 mM) y triclosán en cantidad suficiente para sobresaturar la disolución. Estas disoluciones fueron incubadas por 24 h bajo agitación magnética y, posteriormente, filtradas a través de un filtro de 0.45 μm y reticuladas mediante la adición de 1.2 mL de tripolifosfato disuelto en una mezcla 80% agua y 20% etanol a concentración de 1.25 mg/mL. Las nanopartículas fueron aisladas mediante centrifugación a 16000xg y resuspendidas en agua. El tamaño de las partículas resultantes y su polidispersión fueron caracterizadas mediante espectroscopia de correlación fotónica (PCS). La cantidad de fármaco encapsulado fue determinado mediante degradación de una alícuota de las nanopartículas resuspendidas con la enzima quitosanasa (Chitosanase-RD, Pias Co, Japón), y su valoración se realizó mediante espectrofotometría (λ=280 nm). Los resultados se muestran en la tabla 8. Tabla 8 El efecto de la concentración de la ciclodextπna empleada en la solubihzacion del tπclosan en la fase empleada paia la prepaiacion de las nanopaiticulas, la eficacia de encapsulacion resultante de las nanoparticulas (EE) y su carga final en las nanoparticulas (Media ± Desv Est , n=3)
concentración tπclosan disuelta tπclosan carga de tπclosan HPβCD tamaño (nm) (mg/L) EE (%) (%)
(mM)
0 499 ± 33 719 ± 79 22 3 ± 1 4 2 2 ± 0 9
1 28 568 ± 25 2536 ± 283 37 7 ± 7 3 7 4 ± 1 3
2 56 517 ± 14 3521 ± 213 33 5 ± 2 7 8 7 ± 0 2
Ejemplo 11.
Evaluación del tamaño y pohdispeision de nanoparticulas de quitosano-ciclodextnna con o sin ADN plasmidico en función del tipo de ciclodextπna Se prepaiaron disoluciones de (A) meül-β-ciclodextrma (Me-β-CD) (7 4 mM), tπpolifosfato (1 25 mg/mL) y un plasmido codificante de la piotema fluorescente verde (pGFP) (0 5 mg/mL), y (B) sulfobutil-β-ciclodextπna (0 18 mM) (SB-β-CD) y un plásrmdo codificante de la protema fluorescente verde (pGFP) (0 5 mg/mL) Ambas disoluciones se incubaron dmante un peπodo de 1 h bajo agitación Un volumen de 0 24 mL de las disoluciones A o B fueron añadidas sobie 1 2 mL de quitosano 0 1% (p/p) bajo agitación magnética formando nanoparticulas El tamaño y polidispersión de las partículas íesultantes fueron caiacteπzadas mediante espectroscopia de correlación fotómca (PCS) Los resultados se muestian en la tabla 9
Tabla 9 El efecto del tipo de ciclodeλtπna en el tamaño y pohdispeision de nanoparticulas de quitosano- ciclodextπna con o sm ADN plasmidico (Media ± Desv Est , n=3) *Expresado como íango de valores
concentración tamaño de índice de tipo ciclodextπna ADN (mg/mL) partícula (nm) polidispersión (P I )*
SB-β-CD 0 170 8 ± 24 0 1- 0 2
SB-β-CD 0 5 157 ± 32 0 1- 0 2
Me-β-CD 0 232 -t 15 0 2- 0 3 Me-β-CD 0.5 182.8 ± 40 0.1- 0.2
A la formulación de nanopartículas de quitosano-sulfobutilciclodextrina con ADN se le realizó un gel de electroforesis en agarosa previa a su aislamiento. Como controles se incluyó plasmido en disolución, la formulación sin plásmido y la formulación con plásmido degradado con quitosanasa (Chitosanase-RD, Pias Co, Japón). Los resultados se muestran en la Figura 7.
Ejemplo 12.
Estudio in vitro de la eficacia de transfección de cultivos celulares. Se preparó una formulación de nanopartículas como la descrita en el ejemplo 1 1. Se aisló la formulación por centrifugación (16000xg, 30 min) y se resuspendió en un tampón de pH 6.0 de baja fuerza iónica. Una cantidad de formulación tal que contenía 1 o 2 μg de ADN fue incubada con cultivos celulares.. Los resultados de transfección celular conseguidos se muestran en la figura 8. La imagen de fluorescencia muestra las colonias celulares que expresan la proteína fluorescente verde como consecuencia de la transfección por el sistema nanopartícula-pGFP. El plásmido sin vehículo no mostró capacidad para transfectar las células, es decir que no se observaron ningunas colonias celulares fluorescentes.
