WO2006112054A1 - シリコン単結晶の製造方法およびシリコンウェーハ - Google Patents

シリコン単結晶の製造方法およびシリコンウェーハ Download PDF

Info

Publication number
WO2006112054A1
WO2006112054A1 PCT/JP2005/016962 JP2005016962W WO2006112054A1 WO 2006112054 A1 WO2006112054 A1 WO 2006112054A1 JP 2005016962 W JP2005016962 W JP 2005016962W WO 2006112054 A1 WO2006112054 A1 WO 2006112054A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
defect
grown
region
defects
Prior art date
Application number
PCT/JP2005/016962
Other languages
English (en)
French (fr)
Inventor
Toshiaki Ono
Wataru Sugimura
Masataka Hourai
Original Assignee
Sumco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corporation filed Critical Sumco Corporation
Priority to EP05783532A priority Critical patent/EP1887110B1/en
Priority to CN2005800494161A priority patent/CN101160420B/zh
Publication of WO2006112054A1 publication Critical patent/WO2006112054A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for manufacturing a silicon single crystal that is a material for a silicon wafer used as a substrate of a semiconductor integrated circuit, and a silicon wafer manufactured using the single crystal.
  • CZ method Silicon wafers used for semiconductor integrated circuit (device) substrates are cut out from a single crystal of silicon.
  • the most widely used method for manufacturing this single crystal is the Tyokraski method (hereinafter " CZ method ”).
  • the CZ method is a method of growing a single crystal by immersing a seed crystal in molten silicon in a quartz crucible and pulling it up, so that the growth of this growth technique will produce a large single crystal with few defects and no dislocations. It has been growing.
  • a semiconductor device is commercialized through a number of processes for forming a circuit using a wafer obtained from a single crystal as a substrate.
  • the process is subject to numerous physical, chemical and even thermal treatments, including harsh treatments above 1000 ° C. For this reason, the cause is formed during the growth of a single crystal, and the micro defects, that is, Grown-in defects, which are manifested in the manufacturing process of the device and greatly affect its performance, become a problem.
  • the defect-free portion obtained is limited to the surface layer portion and is sufficiently defect-free from the surface to a deep position.
  • a defect-free part must be formed at the stage of single crystal growth.
  • hydrogen is introduced into the atmosphere in the apparatus during the growth, and the growth method in which the structure of the hot zone immediately after solidification of the single crystal pulling that is the raw material is improved. There is a method of adding.
  • FIG. 1 is a diagram for explaining the distribution of typical grown-in defects present in a silicon single crystal obtained by the CZ method.
  • Grown—in deficiency of silicon single crystal obtained by CZ method The pit also has a defect called a defect infrared scatterer or COP (Crystal Originated Particle), etc., and a vacancy defect of about 0.1 to 0.2 m, and a microdislocation force of about 10 m, called a dislocation cluster. Is a defect.
  • the distribution of these defects is observed as shown in Fig. 1, for example, when normal pull-up growth is performed.
  • This wafer has a ring-like oxygen-induced stacking fault (hereinafter referred to as “OSF” -Oxygen
  • induced stacking fault— appears at a position of about 2Z3 of the outer diameter, and there is a region where about 10 5 to 10 6 / cm 3 infrared scatterer defects are detected inside the ring. In the outer part, there is a region where about 10 3 to 10 4 dislocation cluster defects / cm 3 exist.
  • OSF is a stacking fault due to oxygen precipitation that occurs during acid-heat treatment, and when it grows and grows on the wafer surface, which is the active region of the device, it causes leakage current and degrades device characteristics.
  • the infrared scatterer is a factor that lowers the initial pressure resistance of the oxide film, and the dislocation cluster also causes poor characteristics of the device formed there.
  • FIG. 2 schematically shows the general relationship between the pulling speed and the position of occurrence of crystal defects during single crystal pulling, with the defect distribution in the cross section of the single crystal grown by gradually decreasing the pulling speed.
  • FIG. The occurrence state of defects described above is usually greatly influenced by the pulling rate during single crystal growth and the temperature distribution in the single crystal immediately after solidification. For example, a single crystal grown while gradually reducing the pulling rate is cut along the pulling axis at the center of the crystal, and the distribution of defects is examined on the cross section by the same method as in FIG. You can get two.
  • a ring-shaped OS F is formed around the crystal.
  • the inside is an area where many infrared scatterer defects are generated.
  • the diameter of the ring-shaped OSF gradually decreases, and at the same time, a region in which dislocation clusters are generated appears on the outer portion of the ring-shaped OSF.
  • the OSF disappears and the entire surface becomes a dislocation cluster defect generation region.
  • FIG. 1 shows a single crystal wafer grown at the position A in FIG. 2 or at a pulling speed corresponding to the position A.
  • the solid-phase crystal lattice near the solid-liquid interface captures a large amount of vacancies lacking atoms and atoms that have excessively entered between the lattices.
  • the Incorporated interstitial atoms disappear as they solidify and reach the surface by diffusion as solidification progresses and the temperature decreases.
  • relatively more vacancies are incorporated than interstitial atoms and the diffusion rate is faster, so if the pulling rate is high and the cooling is fast, the vacancies remain, and they combine to form infrared scatterer defects. If the pulling speed is slow, the vacancies disappear, and the remaining interstitial atoms form one dislocation cluster defect.
  • Infrared scatterer defects are not as bad as dislocation clusters and have the effect of improving productivity.
  • the ring-shaped OSF generation region is located at the outer periphery of the crystal.
  • single crystal growth has been carried out by increasing the pulling speed.
  • heat treatment to remove the Balta defects in the layer forming the integrated circuit on the surface of the wafer, that is, the DZ (Denuded Zone) formation process, is performed.
  • an oxygen precipitate (“BMD Bulk—Micro-Defect) having an internal gettering (IG—Intrinsic Gettering) action is easily formed.
  • the invention disclosed in Japanese Patent Application Laid-Open No. 8-330316 discloses that the pulling speed during single crystal growth is V (mmZmin), the temperature in the pulling axis direction in the temperature range from the melting point to 1300 ° C.
  • VZG is 0.20 0.22 mm 2 Z (° C'min) at the inner part from the outer periphery to 30 mm from the crystal center, and this is gradually increased toward the outer periphery of the crystal. Control the temperature gradient to increase.
  • JP 2001-220289 A or JP 2002-187794 A discloses heat that surrounds the periphery of a single crystal.
  • the inventors have proposed a technique for reducing the temperature gradient in the crystal in the direction of the pull-up axis and reducing the outer periphery by selecting the size and position of the shield and using a cooling member.
  • the temperature gradient in the crystal in the pulling axis direction As for the temperature gradient in the crystal in the pulling axis direction, the single crystal being pulled immediately after solidification is cooled by heat dissipation from the surface, so the outer peripheral part is large and the central part is small. That is, if the temperature gradient in the pulling axis direction is Gc at the center and Ge at the outer periphery, Gc is Ge.
  • the size and position of the heat shield surrounding the single crystal immediately after solidification, and further the cooling member By improving the structure of the hot zone, such as use, Gc> Ge should be achieved in the temperature range from the melting point to around 1250 ° C.
  • the temperature is maintained by heat radiation of the melting pot surface, and the upper part of the single crystal is cooled more strongly by using a heat shield or a cooling member, so that the center part is cooled by heat transfer.
  • the temperature gradient is relatively large in the center.
  • FIG. 3 shows a temperature gradient force in the pulling direction of a single crystal immediately after solidification.
  • the growth device has a (Gc> Ge) hot zone structure in which the crystal periphery (Ge) is smaller than the crystal center (Gc).
  • FIG. 6 is a diagram schematically illustrating a defect distribution state of a cross section of a single crystal pulled up by the above.
  • a method of adding hydrogen to the atmosphere in the apparatus being grown is, for example, an invention disclosed in Japanese Patent Application Laid-Open No. 2000-28 1491 or Japanese Patent Application Laid-Open No. 2001-335396.
  • the single crystal is pulled and grown in the atmosphere. This is because when hydrogen is added to the atmosphere, hydrogen dissolves in the silicon melt according to the amount of the hydrogen, and the hydrogen is partially taken into the solidified single crystal, resulting in a decrease in the number of grown-in defects. The size is reduced.
  • the present invention relates to a method for producing a silicon single crystal having a defect-free region force that does not cause a grown-in defect and a wafer using the same.
  • a hot zone structure device is used in which the temperature gradient in the pulling axis direction immediately after solidification is larger at the center than at the outer periphery, and the pulling speed is set within a specific range. There is a method to limit to.
  • An object of the present invention is to provide a method for producing a silicon single crystal in which a wafer in which BMD is uniformly and sufficiently generated can be easily obtained as a result of this defect-free region force, and to provide a silicon wafer.
  • the gist of the present invention is the following methods (1) to (6) for producing a silicon single crystal, and (7) to (9) silicon wafers.
  • a gas containing a hydrogen atom-containing substance is added to the atmospheric gas in the growth apparatus, and nitrogen is further introduced into the crystal. Or a method for producing a silicon single crystal, characterized by doping with Z and carbon.
