WO2006120883A1 - 薄膜キャパシタの製造方法 - Google Patents

薄膜キャパシタの製造方法 Download PDF

Info

Publication number
WO2006120883A1
WO2006120883A1 PCT/JP2006/308563 JP2006308563W WO2006120883A1 WO 2006120883 A1 WO2006120883 A1 WO 2006120883A1 JP 2006308563 W JP2006308563 W JP 2006308563W WO 2006120883 A1 WO2006120883 A1 WO 2006120883A1
Authority
WO
WIPO (PCT)
Prior art keywords
firing
green sheet
thin film
film capacitor
conductor
Prior art date
Application number
PCT/JP2006/308563
Other languages
English (en)
French (fr)
Inventor
Tadahiro Minamikawa
Atsuyoshi Maeda
Original Assignee
Murata Manufacturing Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd filed Critical Murata Manufacturing Co., Ltd
Priority to CN2006800163750A priority Critical patent/CN101176171B/zh
Priority to JP2007528208A priority patent/JP4441921B2/ja
Publication of WO2006120883A1 publication Critical patent/WO2006120883A1/ja
Priority to US11/928,287 priority patent/US7771552B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material

Definitions

  • Patent Document 1 discloses a thin film capacitor including a metal foil body, an inorganic dielectric thin film formed on the metal foil body, and a metal body formed on the inorganic dielectric thin film. Proposed.
  • a dielectric thin film and a metal body can be sequentially formed on a metal foil body by using a vacuum process such as RF magnetron sputtering or vacuum deposition.
  • Thin film capacitors can be made smaller and thinner without the need to provide a substrate for film formation such as a Si substrate.
  • Patent Document 2 an alumina green sheet is exemplified as a dummy green sheet having a sintering temperature higher than that of the green sheet.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-78283
  • Patent Document 2 JP-A-9-249460
  • this vacuum process has a high process cost and a high material cost for the metal foil, which may lead to an increase in manufacturing cost.
  • the dielectric layer may be damaged by a polishing process or the like, and the conductor layers may be electrically short-circuited.
  • the damage to the dielectric layer due to the polishing process becomes more significant as the thickness of the dielectric layer becomes thinner. For this reason, if the thickness of the thin film capacitor is reduced, a large obstacle is caused in the large capacity.
  • the present invention has been made in view of such circumstances, and a thin film capacitor capable of producing a thin film capacitor at a low cost and without adversely affecting the dielectric layer with high efficiency. It is an object of the present invention to provide a method for manufacturing a device.
  • a method of manufacturing a thin film capacitor according to the present invention is a method of manufacturing a thin film capacitor having a dielectric layer and conductor layers respectively formed on both main surfaces of the dielectric layer.
  • the conductive green sheets are arranged on both main surfaces of the dielectric green sheet to form a capacitor portion, and the capacitor portion is held by the firing auxiliary green sheet.
  • the adhesive strength at the interface between the conductor dry sheet and the firing auxiliary green sheet is reduced, and the oxygen partial pressure of the firing atmosphere is changed at least once.
  • the thin film capacitor and the firing auxiliary member, which is a sintered body of the firing auxiliary green sheet, are separated from each other.
  • “separate the thin film capacitor and the firing assisting member” includes not only the case where the conductor layer of the thin film capacitor and the firing assisting member are completely separated, but also a jig, etc. This includes the case where it can be evaluated that it is substantially separated, that is, it is very weak and comes into contact with a binding force, that is, it can be separated very easily with a light touch.
  • changing the oxygen partial pressure at least once means that in the reducing atmosphere or in the neutral atmosphere based on the equilibrium oxygen partial pressure in the oxidation-reduction reaction of the metal that is the main component of the internal electrode.
  • the method for producing a thin film capacitor of the present invention is characterized in that the metal powder is any one of Ni and an alloy containing Ni as a main component.
  • the firing auxiliary green sheet is formed in a frame shape, and the firing auxiliary green sheet is in contact with the outer periphery of the conductor green sheet. Or arranged close to the outer periphery.
  • the oxide inorganic material powder includes:
  • the thin film capacitor manufacturing method of the present invention is characterized in that the total thickness of the dielectric layer and the conductor layer is 100 ⁇ m or less.
  • a green sheet manufacturing step of manufacturing a dielectric green sheet, a conductor green sheet, and a firing auxiliary green sheet Laminate formation step of forming a capacitor body by arranging conductor green sheets and forming a laminate by arranging the firing auxiliary green sheet so that the capacitor part is held by the firing auxiliary green sheet And a firing step of firing the laminate, and during the firing treatment in the firing step, the adhesive strength at the interface between the conductor green sheet and the firing auxiliary green sheet is reduced, and the firing atmosphere
  • the oxygen partial pressure of the capacitor is changed at least once, so that the thin film capacitor as a sintered body of the capacitor portion and the firing auxiliary green Since the separation of the sintered formed auxiliary member is a sintered body of the sheet, it is possible to prevent the warpage and undulation in the thin film capacitor comprising a sintered body of the capacitor section caused by the firing assistant green sheet.
  • the metal powder is Ni or an alloy containing Ni as a main component, and is relatively inexpensive and has a high melting point Ni (melting point: 1455 ° C) as a main conductive component. is doing. Therefore, it is possible to withstand a firing temperature of 1000 ° C. or higher, and it is possible to obtain a thin film capacitor having a high dielectric constant dielectric layer.
  • the firing auxiliary green sheet is formed in a frame shape, and the firing auxiliary green sheet is in contact with or close to the outer periphery of the conductor green sheet.
  • the oxide inorganic material is Al 2 O powder
  • the Al 2 O powder is relatively inexpensive.
  • the total thickness of the dielectric layer and the conductor layer is 100 ⁇ m or less, a desired thin film capacitor can be produced with high efficiency without adversely affecting the dielectric layer at low cost. Can be manufactured.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a thin film capacitor manufactured by a manufacturing method of the present invention.
  • FIG. 2 is a process diagram showing an embodiment of a method for manufacturing a thin film capacitor according to the present invention.
  • FIG. 3 is a cross-sectional view of a laminate for explaining an embodiment of a laminate formation process.
  • FIG. 4 is a cross-sectional view for explaining an embodiment of a firing step.
  • FIG. 5 is a plan view of an essential part of a second embodiment of the method for manufacturing a thin film capacitor according to the present invention.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a thin film capacitor manufactured by the manufacturing method of the present invention.
  • the thin film capacitor 30 is made of a dielectric ceramic material as a main component.
  • Conductive layers 32a and 32b are formed on both main surfaces of the dielectric layer 31 to be formed. That is, the dielectric layer 31 is sandwiched between a pair of upper and lower conductor layers 32a and 32b, and the total thickness of these layers, that is, the total thickness of the thin film capacitor 30 is formed to be 100 m or less.
  • FIG. 2 is a manufacturing process diagram showing one embodiment (first embodiment) of a method for manufacturing a thin film capacitor according to the present invention.
  • a dielectric green sheet, a conductor green sheet, and a firing-assisting green sheet are produced.
  • a dielectric ceramic powder is prepared by mixing and dispersing a dielectric ceramic powder and an organic binder such as polybutyral resin in an organic solvent such as toluene or ethanol.
  • a dielectric ceramic slurry is formed using a blade method or the like to produce a dielectric green sheet having a thickness of 0.5 to L0 m.
  • the dielectric ceramic powder it is preferable to use a ferroelectric material that provides a high dielectric constant as the dielectric layer, but a paraelectric material may also be used.
  • a metal slurry having an average particle size of 0.2 to 1.5 m and an organic binder such as polybutyl butyral resin are mixed and dispersed in an organic solvent such as toluene or ethanol to prepare a conductor slurry.
  • the conductor ceramic slurry is formed using a doctor blade method or the like to produce a conductor green sheet with a film thickness of 1.0 to LO / zm.
  • the oxidation-reduction reaction of the metal constituting the conductor layer It is considered that the conductor green sheet (conductive layer) and the firing auxiliary green sheet (firing assisting member) can be separated by utilizing the above. Therefore, as the metal powder material, metals that can be oxidized and reduced by heat treatment, such as Ni and Cu, and alloys containing these as main components can be used.
  • an alloy containing M or Ni as a main component must withstand a firing process at 1000 ° C or higher, which is a desirable firing temperature in order to obtain a high dielectric constant dielectric layer where the melting point of Ni is as high as 1455 ° C. It can be used with preference because of its relatively low power and price. It should be noted that a metal that is difficult to oxidize even after firing, such as Au, is considered preferable.
  • a conductor slurry is prepared by mixing and dispersing an organic binder such as an acidic inorganic material and polybutyl propylar resin in an organic solvent such as toluene or ethanol, and then a doctor blade method or the like.
  • an organic binder such as an acidic inorganic material and polybutyl propylar resin
  • an organic solvent such as toluene or ethanol
  • a green sheet for firing assistance is prepared.
  • the film thickness of the firing auxiliary green sheet is not particularly limited as long as it does not cause the thin film capacitor to be warped or swelled by the firing process, but considering the production cost and the like, it is 25 to 500. ⁇ m is preferred! / ⁇ .