Ejemplo 13.
Efecto del tipo de ciclodextrina y de la relación de masa entre quitosano, ciclodextrina y trípolifosfato en la composición final de los sistemas nanoparticulados. Nanopartículas de quitosano-HPβCD y quitosano- SBβCD fueron preparadas como en los ejemplos 3 y 11 respectivamente. Se utilizaron cantidades diferentes de las ciclodextrinas en las disoluciones iniciales utilizadas para la preparación de las nanopartículas. La composición real de las nanopartículas (% quitosano, % ciclodextrina, % contraiónes) tras su aislamiento fue determinado mediante técnicas de análisis elemental (considerando las relaciones Nitrógeno-Carbono o Nitrógeno- sulfuro). El grado de humedad en las muestras fue determinado mediante análisis termogravimétrico. Tabla 10 El efecto del tipo de ciclodextπna y de la i elación de masa entie quitosano (CS), ciclodextπna (CD) y tπpohfosfato (TPP) en la composición final de los sistemas preparados (% de peso seco) (Media ± Desv Est , n=3) + Aproximadamente cero relación de masa tipo ciclodextrma CS/CD/TPP % CS % ciclodextπna inicial
Figure imgf000030_0001
HPβCD 4/2/1 70 ± 1 2 8 db 1 1 27 ± 0 5
HPβCD 4/4/1 72 ± 0 4 4 2 ± 0 5 24 ± 0 5
HPβCD 4/8/1 70 -1: 2 10 1 ± 2 5 20 ± 0 8
SB-β-CD 4/2/0 5 58 ± 2 31 7 ± 1 0 10 5 ± 1 9
SB-β-CD 4/3/0 5 46 ± 3 37 1 ± 7 9 16 7 ± 9
SB-β-CD 4/4/0 41 ± 0 2 58 6 ± 0 7 *
Ejemplo 14.
Estudio del üansporte de nanopartículas de quitosano-ciclodextrma a través de la mucosa nasal de ratas
Con el fin de evaluar el potencial de los sistemas nanoparticulados de la invención como vehículos para la administración de fármacos se examinó la habilidad de dichas nanopartículas para atiavesar el epitelio nasal Este estudio se realizo con dos formulaciones específicas de quitosano/sulfobuületil-β-ciclodextπna (CS/SBE-β-CD) y quitosano/carboximetil-β-ciclodextπna (CS/CM-β-CD) empleando diferentes proporciones de los componentes Previamente el quitosano se marcó con fluoresceína (FI-CS) El proceso de mareaje se realizo por íeaccion de carbodnmida con EDAC que permitió la unión covalente del maleador fluorescente a las moléculas de quitosano tal como se describe en Pharm Res , 2004, 21, 803-10 La tabla 11 muestra las características físico-químicas de las nanopartículas evaluadas marcadas con fluoresceína
Tabla 11 Características ñsico-quimicas de las nanopartículas evaluadas marcadas con fluoresceína tipo de CI „„,„_, 4 ~ / \ índice de , ^ .. ..
I j - ΠTΛ H-CS/CD tamaño (nm) . , , , rendimiento (%) ciclodextrma, CD polidispersidad v '
4/3 219 0 09 22
SBE-β-CD
4/4 239 0 07 43 4/5 31 1 0.22 13
CM-β-CD
4/6 309 0.41 24
Una suspensión de estas nanopartículas (sobre las que previamente se evaluó su estabilidad en un medio de transporte de trehalosa al 5% p/p, figura 9), se administró intranasalmente a ratas totalmente despiertas. Transcurrido un tiempo prefijado (específicamente 10 min tras la administración) las ratas fueron sacrificadas por dislocación cervicaly la mucosa nasal se fijó con paraformaldehído, se llevó a cabo su escisión y posteriormente se observó con un microscopio confocal (CLSM, Zeiss 501 , Jena, Alemania) a 488 nm. Las imágenes observadas evidenciaron que estas nanopartículas presentaban una interacción importante con la mucosa nasal.