  • the nitrogen in the single crystal should be l X 10 12 atoms Zcm 3 or more and 5 X 10 14 atoms Z cm 3 or less.
  • the hydrogen partial pressure in the atmospheric gas in the growth apparatus is set to 40 Pa or more and 400 Pa or less, and the straight body of the single crystal is pulled up within a speed range in which Grown-in defects do not occur. It is a manufacturing method.
  • the nitrogen in the single crystal is not less than l X 10 12 atoms / cm 3 and not more than 5 X 10 14 atoms / cm 3
  • the hydrogen partial pressure in the atmospheric gas in the growth apparatus is set to 40 Pa or more and 400 Pa or less, and the single crystal straight body is pulled up within a speed range that is a void dominant defect-free region. This is a method for producing a single crystal.
  • the carbon in the single crystal is 5 X 10 15 atoms Zcm 3 or more, 2 X 10 17 atoms Z cm 3 or less (ASTM F123— 1981), and the hydrogen partial pressure in the atmosphere gas in the growth apparatus is set to 40 Pa or more and 160 Pa or less, and the single crystal straight body is pulled up within a speed range in which Grown-in defects do not occur. It is a manufacturing method of silicon single crystal
  • the carbon in the single crystal is 5 X 10 15 atoms Zcm 3 or more, 2 X 10 17 atoms Z cm 3 or less (ASTM F123— 1981), and the hydrogen partial pressure in the atmospheric gas in the growth apparatus is set to 40 Pa or more and 160 Pa or less, and the single crystal straight body is within the velocity range including the OSF region and the vacancy dominant defect-free region.
  • This is a silicon single crystal manufacturing method characterized by pulling up.
  • the nitrogen in the single crystal is l x 10 12 atoms Zcm 3 or more, 5 x 10 14 atoms Z cm 3 or less, and carbon Of 5 ⁇ 10 15 atomsZcm 3 or more and 2 ⁇ 10 17 atomsZcm 3 or less (ASTM F123-1981), and the hydrogen partial pressure in the atmosphere gas in the growth apparatus is 40 Pa or more and 400 Pa or less.
  • a method for producing a silicon single crystal characterized in that the body is pulled up within a speed range where no Grown-in defects are generated.
  • a silicon substrate characterized in that the silicon single crystal force grown by the method of (1), (2), (3), (4), (5) or (6) is also cut out.
  • the entire surface has a defect-free region force that does not cause a Grown-in defect, and a wafer in which BMD is sufficiently and uniformly formed is cut out.
  • a silicon single crystal that can be manufactured can be easily manufactured.
  • Such wafers can greatly reduce the occurrence of defective products of integrated circuits formed on them, and as a substrate for miniaturization and higher density of circuits, the production yield can be improved. Can contribute.
  • FIG. 1 is a diagram schematically showing an example of a typical defect distribution observed with a silicon wafer.
  • Figure 2 shows the general relationship between the pulling speed and the position of occurrence of crystal defects during single crystal pulling, with the defect distribution in the cross section of the single crystal grown by gradually decreasing the pulling speed.
  • FIG. 3 shows the temperature gradient force in the pulling direction of a single crystal immediately after solidification.
  • the crystal peripheral part (Ge) is smaller than the crystal central part (Gc), and it is pulled by a growth device with a (Gc> Ge) hot zone structure.
  • FIG. 3 is a diagram illustrating a single crystal that has been raised by the same method as in FIG.
  • FIG. 4 shows a case where hydrogen is added to the inert atmosphere in the apparatus during the pulling by the same growth apparatus as in FIG.
  • Fig. 5 is a diagram for explaining the relationship between the hydrogen partial pressure and the generation and pulling speed width of the defect-free region when hydrogen is added to the inert atmosphere in the growth apparatus having a hot zone structure with Gc> Ge. is there.
  • Fig. 6 is a diagram schematically showing an example of the configuration of the silicon single crystal growth apparatus used in the examples. It is.
  • Fig. 7 is a diagram for explaining that even when OSF is generated in the OSF region at the wafer center where oxygen concentration is high, the generation of OSF is suppressed by carbon addition.
  • the effect obtained by mixing hydrogen into the atmospheric gas in the apparatus being grown is usually that a chemically inert gas such as argon is used as the atmospheric gas. It is presumed that hydrogen proportional to the pressure dissolves in the silicon melt and is distributed in the silicon crystal where it solidifies.
  • FIG. 4 shows the defect distribution of a single crystal grown using the same hot zone growth apparatus as in FIG. 3, with the hydrogen partial pressure of the atmosphere set to 300 Pa and the pulling rate continuously changed.
  • I-dominant defect-free region that is, between B and C in Fig. 3 or between D and F in Fig. 4 is a defect-free region in which no Grown in defect exists, and the bow I lift speed during this period If a single crystal is grown, it is possible to grow a single crystal with a woofer having a defect-free region force.
  • the pulling speed at which the defect-free region is obtained decreases as the hydrogen partial pressure in the atmosphere increases, but the range of the speed increases as the hydrogen partial pressure increases. Yes. And When looking at the pulling speed ranges for the OSF area, P area, and P area,
  • the SF region narrows as the hydrogen partial pressure increases, and eventually disappears, depending on the amount of oxygen.
  • the P region was initially expanded by adding hydrogen to the atmosphere inside the growth equipment.
  • the I region is narrow when the hydrogen partial pressure is low, but is greatly expanded when the hydrogen partial pressure is high.
  • a wafer mainly composed of a region where a normal infrared scatterer defect is generated has an IG action inside the wafer by oxygen precipitation in the process of heat treatment for forming DZ on the surface. BMD occurs.
  • Wafers used for integrated circuit boards often need to have DZ, which forms the circuit on the surface, as well as an IG effect as a countermeasure against contamination by heavy metals during the circuit formation process! .
  • the P region forms a BMD inside during the DZ formation process, and the DZ type
  • the pulling speed range to obtain the V region cannot always be expanded sufficiently, and it is not easy to realize the condition of a wafer with the entire surface set to the P region.
  • the hydrogen atom-containing substance targeted by the present invention is a substance that can be thermally decomposed when dissolved in a silicon melt and supply hydrogen atoms into the silicon melt.
  • the hydrogen concentration in the silicon melt can be improved.
  • hydrogen atom-containing substance examples include hydrogen atoms such as hydrogen gas, H0, and HC1.
  • Inorganic compounds silane gas, hydrocarbons such as CH and CH, alcohols, carboxylic acids, etc.
  • Examples of the various substances containing hydrogen atoms include hydrogen gas, but it is particularly desirable to use hydrogen gas.
  • the inert gas inexpensive Ar gas is preferred, and various rare gases such as He, Ne, Kr, and Xe, or a mixed gas thereof can be used.
  • the concentration difference between the calculated concentration and twice the concentration of oxygen gas can exist at a concentration of 3% by volume or more. If the concentration difference between the hydrogen atom-containing gas concentration and the oxygen gas concentration is less than 3% by volume, COP and dislocation clusters, etc. — This is because the effect of suppressing the generation of in defects cannot be obtained.
  • the silicon crystal when the nitrogen concentration in the inert atmosphere becomes high, the silicon crystal may be dislocated, so that the normal furnace pressure is within the range of 1.3 to 13.3 kPa (10 to 100 Torr). Therefore, the nitrogen concentration is preferably 20% or less.
  • inert gas from a commercially available hydrogen gas tank, a hydrogen gas storage tank, a tank filled with a hydrogen storage alloy, etc. is passed through a dedicated pipe. Can be supplied to the atmosphere.
  • Japanese Patent Application Laid-Open No. 2001-199794 proposes an invention in which nitrogen and carbon are added as having the effect of reducing the size of infrared scatterer defects.
  • carbon has the same effect as nitrogen.
  • Japanese Patent Laid-Open No. 2003-59932 discloses a defect-free region in which a large amount of BMD outside the OSF ring occurs, that is, P
  • An invention of defect-free wafers with many BMDs that exhibits the IG effect based on the V region being expanded by doping with nitrogen is disclosed.
  • doping of light elements such as nitrogen and carbon is presumed to affect the generation of grown-in defects and the formation of BMD. Therefore, in a hydrogen-containing atmosphere using a growth device with an improved hot zone. We examined the impact of these when they were raised, and whether they could be a measure to expand this P-area.
  • the generation rate range of the P region is greatly expanded up to a hydrogen partial pressure of 160 Pa.
  • the portion exceeding 60% of the pulling speed range width where a defect-free defect-free region is obtained becomes the P region. In this way, the range is expanded.
  • the ratio of the P region increases.
  • the velocity range width of each region was not much different from that when the hydrogen partial pressure in the atmosphere was changed.
  • OSF generation is suppressed in the region where OSF occurs.
  • the OSF region has the same characteristics as the P region, which is free from Grown-in defects and easily causes BMD. did
  • the velocity range of the combined OSF region and P region is set.
  • the P region is expanded.
  • the hot zone structure was improved so that the temperature distribution in the single crystal immediately after the solidification of the pulling was Ge and Gc, and the defect-free region was expanded.
  • Single crystal so that nitrogen is 1 X 10 12 atoms / cm 3 or more and 5 X 10 14 atoms / cm 3 or less and the hydrogen partial pressure in the inert atmosphere in the growth apparatus is 40 Pa or more and 400 Pa or less Pull up the straight body within the speed range where Grown—in defects do not occur
  • the defect-free region in the woofer direction of the single crystal can be expanded.