  • the oxide layer can be used preferably without sintering at the sintering temperature of the dielectric layer, and Al 2 O, ZrO, CeO, ZnO, etc. are used. be able to. And
  • additives such as an antifoaming agent and a plasticizer as needed in the production process of each green sheet.
  • the process proceeds to the laminate forming step 12.
  • a firing auxiliary green sheet 20a, a conductor green sheet 2a, a dielectric green sheet 1, a conductor green sheet 2b, and a firing aid The green sheets 20b are sequentially laminated and subjected to pressure treatment at a predetermined temperature for a predetermined time so as to be bonded, whereby the stacked body 50 is manufactured.
  • the capacitor part 10 is formed in which both main surfaces of the dielectric green sheet 1 are sandwiched between the conductor green sheets 2a and 2b, and the multilayer body 50 has the upper and lower surfaces of the capacitor part 10 formed of the firing auxiliary green sheet 20a, It is in the form retained by 20b.
  • the laminate 50 is heat treated at a temperature of 250 to 400 ° C for a predetermined time in a nitrogen atmosphere to perform a binder removal treatment.
  • the firing assisting drain sheets 20a, 20b can be easily separated from the conductor layers 32a and 32b, which are the sintered bodies of the conductor green sheets 2a and 2b, and thus the sintering auxiliary members 21a and 21b.
  • a thin film capacitor that eliminates the need for mechanical processing such as polishing to remove the capacitor from the thin film capacitor 10 and that does not cause electrical short circuit between the conductor layers 32a and 32b without damaging the dielectric layer 31. Can be obtained. Also, since the capacitor part 10 is held by the firing auxiliary green sheets 20a and 20b, warping and undulation can be suppressed in the thin film capacitor 30 after firing.
  • the dielectric layer 31 can be formed thin. That is, since the capacitance of the thin film capacitor 30 is inversely proportional to the thickness of the dielectric layer 31, the thickness of the dielectric layer 31 is preferably 10 m or less in order to obtain a large capacitance. Since the mechanical force such as polishing is not necessary, the thickness of the dielectric layer 31 can be 1 ⁇ m or less.
  • FIG. 5 is a plan view showing the main part of the second embodiment of the method for manufacturing a thin film capacitor according to the present invention
  • FIG. 6 is a cross-sectional view taken along the line AA.
  • the green part 22a, 22b for firing support is hollow at the center. It is formed in a frame shape having two.
  • the firing auxiliary green sheets 22a and 22b are arranged on the upper surface of the conductor green sheet 2a and the lower surface of the conductor green sheet 2b so as to be in contact with the outer periphery of the conductor green sheets 2a and 2b.
  • the laminated body 51 is formed with the capacitor portion 10!
  • the firing auxiliary green sheets 22a, 22b are arranged so that the outer peripheries of the firing auxiliary green sheets 22a, 22b completely coincide with the outer peripheries of the conductor green sheets 2a, 2b. Since the outer periphery of the firing auxiliary green sheets 22a and 22b does not necessarily completely coincide with the outer periphery of the conductor drain sheets 2a and 2b, warping and undulation of the capacitor unit 10 can be sufficiently suppressed. If so, arrange the firing-supporting green sheets 22a and 22b in a form close to the outer periphery of the conductor green sheet 2.
  • the conductor green sheets 2a and 2b are not in contact with the firing auxiliary green sheets 22a and 22b, and the conductor green sheets 2a and 2b are firing auxiliary green sheets 22a and 22b. Since there are a portion that is directly exposed to the firing atmosphere and a portion that is not directly exposed to the portion that is in contact with the firing atmosphere, there may be a difference in the characteristics of the thin film capacitor. In such a case, the portion that is not in contact with the firing auxiliary green sheets 22a and 22b and the portion that is in contact with the firing auxiliary green sheets 22a and 22b are cut by a dicing saw or the like after firing, Even if either one is used as a product Good.
  • the oxide inorganic material in the firing auxiliary green sheets 21a, 21b may be changed to the conductor green sheets 2a, 2b and the lead during the firing process. Although it may diffuse into the electrical green sheet 1 and affect the characteristics of the thin film capacitor, in the second embodiment, since the firing auxiliary green sheets 22a and 22b are formed in a frame shape, Conductor green sheets 2a, 2a are in contact with firing auxiliary green sheets 22a, 22b! / In the dark areas, the oxide inorganic material does not diffuse into the conductor green sheets 2a, 2b or the dielectric Darin sheet 1.
  • the conductor green sheets 2a, 2a have the desired characteristics by cutting them with a dicing saw or the like so that only the portions where the green sheets 22a, 22b are not in contact with the firing auxiliary green sheets 22a, 22b can be commercialized. It is possible to obtain a thin film capacitor.
  • the firing atmosphere is changed from the reducing atmosphere to the neutral atmosphere based on the equilibrium oxygen partial pressure in the oxidation-reduction reaction of the metal powder, but the reducing atmosphere is not limited to this,
  • the firing atmosphere can be changed appropriately so that the oxidation state on the surface of the metal powder changes, such as changing in the order of neutral atmosphere, acid atmosphere, reducing atmosphere, neutral atmosphere, and reducing atmosphere. Is also preferable.
  • a resin layer may be provided so as to cover at least a part of the conductor layer for the purpose of mechanical reinforcement or improvement of moisture resistance after firing.
  • (Ba, Ca) TiO as the main component and a dielectric ceramic powder with an average particle size of 0.2 m -A dielectric ceramic slurry was prepared by mixing and dispersing an organic binder composed mainly of lutipral resin and an organic solvent prepared by mixing toluene and ethanol in a volume ratio of 1: 1.
  • the mixing ratio of the dielectric ceramic powder, the organic binder, and the organic solvent was 10:10:80 by volume.
  • the volume of the dielectric ceramic powder was calculated by measuring the weight of the dielectric ceramic powder and dividing by the theoretical density.
  • a dielectric ceramic slurry was formed into a sheet shape by a doctor blade method to obtain a dielectric green sheet having a thickness of 2 m.
  • Ni powder as a metal powder having an average particle size of 0.5 ⁇ m, an organic binder mainly composed of polybutyral resin, toluene and ethanol are mixed at a volume ratio of 1: 1.
  • the conductive solvent was mixed and dispersed to prepare a conductor slurry.
  • the mixing ratio of Ni powder, organic binder, and organic solvent was 10:10:80 by volume.
  • the volume of Ni powder was calculated by measuring the weight of Ni powder and dividing by the theoretical density.
  • the conductor slurry was formed into a sheet by the doctor blade method to obtain a 9 m thick conductor green sheet.
  • Al O powder having an average particle diameter of 1.0 ⁇ m was prepared as an acidic inorganic material.
  • O powder an organic noda based on polyvinyl butyral rosin, toluene and ethanol
  • a ceramic slurry for assisting the firing was prepared by mixing and dispersing an organic solvent prepared by mixing 1: 1 with a volume ratio of diol. Mixing ratio of Al O powder, organic binder, and organic solvent is volume
  • the ratio was 10:10:80.
  • the volume of Al 2 O powder is measured by measuring the weight of Al 2 O powder.
  • the firing aid ceramic slurry was formed into a sheet by the doctor blade method to obtain a firing aid green sheet having a thickness of 100 m.
  • a green sheet for firing support, a conductor green sheet, a dielectric green sheet, a conductor drain sheet, and a green sheet for firing support are laminated in order, and pressed for 30 seconds at a temperature of 50 ° C and a pressure of 100 MPa. Formed.
  • the resulting laminate was heat treated at 280 ° C for 5 hours in a nitrogen atmosphere to remove the binder. I got it.
  • an oxygen partial pressure lower than the equilibrium oxygen partial pressure of the Ni powder was set as a reducing atmosphere, and the laminated body was subjected to a firing treatment by holding at a temperature of 1150 ° C. for 2 hours in this reducing atmosphere. Thereafter, the oxygen partial pressure was raised to or near the equilibrium oxygen partial pressure to obtain a neutral atmosphere. In this neutral atmosphere, the firing furnace was cooled to room temperature, and the firing treatment was completed.
  • the firing aid green sheet becomes a plate-like firing aid member due to volatilization and disappearance of organic substances such as organic noda and organic solvent, and the firing aid member does not require mechanical processing and is a thin film capacitor.
  • a thin film capacitor with a conductor layer formed on both principal surfaces of the dielectric layer was obtained.
  • the obtained thin film capacitor had a total thickness of 13 m, and when the amount of shrinkage in the in-plane direction was measured with an optical length measuring instrument, it was found to be 1% or less and no warpage or undulation occurred. It was. Further, when the surface roughness Ra of the conductor layer was measured with an atomic force microscope, it was about 200 nm, and it was confirmed that sufficient smoothness was obtained. Furthermore, when the in-plane distribution of dielectric constant was measured with an LCR meter, it was confirmed that it was suppressed to 3% or less.
  • the obtained sintered body has a thin film carrier made of Al 2 O contained in the green sheet for firing assistance.
  • the Al 2 O was removed by polishing, but the dielectric layer was damaged and the conductor layer of the thin film capacitor
  • the oxygen partial pressure was not changed during the firing step, and the firing treatment was performed in a reducing atmosphere where the oxygen partial pressure was substantially constant, so that the interface between the conductor green sheet and the firing auxiliary green sheet was sufficient. Therefore, it is considered that the capacitor part and the firing auxiliary part could not be separated from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