Claims

REIVINDICACIONES
1. Un sistema que comprende nanopartículas para la liberación de moléculas biológicamente activas, donde las nanopartículas comprenden a) al menos un 40% en peso de quitosano o un derivado del mismo y b) menos de un 60% en peso de una ciclodextrina o un derivado de la misma, donde ambos componentes a) y b) se encuentran mezclados, sin que exista una unión covalente entre ellos.
2. Sistema según reivindicación 1 donde las nanopartículas comprenden además una sal aniónica capaz de reticular iónicamente el quitosano en forma de estructuras nanométricas.
3. Sistema según reivindicaciones 1 y 2 donde la proporción de quitosano o un derivado del mismo está comprendido entre al menos un 40% y 95.5% en peso.
4. Sistema según reivindicaciones 1 a 3 donde la proporción de ciclodextrina o un derivado de la misma respecto al quitosano está comprendido entre 0.5% y menos del 60% en peso.
5. Sistema según reivindicaciones 1 a 4 donde el grado de polimerización del quitosano o número de unidades monoméricas que comprenden el quitosano o un derivado del mismo está comprendido entre 5 y 5000, preferentemente entre 30 y 600.
6. Sistema según reivindicaciones 1 a 5 donde el quitosano o su derivado tiene un peso molecular comprendido entre 1 y 2000 kDa, preferentemente entre 5 y 500 kDa, más preferentemente entre 5 y 200 kDa.
7. Sistema según reivindicaciones 1 a 6 donde el quitosano o su derivado tiene un grado de desacetil ación comprendido entre 30% y 95%, preferentemente entre 50% y 95%.
8. Sistema según reivindicaciones 1 a 7 donde la ciclodextrina se selecciona de entre ciclodextrinas naturales (alfa, beta o gamma), hidroxipropilciclodextrinas, carboximetilciclodextrinas, sulfobutilciclodextrinas, aminociclodextrina, dimetilciclodextrina, ciclodextrina fosfato, hydroxietilciclodextrina, acetil- ciclodextrina, etilciclodextrinas, trimetilciclodextrinas, carboxietilciclodextrina, glucosilcilcodextrina, 6-O-α-maltosilciclodeextrinas, butil-ciclodextrinas, ciclodextrina sulfatadas, N,N-dietilarninoetilciclodextrina, tert- butilsililciclodextrinas, Silil[(6-O-tert-butildimetil)-2,3,-di-O-acetil)- cyclodextrinas, Succinil-(2-hidiOxipropü)-ciclodextrinas, Succinil-ciclodextrínas, Sulfopropil- ciclodextrinas, policiclodextrinas.
9. Sistema según reivindicación 8 donde la ciclodextrina es hidroxipropil-α- ciclodextrina, hidroxipropil-β-ciclodextrina, sulfobutiletil-β-ciclodextrina o mezclas de las mismas.
10. Sistema según reivindicaciones 1 a 9 donde la ciclodextrina presenta un grado de sustitución promedio entre 4.2 y 7.
11. Sistema según reivindicaciones 1 a 10 que además comprende una molécula biológicamente activa seleccionada del grupo consistente en fármacos de bajo peso molecular, polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos, ácidos nucleicos y combinaciones de las mismas.
12. Sistema según reivindicaciones 1 a 11 donde la molécula biológicamente activa es un fármaco de clase 2, 3 o 4 según las definiciones del Sistema de Clasificación Biofarmacéutica adoptado por la FDA, preferentemente es un fármaco de clase 4.
13. Sistema según reivindicación 2 donde el agente reticulante es una sal de polifosfato, preferentemente tripolifosfato sódico.
14. Sistema según reivindicaciones 1 a 13 donde el tamaño medio de las nanopartículas está comprendido entre 1 y 999 nm, preferentemente entre 100 y 800 nm.
15. Sistema según reivindicación 1 a 14 donde la carga eléctrica (potencial Z) está comprendido entre 0 hasta +60 mV medido en ImM KCl.
16. Una composición farmacéutica que comprende un sistema como el definido en cualquiera de las reivindicaciones 1 a 15 y una molécula biológicamente activa capaz de prevenir, paliar o curar enfermedades.
17. Composición según la reivindicación 16 para administración por vía oral, bucal, sublingual, tópica, transdérmica, ocular, nasal, vaginal o parenteral.
18. Composición según reivindicaciones 16 y 17 donde la molécula biológicamente activa se selecciona de entre polisacáridos, proteínas, péptidos, lípidos, moléculas basadas en ácidos nucleicos y combinaciones de las mismas.
19. Composición según reivindicaciones 16 a 18 donde la molécula biológicamente activa es un fármaco de clase 2, 3 o 4 según las definiciones del Sistema de
Clasificación Biofarmacéutica adoptado por la FDA.
20. Composición según cualquiera de las reivindicaciones 16 a 18 donde la molécula biológicamente activa es triclosán, furosemida, insulina, heparina o moléculas compuestas de ácidos nucleicos.
