WO2006118018A1 - フリップチップ実装ずれ検査方法および実装装置 - Google Patents

フリップチップ実装ずれ検査方法および実装装置 Download PDF

Info

Publication number
WO2006118018A1
WO2006118018A1 PCT/JP2006/308089 JP2006308089W WO2006118018A1 WO 2006118018 A1 WO2006118018 A1 WO 2006118018A1 JP 2006308089 W JP2006308089 W JP 2006308089W WO 2006118018 A1 WO2006118018 A1 WO 2006118018A1
Authority
WO
WIPO (PCT)
Prior art keywords
flip chip
chip
mounting
corner
alignment mark
Prior art date
Application number
PCT/JP2006/308089
Other languages
English (en)
French (fr)
Inventor
Katsumi Terada
Koji Nishimura
Yoshiyuki Arai
Original Assignee
Toray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co., Ltd. filed Critical Toray Engineering Co., Ltd.
Priority to JP2007514594A priority Critical patent/JP4768731B2/ja
Publication of WO2006118018A1 publication Critical patent/WO2006118018A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0465Surface mounting by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/5448Located on chip prior to dicing and remaining on chip after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]

Definitions

  • the present invention relates to flip chip mounting of a semiconductor chip and a circuit board, and performs mounting position shift inspection after mounting without using observation means inside the bare chip such as an X-ray imaging device or an infrared microscope.
  • the present invention relates to a flip chip mounting misalignment inspection method and a mounting apparatus that can easily measure mounting misalignment only by appearance measurement.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-183406
  • an object of the present invention is to enable flip-chip inspection without using an expensive X-ray imaging apparatus or infrared microscope and mounting position deviation inspection after mounting the substrate. It is to provide a mounting deviation inspection method and a mounting apparatus. Means for solving the problem
  • the present invention provides the following flip-chip mounting misalignment detection method and mounting device.
  • a flip-chip mounting deviation inspection method characterized by determining whether a deviation is good or bad.
  • a flip chip mounting misalignment inspection method is characterized by determining whether or not a mounting misalignment after flip chip mounting is performed by calculating a relative positional relationship between the positions of the chip and calculating a deviation amount of a predetermined mounting position force. Provided.
  • the lower CCD camera recognizes the flip chip bump position
  • the two-field camera recognizes the electrode position of the substrate.
  • Flip-chip mounting misalignment inspection which calculates the relative positional relationship between the flip-chip bumps of the alignment marker and the electrodes on the substrate, and judges whether the mounting misalignment between the flip-chip bumps and the substrate electrodes is good or bad. A method is provided.
  • a flip chip mounting apparatus for mounting a semiconductor chip on a circuit board
  • the flip chip alignment mark and the flip as viewed from the direction of recognizing the flip chip alignment mark are recognized.
  • the positional relationship between the alignment mark and the first corner of the flip chip is measured by recognizing the first corner of the chip plane by image processing with the first CCD camera.
  • the second CCD camera After the mounting of the flip chip and the measuring means, the second CCD camera from the direction opposite to the circuit surface of the flip chip, the alignment mark on the board and the second position at the same position as the first corner of the flip chip.
  • the flip is used to measure the positional relationship between the alignment mark of the substrate and the second corner by recognizing the corner of the substrate by image processing.
  • a flip-chip mounting apparatus comprising: an arithmetic unit that determines whether or not the mounting deviation after flip-chip mounting is good by calculating a deviation amount from a predetermined mounting positional relationship.
  • a flip chip mounting apparatus for mounting a semiconductor chip on a circuit board
  • the second corner on the upper surface of the flip chip is placed on the upper side of the flip chip, the image is recognized by the CCD camera, and the alignment mark on the lower surface of the flip chip and the first corner are flipped.
  • a flip-chip mounting apparatus comprising: an arithmetic unit that determines whether or not the mounting shift after flip-chip mounting is good by calculating a force shift amount. It is.
  • the lower CCD camera recognizes the flip chip bump position
  • the two-view camera recognizes the electrode position of the substrate
  • the computing means A flip chip mounting apparatus characterized by calculating a relative positional relationship between a flip chip bump and a substrate electrode having a plate alignment mark power and determining whether the flip chip bump and the substrate electrode are misaligned. Provided.
  • the pre-flip-chip mounting measuring means, the post-flip-chip mounting measuring means, the pre-flip-chip mounting recognizing means, or the flip-chip mounting recognizing means is an arithmetic unit. A part of the functions of the measuring means and the recognition means may be performed by the computing means without the necessity of being an apparatus different from the means.
  • the above apparatus is defined as a technical idea to the last.
  • the flip chip alignment mark and the flip chip It accurately recognizes the corners of the surface and the corners of the bottom surface of the flip chip, and compares and collates with the position data after bonding the flip chip to the substrate to obtain the positional relationship. Mounting deviation inspection can be performed.
  • the positional relationship between the flip chip bump and the substrate electrode can be obtained, so even if a bump misalignment or electrode misalignment occurs, it is highly accurate. Mounting displacement inspection after flip chip mounting can be performed.
  • the first CCD camera recognizes an image of the flip chip before mounting
  • the second CCD camera recognizes the image of the substrate after flip chip mounting. This makes it possible to inspect mounting misalignment, thus eliminating the need for powerful equipment.
  • D camera can be used for inspection, so no additional equipment is required!
  • the corner portion on the upper surface of the flip chip and the corner portion on the lower surface of the flip chip can be recognized by using the chip slider that constitutes the flip chip holding plate with the transparent member. Even if there are irregularities due to cracks at the corners of the flip chip, it is possible to perform mounting deviation inspection after flip chip mounting with high accuracy.
  • the flip-flop since the positional relationship between the bumps of the chip and the electrodes of the substrate can be obtained, even if the positional deviation of the bumps or the positional deviation of the electrodes occurs, the flip-flop is highly accurate. It is possible to inspect mounting deviation after mounting.
  • FIG. 1 is a front view of a principal part of a mounting apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an image when the bump surface of the chip is recognized by the first CCD camera or the two-field camera.
  • FIG. 3 is a diagram showing an image when the substrate after mounting is recognized by a second CCD camera or a two-field camera.
  • FIG. 4 is a flowchart for explaining an inspection method in the mounting apparatus of the first embodiment.
  • FIG. 5 is a flowchart for explaining an inspection method according to a second embodiment of the present invention. 6] FIG. 6 is a front view of an essential part of a mounting apparatus according to a third embodiment of the present invention.
  • FIG. 7 is a perspective view for explaining the chip slider and the upper and lower CCD cameras in the third embodiment.
  • FIG. 9 is a cross-sectional view illustrating the imaging state of the upper and lower CCD cameras in the third embodiment.
  • FIG. 10 is a plan view of relevant parts for explaining the positions of the bumps of the chip and the electrodes of the substrate in the mounting apparatus according to the fourth embodiment of the present invention.
  • FIG. 3 is a front view of a main part of a mounting apparatus 100 capable of inspecting a lip chip mounting shift.
  • the mounting apparatus 100 includes a chip recognition unit 110, a bonding unit 120, and a mounting inspection unit 130.
  • the chip recognition unit 110 includes a chip tray 3 and a first CCD camera 4, and a flip chip with a bump 2 (hereinafter simply referred to as “chip”) 1 is stored in the chip tray 3. . From the top of the chip tray 3 The first CCD camera 4 Force The alignment mark 6 (shown in Fig. 2) and the first corner 5 stamped on the bump 2 surface of the chip 1 can be recognized. .
  • the first corner 5 of the chip 1 means one corner on the bump 2 surface side when the chip 1 is viewed as a rectangular solid (hereinafter referred to as a cube).
  • the first corner 5 is positioned in the vicinity of the alignment mark 6 as shown in FIG.
  • FIG. 2 shows the positional relationship of chip 1, bump 2, alignment mark 6, and first corner 5 when imaged from the first CCD camera 4.
  • the positional relationship between the first corner 5 and the alignment mark 6 is xl and yl.
  • the bonding portion of the mounting apparatus 100 includes a bonding head 10 that sucks and holds the chip 1, a bonding stage 9 that sucks and holds the substrate 7, and alignment marks 6 and 15 of the chip 1 and the substrate 7 (of the substrate 7).
  • the alignment mark 15 is composed of a two-field camera 11 which recognizes as shown in FIG.
  • the bonding head 10 can be moved up and down.
  • the bonding stage 9 is movable in the x, y, and ⁇ directions.
  • the two-field camera 11 can be moved back and forth so that it can be inserted between the bonding head 10 and the bonding stage 9 to recognize the alignment marks 6 and 15 on the chip 1 and the substrate 7.
  • the mounting inspection unit 130 of the mounting apparatus 100 includes a substrate tray 14 that houses the substrate 7 on which the chip 1 is mounted, and a second CCD camera 12 that is disposed above the substrate tray 14. .
