WO2006121061A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2006121061A1
WO2006121061A1 PCT/JP2006/309362 JP2006309362W WO2006121061A1 WO 2006121061 A1 WO2006121061 A1 WO 2006121061A1 JP 2006309362 W JP2006309362 W JP 2006309362W WO 2006121061 A1 WO2006121061 A1 WO 2006121061A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
torque command
main
value
damping
Prior art date
Application number
PCT/JP2006/309362
Other languages
English (en)
French (fr)
Inventor
Kenji Yamada
Hideaki Saida
Satoru Katou
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2006800160305A priority Critical patent/CN101171743B/zh
Priority to EP06732514.2A priority patent/EP1881595B1/en
Publication of WO2006121061A1 publication Critical patent/WO2006121061A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor control device.
  • hybrid cars have come to be seen on roads, mixed with cars that are powered only by ordinary internal combustion engines.
  • a hybrid vehicle is a vehicle that was developed to improve the deterioration of exhaust gas and fuel consumption when running on an internal combustion engine alone.
  • a hybrid vehicle is a vehicle equipped with an internal combustion engine and a motor generator that doubles as a motor that generates running torque by electric power or a generator.
  • Japanese Laid-Open Patent Publication No. 1 1 1 1 7 8 1 1 3 discloses that the final torque is large by adding the assist torque for starting the engine to the drive torque necessary for the traveling of such a hybrid vehicle as the final torque. If so, disclose that the guard value will be used.
  • the waveform of the damping torque to suppress vibrations such as torque ripple accompanying the rotation of the motor is separately calculated and added to the torque command waveform for propelling the vehicle.
  • the final torque command value was obtained.
  • a guard value for motor protection is set for such a torque command value.
  • Fig. 14 shows the waveform of the final torque command value to which the guard value is applied.
  • the guard value GT is applied to the torque command raw value TR based on the acceleration request from the accelerator pedal operated by the driver, and this is filtered and the torque filter value TRF Is calculated.
  • Fig. 15 is a waveform diagram for explaining the state in which the follow-up performance of the current feedback accuracy has deteriorated.
  • An object of the present invention is to provide a motor control device with improved controllability.
  • the present invention provides a motor control device that reduces a torque fluctuation that occurs when a rotating electrical machine is operated with a main torque command value and a main torque command value calculation unit that calculates a main torque command value.
  • a final command torque value output unit that outputs a final command torque value based on the vibration suppression torque command value and the main torque command value, and a vibration suppression torque command value calculation unit that calculates the vibration suppression torque command value.
  • the damping torque command value calculation unit includes an original command value calculation unit that calculates an original command value that is a source of the damping torque command value, and guard processing that restricts the original command value using the damping guard value.
  • a guard processing unit for performing, and a smoothing unit for smoothing discontinuous corners of the rate of change in the torque command value after the guard processing is configured to generate an original main torque command value calculation unit that calculates a first command value that is a source of the main torque command value in response to the acceleration request, and to the first command value.
  • the main guard processing unit that performs main guard processing that restricts using the main guard value, and the discontinuous corner portion of the change rate that occurs in the first command value after the main guard processing is smoothed to generate the main torque command.
  • a main torque smoothing unit that outputs a value.
  • a motor control device includes a main torque command value calculation unit that calculates a main torque command value, and torque fluctuation that occurs when the rotating electrical machine is operated with the main torque command value. Based on the damping torque command value to be reduced and the main torque command value, A final command torque value output unit that outputs a final command torque value; and a vibration suppression torque command value calculation unit that calculates a vibration suppression torque command value.
  • the vibration suppression torque command value calculation unit includes an original command value calculation unit that calculates an original command value that is a source of the vibration suppression torque command value, and a vibration suppression guard value that is the next time for the current vibration suppression torque command value.
  • the temporary command value calculation unit calculates the first and second temporary vibration suppression torque command values using the upper limit value and the lower limit value as the vibration suppression guard value.
  • the damping torque command value selection unit selects the original command value as the damping torque command value when the original command value actually given is between the first and second temporary damping torque command values. If the original command value actually given is not between the first and second temporary vibration damping torque command values, either one of the first or second temporary vibration damping torque command values is set. Select as damping torque command value.
  • the main torque command value calculation unit is configured to generate an original main torque command value calculation unit that calculates a first command value that is a source of the main torque command value in response to an acceleration request, and a first command value.
  • the main guard processing unit that performs the main guard processing that restricts using the main guard value, and the main torque command value by smoothing the discontinuous corners of the rate of change that occurs in the first command value after the main guard processing And a main torque smoothing unit that outputs.
  • a motor control device that calculates a main torque command value, and a vibration damping torque that reduces torque fluctuation that occurs when the rotating electrical machine is operated with the main torque command value.
  • the means for calculating the damping torque command value includes a means for calculating the original command value that is a source of the damping torque command value, and a guard process that restricts the original command value using the damping guard value. And means for smoothing the discontinuous corners of the rate of change occurring in the torque command value after the guard processing.
  • the means for calculating the main torque command value is a means for calculating a first command value that is a source of the main torque command value in response to an acceleration request, and a main guard value with respect to the first command value.
  • a means for performing the main guard process to restrict using the first and the first after the main guard process Means for smoothing the discontinuous corners of the rate of change occurring in the command value and outputting the main torque command value.
  • a motor control device that calculates a main torque command value, and a vibration damping torque that reduces torque fluctuation that occurs when the rotating electrical machine is operated with the main torque command value.