 誘電体セラミック粉末を含有した誘電体グリーンシートと、金属粉末を含有した導体グリーンシートと、酸化物無機材料粉末を含有した焼成補助用グリーンシートとをそれぞれ作製し、これら焼成補助用グリーンシート、導体グリーンシート、誘電体グリーンシート、導体グリーンシート、及び焼成補助用グリーンシートをこの順で積層し、積層体を形成した後、この積層体に焼成処理を施す。そして、この焼成処理中に、導体グリーンシートと焼成補助用グリーンシートとの界面の接着強度を低下させ、かつ焼成雰囲気の酸素分圧を少なくとも1回以上変化させて、キャパシタ部の焼結体である薄膜キャパシタと焼成補助用グリーンシートの焼結体である焼成補助部材とを分離させる。これにより、低コストで特性に影響を与えることのない信頼性の優れた薄膜キャパシタを高効率で製造することができる薄膜キャパシタの製造方法を実現する。

Description

明 細 書
薄膜キャパシタの製造方法
技術分野
[0001] 本発明は、電子回路に用いる薄膜キャパシタの製造方法に関する。
背景技術
[0002] この種の薄膜キャパシタは、従来より、 Si基板上に下部導体、誘電体薄膜、上部導 体を順次成膜することによって形成されて ヽる。この方法で薄膜キャパシタを作製し た場合、薄膜キャパシタの厚さは容量に貢献しない Si基板の厚さ以下にすることがで きず、したがって、小型化および薄型化を進めるためには基板を必要としない構造や 製造方法を実現する必要がある。
[0003] 例えば、特許文献 1には、金属箔体と、金属箔体上に成膜された無機誘電体薄膜 と、前記無機誘電体薄膜上に形成された金属体とを具備した薄膜キャパシタが提案 されている。
[0004] 特許文献 1では、金属箔体上に RFマグネトロンスパッタ法ゃ真空蒸着法などの真 空プロセスを使用して誘電体薄膜、及び金属体を順次成膜することができ、したがつ て Si基板などの成膜用の基板を設ける必要がなぐ薄膜キャパシタの小型化および 薄型化が可能となる。
[0005] また、薄膜キャパシタに関する技術ではないが、特許文献 2には、導体パターンが 形成された複数枚のグリーンシートからなる圧着体の両面に、該グリーンシートより焼 結温度が高いダミーグリーンシートを圧着して焼成し、焼結体の両面に付着している ダミーグリーンシートを除去するセラミック多層基板の製造方法が提案されている。
[0006] この特許文献 2では、グリーンシートより焼結温度が高いダミーグリーンシートとして アルミナグリーンシートが例示されている。
[0007] 特許文献 1 :特開平 8— 78283号公報
特許文献 2:特開平 9 - 249460号公報
発明の開示
発明が解決しょうとする課題 [0008] ところで、特許文献 1には、製造プロセスの簡便化を図る観点力もは、誘電体薄膜 や金属体の成膜方法としては、真空プロセスで行うのが望ま ヽと記載されて!、る。
[0009] しかしながら、この真空プロセスはプロセスコストが高ぐし力も、金属箔体の材料コ ストも高いことから、製造コストの高騰ィ匕を招くおそれがある。
[0010] 製造コスト低減のためには、誘電体層となる誘電体グリーンシートの両主面に、導 体層となる導体グリーンシートを圧着して焼成することにより、薄膜キャパシタを製造 する方法が考えられる。
[0011] ところが、誘電体グリーンシートと導体グリーンシートとで形成されるキャパシタ部の 厚みは、通常、 100 m以下の薄膜であるため、焼成中に発生する熱収縮によって 反りやうねりが生じるおそれがある。
[0012] この反りやうねりを防止する方法として、上記特許文献 2に記載されているようなァ ルミナグリーンシートをダミーグリーンシートとして積層体の両面に圧着させる方法が 考えられる。この場合、ダミーグリーンシートに含まれるアルミナが焼成中に導体ダリ ーンシートに固着してしまうため、焼成後に研磨処理等を行ってアルミナを除去する 必要がある。
[0013] し力しながら、薄膜キャパシタの厚みは 100 μ m以下であるため、研磨処理等によ つて誘電体層が損傷し、導体層同士が電気的に短絡してしまうおそれがある。しかも 、研磨処理に起因した誘電体層の損傷は、誘電体層の厚みが薄くなればなるほど顕 著となり、このため薄膜キャパシタの薄型化ゃ大容量ィ匕に大きな障害が生じることと なる。
[0014] 一方、アルミナの導体グリーンシートへの固着を防ぐためには、アルミナの粒径を大 きくすることも考えられるが、その場合は導体グリーンシートの主面の表面粗さが大き くなるおそれがあるという問題が新たに生じる。
[0015] このため特許文献 2に記載されたセラミック多層基板の製造方法を単純に薄膜キヤ パシタに適用しても、低コストで誘電体層に悪影響を与えることのな 、薄膜キャパシタ を得るのは困難である。
[0016] 本発明はこのような事情に鑑みなされたものであって、低コストで誘電体層に悪影 響を与えることのない薄膜キャパシタを高効率で製造することができる薄膜キャパシ タの製造方法を提供することを目的とする。
課題を解決するための手段
[0017] 上記目的を達成するために本発明に係る薄膜キャパシタの製造方法は、誘電体層 と、該誘電体層の両主面にそれぞれ形成された導体層とを有する薄膜キャパシタの 製造方法であって、誘電体セラミック粉末を含有した誘電体グリーンシートと、金属粉 末を含有した導体グリーンシートと、酸化物無機材料粉末を含有した焼成補助用ダリ ーンシートとをそれぞれ作製するグリーンシート作製工程と、前記誘電体グリーンシ 一トの両主面に前記導体グリーンシートをそれぞれ配してキャパシタ部を形成すると 共に、前記キャパシタ部が前記焼成補助用グリーンシートで保持されるように前記焼 成補助用グリーンシートを配して積層体を形成する積層体形成工程と、前記積層体 を焼成する焼成工程とを有し、前記焼成工程における焼成処理中に、前記導体ダリ ーンシートと前記焼成補助用グリーンシートとの界面の接着強度を低下させ、かつ焼 成雰囲気の酸素分圧を少なくとも 1回以上変化させて、前記キャパシタ部の焼結体 である薄膜キャパシタと前記焼成補助用グリーンシートの焼結体である焼成補助部 材とを分離させることを特徴として 、る。
[0018] なお、「前記薄膜キャパシタと前記焼成補助用部材とを分離する」とは、薄膜キャパ シタの導体層と焼成補助用部材とが完全に分離している場合を含むほか、治具など で軽く触れただけで極めて容易に分離するような、非常に弱 、結合力で接触して 、 る場合、すなわち実質的に分離していると評価できる場合を含む。
[0019] また、「酸素分圧を少なくとも 1回以上変化させる」とは、内部電極の主成分である 金属の酸化還元反応における平衡酸素分圧を基準として、還元雰囲気内や中性雰 囲気内で酸素分圧の軽微な変化が生じる場合を含むが、還元雰囲気から中性雰囲 気に変化させたり中性雰囲気から還元雰囲気に変化させるように顕著に酸素分圧を 変化させることが好ましい。
[0020] また、本発明の薄膜キャパシタの製造方法は、前記金属粉末が、 Niおよび Niを主 成分とする合金のうちの 、ずれかであることを特徴として 、る。
[0021] また、本発明の薄膜キャパシタの製造方法は、前記焼成補助用グリーンシートを枠 状に形成し、該焼成補助用グリーンシートを前記導体グリーンシートの外周と接する ように、または前記外周と近接するように配することを特徴として ヽる。
[0022] さらに、本発明の薄膜キャパシタの製造方法は、前記酸化物無機材料粉末は、 A1
2
O粉末であることを特徴としている。
3
[0023] また、本発明の薄膜キャパシタの製造方法は、前記誘電体層の厚みと前記導体層 の厚みの総計が 100 μ m以下であることを特徴としている。
