WO2006115025A1 - リチウムイオン電池用電解液の製造方法及びそれを用いた電池 - Google Patents

リチウムイオン電池用電解液の製造方法及びそれを用いた電池 Download PDF

Info

Publication number
WO2006115025A1
WO2006115025A1 PCT/JP2006/307541 JP2006307541W WO2006115025A1 WO 2006115025 A1 WO2006115025 A1 WO 2006115025A1 JP 2006307541 W JP2006307541 W JP 2006307541W WO 2006115025 A1 WO2006115025 A1 WO 2006115025A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
ion battery
producing
fluoride
Prior art date
Application number
PCT/JP2006/307541
Other languages
English (en)
French (fr)
Inventor
Meguru Oe
Keiji Sato
Hiroaki Sakaguchi
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Priority to US11/911,901 priority Critical patent/US8097360B2/en
Priority to CN2006800082664A priority patent/CN101142703B/zh
Priority to EP06731488.0A priority patent/EP1873861B1/en
Publication of WO2006115025A1 publication Critical patent/WO2006115025A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an electrolytic solution for a lithium ion battery containing lithium hexafluorophosphate as an electrolyte, and a lithium ion battery using the same.
  • V which is highly hygroscopic, reacts phosphorus trichloride or pentachloride phosphorus directly with HF, so the moisture contained in these and the moisture absorbed from the air at the time of introduction enters and is added to the product.
  • Fluoride is generated and mixed, and even if you try to use it as an electrolyte of a lithium ion battery, it will hydrolyze with a small amount of water in the electrolyte to produce an acidic substance, which damages the electrolyte and can not be used as an electrolyte for a lithium ion battery .
  • Patent Document 4 There is also a method of reacting lithium fluoride and phosphorus pentafluoride in an organic solvent (Patent Document 4).
  • phosphorous pentafluoride is a gas and requires a cylinder to handle, making phosphoric pentafluoride complex. Handling gas is dangerous and requires specialized knowledge.
  • it is necessary to purify the phosphorus pentafluoride gas which uses the same force, with high purity, there is a problem that the cost is increased and the price is greatly affected.
  • Non-patent Document 1 there is a method of reacting dissolved lithium fluoride with gaseous phosphorus pentafluoride using anhydrous hydrogen fluoride as a solvent.
  • this method since anhydrous hydrogen fluoride having a high vapor pressure is used as a solvent, handling is difficult.
  • Patent Document 1 Japanese Patent No. 64-72901
  • Patent Document 2 Japanese Patent Laid-Open No. 10-72207
  • Patent Document 3 Japanese Patent Laid-Open No. 10-81505
  • Patent Document 4 Japanese Patent Laid-Open No. 9-165210
  • Non-Patent Document 1 J. Chem. Soc. Part 4, 4408 (1963)
  • the present invention is aimed at producing an electrolytic solution containing lithium hexafluorophosphate as an electrolyte, and directly producing an electrolytic solution in an organic solvent.
  • lithium fluoride lithium chloride, lithium bromide, iodide
  • a method for producing an electrolytic solution for a lithium ion battery characterized by reacting lithium or a mixture of any of these with phosphorus pentachloride and hydrogen fluoride.
  • the reaction yield is high, the reaction can be easily controlled, and the product purity can be sufficiently satisfied. Since the solvent for the lithium battery is used as the solvent, the solution after the reaction can be used directly as the electrolytic solution, and a very simplified production method can be provided.
  • the production method of the present invention has a high reaction yield, is easy to control the reaction, is sufficiently satisfactory in terms of product purity, and uses a solvent for a lithium ion battery. Therefore, the solvent after the reaction can be used directly as the electrolytic solution.
  • the production method of the present invention is carried out in any one or several kinds of mixed solvents among the above non-aqueous organic solvents for lithium ion batteries.
  • the raw materials such as lithium lithium, lithium chloride, lithium bromide, or lithium iodide, phosphorus pentachloride, and hydrogen fluoride are charged into these solvents, but the charging order is not particularly limited.
  • the non-aqueous organic solvent to be used is preferably a carbonate ester compound or an ether compound having high chemical stability and high solubility of lithium hexafluorophosphate.
  • Examples include ethylene carbonate, dimethylolene carbonate, jetinolecarbonate ethinoremethyl carbonate, and 1,2-dimethoxyethane.