  • FIG. 3 shows the positional relationship between the alignment mark 15 stamped on the chip 1, the substrate 7, and the substrate 7 when the substrate 7 is imaged from the second CCD camera 12.
  • the opposite side of the surface of the cube corresponding to the first corner 5 on the surface opposite to the bump 2 surface of the chip 1 is defined as a second corner 13.
  • the cut surface becomes the bump surface of the chip 1 when the chip 1 is diced (when cut on the wafer). If they are formed vertically, they will have the same coordinate point.
  • the positional relationship between the second corner 13 and the alignment mark 15 is X 2 and y 2.
  • the conveyance of the chip 1 from the chip recognition unit 110 of the mounting apparatus 100 to the bonding unit 120 is illustrated.
  • the chip adsorption reversal tool is used for V, and it is performed.
  • the substrate 7 is transported from the joint 120 to the mounting inspection unit 130 by a substrate transport tool which is not shown in the figure.
  • the chip recognition unit 110 performs image processing on the first corner 5 and the alignment mark 6 of the chip 1 with the first CCD camera 4 (step Sl).
  • step S2 the relative positional relationship between the first corner 5 and the alignment mark 6 is calculated.
  • the chip is transported from the chip tray 3 to the bonding head 10 by using the chip adsorption / reversal tool.
  • the bonding head 10 holds the chip 1 by suction. Further, the substrate 7 is conveyed to the bonding stage 9 and held by suction (step S3).
  • the two-field camera 11 moves forward between the chip 1 and the substrate 7, and the alignment mark on the chip 1
  • the bonding stage 9 moves in the x, y, and ⁇ directions, and alignment is performed (step S4).
  • step S5 when alignment is completed, the bonding head 10 is lowered, and the bump 2 of the chip 1 and the electrode 8 of the substrate 7 are bonded. Pressing and heating are performed for a predetermined time to complete the bonding, and the bonding head 10 is raised (step S5).
  • the board 7 to which the chip 1 is bonded is transferred to the board tray 1 of the mounting inspection unit by the board transfer tool.
  • the second CCD camera 12 moves the second corner 13 of the chip 1 and the alignment mark 1 of the substrate 7.
  • Image recognition of 5 is performed (step S7).
  • step S8 the positional relationship between the second corner 13 and the alignment mark 15 of the substrate 7 is calculated.
  • step S9 the positional relationship between the alignment mark 6 stamped on the bump 2 surface side of the chip 1 and the alignment mark 15 of the substrate 7 is calculated.
  • step 10 the preset mounting deviation range is compared with the positional relationship obtained in step S9 (step 10).
  • the allowable range in which the mounting deviation obtained in step S9 is set in advance If it is within the range, it is judged as a non-defective product (Step SI 1).
  • the mounting displacement is measured online using a CCD camera without using an X-ray imaging device or an infrared ray microscope. No additional equipment is required, and it is possible to perform the desired inspection simply by adding a CCD camera for chip recognition and a CCD camera for mounting inspection to the conventional equipment.
  • the second embodiment is an inspection method and mounting apparatus for measuring mounting deviation after flip chip mounting only by the joint 120 without mounting the chip recognition unit 110 and the mounting inspection unit 130 in FIG. .
  • the two-field camera 11 shown in the joint 120 in FIG. 1 is used as a means for correcting the position of the chip 1 and the substrate 7 before mounting, and the first corner 5 of the chip 1 is recognized. Also, use it in combination. Therefore, the image information obtained by the two-view camera 11 before mounting is the same as that in FIG. Then, after mounting, the two-field camera 11 is advanced above the substrate 7 so as to obtain the same image information as FIG.
  • the chip 1 stored in the chip tray 3 is transported to the bonding head 10 and sucked and held by a chip suction reversal reel (not shown). Further, the substrate 7 is transported to the bonding stage 9 by the substrate transport tool (not shown) and held by suction (step S13).
  • step S14 the two-field camera 11 moves forward between the chip 1 and the substrate 7 to recognize the image of the alignment mark 6 on the chip 1 and the alignment mark 15 on the substrate 7, and the bonding head 10 And correct the position of bonding stage 9.
  • the first corner 5 of the chip 1 is also recognized as an image. Thereafter, the two-field camera 11 moves back to the standby position.
  • step S15 the positional relationship between the first corner 5 of the chip 1 and the alignment mark 6 is calculated to obtain xl and yl data (step S15).
  • the bonding head 10 is lowered, and the bump 2 of the chip 1 and the electrode 8 of the substrate 7 are bonded. Pressing and heating are performed for a predetermined time to complete the bonding, and the bonding head 10 Ascend (step SI 6).
  • the two-field camera 11 advances above the substrate 7 to recognize the second corner 13 of the chip 1 and the alignment mark 15 of the substrate 7 (step S 17).
  • step S 18 the positional relationship between the second corner 13 and the alignment mark 15 of the substrate 7 is calculated.
  • step S 19 the positional relationship between the alignment mark 6 stamped on the bump 2 surface side of the chip 1 and the alignment mark 15 of the substrate 7 is calculated.
  • step S20 the preset mounting deviation range is compared with the positional relationship obtained in step S19 (step S20). If the mounting deviation found in step S19 is within the preset allowable range, it is determined as non-defective (step S21), and if it exceeds the allowable range, it is determined as mounting failure (step S22).
  • the first field of view camera 11 for position correction is used instead of the first CCD camera 4 and the second CCD camera 12 used in the first embodiment, Time can be shortened and productivity increases. Moreover, it is not necessary to add new equipment.
  • FIG. 6 is a front view of an essential part of the mounting apparatus 150 according to the third embodiment.
  • the mounting device 150 is roughly divided into a chip supplier 160 that supplies the chip 1, a chip slider 170 that transfers the chip 1 from the chip supplier 160 to the joint 180, and a bump 2 of the chip 1 on the electrode 8 of the substrate 7.
  • the chip supplier 160 sucks and holds a plurality of chips 1 arranged and arranged on the chip tray 161 in a face-up state (with the bump surface of the chip 1 facing upward) at regular intervals one by one.
  • the retractable and swivelable suction tool 162 and the tip 1 inverted by the suction tool 162 are moved in the horizontal direction and the tip 1 is placed face down on the tip slider 170 (the tip 2 of the tip 1 is facing down).
  • the transfer mechanism 163 is a transfer mechanism.
  • the chip slider 170 can reciprocate along a fixed rail 171 disposed between the chip supplier 160 and the joint 180.
  • the chip slider 170 includes a chip delivery position from the chip feeder 160 (position A in FIG. 6), a recognition position of the transfer chip recognition unit 190 (position B in FIG. 6), and a chip delivery position of the joint 180 (see FIG. 6). Stop at each position 6).
  • the chip slider 170 is an L-shaped plate as shown in FIG. 7, and includes a flat plate 172 extending in the horizontal (X, Y) direction and a slide plate 173 in the vertical (Z) direction.
  • a hole 174 is formed in the flat plate 172, and an upper glass 175 and a lower glass 176 are sealed and attached to an upper part and a lower part of the hole 174, respectively.
  • the upper glass 175 has a hole 177 for suction of the chip 1.
  • the suction chamber formed by the upper glass 175, the lower glass 176, and the hole 174 is connected to a suction pump by a tube (not shown), and holds the chip 1 delivered to the chip slider 170 by suction. I can now transfer
  • the transport chip recognition unit 190 includes an upper CCD camera 191, a lower CCD camera 192, and a support base 193 that supports both cameras.
  • the support base 193 is movable in the direction of the rail 171 of the chip slider 170, moves to the chip slider 170 side when the chip slider 170 stops at position B, and the alignment mark 6 of chip 1 is detected by both cameras. And the first corner 5 and the second corner 13 are recognized.
  • the bonding section 180 recognizes the bonding head 181 that sucks and holds the chip 1, the bonding stage 182 that sucks and holds the substrate 7, and the alignment marks 6 and 15 of the chip 1 and the substrate 7, respectively. It consists of a camera 183.
  • the bonding head 181 can be moved up and down.
  • the bonding stage 182 is movable in the x, y, and ⁇ directions (horizontal and rotational directions).
  • the two-field camera 183 can be moved back and forth so that it can be inserted between the bonding head 181 and the bonding stage 182 to recognize the alignment marks 6 and 15 of the chip 1 and the substrate 7.
  • the computing means 200 calculates a mounting deviation from the data recognized by the upper CCD camera 191 and the lower CCD camera 192 of the transfer chip recognition unit 190 and the data recognized by the two-field camera 183 of the joint 180. Pass / fail judgment is performed. Next, an inspection method in mounting apparatus 150 will be described using the operation flowchart of FIG.
  • the chip 1 stored in the chip tray 161 is picked up by the suction tool 162 and reversed (step S30).
  • the transfer tool 163 receives the chip 1 from the suction tool 162, is seated at the position A !, and transfers it to the chip slider 170 (step S31).
  • the chip slider 170 holds the chip 1 by suction, and the position A force also moves to the position B and stops (step S32).
  • the support base 193 of the transport chip recognition unit 190 advances to a position where the upper CCD camera 191 and the lower CCD camera 192 can recognize the chip 1 on the chip slider 170 (step