  • the structure of the hot zone is not particularly limited as long as such a temperature distribution in the crystal can be obtained.
  • the pulling speed range for obtaining a defect-free single crystal varies depending on the diameter of the single crystal and the structure of the hot zone. However, if the equipment and single crystal diameter are the same, the speed range will be almost the same, so first grow a single crystal with continuously changing pulling speed, and then investigate the speed range and select the pulling speed. That's fine.
  • the amount of nitrogen is 1 X 10 12 atoms / cm 3 or more and 5 X 10 14 atoms / cm 3 or less, the effect of nitrogen addition is not sufficient if it is less than 1 X 10 12 at O msZcm 3 or less. Enough to expand
  • the hydrogen partial pressure is set to 40 Pa or more and 400 Pa or less because the effect of adding hydrogen to the atmosphere does not appear sufficiently if the pressure is less than 40 Pa, and if the partial pressure exceeds 400 Pa, a large cavity called hydrogen defect is generated. This is because defects tend to occur.
  • the pressure of the atmospheric gas in the apparatus during the growth is not particularly limited as long as the hydrogen partial pressure is controlled within the above range, and may be a pressure applied to normal growth.
  • V region vacancy dominant defect-free region
  • the carbon in the single crystal is 5 X 10 15 atoms / cm 3 or more and 2 X 10 17 atoms / cm 3 or less (ASTM F123-1981), and the hydrogen partial pressure in the atmosphere gas in the growth apparatus is reduced.
  • the straight body of the single crystal is pulled up within a speed range that does not generate Grown-in defects at 40 Pa or more and 160 Pa or less.
  • Carbon supplementation has the effect of suppressing the occurrence of OSF in the OSF region.
  • the OSF area where the generation of OSF is suppressed is the same as the P area because it is defect-free and generates sufficient BMD inside. Therefore, as a result of the expansion of the P region as a wafer
  • the speed range can be handled in the form of “OSF area + original P area”.
  • the reason why the amount of carbon is 5 X 10 15 atoms / cm 3 or more and 2 X 10 17 atoms / cm 3 or less is that if it is less than 5 X 10 15 atoms Zcm 3 , the effect of carbon addition does not appear sufficiently, and 2 X 10 17 atoms Zcm This is because exceeding 3 increases the occurrence of Balta defects, which is not preferable.
  • the hot zone structure is improved so that the temperature distribution in the single crystal immediately after the solidification of the pulling becomes Ge and Gc, and the silicon single crystal is grown by the CZ method in which the defect-free region is expanded.
  • the nitrogen in the single crystal is l X 10 12 atoms / cm 3 or more, at 5 X 10 14 atoms Zcm 3 or less, carbon is 5 X 10 15 atomsZcm 3 or more, 2 X 10 17 atomsZcm 3 below (AS TM F123- 1981) and the hydrogen partial pressure in the inert atmosphere in the growth apparatus is set to 40 Pa or more and 400 Pa or less, and the single crystal straight body is pulled up within a speed range in which Grown-in defects do not occur.
  • the defect area can be further expanded.
  • the nitrogen additive is P
  • the wafer obtained from the silicon single crystal obtained as described above has a heating temperature of 800 to 1200 ° C in an inert gas atmosphere or a mixed atmosphere of ammonia and an inert gas, for example.
  • Rapid heating / cooling heat treatment RTA treatment: Rapid Thermal Annealing
  • RTA treatment Rapid Thermal Annealing
  • the wafer targeted by the present invention is a silicon wafer having no defect-area force and having no agglomerates of point defects, an interstitial silicon type point that annihilates the injected vacancies.
  • the holes necessary for oxygen precipitation with almost no defects can be injected efficiently.
  • a sufficient vacancy density can be secured by RTA treatment.
  • the oxygen concentration 1. 2 X 10 18 atoms / cm 3 or more silicon ⁇ er Ha defect-free is (ASTM F121- 1979) can be produced.
  • the concentration of oxygen in single crystals is usually 1.2 X 10 18 at O msZcm 3 Limited to:
  • the addition of carbon suppresses the formation of ring-shaped OSF that appears in the crystal, and as a result, the oxygen that has been specified with the manifestation of OSF nuclei is defined. Since the allowable upper limit (concentration margin) of the concentration can be increased, even if the oxygen concentration is a concentration level of 1.2 X 10 18 atomsZcm 3 or higher, the device characteristics are not deteriorated and the defect-free region force is also obtained. Can cultivate c. It is also predicted that this is due to a decrease in the precipitation sites of oxygen precipitates due to the interaction between hydrogen and vacancies.
  • the oxygen concentration is at most 1.6 ⁇ 10 18 atoms / cm 3 .
  • the heat shield 7 has a structure in which the outer shell is made of graphite and the inside of the crucible is filled with graphite felt, the outer diameter force 80mm, the minimum inner diameter S at the lowest end is 270mm, The width W in the radial direction was 105 mm, and the inner surface was an inverted frustoconical surface where the lower end force began, and the inclination with respect to the vertical direction was 21 °.
  • the inner diameter of the crucible 1 was 550 mm, and the height H from the melt surface at the lower end of the heat shield 7 was 60 mm.
  • This growth apparatus is designed to reduce the thickness of the lower end of the heat shield 7 so that the temperature distribution in the crystal satisfies Gc ⁇ Ge in the temperature range from the melting point to 1250 ° C of the single crystal pulled from the melt.
  • the height H from the melt surface at the lower end of the heat shield 7 is set to be high.
  • Polycrystalline high-purity silicon was charged into the crucible, the inside of the apparatus was placed in a reduced-pressure atmosphere, and heated by the heater 2 to melt the silicon to obtain a melt 3.
  • the seed crystal attached to the seed chuck 5 is immersed in the melt 3 and pulled up while the crucible 1 and the lifting shaft 4 are rotated, and after performing the seed squeezing for crystal dislocation, the shoulder portion is formed. I changed my shoulder and formed a straight body.
  • the target diameter of the straight body is 200 mm
  • the axial temperature gradient inside the single crystal during growth is in the range from the melting point to 1370 ° C.
  • the central part was 3.0 to 3.2 ° CZmm
  • the peripheral part was 2.3 to 2.5 ° CZmm.
  • the single crystal was grown by changing the atmospheric pressure in the equipment to 4000 Pa and changing the pulling speed from 0.6 mm / min ⁇ 0.3 mm / min ⁇ 0.6 mmZmin.
  • the hydrogen partial pressure in the atmosphere in the apparatus was changed to 6 levels of 20Pa, 40Pa, 160Pa, 240Pa and 400Pa by adding hydrogen gas without adding hydrogen and growing.
  • the obtained single crystal was vertically divided along the pulling axis to produce a plate-shaped test piece including the vicinity of the pulling central axis in the plane, and the distribution of the Grown-in defects was observed.
  • the observation was conducted after immersion in an aqueous copper sulfate solution, drying, heating in a nitrogen atmosphere at 900 ° C for 20 minutes, cooling, and immersion in a hydrofluoric acid-nitric acid mixture to remove the surface Cu silicide layer and etching away. Then, the position of the OSF ring and the distribution of each defect area were investigated by X-ray topography. Table 1 shows the growth conditions and the results of the single crystal survey.
  • the combination of the I region is defined as a defect-free region.
  • the pulling speed width indicates the width of the speed when the pulling speed is continuously changed, and is measured at the center of the single crystal.
  • Example 2 Using the same growth equipment as in Example 1, the atmospheric pressure in the equipment was 4000 Pa, and the pulling speed was changed from 0.6 mm / min ⁇ 0.3 mm / min ⁇ 0.6 mm Zmin. Single crystals were grown by changing the hydrogen partial pressure and the amount of carbon doped in the crystals. The obtained single crystal was examined for the distribution of each defect region in the same manner as in Example 1. The OSF density was examined by observation with an optical microscope after performing light etching of 3 ⁇ m on the cross section after heat treatment at 1100 ° C for 16 hours in a dry oxygen atmosphere. Table 2 shows the training conditions and survey results.
  • the defect-free region is expanded by increasing the hydrogen partial pressure in the equipment, and the carbon addition
  • the occurrence of OSF is greatly reduced.
  • the hydrogen partial pressure exceeds 160 Pa
  • the OSF region decreases, so the speed range of the OSF region + P region decreases, and the pulling speed range that gives a defect-free and sufficient BMD is impeded. End up.
  • the atmospheric gas pressure in the apparatus is 4000 Pa
  • the hydrogen partial pressure is 160 Pa
  • the center of the wafer becomes the OSF generation region
  • the oxygen concentration is 1. 0 X l0 18 2 of (atomsZcm 3) or 1. 3 X 10 18 (atomsZcm 3 )
  • four types of single crystals were grown, each with and without carbon for each oxygen concentration level.
  • the silicon single crystal is grown in a defect-free region in which no Grown-in defects are present by the CZ method, and the hydrogen atom-containing substance is contained in the atmospheric gas in the growth apparatus.
  • a silicon single crystal is manufactured by adding nitrogen gas and doping nitrogen or Z and carbon in the crystal, so that the entire surface becomes defect-free without the presence of Grown-in defects, and BMD is sufficient. It is possible to cut wafers that are uniformly formed. Such wafers can greatly reduce the occurrence of defective product characteristics of integrated circuits formed on them, and as a substrate for miniaturization and higher density of circuits, it can improve the manufacturing yield. Since it can contribute, it can be widely used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明のシリコン単結晶の製造方法によれば、CZ法によりGrown-in欠陥を存在させない無欠陥領域によるシリコン単結晶を育成すること、育成装置内の雰囲気ガス中に水素原子含有物質の気体を添加すること、および結晶内に窒素または/および炭素をドープすることによりシリコン単結晶を製造するので、全面がGrown-in欠陥を存在させることなく無欠陥領域からなり、かつBMDが十分にそして均一に形成されるウェーハを切り出すことができる。このようなウェーハは、その上に形成される集積回路の特性不良品の発生を大幅に低減させることができ、回路の微細化および高密度化に対応した基板として、その製造歩留まりの向上に寄与することができるので、広く利用することができる。