  • the temperature range for carrying out this reaction is 40 ° C to 100 ° C, preferably 0 ° C to 60 ° C. If the reaction temperature is less than 40 ° C, the reaction does not proceed because the solvent solidifies. On the other hand, when the temperature exceeds 100 ° C, the solvent scatters or the reaction between the solvent and phosphorus pentachloride occurs, which may cause coloring or increase in viscosity.
  • the amount of lithium fluoride, lithium chloride, lithium bromide, lithium iodide, or a mixture of any of these is 600 g or less in total, preferably 400 g or less, per liter of solvent.
  • Phosphorus is lOOOg or less, preferably 600 g or less.
  • Lithium fluoride, lithium chloride, lithium bromide, lithium iodide in quantity When the amount exceeds 600 g relative to the solvent, the product becomes saturated, and the surface of lithium fluoride, lithium chloride, lithium bromide, lithium iodide A film is formed and unreacted lithium fluoride, lithium chloride, lithium bromide, lithium iodide, or a mixture of these remains, and the viscosity of the solution increases, making separation operations such as filtration difficult. Become.
  • the amount of hydrogen fluoride is not limited, but is 450 g or less, preferably 350 g or less, per liter of solvent.
  • the lower limit of the amount of raw materials such as lithium fluoride, lithium chloride, phosphorus pentachloride, hydrogen fluoride, etc., is 1 g per 1 liter of solvent. If it is less than lg with respect to the solvent, the battery electrolyte concentration will be low, and satisfactory performance will not be obtained as an electrolyte for lithium ion batteries, and if the electrolyte concentration is increased by concentration, the battery solvent will be wasted and it will be too expensive Because.
  • the product lithium hexafluorophosphate is hydrolyzed by moisture. It is necessary to carry out the reaction in an atmosphere that does not contain moisture. That is, the reaction is preferably performed in a vacuum or an inert gas atmosphere such as nitrogen.
  • the solution obtained as described above uses a solvent for a lithium ion battery as a solvent
  • the solution obtained by the reaction can be used directly as an electrolyte for a lithium ion battery. is there.
  • high purity lithium hexafluorophosphate can be obtained by precipitation and separation by operations such as cooling and concentration.
  • a PTFE reaction vessel In a PTFE reaction vessel, 1 OOml of ethylmethyl carbonate solvent is cooled and maintained at 10 ° C, and 83.2 g of phosphorus pentachloride and 45. Og of hydrogen fluoride are bubbled through the inlet tube and added. A mixed reaction was performed. Further, while maintaining the solution at 10 ° C., a mixture of 5.2 g lithium fluoride and 8.8 g lithium chloride was added and further reacted.
  • the concentration of acidic impurities in the solvent is lOppm, which is 70ppm in terms of lithium hexafluorophosphate.
  • the ion conductivity of this solution was measured and found to be 7.8 mSZcm, which was equivalent to that obtained by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and jetyl carbonate.
  • a test cell was prepared using this solution, and performance evaluation as an electrolytic solution was performed by a charge / discharge test. Specifically, 95 parts by weight of natural graphite powder was mixed with 5 parts by weight of poly (vinylidene fluoride) (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Also, black smoke is added to 85 parts by weight of lithium conoleate. 10 parts by weight of powder and 5 parts by weight of PVDF were mixed, and further N, N-dimethylformamide was added to form a slurry.
  • PVDF poly (vinylidene fluoride)
  • This slurry was applied on an aluminum foil and dried at 150 ° C. for 12 hours to obtain a test positive electrode body.
  • the reaction solution of this example was used as an electrolyte, and a test cell was assembled using the negative electrode body and the positive electrode body.
  • a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mAZcm 2 , charging was performed at 4.2 V, and discharging was performed up to 2.5 V, and changes in the discharge capacity were observed by repeating this charging and discharging cycle. As a result, the charge / discharge efficiency was almost 100%, and after 100 cycles of charge / discharge, the discharge capacity was completely unchanged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Description