21. Composición cosmética que comprende un sistema como el definido en cualquiera de las reivindicaciones 1 a 10 y 13 a 15 y una molécula cosméticamente activa.
22. Composición cosmética según reivindicación 21 donde la molécula cosméticamente activa se selecciona de entre agentes anti-acné, antifúngicos, antioxidantes, desodorantes, antitranspirantes, anticaspa, blanqueadores de piel, bronceadores, absorbentes de luz UV, enzimas y biocidas cosméticos.
23. Una vacuna que comprende un sistema para la liberación de una molécula biológicamente activa como el definido en cualquiera de las reivindicaciones 1 a 15 y un antígeno.
24. Vacuna según reivindicación 23 donde el antígeno se selecciona de entre proteínas, polisacáridos y moléculas de ADN.
25. Procedimiento de obtención de un sistema para la liberación controlada de molécula biológicamente activa según cualquiera de las reivindicaciones 1 a 15 que comprende: a) preparación de una disolución de quitosano o un derivado del mismo en medio acuoso o en una mezcla de agua con un disolvente polar; b) preparación de una disolución de ciclodextrina o un derivado de la misma en medio acuoso o en una mezcla de agua con un disolvente polar y, opcionalmente un agente reticulante; y c) mezclado, bajo agitación, de las disoluciones de las etapas a) y b) de modo que se obtienen espontáneamente las nanopartículas de quitosano- ciclodextrina, u opcionalmente: a) preparación de una disolución del quitosano o un derivado del mismo y una ciclodextrina o un derivado de la misma en medio acuoso o en una mezcla de agua con un disolvente polar; b) preparación de una disolución del agente reticulante en medio acuoso o en una mezcla de agua con un disolvente polar; c) mezclado, bajo agitación, de las disoluciones de las etapas a) y b) de modo que se obtienen espontáneamente las nanopartículas de quitosano- ciclodextrina.
26. Procedimiento para la obtención de nanopartículas según reivindicación 25, donde el agente reticulante es un tripolifosfato, preferentemente tripolifosfato sódico.
27. Procedimiento según cualquiera de las reivindicaciones 25 y 26 donde la molécula biológicamente activa se disuelve previamente en las etapas a) o b) o en otra fase acuosa u orgánica que se adiciona sobre a) o b).
28. Procedimiento según la reivindicación 25, donde la molécula biológicamente activa se selecciona de entre polisacáridos, proteínas, péptidos, lípidos, moléculas basadas en ácidos nucleicos y combinaciones de las mismas.
29. Procedimiento según reivindicaciones 25 y 28 donde la molécula biológicamente activa es un fármaco de clase 2, 3 o 4 según la (el Biopharmaceutical Classifícation System) FDA, preferentemente es un fármaco de clase 4.
30. Procedimiento según reivindicaciones 28 y 29 donde la molécula biológicamente activa es triclosán, furosemida, insulina, heparina o plásmidos de ADN.
31. Uso de un sistema como se describe en las reivindicacines 1 a 15 en la preparación de un medicamento para terapia génica.
PCT/ES2006/000322 2005-06-02 2006-06-01 Nanoparticulas que comprenden quitosano y ciclodextrina WO2006128937A2 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002610403A CA2610403A1 (en) 2005-06-02 2006-06-01 Nanoparticles comprising chitosan and cyclodextrin
JP2008514129A JP5191884B2 (ja) 2005-06-02 2006-06-01 キトサンおよびシクロデキストリンを含んでなるナノ粒子
BRPI0613234-0A BRPI0613234A2 (pt) 2005-06-02 2006-06-01 sistema que inclui nanopartìculas para a libertação de moléculas biologicamente ativas, composição farmacêutica, composição cosmética, vacina, procedimento para obtenção de um sistema para a libertação controlada de molécula biologicamente ativa, procedimento para a obtenção de nanopartìculas e utilização de um sistema
EP06778444A EP1891943A2 (en) 2005-06-02 2006-06-01 Nanoparticles comprising chitosan and cyclodextrin
AU2006254128A AU2006254128A1 (en) 2005-06-02 2006-06-01 Nanoparticles comprising chitosan and cyclodextrin
US11/916,283 US20080220030A1 (en) 2005-06-02 2006-06-01 Nanoparticles Comprising Chitosan and Cyclodextrin
CN2006800208889A CN101217947B (zh) 2005-06-02 2006-06-01 包含壳聚糖和环糊精的纳米颗粒
IL187696A IL187696A0 (en) 2005-06-02 2007-11-27 Nanoparticles comprising chitosan and cyclodextrin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200501331 2005-06-02
ES200501331A ES2277743B2 (es) 2005-06-02 2005-06-02 Nanoparticulas que comprenden quitosano y ciclodextrina.