  • the upper CCD camera 191 recognizes the second corner 13 of the chip 1. Then, the first corner 5 and the alignment mark 6 are recognized by the lower CCD force lens 192 (step S34).
  • the positions of the upper CCD camera 191, the lower CCD camera 192, and the chip slider 170 are set with high accuracy.
  • the force that the processing accuracy of the chip tray 3 had on the accuracy of the image recognized by the first CCD camera in the first embodiment In this third embodiment, the mounting accuracy of the upper and lower CCD cameras is set to a predetermined value. Since it can be configured to be greater than or equal to the value, it is possible to perform image recognition with higher accuracy than in the first embodiment.
  • the dicing surface (cut surface) of chip 1 has irregularities due to fine chipping and cracks on the end surface as shown in FIGS. 9A and 9B. It is not covered as a plane perpendicular to the surface of bump 2 of 1. For this reason, when the corner is recognized by a camera with a unidirectional force, the focal point is defocused due to the thickness of chip 1, and the corner is not accurately recognized. However, by recognizing the corner of chip 1 also in the upward and downward bi-directional forces, alignment mark 6 and first corner 5 (the edge of the bump surface of chip 1) and second corner 13 are accurately detected. (Edge of the surface opposite to the bump on chip 1) can be recognized.
  • step S35 the support base 193 moves in the horizontal direction, and the upper CCD camera 192 and the lower CCD camera are retracted to the standby position.
  • step S36 confirm that the chip slider 170 force bonding head 181 is in the raised position. Then, the position B force also moves to the position C while the chip 1 is held by suction (step S36).
  • the bonding head 181 descends to a predetermined position, and after confirming the release of the suction holding of the chip 1 of the chip slider 170, the bonding head 181 sucks the chip 1. Then, the chip 1 is transferred (step S37). Further, the substrate 7 is conveyed to the bonding stage 182 and held by suction.
  • the tip slider 170 also moves the position C force to the position A to prepare for receiving the next tip 1 (step S 38).
  • the two-field camera 183 moves forward between the chip 1 and the substrate 7 and recognizes the alignment mark 6 of the chip 1 and the alignment mark 15 of the substrate 7. Based on the data of the alignment marks 6 and 15 on the chip 1 and the substrate 7, the bonding stage 182 operates in the x, y, and 0 directions to perform the alignment (step S39).
  • step S40 when the alignment is completed, the bonding head 181 is lowered, and the bump 2 of the chip 1 and the electrode 8 of the substrate 7 are joined. Pressing and heating are performed for a predetermined time to complete the bonding, and the bonding head 181 is raised (step S40).
  • the two-field camera 183 moves forward above the substrate 7, and image recognition is performed for the first corner 5 or the second corner 13 of the chip 1 and the alignment mark 15 of the substrate 7 (step S41).
  • step S42 it is selected whether the position of the image data at the corner of the chip 1 obtained by the two-field camera 183 is the first corner 5 or the second corner 13 (step S42).
  • the position of the image data at the corner of chip 1 obtained by the two-field camera 183 is defined as the first corner 5 (the edge of the bump surface of chip 1).
  • the second corner 13 is selected.
  • step S 43 the positional relationship between the selected corner position data and the alignment mark 15 of the substrate 7 is calculated (step S 43).
  • the upper CCD camera 191 and the lower CCD camera 192 recognize each image of the alignment mark 6, the first corner 5 and the second corner 13 of the chip 1, and the positional relationship in the same coordinate system Is required.
  • the position data of the corner of the selected chip 1 obtained by the two-field camera 183 and the alignment mark 1 of the substrate 7
  • the position data of 5 is expanded and the positional relationship is calculated (step S44).
  • step S45 the preset mounting deviation range is compared with the positional relationship obtained in step S44 (step S45). If the mounting deviation obtained in step S44 is within the preset allowable range, it is determined as a non-defective product (step S46), and if it exceeds the allowable range, it is determined that the mounting is defective (step S47).
  • the transfer chip recognition unit 190 accurately recognizes the alignment mark 6, the first corner 5, and the second corner 13 of the chip 1, and joins the chip 1 to the substrate 7. Since the positional relationship is obtained by comparing and collating with the subsequent position data, mounting deviation inspection after flip-chip mounting can be performed with high accuracy.
  • a fourth embodiment of the present invention will be described.
  • a mounting apparatus 150 similar to that in the third embodiment is used.
  • the position of the bump 2 is recognized rather than recognizing the alignment mark 6 of the CCD camera force chip 1 under the transfer chip recognition unit 190.
  • the two-field camera 183 of the joint 180 also recognizes the position of the electrode 8 when recognizing the alignment mark 15 on the substrate 7.
  • FIG. 10A shows a schematic image when chip 1 is recognized by the lower CCD camera 192.
  • the dotted line indicates the normal bump 2 position RBP (x3, y3), and the solid line indicates the actual bump 2 position ABP ( ⁇ 3, Ay3).
  • the displacement of bump 2 is caused by the accuracy of the bump formation process.
  • FIG. 10B shows a schematic image when the substrate 7 is recognized by the two-field camera 183.
  • the dotted line shows the position REP (x4, y4) of the regular electrode 8, and the solid line shows the position 8 ( ⁇ 4, ⁇ 4) of the actual electrode 8.
  • the displacement of the electrode 8 is caused by the elongation of the substrate 7 or the like.
  • the mounting inspection method when the deviation of the bump 2 or the electrode 8 occurs will be described with reference to the flowchart of FIG.
  • the chip 1 stored in the chip tray 161 is picked up by the suction tool 162 and reversed (step S50).
  • the transfer tool 163 receives the chip 1 from the suction tool 162, sits at the position A !, and transfers it to the chip slider 170 (step S51).
  • chip slider 170 holds chip 1 by suction, moves from position A to position B, and stops. Stop (step S52).
  • the support base 193 of the transport chip recognition unit 190 moves forward to a position where the upper CCD camera 191 and the lower CCD camera 192 can recognize the chip 1 on the chip slider 170 (step S53).
  • the upper CCD camera 191 recognizes the second corner 13 of the chip 1. Then, the first corner portion 5, the alignment mark 6 and the bump 2 are recognized by the lower CCD force lens 192 (step S54). Then, the positional relationship (x3 + ⁇ 3, y3 + Ay3) between the alignment mark 6 and the actual bump 2 shown in FIG. 10A is obtained (step S55).
  • step S56 the support base 193 moves in the horizontal direction, and the upper CCD camera 192 and the lower CCD camera are retracted to the standby position.
  • step S57 it is confirmed that the chip slider 170 force bonding head 181 is in the raised position, and the chip 1 is moved from position B to position C in a state where the chip 1 is sucked and held.
  • the bonding head 181 descends to a predetermined position, and after confirming the release of the suction holding of the chip 1 of the chip slider 170, the bonding head 181 sucks the chip 1.
  • the chip 1 is held and transferred (step S58). Further, the substrate 7 is conveyed to the bonding stage 182 and held by suction.
  • the tip slider 170 also moves the position C force to the position A, and prepares for receiving the next tip 1 (step S59).
  • step S60 the two-field camera 183 moves forward between the chip 1 and the substrate 7 to recognize the bump 2 of the chip 1, the alignment mark 15 of the substrate 7, and the electrode 8. Then, the positional relationship ( ⁇ 4 + ⁇ 4, y4 + Ay4) between the alignment mark 15 and the electrode 8 shown in FIG. 10B is obtained (step S60).
  • step S61 alignment is performed by the bonding stage 182 operating in the x, y, and ⁇ directions based on the data of the bump 2 of the chip 1 and the electrode 8 of the substrate 7 (step S61).
  • step S62 when alignment is completed, the bonding head 181 is lowered, and the bump 2 of the chip 1 and the electrode 8 of the substrate 7 are bonded. Pressurization and heating are performed for a predetermined time to complete the bonding, and the bonding head 181 is raised (step S62).
  • the two-field camera 183 moves forward above the substrate 7 and recognizes the image of the first corner 5 or the second corner 13 of the chip 1 and the alignment mark 15 of the substrate 7 (step S63).
  • the coordinates of the first corner 5 or the second corner 13 are selected based on the positional relationship of the corner obtained in step S54.
  • the positional relationship between the bump 2 and the electrode 8 from the alignment mark 15 on the substrate 7 is calculated (step S64).
  • the displacement amount of the bump 2 with respect to the electrode 8 is calculated.
  • step S65 the preset mounting deviation range is compared with the positional relationship obtained in step S64 (step S65). If the mounting deviation found in step S64 is within the preset allowable range, it is determined as non-defective (step S66), and if it exceeds the allowable range, it is determined as mounting failure (step S67).
  • the positional relationship between the bump 2 of the chip 1 and the electrode 8 of the substrate 7 can be obtained, so that even if the positional deviation of the bump 2 or the positional deviation of the electrode 8 occurs, the flip is performed with high accuracy. Mounting deviation inspection after chip mounting can be performed.
  • the flip chip mounting misalignment inspection method and mounting apparatus according to the present invention can simplify the apparatus and greatly reduce the process, and therefore can be applied to any field where bonding of the chip to the substrate is required. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Operations Research (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