明 細 書
リチウムイオン電池用電解液の製造方法及びそれを用いた電池 技術分野
[0001] 本発明は、へキサフルォロリン酸リチウムを電解質として含むリチウムイオン電池用電 解液の製造方法およびそれを用いたリチウムイオン電池に関する。
発明の背景
[0002] へキサフルォロリン酸リチウムの製造方法としては種々提案されており、例えば、無溶 媒で固体のフッ化リチウムと気体の五フッ化リンを反応させる方法 (特許文献 1)があ る。この方法においては、フッ化リチウムの表面に反応生成物の被膜が形成され、完 全に反応が進行せず未反応のフッ化リチウムが残存する。また、五塩化リン中でフッ 化リチウムと HFと反応させる方法 (特許文献 2)や三塩化リンと元素状塩素と HFを反 応させる方法 (特許文献 3)等がある。 V、ずれも吸湿性の強 、三塩化リンまたは五塩 ィ匕リンを直接 HFと反応させるのでこれらに含まれている水分と、投入時に空気中から 吸い取った水分とが入り、製品中に加水分解しゃすい LiPOのようなリチウムォキシ
4
フルオライドが生じて混入し、リチウムイオン電池の電解質として使用しょうとしても、 電解液中の微量の水分で加水分解し酸性物質を生じ、電解液を損ねるためリチウム イオン電池の電解質として使用できない問題がある。また、有機溶媒中でフッ化リチ ゥムと五フッ化リンと反応させる方法 (特許文献 4)がある。しかし、五フッ化リンは気体 であり取り扱いにボンベが必要であり五フッ化リンの製造は複雑である。ガスを取り扱 うために危険が伴い専門知識が必要になる。し力も使用する五フッ化リンガスを高純 度に精製する必要があるためコストが高くなり価格に大きく影響する問題点がある。
[0003] また、無水フッ化水素を溶媒として、溶解したフッ化リチウムと気体の五フッ化リンを反 応させる方法 (非特許文献 1)がある。この方法においては、蒸気圧の高い無水フッ 化水素を溶媒として使用するため、ハンドリングが困難である。
[0004] このように従来の方法にお!、ては、 、ずれも反応収率、反応の制御のしゃすさ、得ら れる製品の純度等の点で必ずしも満足のできるものではな力つた。
特許文献 1:特許昭 64— 72901号公報 特許文献 2:特開平 10— 72207号公報
特許文献 3 :特開平 10— 81505号公報
特許文献 4:特開平 9 - 165210号公報
非特許文献 1 :J. Chem. Soc. Part4, 4408 (1963)
発明の概要
[0005] 本発明は、へキサフルォロリン酸リチウムを電解質として含む電解液を製造する〖こ 際し、有機溶媒中で直接電解液を製造することを目的として ヽる。
[0006] 本発明者らは、力かる従来技術の問題点に鑑み鋭意検討の結果、有機溶媒中で、 ノ、ロゲン化リチウムと五塩化リンとフッ化水素を反応させることにより容易にリチウムィ オン電池用電解液が製造できることを見出し本発明に到達したものである。
[0007] 本発明に依れば、へキサフルォロリン酸リチウムを電解質として含むリチウムイオン電 池用電解液を製造するに際し、非水系有機溶媒中で、フッ化リチウム、塩化リチウム 、臭化リチウム、ヨウ化リチウム、またはこれらいずれかの混合物と五塩化リンおよびフ ッ化水素を反応させることを特徴とするリチウムイオン電池用電解液の製造方法が提 供される。
詳細な説明
[0008] 本発明によれば、従来のへキサフルォロリン酸リチウムを含む電解液の製造法に比 ベ、反応収率が高ぐ反応の制御も容易で、製品純度の点でも十分満足でき、しかも 、溶媒にリチウム電池用溶媒を使用しているため、反応後の溶液を直接電解液として 使用することができ、非常に簡略化された製造方法を提供することができる。
[0009] 本発明の製造方法は、反応収率が高ぐ反応の制御も容易で、製品の純度の点でも 十分満足できるものであり、しかも、溶媒にリチウムイオン電池用のものを使用してい るため、反応後の溶媒を直接電解液として使用することができる。