  • the means for calculating the damping torque command value includes the means for calculating the original command value that is the basis for the damping torque command value, and the damping guard value is set to the original command value next time with respect to the current damping torque command value.
  • the means for calculating the temporary damping torque command value calculates the first and second temporary damping torque command values by using the upper limit value and the lower limit value as the damping guard value.
  • the means for selecting the damping torque command value is that if the original command value actually given is between the first and second temporary damping torque command values, the original command value is used as the damping torque command value. If the original command value actually selected is not between the first and second temporary damping torque command values, one of the first and second temporary damping torque command values Select one as the damping torque command value.
  • the means for calculating the main torque command value is a means for calculating a first command value that is a source of the main torque command value in response to an acceleration request, and a main guard value with respect to the first command value. And a means for performing a main guard process for restricting the output using the, and a means for outputting a main torque command value by smoothing a discontinuous corner portion of a change rate generated in the first command value after the main guard process.
  • a motor control device that is mounted on a vehicle, the vehicle comprising: a rotating electric machine; a wheel that rotates in conjunction with rotation of the rotating electric machine; A motor control device for controlling the electric machine,
  • a motor control device that is mounted on a vehicle, the vehicle comprising: a rotating electric machine; a wheel that rotates in conjunction with rotation of the rotating electric machine; A motor control device that controls the electric machine, and the motor control device force main torque command value is calculated, and the source of damping torque command value that reduces the torque fluctuation that occurs when the rotating electric machine is operated with the main torque command value. And calculate a temporary damping torque command value by performing a filter process assuming that the vibration damping guard value will be given as the original command value next time with respect to the current damping torque command value.
  • FIG. 1 is a diagram showing a configuration of a vehicle drive system 10 ° to which a motor control device of the present invention is applied.
  • FIG. 2 is a diagram for explaining countermeasures for reducing torque ripple performed by the controller 40.
  • FIG. 3 is a flowchart for explaining the processing for obtaining the main tonrec command value executed by the controller 40 in FIG.
  • FIG. 4 is a flowchart for explaining the processing for obtaining the damping torque command value performed by the controller 40.
  • FIG. 5 is a flowchart for explaining the process of combining the main torque command value and the damping torque command value executed by the controller 40.
  • FIG. 6 is a waveform diagram showing a waveform of the final torque command value to which the first embodiment is applied.
  • FIG. 7 is a flowchart showing a program structure related to calculation of damping torque command value executed in the second embodiment.
  • FIG. 8 is a waveform diagram for explaining the case where the process proceeds to step S 34 in FIG.
  • FIG. 9 is a waveform diagram for explaining the case where the process proceeds to step S 35 in FIG.
  • FIG. 10 is a diagram of a first example showing how the damping torque output value Q calculated in the second embodiment becomes relative to the raw value Y.
  • FIG. 11 is a diagram of a second example showing how the damping torque output value Q calculated in the second embodiment becomes relative to the raw value Y.
  • FIG. 12 is a diagram of a third example showing how the damping torque output value Q calculated in the second embodiment becomes relative to the raw value Y.
  • FIG. 13 is a waveform diagram showing the waveform of the final torque command value output in the second embodiment.
  • Fig. 14 shows the waveform of the final torque command value to which the guard value is applied.
  • Fig. 15 is a waveform diagram for explaining the state in which the follow-up performance of the current feedback accuracy is poor.
  • FIG. 1 is a diagram showing a configuration of a vehicle drive system 100 to which a motor control device of the present invention is applied.
  • the vehicle drive system 100 has a notch 3 8 and a three-phase inverter 3 that receives energy from the notch 3 8 during power-carrying operation and returns energy to the battery 3 8 during regenerative operation. 6 and a motor 1 in which the current and voltage are controlled for the U-layer, V-layer, and W-layer coils by a three-phase inverter 36.
  • 3-phase invar The capacitor 36 includes a power semiconductor element such as an IGBT although not shown.
  • the vehicle drive system 1 0 0 further includes an accelerator position sensor 4 1 for detecting the position of the accelerator pedal operated by the driver, and three-phase according to the output of the accelerator position sensor 4 1 receiving the rotation information P from the motor ⁇ .
  • Controller 40 for controlling inverter 36.
  • the controller 40 includes CPU, ROM, RAM, and the like (not shown).
  • the vehicle drive system 100 further includes a speed reducer 3 4 connected to the output shaft 4 4 of the motor, and a wheel 3 2 connected to the output shaft of the speed reducer 3 4.
  • FIG. 2 is a diagram for explaining countermeasures for reducing torque ripple performed by the controller 40.
  • controller 40 receives the rotation information P given from motor 1 so that a compensation current flows to three-phase inverter 36 in response to the phase at which torque ripple occurs. Instruct. As a result, the torque peaks and troughs are each averaged by the compensation current, and the waveform W 3 in which torque ripple occurs is improved to the waveform W 4.
  • the damping torque command value is calculated as the command value that is the basis for the flow of such compensation current.
  • the controller 40 combines the two torque command values obtained, the main torque command value calculation processing, the vibration suppression torque command value calculation processing, and so on. Then, the final torque command value is obtained.
  • FIG. 3 is a flowchart for explaining the processing for obtaining the main torque command value executed by the controller 40 in FIG.
  • controller 40 receives the torque command value (raw value) that is the source of the main torque command value according to the output of accelerator position sensor 4 1. Calculate TR. In the case of a hybrid vehicle that uses an engine in combination with a motor, the share of torque between the engine and motor is also taken into account in the calculation.
  • step S2 a tumbling process is performed to limit the upper limit of the torque command value TR with the guard value GT. Further, the torque command value clipped in step S3 is filtered to obtain the main torque command value, the process proceeds to step S4, and the calculation of the main torque command value ends.
  • FIG. 4 is a flowchart for explaining the processing for obtaining the damping torque command value performed by the controller 40.