Description

明 細 書
シリコン単結晶の製造方法およびシリコンゥエーハ
技術分野
[0001] 本発明は、半導体集積回路の基板として用いるシリコンゥエーハの素材となるシリコ ン単結晶の製造方法およびその単結晶により製造されるシリコンゥ ーハに関するも のである。
背景技術
[0002] 半導体集積回路 (デバイス)の基板に用いられるシリコンゥエーハは、シリコンの単 結晶より切り出されるが、この単結晶の製造に最も広く採用されているのは、チヨクラ ルスキー法 (以下、「CZ法」という)による育成方法である。 CZ法は、石英るつぼ内の 溶融したシリコンに種結晶を浸けて引き上げつつ単結晶を成長させる方法であり、こ の育成技術の進歩により欠陥の少ない無転位の大型単結晶が製造されるようになつ てきている。
[0003] 半導体デバイスは、単結晶から得られたゥエーハを基板として、回路形成のため多 数のプロセスを経過して製品化される。そのプロセスには数多くの物理的処理、化学 的処理さらには熱的処理が施され、中には 1000°Cを超える過酷な処理も含まれる。 このため、単結晶の育成時にその原因が形成され、デバイスの製造過程で顕在化し てその性能に大きく影響してくる微細欠陥、すなわち Grown— in欠陥が問題になる
[0004] この Grown— in欠陥のないゥヱーハを製造する方法として、ゥヱーハに加工後に 熱処理を施す方法があるが、得られる無欠陥部は表層部に限定され、表面から深い 位置まで十分に無欠陥領域とするには、単結晶育成の段階で無欠陥部を形成させ なければならない。このような無欠陥単結晶を得る方法には、素材となる単結晶引き 上げの凝固直後の冷却部分、すなわちホットゾーンの構造を改善した育成方法、お よび育成中の装置内の雰囲気に水素を添加する方法がある。
[0005] 図 1は、 CZ法にて得られたシリコン単結晶に存在する代表的な Grown— in欠陥の 分布状況を説明する図である。 CZ法にて得られたシリコン単結晶の Grown— in欠 陥は、欠陥赤外線散乱体または COP (Crystal Originated Particle)などと呼ば れる大きさが 0. 1〜0. 2 m程度の空孔欠陥、および転位クラスターと呼ばれる大き さが 10 m程度の微小転位力もなる欠陥である。これら欠陥の分布は、通常の引き 上げ育成をおこなった場合、例えば、図 1のように観察される。これは育成直後の単 結晶から引き上げ軸に垂直な面のゥエーハを切り出し、硝酸銅水溶液に浸けて Cuを 付着させ、熱処理後 X線トポグラフ法にて微小欠陥の分布観察をおこなった結果を 模式的に示した図である。
[0006] このゥエーハは、リング状に分布した酸素誘起積層欠陥(以下、「OSF」 -Oxygen
induced Stacking Fault—という)が外径の約 2Z3の位置に現れたものである 力、そのリングの内側部分には赤外線散乱体欠陥が 105〜106個 /cm3程度検出さ れる領域があり、外側部分には転位クラスター欠陥が 103〜104個 /cm3程度存在す る領域がある。
[0007] OSFは酸ィ匕熱処理時に生じる酸素析出に起因する積層欠陥であり、デバイスの活 性領域であるゥエーハ表面に生成成長した場合には、リーク電流の原因になりデバィ ス特性を劣化させる。また、赤外線散乱体は初期の酸化膜耐圧性を低下させる因子 であり、転位クラスターもそこに形成されたデバイスの特性不良の原因になる。
[0008] 図 2は、単結晶引き上げ時の、引き上げ速度と結晶欠陥の発生位置との一般的な 関係を、引き上げ速度を徐々に低下させて育成した単結晶の断面の欠陥分布状態 にて模式的に説明した図である。上述した欠陥の発生状態は、通常、単結晶育成の 際の引き上げ速度と、凝固直後の単結晶内温度分布に大きく影響される。例えば、 引き上げ速度を徐々に低下させつつ成長させた単結晶を、結晶中心の引き上げ軸 に沿って切断し、その断面にて前記図 1と同様な手法で欠陥の分布を調べてみると、 図 2を得ることができる。
[0009] これを引き上げ軸に垂直な面で見ていくと、まず、ショルダー部を形成させ所要単 結晶径とした後の胴部の引き上げ速度の早い段階では、結晶周辺部にリング状 OS Fがあり、内部は赤外線散乱体欠陥が多数発生する領域となっている。そして、引き 上げ速度の低下にしたがって、リング状 OSFの径は次第に小さくなり、それとともにリ ング状 OSFの外側部分には、転位クラスターの発生する領域が現れ、やがてリング 状 OSFは消滅して、全面が転位クラスター欠陥発生領域になってしまう。
[0010] 前記図 1は、この図 2における Aの位置、またはこの Aの位置に相当する引き上げ 速度で育成された単結晶のゥエーハを示したものである。
これらの欠陥の分布をさらに詳細に調べると、リング状 OSFの発生する領域近傍で は赤外線散乱体欠陥も転位クラスター欠陥も極めて少ないことがわかる。そして、リン グ状 OSF発生領域に接してその外側に、処理条件によっては酸素析出の現れる酸 素析出促進領域があり、さらにその外側の転位クラスター発生領域との間に、酸素析 出を生じな!/ヽ酸素析出抑制領域がある。これら酸素析出促進領域および酸素析出 促進領域は、リング状 OSF発生領域と同じぐいずれも Grown— in欠陥の極めて少 ない無欠陥領域である。
[0011] これらの欠陥の成因については必ずしも明らかではないが、次のように考えられる。
液相の融液から固相の単結晶が育成されるとき、固液界面近傍の固相の結晶格子 には、原子の欠けた空孔と格子間に過剰に入り込んだ原子とが多量に取り込まれる 。取り込まれた空孔ゃ格子間原子は、凝固が進み温度が降下していく過程で、拡散 によって相互に合体したり表面に達したりして消滅していく。そして、相対的に空孔の 方が格子間原子よりも多く取り込まれ、かつ拡散速度が速いことから、引き上げ速度 が大きく冷却が速ければ空孔が残存し、それらが合体して赤外線散乱体欠陥を生じ させ、引き上げ速度が遅ければ空孔は消滅して、残った格子間原子が転位クラスタ 一欠陥を形成させる。
[0012] この空孔の数と格子間原子の数とがちょうどバランスして合体消滅する領域では、 赤外線散乱体欠陥も転位クラスター欠陥も極めて少な ヽ無欠陥領域になる。ただし、 無欠陥領域でも赤外線散乱体欠陥が多数発生する領域に隣接する位置には、リン グ状 OSFが発生しやすい。さらにそれより外側あるいは低速側には酸素析出促進領 域があるが、この領域は空孔が優勢な無欠陥領域と考えられ、以下では P領域とい
V
うことにする。また、この P領域より外側、または低速側に酸素析出抑制領域がある
V
力 ここは格子間元素が優勢な無欠陥領域と考えられ、 P領域ということにする。
I
[0013] 赤外線散乱体欠陥は、転位クラスターほどの悪影響を及ぼさな ヽことや、生産性向 上の効果もあるので、従来は、リング状 OSFの発生領域が結晶の外周部に位置する ように引き上げ速度を速くして、単結晶育成が行われてきた。これは、赤外線散乱体 欠陥の発生する領域では、ゥ ハ表面の集積回路を形成させる層のバルタ欠陥を 除去するための熱処理、すなわち DZ (Denuded Zone)形成処理を行うことにより、 そのゥ ハ内部には、内部ゲッタリング(IG— Intrinsic Gettering)作用のある酸 素析出物(「BMD Bulk— Micro - Defect)が容易に形成されることもある。
[0014] し力しながら、近年の小型化高密度化の要求から集積回路がより微細化してくると、 赤外線散乱体欠陥も良品歩留まり低下の大きな原因になり、その発生密度を低減す ることが重要課題となってきた。そこでこれに対し、前述の無欠陥領域を拡大してゥェ 全面が無欠陥領域となるように、ホットゾーンの構造を改良した単結晶育成方法 が提案されている。
[0015] 例えば、特開平 8— 330316号公報に開示された発明は、単結晶育成時の引き上 げ速度を V(mmZmin)、融点から 1300°Cまでの温度範囲における引き上げ軸方 向の温度勾配を G (°CZmm)とするとき、結晶中心より外周から 30mmまでの内部位 置では VZGを 0. 20 0. 22mm2Z (°C'min)とし、結晶外周に向かってはこれを 漸次増加させるよう、温度勾配を制御する。
[0016] このような凝固直後の結晶内の温度分布を積極的に制御する方法の例として、特 開 2001— 220289号公報または特開 2002— 187794号公報には、単結晶の周囲 を取り囲む熱遮蔽体の寸法や位置の選定、さらには冷却用部材の使用などにより、 引き上げ軸方向の結晶内温度勾配を、中心部は大きく外周部は小さくする技術の発 明が提示されている。
引き上げ軸方向の結晶内温度勾配は、通常、凝固直後の引き上げ中の単結晶は 表面からの熱放散により冷却されるので、外周部が大きく中心部が小さい。すなわち 引き上げ軸方向の温度勾配を中心部が Gc、外周部が Geとすると、 Gcく Geである。
[0017] これに対し、上記特開 2001— 220289号公報または特開 2002— 187794号公報 の発明では、凝固直後の単結晶の周囲を取り囲む熱遮蔽体の寸法、位置、さらには 冷却用部材の使用などホットゾーンの構造の改良により、融点から 1250°C近傍まで の温度域にぉ 、て、 Gc > Geとなるようにして!/、る。
これは、引き上げ中の単結晶において、融液から立ち上がる部分近傍では表面部 力 ¾つぼ壁面ゃ融液面力もの熱輻射により保温されるようにし、単結晶の上方を熱遮 蔽体ゃ冷却部材等を用いてより強く冷却することにより中心部は熱伝達で冷却させ、 中心部の方を相対的に温度勾配が大きくなるようにする。
[0018] 図 3は、凝固直後の単結晶の引き上げ方向の温度勾配力 結晶中心部(Gc)よりも 結晶周辺部(Ge)の方が小さ 、 (Gc >Ge)ホットゾーン構造をもつ育成装置により引 き上げた単結晶の断面の欠陥分布状態にて模式的に説明した図である。その結果、 前記図 2で示した場合と同様にして、引き上げ速度を変えて単結晶を育成すると、単 結晶内の各欠陥の発生分布は図 3のように変わる。そこで、このようにホットゾーン構 造を改良した育成装置にて、図 3の Bから Cの速度範囲で引き上げ育成をおこなうと 、胴部の大半が無欠陥領域となる単結晶が得られ、 Grown— in欠陥の極めて少な V、ゥエーハを製造することができる。
[0019] 一方、育成中の装置内雰囲気に水素を添加する方法は、例えば、特開 2000— 28 1491号公報または特開 2001— 335396号公報などに開示されている発明である 力 水素を添加した雰囲気にて単結晶の引き上げ育成をおこなう。これは雰囲気中 に水素を添加すると、その量に応じてシリコン融液に水素が溶け込み、その水素は凝 固する単結晶中に一部取り込まれ、その結果、 Grown— in欠陥の数が減少しその 大きさが小さくなるというものである。
[0020] ドーピングの形で結晶中に取り込まれた水素は、空孔と結合して空孔の拡散挙動 を抑制したり、格子間原子と同様な作用を持つので格子間原子の取り込みを低減さ せたりするが、冷却過程の高温時に容易に拡散して逸散してしまうので、結果として 欠陥を低減させると推測される。しかし、水素の雰囲気中添加だけでは完全には欠 陥をなくすことはできず、このようにして得られた単結晶から切り出したゥエーハにより 、さらに水素を含む雰囲気にて高温での熱処理をおこなって無欠陥ゥエーハとしてい るよつである。