[0010] 本発明の製造方法は、上記リチウムイオン電池用の非水系有機溶媒の内のいずれ か一種類、もしくは数種類の混合溶媒中で実施される。これら溶媒に原料であるフッ ィ匕リチウム、塩化リチウム、臭化リチウム、またはヨウ化リチウムと、五塩化リン、および フッ化水素を投入するが、投入順序は特に限定するものではない。電池用非水系有 機溶媒に対して、原料であるフッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチ ゥム、またこれらいずれかの混合物と、五塩化リンを混合する。これらは溶解度が小さ いため溶媒中に分散した状態で、フッ化水素を投入し反応を行う。ここで生成したへ キサフルォロリン酸リチウムは、非常に溶解度が大きいので、溶媒中に溶解して、原 料の表面に被膜として残ることがないために反応は完全に進行する。
[0011] 使用される非水系有機溶媒は、化学的安定性が高ぐしかもへキサフルォロリン酸リ チウムの溶解度が高い炭酸エステルイ匕合物、またはエーテルィ匕合物が好ましい。例 えば、エチレンカーボネート、ジメチノレカーボネート、ジェチノレカーボネートェチノレメ チルカーボネート、 1, 2—ジメトキシェタン等がある。
[0012] この反応を行う際の温度範囲は、 40°C〜100°C、好ましくは 0°C〜60°Cである。反 応温度が 40°C未満では、溶媒が凝固するため反応が進行しない。また、 100°Cを 超える場合は、溶媒の飛散、あるいは溶媒と五塩化リンとの反応が起こり、着色や粘 度の増加の原因となるため好ましくない。
[0013] フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、またこれらいずれかの混 合物の量は、溶媒 1リットルに対して、合計 600g以下、好ましくは 400g以下であり、 五塩化リンは lOOOg以下、好ましくは 600g以下である。フッ化リチウム、塩化リチウム 、臭化リチウム、ヨウ化リチウムの量力 溶媒に対して 600gより多い場合は、生成物が 飽和になり、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムの表面に被 膜が生成し、未反応のフッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、ま たこれらの混合物が残存するうえに溶液の粘度が上昇するため、濾過等の分離操作 が困難になる。
[0014] フッ化水素の量は、限定するものではないが、溶媒 1リットルに対して 450g以下、好 ましくは 350g以下である。
[0015] またこれらフッ化リチウム、塩化リチウム、五塩化リン、フッ化水素等の原料投入下限 量は、溶媒 1リットルに対してそれぞれ lgが下限である。溶媒に対して lg以下である と、電池電解質濃度が低くなりリチウムイオン電池用電解液として満足のいく性能が 出ず、また濃縮により電解質濃度を高めると電池用溶媒が無駄になりコストがかかり 過ぎるためである。
[0016] この反応において、生成物のへキサフルォロリン酸リチウムは、水分により加水分解 を受けるので、水分を含まない雰囲気で反応を実施する必要がある。すなわち、真空 中や窒素等の不活性ガス雰囲気中で反応を行うことが好ましい。
[0017] 以上のようにして得られた溶液は、溶媒としてリチウムイオン電池用溶媒を使用してい るため、反応により得られた溶液を直接リチウムイオン電池用電解液として使用するこ とが可能である。また、冷却や濃縮という操作により、析出分離することにより高純度 のへキサフルォロリン酸リチウムを得ることができる。
[0018] 以下、実施例により本発明を具体的に説明するが、本発明は力かる実施例により限 定されるものではない。
[0019] 実施例 1
PTFE製反応器中で 100mlのジメチルカーボネートに 5. Ogフッ化リチウムおよび 20 . Ogの五塩化リンを添加して、混合分散した。この分散液を冷却して 10°Cに維持しな がら、導入管を通じてフッ化水素ガスをパブリングした。ジメチルカーボネート中に分 散されたフッ化リチウムが消失した時点で、反応を終了した。このときのフッ化水素の 消費量は 15. Ogであった。
得られた溶液の 19F— NMR測定およびイオンクロマトグラムにより、へキサフルォロリ ン酸リチウムの生成が確認でき、収率 98. 7%で得られた。
[0020] 実施例 2