明 細 書
フリップチップ実装ずれ検査方法および実装装置
技術分野
[0001] 本発明は、半導体チップと回路基板のフリップチップ実装に関するものであり、実装 後の実装位置ずれ検査を X線撮像装置や赤外線顕微鏡などのベアチップ内部の観 察手段を用いずに、画像処理で外観測定のみで実装ずれを簡単に測定できるフリツ プチップ実装ずれ検査方法および実装装置に関する。
背景技術
[0002] 従来のフリップチップ実装後の実装ずれの検査は、ァライメントマーク面が基板の 回路面に接するために外観からの検査は不可能であった。そのため、フリップチップ の実装ずれの検査を行うには、 X線撮像装置や赤外線顕微鏡などで測定波をフリツ プチップを透過させて、フリップチップのバンプ位置と基板のパターンとの位置関係 を目視または画像処理により測定する検査方法が行われて!/、た (例えば特許文献 1)
[0003] 一方、電子回路の実装では電極接合部に不良があると、電子回路が正常に動作し ないので、実装後、できるだけ早く実装位置ずれ検査を実施する方が良い。実装検 查が後工程になるほど、実装不良による製品の修理や廃棄が問題となる。し力しなが ら、 X線撮像装置や赤外線顕微鏡などは高価であり、通常、検査はオフラインでサン プリングされた実装基板に対して行われている。そして、フリップチップ実装直後に実 装位置の検査をできるように、 X線撮像装置や赤外線顕微鏡を実装装置に取り付け ようとしても、設備が複雑になり、また、タクトタイムがアップする問題があった。
特許文献 1:特開平 11― 183406号公報
発明の開示
発明が解決しょうとする課題
[0004] そこで本発明の課題は、上記問題点に鑑み、高価な X線撮像装置や赤外線顕微 鏡を用いることなぐフリップチップと基板の実装後の実装位置ずれ検査を可能とす る、フリップチップ実装ずれ検査方法および実装装置を提供することにある。 課題を解決するための手段
[0005] 上記課題を解決するために、本発明にお ヽては以下のフリップチップ実装ずれ検 查方法および実装装置が提供される。
[0006] (1)まず、半導体チップを回路基板に実装するフリップチップ実装において、フリップ チップ実装前に、フリップチップのァライメントマークと、フリップチップのァライメントマ ークを認識する方向側から見たフリップチップの平面の第 1の角部とを第 1の CCD力 メラで画像処理によって認識することにより、ァライメントマークと前記フリップチップの 第 1の角部との位置関係を計測し、フリップチップ実装後に、フリップチップの回路面 と反対側の方向より第 2の CCDカメラで、基板のァライメントマークと、前記フリツプチ ップの第 1の角部と同 f立置の第 2の角部とを画像処理によって認識することにより、 前記基板のァライメントマークと前記第 2の角部との位置関係を計測して、第 1の角部 の基準点と第 2の角部の基準点を合わせることで、基板のァライメントマークの位置と フリップチップのァライメントマークの位置の相対位置関係を計算し、所定の実装位 置関係からのずれ量を計算することにより、フリップチップ実装後の実装ずれの良否 判定を行うことを特徴とするフリップチップ実装ずれ検査方法が提供される。
[0007] (2)また、上記(1)の方法において、第 1の CCDカメラと第 2の CCDカメラが位置補 正用手段を兼ねていることを特徴とするフリップチップ実装ずれ検査方法が提供され る。
[0008] (3)また、半導体チップを回路基板に実装するフリップチップ実装において、透明部 材にてチップ保持板を構成するチップスライダにフリップチップを吸着保持し、フリツ プチップ実装前に、フリップチップの上面の第 2の角部を、フリップチップの上側に配 置した上 CCDカメラで画像認識するとともに、フリップチップの下面のァライメントマ 一クと第 1の角部とを、フリップチップの下側に配置した下 CCDカメラで画像認識し、 フリップチップ実装後に、 2視野のカメラで基板のァライメントマークと実装されたフリツ プチップの角部を画像認識し、前記第 1の角部と前記第 2の角部の位置関係から 2視 野のカメラで画像認識された角部の位置データを第 1の角部または第 2の角部として 選択し、基板のァライメントマークの位置とフリップチップの角部の位置データとの位 置関係を計測して、基板のァライメントマークの位置とフリップチップのァライメントマ ークの位置の相対位置関係を計算し、所定の実装位置力 のずれ量を計算すること により、フリップチップ実装後の実装ずれの良否判定を行うことを特徴とするフリップ チップ実装ずれ検査方法が提供される。
[0009] (4)また、上記(3)の方法にお!、て、下 CCDカメラでフリップチップのバンプ位置を 画像認識し、 2視野のカメラで基板の電極位置を画像認識し、基板のァライメントマー タカ のフリップチップのバンプと基板の電極の相対位置関係を計算して、フリツプチ ップのバンプと基板の電極の実装ずれの良否判定を行うことを特徴とするフリツプチ ップ実装ずれ検査方法が提供される。
[0010] (5)また、半導体チップを回路基板に実装するフリップチップ実装装置において、フリ ップチップ実装前に、フリップチップのァライメントマークと、フリップチップのァライメン トマークを認識する方向側から見たフリップチップの平面の第 1の角部とを第 1の CC Dカメラで画像処理によって認識することにより、ァライメントマークと前記フリップチッ プの第 1の角部との位置関係を計測するフリップチップ実装前計測手段と、フリップ チップ実装後に、フリップチップの回路面と反対側の方向より第 2の CCDカメラで、基 板のァライメントマークと、前記フリップチップの第 1の角部と同じ位置の第 2の角部と を画像処理によって認識することにより、前記基板のァライメントマークと前記第 2の 角部との位置関係を計測するフリップチップ実装後計測手段と、第 1の角部の基準点 と第 2の角部の基準点を合わせることで、基板のァライメントマークの位置とフリツプチ ップのァライメントマークの位置の相対位置関係を計算し、所定の実装位置関係から のずれ量を計算することにより、フリップチップ実装後の実装ずれの良否判定を行う 演算手段とを有することを特徴とするフリップチップ実装装置が提供される。
[0011] (6)また、上記 (4)の装置において、第 1の CCDカメラと第 2の CCDカメラが位置補 正用手段を兼ねていることを特徴とするフリップチップ実装装置が提供される。
[0012] (7)また、半導体チップを回路基板に実装するフリップチップ実装装置において、透 明部材にてチップ保持板を構成するチップスライダにフリップチップを吸着保持する チップ保持手段と、フリップチップ実装前に、フリップチップの上面の第 2の角部を、 フリップチップの上側に配置した上 CCDカメラで画像認識するとともに、フリップチッ プの下面のァライメントマークと第 1の角部とを、フリップチップの下側に配置した下 C CDカメラで画像認識するフリップチップ実装前認識手段と、フリップチップ実装後に 、 2視野のカメラで基板のァライメントマークと実装されたフリップチップの角部を画像 認識するフリップチップ実装後認識手段と、前記第 1の角部と前記第 2の角部の位置 関係から 2視野のカメラで画像認識された角部の位置データを第 1の角部または第 2 の角部として選択し、基板のァライメントマークの位置とフリップチップの角部の位置 データとの位置関係を計測して、基板のァライメントマークの位置とフリップチップの ァライメントマークの位置の相対位置関係を計算し、所定の実装位置力 のずれ量を 計算することにより、フリップチップ実装後の実装ずれの良否判定を行う演算手段と を有することを特徴とするフリップチップ実装装置が提供される。
[0013] (8)また、上記(7)の装置において、下 CCDカメラがフリップチップのバンプ位置を 画像認識し、 2視野のカメラが基板の電極位置を画像認識し、前記演算手段が、基 板のァライメントマーク力ものフリップチップのバンプと基板の電極の相対位置関係を 計算して、フリップチップのバンプと基板の電極の実装ずれの良否判定を行うことを 特徴とするフリップチップ実装装置が提供される。
[0014] なお、上記(5)または(7)の装置において、フリップチップ実装前計測手段、フリツ プチップ実装後計測手段、または、フリップチップ実装前認識手段、フリップチップ実 装後認識手段は、演算手段と別の装置である必要はなぐそれら計測手段や認識手 段の機能の一部が演算手段によって果たされてもよい。前記の装置は、あくまで技術 思想として規定したものである。
発明の効果
[0015] 上記(1)の発明によれば、実装直後に全ての基板を検査でき歩留まりが上がる。フ リップチップと基板の実装後にオンラインで検査ができるので、基板毎に検査データ を管理できるようになり、基板不良などの製品トレースが容易にできるようになる。また 、前工程への検査データのフィードバックなどに活用でき、信頼性の高い実装ができ る。
[0016] 上記(2)の発明によれば、位置補正と同時にチップの角部の画像認識ができるの で、タクトタイムを短縮することができ、生産性が上がる。
[0017] 上記(3)の発明によれば、フリップチップのァライメントマークと、フリップチップの上 面の角部と、フリップチップの下面の角部を正確に認識し、フリップチップの基板への 接合後の位置データと比較、照合して位置関係を求めるので、高精度にフリップチッ プ実装後の実装ずれ検査を行うことができる。
[0018] 上記 (4)の発明によれば、フリップチップのバンプと基板の電極の位置関係を求め ることができるので、バンプの位置ずれや電極の位置ずれが発生しても、高精度にフ リップチップ実装後の実装ずれ検査を行うことができる。
[0019] 上記(5)の発明によれば、第 1の CCDカメラで実装前のフリップチップを画像認識 し、第 2の CCDカメラでフリップチップ実装後の基板を画像認識することで、フリップ チップの実装ずれが検査できるので、大が力りな設備が不要となる。
[0020] 上記(6)の発明によれば、従来の実装装置で用いている実装時の位置補正用 CC
Dカメラを検査用に使用できるので設備を追加する必要がな!、。
[0021] 上記(7)の発明によれば、透明部材でフリップチップ保持板を構成するチップスラ イダを用いて、フリップチップの上面の角部と、フリップチップの下面の角部が認識で きるので、フリップチップの角部に割れ (クラック)による凹凸部が発生していても、高 精度にフリップチップ実装後の実装ずれ検査を行うことができる。
[0022] 上記(8)の発明によれば、チップのバンプと基板の電極の位置関係を求めることが できるので、バンプの位置ずれや電極の位置ずれが発生しても、高精度にフリツプチ ップ実装後の実装ずれ検査を行うことができる。
図面の簡単な説明
[0023] [図 1]本発明の第 1の実施の形態に係る実装装置の要部正面図である。
[図 2]チップのバンプ面を第 1の CCDカメラもしくは 2視野カメラで認識したときの画像 を示す図である。
[図 3]実装後の基板を第 2の CCDカメラもしくは 2視野カメラで認識したときの画像を 示す図である。
[図 4]第 1の実施の形態の実装装置における検査方法を説明するためのフロチャート である。
[図 5]本発明の第 2の実施の形態に係る検査方法を説明するためのフロチャートであ る。 圆 6]本発明の第 3の実施の形態に係る実装装置の要部正面図である。
圆 7]第 3の実施の形態におけるチップスライダと上下 CCDカメラを説明する斜視図 である。
圆 8]第 3の実施の形態の実装装置における検査方法を説明するためのフロチャート である。
圆 9]第 3の実施の形態における上下 CCDカメラの撮像状態を説明する断面図であ る。
圆 10]本発明の第 4の実施の形態に係る実装装置におけるチップのバンプと基板の 電極の位置を説明する要部平面図である。
圆 11]第 4の実施の形態の実装装置における検査方法を説明するためのフロチャ一 トである。
符号の説明
1 チップ
2 ノ ンプ
3 チップトレイ
4 第 1の CCDカメラ
5 第 1の角部
6 ァライメントマーク
7 基板
8 電極
9 ボンディングステージ
10 ボンティングヘッド、
11 2視野カメラ
12 第 2の CCDカメラ
13 第 2の角部
14 基板トレィ
15 ァライメントマーク
100 実装装置 110 チップ認識部
120 接合部
130 実装検査部
150 実装装置
160 チップ供給器
161 チップトレイ