  • vibration suppression torque m is calculated in step S 11. This is done based on the rotational phase and speed of the motor rotor. Further, in the case of a hybrid vehicle, it may be obtained in consideration of the phase for canceling engine vibration in addition to this. Subsequently, in step S12, a clip process using a guard value is performed on the damping torque command value. Subsequently, a filter process is performed in step S13, and the process proceeds to step S14 and the process ends.
  • the filtering process is not particularly limited, and for example, a general first-order lag filter can be used.
  • the process of calculating the damping torque command is limited by the process of calculating the original command value that is the basis of the damping torque command (step S 1 1) and the damping guard value for the original command value. And a process for performing a given guard process (step S 1 2) and a process for smoothing discontinuous corners of the rate of change in the torque command value after the guard process (step S 1 3).
  • FIG. 5 is a flowchart for explaining the process of combining the main torque command value and the damping torque command value executed by the controller 40.
  • step S 22 controller 4 ⁇ outputs a final torque command to three-phase inverter 36 that drives motor 1. Then, the process proceeds to step S 2 3 and the process ends.
  • FIG. 6 is a waveform diagram showing a waveform of the final torque command value to which the first embodiment is applied.
  • the torque filter value T R F is a value obtained by the process of obtaining the main torque command value in FIG.
  • the final torque command value T shown in Fig. 6 is superimposed on the damping torque command value obtained in Fig. 4.
  • the corners PA and PB which are corners as shown in Fig. 15, have waveforms with smooth corners, and current overshoot is reduced.
  • filter processing is performed on the damping torque command value.
  • a phase lag may occur in the damping torque command value, which may reduce the damping effect. For example, if the phase changes by 180 °, the vibration control effect may not be exhibited and oscillation may occur.
  • the processing for calculating the damping torque command value in FIG. 4 is changed in the processing performed in the first embodiment.
  • the processing for obtaining the main torque command value and the processing for obtaining the final torque command value by combining the two obtained torque command values are the same as the processing described with reference to FIGS. 3 and 5, and therefore description thereof will not be repeated.
  • FIG. 7 is a flowchart showing a program structure related to calculation of the damping torque command value executed in the second embodiment.
  • vibration suppression torque (raw value) Y n is calculated in step S 3 1.
  • the calculation of this raw value is based on the rotor phase, rotor speed, and engine vibration! / And done.
  • step S 3 2 when the damping torque guard values G 1 and G 2 are input next to the previously calculated damping torque command value Q n ⁇ 1, Calculate the first-order lag filtering values X 1 n and X 2 n.
  • step S 3 the damping torque (raw value) Y n is compared with the calculated values X ln and X 2 ⁇ to determine whether X ln Y Y n ⁇ 2 n is satisfied. The If X 1 n ⁇ Y n ⁇ X 2 ⁇ is satisfied in step S 3 3, the process proceeds to step S 3 4, and if not, the process proceeds to step S 3 5.
  • step S34 set damping torque (raw value) Yn as output damping torque Qn.
  • step S35 the value closer to the damping torque (raw value) Yn is selected as the output damping torque Qn among the calculated values X 1 n and X 2 n.
  • the process of calculating the damping torque command value is performed by the process of calculating the original command value that is the basis of the damping torque command value (step S 31) and the current damping damping torque command value. Assuming that the guard value is given as the original command value, the filter processing is performed to calculate the provisional damping torque command value (step S32), and the provisional damping torque command value is actually given. And processing to select the damping torque command value by comparing with the original command value (Steps S33 to S35).
  • the process of calculating the temporary damping torque command value is performed by using the upper P ⁇ value G 2 and the lower limit value G 1 as the damping guard value to calculate the temporary damping torque command value X 2 n, X 1 n. calculate.
  • the process of selecting the damping torque command value is performed by selecting the original command value as the damping torque command value if the original command value actually given is between the first and second temporary damping torque command values. (Step S34), if the original command value actually given is not between the first and second temporary damping torque command values, the first and second temporary damping torque command values One of them is selected as the damping torque command value (step S35).
  • FIG. 8 is a waveform diagram for explaining the case where the process proceeds to step S34 in FIG.
  • Fig. 8 shows the case where the output damping torques Qn-2 and Qn-1 have been calculated so far, and then the output damping torque Qn is calculated.
  • the damping torque (raw value) Yn calculated in step S31 in Fig. 7 is outside the guard value
  • FIG. 9 is a waveform diagram for explaining the case where the process proceeds to step S 35 in FIG.
  • the output damping torque Q n _ 2, Q n— 1 has been output in sequence until now, and then the output damping torque Q n is calculated. Yes.
  • the damping torque (raw value) Y n exists outside the guard values G 1 and G 2. Therefore, one of the values X 1 n and X 2 n obtained by subjecting the guard values G l and G 2 to the first-order lag filter processing, the one closer to the raw value Y n is selected as the output damping torque Q n.
  • the raw value Yn is outside the guard value G2, so the value X2n is closer to the raw value Yn. Therefore, the value X 2 n is selected as the output damping torque Q n.
  • Fig.10, Fig.11, Fig.12 shows the first example to the third example showing how the damping torque output straight Q calculated in the second embodiment becomes relative to the raw value Y FIG.
  • Fig. 10 if the raw value Y has a high frequency and its peak value protrudes outside the guard values G 1 and G 2, a certain amount of phase delay will occur in the waveform.
  • the peak of the raw value Y protrudes outside the guard values Gl and G2, but the frequency is not affected by the filtering process.
  • the vibration damping torque Q reflects the raw value Y as faithfully as possible in the region between the guard values G 1 and G 2. Then, the corner portion which is the transition point of the portion that is clipped by the guard value G 1 or G 2 from that portion is smoothed. Furthermore, as shown in Fig. 12, if the peak value of the damping torque raw value Y is within the guard values G 1 and G 2 and the frequency is not affected by the filter processing, The raw value Y of the required damping torque is directly output as the output damping torque Q. Strength 3
  • FIG. 13 is a waveform diagram showing the waveform of the final torque command value output in the second embodiment.
  • the final torque command value ⁇ is clipped at the guard torque G 1, G 2 that protrudes from the raw value ⁇ of the damping torque, but the corner PA, ⁇ ⁇ Smoothing is achieved and the phase lag of the damping torque is also reduced, so that the damping effect is improved and smoother running can be realized.