PTFE製反応容器中で 200mlのジェチノレカーボネートに 81. Og五塩ィ匕リン、 17. 7 g塩化リチウムを添加して、混合分散した。この分散液を冷却して 10°Cに維持しなが ら、ガス導入管を通じてフッ化水素ガスをパブリングした。ジェチルカーボネート中に 分散されたフッ化リチウムが消失した時点で、反応を終了した。このときフッ化水素の 消費量は 49. 2gであった。
[0021] 得られた溶液の19 F—NMR測定とイオンクロマトグラムにより、へキサフルォロリン酸リ チウムの生成が確認され、収率が 98. 8%であった。
[0022] 実施例 3
PTFE製反応容器中で 100mlのエチレンカーボネートと 100mlのジェチルカーボネ ートを混合した溶媒に、さらに 2. 5gフッ化リチウム、 4. 3g塩化リチウム、 40. 3g五塩 ィ匕リンを添加して、混合分散した。この分散液を冷却して 10°Cに維持しながら、ガス 導入管を通じてフッ化水素ガスをパブリングした。混合溶媒中に分散されたフッ化リ チウムおよび塩化リチウムが消失した時点で、反応を終了した。このときフッ化水素ガ スの消費量は 24. lgであった。
[0023] 得られた溶液の19 F— NMR測定とイオンクロマトグラムにより、へキサフルォロリン酸リ チウムの生成が確認され、収率は 98. 8%であった。
[0024] 実施例 4
PTFE製反応容器中で 1 OOmlのジェチルカーボネート溶媒を冷却して 10°Cに維持 し、 20. 5gの五塩化リンおよび 10. 3gのフッ化水素を導入管を通じてパブリングして 添加し混合反応させた。さらにその溶液を 10°Cに維持しながらフッ化リチウムを 2. 6 g添加してさらに反応させた。
[0025] 得られた溶液の19 F— NMR測定およびイオンクロマトグラムにより、へキサフルォロリ ン酸リチウムの生成が確認でき、その収率は 98. 7%であった。
[0026] 実施例 5
PTFE製反応容器中で 1 OOmlのェチルメチルカーボネート溶媒を冷却して 10°Cに 維持し、 83. 2gの五塩化リンおよび 45. Ogのフッ化水素を導入管を通じてバブリン グして添加し混合反応させた。さらにその溶液を 10°Cに維持しながら 5. 2gフッ化リ チウムと 8. 8gの塩化リチウムの混合物を添加しさらに反応させた。
[0027] 得られた溶液の19 F— NMR測定およびイオンクロマトグラムにより、へキサフルォロリ ン酸リチウムの生成が確認でき、その収率は 98. 8%であった。
[0028] 合成した溶液の精製を行ったところ、溶媒中の酸性不純物濃度は lOppmで、へキサ フルォロリン酸リチウムベースに換算すると 70ppmとなる。また、この溶液のイオン伝 導度を測定したところ、 7. 8mSZcmであり、へキサフルォロリン酸リチウムをェチレ ンカーボネートとジェチルカーボネートの混合溶媒に溶解したものと同等であった。
[0029] 次に、この溶液を用いてテストセルを作製し、充放電試験により電解液としての性能 評価をした。具体的には、天然黒鉛粉末 95重量部に、バインダーとして 5重量部の ポリフッ化ビ-リデン(PVDF)を混合し、さらに N, N—ジメチルホルムアミドを添カロし 、スラリー状にした。このスラリーをニッケルメッシュ上に塗布して、 150°Cで 12時間乾 燥させることにより、試験用負極体とした。また、コノ レト酸リチウム 85重量部に、黒煙 粉末 10重量部および PVDF5重量部を混合し、さらに、 N, N—ジメチルホルムアミド を添カ卩し、スラリー状にした。このスラリーをアルミニウム箔上に塗布して、 150°Cで 12 時間乾燥させることにより、試験用正極体とした。ポリプロピレン不織布をセパレータ 一として、本実施例の反応溶液を電解液とし、上記負極体および正極体とを用いて テストセルを組み立てた。続いて、次のような条件で、定電流充放電試験を実施した 。充電、放電ともに電流密度 0. 35mAZcm2で行い、充電は 4. 2V、放電は 2. 5V まで行い、この充放電サイクルを繰り返して放電容量の変化を観察した。その結果、 充放電効率はほぼ 100%で、充放電を 100サイクル繰り返したところ、放電容量は全 く変化しな力つた。