162 吸着ツール
163 移載ツール
170 チップスライダ
171 固定レール
172 平板
173 スライド板
174 穴部
175 上ガラス
176 下ガラス
177 孔
180 ©C口 W
181 ボンティングへ、ソド、
182 ボンディングステージ
183 2視野カメラ
190 搬送チップ認識部
191 上 CCDカメラ
192 下 CCDカメラ
193 支持台
200 演算手段
発明を実施するための最良の形態
<第 1の実施の形態 >
以下に、本発明の第 1の実施の形態について、図面を参照して説明する。図 1はフ リップチップ実装ずれを検査できる実装装置 100の要部正面図である。実装装置 10 0は、チップ認識部 110、接合部 120および実装検査部 130から構成されている。チ ップ認識部 110は、チップトレイ 3と第 1の CCDカメラ 4とを有し、バンプ 2付きのフリツ プチップ(以下、単に「チップ」と呼ぶ。) 1がチップトレイ 3に収納されている。チップト レイ 3の上方より第 1の CCDカメラ 4力 チップ 1のバンプ 2面に刻印されているァライ メントマーク 6 (図 2に図示)および第 1の角部 5を認識できるようになつて 、る。チップ 1の第 1の角部 5は、チップ 1を四角形の立体 (以下、立方体と称する。)として見たと きのバンプ 2面側の一つの角を意味する。そして、第 1の角部 5は、図 2に示すように 、ァライメントマーク 6の近傍に位置する。図 2に、第 1の CCDカメラ 4から撮像した際 の、チップ 1、バンプ 2、ァライメントマーク 6および第 1の角部 5の位置関係を示す。第 1の角部 5とァライメントマーク 6との位置関係を xl、ylとする。
[0026] 実装装置 100の接合部は、チップ 1を吸着保持するボンディングヘッド 10と、基板 7 を吸着保持するボンディングステージ 9と、チップ 1と基板 7のそれぞれのァライメント マーク 6、 15 (基板 7のァライメントマーク 15は、図 3に示す。)を認識する 2視野カメラ 11から構成されている。ボンディングヘッド 10は昇降可能になっている。ボンディン グステージ 9は x、 y、 Θ方向に移動可能になっている。 2視野カメラ 11は、ボンディン グヘッド 10とボンディングステージ 9の間に、チップ 1と基板 7のァライメントマーク 6、 1 5を認識するために挿入できるよう、進退可能になって 、る。
[0027] 実装装置 100の実装検査部 130は、チップ 1が実装された基板 7を収納する基板ト レイ 14と、基板トレィ 14の上方に配置された第 2の CCDカメラ 12から構成されている 。図 3に、第 2の CCDカメラ 12から基板 7を撮像した際の、チップ 1、基板 7および基 板 7に刻印されているァライメントマーク 15の位置関係を示す。チップ 1のバンプ 2面 の反対の面の、第 1の角部 5に対応する立方体の対向部を第 2の角部 13とする。第 1 の角部 5と第 2の角部 13は、第 2の CCDカメラ 12から撮像した場合、チップ 1のダイ シング時 (ウェハ上で切断する際)に切断面がチップ 1のバンプ面に対して垂直に形 成されると、同じ座標点となる。第 2の角部 13とァライメントマーク 15との位置関係を X 2、 y2とする。
[0028] 実装装置 100のチップ認識部 110から接合部 120へのチップ 1の搬送は、図示し て 、な 、チップ吸着反転ツールを用 V、て行われるようになって 、る。接合部 120から 実装検査部 130への基板 7の搬送は、図示して ヽな ヽ基板搬送ツールで行われるよ うになつている。
[0029] 次に、図 4に示す動作フロチャートを用いて第 1の実施の形態における検査方法を 説明する。まず、チップ認識部 110において、第 1の CCDカメラ 4でチップ 1の第 1の 角部 5とァライメントマーク 6を画像処理する (ステップ Sl)。
[0030] 次に、第 1の角部 5とァライメントマーク 6の相対位置関係を計算する (ステップ S2)
[0031] 次に、チップ吸着反転ツールを用いて、チップトレイ 3からボンディングヘッド 10に チップが搬送される。ボンディングヘッド 10はチップ 1を吸着保持する。また、基板 7 がボンディングステージ 9に搬送され吸着保持される (ステップ S3)。
[0032] 次に、 2視野カメラ 11がチップ 1と基板 7の間に前進し、チップ 1のァライメントマーク
6と基板 7のァライメントマーク 15を認識する。チップ 1と基板 7のァライメントマーク 6、
15のデータに基づいてボンディングステージ 9が x、 y、 Θ方向に動作し、ァライメント が行われる(ステップ S4)。
[0033] 次に、ァライメントが完了すると、ボンディングヘッド 10が下降し、チップ 1のバンプ 2 と基板 7の電極 8が接合される。所定の時間、加圧と加熱が行われて接合が完了し、 ボンディングヘッド 10が上昇する(ステップ S5)。
[0034] 次に、チップ 1が接合された基板 7を、基板搬送ツールが実装検査部の基板トレィ 1
4に搬送する(ステップ S6)。
[0035] 次に、第 2の CCDカメラ 12がチップ 1の第 2の角部 13と基板 7のァライメントマーク 1
5を画像認識する (ステップ S7)。
[0036] 次に、第 2の角部 13と基板 7のァライメントマーク 15の位置関係を計算する (ステツ プ S8)。
[0037] 次に、チップ 1のバンプ 2面側に刻印されているァライメントマーク 6と基板 7のァライ メントマーク 15の位置関係を計算する (ステップ S9)。
[0038] 次に、予め設定されている実装ずれ範囲とステップ S9で求めた位置関係とを比較 する (ステップ 10)。ステップ S9で求めた実装ずれ量が予め設定されている許容範囲 以内の場合、良品と判定し (ステップ SI 1)、許容範囲を超える場合には実装不良と 判定する (ステップ S 12)。
[0039] このように、フリップチップ実装後の実装ずれ検査において、 X線撮像装置や赤外 線顕微鏡などを用いずに、 CCDカメラを用いてオンラインで実装ずれを測定するの で、大が力りな設備が不要となり、従来の設備にチップ認識用 CCDカメラと実装検査 用 CCDカメラを追加するだけで所望の検査が可能になる。
[0040] <第 2の実施の形態 >
次に、本発明の第 2の実施の形態について説明する。第 2の実施の形態は、図 1に おけるチップ認識部 110および実装検査部 130を装備せずに、接合部 120のみでフ リップチップ実装後の実装ずれを測定する検査方法および実装装置である。図 1の 接合部 120に図示される 2視野カメラ 11を、実装前において、チップ 1と基板 7の位 置補正用手段に用いることと、チップ 1の第 1の角部 5を認識することに、兼用して使 用する。従って、実装前に 2視野カメラ 11で得られる画像情報は図 2と同じになる。そ して、実装後に、基板 7の上方に 2視野カメラ 11を前進させ、図 3と同じ画像情報を得 るようにする。
[0041] 次に、第 2の実施の形態の検査方法について図 5のフロチャートを用いて説明する 。まず、チップトレイ 3に収納されているチップ 1が、図示していないチップ吸着反転ッ ールによってボンディングヘッド 10に搬送され吸着保持される。また、図示していな い基板搬送ツールによって基板 7がボンディングステージ 9に搬送され吸着保持され る(ステップ S 13)。
[0042] 次に、ステップ S14において、チップ 1と基板 7の間に 2視野カメラ 11が前進し、チッ プ 1のァライメントマーク 6と基板 7のァライメントマーク 15を画像認識し、ボンディング ヘッド 10とボンディングステージ 9の位置補正を行う。そして、チップ 1の第 1の角部 5 も画像認識する。その後、 2視野カメラ 11は待機位置に後退する。
[0043] 次に、チップ 1の第 1の角部 5とァライメントマーク 6の位置関係を計算し、 xl, ylの データを得る(ステップ S 15)。
[0044] 次に、ボンディングヘッド 10が下降しチップ 1のバンプ 2と基板 7の電極 8が接合さ れる。所定の時間、加圧および加熱が行われ接合が完了し、ボンディングヘッド 10が 上昇する (ステップ S I 6)。
[0045] 次に、基板 7の上方に 2視野カメラ 11が前進し、チップ 1の第 2の角部 13と基板 7の ァライメントマーク 15を画像認識する (ステップ S 17)。
[0046] 次に、第 2の角部 13と基板 7のァライメントマーク 15の位置関係を計算する (ステツ プ S 18)。
[0047] 次に、チップ 1のバンプ 2面側に刻印されているァライメントマーク 6と基板 7のァライ メントマーク 15の位置関係を計算する (ステップ S 19)。
[0048] 次に、予め設定されている実装ずれ範囲とステップ S 19で求めた位置関係とを比 較する (ステップ S 20)。ステップ S 19で求めた実装ずれが予め設定されている許容 範囲以内の場合、良品と判定し (ステップ S21)、許容範囲を超える場合には実装不 良と判定する (ステップ S22)。
[0049] このように、第 1の実施の形態で用いた第 1の CCDカメラ 4および第 2の CCDカメラ 12の代わりに、位置補正用の 2視野カメラ 11を兼用して使用するので、タクトタイムを 短縮することができ、生産性が上がる。また、新たに設備を追加する必要がない。
[0050] <第 3の実施の形態 >
次に、本発明の第 3の実施の形態について図 6を用いて説明する。図 6は、第 3の 実施の形態に係る実装装置 150の要部正面図である。実装装置 150は、大きく分け てチップ 1を供給するチップ供給器 160と、チップ供給器 160から接合部 180へチッ プ 1を搬送するチップスライダ 170と、基板 7の電極 8にチップ 1のバンプ 2を接合する 接合部 180と、チップスライダ 170上のチップ 1のァライメントマーク 6を認識する搬送 チップ認識部 190と、実装ずれの良否判定をする演算手段 200から構成されている
[0051] チップ供給器 160は、チップトレイ 161に一定間隔でフェイスアップ状態 (チップ 1の バンプ面が上向きになる状態)で整列配置された複数のチップ 1を一つずつ吸着保 持し旋回させる伸縮自在で旋回可能な吸着ツール 162と、吸着ツール 162で反転し たチップ 1を水平方向に移動させチップスライダ 170にチップ 1をフェイスダウン状態 ( チップ 1のバンプ 2面が下向きになる状態)で受け渡す移載機構 163とから構成され ている。 [0052] チップスライダ 170は、チップ供給器 160と接合部 180の間に配設された固定レー ル 171に沿って、往復移動可能になっている。チップスライダ 170は、チップ供給器 1 60からのチップ受け渡し位置(図 6の位置 A)と、搬送チップ認識部 190の認識位置( 図 6の位置 B)と、接合部 180のチップ受け渡し位置(図 6の位置 C)で、それぞれ停 止する。
[0053] チップスライダ 170は、図 7に示すように L字型の板で、水平 (X、 Y)方向に延びる 平板 172と上下 (Z)方向のスライド板 173から構成されている。平板 172には、穴部 1 74が形成されており、穴部 174の上部および下部にそれぞれ上側ガラス 175と下側 ガラス 176がシールされて取り付けられている。上側ガラス 175にはチップ 1の吸着用 の孔 177が形成されている。上側ガラス 175と、下側ガラス 176と、穴部 174とから形 成される吸気室は、図示しないチューブにより吸引ポンプに連通接続されていて、チ ップスライダ 170に受け渡されたチップ 1を吸着保持して移載できるようになって 、る
[0054] 搬送チップ認識部 190は、上 CCDカメラ 191と、下 CCDカメラ 192と、両カメラを支 持する支持台 193から構成されている。支持台 193は、チップスライダ 170のレール 171方向に移動可能になっており、チップスライダ 170の位置 Bでの停止にあわせて チップスライダ 170側に移動し、両カメラでチップ 1のァライメントマーク 6と第 1の角部 5および第 2の角部 13を認識する。