Abstract

コントローラ(40)は、主トルク指令値を算出する処理と、主トルク指令値で回転電機を運転した場合に発生するトルク変動を低減させる制振トルク指令値と主トルク指令値とに基づいて最終指令トルク値を出力する処理と、制振トルク指令値を算出する処理とを実行する。制振トルク指令値を算出する処理は、制振トルク指令値の元となる原指令値を算出する処理と、原指令値に対して制振ガード値を用いて制限を与えるガード処理を行なう処理と、ガード処理後のトルク指令値に生じる変化率の不連続な角部を平滑化する処理とを含む。

Description

明細書 モータ制御装置 技術分野
この発明は、 モータ制御装置に関する。 背景技術
近年、 ハイブリッド自動車が、 通常の内燃機関のみで動力を得る自動車に混じ つて、 道路を走行する姿が見られるようになってきている。 ハイブリッド自動車 は、 内燃機関のみで走行する場合の排ガスの悪化や燃費の低下を改善するために 開発された車両である。
ハイプリッド自動車は電力によって走行トルクを発生するモータあるいは発電 機を兼ねたモータジェネレータを、 内燃機関と併せて搭載した車両である。 特開 平 1 1一 1 7 8 1 1 3号公報は、 かかるハイプリッド自動車の走行に必要な駆動 トルクに対してエンジンを始動させるためのアシストトルクを加えたものを最終 トルクとして、 最終トルクが大きい場合にはガード値を採用する旨について開示 する。
従来、 モータ制御において、 車両を推進させるためのトルク指令の波形に対し て、 モータの回転に伴うトルクリプル等の振動を抑制するための制振トルクの波 形が別々に演算され、 これらが加算されて最終のトルク指令値が求められていた。 このようなトルク指令値に対してはモータ保護のためのガード値が設定されてい る。
図 1 4は、 ガード値が適用された最終トルク指令値の波形形状を示した図であ る。
図 1 4を参照して、 運転者が操作するァクセルペダル等からの加速要求に基づ く トルク指令の生値 T Rに対してガード値 G Tが適用されこれにフィルタ処理が 施されてトルクフィルタ値 T R Fが算出される。
これに対してモータのトルクリプルを低減させるための制振トルクの生値 Yに 対して、 この制振トルクのガード値 G 1, G 2を適用した後の波形がトルクフィ ルタ値 T R Fに重畳される。 これにより最終トルク指令値 Tが算出される。
し力 しながら、 最終トルク指令値 Tは、 角部 P A, P Bにおいてトルクが急変 するので、 電流のフィードバック精度の追従性が悪くなる。
図 1 5は、 電流のフィードバック精度の追従性が悪くなった状態を説明するた めの波形図である。
図 1 5を参照して、 制振トルク指令値が図 1 5に示すように急変する部分にお いては A, B , Cに示すようにオーバーシュートが生じて本来流さなくてもよい 電流が流れ無駄なパヮ一が消費される。 また電流が大きくなることにより電池お よびィンバータの寿命に影響を与える可能性がある。 発明の開示
この発明の目的は、 制御性の向上したモータ制御装置を提供することである。 この発明は、 要約すると、 モータ制御装置であって、 主トルク指令値を算出す る主トルク指令値算出部と、 主トルク指令値で回転電機を運転した場合に発生す るトルク変動を低減させる制振トルク指令値と主トルク指令値とに基づレ、て最終 指令トルク値を出力する最終指令トルク値出力部と、 制振トルク指令値を算出す る制振トルク指令値算出部とを備える。 制振トルク指令値算出部は、 制振トルク 指令値の元となる原指令値を算出する原指令値算出部と、 原指令値に対して制振 ガード値を用いて制限を与えるガード処理を行なうガード処理部と、 ガード処理 後のトルク指令値に生じる変化率の不連続な角部を平滑化する平滑部とを含む。 好ましくは、 主トルク指令値算出部は、 加速要求に]^じて、 主トルク指令値の 元となる第 1の指令値を算出する原主トルク指令値算出部と、 第 1の指令値に対 して主ガード値を用いて制限を与える主ガード処理を行なう主ガード処理部と、 主ガード処理後の第 1の指令値に生じる変化率の不連続な角部を平滑化して主ト ルク指令値を出力する主トルク平滑部とを含む。
この発明の他の局面に従うと、 モータ制御装置であって、 主トルク指令値を算 出する主トルク指令値算出部と、 主トルク指令値で回転電機を運転した場合に発 生するトルク変動を低減させる制振トルク指令値と主トルク指令値とに基づ 、て 最終指令トルク値を出力する最終指令トルク値出力部と、 制振トルク指令値を算 出する制振トルク指令値算出部とを備える。 制振トルク指令値算出部は、 制振ト ルク指令値の元となる原指令値を算出する原指令値算出部と、 現在の制振トルク 指令値に対して次回に制振ガード値が原指令値として与えられると仮定してフィ ルタ処理を行なって仮の制振トルク指令値を算出する仮指令値算出部と、 仮の制 振トルク指令値と実際に与えられる原指令値とを比較して制振トルク指令値を選 択する制振トルク指令値選択部とを含む。
好ましくは、 仮指令値算出部は、 制振ガード値として上限値と下限値を用いて 第 1、 第 2の仮の制振トルク指令値を算出する。 制振トルク指令値選択部は、 実 際に与えられる原指令値が第 1、 第 2の仮の制振トルク指令値の間にある場合に は原指令値を制振トルク指令値として選択し、 実際に与えられる原指令値が第 1、 第 2の仮の制振トルク指令値の間にない場合には第 1、 第 2の仮の制振トルク指 令値のうちのいずれか一方を制振トルク指令値として選択する。
好ましくは、,主トルク指令値算出部は、 加速要求に応じて、 主トルク指令値の 元となる第 1の指令値を算出する原主トルク指令値算出部と、 第 1の指令値に対 して主ガード値を用いて制限を与える主ガード処理を行なう主ガード処理部と、 主ガード処理後の第 1の指令値に生じる変化率の不連続な角部を平滑化して主ト ルク指令値を出力する主トルク平滑部とを含む。
この発明のさらに他の局面に従うと、 モータ制御装置であって、 主トルク指令 値を算出する手段と、 主トルク指令値で回転電機を運転した場合に発生するトル ク変動を低減させる制振トルク指令値と主トルク指令値とに基づいて最終指令ト ルク値を出力する手段と、 制振トルク指令値を算出する手段とを備える。 制振ト ルク指令値を算出する手段は、 制振トルク指令値の元となる原指令値を算出する 手段と、 原指令値に対して制振ガード値を用いて制限を与えるガード処理を行な う手段と、 ガード処理後のトルク指令値に生じる変化率の不連続な角部を平滑化 する手段とを含む。
好ましくは、 主トルク指令値を算出する手段は、 加速要求に応じて、 主トルク 指令値の元となる第 1の指令値を算出する手段と、 第 1の指令値に対して主ガー ド値を用いて制限を与える主ガード処理を行なう手段と、 主ガード処理後の第 1 の指令値に生じる変化率の不連続な角部を平滑化して主トルク指令値を出力する 手段とを含む。
この発明のさらに他の局面に従うと、 モータ制御装置であって、 主トルク指令 値を算出する手段と、 主トルク指令値で回転電機を運転した場合に発生するトル ク変動を低減させる制振トルク指令値と主トルク指令値とに基づいて最終指令ト ルク値を出力する手段と、 制振トルク指令値を算出する手段とを備える。 制振ト ルク指令値を算出する手段は、 制振トルク指令値の元となる原指令値を算出する 手段と、 現在の制振トルク指令値に対して次回に制振ガード値が原指令値として 与えられると仮定してフィルタ処理を行なって仮の制振トルク指令値を算出する 手段と、 仮の制振トルク指令値と実際に与えられる原指令値とを比較して制振ト ルク指令値を選択する手段とを含む。
好ましくは、 仮の制振トルク指令値を算出する手段は、 制振ガード値として上 限値と下限値を用いて第 1、 第 2の仮の制振トルク指令値を算出する。 制振トル ク指令値を選択する手段は、 実際に与えられる原指令値が第 1、 第 2の仮の制振 トルク指令値の間にある場合には原指令値を制振トルク指令値として選択し、 実 際に与えられる原指令値が第 1、 第 2の仮の制振トルク指令値の間にない場合に は第 1、 第 2の仮の制振トルク指令値のうちのいずれか一方を制振トルク指令値 として選択する。
好ましくは、 主トルク指令値を算出する手段は、 加速要求に応じて、 主トルク 指令値の元となる第 1の指令値を算出する手段と、 第 1の指令値に対して主ガー ド値を用いて制限を与える主ガード処理を行なう手段と、 主ガード処理後の第 1 の指令値に生じる変化率の不連続な角部を平滑化して主トルク指令値を出力する 手段とを含む。