[0021] 国際公開 WO2004Z083496号パンフレットには、このような水素の効果を利用し 、前述の Geく Gcとなるようにホットゾーンの構造を改良した育成装置を用い、水素を 含む不活性ガスを装置内に供給しつつ引き上げをおこなう、 Grown— in欠陥のない 単結晶の育成方法の発明が開示されている。 [0022] 凝固直後の単結晶内部の温度分布を Geく Gcとなるようにすると、図 3の B〜C間 のようなゥエーハ断面全面が Grown— in欠陥のない領域となる引き上げ速度範囲が 得られ、その引き上げ速度で育成すれば、単結晶全体を無欠陥にすることができる。 しかしながら、その速度範囲は狭ぐ単結晶の径が大きくなつてくると、ゥ ーハ全面 を無欠陥領域とする速度範囲が得られなくなったり、単結晶の直胴部全長を安定し て無欠陥にするのは容易ではなくなつてくる。これに対し国際公開 WO2004Z083 496号の発明方法では、図 3の B〜Cの間隔が拡大し、ゥ ーハ全面を無欠陥領域 にできる引き上げ速度範囲が拡大するので、 Grown— in欠陥のない単結晶が容易 にかつ従来より高速で育成できるとして 、る。
発明の開示
[0023] 本発明は、 Grown— in欠陥を存在させない無欠陥領域力もなるシリコン単結晶の 製造方法およびそれを用いたゥエーハに関するものである。このような無欠陥単結晶 の育成技術として、凝固直後の引き上げ軸方向の温度勾配が、外周部よりも中心部 の方を大きくなるようにしたホットゾーン構造の装置を用い、引き上げ速度を特定範囲 に限定する方法がある。
[0024] この製造方法によれば、 Grown— in欠陥のない無欠陥領域がゥエーハ面全面に 拡大された単結晶が得られる。しかしながら、このような無欠陥であって、内部ゲッタリ ング作用を有する BMDの発生が十分多ぐし力もこれがゥ ーハ面方向全面にわた つて均一に分布する単結晶を得るのは必ずしも容易ではない。
本発明は、この無欠陥領域力 なり、 BMDが均一かつ十分に発生するゥ ーハが 容易に得られるシリコン単結晶の製造方法、およびそれによるシリコンゥヱーハの提 供を目的としている。
[0025] 本発明は、下記(1)〜(6)のシリコン単結晶の製造方法、および(7)〜(9)のシリコ ンゥエーハを要旨としている。
(1) CZ法により Grown— in欠陥を存在させない無欠陥領域によるシリコン単結晶 の育成にお 、て、育成装置内の雰囲気ガス中に水素原子含有物質の気体を添加し 、さらに結晶内に窒素または Zおよび炭素をドープすることを特徴とするシリコン単結 晶の製造方法である。 (2) CZ法により Grown— in欠陥を存在させない無欠陥領域によるシリコン単結晶 の育成において、単結晶中の窒素が l X 1012atomsZcm3以上、 5 X 1014atomsZ cm3以下となるようにし、かつ育成装置内の雰囲気ガス中の水素分圧を 40Pa以上、 400Pa以下として、単結晶直胴部を Grown— in欠陥の発生しない速度範囲内で引 き上げることを特徴とするシリコン単結晶の製造方法である。
(3) CZ法により Grown— in欠陥を存在させない無欠陥領域によるシリコン単結晶 の育成において、単結晶中の窒素が l X 1012atoms/cm3以上、 5 X 1014atoms/ cm3以下となるようにし、かつ育成装置内の雰囲気ガス中の水素分圧を 40Pa以上、 400Pa以下として、単結晶直胴部を空孔優勢無欠陥領域となる速度範囲内で引き 上げることを特徴とするシリコン単結晶の製造方法である。
(4) CZ法により Grown— in欠陥を存在させない無欠陥領域によるシリコン単結晶 の育成において、単結晶中の炭素が 5 X 1015atomsZcm3以上、 2 X 1017atomsZ cm3以下 (ASTM F123— 1981)となるようにし、かつ育成装置内の雰囲気ガス中 の水素分圧を 40Pa以上、 160Pa以下として、単結晶直胴部を Grown— in欠陥の発 生しない速度範囲内で引き上げることを特徴とするシリコン単結晶の製造方法である
(5) CZ法により Grown— in欠陥を存在させない無欠陥領域によるシリコン単結晶 の育成において、単結晶中の炭素が 5 X 1015atomsZcm3以上、 2 X 1017atomsZ cm3以下 (ASTM F123— 1981)となるようにし、かつ育成装置内の雰囲気ガス中 の水素分圧を 40Pa以上、 160Pa以下として、単結晶直胴部を OSF領域と空孔優勢 無欠陥領域とを加えた速度範囲内で引き上げることを特徴とするシリコン単結晶の製 造方法である。
(6) CZ法により Grown— in欠陥を存在させない無欠陥領域によるシリコン単結晶 の育成において、単結晶中の窒素が l X 1012atomsZcm3以上、 5 X 1014atomsZ cm3以下で、さらに炭素が 5 X 1015atomsZcm3以上、 2 X 1017atomsZcm3以下( ASTM F123— 1981)となるようにし、かつ育成装置内の雰囲気ガス中の水素分 圧を 40Pa以上、 400Pa以下として、単結晶直胴部を Grown— in欠陥の発生しない 速度範囲内で引き上げることを特徴とするシリコン単結晶の製造方法である。 [0026] (7)上記(1)、 (2)、 (3)、 (4)、 (5)または(6)の方法で育成されたシリコン単結晶 力も切り出されたことを特徴とするシリコンゥエーハである。
(8)酸素濃度が 1. 2 X 1018atoms/cm3以上(ASTM F121— 1979)であること を特徴とする上記(7)のシリコンゥエーハである。
(9)上記(1)、 (2)、 (3)、 (4)、 (5)または(6)の方法で育成されたシリコン単結晶 から切り出され、急速昇降温熱処理 (RTA処理)が施されたことを特徴とするシリコン ゥエーノヽである。
[0027] 本発明のシリコン単結晶の製造方法によれば、全面が Grown— in欠陥を存在させ ない無欠陥領域力 なり、かつ BMDが十分にそして均一に形成されるゥ ーハを切 り出すことができるシリコン単結晶を、容易に製造することができる。このようなゥエー ハは、その上に形成される集積回路の特性不良品の発生を大幅に低減させることが でき、回路の微細化および高密度化に対応した基板として、その製造歩留まりの向 上に寄与することができる。
図面の簡単な説明
[0028] 図 1は、シリコンゥエーハで観察される典型的な欠陥分布の例を、模式的に示した 図である。
図 2は、単結晶引き上げ時における、引き上げ速度と結晶欠陥の発生位置との一 般的な関係を、引き上げ速度を徐々に低下させて育成した単結晶の断面の欠陥分 布状態にて模式的に説明した図である。
図 3は、凝固直後の単結晶の引き上げ方向の温度勾配力 結晶中心部(Gc)よりも 結晶周辺部(Ge)の方が小さ 、 (Gc >Ge)ホットゾーン構造をもつ育成装置により引 き上げをおこなった単結晶の、図 2と同じ方法にて説明した図である。
図 4は、前記図 3と同じ育成装置による引き上げにおいて、さらに装置内の不活性 雰囲気に水素を添加した場合の図である。
図 5は、 Gc >Geのホットゾーン構造をもつ育成装置内の不活性雰囲気中に、水素 を添加した場合の、水素分圧と無欠陥領域の発生引き上げ速度幅との関係を説明 する図である。
図 6は、実施例に用いたシリコン単結晶の育成装置の構成例を模式的に示した図 である。
図 7は、酸素濃度が高ぐゥエーハ中心の OSF領域に OSFが発生する場合でも炭 素添カ卩により OSF発生が抑制され留ことを説明する図である。
発明を実施するための最良の形態
[0029] 本発明者らは、ゥヱーハ面全面にわたって均一な、 Grown— in欠陥のないゥヱー ハを得るため、引き上げ中の結晶内温度分布が Geく Gcであり、さらにこれの装置内 雰囲気に水素を添加する効果にっ 、て種々検討を加えた。
[0030] 国際公開 WO2004Z083496号パンフレットに開示された発明の方法では、この ようなホットゾーン構造が改良された育成装置にて、装置内の雰囲気を不活性ガスに 水素を添カ卩したものとすることにより、 Grown— in欠陥のない領域を得ることのできる 引き上げ速度範囲が拡大し、無欠陥単結晶が従来法に比べ高速の引き上げ速度で 育成できるとしている。
[0031] しかしながら、この国際公開 WO2004Z083496号パンフレットに記載の方法にて 単結晶育成を試みたところ、水素分圧の限定範囲がきわめて広範であり、その効果 が必ずしも明確でない場合もある。そこで、この水素分圧の大小の影響をさらに詳細 に調査した結果、特定範囲に限定すれば、新たな効果が現れることが明らかになつ てきた。
育成中の装置内の雰囲気ガス中に水素を混入して得られる効果は、通常、雰囲気 ガスにはアルゴンなどの化学的に全く不活性な気体を用いるので、その中に含まれ る水素の分圧に比例した水素がシリコンの融液中に溶け込み、これが凝固するシリコ ン結晶中〖こ分配されること〖こよると推測される。
[0032] 雰囲気中に混入する水素量は少量で、し力も装置内は大気圧より低い減圧下なの で、融液中に溶け込む水素は僅かである。したがって、平衡状態になったとき、気相 中元素の希薄溶液に関するヘンリーの法則、すなわち、溶け込んだ水素の濃度 L
H
は、雰囲気中の水素分圧 P
Hに比例するという次式の関係が成り立つはずである。
L =kP (kは係数) (1)
H H
[0033] そこで、ホットゾーン構造を改良した育成装置にて、雰囲気中の水素分圧および引 き上げ速度を種々変え、欠陥の発生状況を調査した。雰囲気中の水素分圧は、装置 内の雰囲気ガス圧を P
0とすると、導入する雰囲気ガス中に含有される水素の体積比 率が x(%)であれば、
P =P X/100 (2)
H 0
である。したがって、装置内の雰囲気ガス圧が異なる場合、水素分圧を一定、すなわ ち融液中の水素濃度を一定にするには、(2)式にしたがって混入する水素の体積比 率を変えなければならな ヽ。
[0034] このようにして、ホットゾーン構造を改良した育成装置により装置内の水素分圧を種 々選定し、引き上げ速度を連続的に変化させて単結晶を育成し、前記図 2または図 3 の場合と同じ方法で欠陥分布の形態を調査した。
一例として、前記図 3の場合と同じホットゾーン育成装置を用い、雰囲気の水素分 圧を 300Paとし、同様に引き上げ速度を連続して変化させて育成した単結晶の欠陥 分布を図 4に示す。
[0035] 図 4を図 3と比較すればわ力るように、図 3では B〜C間だった無欠陥領域の速度範 囲が、図 4では D〜F間に拡大され、同じ特性の領域を製造できる引き上げ速度の許 容範囲が大きくなつている。このことは、雰囲気への水素の適量添カ卩により面内の性 能の変動の少な 、ゥエーハカ より容易に製造できるようになることを示して 、る。
[0036] そこで、雰囲気中の水素分圧を種々変えた場合の、育成単結晶の中心部における 引き上げ速度による Grown— in欠陥の現れ方について、種々調査した結果を整理 してみると、図 5に示すような傾向が明らかになった。
[0037] 引き上げ中の単結晶内部の温度分布は、ホットゾーン構造が同じであれば、引き上 げ速度が変化してもほとんど変化しないので、この図 5の縦軸は引き上げ速度と見な すことができる。ここで、リング状 OSFの領域、 Pの領域 (酸素析出促進領域または
V
空孔優勢無欠陥領域)および Pの領域 (酸素析出抑制領域または格子間シリコン
I 優 勢無欠陥領域)、すなわち図 3の B〜C間または図 4の D〜F間は、いずれも Grown in欠陥が存在しな 、無欠陥領域であり、この間の弓 Iき上げ速度で単結晶を育成す れば、無欠陥領域力もなるゥ ーハの得られる単結晶が育成できる。
[0038] 図 5から分力るように、無欠陥領域の得られる引き上げ速度は雰囲気中の水素分圧 が増すと低下していくが、その速度の幅は水素分圧が増すほど広くなつている。そし て、 OSF領域、 P領域および P領域のそれぞれの引き上げ速度幅をみると、まず O