[0055] 接合部 180は、チップ 1を吸着保持するボンディングヘッド 181と、基板 7を吸着保 持するボンディングステージ 182と、チップ 1と基板 7のそれぞれのァライメントマーク 6、 15を認識する 2視野カメラ 183から構成されている。ボンディングヘッド 181は昇 降可能になっている。ボンディングステージ 182は x、 y、 Θ方向(水平方向および回 転方向)に移動可能になっている。 2視野カメラ 183は、ボンディングヘッド 181とボン デイングステージ 182の間に、チップ 1と基板 7のァライメントマーク 6、 15を認識する ために挿入できるよう、進退可能になっている。
[0056] 演算手段 200は、搬送チップ認識部 190の上 CCDカメラ 191と下 CCDカメラ 192 で画像認識されたデータと、接合部 180の 2視野カメラ 183で画像認識されたデータ から、実装ずれの良否判定を行う。 [0057] 次に、実装装置 150における検査方法を、図 8の動作フロチャートを用いて説明す る。
まず、チップトレイ 161に収納されているチップ 1が、吸着ツール 162にピックアップ され反転する (ステップ S30)。
[0058] 次に、移載ツール 163がチップ 1を吸着ツール 162から受け取り、位置 Aに在席し て!、るチップスライダ 170に移載する(ステップ S 31)。
[0059] 次に、チップスライダ 170はチップ 1を吸着保持し、位置 A力も位置 Bに移動して停 止する(ステップ S32)。
[0060] 次に、搬送チップ認識部 190の支持台 193が、チップスライダ 170上のチップ 1を 上 CCDカメラ 191および下 CCDカメラ 192で認識できる位置まで前進する(ステップ
S33)。
[0061] 次に、上 CCDカメラ 191でチップ 1の第 2の角部 13を認識する。そして、下 CCD力 メラ 192で第 1の角部 5とァライメントマーク 6を認識する (ステップ S34)。上 CCDカメ ラ 191と下 CCDカメラ 192とチップスライダ 170の位置は、精度良く設定されて 、る。 第 1の実施の形態ではチップトレイ 3の加工精度が第 1の CCDカメラで認識した画像 の精度に影響を与えていた力 この第 3の実施の形態においては、上下 CCDカメラ の取り付け精度を所定値以上に構成することができるため、第 1の実施の形態に比 ベ高精度に画像認識を行うことが可能となる。
[0062] また、チップ 1のダイシング面 (切断面)は、図 9の (A)、 (B)に示すような端面の細 かい欠け、割れ (クラック)による凹凸部が発生しており、チップ 1のバンプ 2の面に対 して垂直な平面としてカ卩ェされていない。このため、一方向力 のカメラによる角部の 認識では、チップ 1の厚みによる焦点ボケが発生し、正確に角部の認識が行われな い。しかし、上下 2方向力もチップ 1の角部を認識することにより、高精度にチップ 1の ァライメントマーク 6と第 1の角部 5 (チップ 1のバンプ面のエッジ)と第 2の角部 13 (チ ップ 1のバンプと反対側の面のエッジ)の認識が可能となる。
[0063] 次に、支持台 193が水平方向に移動し、上 CCDカメラ 192と下 CCDカメラが待機 位置に退避する (ステップ S35)。
[0064] 次に、チップスライダ 170力 ボンディングヘッド 181が上昇位置にあることを確認し 、チップ 1を吸着保持した状態にて位置 B力も位置 Cに移動する (ステップ S36)。
[0065] 次に、チップスライダ 170が位置 Cに到着すると、ボンディングヘッド 181が所定位 置まで下降し、チップスライダ 170のチップ 1の吸着保持の解除を確認後、ボンディン グヘッド 181がチップ 1を吸着保持し、チップ 1の受け渡しが行われる(ステップ S37) 。また、基板 7がボンディングステージ 182に搬送され吸着保持される。
[0066] 次に、チップスライダ 170が位置 C力も位置 Aに移動し、次のチップ 1の受け取りに 備える(ステップ S 38)。
[0067] 次に、 2視野カメラ 183がチップ 1と基板 7の間に前進し、チップ 1のァライメントマ一 ク 6と基板 7のァライメントマーク 15を認識する。チップ 1と基板 7のァライメントマーク 6 、 15のデータに基づいてボンディングステージ 182が x、y、 0方向に動作しァラィメ ントが行われる(ステップ S39)。
[0068] 次に、ァライメントが完了すると、ボンディングヘッド 181が下降し、チップ 1のバンプ 2と基板 7の電極 8が接合される。所定の時間、加圧と加熱が行われて接合が完了し 、ボンディングヘッド 181が上昇する(ステップ S40)。
[0069] 次に、基板 7の上方に 2視野カメラ 183が前進し、チップ 1の第 1の角部 5もしくは第 2の角部 13と、基板 7のァライメントマーク 15を画像認識する (ステップ S41)。
[0070] 次に、上 CCDカメラ 191および下 CCDカメラ 192で得られた画像データから、チッ プ 1における第 1の角部 5および第 2の角部 13の位置関係(上下関係)を認識する。 そして、 2視野カメラ 183で得られたチップ 1の角部の画像データの位置を第 1の角 部 5とするか第 2の角部 13とするかを選択する (ステップ S42)。例えば、図 9の (A)の ような場合は、 2視野カメラ 183で得られたチップ 1の角部の画像データの位置を第 1 の角部 5 (チップ 1のバンプ面のエッジ)とする。また、図 9の(B)のような場合は、第 2 の角部 13 (チップ 1のバンプの反対側の面のエッジ)を選択する。
[0071] 次に、選択された角部の位置データと基板 7のァライメントマーク 15の位置関係を 計算する(ステップ S43)。上 CCDカメラ 191および下 CCDカメラ 192では、チップ 1 のァライメントマーク 6と、第 1の角部 5と、第 2の角部 13のそれぞれの画像認識が行 われ、同一座標系での位置関係が求められている。この座標系に 2視野カメラ 183で 得られた選択されたチップ 1の角部の位置データおよび基板 7のァライメントマーク 1 5の位置データを展開し、位置関係を計算する (ステップ S44)。
[0072] 次に、予め設定されている実装ずれ範囲とステップ S44で求めた位置関係とを比 較する (ステップ S45)。ステップ S44で求めた実装ずれが予め設定されている許容 範囲以内の場合、良品と判定し (ステップ S46)、許容範囲を超える場合には実装不 良と判定する (ステップ S47)。
[0073] このように、搬送チップ認識部 190においてチップ 1のァライメントマーク 6と、第 1の 角部 5と、第 2の角部 13を正確に認識し、チップ 1の基板 7への接合後の位置データ と比較、照合して位置関係を求めるので、高精度にフリップチップ実装後の実装ずれ 検査を行うことができる。
[0074] <第 4の実施の形態 >
次に、本発明の第 4の実施の形態について説明する。第 4の実施の形態では、第 3 の実施の形態と同様の実装装置 150を用いる。第 4の実施の形態では、搬送チップ 認識部 190の下 CCDカメラ力 チップ 1のァライメントマーク 6を認識するのではなぐ バンプ 2の位置を認識する。そして、接合部 180の 2視野カメラ 183は、基板 7のァラ ィメントマーク 15を認識する際、電極 8の位置も認識する。
[0075] 図 10の (A)に下 CCDカメラ 192でチップ 1を認識した際の概略画像を示す。点線 で正規のバンプ 2の位置 RBP (x3, y3)を示し、実線で実際のバンプ 2の位置 ABP ( Δ χ3, A y3)を示している。バンプ 2の位置ずれは、バンプ形成工程の精度に起因し て発生している。
[0076] 図 10の(B)に 2視野カメラ 183で基板 7を認識した際の概略画像を示す。点線で正 規の電極 8の位置 REP (x4, y4)を示し、実線で実際の電極 8の位置 ΑΕΡ ( Δ χ4, Δ γ4)を示している。電極 8の位置ずれは、基板 7の伸びなどにより発生している。
[0077] このように、バンプ 2または電極 8のずれが発生した場合の実装検査方法にっ 、て 、図 11のフロチャートを用いて説明する。まず、チップトレイ 161に収納されているチ ップ 1が、吸着ツール 162にピックアップされ反転する(ステップ S50)。
[0078] 次に、移載ツール 163がチップ 1を吸着ツール 162から受け取り、位置 Aに在席し て!、るチップスライダ 170に移載する(ステップ S 51)。
[0079] 次に、チップスライダ 170はチップ 1を吸着保持し、位置 Aから位置 Bに移動して停 止する(ステップ S 52)。
[0080] 次に、搬送チップ認識部 190の支持台 193が、チップスライダ 170上のチップ 1を 上 CCDカメラ 191および下 CCDカメラ 192で認識できる位置まで前進する(ステップ S53)。
[0081] 次に、上 CCDカメラ 191でチップ 1の第 2の角部 13を認識する。そして、下 CCD力 メラ 192で第 1の角部 5とァライメントマーク 6とバンプ 2を認識する (ステップ S54)。そ して、図 10の (A)に示した、ァライメントマーク 6と実際のバンプ 2の位置関係 (x3 + Δ χ3, y3+ Ay3)を求める(ステップ S55)。
[0082] 次に、支持台 193が水平方向に移動し、上 CCDカメラ 192と下 CCDカメラが待機 位置に退避する (ステップ S56)。
[0083] 次に、チップスライダ 170力 ボンディングヘッド 181が上昇位置あることを確認し、 チップ 1を吸着保持した状態で位置 Bから位置 Cに移動する (ステップ S57)。
[0084] 次に、チップスライダ 170が位置 Cに到着すると、ボンディングヘッド 181が所定位 置まで下降し、チップスライダ 170のチップ 1の吸着保持の解除を確認後、ボンディン グヘッド 181がチップ 1を吸着保持し、チップ 1の受け渡しが行われる(ステップ S58) 。また、基板 7がボンディングステージ 182に搬送され吸着保持される。
[0085] 次に、チップスライダ 170が位置 C力も位置 Aに移動し、次のチップ 1の受け取りに 備える(ステップ S59)。
[0086] 次に、 2視野カメラ 183がチップ 1と基板 7の間に前進し、チップ 1のバンプ 2と基板 7 のァライメントマーク 15と電極 8を認識する。そして、図 10の(B)に示したァライメント マーク 15と電極 8の位置関係(χ4+ Δ χ4, y4+ Ay4)を求める(ステップ S60)。
[0087] 次に、チップ 1のバンプ 2と基板 7の電極 8のデータに基づいてボンディングステー ジ 182が x、 y、 Θ方向に動作しァライメントが行われる(ステップ S61)。
[0088] 次に、ァライメントが完了すると、ボンディングヘッド 181が下降し、チップ 1のバンプ 2と基板 7の電極 8が接合される。所定の時間、加圧と加熱が行われて接合が完了し 、ボンディングヘッド 181が上昇する(ステップ S62)。
[0089] 次に、基板 7の上方に 2視野カメラ 183が前進し、チップ 1の第 1の角部 5もしくは第 2の角部 13と、基板 7のァライメントマーク 15を画像認識する (ステップ S63)。 [0090] 次に、ステップ S54で得られた角部の位置関係に基づき、第 1の角部 5または第 2 の角部 13の座標を選択する。そして、基板 7のァライメントマーク 15からのバンプ 2と 電極 8の位置関係を計算する(ステップ S64)。そして、電極 8に対するバンプ 2のず れ量を計算する。
[0091] 次に、予め設定されている実装ずれ範囲とステップ S64で求めた位置関係とを比 較する (ステップ S65)。ステップ S64で求めた実装ずれが予め設定されている許容 範囲以内の場合、良品と判定し (ステップ S66)、許容範囲を超える場合には実装不 良と判定する (ステップ S67)。
[0092] このように、チップ 1のバンプ 2と基板 7の電極 8の位置関係を求めることができるの で、バンプ 2の位置ずれや電極 8の位置ずれが発生しても、高精度にフリップチップ 実装後の実装ずれ検査を行うことができる。
産業上の利用可能性
[0093] 本発明に係るフリップチップ実装ずれ検査方法および実装装置は、装置を簡素化 できるとともに工程を大幅に短縮できるので、チップの基板への接合が要求されるあ らゆる分野に適用することができる。