発明の効果
[0024] 上記薄膜キャパシタの製造方法によれば、誘電体グリーンシート、導体グリーンシ ート、及び焼成補助用グリーンシートを作製するグリーンシート作製工程と、前記誘電 体グリーンシートの両主面に前記導体グリーンシートをそれぞれ配してキャパシタ部 を形成すると共に、前記キャパシタ部が前記焼成補助用グリーンシートで保持される ように前記焼成補助用グリーンシートを配して積層体を形成する積層体形成工程と、 前記積層体を焼成する焼成工程とを有し、前記焼成工程における焼成処理中に、前 記導体グリーンシートと前記焼成補助用グリーンシートとの界面の接着強度を低下さ せ、かつ焼成雰囲気の酸素分圧を少なくとも 1回以上変化させて、前記キャパシタ部 の焼結体である薄膜キャパシタと前記焼成補助用グリーンシートの焼結体である焼 成補助部材とを分離させるので、焼成補助用グリーンシートによってキャパシタ部の 焼結体である薄膜キャパシタに反りやうねりが生じるのを抑制することができる。しか も、導体グリーンシートと焼成補助用グリーンシートとの界面の接着強度を低下させ、 かつ焼成雰囲気の酸素分圧を少なくとも 1回以上変化させて、薄膜キャパシタと焼成 補助部材とを分離させているので、研磨処理のような機械的加工が不要となり、した がって薄膜キャパシタが損傷することもなぐ導体層間が電気的に短絡することもな い。
[0025] また、前記金属粉末は、 Niあるいは Niを主成分とする合金のうちの 、ずれかであり 、比較的安価で融点の高い Ni (融点: 1455°C)を主要な導電成分として使用してい る。したがって、 1000°C以上の焼成温度に耐えうることが可能となり、高誘電率の誘 電体層を有する薄膜キャパシタを得ることが可能となる。
[0026] また、前記焼成補助用グリーンシートを枠状に形成し、該焼成補助用グリーンシー トを前記導体グリーンシートの外周と接するように、または前記外周と近接するように 配することにより、導体グリーンシートの一部が露出して炉内雰囲気に直接晒されるこ とになり、キャパシタ部に対する焼成雰囲気の制御性が向上する。
[0027] また、酸化物無機材料が、 Al O粉末であるので、 Al O粉末は比較的安価で入
2 3 2 3
手が容易なうえ、焼成中に一部が導体グリーンシートや誘電体グリーンシートに拡散 したとしても、キャパシタの特性にほとんど影響を与えることもなぐしたがって、低コス トで特性の良好な薄膜キャパシタを容易に製造することができる。
[0028] また、前記誘電体層の厚みと前記導体層の厚みの総計が 100 μ m以下であるので 、低コストで誘電体層に悪影響を与えることのな 、所望の薄膜キャパシタを高効率で 製造することができる。
図面の簡単な説明
[0029] [図 1]本発明の製造方法で製造された薄膜キャパシタの一実施の形態を模式的に示 した断面図である。
[図 2]本発明に係る薄膜キャパシタの製造方法の一実施の形態を示す工程図である
[図 3]積層体形成工程の一実施の形態を説明するための積層体の断面図である。
[図 4]焼成工程の一実施の形態を説明するための断面図である。
[図 5]本発明に係る薄膜キャパシタの製造方法の第 2の実施の形態の要部平面図で ある。
[図 6]図 5の A— A断面図である。
符号の説明
[0030] 1 誘電体グリーンシート
2a、 2b 導体グリーンシート
10 キャパシタ部
20a, 20b 焼成補助用グリーンシート
21a, 21b 焼成補助用部材
30 薄膜キャパシタ
31 誘電体層
32a, 32b 導体層 50 積層体
51 積層体
発明を実施するための最良の形態
[0031] 次に、本発明の実施の形態を詳説する。
[0032] 図 1は本発明の製造方法によって製造された薄膜キャパシタの一実施の形態を模 式的に示した断面図であって、該薄膜キャパシタ 30は、誘電体セラミック材料を主成 分とする誘電体層 31の両主面に導体層 32a、 32bが形成されている。すなわち、該 誘電体層 31が上下一対の導体層 32a、 32bによって挟着され、これら各層の膜厚の 総計、すなわち薄膜キャパシタ 30の総厚みは 100 m以下となるように形成されて いる。
[0033] 以下、上記薄膜キャパシタの製造方法を詳述する。
[0034] 図 2は、本発明に係る薄膜キャパシタの製造方法の一実施の形態 (第 1の実施の形 態)を示す製造工程図である。
[0035] グリーンシート作製工程 11では、誘電体グリーンシート、導体グリーンシート、及び 焼成補助用グリーンシートを作製する。
[0036] 具体的には、誘電体セラミック粉末及びポリビュルプチラール榭脂等の有機バイン ダをトルエンやエタノール等の有機溶剤中で混合'分散させて誘電体セラミックスラリ 一を作製し、その後ドクターブレード法等を使用して誘電体セラミックスラリーに成形 加工を施し、膜厚 0. 5〜: L0 mの誘電体グリーンシートを作製する。尚、誘電体セラ ミック粉末としては、誘電体層として高い誘電率が得られる強誘電体を用いることが好 ましいが、常誘電体であってもよい。具体的には、 (Ba, Ca)TiO
3、 BaTiO
3、 SrTiO
、 (Ba, Sr)TiO、 Pb (Zr, Ti) 0などのぺロブスカイト型構造を有する金属酸化物
3 3 3
等が好んで使用される。
[0037] 次に、平均粒径 0. 2〜1. 5 mの金属粉末及びポリビュルブチラール榭脂等の有 機バインダをトルエンやエタノール等の有機溶剤中で混合'分散させて導体スラリー を作製し、その後ドクターブレード法等を使用して導体セラミックスラリーに成形加工 を施し、膜厚 1. 0〜: LO /z mの導体グリーンシートを作製する。
[0038] なお、本実施の形態では、後述するように導体層を構成する金属の酸化還元反応 を利用することによって、導体グリーンシート (導電層)と焼成補助用グリーンシート( 焼成補助用部材)とを分離させることができると考えられる。したがって、金属粉末材 料としては熱処理によって酸化還元可能な金属、例えば、 Niや Cu、及びこれらを主 成分とした合金を使用することができる。特に、 Mまたは Niを主成分とする合金は、 Niの融点が 1455°Cと高ぐ高誘電率の誘電体層を得るために望ましい焼成温度で ある 1000°C以上での焼成処理に耐えることができ、し力も価格も比較的安価である ことから、好んで使用することができる。なお、焼成処理を行っても酸化しにくい金属 、例えば Auなどは好ましくな 、と考えられる。
[0039] 次に、酸ィ匕物無機材料及びポリビュルプチラール榭脂等の有機バインダをトルエン やエタノール等の有機溶剤中で混合 ·分散させて導体スラリーを作製し、その後ドク ターブレード法等の成形加工法を使用して導体セラミックスラリーに成形加工を施し
、焼成補助用グリーンシートを作製する。
[0040] 尚、焼成補助用グリーンシートの膜厚としては、焼成処理によって薄膜キャパシタに 反りやうねりが生じない範囲であれば特に限定されるものではないが、生産コスト等を 考慮すると 25〜500 μ mが好まし!/ヽ。
[0041] また、酸化物無機材料としては、誘電体層の焼結温度で焼結しな!、酸化物を好ん で使用することができ、 Al O、 ZrO、 CeO、 ZnOなどを使用することができる。そし
2 3 2 2
てこれらの中では、焼成処理中にその一部が導体グリーンシートや誘電体グリーンシ ートに拡散しても、薄膜キャパシタの特性にほとんど影響を与えず、し力も比較的安 価に入手できる Al Oを使用するのが特に好ましい。
2 3