V I
SF領域は、水素分圧が増すと幅が狭くなり、酸素量にもよるがついには消失するま でに至る。 P領域は、育成装置内の雰囲気に水素を添加することにより始めは拡大
V
される力 それほどは拡がらず、さらに水素分圧を高くすると逆に狭くなつてくる。これ に対し P
I領域は、水素分圧が低い場合には狭いが、水素分圧が高くなると大幅に拡 大される。
[0039] 前述のように、通常の赤外線散乱体欠陥の発生する領域を主体とするゥエーハで は、表面に DZを形成させる熱処理の過程で、酸素析出によりゥ ーハ内部に IG作 用を有する BMDが生じてくる。集積回路の基板に用いられるゥエーハとしては、表面 の回路が形成される DZとともに、回路形成工程の過程での重金属による汚染対策 に IG効果を有して 、ることが必要な場合が多!、。
[0040] P領域によるゥエーハは酸素析出がないので、 SIMOX(Separation— by— impl
I
anted -oxygen)または貼り合わせなどの SOI (Silicon - on - insulator)基板に 用いるには好適であるが、 BMDができないので IG効果が要求される用途には不適 当である。
[0041] これに対し、 P領域は DZ形成処理の過程で内部に BMDを形成し、しかも DZ形
V
成処理では除去できな 、Grown— in欠陥が極めて少な!/、ので、 IG作用を有するす ぐれた基板用ゥエーハになり得る。
し力しながら、図 4の D〜E間または図 5から分力るように、育成装置内の水素分圧 の制御からは、 P
V領域を得る引き上げ速度幅は必ずしも十分には拡大できず、全面 を P領域にしたゥエーハとする条件を実現させるのは容易ではない。
V
[0042] 本発明が対象とする水素原子含有物質は、シリコン融液中に溶け込んだ際に熱分 解されて、シリコン融液中に水素原子を供給できる物質である。この水素原子含有物 質を不活性ガス雰囲気中に導入することにより、シリコン融液中の水素濃度を向上さ せることができる。
[0043] 水素原子含有物質の具体例としては、水素ガス、 H 0、 HC1等の水素原子を含む
2
無機化合物や、シランガス、 CH 、 C Hなどの炭化水素、アルコール、カルボン酸等
4 2 2
の水素原子を含む各種物質を例示できるが、特に水素ガスを用いることが望ましい。 また、不活性ガスとしては、安価な Arガスが好ましぐこれ以外にも He、 Ne、 Kr、 Xe などの各種希ガス単体、ある 、はこれらの混合ガスを用いることができる。
[0044] なお、不活性雰囲気中に酸素ガス (O )が存在する場合には、気体の水素分子換
2
算での濃度と酸素ガスの濃度の 2倍との濃度差が 3体積%以上の濃度で存在できる 。水素原子含有ガスの水素分子換算での濃度と酸素ガスの濃度の 2倍の濃度差が 3 体積%未満であると、シリコン結晶中に取り込まれた水素原子による COPおよび転 位クラスタ一等の Grown— in欠陥の生成を抑制する効果が得られないことによる。
[0045] また、不活性雰囲気中の窒素濃度が高濃度になるとシリコン結晶が有転位ィ匕する おそれがあるので、通常の炉内圧が 1. 3〜13. 3kPa (10〜100Torr)の範囲にあ つては、窒素濃度 20%以下にするのが好ましい。
水素原子含有物質の気体として水素ガスを添加する場合には、市販の水素ガスボ ンべ、水素ガス貯蔵タンク、水素吸蔵合金を充填したタンク等から、専用の配管を通 じて装置内の不活性雰囲気に供給することができる。
[0046] 従来より、 Grown— in欠陥の発生や形態変化、またはその分布に影響を及ぼすも のとして、窒素や炭素などの原子量の小さい元素の添カ卩が知られている。例えば、特 開平 11― 349394号公報に開示された発明には、窒素をドープすることによりシリコ ン原子が余分に存在する無欠陥領域、すなわち本発明で 、う P
I領域が拡大すること が示されており、特開 2001— 199794号公報には赤外線散乱体欠陥の大きさを小 さくする効果があるとして、窒素および炭素を添加する発明が提示されている。この 場合、炭素は窒素と同様な効果をもたらすとしている。
[0047] また、特開 2003— 59932号公報には、 OSFリングの外側の BMDが多く発生する 無欠陥領域、すなわち P
V領域が、窒素をドープすることにより拡大されるとし、それに 基づく IG効果を発揮する BMDの多い無欠陥ゥエーハの発明が開示されている。 このように、窒素や炭素などの軽元素のドープは Grown— in欠陥の発生や BMD の形成に影響を及ぼすと推測されるので、ホットゾーンを改良した育成装置を用い水 素を含む雰囲気中で引き上げをおこなったとき、これらはどのような影響があるの力、 そしてこの P領域を拡大する対策になり得るのかどうかについて、検討を実施した。
V
[0048] Ge< Gcであるホットゾーンを有する育成装置を用い、融液の窒素量または炭素量 を変えて窒素または炭素をドープした単結晶を育成する際に装置内雰囲気に水素を 添加し、その影響を調査した。引き上げ速度を連続的に変化させて単結晶を育成し
、得られた単結晶について、前記図 2や図 3と同じ手法にて、単結晶の縦断面におけ る欠陥の分布を調べてみると、まず、リング状 OSF、 P領域および P領域を合わせた
V I
Grown— in欠陥全体の無欠陥領域の生成状況は、水素分圧を変化させた場合と大 きくは変わらず、生成速度範囲は窒素ドープでは多少増大するが、炭素ではほとん ど変化なぐ水素の影響が大きいことがわ力つた。
[0049] ところが窒素ドープの場合、各領域の発生速度範囲を見ると、雰囲気中に水素を 添加すると水素分圧が 160Paまでは P領域の発生速度範囲が大幅に拡大される。
V
適量の窒素をドープすることにより、 Grown— in欠陥の無欠陥領域が得られる引き 上げ速度範囲幅の 60%を超える部分が P領域となるのである。このように範囲が拡
V
大されれば、全面が P
V領域であるゥ ーハの得られる単結晶の育成は、きわめて容 易になる。
しかし、水素分圧を 160Paを超えて増加させても、 P領域の得られる速度範囲幅
V
はそれ以上は大きくは変わらず、 P領域の比率が増してくる。
I
[0050] 一方、炭素ドープの場合、各領域の速度範囲幅は、雰囲気中の水素分圧を変えた 場合と大きくは変わらな力つた。ところが、ドープ量が増していくと、 OSFの発生する 領域で OSFの発生が抑止されるようになる。このため OSF領域は、 Grown— in欠陥 がなくかつ BMDが容易に生じる P領域と同様な特性を有するようになってくる。した
V
がって、炭素をドープした場合、 OSF領域と P領域とを合わせた領域の速度範囲を
V
P領域として扱えばよぐその結果 P領域が拡大されたことになる。
V V
[0051] し力しながら、引き上げ時の雰囲気中の水素分圧を増していくと、 P領域が拡大し
I
ていき OSF領域の幅が減少してくるので、炭素をドープすることによる OSF発生抑制 の効果は無意味になってしまう。
このような窒素や炭素をドープすることによる欠陥の発生状況の変化やその理由に ついてはすでに種々説明されており、凝固直後における空孔または酸素との交互作 用によると推測されるが、これに水素が加わった場合、その交互作用に影響を及ぼし て上述のような効果が得られたものと思われる。 [0052] 以上のような検討結果に基づき、さらに効果の限界を明確にして本発明を完成させ た。本発明にてその範囲を限定する理由は次のとおりである。
本発明では、引き上げの凝固直後の単結晶内の温度分布が Geく Gcとなるように ホットゾーン構造を改良し、無欠陥領域を拡大させた CZ法によるシリコン単結晶育成 において、単結晶中の窒素が 1 X 1012atoms/cm3以上、 5 X 1014atoms/cm3以 下となるようにし、かつ育成装置内の不活性雰囲気中の水素分圧を 40Pa以上 400P a以下として、単結晶直胴部を Grown— in欠陥の発生しない速度範囲で引き上げる
[0053] 凝固直後の単結晶内の温度分布を Geく Gcとなるようにし、かつ引き上げ速度を選 定すれば、単結晶のゥ ーハ面方向の無欠陥領域を拡大することができるが、このよ うな結晶内温度分布が得られるものであれば、ホットゾーンの構造は特には限定しな い。
無欠陥単結晶を得るための引き上げ速度範囲は、単結晶の口径およびホットゾー ンの構造により異なってくる。しかし、装置および単結晶径が同じであればほぼ同じ 速度範囲となるので、始めに引き上げ速度を連続して変化させた単結晶を育成し、 それにより速度範囲を調査して引き上げ速度を選定すればよい。
[0054] 窒素の添カ卩は P領域の得られる速度範囲を大幅に拡大させる効果がある。ただし
V
、窒素の量を 1 X 1012atoms/cm3以上、 5 X 1014atoms/cm3以下とするのは、 1 X 1012atOmsZcm3以未満では窒素添加の効果が十分でなく P領域の拡大が十分
V
おこなわれず、 5 X 1014atomsZcm3を超えて過剰になると有転位ィ匕が生じやすくな つたり、 OSF発生域が拡大してくるおそれがあるからである。
[0055] また、水素分圧を 40Pa以上、 400Pa以下とするのは、 40Pa未満では水素を雰囲 気に添加した効果が十分現れず、 400Paを超える分圧では、水素欠陥といわれる巨 大空洞欠陥が発生しやすくなるからである。なお、育成中の装置内雰囲気ガスの圧 力は、水素分圧が上記の範囲に制御されておれば特には限定する必要はなぐ通 常の育成に適用される圧力であればよい。
[0056] 上述のように、無欠陥領域が拡大される凝固直後の単結晶内温度分布が実現でき るホットゾーン構造の育成装置にて、装置内雰囲気の水素分圧を管理することにより 、無欠陥領域のさらなる拡大が可能になる。その場合、 P
I領域 (格子間シリコン優勢 無欠陥領域)が拡大されるので、引き上げ速度を選定すれば P
I領域のゥ ーハを得 る単結晶の育成は容易になる。しかし、さらに窒素を添加すると特に P
V領域 (空孔優 勢無欠陥領域)が拡大できるので、これは引き上げ速度を選定して P
V領域のゥ ー ハを得る単結晶を育成する目的に適用するのがよい。
[0057] また、本発明では、引き上げの凝固直後の単結晶内の温度分布が Geく Gcとなる ようにホットゾーン構造を改良し、無欠陥領域を拡大させた CZ法によるシリコン単結 晶育成において、単結晶中の炭素が 5 X 1015atoms/cm3以上、 2 X 1017atoms/ cm3以下 (ASTM F123— 1981)となるようにし、かつ育成装置内雰囲気ガス中の 水素分圧を 40Pa以上、 160Pa以下として、単結晶直胴部を Grown— in欠陥の発 生しない速度範囲で引き上げる。
[0058] 炭素の添カ卩は、 OSF領域における OSFの発生を抑止する効果がある。前述のよう に OSFの発生が抑止された OSF領域は、無欠陥でかつ内部に十分な BMDを生じ るので、 P領域と同じである。したがって、ゥエーハとしては P領域が拡大された結果
V V
になり、その速度範囲を「OSF領域 +元の P領域」の形で扱うことができる。
V
炭素の量を 5 X 1015atoms/cm3以上、 2 X 1017atoms/cm3以下とするのは、 5 X 1015atomsZcm3未満では炭素添加の効果が十分現れず、 2 X 1017atomsZcm 3を超えるとバルタ欠陥の発生が増大するので好ましくないからである。