Claims

請求の範囲
[1] 半導体チップを回路基板に実装するフリップチップ実装において、フリップチップ実 装前に、フリップチップのァライメントマークと、フリップチップのァライメントマークを認 識する方向側から見たフリップチップの平面の第 1の角部とを第 1の CCDカメラで画 像処理によって認識することにより、ァライメントマークと前記フリップチップの第 1の 角部との位置関係を計測し、フリップチップ実装後に、フリップチップの回路面と反対 側の方向より第 2の CCDカメラで、基板のァライメントマークと、前記フリップチップの 第 1の角部と同じ位置の第 2の角部とを画像処理によって認識することにより、前記基 板のァライメントマークと前記第 2の角部との位置関係を計測して、第 1の角部の基準 点と第 2の角部の基準点を合わせることで、基板のァライメントマークの位置とフリップ チップのァライメントマークの位置の相対位置関係を計算し、所定の実装位置関係か らのずれ量を計算することにより、フリップチップ実装後の実装ずれの良否判定を行 うことを特徴とする、フリップチップ実装ずれ検査方法。
[2] 第 1の CCDカメラと第 2の CCDカメラが位置補正用手段を兼ねていることを特徴と する、請求項 1に記載のフリップチップ実装ずれ検査方法。
[3] 半導体チップを回路基板に実装するフリップチップ実装において、透明部材にてチ ップ保持板を構成するチップスライダにフリップチップを吸着保持し、フリップチップ 実装前に、フリップチップの上面の第 2の角部を、フリップチップの上側に配置した上
CCDカメラで画像認識するとともに、フリップチップの下面のァライメントマークと第 1 の角部とを、フリップチップの下側に配置した下 CCDカメラで画像認識し、フリツプチ ップ実装後に、 2視野のカメラで基板のァライメントマークと実装されたフリップチップ の角部を画像認識し、前記第 1の角部と前記第 2の角部の位置関係から 2視野のカメ ラで画像認識された角部の位置データを第 1の角部または第 2の角部として選択し、 基板のァライメントマークの位置とフリップチップの角部の位置データとの位置関係を 計測して、基板のァライメントマークの位置とフリップチップのァライメントマークの位 置の相対位置関係を計算し、所定の実装位置からのずれ量を計算することにより、フ リップチップ実装後の実装ずれの良否判定を行うことを特徴とする、フリップチップ実 装ずれ検査方法。
[4] 下 CCDカメラでフリップチップのバンプ位置を画像認識し、 2視野のカメラで基板の 電極位置を画像認識し、基板のァライメントマークカゝらのフリップチップのバンプと基 板の電極の相対位置関係を計算して、フリップチップのバンプと基板の電極の実装 ずれの良否判定を行うことを特徴とする、請求項 3に記載のフリップチップ実装ずれ 検査方法。
[5] 半導体チップを回路基板に実装するフリップチップ実装装置において、フリツプチ ップ実装前に、フリップチップのァライメントマークと、フリップチップのァライメントマー クを認識する方向側から見たフリップチップの平面の第 1の角部とを第 1の CCDカメ ラで画像処理によって認識することにより、ァライメントマークと前記フリップチップの 第 1の角部との位置関係を計測するフリップチップ実装前計測手段と、フリップチップ 実装後に、フリップチップの回路面と反対側の方向より第 2の CCDカメラで、基板の ァライメントマークと、前記フリップチップの第 1の角部と同じ位置の第 2の角部とを画 像処理によって認識することにより、前記基板のァライメントマークと前記第 2の角部と の位置関係を計測するフリップチップ実装後計測手段と、第 1の角部の基準点と第 2 の角部の基準点を合わせることで、基板のァライメントマークの位置とフリップチップ のァライメントマークの位置の相対位置関係を計算し、所定の実装位置関係力 の ずれ量を計算することにより、フリップチップ実装後の実装ずれの良否判定を行う演 算手段とを有することを特徴とするフリップチップ実装装置。
[6] 第 1の CCDカメラと第 2の CCDカメラが位置補正用手段を兼ねていることを特徴と する、請求項 5に記載のフリップチップ実装装置。
[7] 半導体チップを回路基板に実装するフリップチップ実装装置において、透明部材 にてチップ保持板を構成するチップスライダにフリップチップを吸着保持するチップ 保持手段と、フリップチップ実装前に、フリップチップの上面の第 2の角部を、フリップ チップの上側に配置した上 CCDカメラで画像認識するとともに、フリップチップの下 面のァライメントマークと第 1の角部とを、フリップチップの下側に配置した下 CCDカメ ラで画像認識するフリップチップ実装前認識手段と、フリップチップ実装後に、 2視野 のカメラで基板のァライメントマークと実装されたフリップチップの角部を画像認識す るフリップチップ実装後認識手段と、前記第 1の角部と前記第 2の角部の位置関係か ら 2視野のカメラで画像認識された角部の位置データを第 1の角部または第 2の角部 として選択し、基板のァライメントマークの位置とフリップチップの角部の位置データと の位置関係を計測して、基板のァライメントマークの位置とフリップチップのァライメン トマークの位置の相対位置関係を計算し、所定の実装位置からのずれ量を計算する ことにより、フリップチップ実装後の実装ずれの良否判定を行う演算手段とを有するこ とを特徴とするフリップチップ実装装置。
下 CCDカメラがフリップチップのバンプ位置を画像認識し、 2視野のカメラが基板の 電極位置を画像認識し、前記演算手段が、基板のァライメントマークからのフリツプチ ップのバンプと基板の電極の相対位置関係を計算して、フリップチップのバンプと基 板の電極の実装ずれの良否判定を行うことを特徴とする、請求項 7に記載のフリップ チップ実装装置。
PCT/JP2006/308089 2005-04-28 2006-04-18 フリップチップ実装ずれ検査方法および実装装置 WO2006118018A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514594A JP4768731B2 (ja) 2005-04-28 2006-04-18 フリップチップ実装ずれ検査方法および実装装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005133475 2005-04-28
JP2005-133475 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118018A1 true WO2006118018A1 (ja) 2006-11-09