[0042] また、酸化物無機材料は 導体層の表面粗さが酸化物無機材料の粒径に影響を 受けるため、平均粒径は小さいほど好ましぐ具体的には 2. 以下が好ましい。
[0043] なお、各グリーンシートの作製工程で、消泡剤や可塑剤等の添加剤を必要に応じ て適宜添加するのも好まし 、。
[0044] このようにグリーンシート作製工程 11で誘電体グリーンシート、導体グリーンシート 及び焼成補助用グリーンシートを作製した後、積層体形成工程 12に進む。
[0045] 積層体形成工程 12では、図 3に示すように、焼成補助用グリーンシート 20a、導体 グリーンシート 2a、誘電体グリーンシート 1、導体グリーンシート 2b、及び焼成補助用 グリーンシート 20bを順次積層し、所定温度で所定時間加圧処理を行って圧着させ、 これにより積層体 50を作製する。これにより、誘電体グリーンシート 1の両主面が導体 グリーンシート 2a、 2bで挟持されたキャパシタ部 10が形成され、積層体 50はキャパ シタ部 10の上面及び下面が焼成補助用グリーンシート 20a、 20bによって保持され た形態とされる。
[0046] 次に、このように積層体 50を作製した後、焼成工程 13に進む。
[0047] この焼成工程 13では、まず、積層体 50を窒素雰囲気中、温度 250〜400°Cで所 定時間熱処理を施して脱バインダ処理を行う。
[0048] 次 ヽで、酸素分圧を、金属の酸化還元反応が生じる基準となる平衡酸素分圧よりも 低く設定した還元雰囲気とする。そして、該還元雰囲気中、最高温度 1050〜1300 °Cで 2時間程度保持して積層体 50に焼成処理を施し、次いで、酸素分圧を、平衡酸 素分圧又はその近傍まで上昇させて中性雰囲気とする。そして、該中性雰囲気で焼 成炉を常温まで降温させ、焼成処理を終了する。
[0049] すると、図 4に示すように、誘電体グリーンシート 1は焼結されて誘電体層 31となり、 導体グリーンシート 2a、 2bは焼結されて導体層 32a、 32bとなり、これら誘電体層 31 及び導体層 32a、 32bで薄膜キャパシタ 30が形成されると共に、焼結補助用グリーン シート 20a、 20bは、薄膜キャパシタ 30から分離して焼結補助用部材 21a、 21bとな る。
[0050] このように研磨処理等の機械的加工を要することなぐ焼結補助用部材 21a、 21b を導体層 32a、 32bから分離できるのは、以下のような理由によるものと考えられる。
[0051] 金属粉末と酸化物無機材料とでは、線膨張係数に比較的大きな差があることから 焼成工程 13中における焼成炉の降温時に熱収縮量に差が生じ、焼成補助用ダリー ンシート 20a、 20b (焼成補助用部材 21a、 21b)と導体グリーンシート 2a、 2b (導体層 32a、 32b)との界面に応力が発生する。さらに、焼成工程 13中に還元雰囲気から中 性雰囲気に酸素分圧を変化させることにより、導体グリーンシート 2a、 2bに含まれる Ni粉末の表面の酸化状態が変化して体積変化を生じる。そして、この体積変化によ つて、焼成補助用グリーンシート 20a、 20b (焼成補助用部材 21a、 21b)と導体ダリ ーンシート 2a、 2b (導体層 32a、 32b)との界面の応力が更に増加する。すなわち、 線膨張係数の差に起因する界面の応力と、金属粉末の表面の酸化状態の変化に起 因する応力とが相俟って、焼成補助用グリーンシート 20a、 20b (焼成補助用部材 21 a、 21b)と導体グリーンシート 2a、 2b (導体層 32a、 32b)との界面のおける接着強度 を大きく低下させることができ、これにより機械的加工を要することなく容易に焼成補 助用部材 21a、 21bと導体層 32a、 32bとを分離させることができるものと考えられる。
[0052] このように本実施の形態では、 Al Oを含有した焼結補助用グリーンシート 20a、 20
2 3
bでキャパシタ部 10を保持させた状態で焼成処理を施し、かつ焼成処理中に還元雰 囲気から中性雰囲気となるように酸素分圧を変化させているので、焼成補助用ダリー ンシート 20a、 20bの焼結体である焼成補助用部材 21a、 21bと導体グリーンシート 2 a、 2bの焼結体である導体層 32a、 32bとを容易に分離させることができ、したがって 焼成補助用部材 21a、 21bを薄膜キャパシタ 10から除去するための研磨処理等の機 械的加工が不要になり、誘電体層 31が損傷することもなぐ導体層 32a、 32b同士の 電気的短絡が生じることのない薄膜キャパシタを得ることが可能となる。し力も、焼成 補助グリーンシート 20a、 20bでキャパシタ部 10を保持させているので、焼成後の薄 膜キャパシタ 30に反りやうねりが発生するのを抑制することができる。
[0053] そして、前記誘電体層と前記導体層との厚みの総計が 100 μ m以下であることから 、機械的な損傷のない良好な特性を有する信頼性の優れた所望の薄膜キャパシタを 得ることができる。
[0054] なお、焼成工程 13後に研磨処理等の機械加工を行なう場合は、誘電体層 31の厚 みを薄くするほど、誘電体層 31に与える機械的、電気的な特性の低下が著しくなる 力 上記実施の形態では機械加工を行う必要がないので、誘電体層 31を薄く形成 することができる。すなわち、薄膜キャパシタ 30の容量は誘電体層 31の厚みに反比 例することから、大容量を得るためには誘電体層 31の厚みを 10 m以下とするのが 好ましいが、本実施の形態では、研磨処理などの機械力卩ェが不要であることから、誘 電体層 31の厚みを 1 μ m以下にすることも可能である。
[0055] 図 5は本発明に係る薄膜キャパシタの製造方法の第 2の実施の形態の主要部を示 す平面図であり、図 6は A— A断面図である。
[0056] 本第 2の実施の形態では、焼成補助用グリーンシート 22a、 22bは中央部が空洞 5 2を有する枠状に形成されている。そして焼成補助用グリーンシート 22a、 22bは、導 体グリーンシート 2a、 2bの外周と接するように導体グリーンシート 2aの上面及び導体 グリーンシート 2bの下面に配され、これら焼成補助用グリーンシート 22a、 22b及びキ ャパシタ部 10とで積層体 51を形成して!/、る。
[0057] そして、このような積層体 51に焼成処理を施すと、導体グリーンシート 2a、 2bの一 部が焼成炉内の雰囲気に直接晒されることとなるため、キャパシタ部 10に対する雰 囲気制御性を向上させることができる。また、焼成補助用グリーンシート 22a、 22bが 導体グリーンシート 2a、 2bの外周を拘束しているので、上記第 1の実施の形態と同様 、キャパシタ部 10における焼成中の面内収縮を抑制することができ、反りやうねりの 発生を防止することができる。
[0058] なお、上記第 2の実施の形態では、焼成補助用グリーンシート 22a、 22bの外周と 導体グリーンシート 2a、 2bの外周とが完全に一致するように焼成補助用グリーンシー ト 22a、 22bを配している力 焼成補助用グリーンシート 22a、 22bの外周が導体ダリ ーンシート 2a、 2bの外周と必ずしも完全に一致していなくてもよぐキャパシタ部 10の 反りやうねりを十分に抑制できるのであれば、導体グリーンシート 2の外周に近接する 形態で焼成補助用グリーンシート 22a、 22bを配してもょ ヽ。
[0059] また、上記第 2の実施の形態では、焼成補助用グリーンシート 22a、 22bは、外周、 内周ともに矩形形状に形成されているが、円形形状や楕円形形状であってもよぐ例 えば、外周が矩形形状で内周が円形形状のように外周と内周の形状が異なっていて もよい。また、焼成補助用グリーンシート 22a、 22bの空洞を格子状に形成してもよい