Publications (2)

Publication Number Publication Date
WO2006128937A2 true WO2006128937A2 (es) 2006-12-07
WO2006128937A3 WO2006128937A3 (es) 2007-02-15

Family

ID=37482018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000322 WO2006128937A2 (es) 2005-06-02 2006-06-01 Nanoparticulas que comprenden quitosano y ciclodextrina

Country Status (11)

Country Link
US (1) US20080220030A1 (es)
EP (1) EP1891943A2 (es)
JP (1) JP5191884B2 (es)
KR (1) KR20080019014A (es)
CN (1) CN101217947B (es)
AU (1) AU2006254128A1 (es)
BR (1) BRPI0613234A2 (es)
CA (1) CA2610403A1 (es)
ES (1) ES2277743B2 (es)
IL (1) IL187696A0 (es)
WO (1) WO2006128937A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129106A3 (es) * 2007-04-20 2009-03-05 Inst Cientifico Tecnol Navarra Nanopartículas que comprenden una ciclodextrina y una molécula biológicamente activa y sus aplicaciones
WO2009048958A3 (en) * 2007-10-08 2009-07-16 Univ Texas Methods and compositions involving chitosan nanoparticles

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA90013C2 (ru) * 2008-03-19 2010-03-25 Давид Анатолійович Нога Фармацевтическая композиция, содержащая инсулин, и способ его получения
TWI328565B (en) * 2008-12-19 2010-08-11 Taiwan Textile Res Inst Dispersions of conductive carbon materials and methods for preparing the same
EP2411039A4 (en) 2009-03-23 2015-05-06 Brigham & Womens Hospital Glycoconjugate VACCINES
JP5804453B2 (ja) * 2009-05-14 2015-11-04 国立大学法人 東京大学 結晶性ポリオール微粒子及びその調製方法
JP5554407B2 (ja) * 2009-06-25 2014-07-23 バイオリーダーズ コーポレーション ポリγ−グルタミン酸−キトサンナノ粒子を含有するアジュバント組成物
US8372877B2 (en) 2010-04-16 2013-02-12 Cumberland Pharmaceuticals Stabilized statin formulations
CN102008450B (zh) * 2010-12-10 2013-01-30 杭州艾瑞莎生物医药科技有限公司 一种药物-环糊精纳米颗粒及其制备方法
CN102416000B (zh) * 2011-12-13 2013-04-10 张维芬 一种用于肺吸入的壳聚糖季铵盐大孔微球及其制备方法
FR2989001B1 (fr) * 2012-04-06 2017-07-21 Centre Nat Rech Scient Microparticules et nanoparticules constituees de polysaccharides hydrophobises et d'une alpha-cyclodextrine
CN102908315B (zh) * 2012-11-02 2014-06-04 上海现代药物制剂工程研究中心有限公司 小分子干扰核糖核酸的壳聚糖纳米粒传递系统及制备方法
BR112015020851A2 (pt) * 2013-02-21 2017-07-18 Massachusetts Inst Technology formulação para a entrega de um agente a um local em uma cavidade mucosa e método para entregar um agente a um local em uma cavidade mucosa.
FR3006315B1 (fr) 2013-05-31 2015-10-02 Centre Nat Rech Scient Microparticules et nanoparticules auto-associatives composees de proteines
FR3011470B1 (fr) * 2013-10-09 2017-01-06 Centre Nat De La Rech Scient (Cnrs) Composition antifongique comprenant un agent antifongique et du chitosane hydrophobise
US20160046732A1 (en) * 2014-08-15 2016-02-18 Empire Technology Development Llc Aseptic polymeric compositions and methods of using the same
WO2016066864A1 (es) 2014-10-30 2016-05-06 Innovaciones Fisicas Y Quimicas Sostenibles, S.L. Nanopartículas para la liberación controlada de ingredientes activos
CN104720108B (zh) * 2015-02-11 2018-01-30 浙江中烟工业有限责任公司 一种纳米环糊精复合添加剂及其制备方法和应用
CN104738815B (zh) * 2015-02-11 2018-01-30 浙江中烟工业有限责任公司 一种降低卷烟烟气中苯酚的纳米环糊精复合添加剂及其制备方法和应用
EP3416628A1 (en) 2016-02-18 2018-12-26 Privo Technologies, Inc. Two-stage microparticle-based therapeutic delivery system and method
US20190269792A1 (en) * 2016-10-25 2019-09-05 Washington University Nanoparticle compositions comprising cd38 and methods of use thereof
CN106822914A (zh) * 2017-01-10 2017-06-13 安徽师范大学 一种羧甲基‑β‑环糊精接枝壳聚糖离子交联纳米粒、制备方法及其应用
US20180235899A1 (en) 2017-02-17 2018-08-23 Privo Technologies, Inc. Particle-based multi-layer therapeutic delivery device and method
US10478403B1 (en) 2017-05-03 2019-11-19 Privo Technologies, Inc. Intraoperative topically-applied non-implantable rapid release patch
CN110997131B (zh) * 2017-05-18 2022-09-13 新加坡科技研究局 复合结构及其形成方法
WO2019079767A1 (en) * 2017-10-20 2019-04-25 The General Hospital Corporation IMMUNOTHERAPEUTIC AGENTS TARGETING MACROPHAGES
CN110522921A (zh) * 2018-05-24 2019-12-03 广东省医疗器械研究所 一种具有胰岛素捕获功能的胰岛素输运体系的合成方法
CN108849995B (zh) * 2018-06-12 2020-06-30 甘肃省科学院生物研究所 黄帚橐吾提取物纳米杀虫剂及其制备方法
CN109012629B (zh) * 2018-08-16 2021-07-30 南京大学 一种制备磁性羧甲基β-环糊精聚合物的方法及其应用
KR102034982B1 (ko) * 2019-03-08 2019-10-21 주식회사 제론바이오 Pdrn이 캡슐화된 키토산 나노 입자가 포함된 점안제 및 이의 제조 방법
CN109908367A (zh) * 2019-04-30 2019-06-21 南开大学 磺胺酸-β-环糊精介导的超分子纳米粒子在胰岛素的控制释放方面的应用
CN110384684B (zh) * 2019-08-26 2021-04-06 安徽农业大学 一种单羧基壳聚糖/紫草素复合纳米颗粒及其制备方法
KR20210071296A (ko) * 2019-12-06 2021-06-16 (주) 에이치엔에이파마켐 공유결합성 유기 골격체 및 폴리머를 이용한 경피전달용 복합체
JP7319931B2 (ja) * 2020-01-22 2023-08-02 オリエンタル酵母工業株式会社 キトサン部分分解物の安定化方法、キトサン部分分解物の保存方法および食品用保存剤
KR102172667B1 (ko) * 2020-02-05 2020-11-02 이채현 덱스트린 글루코노 락톤 술폰 유도체의 제조 방법 및 약제학적 조성물 이를 이용한 동물, 인간, 어류 등의 바이러스 질환 예방 및 치료제