この発明のさらに他の局面に従うと、 モータ制御装置であって、 車両に搭載さ れるモータ制御装置であって、 車両は、 回転電機と、 回転電機の回転に連動して 回転する車輪と、 回転電機を制御するモータ制御装置とを備え、 モータ制御装置
1 主トルク指令値を算出し、 主トルク指令値で回転電機を運転した場合に発生 するトルク変動を低減させる制振トルク指令値の元となる原指令値を算出し、 原 指令値に対して制振ガード値を用いて制限を与えるガード処理を行ない、 ガード 処理後のトルク指令値に生じる変化率の不連続な角部を平滑化し、 制振トルク指 令値と主トルク指令値とに基づいて最終指令トルク値を出力する。
この発明のさらに他の局面に従うと、 モータ制御装置であって、 車両に搭載さ れるモータ制御装置であって、 車両は、 回転電機と、 回転電機の回転に連動して 回転する車輪と、 回転電機を制御するモータ制御装置とを備え、 モータ制御装置 力 主トルク指令値を算出し、 主トルク指令値で回転電機を運転した場合に発生 するトルク変動を低減させる制振トルク指令値の元となる原指令値を算出し、 現 在の制振トルク指令値に対して次回に制振ガード値が原指令値として与えられる と仮定してフィルタ処理を行なって仮の制振トルク指令値を算出し、 仮の制振ト ルク指令値と実際に与えられる原指令値とを比較して制振トルク指令値を選択し、 制振トルク指令値と主トノレク指令値とに基づレ、て最終指令トルク値を出力する。 本発明によれば、 制振制御を行なってもトルクの急変を招かないようにモータ を制御することが可能となる。
さらに他の効果として、 制振効力を保ちつつ、 かつ、 トルクの.急変を招かない ようにモータを制御することが可能となる。 図面の簡単な説明
図 1は、 本発明のモータ制御装置が適用される車両駆動システム 1 0◦の構成 を示す図である。
図 2は、 コントローラ 4 0が行なうトルクリプルの低減対策を説明するための 図である。
図 3は、 図 1のコントローラ 4 0で実行される主トノレク指令値を求める処理を 説明するためのフローチャートである。
図 4は、 コントローラ 4 0で行なわれる制振トルク指令値を求める処理を説明 するためのフローチャートである。
図 5は、 コントローラ 4 0で実行される主トルク指令値と制振トルク指令値の 合成処理を説明するためのフローチヤ一トである。
図 6は、 実施の形態 1の適用された最終トルク指令値の波形を示した波形図で ある。 図 7は、 実施の形態 2において実行される制振トルク指令値の算出に関するプ ログラム構造を示したフローチャートである。
図 8は、 図 7においてステップ S 3 4に処理が進んだ場合を説明するための波 形図である。
図 9は、 図 7においてステップ S 3 5に処理が進んだ場合を説明するための波 形図である。
図 1 0は、 実施の形態 2において算出される制振トルク出力値 Qが生値 Yに対 してどのようになるかを示した第 1例の図である。
図 1 1は、 実施の形態 2において算出される制振トルク出力値 Qが生値 Yに対 してどのようになるかを示した第 2例の図である。
図 1 2は、 実施の形態 2において算出される制振トルク出力値 Qが生値 Yに対 してどのようになるかを示した第 3例の図である。
図 1 3は、 実施の形態 2において出力される最終トルク指令値の波形を示した 波形図である。
図 1 4は、 ガード値が適用された最終トルク指令値の波形形状を示した図であ る。
図 1 5は、 電流のフィードバック精度の追従性が悪くなつた状態を説明するた めの波形図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照しながら詳しく説明する。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1 ]
図 1は、 本発明のモータ制御装置が適用される車両駆動システム 1 0 0の構成 を示す図である。
図 1を参照して、 車両駆動システム 1 0 0は、 ノ ッテリ 3 8と、 ノ ッテリ 3 8 からカ行運転時にはエネルギを受け、 また回生運転時にはバッテリ 3 8にェネル ギを戻す 3相インバータ 3 6と、 3相インバータ 3 6によって U層、 V層、 W層 のコイルに対する電流電圧の制御が行なわれるモータ 1とを含む。 3相インバー タ 3 6は図示しないが I G B T等のパワー半導体素子を含む。
車両駆動システム 1 0 0は、 さらに、 運転者の操作するアクセルペダルの位置 を検出するアクセルポジションセンサ 4 1と、 モータ Ίから回転情報 Pを受けァ クセルポジションセンサ 4 1の出力に応じて 3相インバータ 3 6を制御するコン トローラ 4 0とを含む。 コントローラ 4 0は、 図示しないが、 C P U、 R OM, R AM等を含む。
車両駆動システム 1 0 0は、 さらに、 モータの出力軸 4 4に接続される減速機 3 4と、 減速機 3 4の出力軸に接続される車輪 3 2とを含む。
図 2は、 コントローラ 4 0が行なう トルクリプルの低減対策を説明するための 図である。
図 1、 図 2を参照して、 コントローラ 4 0は、 モータ 1から与えられる回転情 報 Pを受けてトルクリプルが発生する位相に対応して 3相インバータ 3 6に対し て補償電流を流すように指示する。 これにより、 トルクの山と谷はそれぞれ補償 電流により平均化され、 トルクリプルが生じている波形 W 3が波形 W 4のように 改善される。
このような補償電流を流すための元となる指令値として制振トルク指令値が算 出される。 このような制振処理を施してモータを回転させるために、 コントロー ラ 4 0は主トルク指令値を求める処理と、 制振トルク指令値を求める処理と、 求 めた 2つのトルク指令値を合成して最終トルク指令値を求める処理とを行なつて いる。
図 3は、 図 1のコントローラ 4 0で実行される主トルク指令値を求める処理を 説明するためのフローチヤ一トである。
図 3を参照して、 まず処理が実行されるとステップ S 1において、 コントロ ラ 4 0は、 アクセルポジションセンサ 4 1の出力に応じて主トルク指令値の元と なるトルク指令値 (生値) T Rを算出する。 エンジンをモータに併用するハイプ リッド自動車の場合には、 エンジンとモータとのトルクの分担割合等がさらに算 出の際に考慮される。
そしてステップ S 2において、 トルク指令値 T Rをガード値 G Tで上限を制限 するタリップ処理を行なう。 そしてさらに、 ステップ S 3においてクリップされたトルク指令値に対してフ ィルタ処理が行なわれて主トルク指令値が求められ、 ステップ S 4に処理が進み 主トルク指令値の算出は終了する。
図 4は、 コントローラ 4 0で行なわれる制振トルク指令値を求める処理を説明 するためのフローチャートである。
図 4を参照して、 まず処理が開始されるとステップ S 1 1において制振トルク m の算出が行なわれる。 これはモータのロータの回転位相や速度に基づい て行なわれる。 また、 ハイブリッド自動車の場合には、 これに加えてエンジンの 振動をキャンセルするための位相が考慮されて求められるようにしてもよい。 続いてステップ S 1 2において、 制振トルク指令値に対してガード値によるク リップ処理が行なわれ、 続いてステップ S 1 3でフィルタ処理が施されステップ S 1 4に進み処理は終了する。 フィルタ処理は、 とくに限定するものではないが、 例えば一般的な一次遅れフィルタなどを用いることができる。
一次遅れフィルタは、 遅れ定数 Tで設定された一次遅れ演算を行なう。 出力信 号を X o ( s ) 、 入力信号を X i ( s ) とすると、 X o ( s ) = 1 / ( 1 + T s ) · X i ( s ) で表わされる。
すなわち、 制振トルク指令 を算出する処理は、 制振トルク指令 の元となる 原指令値を算出する処理 (ステップ S 1 1 ) と、 原指令値に対して制振ガード値 を用いて制限を与えるガード処理を行なう処理 (ステップ S 1 2 ) と、 ガード処 理後のトルク指令値に生じる変化率の不連続な角部を平滑化する処理 (ステップ S 1 3 ) とを含む。