Family

ID=37307820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308089 WO2006118018A1 (ja) 2005-04-28 2006-04-18 フリップチップ実装ずれ検査方法および実装装置

Country Status (3)

Country Link
JP (1) JP4768731B2 (ja)
TW (1) TW200731440A (ja)
WO (1) WO2006118018A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096454A1 (ja) * 2008-01-30 2009-08-06 Toray Engineering Co., Ltd. チップ搭載方法およびチップ搭載装置
EP2284862A1 (en) * 2009-08-11 2011-02-16 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO System and method for picking and placement of chip dies
WO2012144282A1 (ja) * 2011-04-19 2012-10-26 富士機械製造株式会社 電気部品装着機および電気回路製造方法
JP2015090956A (ja) * 2013-11-07 2015-05-11 東レエンジニアリング株式会社 ボンディング装置
JP2016058543A (ja) * 2014-09-09 2016-04-21 ボンドテック株式会社 チップアライメント方法、チップアライメント装置
CN110036462A (zh) * 2016-09-29 2019-07-19 株式会社新川 半导体装置的制造方法以及封装装置
US11024619B2 (en) 2018-03-20 2021-06-01 Toshiba Memory Corporation Semiconductor manufacturing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595309B1 (ko) 2016-07-20 2023-10-31 삼성전자주식회사 칩들의 정렬오차 검출 방법, 그를 이용한 팬 아웃 패널 레벨 패키지의 제조 방법 및 팬 아웃 패널 레벨 패키지
JP6723648B2 (ja) * 2016-07-27 2020-07-15 住友重機械工業株式会社 位置検出装置及び位置検出方法
TWI626704B (zh) * 2016-08-29 2018-06-11 樹德科技大學 具影像辨識功能之自動化ic移載系統及其移載方法
JP2019027924A (ja) * 2017-07-31 2019-02-21 セイコーエプソン株式会社 電子部品搬送装置、電子部品検査装置、位置決め装置、部品搬送装置および位置決め方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107000A (ja) * 1990-08-24 1992-04-08 Tdk Corp 部品外観選別装置
JPH04332198A (ja) * 1991-05-07 1992-11-19 Toshiba Corp 部品実装装置
JPH0587949U (ja) * 1992-04-24 1993-11-26 セイコー電子工業株式会社 半導体チップ
JPH08153995A (ja) * 1994-11-28 1996-06-11 Oki Electric Ind Co Ltd 半導体装置の位置合わせ方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107000A (ja) * 1990-08-24 1992-04-08 Tdk Corp 部品外観選別装置
JPH04332198A (ja) * 1991-05-07 1992-11-19 Toshiba Corp 部品実装装置
JPH0587949U (ja) * 1992-04-24 1993-11-26 セイコー電子工業株式会社 半導体チップ
JPH08153995A (ja) * 1994-11-28 1996-06-11 Oki Electric Ind Co Ltd 半導体装置の位置合わせ方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096454A1 (ja) * 2008-01-30 2009-08-06 Toray Engineering Co., Ltd. チップ搭載方法およびチップ搭載装置
JP5385794B2 (ja) * 2008-01-30 2014-01-08 東レエンジニアリング株式会社 チップ搭載方法およびチップ搭載装置
US20120194209A1 (en) * 2009-08-11 2012-08-02 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno System and method for picking and placement of chip dies
WO2011019275A1 (en) 2009-08-11 2011-02-17 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno System and method for picking and placement of chip dies
EP2284862A1 (en) * 2009-08-11 2011-02-16 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO System and method for picking and placement of chip dies
WO2012144282A1 (ja) * 2011-04-19 2012-10-26 富士機械製造株式会社 電気部品装着機および電気回路製造方法
JP2012227308A (ja) * 2011-04-19 2012-11-15 Fuji Mach Mfg Co Ltd 電気部品装着機および電気回路製造方法
JP2015090956A (ja) * 2013-11-07 2015-05-11 東レエンジニアリング株式会社 ボンディング装置
WO2015068607A1 (ja) * 2013-11-07 2015-05-14 東レエンジニアリング株式会社 ボンディング装置
US9711483B2 (en) 2013-11-07 2017-07-18 Toray Engineering Co., Ltd. Bonding apparatus
JP2016058543A (ja) * 2014-09-09 2016-04-21 ボンドテック株式会社 チップアライメント方法、チップアライメント装置
CN110036462A (zh) * 2016-09-29 2019-07-19 株式会社新川 半导体装置的制造方法以及封装装置
US11024619B2 (en) 2018-03-20 2021-06-01 Toshiba Memory Corporation Semiconductor manufacturing apparatus
US11749667B2 (en) 2018-03-20 2023-09-05 Kioxia Corporation Semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
TW200731440A (en) 2007-08-16
TWI371072B (ja) 2012-08-21
JP4768731B2 (ja) 2011-09-07
JPWO2006118018A1 (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2006118018A1 (ja) フリップチップ実装ずれ検査方法および実装装置
US7251883B2 (en) Electronic-component alignment method and apparatus therefor
CN109906029B (zh) 电子部件安装装置以及电子部件安装方法
CN111742399B (zh) 接触精度保证方法、接触精度保证机构和检查装置
WO2020153203A1 (ja) 実装装置および実装方法
JP2007012802A (ja) 実装方法および実装装置
TW202139319A (zh) 半導體裝置的製造裝置以及半導體裝置的製造方法
JP5065889B2 (ja) 画像認識実装方法
US8633441B2 (en) Die bonding process incorporating infrared vision system
JP7112341B2 (ja) 実装装置および実装方法
CN112017992A (zh) 接合装置
JP7293477B2 (ja) 実装装置
CN108063104B (zh) 用于调整接合装置的部件之间的相对位置的系统
JP2004146776A (ja) フリップチップ実装装置及びフリップチップ実装方法
TWI738413B (zh) 安裝裝置
JP6110167B2 (ja) ダイ認識手段及びダイ認識方法並びにダイボンダ
TWI467197B (zh) An electronic component operating unit for an image capturing device, and a working device for its application
JP7013400B2 (ja) 実装装置および実装方法
JP3886850B2 (ja) アライメント・マーク位置検出方法
JPH06283819A (ja) 光素子のダイボンディング方法及びそのダイボンディング装置
KR102652796B1 (ko) 반도체 소자 본딩 장치 및 반도체 소자 본딩 방법
JP2006269514A (ja) 電子部品の実装装置及び実装方法
JP2004014692A (ja) アライメント・マーク位置検出装置および方法
JP2023106662A (ja) 実装装置および実装方法
TW202202808A (zh) 安裝裝置及安裝方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514594

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732018

Country of ref document: EP

Kind code of ref document: A1