[0059] 育成中の装置内雰囲気ガス中の水素分圧を 40Pa以上、 160Pa以下とするのは、 40Pa未満では水素ガス添カ卩の効果が十分現れないからであり、 160Paを超えて水 素分圧を増すと、 OSF領域の範囲が縮小していき、その領域の OSF発生が抑止さ れても BMDを生じる「OSF領域 +元の P領域」の範囲は狭くなつてしまうからである
V
[0060] 上述のように、無欠陥領域が拡大される凝固直後の単結晶内温度分布が実現でき るホットゾーン構造の育成装置にて、炭素を添加しその量を制御してドープし装置内 雰囲気の水素分圧を管理することにより、 OSF領域での OSF発生が抑止されて、 P
V
領域 (空孔優勢無欠陥領域)と同じ性質を示すようになる。このようにして無欠陥で B MDの生じる領域を拡大できるので、引き上げ速度を選定して、この「OSF領域 +元 の P領域」からなるゥヱーハを得る単結晶を育成する目的に適用するのがよい。
V
[0061] さらに、本発明では、引き上げの凝固直後の単結晶内の温度分布が Geく Gcとな るようにホットゾーン構造を改良し、無欠陥領域を拡大させた CZ法によるシリコン単 結晶育成において、単結晶中の窒素が l X 1012atoms/cm3以上、 5 X 1014atoms Zcm3以下で、炭素が 5 X 1015atomsZcm3以上、 2 X 1017atomsZcm3以下(AS TM F123— 1981)となるようにし、かつ育成装置内の不活性雰囲気中の水素分圧 を 40Pa以上 400Pa以下として、単結晶直胴部を Grown— in欠陥の発生しない速度 範囲で引き上げる。
[0062] 上述のように、無欠陥領域が拡大される凝固直後の単結晶内温度分布が実現でき るホットゾーン構造の育成装置にて、装置内雰囲気の水素分圧を管理することにより 、無欠陥領域のさらなる拡大が可能になる。その場合、窒素の添カ卩は P
V領域の得ら れる速度範囲を大幅に拡大させる効果があり、同時に炭素の添加は OSF領域にお ける OSFの発生を抑止する効果があることから、全面が Grown— in欠陥を存在させ ない無欠陥領域力 なり、かつ BMDが十分にそして均一に形成されるゥ ーハを得 る単結晶の育成が一層容易になる。
[0063] 以上のようにして得られたシリコン単結晶から得られたゥエーハは、例えば、不活性 ガス雰囲気、またはアンモニアおよび不活性ガスの混合雰囲気中で、加熱温度が 80 0〜1200°Cおよび加熱時間が l〜600minの条件で急速昇降温熱処理 (RTA処理 : Rapid Thermal Annealing)を施すことができる。不活性ガス雰囲気、またはァ ンモユアおよび不活性ガスの混合雰囲気中で RTA処理することにより、ゥエーハ内 部に空孔が注入される。
[0064] 本発明が対象とするゥ ーハは無欠陥領域力 なり、点欠陥の凝集体が存在しな いシリコンゥエーハであるので、注入される空孔を対消滅させる格子間シリコン型点 欠陥がほとんどなぐ酸素析出に必要な空孔が効率的に注入できる。また、空孔型点 欠陥もほとんど存在しないため、 RTA処理により十分な空孔密度を確保することがで きる。
その後のデバイスの低温プロセスにおいて熱処理を施すことにより、空孔への酸素 析出が促進され、熱処理によって酸素析出核の安定化を図り、析出物の成長が行わ れる。すなわち、この RTA処理により、ゥ ーハ面内の酸素析出の均一化が充分に 図れるとともに、デバイス構造が形成されるゥ ーハ最表面層近傍の表層部でのゲッ タリンク能力を向上できる。
[0065] 本発明の方法では、酸素濃度が 1. 2 X 1018atoms/cm3以上 (ASTM F121— 1979)である無欠陥のシリコンゥエーハが製造できる。
ゥ ーハ中の酸素濃度が高くなると、 BMDの発生量が多くなり、またゥ ーハの強 度を向上させることができる。しかし、高くなりすぎるとデバイス活性領域に酸素析出 物およびその二次欠陥が発生しやすくなり回路の特性を劣化させるので、通常、単 結晶の酸素の濃度は 1. 2 X 1018atOmsZcm3以下に制限される。
[0066] これに対し、本発明の製造方法では、炭素添加により、結晶中に現れるリング状 OS Fの形成を抑制し、その結果として、 OSF核の顕在化にともなって規定されていた酸 素濃度の許容上限 (濃度マージン)を高めることができるので、酸素濃度が 1. 2 X 10 18atomsZcm3以上の濃度レベルであってもデバイス特性を低下させることなく、無 欠陥領域力もなるゥ ーハを育成できる。また、水素と空孔との交互作用により、酸素 析出物の析出サイトが減少したことにも起因することが予測される。
ただし、酸素濃度が高くなりすぎると、この析出抑制効果はなくなるので、酸素濃度 は多くても 1. 6 X 1018atoms/cm3までとするのが望ましい。
実施例
[0067] 〔実施例 1〕
図 6に模式的に示した断面構造の装置を用いて、育成実験をおこなった。この図に おいて、熱遮蔽体 7は、黒鉛で外殻を作り、内部に黒鉛フェルトを充填した構造であ る力 るつぼに入る部分の外径力 80mm、最下端における最小内径 Sは 270mm、 半径方向の幅 Wは 105mmで、内面は下端部力も始まる逆円錐台面とし、その垂直 方向に対する傾きは 21° であった。るつぼ 1の内径は 550mmのものを用い、熱遮 蔽体 7の下端の融液面からの高さ Hは、 60mmとした。
[0068] この育成装置は、融液から引き上げる単結晶が融点から 1250°Cまでの温度範囲 において、結晶内の温度分布が Gc< Geを満足するように、熱遮蔽体 7の下端部厚 さを厚ぐ熱遮蔽体 7の下端の融液面からの高さ Hを高くするように設定している。 るつぼ内に高純度シリコンの多結晶を装入し、装置内を減圧雰囲気とし、ヒータ 2に より加熱してシリコンを溶融させ、融液 3とした。シードチャック 5に取り付けた種結晶を 融液 3に浸漬し、るつぼ 1および引き上げ軸 4を回転させつつ引き上げを行い、結晶 無転位ィ匕のためのシード絞りをおこなった後、ショルダー部を形成させ、肩変えして 直胴部を形成した。
[0069] 図 6に示すホットゾーン構造を有する育成装置を用いて、直胴部の目標直径を 200 mmとし、育成中単結晶内部の軸方向温度勾配を融点から 1370°Cまでの範囲で、 中心部は 3. 0〜3. 2°CZmm、周辺部は 2. 3〜2. 5°CZmmとした。また、装置内 の雰囲気の圧力を 4000Paとし、引き上げ速度を 0. 6mm/min→0. 3mm/min →0. 6mmZminと変化させて単結晶を育成した。その場合に、装置内雰囲気の水 素分圧を、水素添加なし、水素ガスの添カロにより 20Pa、 40Pa、 160Pa、 240Paおよ び 400Paの 6水準に変えて、育成をおこなった。
[0070] 得られた単結晶を引き上げ軸に沿って縦割りして、引き上げ中心軸近傍を面内に 含む板状試験片を作製し、 Grown— in欠陥の分布を観察した。その観察は、硫酸 銅水溶液に浸漬後乾燥して、窒素雰囲気中 900°Cにて 20分加熱し、冷却後、弗酸 硝酸混合液に浸漬して表層の Cu シリサイド層を除去してエッチング除去してか ら、 X線トポグラフ法により OSFリングの位置や各欠陥領域の分布を調査した。育成 条件および単結晶の調査結果を表 1に示す。
[0071] [表 1]
表 1
Figure imgf000021_0001
* 印は本発明で定める範囲外であることを示す。 「一」 は無添加
[0072] この表 1では、 OSF領域、 P
V領域および P
I領域を合わせたものを無欠陥領域として いる。引き上げ速度幅は、引き上げ速度を連続して変化させたときの速度の幅を示し ており、単結晶の中心部にて、測定したものである。この速度幅の範囲で引き上げを 行えば、ゥエーハ面の 80%以上がその領域である単結晶が得られ、速度幅の大きい 場合ほどゥエーハ面内の性能のばらつきが小さぐかつ製造が容易である。
[0073] 表 1の各結晶の引き上げ速度幅を比較すると、雰囲気中への水素ガスの添加によ り無欠陥領域の拡大されていることがわかる力 No. 1と No. 2〜No. 4との対比から 窒素添加により、 P領域の速度幅が大幅に拡大されていることが明らかである。また
V
No. 5と No. 6〜No. 8との対比力ら、窒素添加量は 1 X 1012 (atomsZcm3)以上 にすると、 P領域の速度幅が大幅に拡大されていることが分ける。
V
[0074] 〔実施例 2〕
実施例 1と同じ育成装置を用い、装置内雰囲気の圧力を 4000Paとし、引き上げ速 度を 0. 6mm/min→0. 3mm/min→0. 6mmZminと変化させ、その場合に、装 置内雰囲気の水素分圧および結晶にドープする炭素量を変えて、単結晶を育成し た。 得られた単結晶は、実施例 1と同様にして各欠陥領域の分布を調査した。 OSF密 度については、乾燥酸素雰囲気中 1100°Cにて 16時間の加熱処理をおこなつた後、 断面で 3 μ mのライトエッチングをおこない、光学顕微鏡観察にて調査した。育成条 件および調査結果を表 2に示す。
[表 2]
Figure imgf000022_0001
* 印は本発明で定める範囲外であることを示す。 「一」 は無添加
[0076] 表 2の No. 1と No. 9〜No. 11との対比から分力るように、装置内の水素分圧の增 加により、無欠陥領域が拡大し、炭素添カ卩により OSFの発生が大きく低下する。しか しながら、水素分圧が 160Paを超えると、 OSF領域が減少するので、 OSF領域 + P 領域の速度幅は減少しており、無欠陥かつ十分な BMDのえられる引き上げ速度幅 はせまくなつてしまう。
また、 No. 12〜No. 13の相互の対比から、炭素の添カ卩量が 5 X 1015 (atomsZc m3)を下回る場合、 OSFの発生抑止が不十分であることがわかる。
[0077] 〔実施例 3〕
実施例 1と同じ育成装置にて、装置内雰囲気ガス圧を 4000Pa、水素分圧を 160P aとし、ゥエーハの中央部が OSF発生領域となる 0. 397mmZminの引き上げ速度 にて、酸素濃度が 1. 0 X l018 (atomsZcm3)または 1. 3 X 1018 (atomsZcm3)の 2 水準で、各酸素濃度の水準に対しそれぞれ炭素をドープした場合としな力つた場合 の、合計 4種類の単結晶を育成した。
[0078] 得られた単結晶の中央部から、ゥ ーハを採取し、乾燥酸素雰囲気中 1100°C、 16 時間加熱の OSF発生の熱処理をおこない、断面にて OSF密度を調査した。調査結 果を図 7に示す。
酸素が十分低い No. 15の場合、 OSFは実質的に発生していないが、酸素が 1. 2 X 1018 (atomsZcm3)超える No. 17では OSF領域に多数の OSFが発生する。こ れに対し同じ高酸素でも、 Cをドープした No. 18では、 OSF領域でも OSFの発生が 抑止されて!ヽることがわ力る。
産業上の利用の可能性
[0079] 本発明のシリコン単結晶の製造方法によれば、 CZ法により Grown— in欠陥を存在 させない無欠陥領域によるシリコン単結晶を育成すること、育成装置内の雰囲気ガス 中に水素原子含有物質の気体を添加すること、および結晶内に窒素または Zおよび 炭素をドープすることによりシリコン単結晶を製造するので、全面が Grown— in欠陥 を存在させることなく無欠陥領域力 なり、かつ BMDが十分にそして均一に形成さ れるゥエーハを切り出すことができる。このようなゥエーハは、その上に形成される集 積回路の特性不良品の発生を大幅に低減させることができ、回路の微細化および高 密度化に対応した基板として、その製造歩留まりの向上に寄与することができるので 、広く利用することができる。