図 5は、 コントローラ 4 0で実行される主トルク指令値と制振トルク指令値の 合成処理を説明するためのフローチヤ一トである。
図 5を参照して、 処理が開始されると、 ステップ S 2 1において図 3において 求められたフィルタ処理後の主トルク指令値と図 4において求められたフィルタ 処理後の制振トルク指令値との加算が行なわれる。
そしてステップ S 2 2において、 コントローラ 4◦はモータ 1を駆動する 3相 インバータ 3 6に対して最終トルク指令 を出力する。 そしてステップ S 2 3に 進み処理は終了する。 図 6は、 実施の形態 1の適用された最終トルク指令値の波形を示した波形図で ある。
図 6においてトルクフィルタ値 T R Fは図 3の主トルク指令値を求める処理に よって求められた値である。
これに対して図 4で求めた制振トルク指令値が重畳されたものが図 6に示され る最終トルク指令値 Tである。 実施の形態 1によれば図 1 5に示したような角部 であった部分 P A, P Bは角が滑らかな波形となり、 電流のオーバーシュートは 低減される。
[実施の形態 2 ]
実施の形態 1では、 制振トルク指令値にフィルタ処理を行なった。 そのため、 制振トルク指令値に位相遅れが発生し制振効果を低下させてしまうことがある。 たとえば、 位相が 1 8 0 ° 変わると制振効果が発揮されず却って発振してしまう 場合も考えられる。
実施の形態 2においては、 実施の形態 1で行なった処理において図 4の制振ト ルク指令値の算出処理を変更する。 主トルク指令値を求める処理と、 求めた 2つ のトルク指令値を合成して最終トルク指令値を求める処理については、 図 3、 図 5で説明した処理と同様であるので説明は繰返さない。
図 7は、 実施の形態 2において実行される制振トルク指令値の算出に関するプ ログラム構造を示したフローチヤ一トである。
図 7を参照して、 まず処理が開始されると、 ステップ S 3 1において制振トル ク (生値) Y nの算出が行なわれる。 この生値の算出はロータの位相や、 ロータ の回転速度およびェンジンの振動などに基づ!/、て行なわれる。
続いてステップ S 3 2において、 前回算出された制振トルク指令値 Q n— 1に 対して次に制振トルクのガード値 G 1 , G 2が入力されたとしたときに、 これち に対して一次遅れフィルタ処理を行なった値 X 1 n, X 2 nを算出する。
そしてステップ S 3 3において、 制振トルク (生値) Y nと算出した値 X l n, X 2 ηとを比較して、 X l nく Y nく Χ 2 nが成立するか否かが判断される。 ステップ S 3 3において X 1 n < Y n < X 2 ηが成立した場合には、 ステップ S 3 4に進み、 成立しない場合にはステップ S 3 5に処理が進む。 ステップ S 34においては制振トルク (生値) Ynを出力制振トルク Qnと設 定する。 一方ステップ S 35に処理が進んだ場合には、 算出した値 X 1 nと X 2 nのうち制振トルク (生値) Ynに近い方を出力制振トルク Qnとして選択する。 ステップ S 34またはステップ S 35の処理が終了するとステップ S 36に進 み出力制振トルクの算出処理が終了する。
つまり、 制振トルク指令値を算出する処理は、 制振トルク指令値の元となる原 指令値を算出する処理 (ステップ S 31) と、 現在の制振トルク指令値に対して 次回に制振ガード値が原指令値として与えられると仮定してフィルタ処理を行な つて仮の制振トルク指令値を算出する処理 (ステップ S 32) と、 仮の制振トル ク指令値と実際に与えられる原指令値とを比較して制振トルク指令値を選択する 処理 (ステップ S 33〜S 35) とを含む。
好ましくは、 仮の制振トルク指令値を算出する処理は、 制振ガード値として上 P艮値 G 2と下限値 G 1を用いて仮の制振トルク指令値 X 2 n, X 1 nを算出する。 制振トルク指令値を選択する処理は、 実際に与えられる原指令値が第 1、 第 2の 仮の制振トルク指令値の間にある場合には原指令値を制振トルク指令値として選 択し (ステップ S 34) 、 実際に与えられる原指令値が第 1、 第 2の仮の制振ト ルク指令値の間にない場合には第 1、 第 2の仮の制振トルク指令値のうちのいず れか一方を制振トルク指令値として選択する (ステップ S 35) 。
図 8は、 図 7においてステップ S 34に処理が進んだ場合を説明するための波 形図である。
図 8には、 現在までに出力制振トルク Qn— 2, Qn— 1が算出されており、 次に出力制振トルク Q nを算出する場合が示されている。 これに対して図 7のス テツプ S 31において算出される制振トルク (生値) Ynがガード値の外側に来 る場合を想定して、 ステップ S 32において出力制振トルク Qn— 2, Qn- 1 に対して次にガード値 G 1, G 2が入力されたとしたときこれに対して一次遅れ フィルタ処理を行なった値 X 1 n, X 2 nが算出されている。
図 8においては制振トルク (生値) Ynが値 XI nと X2 nの間にあるため、 生値 Ynをそのまま出力制振トルク Qnとして選択しても波形が角張ってしまう ことはなく トルク波形は滑らかである。 したがって生値 Y nをそのまま出力制振トルク Q nとして選択し、 これにより 要求される制振トルクに対して位相遅れのない出力制振トノレク Q nが決定される。 図 9は、 図 7においてステップ S 3 5に処理が進んだ場合を説明するための波 形図である。
図 7、 図 9を参照して、 現在までに出力制振トルク Q n _ 2 , Q n— 1が順次 出力されており、 次に出力制振トルク Q nが算出される場合が示されている。 図 9に示した場合には、 制振トルク (生値) Y nは、 ガード値 G l, G 2の外に存 在する。 したがってガード値 G l, G 2に一次遅れフィルタ処理を施した値 X 1 n , X 2 nのうちいずれかの生値 Y nに近い方が出力制振トルク Q nとして選択 される。
図 9に示した場合には、 生値 Y nはガード値 G 2の外側にあるため、 値 X 2 n の方が生値 Y nに近い。 したがって出力制振トルク Q nとして値 X 2 nが選択さ れている。
図 7〜図 9で説明した処理によつて出力制振トノレク Q nが選択されることによ り、 必要な場合以外はフィルタ処理がかからず、 位相遅れが生じないようにする ことができる。 .
図 1 0、 図 1 1、 図 1 2は、 実施の形態 2において算出される制振トルク出力 ィ直 Qが生値 Yに対してどのようになるかを示した第 1例〜第 3例の図である。 図 1 0に示すように生値 Yの周波数が高くかつそのピーク値がガード値 G 1, G 2の外にはみ出すような場合には、 波形にはある程度の位相遅れが生ずること になる。
し力 し、 図 1 1に示すように生値 Yのピークはガード値 G l, G 2の外にはみ 出すが周波数はフィルタ処理の影響をあまり受けない程度の周波数であれば、 出 力制振トルク Qは、 ガード値 G l , G 2の間にある領域についてはなるべく忠実 に生値 Yが反映される。 そしてその部分からガード値 G 1または G 2によってク リッビングされてしまう部分の遷移点である角部に対しては平滑化が図られる。 さらに図 1 2に示すように制振トルクの生値 Yのピーク値がガード値 G 1 , G 2の間に収まっており、 かつ、 その周波数がフィルタ処理の影響を受けない周波 数であれば要求される制振トルクの生値 Yがそのまま出力制振トルク Qとして出 力さ 3 る。
図 1 3は、 実施の形態 2において出力される最終トルク指令値の波形を示した 波形図である。
図 1 3に示すように、 最終トルク指令値 Τは、 制振トルクの生値 Υのガード値 G 1 , G 2からはみ出る部分がクリップ処理をされているが、 角部分の P A, Ρ Βは平滑化が図られており、 かつ制振トルクの位相遅れも低減されるので制振効 果が向上し、 よりスムーズな走行を実現することができる。
今回開示された実施の形態はすべての点で例示であつて制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。