Claims

請求の範囲
[1] へキサフルォロリン酸リチウムを電解質として含むリチウムイオン電池用電解液を製 造するに際し、非水系有機溶媒中で、フッ化リチウム、塩化リチウム、臭化リチウム、ョ ゥ化リチウム、またはこれら ヽずれかの混合物と五塩化リンおよびフッ化水素を反応さ せることを特徴とするリチウムイオン電池用電解液の製造方法。
[2] 請求項 1記載の非水有機溶媒が、環状又は鎖状の炭酸エステル、または 2つ以上の 酸素原子を有するエーテルィ匕合物であることを特徴とする請求項 1記載のリチウムィ オン電池用電解液の製造方法。
[3] 請求項 2記載の炭酸エステル力 エチレンカーボネート、プロピレンカーボネート、ジ メチノレカーボネート、ジェチノレカーボネート、ェチノレメチノレカーボネートのいずれかで あることを特徴とする請求項 2記載のリチウムイオン電池用電解液の製造方法。
[4] 請求項 2記載のエーテルィ匕合物力 1, 2—ジメトキシェタンであることを特徴とする請 求項 2記載のリチウムイオン電池用電解液の製造方法。
[5] 請求項 1〜4記載の製造方法で得られた電解液を用いたリチウムイオン電池。
PCT/JP2006/307541 2005-04-19 2006-04-10 リチウムイオン電池用電解液の製造方法及びそれを用いた電池 WO2006115025A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/911,901 US8097360B2 (en) 2005-04-19 2006-04-10 Method for producing electrolyte solution for lithium ion battery and battery using same
CN2006800082664A CN101142703B (zh) 2005-04-19 2006-04-10 锂离子电池用电解液的制备方法以及使用该电解液的电池
EP06731488.0A EP1873861B1 (en) 2005-04-19 2006-04-10 Method for producing electrolyte solution for lithium ion battery and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-120558 2005-04-19
JP2005120558A JP4810867B2 (ja) 2005-04-19 2005-04-19 リチウムイオン電池用電解液の製造方法

Publications (1)

Publication Number Publication Date
WO2006115025A1 true WO2006115025A1 (ja) 2006-11-02

Family

ID=37214650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307541 WO2006115025A1 (ja) 2005-04-19 2006-04-10 リチウムイオン電池用電解液の製造方法及びそれを用いた電池

Country Status (6)