[0060] また、上記第 2の実施の形態においては、導体グリーンシート 2a、 2bが焼成補助用 グリーンシート 22a、 22bに接しない部分と導体グリーンシート 2a、 2bが焼成補助用 グリーンシート 22a、 22bに接する部分とでは、焼成雰囲気に直接晒される部分と直 接晒されなかった部分とが生じるため、薄膜キャパシタの特性に差が生じる場合があ り得る。そのような場合には、前記焼成補助用グリーンシート 22a、 22bに接していな 力つた部分と前記焼成補助用グリーンシート 22a、 22bに接していた部分とを焼成後 にダイシングソ一等によって切断し、いずれか一方を製品として使用するようにしても よい。
[0061] さらに、上記第 1の実施の形態では、材料の選択によっては、焼成処理中に焼成補 助用グリーンシート 21a、 21b中の酸ィ匕物無機材料が導体グリーンシート 2a、 2bや誘 電体グリーンシート 1の内部に拡散し、薄膜キャパシタの特性に影響を及ぼすおそれ があるが、上記 2の実施の形態では、焼成補助用グリーンシート 22a、 22bを枠状に 形成しているので、導体グリーンシート 2a、 2aが焼成補助用グリーンシート 22a、 22b に接して!/ヽな ヽ部分では酸化物無機材料が導体グリーンシート 2a、 2bや誘電体ダリ ーンシート 1の内部に拡散することもなぐしたがって導体グリーンシート 2a、 2aが焼 成補助用グリーンシート 22a、 22bと接していない部分のみを製品化できるように、ダ イシングソ一等によって切断することにより、所望の特性を有する薄膜キャパシタを得 ることがでさる。
[0062] 尚、本発明は上記実施の形態に限定されるものではなぐ要旨を逸脱しない範囲 において種々の変更が可能である。上記実施の形態では、金属粉末の酸化還元反 応における平衡酸素分圧を基準とし、焼成雰囲気を還元雰囲気から中性雰囲気へと 変化させているが、これに限定されるものではなぐ還元雰囲気、中性雰囲気、酸ィ匕 雰囲気の順に変化させたり、還元雰囲気、中性雰囲気、還元雰囲気の順に変化させ るなど、金属粉末の表面における酸化状態が変化するように焼成雰囲気を適宜変化 させることのも好ましい。
[0063] また、上記実施の形態では、薄膜キャパシタは、導体層が誘電体層の両主面の全 面に形成されている力 導体層は誘電体層の主面の一部のみに形成されていてもよ い。その場合、例えば焼成後にエッチング等によって導体層の一部を除去すればよ い。
[0064] また、焼成後に機械的補強や耐湿性改善等の目的で導体層の少なくとも一部を覆 うような榭脂層を設けてもよい。
[0065] 次に、本発明の実施例及び比較例を具体的に説明する。
実施例
[0066] (1)グリーンシート作製工程
(Ba, Ca) TiOを主成分とする平均粒径 0. 2 mの誘電体セラミック粉末と、ポリビ -ルプチラール榭脂を主成分とする有機バインダと、トルエンとエタノールとを体積比 で 1: 1に調合した有機溶剤とを混合、分散し、誘電体セラミックスラリーを作製した。 誘電体セラミック粉末、有機バインダ、及び有機溶剤の混合比率は体積比で 10 : 10 : 80とした。なお、誘電体セラミック粉末の体積は、誘電体セラミック粉末の重量を測 定し、その理論密度で除することによって算出した。次に、ドクターブレード法によつ て誘電体セラミックスラリーをシート状に成形し、厚さ 2 mの誘電体グリーンシートを 得た。
[0067] 次に、平均粒径 0. 5 μ mの金属粉末としての Ni粉末と、ポリビュルブチラール榭脂 を主成分とする有機バインダと、トルエンとエタノールとを体積比で 1: 1に調合した有 機溶剤とを混合、分散し、導体スラリーを作製した。 Ni粉末、有機バインダ、及び有 機溶剤の混合比率は体積比で 10 : 10 : 80とした。なお、 Ni粉末の体積は、 Ni粉末 の重量を測定し、その理論密度で除することによって算出した。次に、ドクターブレー ド法によって導体スラリーをシート状に成形し、厚さ 9 mの導体グリーンシートを得た
[0068] 次 、で、酸ィ匕物無機材料として平均粒径 1. 0 μ mの Al O粉末を用意し、この A1
2 3 2
O粉末と、ポリビニルブチラール榭脂を主成分とする有機ノインダと、トルエンとエタ
3
ノールとを体積比で 1 : 1に調合した有機溶剤とを混合、分散し、焼成補助用セラミツ クスラリーを作製した。 Al O粉末、有機バインダ、及び有機溶剤の混合比率は体積
2 3
比で 10 : 10 : 80とした。なお、 Al O粉末の体積は、 Al O粉末の重量を測定し、そ
2 3 2 3
の理論密度で除することによって算出した。次に、ドクターブレード法によって焼成補 助用セラミックスラリーをシート状に成形し、厚さ 100 mの焼成補助用グリーンシー 卜を得た。
[0069] (2)積層体形成工程
焼成補助用グリーンシート、導体グリーンシート、誘電体グリーンシート、導体ダリー ンシート、及び焼成補助用グリーンシートを順次積層し、温度 50°C、加圧力 100MP aの条件で 30秒間圧着を行って積層体を形成した。
[0070] (3)焼成工程
得られた積層体を窒素雰囲気中 280°Cで 5時間の熱処理をして脱バインダ理を行 つた。次いで、 Ni粉末の平衡酸素分圧よりも低い酸素分圧に設定して還元雰囲気と し、この還元雰囲気下、 1150°Cの温度で 2時間保持して積層体に焼成処理を施し た。その後、酸素分圧を平衡酸素分圧またはその近傍に上昇させて中性雰囲気とし 、この中性雰囲気で焼成炉を常温まで降温させ、焼成処理を終了した。
[0071] 焼成処理中、焼成補助用グリーンシートは有機ノインダ、有機溶剤等の有機物の 揮発および消失によって板状の焼成補助用部材となり、該焼成補助用部材は機械 的加工を要することなく薄膜キャパシタカ 分離し、これにより誘電体層の両主面に 導体層が形成された薄膜キャパシタが得られた。
[0072] 得られた薄膜キャパシタは総厚みが 13 mで、面内方向の収縮量を光学式測長 器で測定したところ、 1%以下であり、また反りやうねりが生じていないことが確認され た。また、導体層の表面粗さ Raを原子間力顕微鏡で測定したところ、約 200nmであ り、十分な平滑性が得られることも確認された。さらに、誘電率の面内分布を LCRメ ータで測定したところ 3%以下に抑制されることが確認された。
比較例
[0073] 上記実施例と同一の方法 '手順で作製した積層体を、窒素雰囲気中 280°Cで 5時 間の熱処理をして脱バインダ処理を行い、さら〖こ、上記実施例と同様の還元雰囲気 となるように酸素分圧を調整し、該還元雰囲気下、 1150°Cで 2時間保持して積層体 に焼成処理を施し、その後も同一の焼成雰囲気、すなわち前記還元雰囲気下で焼 成炉を常温まで降温させ、焼成処理を終了した。
[0074] 得られた焼結体は、焼成補助用グリーンシートに含有されている Al Oが薄膜キヤ
2 3 パシタの導体層に密着し、容易には Al Oを除去できない状態であった。このため研
2 3
磨処理を行って Al Oを除去したが、誘電体層が損傷し、薄膜キャパシタの導体層
2 3
同士が電気的に短絡してしまった。
[0075] 本比較例では、焼成工程中に酸素分圧を変化させず、酸素分圧が略一定の還元 雰囲気で焼成処理を行ったため、導体グリーンシートと焼成補助用グリーンシートと の界面に十分な応力が発生せず、このためキャパシタ部と焼成補助部とを分離させ ることができな力つたものと考えられる。