Claims

請求の範囲
[1] チヨクラルスキー法により Grown— in欠陥を存在させない無欠陥領域によるシリコ ン単結晶の育成において、育成装置内の雰囲気ガス中に水素原子含有物質の気体 を添加し、さらに結晶内に窒素または Zおよび炭素をドープすることを特徴とするシリ コン単結晶の製造方法。
[2] チヨクラルスキー法により Grown— in欠陥を存在させない無欠陥領域によるシリコ ン単結晶の育成において、単結晶中の窒素が l X 1012atoms/cm3以上、 5 X 10" atomsZcm3以下となるようにし、かつ育成装置内の雰囲気ガス中の水素分圧を 40 Pa以上、 400Pa以下として、単結晶直胴部を Grown— in欠陥の発生しない速度範 囲内で引き上げることを特徴とするシリコン単結晶の製造方法。
[3] チヨクラルスキー法により Grown— in欠陥を存在させない無欠陥領域によるシリコ ン単結晶の育成において、単結晶中の窒素が l X 1012atoms/cm3以上、 5 X 10" atomsZcm3以下となるようにし、かつ育成装置内の雰囲気ガス中の水素分圧を 40 Pa以上、 400Pa以下として、単結晶直胴部を空孔優勢無欠陥領域となる速度範囲 内で引き上げることを特徴とするシリコン単結晶の製造方法。
[4] チヨクラルスキー法により Grown— in欠陥を存在させない無欠陥領域によるシリコ ン単結晶の育成において、単結晶中の炭素が 5 X 1015atomsZcm3以上、 2 X 1017 atomsZcm3以下(ASTM F123— 1981)となるようにし、かつ育成装置内の雰囲 気ガス中の水素分圧を 40Pa以上、 160Pa以下として、単結晶直胴部を Grown— in 欠陥の発生しない速度範囲内で引き上げることを特徴とするシリコン単結晶の製造 方法。
[5] チヨクラルスキー法により Grown— in欠陥を存在させない無欠陥領域によるシリコ ン単結晶の育成において、単結晶中の炭素が 5 X 1015atoms/cm3以上、 2 X 1017 atomsZcm3以下(ASTM F123— 1981)となるようにし、育成装置内の雰囲気ガ ス中の水素分圧を 40Pa以上、 160Pa以下として、単結晶直胴部を OSF領域と空孔 優勢無欠陥領域とを加えた速度範囲内で引き上げることを特徴とするシリコン単結晶 の製造方法。
[6] チヨクラルスキー法により Grown— in欠陥を存在させない無欠陥領域によるシリコ ン単結晶の育成において、単結晶中の窒素が l X 1012atoms/cm3以上、 5 X 1014 atomsZcm3以下で、さらに炭素が 5 X 1015atomsZcm3以上、 2 X 1017atomsZc m3以下 (ASTM F123— 1981)となるようにし、かつ育成装置内の雰囲気ガス中の 水素分圧を 40Pa以上、 400Pa以下として、単結晶直胴部を Grown— in欠陥の発 生しない速度範囲内で引き上げることを特徴とするシリコン単結晶の製造方法。
[7] 請求項 1〜6のいずれかに記載の方法で育成されたシリコン単結晶から切り出され たことを特徴とするシリコンゥエーハ。
[8] 酸素濃度が 1. 2 X 1018atoms/cm3以上(ASTM F121— 1979)であることを特 徴とする請求項 7に記載のシリコンゥヱーハ。
[9] 請求項 1〜6のいずれかに記載の方法で育成されたシリコン単結晶から切り出され 、急速昇降温熱処理 (RTA処理)が施されたことを特徴とするシリコンゥエーハ。
PCT/JP2005/016962 2005-04-08 2005-09-14 シリコン単結晶の製造方法およびシリコンウェーハ WO2006112054A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05783532A EP1887110B1 (en) 2005-04-08 2005-09-14 Silicon single crystal manufacturing method and silicon wafer
CN2005800494161A CN101160420B (zh) 2005-04-08 2005-09-14 硅单晶的制造方法和硅晶片

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005112836 2005-04-08
JP2005-112836 2005-04-08
JP2005204102A JP4797477B2 (ja) 2005-04-08 2005-07-13 シリコン単結晶の製造方法
JP2005-204102 2005-07-13

Publications (1)

Publication Number Publication Date
WO2006112054A1 true WO2006112054A1 (ja) 2006-10-26

Family

ID=37114802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016962 WO2006112054A1 (ja) 2005-04-08 2005-09-14 シリコン単結晶の製造方法およびシリコンウェーハ

Country Status (6)

Country Link
EP (2) EP2110466B1 (ja)
JP (1) JP4797477B2 (ja)
KR (1) KR100913635B1 (ja)
CN (1) CN101160420B (ja)
TW (1) TW200636099A (ja)
WO (1) WO2006112054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098883A (ja) * 2009-10-08 2011-05-19 Siltronic Ag エピタキシャルウェハ及びその製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046617B4 (de) * 2008-09-10 2016-02-04 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren für deren Herstellung
JP5346744B2 (ja) * 2008-12-26 2013-11-20 ジルトロニック アクチエンゲゼルシャフト シリコンウエハ及びその製造方法
JP5428608B2 (ja) * 2009-07-15 2014-02-26 株式会社Sumco シリコン単結晶の育成方法
EP2345752B1 (en) * 2009-12-29 2012-02-15 Siltronic AG Silicon wafer and method for producing the same
DE102010034002B4 (de) * 2010-08-11 2013-02-21 Siltronic Ag Siliciumscheibe und Verfahren zu deren Herstellung
CN101942701A (zh) * 2010-09-03 2011-01-12 浙江碧晶科技有限公司 一种太阳能级硅晶体的热处理方法
JP2012142455A (ja) * 2010-12-29 2012-07-26 Siltronic Ag アニールウエハの製造方法
DE102011002598B4 (de) 2011-01-12 2016-10-06 Solarworld Innovations Gmbh Verfahren zur Herstellung eines Silizium-Ingots
DE102012214085B4 (de) * 2012-08-08 2016-07-07 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
JP6260100B2 (ja) * 2013-04-03 2018-01-17 株式会社Sumco エピタキシャルシリコンウェーハの製造方法
JP6101565B2 (ja) * 2013-05-27 2017-03-22 シャープ株式会社 窒化物半導体エピタキシャルウェハ
JP6333182B2 (ja) * 2015-01-05 2018-05-30 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハ及びその製造方法
DE102015224983B4 (de) 2015-12-11 2019-01-24 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
CN107151818A (zh) 2016-03-03 2017-09-12 上海新昇半导体科技有限公司 单晶硅的生长方法及其制备的单晶硅锭
EP3428325B1 (en) 2017-07-10 2019-09-11 Siltronic AG Semiconductor wafer made of single-crystal silicon and process for the production thereof
US11111597B2 (en) 2019-09-13 2021-09-07 Globalwafers Co., Ltd. Methods for growing a nitrogen doped single crystal silicon ingot using continuous Czochralski method
US11111596B2 (en) 2019-09-13 2021-09-07 Globalwafers Co., Ltd. Single crystal silicon ingot having axial uniformity
EP4245895A3 (en) * 2019-09-13 2023-11-15 GlobalWafers Co., Ltd. Method for growing a nitrogen doped single crystal silicon ingot using continuous czochralski method and a single crystal silicon ingot grown by this method
CN111041561A (zh) * 2019-12-29 2020-04-21 西安电子科技大学 一种硅基宽禁带材料及其制作方法
CN111020705A (zh) * 2019-12-29 2020-04-17 西安电子科技大学 一种p型硅基宽禁带材料及其制作方法
JP2021127278A (ja) * 2020-02-14 2021-09-02 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
EP3929334A1 (de) 2020-06-23 2021-12-29 Siltronic AG Verfahren zur herstellung von halbleiterscheiben
CN113897671B (zh) * 2021-09-30 2023-05-05 西安奕斯伟材料科技股份有限公司 一种氮掺杂单晶硅棒的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302099A (ja) * 1998-04-21 1999-11-02 Sumitomo Metal Ind Ltd シリコン単結晶の製造方法
JP2001226195A (ja) * 2000-02-16 2001-08-21 Toshiba Ceramics Co Ltd シリコン単結晶インゴットの製造方法
JP2001274165A (ja) * 2000-03-27 2001-10-05 Wacker Nsce Corp シリコン半導体基板
JP2002187794A (ja) * 2000-12-20 2002-07-05 Sumitomo Metal Ind Ltd シリコンウェーハおよびこれに用いるシリコン単結晶の製造方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
JP2005060153A (ja) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法及びシリコン単結晶ウェーハ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178495A (ja) * 1985-01-31 1986-08-11 Fujitsu Ltd 単結晶の成長方法
JP4013276B2 (ja) * 1997-02-17 2007-11-28 株式会社Sumco シリコンエピタキシャルウェーハの製造方法
US20020142170A1 (en) * 1999-07-28 2002-10-03 Sumitomo Metal Industries, Ltd. Silicon single crystal, silicon wafer, and epitaxial wafer
US6517632B2 (en) * 2000-01-17 2003-02-11 Toshiba Ceramics Co., Ltd. Method of fabricating a single crystal ingot and method of fabricating a silicon wafer
JP2001199794A (ja) * 2000-01-17 2001-07-24 Toshiba Ceramics Co Ltd シリコン単結晶インゴット、その製造方法およびシリコンウェーハの製造方法
DE10014650A1 (de) * 2000-03-24 2001-10-04 Wacker Siltronic Halbleitermat Halbleiterscheibe aus Silicium und Verfahren zur Herstellung der Halbleiterscheibe
JP3846627B2 (ja) * 2000-04-14 2006-11-15 信越半導体株式会社 シリコンウエーハ、シリコンエピタキシャルウエーハ、アニールウエーハならびにこれらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302099A (ja) * 1998-04-21 1999-11-02 Sumitomo Metal Ind Ltd シリコン単結晶の製造方法
JP2001226195A (ja) * 2000-02-16 2001-08-21 Toshiba Ceramics Co Ltd シリコン単結晶インゴットの製造方法
JP2001274165A (ja) * 2000-03-27 2001-10-05 Wacker Nsce Corp シリコン半導体基板
JP2002187794A (ja) * 2000-12-20 2002-07-05 Sumitomo Metal Ind Ltd シリコンウェーハおよびこれに用いるシリコン単結晶の製造方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
JP2005060153A (ja) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法及びシリコン単結晶ウェーハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887110A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098883A (ja) * 2009-10-08 2011-05-19 Siltronic Ag エピタキシャルウェハ及びその製造方法

Also Published As

Publication number Publication date
KR100913635B1 (ko) 2009-08-24
KR20070112261A (ko) 2007-11-22
EP2110466B1 (en) 2013-05-29
EP1887110A4 (en) 2009-02-18
EP1887110A1 (en) 2008-02-13
EP2110466A3 (en) 2011-10-05
CN101160420A (zh) 2008-04-09
TW200636099A (en) 2006-10-16
CN101160420B (zh) 2013-05-29
JP4797477B2 (ja) 2011-10-19
EP1887110B1 (en) 2012-07-18
TWI315752B (ja) 2009-10-11
JP2006312576A (ja) 2006-11-16
EP2110466A2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
WO2006112054A1 (ja) シリコン単結晶の製造方法およびシリコンウェーハ
JP4742711B2 (ja) シリコン単結晶育成方法
TWI302952B (en) Silicon wafer, method for manufacturing the same, and method for growing silicon single crystal
TWI310794B (en) Silicon wafer and manufacturing method for same
US7320731B2 (en) Process for growing silicon single crystal and process for producing silicon wafer
TWI390091B (zh) Silicon single crystal wafer and its manufacturing method
JP2007045662A (ja) 半導体シリコンウェーハおよびその製造方法
JP4806975B2 (ja) シリコン単結晶の育成方法
JP4821179B2 (ja) シリコン単結晶の育成方法
US20090261301A1 (en) Method for growing silicon single crystal, and silicon wafer
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP5262021B2 (ja) シリコンウェーハ及びその製造方法
JP2007045682A (ja) シリコン単結晶の育成方法およびシリコンウェーハ
JP2004250263A (ja) 高品質ウェーハおよびその製造方法
JP4577320B2 (ja) シリコンウェーハの製造方法
JP2001044207A (ja) Ig処理法及びこの処理法で作られたigウェーハ並びにこれに用いるシリコン単結晶インゴット
JP2007186418A (ja) シリコン単結晶の育成方法およびシリコンウェーハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580049416.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077023332

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005783532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2005783532

Country of ref document: EP