CN111437381B (zh) * 2020-02-13 2023-12-12 汕头大学 一种水凝胶微粒及其制备方法
CN112843336B (zh) * 2021-03-04 2022-10-25 首都医科大学 一种促进牙本质再生的纳米颗粒、凝胶及其制备方法和应用
CN113773161B (zh) * 2021-10-12 2022-12-09 龙蟒大地农业有限公司 一种圆颗粒钾肥及其制备方法
CN113995834A (zh) * 2021-11-08 2022-02-01 江南大学 一种基于环糊精接枝壳聚糖的疫苗、制备方法及应用
CN114176157A (zh) * 2021-11-15 2022-03-15 安佑生物科技集团股份有限公司 一种抑制畜禽球虫的绿色添加剂、制备方法及应用
CN114904493A (zh) * 2022-03-31 2022-08-16 中科院广州化学有限公司 一种离子交联β-环糊精聚合物及其制备方法与应用
CN114451426B (zh) * 2022-04-13 2022-07-15 山东健源生物科技有限公司 用于畜禽环境改良的消毒抑菌生物复合制剂及其制备方法
CN115595809A (zh) * 2022-10-25 2023-01-13 东莞市伊时针织印花有限公司(Cn) 一种用于蛋白质纤维织物的酸性染料及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US619757A (en) 1899-02-21 Knockdown or collapsible box
US5330764A (en) 1989-12-22 1994-07-19 Janssen Pharmaceutica Inc. Methods of preparing bulk delivery matrices by solid-state dissolution
US5476654A (en) 1990-07-27 1995-12-19 Jagotec Ag Process for preparing pharmaceutical compositions having an increased active substance dissolution rate, and the compositions obtained
EP0730869A1 (en) 1994-09-24 1996-09-11 Nobuhiko Yui Biodegradable medicinal polymer assembly with supermolecular structure
WO1997004747A1 (en) 1995-07-27 1997-02-13 Dunn James M Drug delivery systems for macromolecular drugs
US5639473A (en) 1993-02-22 1997-06-17 Vivorx Pharmaceuticals, Inc. Methods for the preparation of nucleic acids for in vivo delivery
US5700459A (en) 1990-04-25 1997-12-23 Hoechst Aktiengesellschaft Pharmacological composition containing polyelectrolyte complexes in microparticulate form and at least one active agent
WO1998004244A1 (es) 1996-07-29 1998-02-05 Universidade De Santiago De Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas
US5840341A (en) 1994-08-20 1998-11-24 Danbiosyst Uk Limited Drug delivery composition containing chitosan or derivative thereof having a defined z. potential
US5843347A (en) 1993-03-23 1998-12-01 Laboratoire L. Lafon Extrusion and freeze-drying method for preparing particles containing an active ingredient
US5849327A (en) 1994-07-29 1998-12-15 Advanced Polymer Systems, Inc. Delivery of drugs to the lower gastrointestinal tract
WO1999061062A1 (en) 1998-05-29 1999-12-02 Massachusetts Institute Of Technology Cyclodextrin complexes
US20020150616A1 (en) 1997-06-05 2002-10-17 Roger Petrus Gerebern Vandecruys Pharmaceutical compositions comprising cyclodextrins
US6497901B1 (en) 2000-11-02 2002-12-24 Royer Biomedical, Inc. Resorbable matrices for delivery of bioactive compounds
WO2003027169A1 (fr) 2001-09-27 2003-04-03 Centre National De La Recherche Scientifique (C.N.R.S) Materiau compose d'au moins un polymere biodegradable et de cyclodextrines
US6630169B1 (en) 1999-03-31 2003-10-07 Nektar Therapeutics Particulate delivery systems and methods of use
US6649192B2 (en) 1996-07-29 2003-11-18 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms
US6677346B1 (en) 1999-06-16 2004-01-13 Nastech Pharmaceutical Company Inc. Methods comprising intranasal morphine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037232C (zh) * 1992-09-04 1998-02-04 付伟 β-常温保鲜剂
US5686113A (en) * 1995-03-21 1997-11-11 Temple University Of The Commonwealth System Of Higher Education Microcapsules of predetermined peptide(s) specificity (ies), their preparation and uses
CA2318493A1 (en) * 1998-01-16 1999-07-22 The Johns Hopkins University Oral delivery of nucleic acid vaccines by particulate complexes
US7030097B1 (en) * 1999-07-14 2006-04-18 Cornell Research Foundation, Inc. Controlled nucleic acid delivery systems
BR0108379A (pt) * 2000-02-08 2002-11-05 Euro Celtique Sa Composições de liberação controlada contendo agonista e antagonista opióide, método para a preparação de uma formulação em dosagem de analgésico opióide de liberação controlada com potência analgésica aumentada e sistema de administração através da derme para um analgésico opióide
JP4593846B2 (ja) * 2001-09-07 2010-12-08 信越化学工業株式会社 医薬品又は食品用マイクロカプセルの製造方法
JP3908969B2 (ja) * 2002-03-18 2007-04-25 ピアス株式会社 化粧料
FR2841137B1 (fr) * 2002-06-20 2004-08-13 Bioalliance Pharma Systeme de vectorisation comprenant des nanoparticules de taille homogene d'au moins un polymere et d'au moins un polysaccharide charge positivement
FR2842106B1 (fr) * 2002-07-11 2006-07-14 Centre Nat Rech Scient Dispersions aqueuses de particules nanometriques ou micrometriques pour l'encapsulation de composes chimiques
CN1255433C (zh) * 2002-10-15 2006-05-10 浙江大学 壳聚糖-β-环糊精树脂的制备方法
US20050008572A1 (en) * 2003-04-29 2005-01-13 Ales Prokop Nanoparticular tumor targeting and therapy
JP4747256B2 (ja) * 2003-11-04 2011-08-17 Jnc株式会社 複合刺激応答材料