Claims

請求の範囲
1. 主トルク指令値を算出する主トルク指令値算出部 (S 1〜S 3) と、 前記主トルク指令値で回転電機を運転した場合に発生する トルク変動を低減さ せる制振トルク指令ィ直と前記主トルク指令値とに基づいて最終指令トルク値を出 力する最終指令トルク値出力部 (S 21, S 22) と、
前記制振トルク指令値を算出する制振トルク指令値算出部 (S 1 1〜S 13) とを備え、
前記制振トルク指令値算出部 (S 1 1~S 13) は、
前記制振トルク指令値の元となる原指令値を算出する原指令値算出部 (S 1 1) と、
前記原指令値に対して制振ガード値を用いて制限を与えるガード処理を行なう ガード処理部 ( S 1 2 ) と、
前記ガード処理後のトルク指令値に生じる変化率の不連続な角部を平滑化する 平滑部 (S 13) とを含む、 モータ制御装置。
2. 前記主トルク指令値算出部は、
加速要求に応じて、 前記主トルク指令値の元となる第 1の指令値を算出する原 主トルク指令値算出部 (S 1) と、
前記第 1の指令値に対して主ガード値を用いて制限を与える主ガード処理を行 なう主ガード処理部 ( S 2 ) と、
前記主ガード処理後の第 1の指令値に生じる変化率の不連続な角部を平滑化し て前記主トルク指令値を出力する主トルク平滑部 (S 3) とを含む、 請求の範囲 第 1項に記載のモータ制御装置。
3. 主トルク指令値を算出する主トルク指令値算出部 (S 1〜S 3) と、 前記主トルク指令値で回転電機を運転した場合に発生するトルク変動を低減さ せる制振トルク指令値と前記主トノレク指令値とに基づいて最終指令トルク値を出 力する最終指令トルク値出力部 (S 21, S 22) と、
前記制振トルク指令値を算出する制振トルク指令値算出部 (S 3 1〜S 35) とを備え、 前記制振トルク指令値算出部 (S 31〜 S 35 ) は、
前記制振トルク指令値の元となる原指令値を算出する原指令値算出部 (S 3 1) と、
現在の前記制振トルク指令値に対して次回に制振ガード値が前記原指令値とし て与えられると仮定してフィルタ処理を行なって仮の制振トルク指令値を算出す る仮指令値算出部 (S 32) と、
前記仮の制振トルク指令値と実際に与えられる前記原指令値とを比較して前記 制振トルク指令値を選択する制振トルク指令値選択部 (S 33〜S 35) とを含 む、 モータ制御装置。
4. 前記仮指令値算出部 (S 32) は、 前記制振ガード値として上限値と下限値 を用いて第 1、 第 2の仮の制振トルク指令 :を算出し、
前記制振トルク指令値選択部 (S 33〜S 35) は、 実際に与えられる前記原 指令値が前記第 1、 第 2の仮の制振トルク指令値の間にある場合には前記原指令 値を前記制振トルク指令値として選択し、 実際に与えられる前記原指令値が前記 第 1、 第 2の仮の制振トルク指令値の間にない場合には前記第 1、 第 2の仮の制 振トルク指令値のうちのいずれか一方を前記制振トルク指令値として選択する、 請求の範囲第 3項に記載のモータ制御装置。
5. 前記主トルク指令値算出部は、
加速要求に応じて、 前記主トルク指令値の元となる第 1の指令値を算出する原 主トルク指令値算出部 (S 1) と、
前記第 1の指令値に対して主ガード値を用いて制限を与える主ガード処理を行 なう主ガード処理部 ( S 2 ) と、
前記主ガード処理後の第 1の指令値に生じる変化率の不連続な角部を平滑化し て前記主トルク指令値を出力する主トルク平滑部 (S 3) とを含む、 請求の範囲 第 3項に記載のモータ制御装置。
6. 主トルク指令値を算出する手段 (S 1〜S 3) と、
前記主トルク指令値で回転電機を運転した場合に発生するトルク変動を低減さ せる制振トルク指令値と前記主トルク指令値とに基づいて最終指令トルク値を出 力する手段 (S 21, S 22) と、 前記制振トルク指令値を算出する手段 (S 1 1〜S 1 3) とを備え、
前記制振トルク指令値を算出する手段 (S 1 1〜S 13) は、
前記制振トルク指令値の元となる原指令値を算出する手段 (S 1 1) と、 前記原指令値に対して制振ガード値を用いて制限を与えるガード処理を行なう 手段 ( S 1 2 ) と、
前記ガード処理後のトルク指令値に生じる変化率の不連続な角部を平滑化する 手段 (S 1 3) とを含む、 モータ制御装置。
7. 前記主トルク指令値を算出する手段は、
加速要求に応じて、 前記主トルク指令値の元となる第 1の指令値を算出する手 段 (S 1) と、
前記第 1の指令値に対して主ガード値を用いて制限を与える主ガード処理を行 なう手段 (S 2) と、
前記主ガード処理後の第 1の指令値に生じる変化率の不連続な角部を平滑化し て前記主トルク指令値を出力する手段 (S 3) とを含む、 請求の範囲第 6項に記 載のモータ制御装置。
8. 主トルク指令値を算出する手段 (S 1〜S 3) と、
前記主トルク指令値で回転電機を運転した場合に発生するトルク変動を低減さ せる制振トルク指令値と前記主トルク指令値とに基づいて最終指令トルク値を出 力する手段 (S 21, S 22) と、
前記制振トルク指令値を算出する手段 (S 31〜S 35) とを備え、
前記制振トルク指令値を算出する手段 (S 31〜S 35) は、
前記制振トルク指令値の元となる原指令値を算出する手段 (S 3 1) と、 現在の前記制振トルク指令値に対して次回に制振ガード値が前記原指令ィ直とし て与えられると仮定してフィルタ処理を行なって仮の制振トルク指令値を算出す る手段 (S 32) と、
前記仮の制振トルク指令 :と実際に与えられる前記原指令値とを比較して前記 制振トルク指令値を選択する手段 (S 33〜S 35) とを含む、 モータ制御装置。
9. 前記仮の制振トルク指令値を算出する手段 (S 32) は、 前記制振ガード値 として上限 :と下限値を用いて第 1、 第 2の仮の制振トルク指令値を算出し、 前記制振トルク指令値を選択する手段 (S 33〜S 35) は、 実際に与えられ る前記原指令値が前記第 1、 第 2の仮の制振トルク指令値の間にある場合には前 記原指令値を前記制振トルク指令値として選択し、 実際に与えられる前記原指令 値が前記第 1、 第 2の仮の制振トルク指令値の間にない場合には前記第 1、 第 2 の仮の制振トルク指令値のうちのいずれか一方を前記制振トルク指令値として選 択する、 請求の範囲第 8項に記載のモータ制御装置。
10. 前記主トルク指令値を算出する手段は、
加速要求に応じて、 前記主トルク指令値の元となる第 1の指令値を算出する手 段 (S 1) と、
前記第 1の指令値に対して主ガード値を用いて制限を与える主ガード処理を行 なう手段 (S 2) と、
前記主ガード処理後の第 1の指令値に生じる変化率の不連続な角部を平滑化し て前記主トルク指令値を出力する手段 (S 3) とを含む、 請求の範囲第 8項に記 載のモータ制御装置。
1 1. 車両に搭載されるモータ制御装置であって、
前記車両 (100) は、
回転電機 (1) と、
前記回転電機の回転に連動して回転する車輪 (32) と、
前記回転電機を制御する前記モータ制御装置 (40) とを備え、
前記モータ制御装置 (40) 力
主トルク指令値を算出し (S 1〜S 3) 、
前記主トルク指令値で前記回転電機を運転した場合に発生するトルク変動を低 減させる制振トルク指令値の元となる原指令値を算出し (S 1 1) 、
前記原指令値に対して制振ガード値を用いて制限を与えるガード処理を行ない (S 12) 、
前記ガード処理後のトルク指令値に生じる変化率の不連続な角部を平滑化し (S 13) 、
前記制振トルク指令値と前記主トノレク指令値とに基づいて最終指令トルク値を 出力する (S 21, S 22) 、 モータ制御装置。
12. 車両に搭載されるモータ制御装置であって、
前記車両 (10◦) は、
回転電機 (1) と、
前記回転電機の回転に連動して回転する車輪 (32) と、
前記回転電機を制御する前記モータ制御装置 (40) とを備え、
前記モータ制御装置 (40) 力
主トルク指令値を算出し (S 1〜S 3) 、
前記主トルク指令値で前記回転電機を運転した場合に発生するトルク変動を低 減させる制振トルク指令値の元となる原指令値を算出し (S 31) 、
現在の前記制振トルク指令値に対して次回に制振ガード値が前記原指令値とし て与えられると仮定してフィルタ処理を行なって仮の制振トルク指令値を算出し (S 32) 、
前記仮の制振トルク指令値と実際に与えられる前記原指令値とを比較して前記 制振トルク指令値を選択し (S 33〜S 35) 、
前記制振トルク指令値と前記主トルク指令値とに基づいて最終指令トルク値を 出力する (S 21, S 22) 、 モータ制御装置。
PCT/JP2006/309362 2005-05-09 2006-04-28 モータ制御装置 WO2006121061A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800160305A CN101171743B (zh) 2005-05-09 2006-04-28 电机控制装置
EP06732514.2A EP1881595B1 (en) 2005-05-09 2006-04-28 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-136217 2005-05-09
JP2005136217A JP4569372B2 (ja) 2005-05-09 2005-05-09 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2006121061A1 true WO2006121061A1 (ja) 2006-11-16

Family

ID=37396569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309362 WO2006121061A1 (ja) 2005-05-09 2006-04-28 モータ制御装置

Country Status (6)