Country Link
US (1) US8097360B2 (ja)
EP (1) EP1873861B1 (ja)
JP (1) JP4810867B2 (ja)
KR (1) KR100917729B1 (ja)
CN (1) CN101142703B (ja)
WO (1) WO2006115025A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097626A1 (en) * 2008-08-08 2011-04-28 Stella Chemifa Corporation Process for production hexafluorophosphates
US8383075B2 (en) 2007-02-08 2013-02-26 Stella Chemifa Corporation Manufacturing method of hexafluorophosphate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254555B2 (ja) * 2007-02-08 2013-08-07 ステラケミファ株式会社 五フッ化リン及び六フッ化リン酸塩の製造方法
JP5307409B2 (ja) 2007-08-16 2013-10-02 ステラケミファ株式会社 五フッ化リン及び六フッ化リン酸塩の製造方法
JP2010042937A (ja) * 2008-08-08 2010-02-25 Stella Chemifa Corp 五フッ化リン及び六フッ化リン酸塩の製造方法
WO2011105002A1 (ja) * 2010-02-25 2011-09-01 パナソニック株式会社 リチウムイオン二次電池
JP5609283B2 (ja) * 2010-06-08 2014-10-22 セントラル硝子株式会社 リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
CN102275894A (zh) * 2011-05-23 2011-12-14 中南大学 一种六氟磷酸锂的制备方法
KR20140054228A (ko) * 2011-08-16 2014-05-08 솔베이(소시에떼아노님) LiPO2F2 및 LiPF6을 포함하는 혼합물의 제조 방법
CN103213963B (zh) * 2012-01-18 2016-02-24 彭国启 一种直接制备液态六氟磷酸锂的方法
CN103253643B (zh) * 2013-03-25 2014-12-03 中山市华玮新能源科技有限公司 一种相转移催化法制备六氟磷酸锂的方法
WO2014196965A1 (en) * 2013-06-04 2014-12-11 The Ohio State University Method of lithium iron arsenic superconductor preparation
JP5824013B2 (ja) * 2013-08-21 2015-11-25 ステラケミファ株式会社 五フッ化リン及び六フッ化リン酸塩の製造方法
KR101749186B1 (ko) * 2013-09-11 2017-07-03 삼성에스디아이 주식회사 리튬 전지용 전해질, 이를 포함하는 리튬 전지, 및 리튬 전지용 전해질의 제조방법
CN105593165B (zh) * 2013-10-04 2019-01-04 关东电化工业株式会社 五氟化磷的精制方法
EP3165528B1 (en) * 2014-07-02 2021-08-18 Central Glass Co., Ltd. Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
KR102036924B1 (ko) * 2019-03-15 2019-10-25 (주)후성 육불화인산알칼리금속염 제조방법, 육불화인산알칼리금속염, 육불화인산알칼리금속염 함유 전해농축액 제조방법, 및 이차전지 제조방법
KR20200132024A (ko) 2019-05-15 2020-11-25 현대자동차주식회사 리튬인산철 기반 리튬이차전지용 전해액 및 이를 포함하는 리튬이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656413A (ja) * 1992-08-10 1994-03-01 Central Glass Co Ltd 六フッ化リン酸塩の製造方法
JPH11171518A (ja) * 1997-12-08 1999-06-29 Central Glass Co Ltd ヘキサフルオロリン酸リチウムの製造方法
JP2000082474A (ja) * 1998-09-07 2000-03-21 Central Glass Co Ltd リチウム電池用電解液の製造方法
JP2000211907A (ja) * 1998-12-31 2000-08-02 Ulsan Chemical Co Ltd 六フッ化リン酸リチウムの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607020A (en) * 1970-03-19 1971-09-21 Foote Mineral Co Preparation of lithium hexafluorophosphate
JPS6472901A (en) 1987-09-14 1989-03-17 Central Glass Co Ltd Production of lithium fluoride complex salt
JP2987397B2 (ja) * 1995-12-14 1999-12-06 セントラル硝子株式会社 ヘキサフルオロリン酸リチウムの製造方法
CA2193119C (en) * 1995-12-14 2001-01-30 Shouichi Tsujioka Electrolytic solution for lithium cell and method for producing same
JP2982950B2 (ja) * 1996-03-11 1999-11-29 セントラル硝子株式会社 リチウム電池用電解液の製造方法及びリチウム電池
DE19625448A1 (de) * 1996-06-26 1998-01-02 Solvay Fluor & Derivate Verfahren zur Herstellung von LiPF¶6¶
EP0816288B1 (de) 1996-06-26 2000-01-26 Solvay Fluor und Derivate GmbH Herstellung von Lithiumhexafluormetallaten
DE19805356C1 (de) * 1998-02-12 1999-06-17 Metallgesellschaft Ag Verfahren zur Herstellung von reinem LiPF¶6¶
JP3798560B2 (ja) * 1998-11-17 2006-07-19 ステラケミファ株式会社 六フッ化リン酸リチウムの精製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656413A (ja) * 1992-08-10 1994-03-01 Central Glass Co Ltd 六フッ化リン酸塩の製造方法
JPH11171518A (ja) * 1997-12-08 1999-06-29 Central Glass Co Ltd ヘキサフルオロリン酸リチウムの製造方法
JP2000082474A (ja) * 1998-09-07 2000-03-21 Central Glass Co Ltd リチウム電池用電解液の製造方法
JP2000211907A (ja) * 1998-12-31 2000-08-02 Ulsan Chemical Co Ltd 六フッ化リン酸リチウムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1873861A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383075B2 (en) 2007-02-08 2013-02-26 Stella Chemifa Corporation Manufacturing method of hexafluorophosphate
US20110097626A1 (en) * 2008-08-08 2011-04-28 Stella Chemifa Corporation Process for production hexafluorophosphates
US9059480B2 (en) * 2008-08-08 2015-06-16 Stella Chemifa Corporation Process for production hexafluorophosphates