Claims

請求の範囲
[1] 誘電体層の両主面に導体層が形成された薄膜キャパシタの製造方法であって、 誘電体セラミック粉末を含有した誘電体グリーンシートと、金属粉末を含有した導体 グリーンシートと、酸化物無機材料粉末を含有した焼成補助用グリーンシートとをそ れぞれ作製するグリーンシート作製工程と、
前記誘電体グリーンシートの両主面に前記導体グリーンシートをそれぞれ配してキ ャパシタ部を形成すると共に、前記キャパシタ部が前記焼成補助用グリーンシートで 保持されるように前記焼成補助用グリーンシートを配して積層体を形成する積層体形 成工程と、
前記積層体を焼成する焼成工程とを有し、
前記焼成工程における焼成処理中に、前記導体グリーンシートと前記焼成補助用 グリーンシートとの界面の接着強度を低下させ、かつ焼成雰囲気の酸素分圧を少な くとも 1回以上変化させて、前記キャパシタ部の焼結体である薄膜キャパシタと前記 焼成補助用グリーンシートの焼結体である焼成補助部材とを分離させることを特徴と する薄膜キャパシタの製造方法。
[2] 前記金属粉末は、 Niおよび Niを主成分とする合金のうちのいずれかであることを特 徴とする請求項 1記載の薄膜キャパシタの製造方法。
[3] 前記焼成補助用グリーンシートを枠状に形成し、該焼成補助用グリーンシートを前 記導体グリーンシートの外周と接するように、または前記外周と近接するように配する ことを特徴とする請求項 1または請求項 2記載の薄膜キャパシタの製造方法。
[4] 前記酸化物無機材料粉末は、 Al O粉末であることを特徴とする請求項 1な 、し請
2 3
求項 3のいずれかに記載の薄膜キャパシタの製造方法。
[5] 前記誘電体層の厚みと前記導体層の厚みの総計が 100 μ m以下であることを特徴 とする請求項 1な 、し請求項 4の 、ずれかに記載の薄膜キャパシタの製造方法。
PCT/JP2006/308563 2005-05-10 2006-04-24 薄膜キャパシタの製造方法 WO2006120883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800163750A CN101176171B (zh) 2005-05-10 2006-04-24 薄膜电容器的制造方法
JP2007528208A JP4441921B2 (ja) 2005-05-10 2006-04-24 薄膜キャパシタの製造方法
US11/928,287 US7771552B2 (en) 2005-05-10 2007-10-30 Method for manufacturing thin film capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-137187 2005-05-10
JP2005137187 2005-05-10
JP2005-206942 2005-07-15
JP2005206942 2005-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/928,287 Continuation US7771552B2 (en) 2005-05-10 2007-10-30 Method for manufacturing thin film capacitor