Country Link
US (1) US7429847B2 (ja)
EP (1) EP1881595B1 (ja)
JP (1) JP4569372B2 (ja)
KR (1) KR100900038B1 (ja)
CN (1) CN101171743B (ja)
WO (1) WO2006121061A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153202A (ja) * 2011-01-24 2012-08-16 Toyota Motor Corp 自動車
JP2014113946A (ja) * 2012-12-11 2014-06-26 Mitsubishi Motors Corp ハイブリッド車両の制御装置
WO2017109884A1 (ja) * 2015-12-24 2017-06-29 三菱電機株式会社 回転電機の制御装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581640B2 (ja) * 2004-11-17 2010-11-17 トヨタ自動車株式会社 車両駆動システムおよびそれを備える車両
JP2009106021A (ja) 2007-10-22 2009-05-14 Toyota Motor Corp 回転電機制御装置
US8026683B2 (en) * 2007-12-21 2011-09-27 Asmo Co., Ltd. Motor controller
JP6011844B2 (ja) * 2012-05-22 2016-10-19 富士電機株式会社 交流電動機の制御装置
KR101495187B1 (ko) * 2012-08-30 2015-02-24 엘지전자 주식회사 전기차량용 모터 제어 장치 및 이를 이용한 토크리플 저감 방법
JP5409877B1 (ja) * 2012-10-31 2014-02-05 三菱電機株式会社 電動車両のモータ制御装置および電動車両のモータ制御方法
DE102014008462A1 (de) * 2014-06-06 2015-12-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren zum Betrieb eines bürstenbehafteten Kommutatormotors eines Verstellantriebs und Verstellantrieb
US10033308B2 (en) * 2015-03-17 2018-07-24 Intuitive Surgical Operations, Inc. Systems and methods for motor torque compensation
DE102015006988A1 (de) * 2015-05-29 2016-12-01 Man Truck & Bus Ag Verfahren und Regelkreis zur Regelung eines elektrischen Antriebs eines elektrisch angetriebenen Druckluftverdichters eines Kraftfahrzeugs
JP2017060330A (ja) * 2015-09-17 2017-03-23 株式会社デンソー 回転電機制御装置
JP6640659B2 (ja) * 2016-06-14 2020-02-05 株式会社日立製作所 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法
CN107161032A (zh) * 2017-05-15 2017-09-15 深圳市瀚路新能源汽车有限公司 电动车驱动电机振动抑制控制方法和系统
KR20210123677A (ko) * 2020-04-03 2021-10-14 현대자동차주식회사 차량의 사운드 생성 장치 및 방법
CN111942173B (zh) * 2020-05-13 2021-10-26 武汉格罗夫氢能汽车有限公司 一种氢燃料电池汽车的电机的防抖控制方法
US20240096144A1 (en) * 2022-09-21 2024-03-21 Arvinmeritor Technology, Llc Drive system and method of control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177784A (ja) * 1993-12-20 1995-07-14 Toshiba Corp 電圧形インバータ装置
JPH11178113A (ja) * 1997-12-12 1999-07-02 Toyota Motor Corp ハイブリッド車の駆動制御装置
JP2003164008A (ja) * 2001-11-28 2003-06-06 Hitachi Ltd ハイブリッド車両の制御装置
JP2005206343A (ja) * 2004-01-23 2005-08-04 Mitsubishi Electric Corp エレベータの制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118009A (ja) * 1984-07-04 1986-01-25 Fanuc Ltd 加減速制御方式
DE69101500T2 (de) * 1990-01-25 1994-08-18 Mitsubishi Motors Corp Regelsystem für die Antriebsleistung von Kraftfahrzeugen.
JP3084928B2 (ja) * 1992-05-29 2000-09-04 三菱電機株式会社 電動機の位置制御装置
JPH08156607A (ja) * 1994-12-06 1996-06-18 Nissan Motor Co Ltd 電気自動車の不整振動防止装置
US5965727A (en) * 1996-07-26 1999-10-12 Board Of Trustees Of The University Of Illinois For selectable markers and promoters for plant tissue culture transformation
US6388174B1 (en) * 1997-08-29 2002-05-14 Hokko Chemical Industry Co., Ltd. Gene encoding α-subunit of rice anthranilate synthase and DNA relating thereto
JP3374752B2 (ja) 1998-07-09 2003-02-10 トヨタ自動車株式会社 ハイブリッド車両における駆動系の制振装置
JP3168990B2 (ja) 1998-08-19 2001-05-21 株式会社デンソー ハイブリッド電気自動車の制御装置
JP3533991B2 (ja) * 1999-06-15 2004-06-07 トヨタ自動車株式会社 車載用内燃機関の制御装置
US6671596B2 (en) * 2000-12-27 2003-12-30 Honda Giken Kogyo Kabushiki Kaisha Control method for suspension
JP3935111B2 (ja) 2002-08-26 2007-06-20 日産自動車株式会社 ハイブリッド車両の振動抑制装置および振動抑制方法
JP3958220B2 (ja) 2003-01-16 2007-08-15 株式会社豊田中央研究所 トルク伝達装置
JP2004245215A (ja) * 2003-01-21 2004-09-02 Sanyo Electric Co Ltd トルク制御装置およびトルク制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177784A (ja) * 1993-12-20 1995-07-14 Toshiba Corp 電圧形インバータ装置
JPH11178113A (ja) * 1997-12-12 1999-07-02 Toyota Motor Corp ハイブリッド車の駆動制御装置
JP2003164008A (ja) * 2001-11-28 2003-06-06 Hitachi Ltd ハイブリッド車両の制御装置
JP2005206343A (ja) * 2004-01-23 2005-08-04 Mitsubishi Electric Corp エレベータの制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153202A (ja) * 2011-01-24 2012-08-16 Toyota Motor Corp 自動車
JP2014113946A (ja) * 2012-12-11 2014-06-26 Mitsubishi Motors Corp ハイブリッド車両の制御装置
WO2017109884A1 (ja) * 2015-12-24 2017-06-29 三菱電機株式会社 回転電機の制御装置
JPWO2017109884A1 (ja) * 2015-12-24 2018-03-08 三菱電機株式会社 回転電機の制御装置
CN108432120A (zh) * 2015-12-24 2018-08-21 三菱电机株式会社 旋转电机的控制装置
US10389279B2 (en) 2015-12-24 2019-08-20 Mitsubishi Electric Corporation Controller of rotary electric machine
CN108432120B (zh) * 2015-12-24 2021-04-02 三菱电机株式会社 旋转电机的控制装置

Also Published As

Publication number Publication date
KR100900038B1 (ko) 2009-06-01
EP1881595A4 (en) 2015-09-16
JP4569372B2 (ja) 2010-10-27
EP1881595B1 (en) 2019-05-29
CN101171743B (zh) 2010-11-03
CN101171743A (zh) 2008-04-30
EP1881595A1 (en) 2008-01-23
KR20080014835A (ko) 2008-02-14
US7429847B2 (en) 2008-09-30
JP2006314177A (ja) 2006-11-16
US20080116832A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006121061A1 (ja) モータ制御装置
US7199540B2 (en) Motor drive apparatus having oscillation-reducing control function for output torque
JP4075863B2 (ja) 電動トルク使用型車両
JP4774975B2 (ja) 電動機の制御装置
JP5615357B2 (ja) ハイブリッド車両およびその制御方法
RU2707471C1 (ru) Способ для управления гибридным транспортным средством и устройство для управления гибридным транспортным средством
KR20080089670A (ko) 모터구동장치 및 그 제어방법
JP4400389B2 (ja) 駆動モータ制御装置
JP5077830B2 (ja) ハイブリッド車の制御装置
JP2003033065A (ja) 電動モータの制御装置及びその設計手法
JP3831264B2 (ja) 電気自動車の制御装置
KR20160098890A (ko) 자동차의 전동식 파워 스티어링 시스템 및 방법
JP5696607B2 (ja) 交流電動機の制御装置および制御方法
JP2008125225A (ja) モータ駆動装置
WO2021090885A1 (ja) 車両用制御装置
JP2007245967A (ja) 車両用駆動制御装置
JP2023023269A (ja) 車両制御方法、及び、車両制御装置
JP2021078337A (ja) 車両用制御装置
JP2024011931A (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP2005269830A (ja) 電動車両駆動制御装置及び電動車両駆動制御方法
JP4978802B2 (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP2010221823A (ja) ハイブリッド自動車
JP2008011619A (ja) 4輪駆動制御装置
JP2001289090A (ja) トルク変動低減装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016030.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11795289

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006732514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077028583

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006732514

Country of ref document: EP