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US619757A (en) 1899-02-21 Knockdown or collapsible box
US5330764A (en) 1989-12-22 1994-07-19 Janssen Pharmaceutica Inc. Methods of preparing bulk delivery matrices by solid-state dissolution
US5700459A (en) 1990-04-25 1997-12-23 Hoechst Aktiengesellschaft Pharmacological composition containing polyelectrolyte complexes in microparticulate form and at least one active agent
US5476654A (en) 1990-07-27 1995-12-19 Jagotec Ag Process for preparing pharmaceutical compositions having an increased active substance dissolution rate, and the compositions obtained
US5639473A (en) 1993-02-22 1997-06-17 Vivorx Pharmaceuticals, Inc. Methods for the preparation of nucleic acids for in vivo delivery
US5843347A (en) 1993-03-23 1998-12-01 Laboratoire L. Lafon Extrusion and freeze-drying method for preparing particles containing an active ingredient
US5849327A (en) 1994-07-29 1998-12-15 Advanced Polymer Systems, Inc. Delivery of drugs to the lower gastrointestinal tract
US5840341A (en) 1994-08-20 1998-11-24 Danbiosyst Uk Limited Drug delivery composition containing chitosan or derivative thereof having a defined z. potential
EP0730869A1 (en) 1994-09-24 1996-09-11 Nobuhiko Yui Biodegradable medicinal polymer assembly with supermolecular structure
WO1997004747A1 (en) 1995-07-27 1997-02-13 Dunn James M Drug delivery systems for macromolecular drugs
WO1998004244A1 (es) 1996-07-29 1998-02-05 Universidade De Santiago De Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas
US6649192B2 (en) 1996-07-29 2003-11-18 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms
US20020150616A1 (en) 1997-06-05 2002-10-17 Roger Petrus Gerebern Vandecruys Pharmaceutical compositions comprising cyclodextrins
WO1999061062A1 (en) 1998-05-29 1999-12-02 Massachusetts Institute Of Technology Cyclodextrin complexes
US6630169B1 (en) 1999-03-31 2003-10-07 Nektar Therapeutics Particulate delivery systems and methods of use
US6677346B1 (en) 1999-06-16 2004-01-13 Nastech Pharmaceutical Company Inc. Methods comprising intranasal morphine
US6497901B1 (en) 2000-11-02 2002-12-24 Royer Biomedical, Inc. Resorbable matrices for delivery of bioactive compounds
WO2003027169A1 (fr) 2001-09-27 2003-04-03 Centre National De La Recherche Scientifique (C.N.R.S) Materiau compose d'au moins un polymere biodegradable et de cyclodextrines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHARM. RES., vol. 21, 2004, pages 803 - 10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129106A3 (es) * 2007-04-20 2009-03-05 Inst Cientifico Tecnol Navarra Nanopartículas que comprenden una ciclodextrina y una molécula biológicamente activa y sus aplicaciones
RU2460518C2 (ru) * 2007-04-20 2012-09-10 Институто Сьентифико И Текнолохико Де Наварра, С.А. Наночастицы, включающие циклодекстрин и биологически активную молекулу, и их применение
WO2009048958A3 (en) * 2007-10-08 2009-07-16 Univ Texas Methods and compositions involving chitosan nanoparticles