Publications (1)

Publication Number Publication Date
WO2006120883A1 true WO2006120883A1 (ja) 2006-11-16

Family

ID=37396393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308563 WO2006120883A1 (ja) 2005-05-10 2006-04-24 薄膜キャパシタの製造方法

Country Status (5)

Country Link
US (1) US7771552B2 (ja)
JP (1) JP4441921B2 (ja)
KR (2) KR100925656B1 (ja)
CN (1) CN101176171B (ja)
WO (1) WO2006120883A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075504A1 (ja) * 2006-12-19 2008-06-26 Murata Manufacturing Co., Ltd. 薄層コンデンサの製造方法、薄層コンデンサおよびコンデンサ内蔵配線基板の製造方法
JP2008211054A (ja) * 2007-02-27 2008-09-11 Tdk Corp 積層型圧電素子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007010768A1 (ja) * 2005-07-15 2009-01-29 株式会社村田製作所 コンデンサおよびその製造方法
US8034666B2 (en) * 2009-11-15 2011-10-11 Microsemi Corporation Multi-layer thick-film RF package
EP2579350A4 (en) * 2010-05-26 2014-07-23 Ngk Insulators Ltd METHOD FOR PRODUCING A PIEZOELECTRIC ELEMENT
US9779874B2 (en) * 2011-07-08 2017-10-03 Kemet Electronics Corporation Sintering of high temperature conductive and resistive pastes onto temperature sensitive and atmospheric sensitive materials
KR101444616B1 (ko) * 2013-08-14 2014-09-26 삼성전기주식회사 적층 세라믹 커패시터, 그 제조 방법 및 적층 세라믹 커패시터용 압착 플레이트
US9809720B2 (en) * 2015-07-06 2017-11-07 University Of Massachusetts Ferroelectric nanocomposite based dielectric inks for reconfigurable RF and microwave applications
CN105006362B (zh) * 2015-07-28 2018-06-19 桂林电子科技大学 一种可剥离衬底的薄膜电容器制备方法
CN105355431A (zh) * 2015-11-30 2016-02-24 淮安盛宇电子有限公司 一种薄膜电容器的制造方法
JP2018137311A (ja) * 2017-02-21 2018-08-30 Tdk株式会社 薄膜キャパシタ
US10839992B1 (en) 2019-05-17 2020-11-17 Raytheon Company Thick film resistors having customizable resistances and methods of manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950079A (ja) * 1982-09-10 1984-03-22 株式会社村田製作所 セラミツク薄板の製造方法
JPH06140279A (ja) * 1992-09-11 1994-05-20 Murata Mfg Co Ltd 積層セラミック電子部品の焼成方法
JP2004304113A (ja) * 2003-04-01 2004-10-28 Mitsubishi Electric Corp 多層セラミックパッケージ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879509A (en) * 1971-09-07 1975-04-22 Gilbert James Elderbaum Method of producing thin ceramic sheets with minimal distortion
DE69027394T2 (de) * 1989-10-18 1997-02-06 Tdk Corp Keramischer Mehrschicht-Chipkondensator und Verfahren zu seiner Herstellung
US5085720A (en) * 1990-01-18 1992-02-04 E. I. Du Pont De Nemours And Company Method for reducing shrinkage during firing of green ceramic bodies
US5470412A (en) * 1992-07-30 1995-11-28 Sumitomo Metal Ceramics Inc. Process for producing a circuit substrate
JPH0878283A (ja) 1994-09-06 1996-03-22 Toshiba Corp 薄膜キャパシタ
JP3193626B2 (ja) 1996-03-13 2001-07-30 株式会社住友金属エレクトロデバイス セラミック多層基板の製造方法
JPH1095677A (ja) * 1996-09-24 1998-04-14 Matsushita Electric Works Ltd セラミック基板の製造方法
JP3685656B2 (ja) * 1999-06-30 2005-08-24 太陽誘電株式会社 積層セラミック電子部品の製造方法
JP4535576B2 (ja) 2000-07-31 2010-09-01 京セラ株式会社 多層配線基板の製造方法
JP2003238259A (ja) 2002-02-21 2003-08-27 Matsushita Electric Ind Co Ltd セラミック部品の製造方法
JP4434617B2 (ja) * 2003-04-24 2010-03-17 京セラ株式会社 焼失性シートおよびそれを用いたセラミック積層体の製造方法
JP3924286B2 (ja) * 2003-10-31 2007-06-06 Tdk株式会社 積層セラミック電子部品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950079A (ja) * 1982-09-10 1984-03-22 株式会社村田製作所 セラミツク薄板の製造方法
JPH06140279A (ja) * 1992-09-11 1994-05-20 Murata Mfg Co Ltd 積層セラミック電子部品の焼成方法
JP2004304113A (ja) * 2003-04-01 2004-10-28 Mitsubishi Electric Corp 多層セラミックパッケージ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075504A1 (ja) * 2006-12-19 2008-06-26 Murata Manufacturing Co., Ltd. 薄層コンデンサの製造方法、薄層コンデンサおよびコンデンサ内蔵配線基板の製造方法
JP2008211054A (ja) * 2007-02-27 2008-09-11 Tdk Corp 積層型圧電素子

Also Published As

Publication number Publication date
KR100944101B1 (ko) 2010-02-24
JP4441921B2 (ja) 2010-03-31
KR20090101515A (ko) 2009-09-28
US20080060743A1 (en) 2008-03-13
KR100925656B1 (ko) 2009-11-09
KR20080002944A (ko) 2008-01-04
US7771552B2 (en) 2010-08-10
CN101176171A (zh) 2008-05-07
JPWO2006120883A1 (ja) 2008-12-18
CN101176171B (zh) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2006120883A1 (ja) 薄膜キャパシタの製造方法
KR101141372B1 (ko) 적층 세라믹 전자부품, 및 적층 세라믹 전자부품의 제조방법
JP4362079B2 (ja) 積層型チップコンデンサおよびその製造方法
CN112216510B (zh) 陶瓷电子器件及其制造方法
JPH113834A (ja) 積層セラミックコンデンサおよびその製造方法
JP5012899B2 (ja) 多層セラミック基板およびその製造方法
JP3897472B2 (ja) 受動部品内蔵多層配線基板およびその製造方法
WO2011114808A1 (ja) 積層セラミック電子部品
JP4427960B2 (ja) 薄膜積層電子部品の製造方法
JP2000340448A (ja) 積層セラミックコンデンサ
JP3955389B2 (ja) コンデンサ内蔵基板およびその製造方法
JP2001297946A (ja) 複合電子部品およびその製造方法
JP5527405B2 (ja) 積層セラミック電子部品
JPH11102835A (ja) 積層型セラミック電子部品およびその製造方法
JP5527403B2 (ja) 積層セラミック電子部品
JP2004522320A (ja) エレクトロセラミック構造素子、多層コンデンサーおよび多層コンデンサーの製造法
WO2011114804A1 (ja) 積層セラミック電子部品
JPH1126285A (ja) 積層セラミックコンデンサ
JP3854199B2 (ja) ガラスセラミック基板およびその製造方法
JP4231653B2 (ja) 積層型の圧電アクチュエータの製造方法
JP5429393B2 (ja) 積層セラミック電子部品、および積層セラミック電子部品の製造方法
JP3142013B2 (ja) 積層型電子部品
JP6117557B2 (ja) 積層型電子部品
JPH11233364A (ja) 積層セラミックコンデンサおよびその製造方法
JP2003347730A (ja) セラミック多層基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016375.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528208

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11928287

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077026026

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097019187

Country of ref document: KR