Also Published As

Publication number Publication date
JP4810867B2 (ja) 2011-11-09
EP1873861B1 (en) 2013-06-12
EP1873861A4 (en) 2011-10-19
EP1873861A1 (en) 2008-01-02
KR100917729B1 (ko) 2009-09-15
CN101142703A (zh) 2008-03-12
US20090081559A1 (en) 2009-03-26
CN101142703B (zh) 2011-09-21
JP2006302590A (ja) 2006-11-02
KR20070118313A (ko) 2007-12-14
US8097360B2 (en) 2012-01-17

Similar Documents

Publication Publication Date Title
JP4810867B2 (ja) リチウムイオン電池用電解液の製造方法
CN104445133B (zh) 一种二氟磷酸锂的制备方法及其锂离子电池非水电解液
CN105800582B (zh) 一种二氟磷酸锂的制备方法及锂离子电池非水系电解液
CN106946925B (zh) 氟代烷氧基三氟硼酸锂盐及其制备方法和应用
CN109422252B (zh) 一种氟磺酰二氟磷酰亚胺锂的制备方法及其产品和应用
KR100971065B1 (ko) 리튬이온전지용 전해액의 제조방법 및 이를 사용한리튬이온전지
JP2987397B2 (ja) ヘキサフルオロリン酸リチウムの製造方法
JP5862094B2 (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
JP3034202B2 (ja) リチウム電池用電解液及びその精製方法並びにそれを用いたリチウム電池
JP3369937B2 (ja) テトラフルオロホウ酸リチウムの精製方法
JP5609283B2 (ja) リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
JP5151121B2 (ja) リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
JP3375049B2 (ja) テトラフルオロホウ酸リチウムの製造方法
JP4747654B2 (ja) リチウムイオン電池用電解液の精製方法
JP5960907B2 (ja) 五フッ化リンの製造方法及び六フッ化リン酸リチウムの製造方法
CN114267878A (zh) 钙盐电解液和电解质及其制备方法和应用
JP2982950B2 (ja) リチウム電池用電解液の製造方法及びリチウム電池
WO2023108501A1 (zh) 钙盐电解液和电解质及其制备方法和应用
KR102463257B1 (ko) 리튬 이차전지용 전해질 첨가제 및 이를 포함하는 리튬이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008266.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006731488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11911901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077026323

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731488

Country of ref document: EP