Also Published As

Publication number Publication date
BRPI0613234A2 (pt) 2010-12-28
CN101217947B (zh) 2012-04-25
AU2006254128A1 (en) 2006-12-07
WO2006128937A3 (es) 2007-02-15
US20080220030A1 (en) 2008-09-11
ES2277743A1 (es) 2007-07-16
CA2610403A1 (en) 2006-12-07
KR20080019014A (ko) 2008-02-29
JP5191884B2 (ja) 2013-05-08
EP1891943A2 (en) 2008-02-27
CN101217947A (zh) 2008-07-09
ES2277743B2 (es) 2008-12-16
JP2008542342A (ja) 2008-11-27
IL187696A0 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
ES2277743B2 (es) Nanoparticulas que comprenden quitosano y ciclodextrina.
EP1652517B8 (en) Hyaluronic acid nanoparticles
George et al. Natural biodegradable polymers based nano-formulations for drug delivery: A review
Santos et al. Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold
EP1774971A1 (en) Chitosan and heparin nanoparticles
WO2010049562A1 (es) Sistemas nanoparticulares elaborados a base de polímeros aniónicos.
JP2009537604A (ja) 活性分子の投与のためのキトサンおよびヒアルロナンのナノ粒子
JP4566739B2 (ja) 化合物のカプセル封入用ナノメートルサイズまたはミクロンメートルサイズ粒子からなる水性分散体
Liu et al. Chitosan‐based self‐assembled nanomaterials: Their application in drug delivery
Singh et al. Alginate based nanoparticles and its application in drug delivery systems
ES2279172T3 (es) Nanoparticulas para la administracion de ingredientes activos, procedimiento para la elaboracion de dichas particulas y composiciones que las contienen.
BRPI0712180A2 (pt) sistema de liberação de moléculas biologicamente ativas, composição farmacêuticas e cosmética contendo o mesmo, seu processo de fabricação e uso
Pathak et al. Polysaccharides for drug delivery
Giri Nanoarchitectured polysaccharide-based drug carrier for ocular
Subramanian et al. Chitosan and its derivatives in clinical use and applications
Jana et al. Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications
Pérez-Álvarez et al. Chitosan-Based Nanogels for Biomedical Applications
ES2342588B2 (es) Sistemas nanoparticulares elaborados a base de polimeros anionicos.
Haque et al. Role of chitosan biomaterials in drug delivery systems: A patent perspective
as Promising et al. Springer-Verlag Berlin Heidelberg 2011 Published online: 15 March 2011
Yi NANOGELS AS HIGHLY EFFECTIVE NANOCARRIERS: A MINI

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 187696

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2610403

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006778444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916283

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008514129

Country of ref document: JP

Ref document number: 2006254128

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200680020888.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077029819

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006254128

Country of ref document: AU

Date of ref document: 20060601

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006254128

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006778444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0613234

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071203